2017-02-01 Bill Schmidt <wschmidt@linux.vnet.ibm.com>
[official-gcc.git] / gcc / stor-layout.c
blob7ad34f792df217b8cfc7ce4a3766c60f6ababafd
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "tree-dump.h"
42 #include "gimplify.h"
43 #include "debug.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 static tree self_referential_size (tree);
54 static void finalize_record_size (record_layout_info);
55 static void finalize_type_size (tree);
56 static void place_union_field (record_layout_info, tree);
57 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
58 HOST_WIDE_INT, tree);
59 extern void debug_rli (record_layout_info);
61 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
62 to serve as the actual size-expression for a type or decl. */
64 tree
65 variable_size (tree size)
67 /* Obviously. */
68 if (TREE_CONSTANT (size))
69 return size;
71 /* If the size is self-referential, we can't make a SAVE_EXPR (see
72 save_expr for the rationale). But we can do something else. */
73 if (CONTAINS_PLACEHOLDER_P (size))
74 return self_referential_size (size);
76 /* If we are in the global binding level, we can't make a SAVE_EXPR
77 since it may end up being shared across functions, so it is up
78 to the front-end to deal with this case. */
79 if (lang_hooks.decls.global_bindings_p ())
80 return size;
82 return save_expr (size);
85 /* An array of functions used for self-referential size computation. */
86 static GTY(()) vec<tree, va_gc> *size_functions;
88 /* Return true if T is a self-referential component reference. */
90 static bool
91 self_referential_component_ref_p (tree t)
93 if (TREE_CODE (t) != COMPONENT_REF)
94 return false;
96 while (REFERENCE_CLASS_P (t))
97 t = TREE_OPERAND (t, 0);
99 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102 /* Similar to copy_tree_r but do not copy component references involving
103 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
104 and substituted in substitute_in_expr. */
106 static tree
107 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 enum tree_code code = TREE_CODE (*tp);
111 /* Stop at types, decls, constants like copy_tree_r. */
112 if (TREE_CODE_CLASS (code) == tcc_type
113 || TREE_CODE_CLASS (code) == tcc_declaration
114 || TREE_CODE_CLASS (code) == tcc_constant)
116 *walk_subtrees = 0;
117 return NULL_TREE;
120 /* This is the pattern built in ada/make_aligning_type. */
121 else if (code == ADDR_EXPR
122 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124 *walk_subtrees = 0;
125 return NULL_TREE;
128 /* Default case: the component reference. */
129 else if (self_referential_component_ref_p (*tp))
131 *walk_subtrees = 0;
132 return NULL_TREE;
135 /* We're not supposed to have them in self-referential size trees
136 because we wouldn't properly control when they are evaluated.
137 However, not creating superfluous SAVE_EXPRs requires accurate
138 tracking of readonly-ness all the way down to here, which we
139 cannot always guarantee in practice. So punt in this case. */
140 else if (code == SAVE_EXPR)
141 return error_mark_node;
143 else if (code == STATEMENT_LIST)
144 gcc_unreachable ();
146 return copy_tree_r (tp, walk_subtrees, data);
149 /* Given a SIZE expression that is self-referential, return an equivalent
150 expression to serve as the actual size expression for a type. */
152 static tree
153 self_referential_size (tree size)
155 static unsigned HOST_WIDE_INT fnno = 0;
156 vec<tree> self_refs = vNULL;
157 tree param_type_list = NULL, param_decl_list = NULL;
158 tree t, ref, return_type, fntype, fnname, fndecl;
159 unsigned int i;
160 char buf[128];
161 vec<tree, va_gc> *args = NULL;
163 /* Do not factor out simple operations. */
164 t = skip_simple_constant_arithmetic (size);
165 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
166 return size;
168 /* Collect the list of self-references in the expression. */
169 find_placeholder_in_expr (size, &self_refs);
170 gcc_assert (self_refs.length () > 0);
172 /* Obtain a private copy of the expression. */
173 t = size;
174 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
175 return size;
176 size = t;
178 /* Build the parameter and argument lists in parallel; also
179 substitute the former for the latter in the expression. */
180 vec_alloc (args, self_refs.length ());
181 FOR_EACH_VEC_ELT (self_refs, i, ref)
183 tree subst, param_name, param_type, param_decl;
185 if (DECL_P (ref))
187 /* We shouldn't have true variables here. */
188 gcc_assert (TREE_READONLY (ref));
189 subst = ref;
191 /* This is the pattern built in ada/make_aligning_type. */
192 else if (TREE_CODE (ref) == ADDR_EXPR)
193 subst = ref;
194 /* Default case: the component reference. */
195 else
196 subst = TREE_OPERAND (ref, 1);
198 sprintf (buf, "p%d", i);
199 param_name = get_identifier (buf);
200 param_type = TREE_TYPE (ref);
201 param_decl
202 = build_decl (input_location, PARM_DECL, param_name, param_type);
203 DECL_ARG_TYPE (param_decl) = param_type;
204 DECL_ARTIFICIAL (param_decl) = 1;
205 TREE_READONLY (param_decl) = 1;
207 size = substitute_in_expr (size, subst, param_decl);
209 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
210 param_decl_list = chainon (param_decl, param_decl_list);
211 args->quick_push (ref);
214 self_refs.release ();
216 /* Append 'void' to indicate that the number of parameters is fixed. */
217 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219 /* The 3 lists have been created in reverse order. */
220 param_type_list = nreverse (param_type_list);
221 param_decl_list = nreverse (param_decl_list);
223 /* Build the function type. */
224 return_type = TREE_TYPE (size);
225 fntype = build_function_type (return_type, param_type_list);
227 /* Build the function declaration. */
228 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
229 fnname = get_file_function_name (buf);
230 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
231 for (t = param_decl_list; t; t = DECL_CHAIN (t))
232 DECL_CONTEXT (t) = fndecl;
233 DECL_ARGUMENTS (fndecl) = param_decl_list;
234 DECL_RESULT (fndecl)
235 = build_decl (input_location, RESULT_DECL, 0, return_type);
236 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238 /* The function has been created by the compiler and we don't
239 want to emit debug info for it. */
240 DECL_ARTIFICIAL (fndecl) = 1;
241 DECL_IGNORED_P (fndecl) = 1;
243 /* It is supposed to be "const" and never throw. */
244 TREE_READONLY (fndecl) = 1;
245 TREE_NOTHROW (fndecl) = 1;
247 /* We want it to be inlined when this is deemed profitable, as
248 well as discarded if every call has been integrated. */
249 DECL_DECLARED_INLINE_P (fndecl) = 1;
251 /* It is made up of a unique return statement. */
252 DECL_INITIAL (fndecl) = make_node (BLOCK);
253 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
254 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
255 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
256 TREE_STATIC (fndecl) = 1;
258 /* Put it onto the list of size functions. */
259 vec_safe_push (size_functions, fndecl);
261 /* Replace the original expression with a call to the size function. */
262 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265 /* Take, queue and compile all the size functions. It is essential that
266 the size functions be gimplified at the very end of the compilation
267 in order to guarantee transparent handling of self-referential sizes.
268 Otherwise the GENERIC inliner would not be able to inline them back
269 at each of their call sites, thus creating artificial non-constant
270 size expressions which would trigger nasty problems later on. */
272 void
273 finalize_size_functions (void)
275 unsigned int i;
276 tree fndecl;
278 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280 allocate_struct_function (fndecl, false);
281 set_cfun (NULL);
282 dump_function (TDI_original, fndecl);
284 /* As these functions are used to describe the layout of variable-length
285 structures, debug info generation needs their implementation. */
286 debug_hooks->size_function (fndecl);
287 gimplify_function_tree (fndecl);
288 cgraph_node::finalize_function (fndecl, false);
291 vec_free (size_functions);
294 /* Return the machine mode to use for a nonscalar of SIZE bits. The
295 mode must be in class MCLASS, and have exactly that many value bits;
296 it may have padding as well. If LIMIT is nonzero, modes of wider
297 than MAX_FIXED_MODE_SIZE will not be used. */
299 machine_mode
300 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
302 machine_mode mode;
303 int i;
305 if (limit && size > MAX_FIXED_MODE_SIZE)
306 return BLKmode;
308 /* Get the first mode which has this size, in the specified class. */
309 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
310 mode = GET_MODE_WIDER_MODE (mode))
311 if (GET_MODE_PRECISION (mode) == size)
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (int_n_data[i].bitsize == size
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return BLKmode;
323 /* Similar, except passed a tree node. */
325 machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return BLKmode;
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return BLKmode;
337 return mode_for_size (ui, mclass, limit);
340 /* Similar, but never return BLKmode; return the narrowest mode that
341 contains at least the requested number of value bits. */
343 machine_mode
344 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
352 mode = GET_MODE_WIDER_MODE (mode))
353 if (GET_MODE_PRECISION (mode) >= size)
354 break;
356 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
357 for (i = 0; i < NUM_INT_N_ENTS; i ++)
358 if (int_n_data[i].bitsize >= size
359 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
360 && int_n_enabled_p[i])
361 mode = int_n_data[i].m;
363 if (mode == VOIDmode)
364 gcc_unreachable ();
366 return mode;
369 /* Find an integer mode of the exact same size, or BLKmode on failure. */
371 machine_mode
372 int_mode_for_mode (machine_mode mode)
374 switch (GET_MODE_CLASS (mode))
376 case MODE_INT:
377 case MODE_PARTIAL_INT:
378 break;
380 case MODE_COMPLEX_INT:
381 case MODE_COMPLEX_FLOAT:
382 case MODE_FLOAT:
383 case MODE_DECIMAL_FLOAT:
384 case MODE_VECTOR_INT:
385 case MODE_VECTOR_FLOAT:
386 case MODE_FRACT:
387 case MODE_ACCUM:
388 case MODE_UFRACT:
389 case MODE_UACCUM:
390 case MODE_VECTOR_FRACT:
391 case MODE_VECTOR_ACCUM:
392 case MODE_VECTOR_UFRACT:
393 case MODE_VECTOR_UACCUM:
394 case MODE_POINTER_BOUNDS:
395 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
396 break;
398 case MODE_RANDOM:
399 if (mode == BLKmode)
400 break;
402 /* fall through */
404 case MODE_CC:
405 default:
406 gcc_unreachable ();
409 return mode;
412 /* Find a mode that can be used for efficient bitwise operations on MODE.
413 Return BLKmode if no such mode exists. */
415 machine_mode
416 bitwise_mode_for_mode (machine_mode mode)
418 /* Quick exit if we already have a suitable mode. */
419 unsigned int bitsize = GET_MODE_BITSIZE (mode);
420 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
421 return mode;
423 /* Reuse the sanity checks from int_mode_for_mode. */
424 gcc_checking_assert ((int_mode_for_mode (mode), true));
426 /* Try to replace complex modes with complex modes. In general we
427 expect both components to be processed independently, so we only
428 care whether there is a register for the inner mode. */
429 if (COMPLEX_MODE_P (mode))
431 machine_mode trial = mode;
432 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
433 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
434 if (trial != BLKmode
435 && have_regs_of_mode[GET_MODE_INNER (trial)])
436 return trial;
439 /* Try to replace vector modes with vector modes. Also try using vector
440 modes if an integer mode would be too big. */
441 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
443 machine_mode trial = mode;
444 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
445 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
446 if (trial != BLKmode
447 && have_regs_of_mode[trial]
448 && targetm.vector_mode_supported_p (trial))
449 return trial;
452 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
453 return mode_for_size (bitsize, MODE_INT, true);
456 /* Find a type that can be used for efficient bitwise operations on MODE.
457 Return null if no such mode exists. */
459 tree
460 bitwise_type_for_mode (machine_mode mode)
462 mode = bitwise_mode_for_mode (mode);
463 if (mode == BLKmode)
464 return NULL_TREE;
466 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
467 tree inner_type = build_nonstandard_integer_type (inner_size, true);
469 if (VECTOR_MODE_P (mode))
470 return build_vector_type_for_mode (inner_type, mode);
472 if (COMPLEX_MODE_P (mode))
473 return build_complex_type (inner_type);
475 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
476 return inner_type;
479 /* Find a mode that is suitable for representing a vector with
480 NUNITS elements of mode INNERMODE. Returns BLKmode if there
481 is no suitable mode. */
483 machine_mode
484 mode_for_vector (machine_mode innermode, unsigned nunits)
486 machine_mode mode;
488 /* First, look for a supported vector type. */
489 if (SCALAR_FLOAT_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_FLOAT;
491 else if (SCALAR_FRACT_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_FRACT;
493 else if (SCALAR_UFRACT_MODE_P (innermode))
494 mode = MIN_MODE_VECTOR_UFRACT;
495 else if (SCALAR_ACCUM_MODE_P (innermode))
496 mode = MIN_MODE_VECTOR_ACCUM;
497 else if (SCALAR_UACCUM_MODE_P (innermode))
498 mode = MIN_MODE_VECTOR_UACCUM;
499 else
500 mode = MIN_MODE_VECTOR_INT;
502 /* Do not check vector_mode_supported_p here. We'll do that
503 later in vector_type_mode. */
504 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
505 if (GET_MODE_NUNITS (mode) == nunits
506 && GET_MODE_INNER (mode) == innermode)
507 break;
509 /* For integers, try mapping it to a same-sized scalar mode. */
510 if (mode == VOIDmode
511 && GET_MODE_CLASS (innermode) == MODE_INT)
512 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
513 MODE_INT, 0);
515 if (mode == VOIDmode
516 || (GET_MODE_CLASS (mode) == MODE_INT
517 && !have_regs_of_mode[mode]))
518 return BLKmode;
520 return mode;
523 /* Return the alignment of MODE. This will be bounded by 1 and
524 BIGGEST_ALIGNMENT. */
526 unsigned int
527 get_mode_alignment (machine_mode mode)
529 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
532 /* Return the natural mode of an array, given that it is SIZE bytes in
533 total and has elements of type ELEM_TYPE. */
535 static machine_mode
536 mode_for_array (tree elem_type, tree size)
538 tree elem_size;
539 unsigned HOST_WIDE_INT int_size, int_elem_size;
540 bool limit_p;
542 /* One-element arrays get the component type's mode. */
543 elem_size = TYPE_SIZE (elem_type);
544 if (simple_cst_equal (size, elem_size))
545 return TYPE_MODE (elem_type);
547 limit_p = true;
548 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
550 int_size = tree_to_uhwi (size);
551 int_elem_size = tree_to_uhwi (elem_size);
552 if (int_elem_size > 0
553 && int_size % int_elem_size == 0
554 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
555 int_size / int_elem_size))
556 limit_p = false;
558 return mode_for_size_tree (size, MODE_INT, limit_p);
561 /* Subroutine of layout_decl: Force alignment required for the data type.
562 But if the decl itself wants greater alignment, don't override that. */
564 static inline void
565 do_type_align (tree type, tree decl)
567 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
569 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
570 if (TREE_CODE (decl) == FIELD_DECL)
571 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
575 /* Set the size, mode and alignment of a ..._DECL node.
576 TYPE_DECL does need this for C++.
577 Note that LABEL_DECL and CONST_DECL nodes do not need this,
578 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
579 Don't call layout_decl for them.
581 KNOWN_ALIGN is the amount of alignment we can assume this
582 decl has with no special effort. It is relevant only for FIELD_DECLs
583 and depends on the previous fields.
584 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
585 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
586 the record will be aligned to suit. */
588 void
589 layout_decl (tree decl, unsigned int known_align)
591 tree type = TREE_TYPE (decl);
592 enum tree_code code = TREE_CODE (decl);
593 rtx rtl = NULL_RTX;
594 location_t loc = DECL_SOURCE_LOCATION (decl);
596 if (code == CONST_DECL)
597 return;
599 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
600 || code == TYPE_DECL || code == FIELD_DECL);
602 rtl = DECL_RTL_IF_SET (decl);
604 if (type == error_mark_node)
605 type = void_type_node;
607 /* Usually the size and mode come from the data type without change,
608 however, the front-end may set the explicit width of the field, so its
609 size may not be the same as the size of its type. This happens with
610 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
611 also happens with other fields. For example, the C++ front-end creates
612 zero-sized fields corresponding to empty base classes, and depends on
613 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
614 size in bytes from the size in bits. If we have already set the mode,
615 don't set it again since we can be called twice for FIELD_DECLs. */
617 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
618 if (DECL_MODE (decl) == VOIDmode)
619 SET_DECL_MODE (decl, TYPE_MODE (type));
621 if (DECL_SIZE (decl) == 0)
623 DECL_SIZE (decl) = TYPE_SIZE (type);
624 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
626 else if (DECL_SIZE_UNIT (decl) == 0)
627 DECL_SIZE_UNIT (decl)
628 = fold_convert_loc (loc, sizetype,
629 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
630 bitsize_unit_node));
632 if (code != FIELD_DECL)
633 /* For non-fields, update the alignment from the type. */
634 do_type_align (type, decl);
635 else
636 /* For fields, it's a bit more complicated... */
638 bool old_user_align = DECL_USER_ALIGN (decl);
639 bool zero_bitfield = false;
640 bool packed_p = DECL_PACKED (decl);
641 unsigned int mfa;
643 if (DECL_BIT_FIELD (decl))
645 DECL_BIT_FIELD_TYPE (decl) = type;
647 /* A zero-length bit-field affects the alignment of the next
648 field. In essence such bit-fields are not influenced by
649 any packing due to #pragma pack or attribute packed. */
650 if (integer_zerop (DECL_SIZE (decl))
651 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
653 zero_bitfield = true;
654 packed_p = false;
655 if (PCC_BITFIELD_TYPE_MATTERS)
656 do_type_align (type, decl);
657 else
659 #ifdef EMPTY_FIELD_BOUNDARY
660 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
662 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
663 DECL_USER_ALIGN (decl) = 0;
665 #endif
669 /* See if we can use an ordinary integer mode for a bit-field.
670 Conditions are: a fixed size that is correct for another mode,
671 occupying a complete byte or bytes on proper boundary. */
672 if (TYPE_SIZE (type) != 0
673 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
674 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
676 machine_mode xmode
677 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
678 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
680 if (xmode != BLKmode
681 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
682 && (known_align == 0 || known_align >= xalign))
684 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
685 SET_DECL_MODE (decl, xmode);
686 DECL_BIT_FIELD (decl) = 0;
690 /* Turn off DECL_BIT_FIELD if we won't need it set. */
691 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
692 && known_align >= TYPE_ALIGN (type)
693 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
694 DECL_BIT_FIELD (decl) = 0;
696 else if (packed_p && DECL_USER_ALIGN (decl))
697 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
698 round up; we'll reduce it again below. We want packing to
699 supersede USER_ALIGN inherited from the type, but defer to
700 alignment explicitly specified on the field decl. */;
701 else
702 do_type_align (type, decl);
704 /* If the field is packed and not explicitly aligned, give it the
705 minimum alignment. Note that do_type_align may set
706 DECL_USER_ALIGN, so we need to check old_user_align instead. */
707 if (packed_p
708 && !old_user_align)
709 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
711 if (! packed_p && ! DECL_USER_ALIGN (decl))
713 /* Some targets (i.e. i386, VMS) limit struct field alignment
714 to a lower boundary than alignment of variables unless
715 it was overridden by attribute aligned. */
716 #ifdef BIGGEST_FIELD_ALIGNMENT
717 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
718 (unsigned) BIGGEST_FIELD_ALIGNMENT));
719 #endif
720 #ifdef ADJUST_FIELD_ALIGN
721 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl)));
722 #endif
725 if (zero_bitfield)
726 mfa = initial_max_fld_align * BITS_PER_UNIT;
727 else
728 mfa = maximum_field_alignment;
729 /* Should this be controlled by DECL_USER_ALIGN, too? */
730 if (mfa != 0)
731 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
734 /* Evaluate nonconstant size only once, either now or as soon as safe. */
735 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
736 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
737 if (DECL_SIZE_UNIT (decl) != 0
738 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
739 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
741 /* If requested, warn about definitions of large data objects. */
742 if (warn_larger_than
743 && (code == VAR_DECL || code == PARM_DECL)
744 && ! DECL_EXTERNAL (decl))
746 tree size = DECL_SIZE_UNIT (decl);
748 if (size != 0 && TREE_CODE (size) == INTEGER_CST
749 && compare_tree_int (size, larger_than_size) > 0)
751 int size_as_int = TREE_INT_CST_LOW (size);
753 if (compare_tree_int (size, size_as_int) == 0)
754 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
755 else
756 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
757 decl, larger_than_size);
761 /* If the RTL was already set, update its mode and mem attributes. */
762 if (rtl)
764 PUT_MODE (rtl, DECL_MODE (decl));
765 SET_DECL_RTL (decl, 0);
766 if (MEM_P (rtl))
767 set_mem_attributes (rtl, decl, 1);
768 SET_DECL_RTL (decl, rtl);
772 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
773 results of a previous call to layout_decl and calls it again. */
775 void
776 relayout_decl (tree decl)
778 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
779 SET_DECL_MODE (decl, VOIDmode);
780 if (!DECL_USER_ALIGN (decl))
781 SET_DECL_ALIGN (decl, 0);
782 if (DECL_RTL_SET_P (decl))
783 SET_DECL_RTL (decl, 0);
785 layout_decl (decl, 0);
788 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
789 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
790 is to be passed to all other layout functions for this record. It is the
791 responsibility of the caller to call `free' for the storage returned.
792 Note that garbage collection is not permitted until we finish laying
793 out the record. */
795 record_layout_info
796 start_record_layout (tree t)
798 record_layout_info rli = XNEW (struct record_layout_info_s);
800 rli->t = t;
802 /* If the type has a minimum specified alignment (via an attribute
803 declaration, for example) use it -- otherwise, start with a
804 one-byte alignment. */
805 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
806 rli->unpacked_align = rli->record_align;
807 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
809 #ifdef STRUCTURE_SIZE_BOUNDARY
810 /* Packed structures don't need to have minimum size. */
811 if (! TYPE_PACKED (t))
813 unsigned tmp;
815 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
816 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
817 if (maximum_field_alignment != 0)
818 tmp = MIN (tmp, maximum_field_alignment);
819 rli->record_align = MAX (rli->record_align, tmp);
821 #endif
823 rli->offset = size_zero_node;
824 rli->bitpos = bitsize_zero_node;
825 rli->prev_field = 0;
826 rli->pending_statics = 0;
827 rli->packed_maybe_necessary = 0;
828 rli->remaining_in_alignment = 0;
830 return rli;
833 /* Return the combined bit position for the byte offset OFFSET and the
834 bit position BITPOS.
836 These functions operate on byte and bit positions present in FIELD_DECLs
837 and assume that these expressions result in no (intermediate) overflow.
838 This assumption is necessary to fold the expressions as much as possible,
839 so as to avoid creating artificially variable-sized types in languages
840 supporting variable-sized types like Ada. */
842 tree
843 bit_from_pos (tree offset, tree bitpos)
845 if (TREE_CODE (offset) == PLUS_EXPR)
846 offset = size_binop (PLUS_EXPR,
847 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
848 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
849 else
850 offset = fold_convert (bitsizetype, offset);
851 return size_binop (PLUS_EXPR, bitpos,
852 size_binop (MULT_EXPR, offset, bitsize_unit_node));
855 /* Return the combined truncated byte position for the byte offset OFFSET and
856 the bit position BITPOS. */
858 tree
859 byte_from_pos (tree offset, tree bitpos)
861 tree bytepos;
862 if (TREE_CODE (bitpos) == MULT_EXPR
863 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
864 bytepos = TREE_OPERAND (bitpos, 0);
865 else
866 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
867 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
870 /* Split the bit position POS into a byte offset *POFFSET and a bit
871 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
873 void
874 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
875 tree pos)
877 tree toff_align = bitsize_int (off_align);
878 if (TREE_CODE (pos) == MULT_EXPR
879 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
881 *poffset = size_binop (MULT_EXPR,
882 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
883 size_int (off_align / BITS_PER_UNIT));
884 *pbitpos = bitsize_zero_node;
886 else
888 *poffset = size_binop (MULT_EXPR,
889 fold_convert (sizetype,
890 size_binop (FLOOR_DIV_EXPR, pos,
891 toff_align)),
892 size_int (off_align / BITS_PER_UNIT));
893 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
897 /* Given a pointer to bit and byte offsets and an offset alignment,
898 normalize the offsets so they are within the alignment. */
900 void
901 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
903 /* If the bit position is now larger than it should be, adjust it
904 downwards. */
905 if (compare_tree_int (*pbitpos, off_align) >= 0)
907 tree offset, bitpos;
908 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
909 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
910 *pbitpos = bitpos;
914 /* Print debugging information about the information in RLI. */
916 DEBUG_FUNCTION void
917 debug_rli (record_layout_info rli)
919 print_node_brief (stderr, "type", rli->t, 0);
920 print_node_brief (stderr, "\noffset", rli->offset, 0);
921 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
923 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
924 rli->record_align, rli->unpacked_align,
925 rli->offset_align);
927 /* The ms_struct code is the only that uses this. */
928 if (targetm.ms_bitfield_layout_p (rli->t))
929 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
931 if (rli->packed_maybe_necessary)
932 fprintf (stderr, "packed may be necessary\n");
934 if (!vec_safe_is_empty (rli->pending_statics))
936 fprintf (stderr, "pending statics:\n");
937 debug_vec_tree (rli->pending_statics);
941 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
942 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
944 void
945 normalize_rli (record_layout_info rli)
947 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
950 /* Returns the size in bytes allocated so far. */
952 tree
953 rli_size_unit_so_far (record_layout_info rli)
955 return byte_from_pos (rli->offset, rli->bitpos);
958 /* Returns the size in bits allocated so far. */
960 tree
961 rli_size_so_far (record_layout_info rli)
963 return bit_from_pos (rli->offset, rli->bitpos);
966 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
967 the next available location within the record is given by KNOWN_ALIGN.
968 Update the variable alignment fields in RLI, and return the alignment
969 to give the FIELD. */
971 unsigned int
972 update_alignment_for_field (record_layout_info rli, tree field,
973 unsigned int known_align)
975 /* The alignment required for FIELD. */
976 unsigned int desired_align;
977 /* The type of this field. */
978 tree type = TREE_TYPE (field);
979 /* True if the field was explicitly aligned by the user. */
980 bool user_align;
981 bool is_bitfield;
983 /* Do not attempt to align an ERROR_MARK node */
984 if (TREE_CODE (type) == ERROR_MARK)
985 return 0;
987 /* Lay out the field so we know what alignment it needs. */
988 layout_decl (field, known_align);
989 desired_align = DECL_ALIGN (field);
990 user_align = DECL_USER_ALIGN (field);
992 is_bitfield = (type != error_mark_node
993 && DECL_BIT_FIELD_TYPE (field)
994 && ! integer_zerop (TYPE_SIZE (type)));
996 /* Record must have at least as much alignment as any field.
997 Otherwise, the alignment of the field within the record is
998 meaningless. */
999 if (targetm.ms_bitfield_layout_p (rli->t))
1001 /* Here, the alignment of the underlying type of a bitfield can
1002 affect the alignment of a record; even a zero-sized field
1003 can do this. The alignment should be to the alignment of
1004 the type, except that for zero-size bitfields this only
1005 applies if there was an immediately prior, nonzero-size
1006 bitfield. (That's the way it is, experimentally.) */
1007 if ((!is_bitfield && !DECL_PACKED (field))
1008 || ((DECL_SIZE (field) == NULL_TREE
1009 || !integer_zerop (DECL_SIZE (field)))
1010 ? !DECL_PACKED (field)
1011 : (rli->prev_field
1012 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1013 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1015 unsigned int type_align = TYPE_ALIGN (type);
1016 type_align = MAX (type_align, desired_align);
1017 if (maximum_field_alignment != 0)
1018 type_align = MIN (type_align, maximum_field_alignment);
1019 rli->record_align = MAX (rli->record_align, type_align);
1020 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1023 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1025 /* Named bit-fields cause the entire structure to have the
1026 alignment implied by their type. Some targets also apply the same
1027 rules to unnamed bitfields. */
1028 if (DECL_NAME (field) != 0
1029 || targetm.align_anon_bitfield ())
1031 unsigned int type_align = TYPE_ALIGN (type);
1033 #ifdef ADJUST_FIELD_ALIGN
1034 if (! TYPE_USER_ALIGN (type))
1035 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1036 #endif
1038 /* Targets might chose to handle unnamed and hence possibly
1039 zero-width bitfield. Those are not influenced by #pragmas
1040 or packed attributes. */
1041 if (integer_zerop (DECL_SIZE (field)))
1043 if (initial_max_fld_align)
1044 type_align = MIN (type_align,
1045 initial_max_fld_align * BITS_PER_UNIT);
1047 else if (maximum_field_alignment != 0)
1048 type_align = MIN (type_align, maximum_field_alignment);
1049 else if (DECL_PACKED (field))
1050 type_align = MIN (type_align, BITS_PER_UNIT);
1052 /* The alignment of the record is increased to the maximum
1053 of the current alignment, the alignment indicated on the
1054 field (i.e., the alignment specified by an __aligned__
1055 attribute), and the alignment indicated by the type of
1056 the field. */
1057 rli->record_align = MAX (rli->record_align, desired_align);
1058 rli->record_align = MAX (rli->record_align, type_align);
1060 if (warn_packed)
1061 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1062 user_align |= TYPE_USER_ALIGN (type);
1065 else
1067 rli->record_align = MAX (rli->record_align, desired_align);
1068 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1071 TYPE_USER_ALIGN (rli->t) |= user_align;
1073 return desired_align;
1076 /* Called from place_field to handle unions. */
1078 static void
1079 place_union_field (record_layout_info rli, tree field)
1081 update_alignment_for_field (rli, field, /*known_align=*/0);
1083 DECL_FIELD_OFFSET (field) = size_zero_node;
1084 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1085 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1087 /* If this is an ERROR_MARK return *after* having set the
1088 field at the start of the union. This helps when parsing
1089 invalid fields. */
1090 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1091 return;
1093 /* We assume the union's size will be a multiple of a byte so we don't
1094 bother with BITPOS. */
1095 if (TREE_CODE (rli->t) == UNION_TYPE)
1096 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1097 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1098 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1099 DECL_SIZE_UNIT (field), rli->offset);
1102 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1103 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1104 units of alignment than the underlying TYPE. */
1105 static int
1106 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1107 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1109 /* Note that the calculation of OFFSET might overflow; we calculate it so
1110 that we still get the right result as long as ALIGN is a power of two. */
1111 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1113 offset = offset % align;
1114 return ((offset + size + align - 1) / align
1115 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1118 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1119 is a FIELD_DECL to be added after those fields already present in
1120 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1121 callers that desire that behavior must manually perform that step.) */
1123 void
1124 place_field (record_layout_info rli, tree field)
1126 /* The alignment required for FIELD. */
1127 unsigned int desired_align;
1128 /* The alignment FIELD would have if we just dropped it into the
1129 record as it presently stands. */
1130 unsigned int known_align;
1131 unsigned int actual_align;
1132 /* The type of this field. */
1133 tree type = TREE_TYPE (field);
1135 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1137 /* If FIELD is static, then treat it like a separate variable, not
1138 really like a structure field. If it is a FUNCTION_DECL, it's a
1139 method. In both cases, all we do is lay out the decl, and we do
1140 it *after* the record is laid out. */
1141 if (VAR_P (field))
1143 vec_safe_push (rli->pending_statics, field);
1144 return;
1147 /* Enumerators and enum types which are local to this class need not
1148 be laid out. Likewise for initialized constant fields. */
1149 else if (TREE_CODE (field) != FIELD_DECL)
1150 return;
1152 /* Unions are laid out very differently than records, so split
1153 that code off to another function. */
1154 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1156 place_union_field (rli, field);
1157 return;
1160 else if (TREE_CODE (type) == ERROR_MARK)
1162 /* Place this field at the current allocation position, so we
1163 maintain monotonicity. */
1164 DECL_FIELD_OFFSET (field) = rli->offset;
1165 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1166 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1167 return;
1170 /* Work out the known alignment so far. Note that A & (-A) is the
1171 value of the least-significant bit in A that is one. */
1172 if (! integer_zerop (rli->bitpos))
1173 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1174 else if (integer_zerop (rli->offset))
1175 known_align = 0;
1176 else if (tree_fits_uhwi_p (rli->offset))
1177 known_align = (BITS_PER_UNIT
1178 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1179 else
1180 known_align = rli->offset_align;
1182 desired_align = update_alignment_for_field (rli, field, known_align);
1183 if (known_align == 0)
1184 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1186 if (warn_packed && DECL_PACKED (field))
1188 if (known_align >= TYPE_ALIGN (type))
1190 if (TYPE_ALIGN (type) > desired_align)
1192 if (STRICT_ALIGNMENT)
1193 warning (OPT_Wattributes, "packed attribute causes "
1194 "inefficient alignment for %q+D", field);
1195 /* Don't warn if DECL_PACKED was set by the type. */
1196 else if (!TYPE_PACKED (rli->t))
1197 warning (OPT_Wattributes, "packed attribute is "
1198 "unnecessary for %q+D", field);
1201 else
1202 rli->packed_maybe_necessary = 1;
1205 /* Does this field automatically have alignment it needs by virtue
1206 of the fields that precede it and the record's own alignment? */
1207 if (known_align < desired_align)
1209 /* No, we need to skip space before this field.
1210 Bump the cumulative size to multiple of field alignment. */
1212 if (!targetm.ms_bitfield_layout_p (rli->t)
1213 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1214 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1216 /* If the alignment is still within offset_align, just align
1217 the bit position. */
1218 if (desired_align < rli->offset_align)
1219 rli->bitpos = round_up (rli->bitpos, desired_align);
1220 else
1222 /* First adjust OFFSET by the partial bits, then align. */
1223 rli->offset
1224 = size_binop (PLUS_EXPR, rli->offset,
1225 fold_convert (sizetype,
1226 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1227 bitsize_unit_node)));
1228 rli->bitpos = bitsize_zero_node;
1230 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1233 if (! TREE_CONSTANT (rli->offset))
1234 rli->offset_align = desired_align;
1235 if (targetm.ms_bitfield_layout_p (rli->t))
1236 rli->prev_field = NULL;
1239 /* Handle compatibility with PCC. Note that if the record has any
1240 variable-sized fields, we need not worry about compatibility. */
1241 if (PCC_BITFIELD_TYPE_MATTERS
1242 && ! targetm.ms_bitfield_layout_p (rli->t)
1243 && TREE_CODE (field) == FIELD_DECL
1244 && type != error_mark_node
1245 && DECL_BIT_FIELD (field)
1246 && (! DECL_PACKED (field)
1247 /* Enter for these packed fields only to issue a warning. */
1248 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1249 && maximum_field_alignment == 0
1250 && ! integer_zerop (DECL_SIZE (field))
1251 && tree_fits_uhwi_p (DECL_SIZE (field))
1252 && tree_fits_uhwi_p (rli->offset)
1253 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1255 unsigned int type_align = TYPE_ALIGN (type);
1256 tree dsize = DECL_SIZE (field);
1257 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1258 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1259 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1261 #ifdef ADJUST_FIELD_ALIGN
1262 if (! TYPE_USER_ALIGN (type))
1263 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1264 #endif
1266 /* A bit field may not span more units of alignment of its type
1267 than its type itself. Advance to next boundary if necessary. */
1268 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1270 if (DECL_PACKED (field))
1272 if (warn_packed_bitfield_compat == 1)
1273 inform
1274 (input_location,
1275 "offset of packed bit-field %qD has changed in GCC 4.4",
1276 field);
1278 else
1279 rli->bitpos = round_up (rli->bitpos, type_align);
1282 if (! DECL_PACKED (field))
1283 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1286 #ifdef BITFIELD_NBYTES_LIMITED
1287 if (BITFIELD_NBYTES_LIMITED
1288 && ! targetm.ms_bitfield_layout_p (rli->t)
1289 && TREE_CODE (field) == FIELD_DECL
1290 && type != error_mark_node
1291 && DECL_BIT_FIELD_TYPE (field)
1292 && ! DECL_PACKED (field)
1293 && ! integer_zerop (DECL_SIZE (field))
1294 && tree_fits_uhwi_p (DECL_SIZE (field))
1295 && tree_fits_uhwi_p (rli->offset)
1296 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1298 unsigned int type_align = TYPE_ALIGN (type);
1299 tree dsize = DECL_SIZE (field);
1300 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1301 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1302 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1304 #ifdef ADJUST_FIELD_ALIGN
1305 if (! TYPE_USER_ALIGN (type))
1306 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1307 #endif
1309 if (maximum_field_alignment != 0)
1310 type_align = MIN (type_align, maximum_field_alignment);
1311 /* ??? This test is opposite the test in the containing if
1312 statement, so this code is unreachable currently. */
1313 else if (DECL_PACKED (field))
1314 type_align = MIN (type_align, BITS_PER_UNIT);
1316 /* A bit field may not span the unit of alignment of its type.
1317 Advance to next boundary if necessary. */
1318 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1319 rli->bitpos = round_up (rli->bitpos, type_align);
1321 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1323 #endif
1325 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1326 A subtlety:
1327 When a bit field is inserted into a packed record, the whole
1328 size of the underlying type is used by one or more same-size
1329 adjacent bitfields. (That is, if its long:3, 32 bits is
1330 used in the record, and any additional adjacent long bitfields are
1331 packed into the same chunk of 32 bits. However, if the size
1332 changes, a new field of that size is allocated.) In an unpacked
1333 record, this is the same as using alignment, but not equivalent
1334 when packing.
1336 Note: for compatibility, we use the type size, not the type alignment
1337 to determine alignment, since that matches the documentation */
1339 if (targetm.ms_bitfield_layout_p (rli->t))
1341 tree prev_saved = rli->prev_field;
1342 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1344 /* This is a bitfield if it exists. */
1345 if (rli->prev_field)
1347 /* If both are bitfields, nonzero, and the same size, this is
1348 the middle of a run. Zero declared size fields are special
1349 and handled as "end of run". (Note: it's nonzero declared
1350 size, but equal type sizes!) (Since we know that both
1351 the current and previous fields are bitfields by the
1352 time we check it, DECL_SIZE must be present for both.) */
1353 if (DECL_BIT_FIELD_TYPE (field)
1354 && !integer_zerop (DECL_SIZE (field))
1355 && !integer_zerop (DECL_SIZE (rli->prev_field))
1356 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1357 && tree_fits_uhwi_p (TYPE_SIZE (type))
1358 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1360 /* We're in the middle of a run of equal type size fields; make
1361 sure we realign if we run out of bits. (Not decl size,
1362 type size!) */
1363 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1365 if (rli->remaining_in_alignment < bitsize)
1367 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1369 /* out of bits; bump up to next 'word'. */
1370 rli->bitpos
1371 = size_binop (PLUS_EXPR, rli->bitpos,
1372 bitsize_int (rli->remaining_in_alignment));
1373 rli->prev_field = field;
1374 if (typesize < bitsize)
1375 rli->remaining_in_alignment = 0;
1376 else
1377 rli->remaining_in_alignment = typesize - bitsize;
1379 else
1380 rli->remaining_in_alignment -= bitsize;
1382 else
1384 /* End of a run: if leaving a run of bitfields of the same type
1385 size, we have to "use up" the rest of the bits of the type
1386 size.
1388 Compute the new position as the sum of the size for the prior
1389 type and where we first started working on that type.
1390 Note: since the beginning of the field was aligned then
1391 of course the end will be too. No round needed. */
1393 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1395 rli->bitpos
1396 = size_binop (PLUS_EXPR, rli->bitpos,
1397 bitsize_int (rli->remaining_in_alignment));
1399 else
1400 /* We "use up" size zero fields; the code below should behave
1401 as if the prior field was not a bitfield. */
1402 prev_saved = NULL;
1404 /* Cause a new bitfield to be captured, either this time (if
1405 currently a bitfield) or next time we see one. */
1406 if (!DECL_BIT_FIELD_TYPE (field)
1407 || integer_zerop (DECL_SIZE (field)))
1408 rli->prev_field = NULL;
1411 normalize_rli (rli);
1414 /* If we're starting a new run of same type size bitfields
1415 (or a run of non-bitfields), set up the "first of the run"
1416 fields.
1418 That is, if the current field is not a bitfield, or if there
1419 was a prior bitfield the type sizes differ, or if there wasn't
1420 a prior bitfield the size of the current field is nonzero.
1422 Note: we must be sure to test ONLY the type size if there was
1423 a prior bitfield and ONLY for the current field being zero if
1424 there wasn't. */
1426 if (!DECL_BIT_FIELD_TYPE (field)
1427 || (prev_saved != NULL
1428 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1429 : !integer_zerop (DECL_SIZE (field)) ))
1431 /* Never smaller than a byte for compatibility. */
1432 unsigned int type_align = BITS_PER_UNIT;
1434 /* (When not a bitfield), we could be seeing a flex array (with
1435 no DECL_SIZE). Since we won't be using remaining_in_alignment
1436 until we see a bitfield (and come by here again) we just skip
1437 calculating it. */
1438 if (DECL_SIZE (field) != NULL
1439 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1440 && tree_fits_uhwi_p (DECL_SIZE (field)))
1442 unsigned HOST_WIDE_INT bitsize
1443 = tree_to_uhwi (DECL_SIZE (field));
1444 unsigned HOST_WIDE_INT typesize
1445 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1447 if (typesize < bitsize)
1448 rli->remaining_in_alignment = 0;
1449 else
1450 rli->remaining_in_alignment = typesize - bitsize;
1453 /* Now align (conventionally) for the new type. */
1454 type_align = TYPE_ALIGN (TREE_TYPE (field));
1456 if (maximum_field_alignment != 0)
1457 type_align = MIN (type_align, maximum_field_alignment);
1459 rli->bitpos = round_up (rli->bitpos, type_align);
1461 /* If we really aligned, don't allow subsequent bitfields
1462 to undo that. */
1463 rli->prev_field = NULL;
1467 /* Offset so far becomes the position of this field after normalizing. */
1468 normalize_rli (rli);
1469 DECL_FIELD_OFFSET (field) = rli->offset;
1470 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1471 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1473 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1474 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1475 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1477 /* If this field ended up more aligned than we thought it would be (we
1478 approximate this by seeing if its position changed), lay out the field
1479 again; perhaps we can use an integral mode for it now. */
1480 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1481 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1482 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1483 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1484 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1485 actual_align = (BITS_PER_UNIT
1486 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1487 else
1488 actual_align = DECL_OFFSET_ALIGN (field);
1489 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1490 store / extract bit field operations will check the alignment of the
1491 record against the mode of bit fields. */
1493 if (known_align != actual_align)
1494 layout_decl (field, actual_align);
1496 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1497 rli->prev_field = field;
1499 /* Now add size of this field to the size of the record. If the size is
1500 not constant, treat the field as being a multiple of bytes and just
1501 adjust the offset, resetting the bit position. Otherwise, apportion the
1502 size amongst the bit position and offset. First handle the case of an
1503 unspecified size, which can happen when we have an invalid nested struct
1504 definition, such as struct j { struct j { int i; } }. The error message
1505 is printed in finish_struct. */
1506 if (DECL_SIZE (field) == 0)
1507 /* Do nothing. */;
1508 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1509 || TREE_OVERFLOW (DECL_SIZE (field)))
1511 rli->offset
1512 = size_binop (PLUS_EXPR, rli->offset,
1513 fold_convert (sizetype,
1514 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1515 bitsize_unit_node)));
1516 rli->offset
1517 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1518 rli->bitpos = bitsize_zero_node;
1519 rli->offset_align = MIN (rli->offset_align, desired_align);
1521 else if (targetm.ms_bitfield_layout_p (rli->t))
1523 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1525 /* If we ended a bitfield before the full length of the type then
1526 pad the struct out to the full length of the last type. */
1527 if ((DECL_CHAIN (field) == NULL
1528 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1529 && DECL_BIT_FIELD_TYPE (field)
1530 && !integer_zerop (DECL_SIZE (field)))
1531 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1532 bitsize_int (rli->remaining_in_alignment));
1534 normalize_rli (rli);
1536 else
1538 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1539 normalize_rli (rli);
1543 /* Assuming that all the fields have been laid out, this function uses
1544 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1545 indicated by RLI. */
1547 static void
1548 finalize_record_size (record_layout_info rli)
1550 tree unpadded_size, unpadded_size_unit;
1552 /* Now we want just byte and bit offsets, so set the offset alignment
1553 to be a byte and then normalize. */
1554 rli->offset_align = BITS_PER_UNIT;
1555 normalize_rli (rli);
1557 /* Determine the desired alignment. */
1558 #ifdef ROUND_TYPE_ALIGN
1559 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1560 rli->record_align));
1561 #else
1562 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1563 #endif
1565 /* Compute the size so far. Be sure to allow for extra bits in the
1566 size in bytes. We have guaranteed above that it will be no more
1567 than a single byte. */
1568 unpadded_size = rli_size_so_far (rli);
1569 unpadded_size_unit = rli_size_unit_so_far (rli);
1570 if (! integer_zerop (rli->bitpos))
1571 unpadded_size_unit
1572 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1574 /* Round the size up to be a multiple of the required alignment. */
1575 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1576 TYPE_SIZE_UNIT (rli->t)
1577 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1579 if (TREE_CONSTANT (unpadded_size)
1580 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1581 && input_location != BUILTINS_LOCATION)
1582 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1584 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1585 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1586 && TREE_CONSTANT (unpadded_size))
1588 tree unpacked_size;
1590 #ifdef ROUND_TYPE_ALIGN
1591 rli->unpacked_align
1592 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1593 #else
1594 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1595 #endif
1597 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1598 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1600 if (TYPE_NAME (rli->t))
1602 tree name;
1604 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1605 name = TYPE_NAME (rli->t);
1606 else
1607 name = DECL_NAME (TYPE_NAME (rli->t));
1609 if (STRICT_ALIGNMENT)
1610 warning (OPT_Wpacked, "packed attribute causes inefficient "
1611 "alignment for %qE", name);
1612 else
1613 warning (OPT_Wpacked,
1614 "packed attribute is unnecessary for %qE", name);
1616 else
1618 if (STRICT_ALIGNMENT)
1619 warning (OPT_Wpacked,
1620 "packed attribute causes inefficient alignment");
1621 else
1622 warning (OPT_Wpacked, "packed attribute is unnecessary");
1628 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1630 void
1631 compute_record_mode (tree type)
1633 tree field;
1634 machine_mode mode = VOIDmode;
1636 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1637 However, if possible, we use a mode that fits in a register
1638 instead, in order to allow for better optimization down the
1639 line. */
1640 SET_TYPE_MODE (type, BLKmode);
1642 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1643 return;
1645 /* A record which has any BLKmode members must itself be
1646 BLKmode; it can't go in a register. Unless the member is
1647 BLKmode only because it isn't aligned. */
1648 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1650 if (TREE_CODE (field) != FIELD_DECL)
1651 continue;
1653 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1654 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1655 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1656 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1657 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1658 || ! tree_fits_uhwi_p (bit_position (field))
1659 || DECL_SIZE (field) == 0
1660 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1661 return;
1663 /* If this field is the whole struct, remember its mode so
1664 that, say, we can put a double in a class into a DF
1665 register instead of forcing it to live in the stack. */
1666 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1667 mode = DECL_MODE (field);
1669 /* With some targets, it is sub-optimal to access an aligned
1670 BLKmode structure as a scalar. */
1671 if (targetm.member_type_forces_blk (field, mode))
1672 return;
1675 /* If we only have one real field; use its mode if that mode's size
1676 matches the type's size. This only applies to RECORD_TYPE. This
1677 does not apply to unions. */
1678 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1679 && tree_fits_uhwi_p (TYPE_SIZE (type))
1680 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1681 SET_TYPE_MODE (type, mode);
1682 else
1683 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1685 /* If structure's known alignment is less than what the scalar
1686 mode would need, and it matters, then stick with BLKmode. */
1687 if (TYPE_MODE (type) != BLKmode
1688 && STRICT_ALIGNMENT
1689 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1690 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1692 /* If this is the only reason this type is BLKmode, then
1693 don't force containing types to be BLKmode. */
1694 TYPE_NO_FORCE_BLK (type) = 1;
1695 SET_TYPE_MODE (type, BLKmode);
1699 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1700 out. */
1702 static void
1703 finalize_type_size (tree type)
1705 /* Normally, use the alignment corresponding to the mode chosen.
1706 However, where strict alignment is not required, avoid
1707 over-aligning structures, since most compilers do not do this
1708 alignment. */
1709 if (TYPE_MODE (type) != BLKmode
1710 && TYPE_MODE (type) != VOIDmode
1711 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1713 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1715 /* Don't override a larger alignment requirement coming from a user
1716 alignment of one of the fields. */
1717 if (mode_align >= TYPE_ALIGN (type))
1719 SET_TYPE_ALIGN (type, mode_align);
1720 TYPE_USER_ALIGN (type) = 0;
1724 /* Do machine-dependent extra alignment. */
1725 #ifdef ROUND_TYPE_ALIGN
1726 SET_TYPE_ALIGN (type,
1727 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1728 #endif
1730 /* If we failed to find a simple way to calculate the unit size
1731 of the type, find it by division. */
1732 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1733 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1734 result will fit in sizetype. We will get more efficient code using
1735 sizetype, so we force a conversion. */
1736 TYPE_SIZE_UNIT (type)
1737 = fold_convert (sizetype,
1738 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1739 bitsize_unit_node));
1741 if (TYPE_SIZE (type) != 0)
1743 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1744 TYPE_SIZE_UNIT (type)
1745 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1748 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1749 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1750 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1751 if (TYPE_SIZE_UNIT (type) != 0
1752 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1753 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1755 /* Also layout any other variants of the type. */
1756 if (TYPE_NEXT_VARIANT (type)
1757 || type != TYPE_MAIN_VARIANT (type))
1759 tree variant;
1760 /* Record layout info of this variant. */
1761 tree size = TYPE_SIZE (type);
1762 tree size_unit = TYPE_SIZE_UNIT (type);
1763 unsigned int align = TYPE_ALIGN (type);
1764 unsigned int precision = TYPE_PRECISION (type);
1765 unsigned int user_align = TYPE_USER_ALIGN (type);
1766 machine_mode mode = TYPE_MODE (type);
1768 /* Copy it into all variants. */
1769 for (variant = TYPE_MAIN_VARIANT (type);
1770 variant != 0;
1771 variant = TYPE_NEXT_VARIANT (variant))
1773 TYPE_SIZE (variant) = size;
1774 TYPE_SIZE_UNIT (variant) = size_unit;
1775 unsigned valign = align;
1776 if (TYPE_USER_ALIGN (variant))
1777 valign = MAX (valign, TYPE_ALIGN (variant));
1778 else
1779 TYPE_USER_ALIGN (variant) = user_align;
1780 SET_TYPE_ALIGN (variant, valign);
1781 TYPE_PRECISION (variant) = precision;
1782 SET_TYPE_MODE (variant, mode);
1787 /* Return a new underlying object for a bitfield started with FIELD. */
1789 static tree
1790 start_bitfield_representative (tree field)
1792 tree repr = make_node (FIELD_DECL);
1793 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1794 /* Force the representative to begin at a BITS_PER_UNIT aligned
1795 boundary - C++ may use tail-padding of a base object to
1796 continue packing bits so the bitfield region does not start
1797 at bit zero (see g++.dg/abi/bitfield5.C for example).
1798 Unallocated bits may happen for other reasons as well,
1799 for example Ada which allows explicit bit-granular structure layout. */
1800 DECL_FIELD_BIT_OFFSET (repr)
1801 = size_binop (BIT_AND_EXPR,
1802 DECL_FIELD_BIT_OFFSET (field),
1803 bitsize_int (~(BITS_PER_UNIT - 1)));
1804 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1805 DECL_SIZE (repr) = DECL_SIZE (field);
1806 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1807 DECL_PACKED (repr) = DECL_PACKED (field);
1808 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1809 /* There are no indirect accesses to this field. If we introduce
1810 some then they have to use the record alias set. This makes
1811 sure to properly conflict with [indirect] accesses to addressable
1812 fields of the bitfield group. */
1813 DECL_NONADDRESSABLE_P (repr) = 1;
1814 return repr;
1817 /* Finish up a bitfield group that was started by creating the underlying
1818 object REPR with the last field in the bitfield group FIELD. */
1820 static void
1821 finish_bitfield_representative (tree repr, tree field)
1823 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1824 machine_mode mode;
1825 tree nextf, size;
1827 size = size_diffop (DECL_FIELD_OFFSET (field),
1828 DECL_FIELD_OFFSET (repr));
1829 while (TREE_CODE (size) == COMPOUND_EXPR)
1830 size = TREE_OPERAND (size, 1);
1831 gcc_assert (tree_fits_uhwi_p (size));
1832 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1833 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1834 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1835 + tree_to_uhwi (DECL_SIZE (field)));
1837 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1838 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1840 /* Now nothing tells us how to pad out bitsize ... */
1841 nextf = DECL_CHAIN (field);
1842 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1843 nextf = DECL_CHAIN (nextf);
1844 if (nextf)
1846 tree maxsize;
1847 /* If there was an error, the field may be not laid out
1848 correctly. Don't bother to do anything. */
1849 if (TREE_TYPE (nextf) == error_mark_node)
1850 return;
1851 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1852 DECL_FIELD_OFFSET (repr));
1853 if (tree_fits_uhwi_p (maxsize))
1855 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1856 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1857 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1858 /* If the group ends within a bitfield nextf does not need to be
1859 aligned to BITS_PER_UNIT. Thus round up. */
1860 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1862 else
1863 maxbitsize = bitsize;
1865 else
1867 /* Note that if the C++ FE sets up tail-padding to be re-used it
1868 creates a as-base variant of the type with TYPE_SIZE adjusted
1869 accordingly. So it is safe to include tail-padding here. */
1870 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
1871 (DECL_CONTEXT (field));
1872 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
1873 /* We cannot generally rely on maxsize to fold to an integer constant,
1874 so use bitsize as fallback for this case. */
1875 if (tree_fits_uhwi_p (maxsize))
1876 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1877 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1878 else
1879 maxbitsize = bitsize;
1882 /* Only if we don't artificially break up the representative in
1883 the middle of a large bitfield with different possibly
1884 overlapping representatives. And all representatives start
1885 at byte offset. */
1886 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1888 /* Find the smallest nice mode to use. */
1889 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1890 mode = GET_MODE_WIDER_MODE (mode))
1891 if (GET_MODE_BITSIZE (mode) >= bitsize)
1892 break;
1893 if (mode != VOIDmode
1894 && (GET_MODE_BITSIZE (mode) > maxbitsize
1895 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1896 mode = VOIDmode;
1898 if (mode == VOIDmode)
1900 /* We really want a BLKmode representative only as a last resort,
1901 considering the member b in
1902 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1903 Otherwise we simply want to split the representative up
1904 allowing for overlaps within the bitfield region as required for
1905 struct { int a : 7; int b : 7;
1906 int c : 10; int d; } __attribute__((packed));
1907 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1908 DECL_SIZE (repr) = bitsize_int (bitsize);
1909 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1910 SET_DECL_MODE (repr, BLKmode);
1911 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1912 bitsize / BITS_PER_UNIT);
1914 else
1916 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1917 DECL_SIZE (repr) = bitsize_int (modesize);
1918 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1919 SET_DECL_MODE (repr, mode);
1920 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1923 /* Remember whether the bitfield group is at the end of the
1924 structure or not. */
1925 DECL_CHAIN (repr) = nextf;
1928 /* Compute and set FIELD_DECLs for the underlying objects we should
1929 use for bitfield access for the structure T. */
1931 void
1932 finish_bitfield_layout (tree t)
1934 tree field, prev;
1935 tree repr = NULL_TREE;
1937 /* Unions would be special, for the ease of type-punning optimizations
1938 we could use the underlying type as hint for the representative
1939 if the bitfield would fit and the representative would not exceed
1940 the union in size. */
1941 if (TREE_CODE (t) != RECORD_TYPE)
1942 return;
1944 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1945 field; field = DECL_CHAIN (field))
1947 if (TREE_CODE (field) != FIELD_DECL)
1948 continue;
1950 /* In the C++ memory model, consecutive bit fields in a structure are
1951 considered one memory location and updating a memory location
1952 may not store into adjacent memory locations. */
1953 if (!repr
1954 && DECL_BIT_FIELD_TYPE (field))
1956 /* Start new representative. */
1957 repr = start_bitfield_representative (field);
1959 else if (repr
1960 && ! DECL_BIT_FIELD_TYPE (field))
1962 /* Finish off new representative. */
1963 finish_bitfield_representative (repr, prev);
1964 repr = NULL_TREE;
1966 else if (DECL_BIT_FIELD_TYPE (field))
1968 gcc_assert (repr != NULL_TREE);
1970 /* Zero-size bitfields finish off a representative and
1971 do not have a representative themselves. This is
1972 required by the C++ memory model. */
1973 if (integer_zerop (DECL_SIZE (field)))
1975 finish_bitfield_representative (repr, prev);
1976 repr = NULL_TREE;
1979 /* We assume that either DECL_FIELD_OFFSET of the representative
1980 and each bitfield member is a constant or they are equal.
1981 This is because we need to be able to compute the bit-offset
1982 of each field relative to the representative in get_bit_range
1983 during RTL expansion.
1984 If these constraints are not met, simply force a new
1985 representative to be generated. That will at most
1986 generate worse code but still maintain correctness with
1987 respect to the C++ memory model. */
1988 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1989 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1990 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1991 DECL_FIELD_OFFSET (field), 0)))
1993 finish_bitfield_representative (repr, prev);
1994 repr = start_bitfield_representative (field);
1997 else
1998 continue;
2000 if (repr)
2001 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2003 prev = field;
2006 if (repr)
2007 finish_bitfield_representative (repr, prev);
2010 /* Do all of the work required to layout the type indicated by RLI,
2011 once the fields have been laid out. This function will call `free'
2012 for RLI, unless FREE_P is false. Passing a value other than false
2013 for FREE_P is bad practice; this option only exists to support the
2014 G++ 3.2 ABI. */
2016 void
2017 finish_record_layout (record_layout_info rli, int free_p)
2019 tree variant;
2021 /* Compute the final size. */
2022 finalize_record_size (rli);
2024 /* Compute the TYPE_MODE for the record. */
2025 compute_record_mode (rli->t);
2027 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2028 finalize_type_size (rli->t);
2030 /* Compute bitfield representatives. */
2031 finish_bitfield_layout (rli->t);
2033 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2034 With C++ templates, it is too early to do this when the attribute
2035 is being parsed. */
2036 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2037 variant = TYPE_NEXT_VARIANT (variant))
2039 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2040 TYPE_REVERSE_STORAGE_ORDER (variant)
2041 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2044 /* Lay out any static members. This is done now because their type
2045 may use the record's type. */
2046 while (!vec_safe_is_empty (rli->pending_statics))
2047 layout_decl (rli->pending_statics->pop (), 0);
2049 /* Clean up. */
2050 if (free_p)
2052 vec_free (rli->pending_statics);
2053 free (rli);
2058 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2059 NAME, its fields are chained in reverse on FIELDS.
2061 If ALIGN_TYPE is non-null, it is given the same alignment as
2062 ALIGN_TYPE. */
2064 void
2065 finish_builtin_struct (tree type, const char *name, tree fields,
2066 tree align_type)
2068 tree tail, next;
2070 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2072 DECL_FIELD_CONTEXT (fields) = type;
2073 next = DECL_CHAIN (fields);
2074 DECL_CHAIN (fields) = tail;
2076 TYPE_FIELDS (type) = tail;
2078 if (align_type)
2080 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2081 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2084 layout_type (type);
2085 #if 0 /* not yet, should get fixed properly later */
2086 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2087 #else
2088 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2089 TYPE_DECL, get_identifier (name), type);
2090 #endif
2091 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2092 layout_decl (TYPE_NAME (type), 0);
2095 /* Calculate the mode, size, and alignment for TYPE.
2096 For an array type, calculate the element separation as well.
2097 Record TYPE on the chain of permanent or temporary types
2098 so that dbxout will find out about it.
2100 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2101 layout_type does nothing on such a type.
2103 If the type is incomplete, its TYPE_SIZE remains zero. */
2105 void
2106 layout_type (tree type)
2108 gcc_assert (type);
2110 if (type == error_mark_node)
2111 return;
2113 /* We don't want finalize_type_size to copy an alignment attribute to
2114 variants that don't have it. */
2115 type = TYPE_MAIN_VARIANT (type);
2117 /* Do nothing if type has been laid out before. */
2118 if (TYPE_SIZE (type))
2119 return;
2121 switch (TREE_CODE (type))
2123 case LANG_TYPE:
2124 /* This kind of type is the responsibility
2125 of the language-specific code. */
2126 gcc_unreachable ();
2128 case BOOLEAN_TYPE:
2129 case INTEGER_TYPE:
2130 case ENUMERAL_TYPE:
2131 SET_TYPE_MODE (type,
2132 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2133 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2134 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2135 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2136 break;
2138 case REAL_TYPE:
2139 /* Allow the caller to choose the type mode, which is how decimal
2140 floats are distinguished from binary ones. */
2141 if (TYPE_MODE (type) == VOIDmode)
2142 SET_TYPE_MODE (type,
2143 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2144 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2145 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2146 break;
2148 case FIXED_POINT_TYPE:
2149 /* TYPE_MODE (type) has been set already. */
2150 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2151 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2152 break;
2154 case COMPLEX_TYPE:
2155 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2156 SET_TYPE_MODE (type,
2157 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2159 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2160 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2161 break;
2163 case VECTOR_TYPE:
2165 int nunits = TYPE_VECTOR_SUBPARTS (type);
2166 tree innertype = TREE_TYPE (type);
2168 gcc_assert (!(nunits & (nunits - 1)));
2170 /* Find an appropriate mode for the vector type. */
2171 if (TYPE_MODE (type) == VOIDmode)
2172 SET_TYPE_MODE (type,
2173 mode_for_vector (TYPE_MODE (innertype), nunits));
2175 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2176 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2177 /* Several boolean vector elements may fit in a single unit. */
2178 if (VECTOR_BOOLEAN_TYPE_P (type)
2179 && type->type_common.mode != BLKmode)
2180 TYPE_SIZE_UNIT (type)
2181 = size_int (GET_MODE_SIZE (type->type_common.mode));
2182 else
2183 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2184 TYPE_SIZE_UNIT (innertype),
2185 size_int (nunits));
2186 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2187 TYPE_SIZE (innertype),
2188 bitsize_int (nunits));
2190 /* For vector types, we do not default to the mode's alignment.
2191 Instead, query a target hook, defaulting to natural alignment.
2192 This prevents ABI changes depending on whether or not native
2193 vector modes are supported. */
2194 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2196 /* However, if the underlying mode requires a bigger alignment than
2197 what the target hook provides, we cannot use the mode. For now,
2198 simply reject that case. */
2199 gcc_assert (TYPE_ALIGN (type)
2200 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2201 break;
2204 case VOID_TYPE:
2205 /* This is an incomplete type and so doesn't have a size. */
2206 SET_TYPE_ALIGN (type, 1);
2207 TYPE_USER_ALIGN (type) = 0;
2208 SET_TYPE_MODE (type, VOIDmode);
2209 break;
2211 case POINTER_BOUNDS_TYPE:
2212 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2213 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2214 break;
2216 case OFFSET_TYPE:
2217 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2218 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2219 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2220 integral, which may be an __intN. */
2221 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2222 TYPE_PRECISION (type) = POINTER_SIZE;
2223 break;
2225 case FUNCTION_TYPE:
2226 case METHOD_TYPE:
2227 /* It's hard to see what the mode and size of a function ought to
2228 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2229 make it consistent with that. */
2230 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2231 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2232 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2233 break;
2235 case POINTER_TYPE:
2236 case REFERENCE_TYPE:
2238 machine_mode mode = TYPE_MODE (type);
2239 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2240 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2241 TYPE_UNSIGNED (type) = 1;
2242 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2244 break;
2246 case ARRAY_TYPE:
2248 tree index = TYPE_DOMAIN (type);
2249 tree element = TREE_TYPE (type);
2251 /* We need to know both bounds in order to compute the size. */
2252 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2253 && TYPE_SIZE (element))
2255 tree ub = TYPE_MAX_VALUE (index);
2256 tree lb = TYPE_MIN_VALUE (index);
2257 tree element_size = TYPE_SIZE (element);
2258 tree length;
2260 /* Make sure that an array of zero-sized element is zero-sized
2261 regardless of its extent. */
2262 if (integer_zerop (element_size))
2263 length = size_zero_node;
2265 /* The computation should happen in the original signedness so
2266 that (possible) negative values are handled appropriately
2267 when determining overflow. */
2268 else
2270 /* ??? When it is obvious that the range is signed
2271 represent it using ssizetype. */
2272 if (TREE_CODE (lb) == INTEGER_CST
2273 && TREE_CODE (ub) == INTEGER_CST
2274 && TYPE_UNSIGNED (TREE_TYPE (lb))
2275 && tree_int_cst_lt (ub, lb))
2277 lb = wide_int_to_tree (ssizetype,
2278 offset_int::from (lb, SIGNED));
2279 ub = wide_int_to_tree (ssizetype,
2280 offset_int::from (ub, SIGNED));
2282 length
2283 = fold_convert (sizetype,
2284 size_binop (PLUS_EXPR,
2285 build_int_cst (TREE_TYPE (lb), 1),
2286 size_binop (MINUS_EXPR, ub, lb)));
2289 /* ??? We have no way to distinguish a null-sized array from an
2290 array spanning the whole sizetype range, so we arbitrarily
2291 decide that [0, -1] is the only valid representation. */
2292 if (integer_zerop (length)
2293 && TREE_OVERFLOW (length)
2294 && integer_zerop (lb))
2295 length = size_zero_node;
2297 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2298 fold_convert (bitsizetype,
2299 length));
2301 /* If we know the size of the element, calculate the total size
2302 directly, rather than do some division thing below. This
2303 optimization helps Fortran assumed-size arrays (where the
2304 size of the array is determined at runtime) substantially. */
2305 if (TYPE_SIZE_UNIT (element))
2306 TYPE_SIZE_UNIT (type)
2307 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2310 /* Now round the alignment and size,
2311 using machine-dependent criteria if any. */
2313 unsigned align = TYPE_ALIGN (element);
2314 if (TYPE_USER_ALIGN (type))
2315 align = MAX (align, TYPE_ALIGN (type));
2316 else
2317 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2318 #ifdef ROUND_TYPE_ALIGN
2319 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2320 #else
2321 align = MAX (align, BITS_PER_UNIT);
2322 #endif
2323 SET_TYPE_ALIGN (type, align);
2324 SET_TYPE_MODE (type, BLKmode);
2325 if (TYPE_SIZE (type) != 0
2326 && ! targetm.member_type_forces_blk (type, VOIDmode)
2327 /* BLKmode elements force BLKmode aggregate;
2328 else extract/store fields may lose. */
2329 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2330 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2332 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2333 TYPE_SIZE (type)));
2334 if (TYPE_MODE (type) != BLKmode
2335 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2336 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2338 TYPE_NO_FORCE_BLK (type) = 1;
2339 SET_TYPE_MODE (type, BLKmode);
2342 /* When the element size is constant, check that it is at least as
2343 large as the element alignment. */
2344 if (TYPE_SIZE_UNIT (element)
2345 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2346 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2347 TYPE_ALIGN_UNIT. */
2348 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2349 && !integer_zerop (TYPE_SIZE_UNIT (element))
2350 && compare_tree_int (TYPE_SIZE_UNIT (element),
2351 TYPE_ALIGN_UNIT (element)) < 0)
2352 error ("alignment of array elements is greater than element size");
2353 break;
2356 case RECORD_TYPE:
2357 case UNION_TYPE:
2358 case QUAL_UNION_TYPE:
2360 tree field;
2361 record_layout_info rli;
2363 /* Initialize the layout information. */
2364 rli = start_record_layout (type);
2366 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2367 in the reverse order in building the COND_EXPR that denotes
2368 its size. We reverse them again later. */
2369 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2370 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2372 /* Place all the fields. */
2373 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2374 place_field (rli, field);
2376 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2377 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2379 /* Finish laying out the record. */
2380 finish_record_layout (rli, /*free_p=*/true);
2382 break;
2384 default:
2385 gcc_unreachable ();
2388 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2389 records and unions, finish_record_layout already called this
2390 function. */
2391 if (!RECORD_OR_UNION_TYPE_P (type))
2392 finalize_type_size (type);
2394 /* We should never see alias sets on incomplete aggregates. And we
2395 should not call layout_type on not incomplete aggregates. */
2396 if (AGGREGATE_TYPE_P (type))
2397 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2400 /* Return the least alignment required for type TYPE. */
2402 unsigned int
2403 min_align_of_type (tree type)
2405 unsigned int align = TYPE_ALIGN (type);
2406 if (!TYPE_USER_ALIGN (type))
2408 align = MIN (align, BIGGEST_ALIGNMENT);
2409 #ifdef BIGGEST_FIELD_ALIGNMENT
2410 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2411 #endif
2412 unsigned int field_align = align;
2413 #ifdef ADJUST_FIELD_ALIGN
2414 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2415 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2416 ggc_free (field);
2417 #endif
2418 align = MIN (align, field_align);
2420 return align / BITS_PER_UNIT;
2423 /* Vector types need to re-check the target flags each time we report
2424 the machine mode. We need to do this because attribute target can
2425 change the result of vector_mode_supported_p and have_regs_of_mode
2426 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2427 change on a per-function basis. */
2428 /* ??? Possibly a better solution is to run through all the types
2429 referenced by a function and re-compute the TYPE_MODE once, rather
2430 than make the TYPE_MODE macro call a function. */
2432 machine_mode
2433 vector_type_mode (const_tree t)
2435 machine_mode mode;
2437 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2439 mode = t->type_common.mode;
2440 if (VECTOR_MODE_P (mode)
2441 && (!targetm.vector_mode_supported_p (mode)
2442 || !have_regs_of_mode[mode]))
2444 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2446 /* For integers, try mapping it to a same-sized scalar mode. */
2447 if (GET_MODE_CLASS (innermode) == MODE_INT)
2449 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2450 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2452 if (mode != VOIDmode && have_regs_of_mode[mode])
2453 return mode;
2456 return BLKmode;
2459 return mode;
2462 /* Create and return a type for signed integers of PRECISION bits. */
2464 tree
2465 make_signed_type (int precision)
2467 tree type = make_node (INTEGER_TYPE);
2469 TYPE_PRECISION (type) = precision;
2471 fixup_signed_type (type);
2472 return type;
2475 /* Create and return a type for unsigned integers of PRECISION bits. */
2477 tree
2478 make_unsigned_type (int precision)
2480 tree type = make_node (INTEGER_TYPE);
2482 TYPE_PRECISION (type) = precision;
2484 fixup_unsigned_type (type);
2485 return type;
2488 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2489 and SATP. */
2491 tree
2492 make_fract_type (int precision, int unsignedp, int satp)
2494 tree type = make_node (FIXED_POINT_TYPE);
2496 TYPE_PRECISION (type) = precision;
2498 if (satp)
2499 TYPE_SATURATING (type) = 1;
2501 /* Lay out the type: set its alignment, size, etc. */
2502 if (unsignedp)
2504 TYPE_UNSIGNED (type) = 1;
2505 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2507 else
2508 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2509 layout_type (type);
2511 return type;
2514 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2515 and SATP. */
2517 tree
2518 make_accum_type (int precision, int unsignedp, int satp)
2520 tree type = make_node (FIXED_POINT_TYPE);
2522 TYPE_PRECISION (type) = precision;
2524 if (satp)
2525 TYPE_SATURATING (type) = 1;
2527 /* Lay out the type: set its alignment, size, etc. */
2528 if (unsignedp)
2530 TYPE_UNSIGNED (type) = 1;
2531 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2533 else
2534 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2535 layout_type (type);
2537 return type;
2540 /* Initialize sizetypes so layout_type can use them. */
2542 void
2543 initialize_sizetypes (void)
2545 int precision, bprecision;
2547 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2548 if (strcmp (SIZETYPE, "unsigned int") == 0)
2549 precision = INT_TYPE_SIZE;
2550 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2551 precision = LONG_TYPE_SIZE;
2552 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2553 precision = LONG_LONG_TYPE_SIZE;
2554 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2555 precision = SHORT_TYPE_SIZE;
2556 else
2558 int i;
2560 precision = -1;
2561 for (i = 0; i < NUM_INT_N_ENTS; i++)
2562 if (int_n_enabled_p[i])
2564 char name[50];
2565 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2567 if (strcmp (name, SIZETYPE) == 0)
2569 precision = int_n_data[i].bitsize;
2572 if (precision == -1)
2573 gcc_unreachable ();
2576 bprecision
2577 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2578 bprecision
2579 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2580 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2581 bprecision = HOST_BITS_PER_DOUBLE_INT;
2583 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2584 sizetype = make_node (INTEGER_TYPE);
2585 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2586 TYPE_PRECISION (sizetype) = precision;
2587 TYPE_UNSIGNED (sizetype) = 1;
2588 bitsizetype = make_node (INTEGER_TYPE);
2589 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2590 TYPE_PRECISION (bitsizetype) = bprecision;
2591 TYPE_UNSIGNED (bitsizetype) = 1;
2593 /* Now layout both types manually. */
2594 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2595 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2596 TYPE_SIZE (sizetype) = bitsize_int (precision);
2597 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2598 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2600 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2601 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2602 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2603 TYPE_SIZE_UNIT (bitsizetype)
2604 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2605 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2607 /* Create the signed variants of *sizetype. */
2608 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2609 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2610 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2611 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2614 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2615 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2616 for TYPE, based on the PRECISION and whether or not the TYPE
2617 IS_UNSIGNED. PRECISION need not correspond to a width supported
2618 natively by the hardware; for example, on a machine with 8-bit,
2619 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2620 61. */
2622 void
2623 set_min_and_max_values_for_integral_type (tree type,
2624 int precision,
2625 signop sgn)
2627 /* For bitfields with zero width we end up creating integer types
2628 with zero precision. Don't assign any minimum/maximum values
2629 to those types, they don't have any valid value. */
2630 if (precision < 1)
2631 return;
2633 TYPE_MIN_VALUE (type)
2634 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2635 TYPE_MAX_VALUE (type)
2636 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2639 /* Set the extreme values of TYPE based on its precision in bits,
2640 then lay it out. Used when make_signed_type won't do
2641 because the tree code is not INTEGER_TYPE.
2642 E.g. for Pascal, when the -fsigned-char option is given. */
2644 void
2645 fixup_signed_type (tree type)
2647 int precision = TYPE_PRECISION (type);
2649 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2651 /* Lay out the type: set its alignment, size, etc. */
2652 layout_type (type);
2655 /* Set the extreme values of TYPE based on its precision in bits,
2656 then lay it out. This is used both in `make_unsigned_type'
2657 and for enumeral types. */
2659 void
2660 fixup_unsigned_type (tree type)
2662 int precision = TYPE_PRECISION (type);
2664 TYPE_UNSIGNED (type) = 1;
2666 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2668 /* Lay out the type: set its alignment, size, etc. */
2669 layout_type (type);
2672 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2673 starting at BITPOS.
2675 BITREGION_START is the bit position of the first bit in this
2676 sequence of bit fields. BITREGION_END is the last bit in this
2677 sequence. If these two fields are non-zero, we should restrict the
2678 memory access to that range. Otherwise, we are allowed to touch
2679 any adjacent non bit-fields.
2681 ALIGN is the alignment of the underlying object in bits.
2682 VOLATILEP says whether the bitfield is volatile. */
2684 bit_field_mode_iterator
2685 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2686 HOST_WIDE_INT bitregion_start,
2687 HOST_WIDE_INT bitregion_end,
2688 unsigned int align, bool volatilep)
2689 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2690 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2691 m_bitregion_end (bitregion_end), m_align (align),
2692 m_volatilep (volatilep), m_count (0)
2694 if (!m_bitregion_end)
2696 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2697 the bitfield is mapped and won't trap, provided that ALIGN isn't
2698 too large. The cap is the biggest required alignment for data,
2699 or at least the word size. And force one such chunk at least. */
2700 unsigned HOST_WIDE_INT units
2701 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2702 if (bitsize <= 0)
2703 bitsize = 1;
2704 m_bitregion_end = bitpos + bitsize + units - 1;
2705 m_bitregion_end -= m_bitregion_end % units + 1;
2709 /* Calls to this function return successively larger modes that can be used
2710 to represent the bitfield. Return true if another bitfield mode is
2711 available, storing it in *OUT_MODE if so. */
2713 bool
2714 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2716 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2718 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2720 /* Skip modes that don't have full precision. */
2721 if (unit != GET_MODE_PRECISION (m_mode))
2722 continue;
2724 /* Stop if the mode is too wide to handle efficiently. */
2725 if (unit > MAX_FIXED_MODE_SIZE)
2726 break;
2728 /* Don't deliver more than one multiword mode; the smallest one
2729 should be used. */
2730 if (m_count > 0 && unit > BITS_PER_WORD)
2731 break;
2733 /* Skip modes that are too small. */
2734 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2735 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2736 if (subend > unit)
2737 continue;
2739 /* Stop if the mode goes outside the bitregion. */
2740 HOST_WIDE_INT start = m_bitpos - substart;
2741 if (m_bitregion_start && start < m_bitregion_start)
2742 break;
2743 HOST_WIDE_INT end = start + unit;
2744 if (end > m_bitregion_end + 1)
2745 break;
2747 /* Stop if the mode requires too much alignment. */
2748 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2749 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2750 break;
2752 *out_mode = m_mode;
2753 m_mode = GET_MODE_WIDER_MODE (m_mode);
2754 m_count++;
2755 return true;
2757 return false;
2760 /* Return true if smaller modes are generally preferred for this kind
2761 of bitfield. */
2763 bool
2764 bit_field_mode_iterator::prefer_smaller_modes ()
2766 return (m_volatilep
2767 ? targetm.narrow_volatile_bitfield ()
2768 : !SLOW_BYTE_ACCESS);
2771 /* Find the best machine mode to use when referencing a bit field of length
2772 BITSIZE bits starting at BITPOS.
2774 BITREGION_START is the bit position of the first bit in this
2775 sequence of bit fields. BITREGION_END is the last bit in this
2776 sequence. If these two fields are non-zero, we should restrict the
2777 memory access to that range. Otherwise, we are allowed to touch
2778 any adjacent non bit-fields.
2780 The underlying object is known to be aligned to a boundary of ALIGN bits.
2781 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2782 larger than LARGEST_MODE (usually SImode).
2784 If no mode meets all these conditions, we return VOIDmode.
2786 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2787 smallest mode meeting these conditions.
2789 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2790 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2791 all the conditions.
2793 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2794 decide which of the above modes should be used. */
2796 machine_mode
2797 get_best_mode (int bitsize, int bitpos,
2798 unsigned HOST_WIDE_INT bitregion_start,
2799 unsigned HOST_WIDE_INT bitregion_end,
2800 unsigned int align,
2801 machine_mode largest_mode, bool volatilep)
2803 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2804 bitregion_end, align, volatilep);
2805 machine_mode widest_mode = VOIDmode;
2806 machine_mode mode;
2807 while (iter.next_mode (&mode)
2808 /* ??? For historical reasons, reject modes that would normally
2809 receive greater alignment, even if unaligned accesses are
2810 acceptable. This has both advantages and disadvantages.
2811 Removing this check means that something like:
2813 struct s { unsigned int x; unsigned int y; };
2814 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2816 can be implemented using a single load and compare on
2817 64-bit machines that have no alignment restrictions.
2818 For example, on powerpc64-linux-gnu, we would generate:
2820 ld 3,0(3)
2821 cntlzd 3,3
2822 srdi 3,3,6
2825 rather than:
2827 lwz 9,0(3)
2828 cmpwi 7,9,0
2829 bne 7,.L3
2830 lwz 3,4(3)
2831 cntlzw 3,3
2832 srwi 3,3,5
2833 extsw 3,3
2835 .p2align 4,,15
2836 .L3:
2837 li 3,0
2840 However, accessing more than one field can make life harder
2841 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2842 has a series of unsigned short copies followed by a series of
2843 unsigned short comparisons. With this check, both the copies
2844 and comparisons remain 16-bit accesses and FRE is able
2845 to eliminate the latter. Without the check, the comparisons
2846 can be done using 2 64-bit operations, which FRE isn't able
2847 to handle in the same way.
2849 Either way, it would probably be worth disabling this check
2850 during expand. One particular example where removing the
2851 check would help is the get_best_mode call in store_bit_field.
2852 If we are given a memory bitregion of 128 bits that is aligned
2853 to a 64-bit boundary, and the bitfield we want to modify is
2854 in the second half of the bitregion, this check causes
2855 store_bitfield to turn the memory into a 64-bit reference
2856 to the _first_ half of the region. We later use
2857 adjust_bitfield_address to get a reference to the correct half,
2858 but doing so looks to adjust_bitfield_address as though we are
2859 moving past the end of the original object, so it drops the
2860 associated MEM_EXPR and MEM_OFFSET. Removing the check
2861 causes store_bit_field to keep a 128-bit memory reference,
2862 so that the final bitfield reference still has a MEM_EXPR
2863 and MEM_OFFSET. */
2864 && GET_MODE_ALIGNMENT (mode) <= align
2865 && (largest_mode == VOIDmode
2866 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2868 widest_mode = mode;
2869 if (iter.prefer_smaller_modes ())
2870 break;
2872 return widest_mode;
2875 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2876 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2878 void
2879 get_mode_bounds (machine_mode mode, int sign,
2880 machine_mode target_mode,
2881 rtx *mmin, rtx *mmax)
2883 unsigned size = GET_MODE_PRECISION (mode);
2884 unsigned HOST_WIDE_INT min_val, max_val;
2886 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2888 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2889 if (mode == BImode)
2891 if (STORE_FLAG_VALUE < 0)
2893 min_val = STORE_FLAG_VALUE;
2894 max_val = 0;
2896 else
2898 min_val = 0;
2899 max_val = STORE_FLAG_VALUE;
2902 else if (sign)
2904 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2905 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2907 else
2909 min_val = 0;
2910 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2913 *mmin = gen_int_mode (min_val, target_mode);
2914 *mmax = gen_int_mode (max_val, target_mode);
2917 #include "gt-stor-layout.h"