Add {symbol,call}_summary::get method and use it in HSA.
[official-gcc.git] / gcc / vec.h
bloba9f3bcf09ebcb956659b9e1574c4f76ed3b6f0ae
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2018 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
34 /* Templated vector type and associated interfaces.
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
76 Four allocation strategies are supported:
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
81 - GC: allocation is done using ggc_alloc/ggc_free.
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
90 Two physical layouts are supported:
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
106 The type, allocation and layout are specified when the vector is
107 declared.
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
114 Notes on the different layout strategies
116 * Embeddable vectors (vec<T, A, vl_embed>)
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
133 Properties of embeddable vectors:
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
145 * Space efficient vector (vec<T, A, vl_ptr>)
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
157 Properties:
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
167 An example of their use would be,
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
174 struct my_struct *s;
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
182 /* Support function for statistics. */
183 extern void dump_vec_loc_statistics (void);
185 /* Hashtable mapping vec addresses to descriptors. */
186 extern htab_t vec_mem_usage_hash;
188 /* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
191 struct vec_prefix
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
196 /* Memory allocation support routines in vec.c. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
220 /* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
224 inline unsigned
225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
235 template<typename, typename, typename> struct vec;
237 /* Valid vector layouts
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242 struct vl_embed { };
243 struct vl_ptr { };
246 /* Types of supported allocations
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
253 /* Allocator type for heap vectors. */
254 struct va_heap
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
269 /* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
274 template<typename T>
275 inline void
276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
279 unsigned alloc
280 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
281 gcc_checking_assert (alloc);
283 if (GATHER_STATISTICS && v)
284 v->m_vecpfx.release_overhead (v, v->allocated (), false);
286 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
287 unsigned nelem = v ? v->length () : 0;
288 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
289 v->embedded_init (alloc, nelem);
291 if (GATHER_STATISTICS)
292 v->m_vecpfx.register_overhead (v, alloc, nelem PASS_MEM_STAT);
296 /* Free the heap space allocated for vector V. */
298 template<typename T>
299 void
300 va_heap::release (vec<T, va_heap, vl_embed> *&v)
302 if (v == NULL)
303 return;
305 if (GATHER_STATISTICS)
306 v->m_vecpfx.release_overhead (v, v->allocated (), true);
307 ::free (v);
308 v = NULL;
312 /* Allocator type for GC vectors. Notice that we need the structure
313 declaration even if GC is not enabled. */
315 struct va_gc
317 /* Use vl_embed as the default layout for GC vectors. Due to GTY
318 limitations, GC vectors must always be pointers, so it is more
319 efficient to use a pointer to the vl_embed layout, rather than
320 using a pointer to a pointer as would be the case with vl_ptr. */
321 typedef vl_embed default_layout;
323 template<typename T, typename A>
324 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
325 CXX_MEM_STAT_INFO);
327 template<typename T, typename A>
328 static void release (vec<T, A, vl_embed> *&v);
332 /* Free GC memory used by V and reset V to NULL. */
334 template<typename T, typename A>
335 inline void
336 va_gc::release (vec<T, A, vl_embed> *&v)
338 if (v)
339 ::ggc_free (v);
340 v = NULL;
344 /* Allocator for GC memory. Ensure there are at least RESERVE free
345 slots in V. If EXACT is true, grow exactly, else grow
346 exponentially. As a special case, if the vector had not been
347 allocated and RESERVE is 0, no vector will be created. */
349 template<typename T, typename A>
350 void
351 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
352 MEM_STAT_DECL)
354 unsigned alloc
355 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
356 if (!alloc)
358 ::ggc_free (v);
359 v = NULL;
360 return;
363 /* Calculate the amount of space we want. */
364 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
366 /* Ask the allocator how much space it will really give us. */
367 size = ::ggc_round_alloc_size (size);
369 /* Adjust the number of slots accordingly. */
370 size_t vec_offset = sizeof (vec_prefix);
371 size_t elt_size = sizeof (T);
372 alloc = (size - vec_offset) / elt_size;
374 /* And finally, recalculate the amount of space we ask for. */
375 size = vec_offset + alloc * elt_size;
377 unsigned nelem = v ? v->length () : 0;
378 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
379 PASS_MEM_STAT));
380 v->embedded_init (alloc, nelem);
384 /* Allocator type for GC vectors. This is for vectors of types
385 atomics w.r.t. collection, so allocation and deallocation is
386 completely inherited from va_gc. */
387 struct va_gc_atomic : va_gc
392 /* Generic vector template. Default values for A and L indicate the
393 most commonly used strategies.
395 FIXME - Ideally, they would all be vl_ptr to encourage using regular
396 instances for vectors, but the existing GTY machinery is limited
397 in that it can only deal with GC objects that are pointers
398 themselves.
400 This means that vector operations that need to deal with
401 potentially NULL pointers, must be provided as free
402 functions (see the vec_safe_* functions above). */
403 template<typename T,
404 typename A = va_heap,
405 typename L = typename A::default_layout>
406 struct GTY((user)) vec
410 /* Generic vec<> debug helpers.
412 These need to be instantiated for each vec<TYPE> used throughout
413 the compiler like this:
415 DEFINE_DEBUG_VEC (TYPE)
417 The reason we have a debug_helper() is because GDB can't
418 disambiguate a plain call to debug(some_vec), and it must be called
419 like debug<TYPE>(some_vec). */
421 template<typename T>
422 void
423 debug_helper (vec<T> &ref)
425 unsigned i;
426 for (i = 0; i < ref.length (); ++i)
428 fprintf (stderr, "[%d] = ", i);
429 debug_slim (ref[i]);
430 fputc ('\n', stderr);
434 /* We need a separate va_gc variant here because default template
435 argument for functions cannot be used in c++-98. Once this
436 restriction is removed, those variant should be folded with the
437 above debug_helper. */
439 template<typename T>
440 void
441 debug_helper (vec<T, va_gc> &ref)
443 unsigned i;
444 for (i = 0; i < ref.length (); ++i)
446 fprintf (stderr, "[%d] = ", i);
447 debug_slim (ref[i]);
448 fputc ('\n', stderr);
452 /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
453 functions for a type T. */
455 #define DEFINE_DEBUG_VEC(T) \
456 template void debug_helper (vec<T> &); \
457 template void debug_helper (vec<T, va_gc> &); \
458 /* Define the vec<T> debug functions. */ \
459 DEBUG_FUNCTION void \
460 debug (vec<T> &ref) \
462 debug_helper <T> (ref); \
464 DEBUG_FUNCTION void \
465 debug (vec<T> *ptr) \
467 if (ptr) \
468 debug (*ptr); \
469 else \
470 fprintf (stderr, "<nil>\n"); \
472 /* Define the vec<T, va_gc> debug functions. */ \
473 DEBUG_FUNCTION void \
474 debug (vec<T, va_gc> &ref) \
476 debug_helper <T> (ref); \
478 DEBUG_FUNCTION void \
479 debug (vec<T, va_gc> *ptr) \
481 if (ptr) \
482 debug (*ptr); \
483 else \
484 fprintf (stderr, "<nil>\n"); \
487 /* Default-construct N elements in DST. */
489 template <typename T>
490 inline void
491 vec_default_construct (T *dst, unsigned n)
493 #ifdef BROKEN_VALUE_INITIALIZATION
494 /* Versions of GCC before 4.4 sometimes leave certain objects
495 uninitialized when value initialized, though if the type has
496 user defined default ctor, that ctor is invoked. As a workaround
497 perform clearing first and then the value initialization, which
498 fixes the case when value initialization doesn't initialize due to
499 the bugs and should initialize to all zeros, but still allows
500 vectors for types with user defined default ctor that initializes
501 some or all elements to non-zero. If T has no user defined
502 default ctor and some non-static data members have user defined
503 default ctors that initialize to non-zero the workaround will
504 still not work properly; in that case we just need to provide
505 user defined default ctor. */
506 memset (dst, '\0', sizeof (T) * n);
507 #endif
508 for ( ; n; ++dst, --n)
509 ::new (static_cast<void*>(dst)) T ();
512 /* Copy-construct N elements in DST from *SRC. */
514 template <typename T>
515 inline void
516 vec_copy_construct (T *dst, const T *src, unsigned n)
518 for ( ; n; ++dst, ++src, --n)
519 ::new (static_cast<void*>(dst)) T (*src);
522 /* Type to provide NULL values for vec<T, A, L>. This is used to
523 provide nil initializers for vec instances. Since vec must be
524 a POD, we cannot have proper ctor/dtor for it. To initialize
525 a vec instance, you can assign it the value vNULL. This isn't
526 needed for file-scope and function-local static vectors, which
527 are zero-initialized by default. */
528 struct vnull
530 template <typename T, typename A, typename L>
531 CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); }
533 extern vnull vNULL;
536 /* Embeddable vector. These vectors are suitable to be embedded
537 in other data structures so that they can be pre-allocated in a
538 contiguous memory block.
540 Embeddable vectors are implemented using the trailing array idiom,
541 thus they are not resizeable without changing the address of the
542 vector object itself. This means you cannot have variables or
543 fields of embeddable vector type -- always use a pointer to a
544 vector. The one exception is the final field of a structure, which
545 could be a vector type.
547 You will have to use the embedded_size & embedded_init calls to
548 create such objects, and they will not be resizeable (so the 'safe'
549 allocation variants are not available).
551 Properties:
553 - The whole vector and control data are allocated in a single
554 contiguous block. It uses the trailing-vector idiom, so
555 allocation must reserve enough space for all the elements
556 in the vector plus its control data.
557 - The vector cannot be re-allocated.
558 - The vector cannot grow nor shrink.
559 - No indirections needed for access/manipulation.
560 - It requires 2 words of storage (prior to vector allocation). */
562 template<typename T, typename A>
563 struct GTY((user)) vec<T, A, vl_embed>
565 public:
566 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
567 unsigned length (void) const { return m_vecpfx.m_num; }
568 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
569 T *address (void) { return m_vecdata; }
570 const T *address (void) const { return m_vecdata; }
571 T *begin () { return address (); }
572 const T *begin () const { return address (); }
573 T *end () { return address () + length (); }
574 const T *end () const { return address () + length (); }
575 const T &operator[] (unsigned) const;
576 T &operator[] (unsigned);
577 T &last (void);
578 bool space (unsigned) const;
579 bool iterate (unsigned, T *) const;
580 bool iterate (unsigned, T **) const;
581 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
582 void splice (const vec &);
583 void splice (const vec *src);
584 T *quick_push (const T &);
585 T &pop (void);
586 void truncate (unsigned);
587 void quick_insert (unsigned, const T &);
588 void ordered_remove (unsigned);
589 void unordered_remove (unsigned);
590 void block_remove (unsigned, unsigned);
591 void qsort (int (*) (const void *, const void *));
592 T *bsearch (const void *key, int (*compar)(const void *, const void *));
593 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
594 bool contains (const T &search) const;
595 static size_t embedded_size (unsigned);
596 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
597 void quick_grow (unsigned len);
598 void quick_grow_cleared (unsigned len);
600 /* vec class can access our internal data and functions. */
601 template <typename, typename, typename> friend struct vec;
603 /* The allocator types also need access to our internals. */
604 friend struct va_gc;
605 friend struct va_gc_atomic;
606 friend struct va_heap;
608 /* FIXME - These fields should be private, but we need to cater to
609 compilers that have stricter notions of PODness for types. */
610 vec_prefix m_vecpfx;
611 T m_vecdata[1];
615 /* Convenience wrapper functions to use when dealing with pointers to
616 embedded vectors. Some functionality for these vectors must be
617 provided via free functions for these reasons:
619 1- The pointer may be NULL (e.g., before initial allocation).
621 2- When the vector needs to grow, it must be reallocated, so
622 the pointer will change its value.
624 Because of limitations with the current GC machinery, all vectors
625 in GC memory *must* be pointers. */
628 /* If V contains no room for NELEMS elements, return false. Otherwise,
629 return true. */
630 template<typename T, typename A>
631 inline bool
632 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
634 return v ? v->space (nelems) : nelems == 0;
638 /* If V is NULL, return 0. Otherwise, return V->length(). */
639 template<typename T, typename A>
640 inline unsigned
641 vec_safe_length (const vec<T, A, vl_embed> *v)
643 return v ? v->length () : 0;
647 /* If V is NULL, return NULL. Otherwise, return V->address(). */
648 template<typename T, typename A>
649 inline T *
650 vec_safe_address (vec<T, A, vl_embed> *v)
652 return v ? v->address () : NULL;
656 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
657 template<typename T, typename A>
658 inline bool
659 vec_safe_is_empty (vec<T, A, vl_embed> *v)
661 return v ? v->is_empty () : true;
664 /* If V does not have space for NELEMS elements, call
665 V->reserve(NELEMS, EXACT). */
666 template<typename T, typename A>
667 inline bool
668 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
669 CXX_MEM_STAT_INFO)
671 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
672 if (extend)
673 A::reserve (v, nelems, exact PASS_MEM_STAT);
674 return extend;
677 template<typename T, typename A>
678 inline bool
679 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
680 CXX_MEM_STAT_INFO)
682 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
686 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
687 is 0, V is initialized to NULL. */
689 template<typename T, typename A>
690 inline void
691 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
693 v = NULL;
694 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
698 /* Free the GC memory allocated by vector V and set it to NULL. */
700 template<typename T, typename A>
701 inline void
702 vec_free (vec<T, A, vl_embed> *&v)
704 A::release (v);
708 /* Grow V to length LEN. Allocate it, if necessary. */
709 template<typename T, typename A>
710 inline void
711 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
713 unsigned oldlen = vec_safe_length (v);
714 gcc_checking_assert (len >= oldlen);
715 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
716 v->quick_grow (len);
720 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
721 template<typename T, typename A>
722 inline void
723 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
725 unsigned oldlen = vec_safe_length (v);
726 vec_safe_grow (v, len PASS_MEM_STAT);
727 vec_default_construct (v->address () + oldlen, len - oldlen);
731 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
732 template<typename T, typename A>
733 inline bool
734 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
736 if (v)
737 return v->iterate (ix, ptr);
738 else
740 *ptr = 0;
741 return false;
745 template<typename T, typename A>
746 inline bool
747 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
749 if (v)
750 return v->iterate (ix, ptr);
751 else
753 *ptr = 0;
754 return false;
759 /* If V has no room for one more element, reallocate it. Then call
760 V->quick_push(OBJ). */
761 template<typename T, typename A>
762 inline T *
763 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
765 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
766 return v->quick_push (obj);
770 /* if V has no room for one more element, reallocate it. Then call
771 V->quick_insert(IX, OBJ). */
772 template<typename T, typename A>
773 inline void
774 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
775 CXX_MEM_STAT_INFO)
777 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
778 v->quick_insert (ix, obj);
782 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
783 template<typename T, typename A>
784 inline void
785 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
787 if (v)
788 v->truncate (size);
792 /* If SRC is not NULL, return a pointer to a copy of it. */
793 template<typename T, typename A>
794 inline vec<T, A, vl_embed> *
795 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
797 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
800 /* Copy the elements from SRC to the end of DST as if by memcpy.
801 Reallocate DST, if necessary. */
802 template<typename T, typename A>
803 inline void
804 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
805 CXX_MEM_STAT_INFO)
807 unsigned src_len = vec_safe_length (src);
808 if (src_len)
810 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
811 PASS_MEM_STAT);
812 dst->splice (*src);
816 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
817 size of the vector and so should be used with care. */
819 template<typename T, typename A>
820 inline bool
821 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
823 return v ? v->contains (search) : false;
826 /* Index into vector. Return the IX'th element. IX must be in the
827 domain of the vector. */
829 template<typename T, typename A>
830 inline const T &
831 vec<T, A, vl_embed>::operator[] (unsigned ix) const
833 gcc_checking_assert (ix < m_vecpfx.m_num);
834 return m_vecdata[ix];
837 template<typename T, typename A>
838 inline T &
839 vec<T, A, vl_embed>::operator[] (unsigned ix)
841 gcc_checking_assert (ix < m_vecpfx.m_num);
842 return m_vecdata[ix];
846 /* Get the final element of the vector, which must not be empty. */
848 template<typename T, typename A>
849 inline T &
850 vec<T, A, vl_embed>::last (void)
852 gcc_checking_assert (m_vecpfx.m_num > 0);
853 return (*this)[m_vecpfx.m_num - 1];
857 /* If this vector has space for NELEMS additional entries, return
858 true. You usually only need to use this if you are doing your
859 own vector reallocation, for instance on an embedded vector. This
860 returns true in exactly the same circumstances that vec::reserve
861 will. */
863 template<typename T, typename A>
864 inline bool
865 vec<T, A, vl_embed>::space (unsigned nelems) const
867 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
871 /* Return iteration condition and update PTR to point to the IX'th
872 element of this vector. Use this to iterate over the elements of a
873 vector as follows,
875 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
876 continue; */
878 template<typename T, typename A>
879 inline bool
880 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
882 if (ix < m_vecpfx.m_num)
884 *ptr = m_vecdata[ix];
885 return true;
887 else
889 *ptr = 0;
890 return false;
895 /* Return iteration condition and update *PTR to point to the
896 IX'th element of this vector. Use this to iterate over the
897 elements of a vector as follows,
899 for (ix = 0; v->iterate (ix, &ptr); ix++)
900 continue;
902 This variant is for vectors of objects. */
904 template<typename T, typename A>
905 inline bool
906 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
908 if (ix < m_vecpfx.m_num)
910 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
911 return true;
913 else
915 *ptr = 0;
916 return false;
921 /* Return a pointer to a copy of this vector. */
923 template<typename T, typename A>
924 inline vec<T, A, vl_embed> *
925 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
927 vec<T, A, vl_embed> *new_vec = NULL;
928 unsigned len = length ();
929 if (len)
931 vec_alloc (new_vec, len PASS_MEM_STAT);
932 new_vec->embedded_init (len, len);
933 vec_copy_construct (new_vec->address (), m_vecdata, len);
935 return new_vec;
939 /* Copy the elements from SRC to the end of this vector as if by memcpy.
940 The vector must have sufficient headroom available. */
942 template<typename T, typename A>
943 inline void
944 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
946 unsigned len = src.length ();
947 if (len)
949 gcc_checking_assert (space (len));
950 vec_copy_construct (end (), src.address (), len);
951 m_vecpfx.m_num += len;
955 template<typename T, typename A>
956 inline void
957 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
959 if (src)
960 splice (*src);
964 /* Push OBJ (a new element) onto the end of the vector. There must be
965 sufficient space in the vector. Return a pointer to the slot
966 where OBJ was inserted. */
968 template<typename T, typename A>
969 inline T *
970 vec<T, A, vl_embed>::quick_push (const T &obj)
972 gcc_checking_assert (space (1));
973 T *slot = &m_vecdata[m_vecpfx.m_num++];
974 *slot = obj;
975 return slot;
979 /* Pop and return the last element off the end of the vector. */
981 template<typename T, typename A>
982 inline T &
983 vec<T, A, vl_embed>::pop (void)
985 gcc_checking_assert (length () > 0);
986 return m_vecdata[--m_vecpfx.m_num];
990 /* Set the length of the vector to SIZE. The new length must be less
991 than or equal to the current length. This is an O(1) operation. */
993 template<typename T, typename A>
994 inline void
995 vec<T, A, vl_embed>::truncate (unsigned size)
997 gcc_checking_assert (length () >= size);
998 m_vecpfx.m_num = size;
1002 /* Insert an element, OBJ, at the IXth position of this vector. There
1003 must be sufficient space. */
1005 template<typename T, typename A>
1006 inline void
1007 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
1009 gcc_checking_assert (length () < allocated ());
1010 gcc_checking_assert (ix <= length ());
1011 T *slot = &m_vecdata[ix];
1012 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
1013 *slot = obj;
1017 /* Remove an element from the IXth position of this vector. Ordering of
1018 remaining elements is preserved. This is an O(N) operation due to
1019 memmove. */
1021 template<typename T, typename A>
1022 inline void
1023 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1025 gcc_checking_assert (ix < length ());
1026 T *slot = &m_vecdata[ix];
1027 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1031 /* Remove elements in [START, END) from VEC for which COND holds. Ordering of
1032 remaining elements is preserved. This is an O(N) operation. */
1034 #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \
1035 elem_ptr, start, end, cond) \
1037 gcc_assert ((end) <= (vec).length ()); \
1038 for (read_index = write_index = (start); read_index < (end); \
1039 ++read_index) \
1041 elem_ptr = &(vec)[read_index]; \
1042 bool remove_p = (cond); \
1043 if (remove_p) \
1044 continue; \
1046 if (read_index != write_index) \
1047 (vec)[write_index] = (vec)[read_index]; \
1049 write_index++; \
1052 if (read_index - write_index > 0) \
1053 (vec).block_remove (write_index, read_index - write_index); \
1057 /* Remove elements from VEC for which COND holds. Ordering of remaining
1058 elements is preserved. This is an O(N) operation. */
1060 #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \
1061 cond) \
1062 VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \
1063 elem_ptr, 0, (vec).length (), (cond))
1065 /* Remove an element from the IXth position of this vector. Ordering of
1066 remaining elements is destroyed. This is an O(1) operation. */
1068 template<typename T, typename A>
1069 inline void
1070 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1072 gcc_checking_assert (ix < length ());
1073 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
1077 /* Remove LEN elements starting at the IXth. Ordering is retained.
1078 This is an O(N) operation due to memmove. */
1080 template<typename T, typename A>
1081 inline void
1082 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1084 gcc_checking_assert (ix + len <= length ());
1085 T *slot = &m_vecdata[ix];
1086 m_vecpfx.m_num -= len;
1087 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1091 /* Sort the contents of this vector with qsort. CMP is the comparison
1092 function to pass to qsort. */
1094 template<typename T, typename A>
1095 inline void
1096 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1098 if (length () > 1)
1099 ::qsort (address (), length (), sizeof (T), cmp);
1103 /* Search the contents of the sorted vector with a binary search.
1104 CMP is the comparison function to pass to bsearch. */
1106 template<typename T, typename A>
1107 inline T *
1108 vec<T, A, vl_embed>::bsearch (const void *key,
1109 int (*compar) (const void *, const void *))
1111 const void *base = this->address ();
1112 size_t nmemb = this->length ();
1113 size_t size = sizeof (T);
1114 /* The following is a copy of glibc stdlib-bsearch.h. */
1115 size_t l, u, idx;
1116 const void *p;
1117 int comparison;
1119 l = 0;
1120 u = nmemb;
1121 while (l < u)
1123 idx = (l + u) / 2;
1124 p = (const void *) (((const char *) base) + (idx * size));
1125 comparison = (*compar) (key, p);
1126 if (comparison < 0)
1127 u = idx;
1128 else if (comparison > 0)
1129 l = idx + 1;
1130 else
1131 return (T *)const_cast<void *>(p);
1134 return NULL;
1137 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1138 size of the vector and so should be used with care. */
1140 template<typename T, typename A>
1141 inline bool
1142 vec<T, A, vl_embed>::contains (const T &search) const
1144 unsigned int len = length ();
1145 for (unsigned int i = 0; i < len; i++)
1146 if ((*this)[i] == search)
1147 return true;
1149 return false;
1152 /* Find and return the first position in which OBJ could be inserted
1153 without changing the ordering of this vector. LESSTHAN is a
1154 function that returns true if the first argument is strictly less
1155 than the second. */
1157 template<typename T, typename A>
1158 unsigned
1159 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1160 const
1162 unsigned int len = length ();
1163 unsigned int half, middle;
1164 unsigned int first = 0;
1165 while (len > 0)
1167 half = len / 2;
1168 middle = first;
1169 middle += half;
1170 T middle_elem = (*this)[middle];
1171 if (lessthan (middle_elem, obj))
1173 first = middle;
1174 ++first;
1175 len = len - half - 1;
1177 else
1178 len = half;
1180 return first;
1184 /* Return the number of bytes needed to embed an instance of an
1185 embeddable vec inside another data structure.
1187 Use these methods to determine the required size and initialization
1188 of a vector V of type T embedded within another structure (as the
1189 final member):
1191 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1192 void v->embedded_init (unsigned alloc, unsigned num);
1194 These allow the caller to perform the memory allocation. */
1196 template<typename T, typename A>
1197 inline size_t
1198 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1200 typedef vec<T, A, vl_embed> vec_embedded;
1201 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1205 /* Initialize the vector to contain room for ALLOC elements and
1206 NUM active elements. */
1208 template<typename T, typename A>
1209 inline void
1210 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1212 m_vecpfx.m_alloc = alloc;
1213 m_vecpfx.m_using_auto_storage = aut;
1214 m_vecpfx.m_num = num;
1218 /* Grow the vector to a specific length. LEN must be as long or longer than
1219 the current length. The new elements are uninitialized. */
1221 template<typename T, typename A>
1222 inline void
1223 vec<T, A, vl_embed>::quick_grow (unsigned len)
1225 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1226 m_vecpfx.m_num = len;
1230 /* Grow the vector to a specific length. LEN must be as long or longer than
1231 the current length. The new elements are initialized to zero. */
1233 template<typename T, typename A>
1234 inline void
1235 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1237 unsigned oldlen = length ();
1238 size_t growby = len - oldlen;
1239 quick_grow (len);
1240 if (growby != 0)
1241 vec_default_construct (address () + oldlen, growby);
1244 /* Garbage collection support for vec<T, A, vl_embed>. */
1246 template<typename T>
1247 void
1248 gt_ggc_mx (vec<T, va_gc> *v)
1250 extern void gt_ggc_mx (T &);
1251 for (unsigned i = 0; i < v->length (); i++)
1252 gt_ggc_mx ((*v)[i]);
1255 template<typename T>
1256 void
1257 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1259 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1260 be traversed. */
1264 /* PCH support for vec<T, A, vl_embed>. */
1266 template<typename T, typename A>
1267 void
1268 gt_pch_nx (vec<T, A, vl_embed> *v)
1270 extern void gt_pch_nx (T &);
1271 for (unsigned i = 0; i < v->length (); i++)
1272 gt_pch_nx ((*v)[i]);
1275 template<typename T, typename A>
1276 void
1277 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1279 for (unsigned i = 0; i < v->length (); i++)
1280 op (&((*v)[i]), cookie);
1283 template<typename T, typename A>
1284 void
1285 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1287 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1288 for (unsigned i = 0; i < v->length (); i++)
1289 gt_pch_nx (&((*v)[i]), op, cookie);
1293 /* Space efficient vector. These vectors can grow dynamically and are
1294 allocated together with their control data. They are suited to be
1295 included in data structures. Prior to initial allocation, they
1296 only take a single word of storage.
1298 These vectors are implemented as a pointer to an embeddable vector.
1299 The semantics allow for this pointer to be NULL to represent empty
1300 vectors. This way, empty vectors occupy minimal space in the
1301 structure containing them.
1303 Properties:
1305 - The whole vector and control data are allocated in a single
1306 contiguous block.
1307 - The whole vector may be re-allocated.
1308 - Vector data may grow and shrink.
1309 - Access and manipulation requires a pointer test and
1310 indirection.
1311 - It requires 1 word of storage (prior to vector allocation).
1314 Limitations:
1316 These vectors must be PODs because they are stored in unions.
1317 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1318 As long as we use C++03, we cannot have constructors nor
1319 destructors in classes that are stored in unions. */
1321 template<typename T>
1322 struct vec<T, va_heap, vl_ptr>
1324 public:
1325 /* Memory allocation and deallocation for the embedded vector.
1326 Needed because we cannot have proper ctors/dtors defined. */
1327 void create (unsigned nelems CXX_MEM_STAT_INFO);
1328 void release (void);
1330 /* Vector operations. */
1331 bool exists (void) const
1332 { return m_vec != NULL; }
1334 bool is_empty (void) const
1335 { return m_vec ? m_vec->is_empty () : true; }
1337 unsigned length (void) const
1338 { return m_vec ? m_vec->length () : 0; }
1340 T *address (void)
1341 { return m_vec ? m_vec->m_vecdata : NULL; }
1343 const T *address (void) const
1344 { return m_vec ? m_vec->m_vecdata : NULL; }
1346 T *begin () { return address (); }
1347 const T *begin () const { return address (); }
1348 T *end () { return begin () + length (); }
1349 const T *end () const { return begin () + length (); }
1350 const T &operator[] (unsigned ix) const
1351 { return (*m_vec)[ix]; }
1353 bool operator!=(const vec &other) const
1354 { return !(*this == other); }
1356 bool operator==(const vec &other) const
1357 { return address () == other.address (); }
1359 T &operator[] (unsigned ix)
1360 { return (*m_vec)[ix]; }
1362 T &last (void)
1363 { return m_vec->last (); }
1365 bool space (int nelems) const
1366 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1368 bool iterate (unsigned ix, T *p) const;
1369 bool iterate (unsigned ix, T **p) const;
1370 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1371 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1372 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1373 void splice (const vec &);
1374 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1375 T *quick_push (const T &);
1376 T *safe_push (const T &CXX_MEM_STAT_INFO);
1377 T &pop (void);
1378 void truncate (unsigned);
1379 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1380 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1381 void quick_grow (unsigned);
1382 void quick_grow_cleared (unsigned);
1383 void quick_insert (unsigned, const T &);
1384 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1385 void ordered_remove (unsigned);
1386 void unordered_remove (unsigned);
1387 void block_remove (unsigned, unsigned);
1388 void qsort (int (*) (const void *, const void *));
1389 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1390 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1391 bool contains (const T &search) const;
1392 void reverse (void);
1394 bool using_auto_storage () const;
1396 /* FIXME - This field should be private, but we need to cater to
1397 compilers that have stricter notions of PODness for types. */
1398 vec<T, va_heap, vl_embed> *m_vec;
1402 /* auto_vec is a subclass of vec that automatically manages creating and
1403 releasing the internal vector. If N is non zero then it has N elements of
1404 internal storage. The default is no internal storage, and you probably only
1405 want to ask for internal storage for vectors on the stack because if the
1406 size of the vector is larger than the internal storage that space is wasted.
1408 template<typename T, size_t N = 0>
1409 class auto_vec : public vec<T, va_heap>
1411 public:
1412 auto_vec ()
1414 m_auto.embedded_init (MAX (N, 2), 0, 1);
1415 this->m_vec = &m_auto;
1418 auto_vec (size_t s)
1420 if (s > N)
1422 this->create (s);
1423 return;
1426 m_auto.embedded_init (MAX (N, 2), 0, 1);
1427 this->m_vec = &m_auto;
1430 ~auto_vec ()
1432 this->release ();
1435 private:
1436 vec<T, va_heap, vl_embed> m_auto;
1437 T m_data[MAX (N - 1, 1)];
1440 /* auto_vec is a sub class of vec whose storage is released when it is
1441 destroyed. */
1442 template<typename T>
1443 class auto_vec<T, 0> : public vec<T, va_heap>
1445 public:
1446 auto_vec () { this->m_vec = NULL; }
1447 auto_vec (size_t n) { this->create (n); }
1448 ~auto_vec () { this->release (); }
1452 /* Allocate heap memory for pointer V and create the internal vector
1453 with space for NELEMS elements. If NELEMS is 0, the internal
1454 vector is initialized to empty. */
1456 template<typename T>
1457 inline void
1458 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1460 v = new vec<T>;
1461 v->create (nelems PASS_MEM_STAT);
1465 /* Conditionally allocate heap memory for VEC and its internal vector. */
1467 template<typename T>
1468 inline void
1469 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1471 if (!vec)
1472 vec_alloc (vec, nelems PASS_MEM_STAT);
1476 /* Free the heap memory allocated by vector V and set it to NULL. */
1478 template<typename T>
1479 inline void
1480 vec_free (vec<T> *&v)
1482 if (v == NULL)
1483 return;
1485 v->release ();
1486 delete v;
1487 v = NULL;
1491 /* Return iteration condition and update PTR to point to the IX'th
1492 element of this vector. Use this to iterate over the elements of a
1493 vector as follows,
1495 for (ix = 0; v.iterate (ix, &ptr); ix++)
1496 continue; */
1498 template<typename T>
1499 inline bool
1500 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1502 if (m_vec)
1503 return m_vec->iterate (ix, ptr);
1504 else
1506 *ptr = 0;
1507 return false;
1512 /* Return iteration condition and update *PTR to point to the
1513 IX'th element of this vector. Use this to iterate over the
1514 elements of a vector as follows,
1516 for (ix = 0; v->iterate (ix, &ptr); ix++)
1517 continue;
1519 This variant is for vectors of objects. */
1521 template<typename T>
1522 inline bool
1523 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1525 if (m_vec)
1526 return m_vec->iterate (ix, ptr);
1527 else
1529 *ptr = 0;
1530 return false;
1535 /* Convenience macro for forward iteration. */
1536 #define FOR_EACH_VEC_ELT(V, I, P) \
1537 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1539 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1540 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1542 /* Likewise, but start from FROM rather than 0. */
1543 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1544 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1546 /* Convenience macro for reverse iteration. */
1547 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1548 for (I = (V).length () - 1; \
1549 (V).iterate ((I), &(P)); \
1550 (I)--)
1552 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1553 for (I = vec_safe_length (V) - 1; \
1554 vec_safe_iterate ((V), (I), &(P)); \
1555 (I)--)
1558 /* Return a copy of this vector. */
1560 template<typename T>
1561 inline vec<T, va_heap, vl_ptr>
1562 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1564 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1565 if (length ())
1566 new_vec.m_vec = m_vec->copy ();
1567 return new_vec;
1571 /* Ensure that the vector has at least RESERVE slots available (if
1572 EXACT is false), or exactly RESERVE slots available (if EXACT is
1573 true).
1575 This may create additional headroom if EXACT is false.
1577 Note that this can cause the embedded vector to be reallocated.
1578 Returns true iff reallocation actually occurred. */
1580 template<typename T>
1581 inline bool
1582 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1584 if (space (nelems))
1585 return false;
1587 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1588 this is necessary because it doesn't have enough information to know the
1589 embedded vector is in auto storage, and so should not be freed. */
1590 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1591 unsigned int oldsize = 0;
1592 bool handle_auto_vec = m_vec && using_auto_storage ();
1593 if (handle_auto_vec)
1595 m_vec = NULL;
1596 oldsize = oldvec->length ();
1597 nelems += oldsize;
1600 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1601 if (handle_auto_vec)
1603 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1604 m_vec->m_vecpfx.m_num = oldsize;
1607 return true;
1611 /* Ensure that this vector has exactly NELEMS slots available. This
1612 will not create additional headroom. Note this can cause the
1613 embedded vector to be reallocated. Returns true iff reallocation
1614 actually occurred. */
1616 template<typename T>
1617 inline bool
1618 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1620 return reserve (nelems, true PASS_MEM_STAT);
1624 /* Create the internal vector and reserve NELEMS for it. This is
1625 exactly like vec::reserve, but the internal vector is
1626 unconditionally allocated from scratch. The old one, if it
1627 existed, is lost. */
1629 template<typename T>
1630 inline void
1631 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1633 m_vec = NULL;
1634 if (nelems > 0)
1635 reserve_exact (nelems PASS_MEM_STAT);
1639 /* Free the memory occupied by the embedded vector. */
1641 template<typename T>
1642 inline void
1643 vec<T, va_heap, vl_ptr>::release (void)
1645 if (!m_vec)
1646 return;
1648 if (using_auto_storage ())
1650 m_vec->m_vecpfx.m_num = 0;
1651 return;
1654 va_heap::release (m_vec);
1657 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1658 SRC and this vector must be allocated with the same memory
1659 allocation mechanism. This vector is assumed to have sufficient
1660 headroom available. */
1662 template<typename T>
1663 inline void
1664 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1666 if (src.m_vec)
1667 m_vec->splice (*(src.m_vec));
1671 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1672 SRC and this vector must be allocated with the same mechanism.
1673 If there is not enough headroom in this vector, it will be reallocated
1674 as needed. */
1676 template<typename T>
1677 inline void
1678 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1679 MEM_STAT_DECL)
1681 if (src.length ())
1683 reserve_exact (src.length ());
1684 splice (src);
1689 /* Push OBJ (a new element) onto the end of the vector. There must be
1690 sufficient space in the vector. Return a pointer to the slot
1691 where OBJ was inserted. */
1693 template<typename T>
1694 inline T *
1695 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1697 return m_vec->quick_push (obj);
1701 /* Push a new element OBJ onto the end of this vector. Reallocates
1702 the embedded vector, if needed. Return a pointer to the slot where
1703 OBJ was inserted. */
1705 template<typename T>
1706 inline T *
1707 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1709 reserve (1, false PASS_MEM_STAT);
1710 return quick_push (obj);
1714 /* Pop and return the last element off the end of the vector. */
1716 template<typename T>
1717 inline T &
1718 vec<T, va_heap, vl_ptr>::pop (void)
1720 return m_vec->pop ();
1724 /* Set the length of the vector to LEN. The new length must be less
1725 than or equal to the current length. This is an O(1) operation. */
1727 template<typename T>
1728 inline void
1729 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1731 if (m_vec)
1732 m_vec->truncate (size);
1733 else
1734 gcc_checking_assert (size == 0);
1738 /* Grow the vector to a specific length. LEN must be as long or
1739 longer than the current length. The new elements are
1740 uninitialized. Reallocate the internal vector, if needed. */
1742 template<typename T>
1743 inline void
1744 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1746 unsigned oldlen = length ();
1747 gcc_checking_assert (oldlen <= len);
1748 reserve_exact (len - oldlen PASS_MEM_STAT);
1749 if (m_vec)
1750 m_vec->quick_grow (len);
1751 else
1752 gcc_checking_assert (len == 0);
1756 /* Grow the embedded vector to a specific length. LEN must be as
1757 long or longer than the current length. The new elements are
1758 initialized to zero. Reallocate the internal vector, if needed. */
1760 template<typename T>
1761 inline void
1762 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1764 unsigned oldlen = length ();
1765 size_t growby = len - oldlen;
1766 safe_grow (len PASS_MEM_STAT);
1767 if (growby != 0)
1768 vec_default_construct (address () + oldlen, growby);
1772 /* Same as vec::safe_grow but without reallocation of the internal vector.
1773 If the vector cannot be extended, a runtime assertion will be triggered. */
1775 template<typename T>
1776 inline void
1777 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1779 gcc_checking_assert (m_vec);
1780 m_vec->quick_grow (len);
1784 /* Same as vec::quick_grow_cleared but without reallocation of the
1785 internal vector. If the vector cannot be extended, a runtime
1786 assertion will be triggered. */
1788 template<typename T>
1789 inline void
1790 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1792 gcc_checking_assert (m_vec);
1793 m_vec->quick_grow_cleared (len);
1797 /* Insert an element, OBJ, at the IXth position of this vector. There
1798 must be sufficient space. */
1800 template<typename T>
1801 inline void
1802 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1804 m_vec->quick_insert (ix, obj);
1808 /* Insert an element, OBJ, at the IXth position of the vector.
1809 Reallocate the embedded vector, if necessary. */
1811 template<typename T>
1812 inline void
1813 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1815 reserve (1, false PASS_MEM_STAT);
1816 quick_insert (ix, obj);
1820 /* Remove an element from the IXth position of this vector. Ordering of
1821 remaining elements is preserved. This is an O(N) operation due to
1822 a memmove. */
1824 template<typename T>
1825 inline void
1826 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1828 m_vec->ordered_remove (ix);
1832 /* Remove an element from the IXth position of this vector. Ordering
1833 of remaining elements is destroyed. This is an O(1) operation. */
1835 template<typename T>
1836 inline void
1837 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1839 m_vec->unordered_remove (ix);
1843 /* Remove LEN elements starting at the IXth. Ordering is retained.
1844 This is an O(N) operation due to memmove. */
1846 template<typename T>
1847 inline void
1848 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1850 m_vec->block_remove (ix, len);
1854 /* Sort the contents of this vector with qsort. CMP is the comparison
1855 function to pass to qsort. */
1857 template<typename T>
1858 inline void
1859 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1861 if (m_vec)
1862 m_vec->qsort (cmp);
1866 /* Search the contents of the sorted vector with a binary search.
1867 CMP is the comparison function to pass to bsearch. */
1869 template<typename T>
1870 inline T *
1871 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1872 int (*cmp) (const void *, const void *))
1874 if (m_vec)
1875 return m_vec->bsearch (key, cmp);
1876 return NULL;
1880 /* Find and return the first position in which OBJ could be inserted
1881 without changing the ordering of this vector. LESSTHAN is a
1882 function that returns true if the first argument is strictly less
1883 than the second. */
1885 template<typename T>
1886 inline unsigned
1887 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1888 bool (*lessthan)(const T &, const T &))
1889 const
1891 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1894 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1895 size of the vector and so should be used with care. */
1897 template<typename T>
1898 inline bool
1899 vec<T, va_heap, vl_ptr>::contains (const T &search) const
1901 return m_vec ? m_vec->contains (search) : false;
1904 /* Reverse content of the vector. */
1906 template<typename T>
1907 inline void
1908 vec<T, va_heap, vl_ptr>::reverse (void)
1910 unsigned l = length ();
1911 T *ptr = address ();
1913 for (unsigned i = 0; i < l / 2; i++)
1914 std::swap (ptr[i], ptr[l - i - 1]);
1917 template<typename T>
1918 inline bool
1919 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1921 return m_vec->m_vecpfx.m_using_auto_storage;
1924 /* Release VEC and call release of all element vectors. */
1926 template<typename T>
1927 inline void
1928 release_vec_vec (vec<vec<T> > &vec)
1930 for (unsigned i = 0; i < vec.length (); i++)
1931 vec[i].release ();
1933 vec.release ();
1936 #if (GCC_VERSION >= 3000)
1937 # pragma GCC poison m_vec m_vecpfx m_vecdata
1938 #endif
1940 #endif // GCC_VEC_H