1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
33 tree_expr_nonnegative_p
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
51 #include "cfn-operators.pd"
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
57 Also define operand lists:
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 (define_operator_list X##FN BUILT_IN_I##FN \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
81 mult trunc_div trunc_mod rdiv
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
90 /* As opposed to convert?, this still creates a single pattern, so
91 it is not a suitable replacement for convert? in all cases. */
92 (match (nop_convert @0)
94 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
95 (match (nop_convert @0)
97 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
98 && known_eq (TYPE_VECTOR_SUBPARTS (type),
99 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
100 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
101 /* This one has to be last, or it shadows the others. */
102 (match (nop_convert @0)
105 /* Simplifications of operations with one constant operand and
106 simplifications to constants or single values. */
108 (for op (plus pointer_plus minus bit_ior bit_xor)
110 (op @0 integer_zerop)
113 /* 0 +p index -> (type)index */
115 (pointer_plus integer_zerop @1)
116 (non_lvalue (convert @1)))
118 /* ptr - 0 -> (type)ptr */
120 (pointer_diff @0 integer_zerop)
123 /* See if ARG1 is zero and X + ARG1 reduces to X.
124 Likewise if the operands are reversed. */
126 (plus:c @0 real_zerop@1)
127 (if (fold_real_zero_addition_p (type, @1, 0))
130 /* See if ARG1 is zero and X - ARG1 reduces to X. */
132 (minus @0 real_zerop@1)
133 (if (fold_real_zero_addition_p (type, @1, 1))
137 This is unsafe for certain floats even in non-IEEE formats.
138 In IEEE, it is unsafe because it does wrong for NaNs.
139 Also note that operand_equal_p is always false if an operand
143 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
144 { build_zero_cst (type); }))
146 (pointer_diff @@0 @0)
147 { build_zero_cst (type); })
150 (mult @0 integer_zerop@1)
153 /* Maybe fold x * 0 to 0. The expressions aren't the same
154 when x is NaN, since x * 0 is also NaN. Nor are they the
155 same in modes with signed zeros, since multiplying a
156 negative value by 0 gives -0, not +0. */
158 (mult @0 real_zerop@1)
159 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
162 /* In IEEE floating point, x*1 is not equivalent to x for snans.
163 Likewise for complex arithmetic with signed zeros. */
166 (if (!HONOR_SNANS (type)
167 && (!HONOR_SIGNED_ZEROS (type)
168 || !COMPLEX_FLOAT_TYPE_P (type)))
171 /* Transform x * -1.0 into -x. */
173 (mult @0 real_minus_onep)
174 (if (!HONOR_SNANS (type)
175 && (!HONOR_SIGNED_ZEROS (type)
176 || !COMPLEX_FLOAT_TYPE_P (type)))
179 (for cmp (gt ge lt le)
180 outp (convert convert negate negate)
181 outn (negate negate convert convert)
182 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
183 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
184 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
185 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
187 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
188 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
189 && types_match (type, TREE_TYPE (@0)))
191 (if (types_match (type, float_type_node))
192 (BUILT_IN_COPYSIGNF @1 (outp @0)))
193 (if (types_match (type, double_type_node))
194 (BUILT_IN_COPYSIGN @1 (outp @0)))
195 (if (types_match (type, long_double_type_node))
196 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
197 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
198 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
199 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
200 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
202 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
203 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
204 && types_match (type, TREE_TYPE (@0)))
206 (if (types_match (type, float_type_node))
207 (BUILT_IN_COPYSIGNF @1 (outn @0)))
208 (if (types_match (type, double_type_node))
209 (BUILT_IN_COPYSIGN @1 (outn @0)))
210 (if (types_match (type, long_double_type_node))
211 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
213 /* Transform X * copysign (1.0, X) into abs(X). */
215 (mult:c @0 (COPYSIGN_ALL real_onep @0))
216 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
219 /* Transform X * copysign (1.0, -X) into -abs(X). */
221 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
222 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
225 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
227 (COPYSIGN_ALL REAL_CST@0 @1)
228 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
229 (COPYSIGN_ALL (negate @0) @1)))
231 /* X * 1, X / 1 -> X. */
232 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
237 /* (A / (1 << B)) -> (A >> B).
238 Only for unsigned A. For signed A, this would not preserve rounding
240 For example: (-1 / ( 1 << B)) != -1 >> B. */
242 (trunc_div @0 (lshift integer_onep@1 @2))
243 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
244 && (!VECTOR_TYPE_P (type)
245 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
246 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
249 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
250 undefined behavior in constexpr evaluation, and assuming that the division
251 traps enables better optimizations than these anyway. */
252 (for div (trunc_div ceil_div floor_div round_div exact_div)
253 /* 0 / X is always zero. */
255 (div integer_zerop@0 @1)
256 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
257 (if (!integer_zerop (@1))
261 (div @0 integer_minus_onep@1)
262 (if (!TYPE_UNSIGNED (type))
267 /* But not for 0 / 0 so that we can get the proper warnings and errors.
268 And not for _Fract types where we can't build 1. */
269 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
270 { build_one_cst (type); }))
271 /* X / abs (X) is X < 0 ? -1 : 1. */
274 (if (INTEGRAL_TYPE_P (type)
275 && TYPE_OVERFLOW_UNDEFINED (type))
276 (cond (lt @0 { build_zero_cst (type); })
277 { build_minus_one_cst (type); } { build_one_cst (type); })))
280 (div:C @0 (negate @0))
281 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
282 && TYPE_OVERFLOW_UNDEFINED (type))
283 { build_minus_one_cst (type); })))
285 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
286 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
289 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
290 && TYPE_UNSIGNED (type))
293 /* Combine two successive divisions. Note that combining ceil_div
294 and floor_div is trickier and combining round_div even more so. */
295 (for div (trunc_div exact_div)
297 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
300 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
301 TYPE_SIGN (type), &overflow_p);
304 (div @0 { wide_int_to_tree (type, mul); })
305 (if (TYPE_UNSIGNED (type)
306 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
307 { build_zero_cst (type); })))))
309 /* Combine successive multiplications. Similar to above, but handling
310 overflow is different. */
312 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
315 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
316 TYPE_SIGN (type), &overflow_p);
318 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
319 otherwise undefined overflow implies that @0 must be zero. */
320 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
321 (mult @0 { wide_int_to_tree (type, mul); }))))
323 /* Optimize A / A to 1.0 if we don't care about
324 NaNs or Infinities. */
327 (if (FLOAT_TYPE_P (type)
328 && ! HONOR_NANS (type)
329 && ! HONOR_INFINITIES (type))
330 { build_one_cst (type); }))
332 /* Optimize -A / A to -1.0 if we don't care about
333 NaNs or Infinities. */
335 (rdiv:C @0 (negate @0))
336 (if (FLOAT_TYPE_P (type)
337 && ! HONOR_NANS (type)
338 && ! HONOR_INFINITIES (type))
339 { build_minus_one_cst (type); }))
341 /* PR71078: x / abs(x) -> copysign (1.0, x) */
343 (rdiv:C (convert? @0) (convert? (abs @0)))
344 (if (SCALAR_FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
348 (if (types_match (type, float_type_node))
349 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
350 (if (types_match (type, double_type_node))
351 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
352 (if (types_match (type, long_double_type_node))
353 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
355 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
358 (if (!HONOR_SNANS (type))
361 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
363 (rdiv @0 real_minus_onep)
364 (if (!HONOR_SNANS (type))
367 (if (flag_reciprocal_math)
368 /* Convert (A/B)/C to A/(B*C). */
370 (rdiv (rdiv:s @0 @1) @2)
371 (rdiv @0 (mult @1 @2)))
373 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
375 (rdiv @0 (mult:s @1 REAL_CST@2))
377 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
379 (rdiv (mult @0 { tem; } ) @1))))
381 /* Convert A/(B/C) to (A/B)*C */
383 (rdiv @0 (rdiv:s @1 @2))
384 (mult (rdiv @0 @1) @2)))
386 /* Simplify x / (- y) to -x / y. */
388 (rdiv @0 (negate @1))
389 (rdiv (negate @0) @1))
391 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
392 (for div (trunc_div ceil_div floor_div round_div exact_div)
394 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
395 (if (integer_pow2p (@2)
396 && tree_int_cst_sgn (@2) > 0
397 && tree_nop_conversion_p (type, TREE_TYPE (@0))
398 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
400 { build_int_cst (integer_type_node,
401 wi::exact_log2 (wi::to_wide (@2))); }))))
403 /* If ARG1 is a constant, we can convert this to a multiply by the
404 reciprocal. This does not have the same rounding properties,
405 so only do this if -freciprocal-math. We can actually
406 always safely do it if ARG1 is a power of two, but it's hard to
407 tell if it is or not in a portable manner. */
408 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
412 (if (flag_reciprocal_math
415 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
417 (mult @0 { tem; } )))
418 (if (cst != COMPLEX_CST)
419 (with { tree inverse = exact_inverse (type, @1); }
421 (mult @0 { inverse; } ))))))))
423 (for mod (ceil_mod floor_mod round_mod trunc_mod)
424 /* 0 % X is always zero. */
426 (mod integer_zerop@0 @1)
427 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
428 (if (!integer_zerop (@1))
430 /* X % 1 is always zero. */
432 (mod @0 integer_onep)
433 { build_zero_cst (type); })
434 /* X % -1 is zero. */
436 (mod @0 integer_minus_onep@1)
437 (if (!TYPE_UNSIGNED (type))
438 { build_zero_cst (type); }))
442 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
443 (if (!integer_zerop (@0))
444 { build_zero_cst (type); }))
445 /* (X % Y) % Y is just X % Y. */
447 (mod (mod@2 @0 @1) @1)
449 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
451 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
452 (if (ANY_INTEGRAL_TYPE_P (type)
453 && TYPE_OVERFLOW_UNDEFINED (type)
454 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
456 { build_zero_cst (type); })))
458 /* X % -C is the same as X % C. */
460 (trunc_mod @0 INTEGER_CST@1)
461 (if (TYPE_SIGN (type) == SIGNED
462 && !TREE_OVERFLOW (@1)
463 && wi::neg_p (wi::to_wide (@1))
464 && !TYPE_OVERFLOW_TRAPS (type)
465 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
466 && !sign_bit_p (@1, @1))
467 (trunc_mod @0 (negate @1))))
469 /* X % -Y is the same as X % Y. */
471 (trunc_mod @0 (convert? (negate @1)))
472 (if (INTEGRAL_TYPE_P (type)
473 && !TYPE_UNSIGNED (type)
474 && !TYPE_OVERFLOW_TRAPS (type)
475 && tree_nop_conversion_p (type, TREE_TYPE (@1))
476 /* Avoid this transformation if X might be INT_MIN or
477 Y might be -1, because we would then change valid
478 INT_MIN % -(-1) into invalid INT_MIN % -1. */
479 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
480 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
482 (trunc_mod @0 (convert @1))))
484 /* X - (X / Y) * Y is the same as X % Y. */
486 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
487 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
488 (convert (trunc_mod @0 @1))))
490 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
491 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
492 Also optimize A % (C << N) where C is a power of 2,
493 to A & ((C << N) - 1). */
494 (match (power_of_two_cand @1)
496 (match (power_of_two_cand @1)
497 (lshift INTEGER_CST@1 @2))
498 (for mod (trunc_mod floor_mod)
500 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
501 (if ((TYPE_UNSIGNED (type)
502 || tree_expr_nonnegative_p (@0))
503 && tree_nop_conversion_p (type, TREE_TYPE (@3))
504 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
505 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
507 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
509 (trunc_div (mult @0 integer_pow2p@1) @1)
510 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
511 (bit_and @0 { wide_int_to_tree
512 (type, wi::mask (TYPE_PRECISION (type)
513 - wi::exact_log2 (wi::to_wide (@1)),
514 false, TYPE_PRECISION (type))); })))
516 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
518 (mult (trunc_div @0 integer_pow2p@1) @1)
519 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
520 (bit_and @0 (negate @1))))
522 /* Simplify (t * 2) / 2) -> t. */
523 (for div (trunc_div ceil_div floor_div round_div exact_div)
525 (div (mult:c @0 @1) @1)
526 (if (ANY_INTEGRAL_TYPE_P (type)
527 && TYPE_OVERFLOW_UNDEFINED (type))
531 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
536 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
539 (pows (op @0) REAL_CST@1)
540 (with { HOST_WIDE_INT n; }
541 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
543 /* Likewise for powi. */
546 (pows (op @0) INTEGER_CST@1)
547 (if ((wi::to_wide (@1) & 1) == 0)
549 /* Strip negate and abs from both operands of hypot. */
557 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
558 (for copysigns (COPYSIGN_ALL)
560 (copysigns (op @0) @1)
563 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
568 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
572 (coss (copysigns @0 @1))
575 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
579 (pows (copysigns @0 @2) REAL_CST@1)
580 (with { HOST_WIDE_INT n; }
581 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
583 /* Likewise for powi. */
587 (pows (copysigns @0 @2) INTEGER_CST@1)
588 (if ((wi::to_wide (@1) & 1) == 0)
593 /* hypot(copysign(x, y), z) -> hypot(x, z). */
595 (hypots (copysigns @0 @1) @2)
597 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
599 (hypots @0 (copysigns @1 @2))
602 /* copysign(x, CST) -> [-]abs (x). */
603 (for copysigns (COPYSIGN_ALL)
605 (copysigns @0 REAL_CST@1)
606 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
610 /* copysign(copysign(x, y), z) -> copysign(x, z). */
611 (for copysigns (COPYSIGN_ALL)
613 (copysigns (copysigns @0 @1) @2)
616 /* copysign(x,y)*copysign(x,y) -> x*x. */
617 (for copysigns (COPYSIGN_ALL)
619 (mult (copysigns@2 @0 @1) @2)
622 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
623 (for ccoss (CCOS CCOSH)
628 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
629 (for ops (conj negate)
635 /* Fold (a * (1 << b)) into (a << b) */
637 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
638 (if (! FLOAT_TYPE_P (type)
639 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
642 /* Fold (1 << (C - x)) where C = precision(type) - 1
643 into ((1 << C) >> x). */
645 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
646 (if (INTEGRAL_TYPE_P (type)
647 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
649 (if (TYPE_UNSIGNED (type))
650 (rshift (lshift @0 @2) @3)
652 { tree utype = unsigned_type_for (type); }
653 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
655 /* Fold (C1/X)*C2 into (C1*C2)/X. */
657 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
658 (if (flag_associative_math
661 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
663 (rdiv { tem; } @1)))))
665 /* Simplify ~X & X as zero. */
667 (bit_and:c (convert? @0) (convert? (bit_not @0)))
668 { build_zero_cst (type); })
670 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
672 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
673 (if (TYPE_UNSIGNED (type))
674 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
676 (for bitop (bit_and bit_ior)
678 /* PR35691: Transform
679 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
680 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
682 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
683 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
684 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
685 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
686 (cmp (bit_ior @0 (convert @1)) @2)))
688 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
689 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
691 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
692 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
693 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
694 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
695 (cmp (bit_and @0 (convert @1)) @2))))
697 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
699 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
700 (minus (bit_xor @0 @1) @1))
702 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
703 (if (~wi::to_wide (@2) == wi::to_wide (@1))
704 (minus (bit_xor @0 @1) @1)))
706 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
708 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
709 (minus @1 (bit_xor @0 @1)))
711 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
712 (for op (bit_ior bit_xor plus)
714 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
717 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
718 (if (~wi::to_wide (@2) == wi::to_wide (@1))
721 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
723 (bit_ior:c (bit_xor:c @0 @1) @0)
726 /* (a & ~b) | (a ^ b) --> a ^ b */
728 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
731 /* (a & ~b) ^ ~a --> ~(a & b) */
733 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
734 (bit_not (bit_and @0 @1)))
736 /* (a | b) & ~(a ^ b) --> a & b */
738 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
741 /* a | ~(a ^ b) --> a | ~b */
743 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
744 (bit_ior @0 (bit_not @1)))
746 /* (a | b) | (a &^ b) --> a | b */
747 (for op (bit_and bit_xor)
749 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
752 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
754 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
757 /* ~(~a & b) --> a | ~b */
759 (bit_not (bit_and:cs (bit_not @0) @1))
760 (bit_ior @0 (bit_not @1)))
762 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
765 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
766 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
767 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
771 /* X % Y is smaller than Y. */
774 (cmp (trunc_mod @0 @1) @1)
775 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
776 { constant_boolean_node (cmp == LT_EXPR, type); })))
779 (cmp @1 (trunc_mod @0 @1))
780 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
781 { constant_boolean_node (cmp == GT_EXPR, type); })))
785 (bit_ior @0 integer_all_onesp@1)
790 (bit_ior @0 integer_zerop)
795 (bit_and @0 integer_zerop@1)
801 (for op (bit_ior bit_xor plus)
803 (op:c (convert? @0) (convert? (bit_not @0)))
804 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
809 { build_zero_cst (type); })
811 /* Canonicalize X ^ ~0 to ~X. */
813 (bit_xor @0 integer_all_onesp@1)
818 (bit_and @0 integer_all_onesp)
821 /* x & x -> x, x | x -> x */
822 (for bitop (bit_and bit_ior)
827 /* x & C -> x if we know that x & ~C == 0. */
830 (bit_and SSA_NAME@0 INTEGER_CST@1)
831 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
832 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
836 /* x + (x & 1) -> (x + 1) & ~1 */
838 (plus:c @0 (bit_and:s @0 integer_onep@1))
839 (bit_and (plus @0 @1) (bit_not @1)))
841 /* x & ~(x & y) -> x & ~y */
842 /* x | ~(x | y) -> x | ~y */
843 (for bitop (bit_and bit_ior)
845 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
846 (bitop @0 (bit_not @1))))
848 /* (x | y) & ~x -> y & ~x */
849 /* (x & y) | ~x -> y | ~x */
850 (for bitop (bit_and bit_ior)
851 rbitop (bit_ior bit_and)
853 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
856 /* (x & y) ^ (x | y) -> x ^ y */
858 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
861 /* (x ^ y) ^ (x | y) -> x & y */
863 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
866 /* (x & y) + (x ^ y) -> x | y */
867 /* (x & y) | (x ^ y) -> x | y */
868 /* (x & y) ^ (x ^ y) -> x | y */
869 (for op (plus bit_ior bit_xor)
871 (op:c (bit_and @0 @1) (bit_xor @0 @1))
874 /* (x & y) + (x | y) -> x + y */
876 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
879 /* (x + y) - (x | y) -> x & y */
881 (minus (plus @0 @1) (bit_ior @0 @1))
882 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
883 && !TYPE_SATURATING (type))
886 /* (x + y) - (x & y) -> x | y */
888 (minus (plus @0 @1) (bit_and @0 @1))
889 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
890 && !TYPE_SATURATING (type))
893 /* (x | y) - (x ^ y) -> x & y */
895 (minus (bit_ior @0 @1) (bit_xor @0 @1))
898 /* (x | y) - (x & y) -> x ^ y */
900 (minus (bit_ior @0 @1) (bit_and @0 @1))
903 /* (x | y) & ~(x & y) -> x ^ y */
905 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
908 /* (x | y) & (~x ^ y) -> x & y */
910 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
913 /* ~x & ~y -> ~(x | y)
914 ~x | ~y -> ~(x & y) */
915 (for op (bit_and bit_ior)
916 rop (bit_ior bit_and)
918 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
919 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
920 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
921 (bit_not (rop (convert @0) (convert @1))))))
923 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
924 with a constant, and the two constants have no bits in common,
925 we should treat this as a BIT_IOR_EXPR since this may produce more
927 (for op (bit_xor plus)
929 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
930 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
931 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
932 && tree_nop_conversion_p (type, TREE_TYPE (@2))
933 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
934 (bit_ior (convert @4) (convert @5)))))
936 /* (X | Y) ^ X -> Y & ~ X*/
938 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
939 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
940 (convert (bit_and @1 (bit_not @0)))))
942 /* Convert ~X ^ ~Y to X ^ Y. */
944 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
945 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
946 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
947 (bit_xor (convert @0) (convert @1))))
949 /* Convert ~X ^ C to X ^ ~C. */
951 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
952 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
953 (bit_xor (convert @0) (bit_not @1))))
955 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
956 (for opo (bit_and bit_xor)
957 opi (bit_xor bit_and)
959 (opo:c (opi:c @0 @1) @1)
960 (bit_and (bit_not @0) @1)))
962 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
963 operands are another bit-wise operation with a common input. If so,
964 distribute the bit operations to save an operation and possibly two if
965 constants are involved. For example, convert
966 (A | B) & (A | C) into A | (B & C)
967 Further simplification will occur if B and C are constants. */
968 (for op (bit_and bit_ior bit_xor)
969 rop (bit_ior bit_and bit_and)
971 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
972 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
973 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
974 (rop (convert @0) (op (convert @1) (convert @2))))))
976 /* Some simple reassociation for bit operations, also handled in reassoc. */
977 /* (X & Y) & Y -> X & Y
978 (X | Y) | Y -> X | Y */
979 (for op (bit_and bit_ior)
981 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
983 /* (X ^ Y) ^ Y -> X */
985 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
987 /* (X & Y) & (X & Z) -> (X & Y) & Z
988 (X | Y) | (X | Z) -> (X | Y) | Z */
989 (for op (bit_and bit_ior)
991 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
992 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
993 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
994 (if (single_use (@5) && single_use (@6))
996 (if (single_use (@3) && single_use (@4))
997 (op (convert @1) @5))))))
998 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1000 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1001 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1002 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1003 (bit_xor (convert @1) (convert @2))))
1012 (abs tree_expr_nonnegative_p@0)
1015 /* A few cases of fold-const.c negate_expr_p predicate. */
1016 (match negate_expr_p
1018 (if ((INTEGRAL_TYPE_P (type)
1019 && TYPE_UNSIGNED (type))
1020 || (!TYPE_OVERFLOW_SANITIZED (type)
1021 && may_negate_without_overflow_p (t)))))
1022 (match negate_expr_p
1024 (match negate_expr_p
1026 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1027 (match negate_expr_p
1029 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1030 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1032 (match negate_expr_p
1034 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1035 (match negate_expr_p
1037 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1038 || (FLOAT_TYPE_P (type)
1039 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1040 && !HONOR_SIGNED_ZEROS (type)))))
1042 /* (-A) * (-B) -> A * B */
1044 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1045 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1046 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1047 (mult (convert @0) (convert (negate @1)))))
1049 /* -(A + B) -> (-B) - A. */
1051 (negate (plus:c @0 negate_expr_p@1))
1052 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1053 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1054 (minus (negate @1) @0)))
1056 /* -(A - B) -> B - A. */
1058 (negate (minus @0 @1))
1059 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1060 || (FLOAT_TYPE_P (type)
1061 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1062 && !HONOR_SIGNED_ZEROS (type)))
1065 (negate (pointer_diff @0 @1))
1066 (if (TYPE_OVERFLOW_UNDEFINED (type))
1067 (pointer_diff @1 @0)))
1069 /* A - B -> A + (-B) if B is easily negatable. */
1071 (minus @0 negate_expr_p@1)
1072 (if (!FIXED_POINT_TYPE_P (type))
1073 (plus @0 (negate @1))))
1075 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1077 For bitwise binary operations apply operand conversions to the
1078 binary operation result instead of to the operands. This allows
1079 to combine successive conversions and bitwise binary operations.
1080 We combine the above two cases by using a conditional convert. */
1081 (for bitop (bit_and bit_ior bit_xor)
1083 (bitop (convert @0) (convert? @1))
1084 (if (((TREE_CODE (@1) == INTEGER_CST
1085 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1086 && int_fits_type_p (@1, TREE_TYPE (@0)))
1087 || types_match (@0, @1))
1088 /* ??? This transform conflicts with fold-const.c doing
1089 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1090 constants (if x has signed type, the sign bit cannot be set
1091 in c). This folds extension into the BIT_AND_EXPR.
1092 Restrict it to GIMPLE to avoid endless recursions. */
1093 && (bitop != BIT_AND_EXPR || GIMPLE)
1094 && (/* That's a good idea if the conversion widens the operand, thus
1095 after hoisting the conversion the operation will be narrower. */
1096 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1097 /* It's also a good idea if the conversion is to a non-integer
1099 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1100 /* Or if the precision of TO is not the same as the precision
1102 || !type_has_mode_precision_p (type)))
1103 (convert (bitop @0 (convert @1))))))
1105 (for bitop (bit_and bit_ior)
1106 rbitop (bit_ior bit_and)
1107 /* (x | y) & x -> x */
1108 /* (x & y) | x -> x */
1110 (bitop:c (rbitop:c @0 @1) @0)
1112 /* (~x | y) & x -> x & y */
1113 /* (~x & y) | x -> x | y */
1115 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1118 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1120 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1121 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1123 /* Combine successive equal operations with constants. */
1124 (for bitop (bit_and bit_ior bit_xor)
1126 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1127 (if (!CONSTANT_CLASS_P (@0))
1128 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1129 folded to a constant. */
1130 (bitop @0 (bitop @1 @2))
1131 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1132 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1133 the values involved are such that the operation can't be decided at
1134 compile time. Try folding one of @0 or @1 with @2 to see whether
1135 that combination can be decided at compile time.
1137 Keep the existing form if both folds fail, to avoid endless
1139 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1141 (bitop @1 { cst1; })
1142 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1144 (bitop @0 { cst2; }))))))))
1146 /* Try simple folding for X op !X, and X op X with the help
1147 of the truth_valued_p and logical_inverted_value predicates. */
1148 (match truth_valued_p
1150 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1151 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1152 (match truth_valued_p
1154 (match truth_valued_p
1157 (match (logical_inverted_value @0)
1159 (match (logical_inverted_value @0)
1160 (bit_not truth_valued_p@0))
1161 (match (logical_inverted_value @0)
1162 (eq @0 integer_zerop))
1163 (match (logical_inverted_value @0)
1164 (ne truth_valued_p@0 integer_truep))
1165 (match (logical_inverted_value @0)
1166 (bit_xor truth_valued_p@0 integer_truep))
1170 (bit_and:c @0 (logical_inverted_value @0))
1171 { build_zero_cst (type); })
1172 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1173 (for op (bit_ior bit_xor)
1175 (op:c truth_valued_p@0 (logical_inverted_value @0))
1176 { constant_boolean_node (true, type); }))
1177 /* X ==/!= !X is false/true. */
1180 (op:c truth_valued_p@0 (logical_inverted_value @0))
1181 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1185 (bit_not (bit_not @0))
1188 /* Convert ~ (-A) to A - 1. */
1190 (bit_not (convert? (negate @0)))
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1193 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1195 /* Convert - (~A) to A + 1. */
1197 (negate (nop_convert (bit_not @0)))
1198 (plus (view_convert @0) { build_each_one_cst (type); }))
1200 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1202 (bit_not (convert? (minus @0 integer_each_onep)))
1203 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1204 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1205 (convert (negate @0))))
1207 (bit_not (convert? (plus @0 integer_all_onesp)))
1208 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1209 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1210 (convert (negate @0))))
1212 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1214 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1215 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1216 (convert (bit_xor @0 (bit_not @1)))))
1218 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1219 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1220 (convert (bit_xor @0 @1))))
1222 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1224 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1225 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1226 (bit_not (bit_xor (view_convert @0) @1))))
1228 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1230 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1231 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1233 /* Fold A - (A & B) into ~B & A. */
1235 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1236 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1237 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1238 (convert (bit_and (bit_not @1) @0))))
1240 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1241 (for cmp (gt lt ge le)
1243 (mult (convert (cmp @0 @1)) @2)
1244 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1246 /* For integral types with undefined overflow and C != 0 fold
1247 x * C EQ/NE y * C into x EQ/NE y. */
1250 (cmp (mult:c @0 @1) (mult:c @2 @1))
1251 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1252 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1253 && tree_expr_nonzero_p (@1))
1256 /* For integral types with wrapping overflow and C odd fold
1257 x * C EQ/NE y * C into x EQ/NE y. */
1260 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1261 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1262 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1263 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1266 /* For integral types with undefined overflow and C != 0 fold
1267 x * C RELOP y * C into:
1269 x RELOP y for nonnegative C
1270 y RELOP x for negative C */
1271 (for cmp (lt gt le ge)
1273 (cmp (mult:c @0 @1) (mult:c @2 @1))
1274 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1275 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1276 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1278 (if (TREE_CODE (@1) == INTEGER_CST
1279 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1282 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1286 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1287 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1288 && TYPE_UNSIGNED (TREE_TYPE (@0))
1289 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1290 && (wi::to_wide (@2)
1291 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1292 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1293 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1295 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1296 (for cmp (simple_comparison)
1298 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1299 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1302 /* X / C1 op C2 into a simple range test. */
1303 (for cmp (simple_comparison)
1305 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1306 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1307 && integer_nonzerop (@1)
1308 && !TREE_OVERFLOW (@1)
1309 && !TREE_OVERFLOW (@2))
1310 (with { tree lo, hi; bool neg_overflow;
1311 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1314 (if (code == LT_EXPR || code == GE_EXPR)
1315 (if (TREE_OVERFLOW (lo))
1316 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1317 (if (code == LT_EXPR)
1320 (if (code == LE_EXPR || code == GT_EXPR)
1321 (if (TREE_OVERFLOW (hi))
1322 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1323 (if (code == LE_EXPR)
1327 { build_int_cst (type, code == NE_EXPR); })
1328 (if (code == EQ_EXPR && !hi)
1330 (if (code == EQ_EXPR && !lo)
1332 (if (code == NE_EXPR && !hi)
1334 (if (code == NE_EXPR && !lo)
1337 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1341 tree etype = range_check_type (TREE_TYPE (@0));
1344 if (! TYPE_UNSIGNED (etype))
1345 etype = unsigned_type_for (etype);
1346 hi = fold_convert (etype, hi);
1347 lo = fold_convert (etype, lo);
1348 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1351 (if (etype && hi && !TREE_OVERFLOW (hi))
1352 (if (code == EQ_EXPR)
1353 (le (minus (convert:etype @0) { lo; }) { hi; })
1354 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1356 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1357 (for op (lt le ge gt)
1359 (op (plus:c @0 @2) (plus:c @1 @2))
1360 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1361 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1363 /* For equality and subtraction, this is also true with wrapping overflow. */
1364 (for op (eq ne minus)
1366 (op (plus:c @0 @2) (plus:c @1 @2))
1367 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1368 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1369 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1372 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1373 (for op (lt le ge gt)
1375 (op (minus @0 @2) (minus @1 @2))
1376 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1377 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1379 /* For equality and subtraction, this is also true with wrapping overflow. */
1380 (for op (eq ne minus)
1382 (op (minus @0 @2) (minus @1 @2))
1383 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1384 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1385 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1387 /* And for pointers... */
1388 (for op (simple_comparison)
1390 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1391 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1394 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1395 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1396 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1397 (pointer_diff @0 @1)))
1399 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1400 (for op (lt le ge gt)
1402 (op (minus @2 @0) (minus @2 @1))
1403 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1404 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1406 /* For equality and subtraction, this is also true with wrapping overflow. */
1407 (for op (eq ne minus)
1409 (op (minus @2 @0) (minus @2 @1))
1410 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1411 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1412 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1414 /* And for pointers... */
1415 (for op (simple_comparison)
1417 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1418 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1421 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1422 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1423 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1424 (pointer_diff @1 @0)))
1426 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1427 (for op (lt le gt ge)
1429 (op:c (plus:c@2 @0 @1) @1)
1430 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1431 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1432 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1433 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1434 /* For equality, this is also true with wrapping overflow. */
1437 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1438 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1439 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1440 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1441 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1442 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1443 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1444 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1446 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1447 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1448 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1449 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1452 /* X - Y < X is the same as Y > 0 when there is no overflow.
1453 For equality, this is also true with wrapping overflow. */
1454 (for op (simple_comparison)
1456 (op:c @0 (minus@2 @0 @1))
1457 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1458 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1459 || ((op == EQ_EXPR || op == NE_EXPR)
1460 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1461 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1462 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1465 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1466 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1471 (cmp (trunc_div @0 @1) integer_zerop)
1472 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1473 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1476 /* X == C - X can never be true if C is odd. */
1479 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1480 (if (TREE_INT_CST_LOW (@1) & 1)
1481 { constant_boolean_node (cmp == NE_EXPR, type); })))
1483 /* Arguments on which one can call get_nonzero_bits to get the bits
1485 (match with_possible_nonzero_bits
1487 (match with_possible_nonzero_bits
1489 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1490 /* Slightly extended version, do not make it recursive to keep it cheap. */
1491 (match (with_possible_nonzero_bits2 @0)
1492 with_possible_nonzero_bits@0)
1493 (match (with_possible_nonzero_bits2 @0)
1494 (bit_and:c with_possible_nonzero_bits@0 @2))
1496 /* Same for bits that are known to be set, but we do not have
1497 an equivalent to get_nonzero_bits yet. */
1498 (match (with_certain_nonzero_bits2 @0)
1500 (match (with_certain_nonzero_bits2 @0)
1501 (bit_ior @1 INTEGER_CST@0))
1503 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1506 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1507 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1508 { constant_boolean_node (cmp == NE_EXPR, type); })))
1510 /* ((X inner_op C0) outer_op C1)
1511 With X being a tree where value_range has reasoned certain bits to always be
1512 zero throughout its computed value range,
1513 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1514 where zero_mask has 1's for all bits that are sure to be 0 in
1516 if (inner_op == '^') C0 &= ~C1;
1517 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1518 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1520 (for inner_op (bit_ior bit_xor)
1521 outer_op (bit_xor bit_ior)
1524 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1528 wide_int zero_mask_not;
1532 if (TREE_CODE (@2) == SSA_NAME)
1533 zero_mask_not = get_nonzero_bits (@2);
1537 if (inner_op == BIT_XOR_EXPR)
1539 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1540 cst_emit = C0 | wi::to_wide (@1);
1544 C0 = wi::to_wide (@0);
1545 cst_emit = C0 ^ wi::to_wide (@1);
1548 (if (!fail && (C0 & zero_mask_not) == 0)
1549 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1550 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1551 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1553 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1555 (pointer_plus (pointer_plus:s @0 @1) @3)
1556 (pointer_plus @0 (plus @1 @3)))
1562 tem4 = (unsigned long) tem3;
1567 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1568 /* Conditionally look through a sign-changing conversion. */
1569 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1570 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1571 || (GENERIC && type == TREE_TYPE (@1))))
1574 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1575 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1579 tem = (sizetype) ptr;
1583 and produce the simpler and easier to analyze with respect to alignment
1584 ... = ptr & ~algn; */
1586 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1587 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1588 (bit_and @0 { algn; })))
1590 /* Try folding difference of addresses. */
1592 (minus (convert ADDR_EXPR@0) (convert @1))
1593 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1594 (with { poly_int64 diff; }
1595 (if (ptr_difference_const (@0, @1, &diff))
1596 { build_int_cst_type (type, diff); }))))
1598 (minus (convert @0) (convert ADDR_EXPR@1))
1599 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1600 (with { poly_int64 diff; }
1601 (if (ptr_difference_const (@0, @1, &diff))
1602 { build_int_cst_type (type, diff); }))))
1604 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1605 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1606 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1607 (with { poly_int64 diff; }
1608 (if (ptr_difference_const (@0, @1, &diff))
1609 { build_int_cst_type (type, diff); }))))
1611 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1612 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1613 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1614 (with { poly_int64 diff; }
1615 (if (ptr_difference_const (@0, @1, &diff))
1616 { build_int_cst_type (type, diff); }))))
1618 /* If arg0 is derived from the address of an object or function, we may
1619 be able to fold this expression using the object or function's
1622 (bit_and (convert? @0) INTEGER_CST@1)
1623 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1624 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1628 unsigned HOST_WIDE_INT bitpos;
1629 get_pointer_alignment_1 (@0, &align, &bitpos);
1631 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1632 { wide_int_to_tree (type, (wi::to_wide (@1)
1633 & (bitpos / BITS_PER_UNIT))); }))))
1636 /* We can't reassociate at all for saturating types. */
1637 (if (!TYPE_SATURATING (type))
1639 /* Contract negates. */
1640 /* A + (-B) -> A - B */
1642 (plus:c @0 (convert? (negate @1)))
1643 /* Apply STRIP_NOPS on the negate. */
1644 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1645 && !TYPE_OVERFLOW_SANITIZED (type))
1649 if (INTEGRAL_TYPE_P (type)
1650 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1651 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1653 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1654 /* A - (-B) -> A + B */
1656 (minus @0 (convert? (negate @1)))
1657 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1658 && !TYPE_OVERFLOW_SANITIZED (type))
1662 if (INTEGRAL_TYPE_P (type)
1663 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1664 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1666 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1668 Sign-extension is ok except for INT_MIN, which thankfully cannot
1669 happen without overflow. */
1671 (negate (convert (negate @1)))
1672 (if (INTEGRAL_TYPE_P (type)
1673 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1674 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1675 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1676 && !TYPE_OVERFLOW_SANITIZED (type)
1677 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1680 (negate (convert negate_expr_p@1))
1681 (if (SCALAR_FLOAT_TYPE_P (type)
1682 && ((DECIMAL_FLOAT_TYPE_P (type)
1683 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1684 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1685 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1686 (convert (negate @1))))
1688 (negate (nop_convert (negate @1)))
1689 (if (!TYPE_OVERFLOW_SANITIZED (type)
1690 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1693 /* We can't reassociate floating-point unless -fassociative-math
1694 or fixed-point plus or minus because of saturation to +-Inf. */
1695 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1696 && !FIXED_POINT_TYPE_P (type))
1698 /* Match patterns that allow contracting a plus-minus pair
1699 irrespective of overflow issues. */
1700 /* (A +- B) - A -> +- B */
1701 /* (A +- B) -+ B -> A */
1702 /* A - (A +- B) -> -+ B */
1703 /* A +- (B -+ A) -> +- B */
1705 (minus (plus:c @0 @1) @0)
1708 (minus (minus @0 @1) @0)
1711 (plus:c (minus @0 @1) @1)
1714 (minus @0 (plus:c @0 @1))
1717 (minus @0 (minus @0 @1))
1719 /* (A +- B) + (C - A) -> C +- B */
1720 /* (A + B) - (A - C) -> B + C */
1721 /* More cases are handled with comparisons. */
1723 (plus:c (plus:c @0 @1) (minus @2 @0))
1726 (plus:c (minus @0 @1) (minus @2 @0))
1729 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1730 (if (TYPE_OVERFLOW_UNDEFINED (type)
1731 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1732 (pointer_diff @2 @1)))
1734 (minus (plus:c @0 @1) (minus @0 @2))
1737 /* (A +- CST1) +- CST2 -> A + CST3
1738 Use view_convert because it is safe for vectors and equivalent for
1740 (for outer_op (plus minus)
1741 (for inner_op (plus minus)
1742 neg_inner_op (minus plus)
1744 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1746 /* If one of the types wraps, use that one. */
1747 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1748 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1749 forever if something doesn't simplify into a constant. */
1750 (if (!CONSTANT_CLASS_P (@0))
1751 (if (outer_op == PLUS_EXPR)
1752 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1753 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1754 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1755 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1756 (if (outer_op == PLUS_EXPR)
1757 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1758 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1759 /* If the constant operation overflows we cannot do the transform
1760 directly as we would introduce undefined overflow, for example
1761 with (a - 1) + INT_MIN. */
1762 (if (types_match (type, @0))
1763 (with { tree cst = const_binop (outer_op == inner_op
1764 ? PLUS_EXPR : MINUS_EXPR,
1766 (if (cst && !TREE_OVERFLOW (cst))
1767 (inner_op @0 { cst; } )
1768 /* X+INT_MAX+1 is X-INT_MIN. */
1769 (if (INTEGRAL_TYPE_P (type) && cst
1770 && wi::to_wide (cst) == wi::min_value (type))
1771 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1772 /* Last resort, use some unsigned type. */
1773 (with { tree utype = unsigned_type_for (type); }
1774 (view_convert (inner_op
1775 (view_convert:utype @0)
1777 { drop_tree_overflow (cst); })))))))))))))
1779 /* (CST1 - A) +- CST2 -> CST3 - A */
1780 (for outer_op (plus minus)
1782 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1783 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1784 (if (cst && !TREE_OVERFLOW (cst))
1785 (minus { cst; } @0)))))
1787 /* CST1 - (CST2 - A) -> CST3 + A */
1789 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1790 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1791 (if (cst && !TREE_OVERFLOW (cst))
1792 (plus { cst; } @0))))
1796 (plus:c (bit_not @0) @0)
1797 (if (!TYPE_OVERFLOW_TRAPS (type))
1798 { build_all_ones_cst (type); }))
1802 (plus (convert? (bit_not @0)) integer_each_onep)
1803 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1804 (negate (convert @0))))
1808 (minus (convert? (negate @0)) integer_each_onep)
1809 (if (!TYPE_OVERFLOW_TRAPS (type)
1810 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1811 (bit_not (convert @0))))
1815 (minus integer_all_onesp @0)
1818 /* (T)(P + A) - (T)P -> (T) A */
1820 (minus (convert (plus:c @@0 @1))
1822 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1823 /* For integer types, if A has a smaller type
1824 than T the result depends on the possible
1826 E.g. T=size_t, A=(unsigned)429497295, P>0.
1827 However, if an overflow in P + A would cause
1828 undefined behavior, we can assume that there
1830 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1831 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1834 (minus (convert (pointer_plus @@0 @1))
1836 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1837 /* For pointer types, if the conversion of A to the
1838 final type requires a sign- or zero-extension,
1839 then we have to punt - it is not defined which
1841 || (POINTER_TYPE_P (TREE_TYPE (@0))
1842 && TREE_CODE (@1) == INTEGER_CST
1843 && tree_int_cst_sign_bit (@1) == 0))
1846 (pointer_diff (pointer_plus @@0 @1) @0)
1847 /* The second argument of pointer_plus must be interpreted as signed, and
1848 thus sign-extended if necessary. */
1849 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1850 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1851 second arg is unsigned even when we need to consider it as signed,
1852 we don't want to diagnose overflow here. */
1853 (convert (view_convert:stype @1))))
1855 /* (T)P - (T)(P + A) -> -(T) A */
1857 (minus (convert? @0)
1858 (convert (plus:c @@0 @1)))
1859 (if (INTEGRAL_TYPE_P (type)
1860 && TYPE_OVERFLOW_UNDEFINED (type)
1861 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1862 (with { tree utype = unsigned_type_for (type); }
1863 (convert (negate (convert:utype @1))))
1864 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1865 /* For integer types, if A has a smaller type
1866 than T the result depends on the possible
1868 E.g. T=size_t, A=(unsigned)429497295, P>0.
1869 However, if an overflow in P + A would cause
1870 undefined behavior, we can assume that there
1872 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1873 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1874 (negate (convert @1)))))
1877 (convert (pointer_plus @@0 @1)))
1878 (if (INTEGRAL_TYPE_P (type)
1879 && TYPE_OVERFLOW_UNDEFINED (type)
1880 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1881 (with { tree utype = unsigned_type_for (type); }
1882 (convert (negate (convert:utype @1))))
1883 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1884 /* For pointer types, if the conversion of A to the
1885 final type requires a sign- or zero-extension,
1886 then we have to punt - it is not defined which
1888 || (POINTER_TYPE_P (TREE_TYPE (@0))
1889 && TREE_CODE (@1) == INTEGER_CST
1890 && tree_int_cst_sign_bit (@1) == 0))
1891 (negate (convert @1)))))
1893 (pointer_diff @0 (pointer_plus @@0 @1))
1894 /* The second argument of pointer_plus must be interpreted as signed, and
1895 thus sign-extended if necessary. */
1896 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1897 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1898 second arg is unsigned even when we need to consider it as signed,
1899 we don't want to diagnose overflow here. */
1900 (negate (convert (view_convert:stype @1)))))
1902 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1904 (minus (convert (plus:c @@0 @1))
1905 (convert (plus:c @0 @2)))
1906 (if (INTEGRAL_TYPE_P (type)
1907 && TYPE_OVERFLOW_UNDEFINED (type)
1908 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1909 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1910 (with { tree utype = unsigned_type_for (type); }
1911 (convert (minus (convert:utype @1) (convert:utype @2))))
1912 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1913 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1914 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1915 /* For integer types, if A has a smaller type
1916 than T the result depends on the possible
1918 E.g. T=size_t, A=(unsigned)429497295, P>0.
1919 However, if an overflow in P + A would cause
1920 undefined behavior, we can assume that there
1922 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1923 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1924 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1925 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1926 (minus (convert @1) (convert @2)))))
1928 (minus (convert (pointer_plus @@0 @1))
1929 (convert (pointer_plus @0 @2)))
1930 (if (INTEGRAL_TYPE_P (type)
1931 && TYPE_OVERFLOW_UNDEFINED (type)
1932 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1933 (with { tree utype = unsigned_type_for (type); }
1934 (convert (minus (convert:utype @1) (convert:utype @2))))
1935 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1936 /* For pointer types, if the conversion of A to the
1937 final type requires a sign- or zero-extension,
1938 then we have to punt - it is not defined which
1940 || (POINTER_TYPE_P (TREE_TYPE (@0))
1941 && TREE_CODE (@1) == INTEGER_CST
1942 && tree_int_cst_sign_bit (@1) == 0
1943 && TREE_CODE (@2) == INTEGER_CST
1944 && tree_int_cst_sign_bit (@2) == 0))
1945 (minus (convert @1) (convert @2)))))
1947 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1948 /* The second argument of pointer_plus must be interpreted as signed, and
1949 thus sign-extended if necessary. */
1950 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1951 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1952 second arg is unsigned even when we need to consider it as signed,
1953 we don't want to diagnose overflow here. */
1954 (minus (convert (view_convert:stype @1))
1955 (convert (view_convert:stype @2)))))))
1957 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1958 Modeled after fold_plusminus_mult_expr. */
1959 (if (!TYPE_SATURATING (type)
1960 && (!FLOAT_TYPE_P (type) || flag_associative_math))
1961 (for plusminus (plus minus)
1963 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
1964 (if ((!ANY_INTEGRAL_TYPE_P (type)
1965 || TYPE_OVERFLOW_WRAPS (type)
1966 || (INTEGRAL_TYPE_P (type)
1967 && tree_expr_nonzero_p (@0)
1968 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1969 /* If @1 +- @2 is constant require a hard single-use on either
1970 original operand (but not on both). */
1971 && (single_use (@3) || single_use (@4)))
1972 (mult (plusminus @1 @2) @0)))
1973 /* We cannot generate constant 1 for fract. */
1974 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1976 (plusminus @0 (mult:c@3 @0 @2))
1977 (if ((!ANY_INTEGRAL_TYPE_P (type)
1978 || TYPE_OVERFLOW_WRAPS (type)
1979 || (INTEGRAL_TYPE_P (type)
1980 && tree_expr_nonzero_p (@0)
1981 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1983 (mult (plusminus { build_one_cst (type); } @2) @0)))
1985 (plusminus (mult:c@3 @0 @2) @0)
1986 (if ((!ANY_INTEGRAL_TYPE_P (type)
1987 || TYPE_OVERFLOW_WRAPS (type)
1988 || (INTEGRAL_TYPE_P (type)
1989 && tree_expr_nonzero_p (@0)
1990 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1992 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
1994 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1996 (for minmax (min max FMIN_ALL FMAX_ALL)
2000 /* min(max(x,y),y) -> y. */
2002 (min:c (max:c @0 @1) @1)
2004 /* max(min(x,y),y) -> y. */
2006 (max:c (min:c @0 @1) @1)
2008 /* max(a,-a) -> abs(a). */
2010 (max:c @0 (negate @0))
2011 (if (TREE_CODE (type) != COMPLEX_TYPE
2012 && (! ANY_INTEGRAL_TYPE_P (type)
2013 || TYPE_OVERFLOW_UNDEFINED (type)))
2015 /* min(a,-a) -> -abs(a). */
2017 (min:c @0 (negate @0))
2018 (if (TREE_CODE (type) != COMPLEX_TYPE
2019 && (! ANY_INTEGRAL_TYPE_P (type)
2020 || TYPE_OVERFLOW_UNDEFINED (type)))
2025 (if (INTEGRAL_TYPE_P (type)
2026 && TYPE_MIN_VALUE (type)
2027 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2029 (if (INTEGRAL_TYPE_P (type)
2030 && TYPE_MAX_VALUE (type)
2031 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2036 (if (INTEGRAL_TYPE_P (type)
2037 && TYPE_MAX_VALUE (type)
2038 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2040 (if (INTEGRAL_TYPE_P (type)
2041 && TYPE_MIN_VALUE (type)
2042 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2045 /* max (a, a + CST) -> a + CST where CST is positive. */
2046 /* max (a, a + CST) -> a where CST is negative. */
2048 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2049 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2050 (if (tree_int_cst_sgn (@1) > 0)
2054 /* min (a, a + CST) -> a where CST is positive. */
2055 /* min (a, a + CST) -> a + CST where CST is negative. */
2057 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2058 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2059 (if (tree_int_cst_sgn (@1) > 0)
2063 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2064 and the outer convert demotes the expression back to x's type. */
2065 (for minmax (min max)
2067 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2068 (if (INTEGRAL_TYPE_P (type)
2069 && types_match (@1, type) && int_fits_type_p (@2, type)
2070 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2071 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2072 (minmax @1 (convert @2)))))
2074 (for minmax (FMIN_ALL FMAX_ALL)
2075 /* If either argument is NaN, return the other one. Avoid the
2076 transformation if we get (and honor) a signalling NaN. */
2078 (minmax:c @0 REAL_CST@1)
2079 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2080 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2082 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2083 functions to return the numeric arg if the other one is NaN.
2084 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2085 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2086 worry about it either. */
2087 (if (flag_finite_math_only)
2094 /* min (-A, -B) -> -max (A, B) */
2095 (for minmax (min max FMIN_ALL FMAX_ALL)
2096 maxmin (max min FMAX_ALL FMIN_ALL)
2098 (minmax (negate:s@2 @0) (negate:s@3 @1))
2099 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2100 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2101 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2102 (negate (maxmin @0 @1)))))
2103 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2104 MAX (~X, ~Y) -> ~MIN (X, Y) */
2105 (for minmax (min max)
2108 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2109 (bit_not (maxmin @0 @1))))
2111 /* MIN (X, Y) == X -> X <= Y */
2112 (for minmax (min min max max)
2116 (cmp:c (minmax:c @0 @1) @0)
2117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2119 /* MIN (X, 5) == 0 -> X == 0
2120 MIN (X, 5) == 7 -> false */
2123 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2124 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2125 TYPE_SIGN (TREE_TYPE (@0))))
2126 { constant_boolean_node (cmp == NE_EXPR, type); }
2127 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2128 TYPE_SIGN (TREE_TYPE (@0))))
2132 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2133 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2134 TYPE_SIGN (TREE_TYPE (@0))))
2135 { constant_boolean_node (cmp == NE_EXPR, type); }
2136 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2137 TYPE_SIGN (TREE_TYPE (@0))))
2139 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2140 (for minmax (min min max max min min max max )
2141 cmp (lt le gt ge gt ge lt le )
2142 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2144 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2145 (comb (cmp @0 @2) (cmp @1 @2))))
2147 /* Simplifications of shift and rotates. */
2149 (for rotate (lrotate rrotate)
2151 (rotate integer_all_onesp@0 @1)
2154 /* Optimize -1 >> x for arithmetic right shifts. */
2156 (rshift integer_all_onesp@0 @1)
2157 (if (!TYPE_UNSIGNED (type)
2158 && tree_expr_nonnegative_p (@1))
2161 /* Optimize (x >> c) << c into x & (-1<<c). */
2163 (lshift (rshift @0 INTEGER_CST@1) @1)
2164 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2165 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2167 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2170 (rshift (lshift @0 INTEGER_CST@1) @1)
2171 (if (TYPE_UNSIGNED (type)
2172 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2173 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2175 (for shiftrotate (lrotate rrotate lshift rshift)
2177 (shiftrotate @0 integer_zerop)
2180 (shiftrotate integer_zerop@0 @1)
2182 /* Prefer vector1 << scalar to vector1 << vector2
2183 if vector2 is uniform. */
2184 (for vec (VECTOR_CST CONSTRUCTOR)
2186 (shiftrotate @0 vec@1)
2187 (with { tree tem = uniform_vector_p (@1); }
2189 (shiftrotate @0 { tem; }))))))
2191 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2192 Y is 0. Similarly for X >> Y. */
2194 (for shift (lshift rshift)
2196 (shift @0 SSA_NAME@1)
2197 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2199 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2200 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2202 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2206 /* Rewrite an LROTATE_EXPR by a constant into an
2207 RROTATE_EXPR by a new constant. */
2209 (lrotate @0 INTEGER_CST@1)
2210 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2211 build_int_cst (TREE_TYPE (@1),
2212 element_precision (type)), @1); }))
2214 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2215 (for op (lrotate rrotate rshift lshift)
2217 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2218 (with { unsigned int prec = element_precision (type); }
2219 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2220 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2221 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2222 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2223 (with { unsigned int low = (tree_to_uhwi (@1)
2224 + tree_to_uhwi (@2)); }
2225 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2226 being well defined. */
2228 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2229 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2230 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2231 { build_zero_cst (type); }
2232 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2233 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2236 /* ((1 << A) & 1) != 0 -> A == 0
2237 ((1 << A) & 1) == 0 -> A != 0 */
2241 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2242 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2244 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2245 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2249 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2250 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2252 || (!integer_zerop (@2)
2253 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2254 { constant_boolean_node (cmp == NE_EXPR, type); }
2255 (if (!integer_zerop (@2)
2256 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2257 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2259 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2260 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2261 if the new mask might be further optimized. */
2262 (for shift (lshift rshift)
2264 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2266 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2267 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2268 && tree_fits_uhwi_p (@1)
2269 && tree_to_uhwi (@1) > 0
2270 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2273 unsigned int shiftc = tree_to_uhwi (@1);
2274 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2275 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2276 tree shift_type = TREE_TYPE (@3);
2279 if (shift == LSHIFT_EXPR)
2280 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2281 else if (shift == RSHIFT_EXPR
2282 && type_has_mode_precision_p (shift_type))
2284 prec = TYPE_PRECISION (TREE_TYPE (@3));
2286 /* See if more bits can be proven as zero because of
2289 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2291 tree inner_type = TREE_TYPE (@0);
2292 if (type_has_mode_precision_p (inner_type)
2293 && TYPE_PRECISION (inner_type) < prec)
2295 prec = TYPE_PRECISION (inner_type);
2296 /* See if we can shorten the right shift. */
2298 shift_type = inner_type;
2299 /* Otherwise X >> C1 is all zeros, so we'll optimize
2300 it into (X, 0) later on by making sure zerobits
2304 zerobits = HOST_WIDE_INT_M1U;
2307 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2308 zerobits <<= prec - shiftc;
2310 /* For arithmetic shift if sign bit could be set, zerobits
2311 can contain actually sign bits, so no transformation is
2312 possible, unless MASK masks them all away. In that
2313 case the shift needs to be converted into logical shift. */
2314 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2315 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2317 if ((mask & zerobits) == 0)
2318 shift_type = unsigned_type_for (TREE_TYPE (@3));
2324 /* ((X << 16) & 0xff00) is (X, 0). */
2325 (if ((mask & zerobits) == mask)
2326 { build_int_cst (type, 0); }
2327 (with { newmask = mask | zerobits; }
2328 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2331 /* Only do the transformation if NEWMASK is some integer
2333 for (prec = BITS_PER_UNIT;
2334 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2335 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2338 (if (prec < HOST_BITS_PER_WIDE_INT
2339 || newmask == HOST_WIDE_INT_M1U)
2341 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2342 (if (!tree_int_cst_equal (newmaskt, @2))
2343 (if (shift_type != TREE_TYPE (@3))
2344 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2345 (bit_and @4 { newmaskt; })))))))))))))
2347 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2348 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2349 (for shift (lshift rshift)
2350 (for bit_op (bit_and bit_xor bit_ior)
2352 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2353 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2354 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2355 (bit_op (shift (convert @0) @1) { mask; }))))))
2357 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2359 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2360 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2361 && (element_precision (TREE_TYPE (@0))
2362 <= element_precision (TREE_TYPE (@1))
2363 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2365 { tree shift_type = TREE_TYPE (@0); }
2366 (convert (rshift (convert:shift_type @1) @2)))))
2368 /* ~(~X >>r Y) -> X >>r Y
2369 ~(~X <<r Y) -> X <<r Y */
2370 (for rotate (lrotate rrotate)
2372 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2373 (if ((element_precision (TREE_TYPE (@0))
2374 <= element_precision (TREE_TYPE (@1))
2375 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2376 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2377 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2379 { tree rotate_type = TREE_TYPE (@0); }
2380 (convert (rotate (convert:rotate_type @1) @2))))))
2382 /* Simplifications of conversions. */
2384 /* Basic strip-useless-type-conversions / strip_nops. */
2385 (for cvt (convert view_convert float fix_trunc)
2388 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2389 || (GENERIC && type == TREE_TYPE (@0)))
2392 /* Contract view-conversions. */
2394 (view_convert (view_convert @0))
2397 /* For integral conversions with the same precision or pointer
2398 conversions use a NOP_EXPR instead. */
2401 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2402 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2403 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2406 /* Strip inner integral conversions that do not change precision or size, or
2407 zero-extend while keeping the same size (for bool-to-char). */
2409 (view_convert (convert@0 @1))
2410 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2411 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2412 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2413 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2414 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2415 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2418 /* Re-association barriers around constants and other re-association
2419 barriers can be removed. */
2421 (paren CONSTANT_CLASS_P@0)
2424 (paren (paren@1 @0))
2427 /* Handle cases of two conversions in a row. */
2428 (for ocvt (convert float fix_trunc)
2429 (for icvt (convert float)
2434 tree inside_type = TREE_TYPE (@0);
2435 tree inter_type = TREE_TYPE (@1);
2436 int inside_int = INTEGRAL_TYPE_P (inside_type);
2437 int inside_ptr = POINTER_TYPE_P (inside_type);
2438 int inside_float = FLOAT_TYPE_P (inside_type);
2439 int inside_vec = VECTOR_TYPE_P (inside_type);
2440 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2441 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2442 int inter_int = INTEGRAL_TYPE_P (inter_type);
2443 int inter_ptr = POINTER_TYPE_P (inter_type);
2444 int inter_float = FLOAT_TYPE_P (inter_type);
2445 int inter_vec = VECTOR_TYPE_P (inter_type);
2446 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2447 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2448 int final_int = INTEGRAL_TYPE_P (type);
2449 int final_ptr = POINTER_TYPE_P (type);
2450 int final_float = FLOAT_TYPE_P (type);
2451 int final_vec = VECTOR_TYPE_P (type);
2452 unsigned int final_prec = TYPE_PRECISION (type);
2453 int final_unsignedp = TYPE_UNSIGNED (type);
2456 /* In addition to the cases of two conversions in a row
2457 handled below, if we are converting something to its own
2458 type via an object of identical or wider precision, neither
2459 conversion is needed. */
2460 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2462 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2463 && (((inter_int || inter_ptr) && final_int)
2464 || (inter_float && final_float))
2465 && inter_prec >= final_prec)
2468 /* Likewise, if the intermediate and initial types are either both
2469 float or both integer, we don't need the middle conversion if the
2470 former is wider than the latter and doesn't change the signedness
2471 (for integers). Avoid this if the final type is a pointer since
2472 then we sometimes need the middle conversion. */
2473 (if (((inter_int && inside_int) || (inter_float && inside_float))
2474 && (final_int || final_float)
2475 && inter_prec >= inside_prec
2476 && (inter_float || inter_unsignedp == inside_unsignedp))
2479 /* If we have a sign-extension of a zero-extended value, we can
2480 replace that by a single zero-extension. Likewise if the
2481 final conversion does not change precision we can drop the
2482 intermediate conversion. */
2483 (if (inside_int && inter_int && final_int
2484 && ((inside_prec < inter_prec && inter_prec < final_prec
2485 && inside_unsignedp && !inter_unsignedp)
2486 || final_prec == inter_prec))
2489 /* Two conversions in a row are not needed unless:
2490 - some conversion is floating-point (overstrict for now), or
2491 - some conversion is a vector (overstrict for now), or
2492 - the intermediate type is narrower than both initial and
2494 - the intermediate type and innermost type differ in signedness,
2495 and the outermost type is wider than the intermediate, or
2496 - the initial type is a pointer type and the precisions of the
2497 intermediate and final types differ, or
2498 - the final type is a pointer type and the precisions of the
2499 initial and intermediate types differ. */
2500 (if (! inside_float && ! inter_float && ! final_float
2501 && ! inside_vec && ! inter_vec && ! final_vec
2502 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2503 && ! (inside_int && inter_int
2504 && inter_unsignedp != inside_unsignedp
2505 && inter_prec < final_prec)
2506 && ((inter_unsignedp && inter_prec > inside_prec)
2507 == (final_unsignedp && final_prec > inter_prec))
2508 && ! (inside_ptr && inter_prec != final_prec)
2509 && ! (final_ptr && inside_prec != inter_prec))
2512 /* A truncation to an unsigned type (a zero-extension) should be
2513 canonicalized as bitwise and of a mask. */
2514 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2515 && final_int && inter_int && inside_int
2516 && final_prec == inside_prec
2517 && final_prec > inter_prec
2519 (convert (bit_and @0 { wide_int_to_tree
2521 wi::mask (inter_prec, false,
2522 TYPE_PRECISION (inside_type))); })))
2524 /* If we are converting an integer to a floating-point that can
2525 represent it exactly and back to an integer, we can skip the
2526 floating-point conversion. */
2527 (if (GIMPLE /* PR66211 */
2528 && inside_int && inter_float && final_int &&
2529 (unsigned) significand_size (TYPE_MODE (inter_type))
2530 >= inside_prec - !inside_unsignedp)
2533 /* If we have a narrowing conversion to an integral type that is fed by a
2534 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2535 masks off bits outside the final type (and nothing else). */
2537 (convert (bit_and @0 INTEGER_CST@1))
2538 (if (INTEGRAL_TYPE_P (type)
2539 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2540 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2541 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2542 TYPE_PRECISION (type)), 0))
2546 /* (X /[ex] A) * A -> X. */
2548 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2551 /* Canonicalization of binary operations. */
2553 /* Convert X + -C into X - C. */
2555 (plus @0 REAL_CST@1)
2556 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2557 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2558 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2559 (minus @0 { tem; })))))
2561 /* Convert x+x into x*2. */
2564 (if (SCALAR_FLOAT_TYPE_P (type))
2565 (mult @0 { build_real (type, dconst2); })
2566 (if (INTEGRAL_TYPE_P (type))
2567 (mult @0 { build_int_cst (type, 2); }))))
2571 (minus integer_zerop @1)
2574 (pointer_diff integer_zerop @1)
2575 (negate (convert @1)))
2577 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2578 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2579 (-ARG1 + ARG0) reduces to -ARG1. */
2581 (minus real_zerop@0 @1)
2582 (if (fold_real_zero_addition_p (type, @0, 0))
2585 /* Transform x * -1 into -x. */
2587 (mult @0 integer_minus_onep)
2590 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2591 signed overflow for CST != 0 && CST != -1. */
2593 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2594 (if (TREE_CODE (@2) != INTEGER_CST
2596 && !integer_zerop (@1) && !integer_minus_onep (@1))
2597 (mult (mult @0 @2) @1)))
2599 /* True if we can easily extract the real and imaginary parts of a complex
2601 (match compositional_complex
2602 (convert? (complex @0 @1)))
2604 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2606 (complex (realpart @0) (imagpart @0))
2609 (realpart (complex @0 @1))
2612 (imagpart (complex @0 @1))
2615 /* Sometimes we only care about half of a complex expression. */
2617 (realpart (convert?:s (conj:s @0)))
2618 (convert (realpart @0)))
2620 (imagpart (convert?:s (conj:s @0)))
2621 (convert (negate (imagpart @0))))
2622 (for part (realpart imagpart)
2623 (for op (plus minus)
2625 (part (convert?:s@2 (op:s @0 @1)))
2626 (convert (op (part @0) (part @1))))))
2628 (realpart (convert?:s (CEXPI:s @0)))
2631 (imagpart (convert?:s (CEXPI:s @0)))
2634 /* conj(conj(x)) -> x */
2636 (conj (convert? (conj @0)))
2637 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2640 /* conj({x,y}) -> {x,-y} */
2642 (conj (convert?:s (complex:s @0 @1)))
2643 (with { tree itype = TREE_TYPE (type); }
2644 (complex (convert:itype @0) (negate (convert:itype @1)))))
2646 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2647 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2652 (bswap (bit_not (bswap @0)))
2654 (for bitop (bit_xor bit_ior bit_and)
2656 (bswap (bitop:c (bswap @0) @1))
2657 (bitop @0 (bswap @1)))))
2660 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2662 /* Simplify constant conditions.
2663 Only optimize constant conditions when the selected branch
2664 has the same type as the COND_EXPR. This avoids optimizing
2665 away "c ? x : throw", where the throw has a void type.
2666 Note that we cannot throw away the fold-const.c variant nor
2667 this one as we depend on doing this transform before possibly
2668 A ? B : B -> B triggers and the fold-const.c one can optimize
2669 0 ? A : B to B even if A has side-effects. Something
2670 genmatch cannot handle. */
2672 (cond INTEGER_CST@0 @1 @2)
2673 (if (integer_zerop (@0))
2674 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2676 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2679 (vec_cond VECTOR_CST@0 @1 @2)
2680 (if (integer_all_onesp (@0))
2682 (if (integer_zerop (@0))
2685 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2687 /* This pattern implements two kinds simplification:
2690 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2691 1) Conversions are type widening from smaller type.
2692 2) Const c1 equals to c2 after canonicalizing comparison.
2693 3) Comparison has tree code LT, LE, GT or GE.
2694 This specific pattern is needed when (cmp (convert x) c) may not
2695 be simplified by comparison patterns because of multiple uses of
2696 x. It also makes sense here because simplifying across multiple
2697 referred var is always benefitial for complicated cases.
2700 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2701 (for cmp (lt le gt ge eq)
2703 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2706 tree from_type = TREE_TYPE (@1);
2707 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2708 enum tree_code code = ERROR_MARK;
2710 if (INTEGRAL_TYPE_P (from_type)
2711 && int_fits_type_p (@2, from_type)
2712 && (types_match (c1_type, from_type)
2713 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2714 && (TYPE_UNSIGNED (from_type)
2715 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2716 && (types_match (c2_type, from_type)
2717 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2718 && (TYPE_UNSIGNED (from_type)
2719 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2723 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2725 /* X <= Y - 1 equals to X < Y. */
2728 /* X > Y - 1 equals to X >= Y. */
2732 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2734 /* X < Y + 1 equals to X <= Y. */
2737 /* X >= Y + 1 equals to X > Y. */
2741 if (code != ERROR_MARK
2742 || wi::to_widest (@2) == wi::to_widest (@3))
2744 if (cmp == LT_EXPR || cmp == LE_EXPR)
2746 if (cmp == GT_EXPR || cmp == GE_EXPR)
2750 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2751 else if (int_fits_type_p (@3, from_type))
2755 (if (code == MAX_EXPR)
2756 (convert (max @1 (convert @2)))
2757 (if (code == MIN_EXPR)
2758 (convert (min @1 (convert @2)))
2759 (if (code == EQ_EXPR)
2760 (convert (cond (eq @1 (convert @3))
2761 (convert:from_type @3) (convert:from_type @2)))))))))
2763 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2765 1) OP is PLUS or MINUS.
2766 2) CMP is LT, LE, GT or GE.
2767 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2769 This pattern also handles special cases like:
2771 A) Operand x is a unsigned to signed type conversion and c1 is
2772 integer zero. In this case,
2773 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2774 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2775 B) Const c1 may not equal to (C3 op' C2). In this case we also
2776 check equality for (c1+1) and (c1-1) by adjusting comparison
2779 TODO: Though signed type is handled by this pattern, it cannot be
2780 simplified at the moment because C standard requires additional
2781 type promotion. In order to match&simplify it here, the IR needs
2782 to be cleaned up by other optimizers, i.e, VRP. */
2783 (for op (plus minus)
2784 (for cmp (lt le gt ge)
2786 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2787 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2788 (if (types_match (from_type, to_type)
2789 /* Check if it is special case A). */
2790 || (TYPE_UNSIGNED (from_type)
2791 && !TYPE_UNSIGNED (to_type)
2792 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2793 && integer_zerop (@1)
2794 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2797 bool overflow = false;
2798 enum tree_code code, cmp_code = cmp;
2800 wide_int c1 = wi::to_wide (@1);
2801 wide_int c2 = wi::to_wide (@2);
2802 wide_int c3 = wi::to_wide (@3);
2803 signop sgn = TYPE_SIGN (from_type);
2805 /* Handle special case A), given x of unsigned type:
2806 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2807 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2808 if (!types_match (from_type, to_type))
2810 if (cmp_code == LT_EXPR)
2812 if (cmp_code == GE_EXPR)
2814 c1 = wi::max_value (to_type);
2816 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2817 compute (c3 op' c2) and check if it equals to c1 with op' being
2818 the inverted operator of op. Make sure overflow doesn't happen
2819 if it is undefined. */
2820 if (op == PLUS_EXPR)
2821 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2823 real_c1 = wi::add (c3, c2, sgn, &overflow);
2826 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2828 /* Check if c1 equals to real_c1. Boundary condition is handled
2829 by adjusting comparison operation if necessary. */
2830 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2833 /* X <= Y - 1 equals to X < Y. */
2834 if (cmp_code == LE_EXPR)
2836 /* X > Y - 1 equals to X >= Y. */
2837 if (cmp_code == GT_EXPR)
2840 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2843 /* X < Y + 1 equals to X <= Y. */
2844 if (cmp_code == LT_EXPR)
2846 /* X >= Y + 1 equals to X > Y. */
2847 if (cmp_code == GE_EXPR)
2850 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2852 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2854 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2859 (if (code == MAX_EXPR)
2860 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2861 { wide_int_to_tree (from_type, c2); })
2862 (if (code == MIN_EXPR)
2863 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2864 { wide_int_to_tree (from_type, c2); })))))))))
2866 (for cnd (cond vec_cond)
2867 /* A ? B : (A ? X : C) -> A ? B : C. */
2869 (cnd @0 (cnd @0 @1 @2) @3)
2872 (cnd @0 @1 (cnd @0 @2 @3))
2874 /* A ? B : (!A ? C : X) -> A ? B : C. */
2875 /* ??? This matches embedded conditions open-coded because genmatch
2876 would generate matching code for conditions in separate stmts only.
2877 The following is still important to merge then and else arm cases
2878 from if-conversion. */
2880 (cnd @0 @1 (cnd @2 @3 @4))
2881 (if (COMPARISON_CLASS_P (@0)
2882 && COMPARISON_CLASS_P (@2)
2883 && invert_tree_comparison
2884 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2885 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2886 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2889 (cnd @0 (cnd @1 @2 @3) @4)
2890 (if (COMPARISON_CLASS_P (@0)
2891 && COMPARISON_CLASS_P (@1)
2892 && invert_tree_comparison
2893 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2894 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2895 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2898 /* A ? B : B -> B. */
2903 /* !A ? B : C -> A ? C : B. */
2905 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2908 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2909 return all -1 or all 0 results. */
2910 /* ??? We could instead convert all instances of the vec_cond to negate,
2911 but that isn't necessarily a win on its own. */
2913 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2914 (if (VECTOR_TYPE_P (type)
2915 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2916 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2917 && (TYPE_MODE (TREE_TYPE (type))
2918 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2919 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2921 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2923 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2924 (if (VECTOR_TYPE_P (type)
2925 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2926 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2927 && (TYPE_MODE (TREE_TYPE (type))
2928 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2929 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2932 /* Simplifications of comparisons. */
2934 /* See if we can reduce the magnitude of a constant involved in a
2935 comparison by changing the comparison code. This is a canonicalization
2936 formerly done by maybe_canonicalize_comparison_1. */
2940 (cmp @0 INTEGER_CST@1)
2941 (if (tree_int_cst_sgn (@1) == -1)
2942 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
2946 (cmp @0 INTEGER_CST@1)
2947 (if (tree_int_cst_sgn (@1) == 1)
2948 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
2951 /* We can simplify a logical negation of a comparison to the
2952 inverted comparison. As we cannot compute an expression
2953 operator using invert_tree_comparison we have to simulate
2954 that with expression code iteration. */
2955 (for cmp (tcc_comparison)
2956 icmp (inverted_tcc_comparison)
2957 ncmp (inverted_tcc_comparison_with_nans)
2958 /* Ideally we'd like to combine the following two patterns
2959 and handle some more cases by using
2960 (logical_inverted_value (cmp @0 @1))
2961 here but for that genmatch would need to "inline" that.
2962 For now implement what forward_propagate_comparison did. */
2964 (bit_not (cmp @0 @1))
2965 (if (VECTOR_TYPE_P (type)
2966 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2967 /* Comparison inversion may be impossible for trapping math,
2968 invert_tree_comparison will tell us. But we can't use
2969 a computed operator in the replacement tree thus we have
2970 to play the trick below. */
2971 (with { enum tree_code ic = invert_tree_comparison
2972 (cmp, HONOR_NANS (@0)); }
2978 (bit_xor (cmp @0 @1) integer_truep)
2979 (with { enum tree_code ic = invert_tree_comparison
2980 (cmp, HONOR_NANS (@0)); }
2986 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2987 ??? The transformation is valid for the other operators if overflow
2988 is undefined for the type, but performing it here badly interacts
2989 with the transformation in fold_cond_expr_with_comparison which
2990 attempts to synthetize ABS_EXPR. */
2992 (for sub (minus pointer_diff)
2994 (cmp (sub@2 @0 @1) integer_zerop)
2995 (if (single_use (@2))
2998 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2999 signed arithmetic case. That form is created by the compiler
3000 often enough for folding it to be of value. One example is in
3001 computing loop trip counts after Operator Strength Reduction. */
3002 (for cmp (simple_comparison)
3003 scmp (swapped_simple_comparison)
3005 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3006 /* Handle unfolded multiplication by zero. */
3007 (if (integer_zerop (@1))
3009 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3010 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3012 /* If @1 is negative we swap the sense of the comparison. */
3013 (if (tree_int_cst_sgn (@1) < 0)
3017 /* Simplify comparison of something with itself. For IEEE
3018 floating-point, we can only do some of these simplifications. */
3022 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3023 || ! HONOR_NANS (@0))
3024 { constant_boolean_node (true, type); }
3025 (if (cmp != EQ_EXPR)
3031 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3032 || ! HONOR_NANS (@0))
3033 { constant_boolean_node (false, type); })))
3034 (for cmp (unle unge uneq)
3037 { constant_boolean_node (true, type); }))
3038 (for cmp (unlt ungt)
3044 (if (!flag_trapping_math)
3045 { constant_boolean_node (false, type); }))
3047 /* Fold ~X op ~Y as Y op X. */
3048 (for cmp (simple_comparison)
3050 (cmp (bit_not@2 @0) (bit_not@3 @1))
3051 (if (single_use (@2) && single_use (@3))
3054 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3055 (for cmp (simple_comparison)
3056 scmp (swapped_simple_comparison)
3058 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3059 (if (single_use (@2)
3060 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3061 (scmp @0 (bit_not @1)))))
3063 (for cmp (simple_comparison)
3064 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3066 (cmp (convert@2 @0) (convert? @1))
3067 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3068 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3069 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3070 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3071 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3074 tree type1 = TREE_TYPE (@1);
3075 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3077 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3078 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3079 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3080 type1 = float_type_node;
3081 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3082 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3083 type1 = double_type_node;
3086 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3087 ? TREE_TYPE (@0) : type1);
3089 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3090 (cmp (convert:newtype @0) (convert:newtype @1))))))
3094 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3096 /* a CMP (-0) -> a CMP 0 */
3097 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3098 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3099 /* x != NaN is always true, other ops are always false. */
3100 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3101 && ! HONOR_SNANS (@1))
3102 { constant_boolean_node (cmp == NE_EXPR, type); })
3103 /* Fold comparisons against infinity. */
3104 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3105 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3108 REAL_VALUE_TYPE max;
3109 enum tree_code code = cmp;
3110 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3112 code = swap_tree_comparison (code);
3115 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3116 (if (code == GT_EXPR
3117 && !(HONOR_NANS (@0) && flag_trapping_math))
3118 { constant_boolean_node (false, type); })
3119 (if (code == LE_EXPR)
3120 /* x <= +Inf is always true, if we don't care about NaNs. */
3121 (if (! HONOR_NANS (@0))
3122 { constant_boolean_node (true, type); }
3123 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3124 an "invalid" exception. */
3125 (if (!flag_trapping_math)
3127 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3128 for == this introduces an exception for x a NaN. */
3129 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3131 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3133 (lt @0 { build_real (TREE_TYPE (@0), max); })
3134 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3135 /* x < +Inf is always equal to x <= DBL_MAX. */
3136 (if (code == LT_EXPR)
3137 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3139 (ge @0 { build_real (TREE_TYPE (@0), max); })
3140 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3141 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3142 an exception for x a NaN so use an unordered comparison. */
3143 (if (code == NE_EXPR)
3144 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3145 (if (! HONOR_NANS (@0))
3147 (ge @0 { build_real (TREE_TYPE (@0), max); })
3148 (le @0 { build_real (TREE_TYPE (@0), max); }))
3150 (unge @0 { build_real (TREE_TYPE (@0), max); })
3151 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3153 /* If this is a comparison of a real constant with a PLUS_EXPR
3154 or a MINUS_EXPR of a real constant, we can convert it into a
3155 comparison with a revised real constant as long as no overflow
3156 occurs when unsafe_math_optimizations are enabled. */
3157 (if (flag_unsafe_math_optimizations)
3158 (for op (plus minus)
3160 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3163 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3164 TREE_TYPE (@1), @2, @1);
3166 (if (tem && !TREE_OVERFLOW (tem))
3167 (cmp @0 { tem; }))))))
3169 /* Likewise, we can simplify a comparison of a real constant with
3170 a MINUS_EXPR whose first operand is also a real constant, i.e.
3171 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3172 floating-point types only if -fassociative-math is set. */
3173 (if (flag_associative_math)
3175 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3176 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3177 (if (tem && !TREE_OVERFLOW (tem))
3178 (cmp { tem; } @1)))))
3180 /* Fold comparisons against built-in math functions. */
3181 (if (flag_unsafe_math_optimizations
3182 && ! flag_errno_math)
3185 (cmp (sq @0) REAL_CST@1)
3187 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3189 /* sqrt(x) < y is always false, if y is negative. */
3190 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3191 { constant_boolean_node (false, type); })
3192 /* sqrt(x) > y is always true, if y is negative and we
3193 don't care about NaNs, i.e. negative values of x. */
3194 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3195 { constant_boolean_node (true, type); })
3196 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3197 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3198 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3200 /* sqrt(x) < 0 is always false. */
3201 (if (cmp == LT_EXPR)
3202 { constant_boolean_node (false, type); })
3203 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3204 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3205 { constant_boolean_node (true, type); })
3206 /* sqrt(x) <= 0 -> x == 0. */
3207 (if (cmp == LE_EXPR)
3209 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3210 == or !=. In the last case:
3212 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3214 if x is negative or NaN. Due to -funsafe-math-optimizations,
3215 the results for other x follow from natural arithmetic. */
3217 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3221 real_arithmetic (&c2, MULT_EXPR,
3222 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3223 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3225 (if (REAL_VALUE_ISINF (c2))
3226 /* sqrt(x) > y is x == +Inf, when y is very large. */
3227 (if (HONOR_INFINITIES (@0))
3228 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3229 { constant_boolean_node (false, type); })
3230 /* sqrt(x) > c is the same as x > c*c. */
3231 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3232 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3236 real_arithmetic (&c2, MULT_EXPR,
3237 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3238 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3240 (if (REAL_VALUE_ISINF (c2))
3242 /* sqrt(x) < y is always true, when y is a very large
3243 value and we don't care about NaNs or Infinities. */
3244 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3245 { constant_boolean_node (true, type); })
3246 /* sqrt(x) < y is x != +Inf when y is very large and we
3247 don't care about NaNs. */
3248 (if (! HONOR_NANS (@0))
3249 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3250 /* sqrt(x) < y is x >= 0 when y is very large and we
3251 don't care about Infinities. */
3252 (if (! HONOR_INFINITIES (@0))
3253 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3254 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3257 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3258 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3259 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3260 (if (! HONOR_NANS (@0))
3261 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3262 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3265 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3266 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3267 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3269 (cmp (sq @0) (sq @1))
3270 (if (! HONOR_NANS (@0))
3273 /* Optimize various special cases of (FTYPE) N CMP CST. */
3274 (for cmp (lt le eq ne ge gt)
3275 icmp (le le eq ne ge ge)
3277 (cmp (float @0) REAL_CST@1)
3278 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3279 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3282 tree itype = TREE_TYPE (@0);
3283 signop isign = TYPE_SIGN (itype);
3284 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3285 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3286 /* Be careful to preserve any potential exceptions due to
3287 NaNs. qNaNs are ok in == or != context.
3288 TODO: relax under -fno-trapping-math or
3289 -fno-signaling-nans. */
3291 = real_isnan (cst) && (cst->signalling
3292 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3293 /* INT?_MIN is power-of-two so it takes
3294 only one mantissa bit. */
3295 bool signed_p = isign == SIGNED;
3296 bool itype_fits_ftype_p
3297 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3299 /* TODO: allow non-fitting itype and SNaNs when
3300 -fno-trapping-math. */
3301 (if (itype_fits_ftype_p && ! exception_p)
3304 REAL_VALUE_TYPE imin, imax;
3305 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3306 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3308 REAL_VALUE_TYPE icst;
3309 if (cmp == GT_EXPR || cmp == GE_EXPR)
3310 real_ceil (&icst, fmt, cst);
3311 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3312 real_floor (&icst, fmt, cst);
3314 real_trunc (&icst, fmt, cst);
3316 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3318 bool overflow_p = false;
3320 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3323 /* Optimize cases when CST is outside of ITYPE's range. */
3324 (if (real_compare (LT_EXPR, cst, &imin))
3325 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3327 (if (real_compare (GT_EXPR, cst, &imax))
3328 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3330 /* Remove cast if CST is an integer representable by ITYPE. */
3332 (cmp @0 { gcc_assert (!overflow_p);
3333 wide_int_to_tree (itype, icst_val); })
3335 /* When CST is fractional, optimize
3336 (FTYPE) N == CST -> 0
3337 (FTYPE) N != CST -> 1. */
3338 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3339 { constant_boolean_node (cmp == NE_EXPR, type); })
3340 /* Otherwise replace with sensible integer constant. */
3343 gcc_checking_assert (!overflow_p);
3345 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3347 /* Fold A /[ex] B CMP C to A CMP B * C. */
3350 (cmp (exact_div @0 @1) INTEGER_CST@2)
3351 (if (!integer_zerop (@1))
3352 (if (wi::to_wide (@2) == 0)
3354 (if (TREE_CODE (@1) == INTEGER_CST)
3358 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3359 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3362 { constant_boolean_node (cmp == NE_EXPR, type); }
3363 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3364 (for cmp (lt le gt ge)
3366 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3367 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3371 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3372 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3375 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3376 TYPE_SIGN (TREE_TYPE (@2)))
3377 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3378 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3380 /* Unordered tests if either argument is a NaN. */
3382 (bit_ior (unordered @0 @0) (unordered @1 @1))
3383 (if (types_match (@0, @1))
3386 (bit_and (ordered @0 @0) (ordered @1 @1))
3387 (if (types_match (@0, @1))
3390 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3393 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3396 /* Simple range test simplifications. */
3397 /* A < B || A >= B -> true. */
3398 (for test1 (lt le le le ne ge)
3399 test2 (ge gt ge ne eq ne)
3401 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3402 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3403 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3404 { constant_boolean_node (true, type); })))
3405 /* A < B && A >= B -> false. */
3406 (for test1 (lt lt lt le ne eq)
3407 test2 (ge gt eq gt eq gt)
3409 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3410 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3411 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3412 { constant_boolean_node (false, type); })))
3414 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3415 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3417 Note that comparisons
3418 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3419 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3420 will be canonicalized to above so there's no need to
3427 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3428 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3431 tree ty = TREE_TYPE (@0);
3432 unsigned prec = TYPE_PRECISION (ty);
3433 wide_int mask = wi::to_wide (@2, prec);
3434 wide_int rhs = wi::to_wide (@3, prec);
3435 signop sgn = TYPE_SIGN (ty);
3437 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3438 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3439 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3440 { build_zero_cst (ty); }))))))
3442 /* -A CMP -B -> B CMP A. */
3443 (for cmp (tcc_comparison)
3444 scmp (swapped_tcc_comparison)
3446 (cmp (negate @0) (negate @1))
3447 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3448 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3449 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3452 (cmp (negate @0) CONSTANT_CLASS_P@1)
3453 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3454 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3455 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3456 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3457 (if (tem && !TREE_OVERFLOW (tem))
3458 (scmp @0 { tem; }))))))
3460 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3463 (op (abs @0) zerop@1)
3466 /* From fold_sign_changed_comparison and fold_widened_comparison.
3467 FIXME: the lack of symmetry is disturbing. */
3468 (for cmp (simple_comparison)
3470 (cmp (convert@0 @00) (convert?@1 @10))
3471 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3472 /* Disable this optimization if we're casting a function pointer
3473 type on targets that require function pointer canonicalization. */
3474 && !(targetm.have_canonicalize_funcptr_for_compare ()
3475 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3476 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3478 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3479 && (TREE_CODE (@10) == INTEGER_CST
3481 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3484 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3485 /* ??? The special-casing of INTEGER_CST conversion was in the original
3486 code and here to avoid a spurious overflow flag on the resulting
3487 constant which fold_convert produces. */
3488 (if (TREE_CODE (@1) == INTEGER_CST)
3489 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3490 TREE_OVERFLOW (@1)); })
3491 (cmp @00 (convert @1)))
3493 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3494 /* If possible, express the comparison in the shorter mode. */
3495 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3496 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3497 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3498 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3499 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3500 || ((TYPE_PRECISION (TREE_TYPE (@00))
3501 >= TYPE_PRECISION (TREE_TYPE (@10)))
3502 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3503 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3504 || (TREE_CODE (@10) == INTEGER_CST
3505 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3506 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3507 (cmp @00 (convert @10))
3508 (if (TREE_CODE (@10) == INTEGER_CST
3509 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3510 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3513 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3514 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3515 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3516 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3518 (if (above || below)
3519 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3520 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3521 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3522 { constant_boolean_node (above ? true : false, type); }
3523 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3524 { constant_boolean_node (above ? false : true, type); }))))))))))))
3527 /* A local variable can never be pointed to by
3528 the default SSA name of an incoming parameter.
3529 SSA names are canonicalized to 2nd place. */
3531 (cmp addr@0 SSA_NAME@1)
3532 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3533 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3534 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3535 (if (TREE_CODE (base) == VAR_DECL
3536 && auto_var_in_fn_p (base, current_function_decl))
3537 (if (cmp == NE_EXPR)
3538 { constant_boolean_node (true, type); }
3539 { constant_boolean_node (false, type); }))))))
3541 /* Equality compare simplifications from fold_binary */
3544 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3545 Similarly for NE_EXPR. */
3547 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3548 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3549 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3550 { constant_boolean_node (cmp == NE_EXPR, type); }))
3552 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3554 (cmp (bit_xor @0 @1) integer_zerop)
3557 /* (X ^ Y) == Y becomes X == 0.
3558 Likewise (X ^ Y) == X becomes Y == 0. */
3560 (cmp:c (bit_xor:c @0 @1) @0)
3561 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3563 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3565 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3566 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3567 (cmp @0 (bit_xor @1 (convert @2)))))
3570 (cmp (convert? addr@0) integer_zerop)
3571 (if (tree_single_nonzero_warnv_p (@0, NULL))
3572 { constant_boolean_node (cmp == NE_EXPR, type); })))
3574 /* If we have (A & C) == C where C is a power of 2, convert this into
3575 (A & C) != 0. Similarly for NE_EXPR. */
3579 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3580 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3582 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3583 convert this into a shift followed by ANDing with D. */
3586 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3587 INTEGER_CST@2 integer_zerop)
3588 (if (integer_pow2p (@2))
3590 int shift = (wi::exact_log2 (wi::to_wide (@2))
3591 - wi::exact_log2 (wi::to_wide (@1)));
3595 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3597 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3600 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3601 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3605 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3606 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3607 && type_has_mode_precision_p (TREE_TYPE (@0))
3608 && element_precision (@2) >= element_precision (@0)
3609 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3610 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3611 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3613 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3614 this into a right shift or sign extension followed by ANDing with C. */
3617 (lt @0 integer_zerop)
3618 INTEGER_CST@1 integer_zerop)
3619 (if (integer_pow2p (@1)
3620 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3622 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3626 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3628 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3629 sign extension followed by AND with C will achieve the effect. */
3630 (bit_and (convert @0) @1)))))
3632 /* When the addresses are not directly of decls compare base and offset.
3633 This implements some remaining parts of fold_comparison address
3634 comparisons but still no complete part of it. Still it is good
3635 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3636 (for cmp (simple_comparison)
3638 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3641 poly_int64 off0, off1;
3642 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3643 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3644 if (base0 && TREE_CODE (base0) == MEM_REF)
3646 off0 += mem_ref_offset (base0).force_shwi ();
3647 base0 = TREE_OPERAND (base0, 0);
3649 if (base1 && TREE_CODE (base1) == MEM_REF)
3651 off1 += mem_ref_offset (base1).force_shwi ();
3652 base1 = TREE_OPERAND (base1, 0);
3655 (if (base0 && base1)
3659 /* Punt in GENERIC on variables with value expressions;
3660 the value expressions might point to fields/elements
3661 of other vars etc. */
3663 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3664 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3666 else if (decl_in_symtab_p (base0)
3667 && decl_in_symtab_p (base1))
3668 equal = symtab_node::get_create (base0)
3669 ->equal_address_to (symtab_node::get_create (base1));
3670 else if ((DECL_P (base0)
3671 || TREE_CODE (base0) == SSA_NAME
3672 || TREE_CODE (base0) == STRING_CST)
3674 || TREE_CODE (base1) == SSA_NAME
3675 || TREE_CODE (base1) == STRING_CST))
3676 equal = (base0 == base1);
3679 && (cmp == EQ_EXPR || cmp == NE_EXPR
3680 /* If the offsets are equal we can ignore overflow. */
3681 || known_eq (off0, off1)
3682 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3683 /* Or if we compare using pointers to decls or strings. */
3684 || (POINTER_TYPE_P (TREE_TYPE (@2))
3685 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3687 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3688 { constant_boolean_node (known_eq (off0, off1), type); })
3689 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3690 { constant_boolean_node (known_ne (off0, off1), type); })
3691 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3692 { constant_boolean_node (known_lt (off0, off1), type); })
3693 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3694 { constant_boolean_node (known_le (off0, off1), type); })
3695 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3696 { constant_boolean_node (known_ge (off0, off1), type); })
3697 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3698 { constant_boolean_node (known_gt (off0, off1), type); }))
3700 && DECL_P (base0) && DECL_P (base1)
3701 /* If we compare this as integers require equal offset. */
3702 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3703 || known_eq (off0, off1)))
3705 (if (cmp == EQ_EXPR)
3706 { constant_boolean_node (false, type); })
3707 (if (cmp == NE_EXPR)
3708 { constant_boolean_node (true, type); })))))))))
3710 /* Simplify pointer equality compares using PTA. */
3714 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3715 && ptrs_compare_unequal (@0, @1))
3716 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3718 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3719 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3720 Disable the transform if either operand is pointer to function.
3721 This broke pr22051-2.c for arm where function pointer
3722 canonicalizaion is not wanted. */
3726 (cmp (convert @0) INTEGER_CST@1)
3727 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3728 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3729 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3730 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3731 && POINTER_TYPE_P (TREE_TYPE (@1))
3732 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3733 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3734 (cmp @0 (convert @1)))))
3736 /* Non-equality compare simplifications from fold_binary */
3737 (for cmp (lt gt le ge)
3738 /* Comparisons with the highest or lowest possible integer of
3739 the specified precision will have known values. */
3741 (cmp (convert?@2 @0) INTEGER_CST@1)
3742 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3743 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3746 tree arg1_type = TREE_TYPE (@1);
3747 unsigned int prec = TYPE_PRECISION (arg1_type);
3748 wide_int max = wi::max_value (arg1_type);
3749 wide_int signed_max = wi::max_value (prec, SIGNED);
3750 wide_int min = wi::min_value (arg1_type);
3753 (if (wi::to_wide (@1) == max)
3755 (if (cmp == GT_EXPR)
3756 { constant_boolean_node (false, type); })
3757 (if (cmp == GE_EXPR)
3759 (if (cmp == LE_EXPR)
3760 { constant_boolean_node (true, type); })
3761 (if (cmp == LT_EXPR)
3763 (if (wi::to_wide (@1) == min)
3765 (if (cmp == LT_EXPR)
3766 { constant_boolean_node (false, type); })
3767 (if (cmp == LE_EXPR)
3769 (if (cmp == GE_EXPR)
3770 { constant_boolean_node (true, type); })
3771 (if (cmp == GT_EXPR)
3773 (if (wi::to_wide (@1) == max - 1)
3775 (if (cmp == GT_EXPR)
3776 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3777 (if (cmp == LE_EXPR)
3778 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3779 (if (wi::to_wide (@1) == min + 1)
3781 (if (cmp == GE_EXPR)
3782 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3783 (if (cmp == LT_EXPR)
3784 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3785 (if (wi::to_wide (@1) == signed_max
3786 && TYPE_UNSIGNED (arg1_type)
3787 /* We will flip the signedness of the comparison operator
3788 associated with the mode of @1, so the sign bit is
3789 specified by this mode. Check that @1 is the signed
3790 max associated with this sign bit. */
3791 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3792 /* signed_type does not work on pointer types. */
3793 && INTEGRAL_TYPE_P (arg1_type))
3794 /* The following case also applies to X < signed_max+1
3795 and X >= signed_max+1 because previous transformations. */
3796 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3797 (with { tree st = signed_type_for (arg1_type); }
3798 (if (cmp == LE_EXPR)
3799 (ge (convert:st @0) { build_zero_cst (st); })
3800 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3802 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3803 /* If the second operand is NaN, the result is constant. */
3806 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3807 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3808 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3809 ? false : true, type); })))
3811 /* bool_var != 0 becomes bool_var. */
3813 (ne @0 integer_zerop)
3814 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3815 && types_match (type, TREE_TYPE (@0)))
3817 /* bool_var == 1 becomes bool_var. */
3819 (eq @0 integer_onep)
3820 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3821 && types_match (type, TREE_TYPE (@0)))
3824 bool_var == 0 becomes !bool_var or
3825 bool_var != 1 becomes !bool_var
3826 here because that only is good in assignment context as long
3827 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3828 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3829 clearly less optimal and which we'll transform again in forwprop. */
3831 /* When one argument is a constant, overflow detection can be simplified.
3832 Currently restricted to single use so as not to interfere too much with
3833 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3834 A + CST CMP A -> A CMP' CST' */
3835 (for cmp (lt le ge gt)
3838 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3839 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3840 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3841 && wi::to_wide (@1) != 0
3843 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3844 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3845 wi::max_value (prec, UNSIGNED)
3846 - wi::to_wide (@1)); })))))
3848 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3849 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3850 expects the long form, so we restrict the transformation for now. */
3853 (cmp:c (minus@2 @0 @1) @0)
3854 (if (single_use (@2)
3855 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3856 && TYPE_UNSIGNED (TREE_TYPE (@0))
3857 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3860 /* Testing for overflow is unnecessary if we already know the result. */
3865 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3866 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3867 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3868 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3873 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3874 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3875 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3876 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3878 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3879 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3883 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3884 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3885 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3886 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3888 /* Simplification of math builtins. These rules must all be optimizations
3889 as well as IL simplifications. If there is a possibility that the new
3890 form could be a pessimization, the rule should go in the canonicalization
3891 section that follows this one.
3893 Rules can generally go in this section if they satisfy one of
3896 - the rule describes an identity
3898 - the rule replaces calls with something as simple as addition or
3901 - the rule contains unary calls only and simplifies the surrounding
3902 arithmetic. (The idea here is to exclude non-unary calls in which
3903 one operand is constant and in which the call is known to be cheap
3904 when the operand has that value.) */
3906 (if (flag_unsafe_math_optimizations)
3907 /* Simplify sqrt(x) * sqrt(x) -> x. */
3909 (mult (SQRT_ALL@1 @0) @1)
3910 (if (!HONOR_SNANS (type))
3913 (for op (plus minus)
3914 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3918 (rdiv (op @0 @2) @1)))
3920 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3921 (for root (SQRT CBRT)
3923 (mult (root:s @0) (root:s @1))
3924 (root (mult @0 @1))))
3926 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3927 (for exps (EXP EXP2 EXP10 POW10)
3929 (mult (exps:s @0) (exps:s @1))
3930 (exps (plus @0 @1))))
3932 /* Simplify a/root(b/c) into a*root(c/b). */
3933 (for root (SQRT CBRT)
3935 (rdiv @0 (root:s (rdiv:s @1 @2)))
3936 (mult @0 (root (rdiv @2 @1)))))
3938 /* Simplify x/expN(y) into x*expN(-y). */
3939 (for exps (EXP EXP2 EXP10 POW10)
3941 (rdiv @0 (exps:s @1))
3942 (mult @0 (exps (negate @1)))))
3944 (for logs (LOG LOG2 LOG10 LOG10)
3945 exps (EXP EXP2 EXP10 POW10)
3946 /* logN(expN(x)) -> x. */
3950 /* expN(logN(x)) -> x. */
3955 /* Optimize logN(func()) for various exponential functions. We
3956 want to determine the value "x" and the power "exponent" in
3957 order to transform logN(x**exponent) into exponent*logN(x). */
3958 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3959 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3962 (if (SCALAR_FLOAT_TYPE_P (type))
3968 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3969 x = build_real_truncate (type, dconst_e ());
3972 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3973 x = build_real (type, dconst2);
3977 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3979 REAL_VALUE_TYPE dconst10;
3980 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3981 x = build_real (type, dconst10);
3988 (mult (logs { x; }) @0)))))
3996 (if (SCALAR_FLOAT_TYPE_P (type))
4002 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4003 x = build_real (type, dconsthalf);
4006 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4007 x = build_real_truncate (type, dconst_third ());
4013 (mult { x; } (logs @0))))))
4015 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4016 (for logs (LOG LOG2 LOG10)
4020 (mult @1 (logs @0))))
4022 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4023 or if C is a positive power of 2,
4024 pow(C,x) -> exp2(log2(C)*x). */
4032 (pows REAL_CST@0 @1)
4033 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4034 && real_isfinite (TREE_REAL_CST_PTR (@0))
4035 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4036 the use_exp2 case until after vectorization. It seems actually
4037 beneficial for all constants to postpone this until later,
4038 because exp(log(C)*x), while faster, will have worse precision
4039 and if x folds into a constant too, that is unnecessary
4041 && canonicalize_math_after_vectorization_p ())
4043 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4044 bool use_exp2 = false;
4045 if (targetm.libc_has_function (function_c99_misc)
4046 && value->cl == rvc_normal)
4048 REAL_VALUE_TYPE frac_rvt = *value;
4049 SET_REAL_EXP (&frac_rvt, 1);
4050 if (real_equal (&frac_rvt, &dconst1))
4055 (if (optimize_pow_to_exp (@0, @1))
4056 (exps (mult (logs @0) @1)))
4057 (exp2s (mult (log2s @0) @1)))))))
4060 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4062 exps (EXP EXP2 EXP10 POW10)
4063 logs (LOG LOG2 LOG10 LOG10)
4065 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4066 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4067 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4068 (exps (plus (mult (logs @0) @1) @2)))))
4073 exps (EXP EXP2 EXP10 POW10)
4074 /* sqrt(expN(x)) -> expN(x*0.5). */
4077 (exps (mult @0 { build_real (type, dconsthalf); })))
4078 /* cbrt(expN(x)) -> expN(x/3). */
4081 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4082 /* pow(expN(x), y) -> expN(x*y). */
4085 (exps (mult @0 @1))))
4087 /* tan(atan(x)) -> x. */
4094 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4096 (CABS (complex:C @0 real_zerop@1))
4099 /* trunc(trunc(x)) -> trunc(x), etc. */
4100 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4104 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4105 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4107 (fns integer_valued_real_p@0)
4110 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4112 (HYPOT:c @0 real_zerop@1)
4115 /* pow(1,x) -> 1. */
4117 (POW real_onep@0 @1)
4121 /* copysign(x,x) -> x. */
4122 (COPYSIGN_ALL @0 @0)
4126 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4127 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4130 (for scale (LDEXP SCALBN SCALBLN)
4131 /* ldexp(0, x) -> 0. */
4133 (scale real_zerop@0 @1)
4135 /* ldexp(x, 0) -> x. */
4137 (scale @0 integer_zerop@1)
4139 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4141 (scale REAL_CST@0 @1)
4142 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4145 /* Canonicalization of sequences of math builtins. These rules represent
4146 IL simplifications but are not necessarily optimizations.
4148 The sincos pass is responsible for picking "optimal" implementations
4149 of math builtins, which may be more complicated and can sometimes go
4150 the other way, e.g. converting pow into a sequence of sqrts.
4151 We only want to do these canonicalizations before the pass has run. */
4153 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4154 /* Simplify tan(x) * cos(x) -> sin(x). */
4156 (mult:c (TAN:s @0) (COS:s @0))
4159 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4161 (mult:c @0 (POW:s @0 REAL_CST@1))
4162 (if (!TREE_OVERFLOW (@1))
4163 (POW @0 (plus @1 { build_one_cst (type); }))))
4165 /* Simplify sin(x) / cos(x) -> tan(x). */
4167 (rdiv (SIN:s @0) (COS:s @0))
4170 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4172 (rdiv (COS:s @0) (SIN:s @0))
4173 (rdiv { build_one_cst (type); } (TAN @0)))
4175 /* Simplify sin(x) / tan(x) -> cos(x). */
4177 (rdiv (SIN:s @0) (TAN:s @0))
4178 (if (! HONOR_NANS (@0)
4179 && ! HONOR_INFINITIES (@0))
4182 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4184 (rdiv (TAN:s @0) (SIN:s @0))
4185 (if (! HONOR_NANS (@0)
4186 && ! HONOR_INFINITIES (@0))
4187 (rdiv { build_one_cst (type); } (COS @0))))
4189 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4191 (mult (POW:s @0 @1) (POW:s @0 @2))
4192 (POW @0 (plus @1 @2)))
4194 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4196 (mult (POW:s @0 @1) (POW:s @2 @1))
4197 (POW (mult @0 @2) @1))
4199 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4201 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4202 (POWI (mult @0 @2) @1))
4204 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4206 (rdiv (POW:s @0 REAL_CST@1) @0)
4207 (if (!TREE_OVERFLOW (@1))
4208 (POW @0 (minus @1 { build_one_cst (type); }))))
4210 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4212 (rdiv @0 (POW:s @1 @2))
4213 (mult @0 (POW @1 (negate @2))))
4218 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4221 (pows @0 { build_real (type, dconst_quarter ()); }))
4222 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4225 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4226 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4229 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4230 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4232 (cbrts (cbrts tree_expr_nonnegative_p@0))
4233 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4234 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4236 (sqrts (pows @0 @1))
4237 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4238 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4240 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4241 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4242 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4244 (pows (sqrts @0) @1)
4245 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4246 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4248 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4249 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4250 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4252 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4253 (pows @0 (mult @1 @2))))
4255 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4257 (CABS (complex @0 @0))
4258 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4260 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4263 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4265 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4270 (cexps compositional_complex@0)
4271 (if (targetm.libc_has_function (function_c99_math_complex))
4273 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4274 (mult @1 (imagpart @2)))))))
4276 (if (canonicalize_math_p ())
4277 /* floor(x) -> trunc(x) if x is nonnegative. */
4278 (for floors (FLOOR_ALL)
4281 (floors tree_expr_nonnegative_p@0)
4284 (match double_value_p
4286 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4287 (for froms (BUILT_IN_TRUNCL
4299 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4300 (if (optimize && canonicalize_math_p ())
4302 (froms (convert double_value_p@0))
4303 (convert (tos @0)))))
4305 (match float_value_p
4307 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4308 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4309 BUILT_IN_FLOORL BUILT_IN_FLOOR
4310 BUILT_IN_CEILL BUILT_IN_CEIL
4311 BUILT_IN_ROUNDL BUILT_IN_ROUND
4312 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4313 BUILT_IN_RINTL BUILT_IN_RINT)
4314 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4315 BUILT_IN_FLOORF BUILT_IN_FLOORF
4316 BUILT_IN_CEILF BUILT_IN_CEILF
4317 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4318 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4319 BUILT_IN_RINTF BUILT_IN_RINTF)
4320 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4322 (if (optimize && canonicalize_math_p ()
4323 && targetm.libc_has_function (function_c99_misc))
4325 (froms (convert float_value_p@0))
4326 (convert (tos @0)))))
4328 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4329 tos (XFLOOR XCEIL XROUND XRINT)
4330 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4331 (if (optimize && canonicalize_math_p ())
4333 (froms (convert double_value_p@0))
4336 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4337 XFLOOR XCEIL XROUND XRINT)
4338 tos (XFLOORF XCEILF XROUNDF XRINTF)
4339 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4341 (if (optimize && canonicalize_math_p ())
4343 (froms (convert float_value_p@0))
4346 (if (canonicalize_math_p ())
4347 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4348 (for floors (IFLOOR LFLOOR LLFLOOR)
4350 (floors tree_expr_nonnegative_p@0)
4353 (if (canonicalize_math_p ())
4354 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4355 (for fns (IFLOOR LFLOOR LLFLOOR
4357 IROUND LROUND LLROUND)
4359 (fns integer_valued_real_p@0)
4361 (if (!flag_errno_math)
4362 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4363 (for rints (IRINT LRINT LLRINT)
4365 (rints integer_valued_real_p@0)
4368 (if (canonicalize_math_p ())
4369 (for ifn (IFLOOR ICEIL IROUND IRINT)
4370 lfn (LFLOOR LCEIL LROUND LRINT)
4371 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4372 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4373 sizeof (int) == sizeof (long). */
4374 (if (TYPE_PRECISION (integer_type_node)
4375 == TYPE_PRECISION (long_integer_type_node))
4378 (lfn:long_integer_type_node @0)))
4379 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4380 sizeof (long long) == sizeof (long). */
4381 (if (TYPE_PRECISION (long_long_integer_type_node)
4382 == TYPE_PRECISION (long_integer_type_node))
4385 (lfn:long_integer_type_node @0)))))
4387 /* cproj(x) -> x if we're ignoring infinities. */
4390 (if (!HONOR_INFINITIES (type))
4393 /* If the real part is inf and the imag part is known to be
4394 nonnegative, return (inf + 0i). */
4396 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4397 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4398 { build_complex_inf (type, false); }))
4400 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4402 (CPROJ (complex @0 REAL_CST@1))
4403 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4404 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4410 (pows @0 REAL_CST@1)
4412 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4413 REAL_VALUE_TYPE tmp;
4416 /* pow(x,0) -> 1. */
4417 (if (real_equal (value, &dconst0))
4418 { build_real (type, dconst1); })
4419 /* pow(x,1) -> x. */
4420 (if (real_equal (value, &dconst1))
4422 /* pow(x,-1) -> 1/x. */
4423 (if (real_equal (value, &dconstm1))
4424 (rdiv { build_real (type, dconst1); } @0))
4425 /* pow(x,0.5) -> sqrt(x). */
4426 (if (flag_unsafe_math_optimizations
4427 && canonicalize_math_p ()
4428 && real_equal (value, &dconsthalf))
4430 /* pow(x,1/3) -> cbrt(x). */
4431 (if (flag_unsafe_math_optimizations
4432 && canonicalize_math_p ()
4433 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4434 real_equal (value, &tmp)))
4437 /* powi(1,x) -> 1. */
4439 (POWI real_onep@0 @1)
4443 (POWI @0 INTEGER_CST@1)
4445 /* powi(x,0) -> 1. */
4446 (if (wi::to_wide (@1) == 0)
4447 { build_real (type, dconst1); })
4448 /* powi(x,1) -> x. */
4449 (if (wi::to_wide (@1) == 1)
4451 /* powi(x,-1) -> 1/x. */
4452 (if (wi::to_wide (@1) == -1)
4453 (rdiv { build_real (type, dconst1); } @0))))
4455 /* Narrowing of arithmetic and logical operations.
4457 These are conceptually similar to the transformations performed for
4458 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4459 term we want to move all that code out of the front-ends into here. */
4461 /* If we have a narrowing conversion of an arithmetic operation where
4462 both operands are widening conversions from the same type as the outer
4463 narrowing conversion. Then convert the innermost operands to a suitable
4464 unsigned type (to avoid introducing undefined behavior), perform the
4465 operation and convert the result to the desired type. */
4466 (for op (plus minus)
4468 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4469 (if (INTEGRAL_TYPE_P (type)
4470 /* We check for type compatibility between @0 and @1 below,
4471 so there's no need to check that @1/@3 are integral types. */
4472 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4473 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4474 /* The precision of the type of each operand must match the
4475 precision of the mode of each operand, similarly for the
4477 && type_has_mode_precision_p (TREE_TYPE (@0))
4478 && type_has_mode_precision_p (TREE_TYPE (@1))
4479 && type_has_mode_precision_p (type)
4480 /* The inner conversion must be a widening conversion. */
4481 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4482 && types_match (@0, type)
4483 && (types_match (@0, @1)
4484 /* Or the second operand is const integer or converted const
4485 integer from valueize. */
4486 || TREE_CODE (@1) == INTEGER_CST))
4487 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4488 (op @0 (convert @1))
4489 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4490 (convert (op (convert:utype @0)
4491 (convert:utype @1))))))))
4493 /* This is another case of narrowing, specifically when there's an outer
4494 BIT_AND_EXPR which masks off bits outside the type of the innermost
4495 operands. Like the previous case we have to convert the operands
4496 to unsigned types to avoid introducing undefined behavior for the
4497 arithmetic operation. */
4498 (for op (minus plus)
4500 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4501 (if (INTEGRAL_TYPE_P (type)
4502 /* We check for type compatibility between @0 and @1 below,
4503 so there's no need to check that @1/@3 are integral types. */
4504 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4505 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4506 /* The precision of the type of each operand must match the
4507 precision of the mode of each operand, similarly for the
4509 && type_has_mode_precision_p (TREE_TYPE (@0))
4510 && type_has_mode_precision_p (TREE_TYPE (@1))
4511 && type_has_mode_precision_p (type)
4512 /* The inner conversion must be a widening conversion. */
4513 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4514 && types_match (@0, @1)
4515 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4516 <= TYPE_PRECISION (TREE_TYPE (@0)))
4517 && (wi::to_wide (@4)
4518 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4519 true, TYPE_PRECISION (type))) == 0)
4520 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4521 (with { tree ntype = TREE_TYPE (@0); }
4522 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4523 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4524 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4525 (convert:utype @4))))))))
4527 /* Transform (@0 < @1 and @0 < @2) to use min,
4528 (@0 > @1 and @0 > @2) to use max */
4529 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4530 op (lt le gt ge lt le gt ge )
4531 ext (min min max max max max min min )
4533 (logic (op:cs @0 @1) (op:cs @0 @2))
4534 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4535 && TREE_CODE (@0) != INTEGER_CST)
4536 (op @0 (ext @1 @2)))))
4539 /* signbit(x) -> 0 if x is nonnegative. */
4540 (SIGNBIT tree_expr_nonnegative_p@0)
4541 { integer_zero_node; })
4544 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4546 (if (!HONOR_SIGNED_ZEROS (@0))
4547 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4549 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4551 (for op (plus minus)
4554 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4555 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4556 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4557 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4558 && !TYPE_SATURATING (TREE_TYPE (@0)))
4559 (with { tree res = int_const_binop (rop, @2, @1); }
4560 (if (TREE_OVERFLOW (res)
4561 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4562 { constant_boolean_node (cmp == NE_EXPR, type); }
4563 (if (single_use (@3))
4564 (cmp @0 { TREE_OVERFLOW (res)
4565 ? drop_tree_overflow (res) : res; }))))))))
4566 (for cmp (lt le gt ge)
4567 (for op (plus minus)
4570 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4571 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4572 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4573 (with { tree res = int_const_binop (rop, @2, @1); }
4574 (if (TREE_OVERFLOW (res))
4576 fold_overflow_warning (("assuming signed overflow does not occur "
4577 "when simplifying conditional to constant"),
4578 WARN_STRICT_OVERFLOW_CONDITIONAL);
4579 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4580 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4581 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4582 TYPE_SIGN (TREE_TYPE (@1)))
4583 != (op == MINUS_EXPR);
4584 constant_boolean_node (less == ovf_high, type);
4586 (if (single_use (@3))
4589 fold_overflow_warning (("assuming signed overflow does not occur "
4590 "when changing X +- C1 cmp C2 to "
4592 WARN_STRICT_OVERFLOW_COMPARISON);
4594 (cmp @0 { res; })))))))))
4596 /* Canonicalizations of BIT_FIELD_REFs. */
4599 (BIT_FIELD_REF @0 @1 @2)
4601 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4602 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4604 (if (integer_zerop (@2))
4605 (view_convert (realpart @0)))
4606 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4607 (view_convert (imagpart @0)))))
4608 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4609 && INTEGRAL_TYPE_P (type)
4610 /* On GIMPLE this should only apply to register arguments. */
4611 && (! GIMPLE || is_gimple_reg (@0))
4612 /* A bit-field-ref that referenced the full argument can be stripped. */
4613 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4614 && integer_zerop (@2))
4615 /* Low-parts can be reduced to integral conversions.
4616 ??? The following doesn't work for PDP endian. */
4617 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4618 /* Don't even think about BITS_BIG_ENDIAN. */
4619 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4620 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4621 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4622 ? (TYPE_PRECISION (TREE_TYPE (@0))
4623 - TYPE_PRECISION (type))
4627 /* Simplify vector extracts. */
4630 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4631 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4632 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4633 || (VECTOR_TYPE_P (type)
4634 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4637 tree ctor = (TREE_CODE (@0) == SSA_NAME
4638 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4639 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4640 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4641 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4642 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4645 && (idx % width) == 0
4647 && known_le ((idx + n) / width,
4648 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4653 /* Constructor elements can be subvectors. */
4655 if (CONSTRUCTOR_NELTS (ctor) != 0)
4657 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4658 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4659 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4661 unsigned HOST_WIDE_INT elt, count, const_k;
4664 /* We keep an exact subset of the constructor elements. */
4665 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4666 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4667 { build_constructor (type, NULL); }
4669 (if (elt < CONSTRUCTOR_NELTS (ctor))
4670 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4671 { build_zero_cst (type); })
4673 vec<constructor_elt, va_gc> *vals;
4674 vec_alloc (vals, count);
4675 for (unsigned i = 0;
4676 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4677 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4678 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4679 build_constructor (type, vals);
4681 /* The bitfield references a single constructor element. */
4682 (if (k.is_constant (&const_k)
4683 && idx + n <= (idx / const_k + 1) * const_k)
4685 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4686 { build_zero_cst (type); })
4688 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4689 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4690 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4692 /* Simplify a bit extraction from a bit insertion for the cases with
4693 the inserted element fully covering the extraction or the insertion
4694 not touching the extraction. */
4696 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4699 unsigned HOST_WIDE_INT isize;
4700 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4701 isize = TYPE_PRECISION (TREE_TYPE (@1));
4703 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4706 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4707 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4708 wi::to_wide (@ipos) + isize))
4709 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4711 - wi::to_wide (@ipos)); }))
4712 (if (wi::geu_p (wi::to_wide (@ipos),
4713 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4714 || wi::geu_p (wi::to_wide (@rpos),
4715 wi::to_wide (@ipos) + isize))
4716 (BIT_FIELD_REF @0 @rsize @rpos)))))
4718 (if (canonicalize_math_after_vectorization_p ())
4721 (fmas:c (negate @0) @1 @2)
4722 (IFN_FNMA @0 @1 @2))
4724 (fmas @0 @1 (negate @2))
4727 (fmas:c (negate @0) @1 (negate @2))
4728 (IFN_FNMS @0 @1 @2))
4730 (negate (fmas@3 @0 @1 @2))
4731 (if (single_use (@3))
4732 (IFN_FNMS @0 @1 @2))))
4735 (IFN_FMS:c (negate @0) @1 @2)
4736 (IFN_FNMS @0 @1 @2))
4738 (IFN_FMS @0 @1 (negate @2))
4741 (IFN_FMS:c (negate @0) @1 (negate @2))
4742 (IFN_FNMA @0 @1 @2))
4744 (negate (IFN_FMS@3 @0 @1 @2))
4745 (if (single_use (@3))
4746 (IFN_FNMA @0 @1 @2)))
4749 (IFN_FNMA:c (negate @0) @1 @2)
4752 (IFN_FNMA @0 @1 (negate @2))
4753 (IFN_FNMS @0 @1 @2))
4755 (IFN_FNMA:c (negate @0) @1 (negate @2))
4758 (negate (IFN_FNMA@3 @0 @1 @2))
4759 (if (single_use (@3))
4760 (IFN_FMS @0 @1 @2)))
4763 (IFN_FNMS:c (negate @0) @1 @2)
4766 (IFN_FNMS @0 @1 (negate @2))
4767 (IFN_FNMA @0 @1 @2))
4769 (IFN_FNMS:c (negate @0) @1 (negate @2))
4772 (negate (IFN_FNMS@3 @0 @1 @2))
4773 (if (single_use (@3))
4774 (IFN_FMA @0 @1 @2))))
4776 /* POPCOUNT simplifications. */
4777 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4778 BUILT_IN_POPCOUNTIMAX)
4779 /* popcount(X&1) is nop_expr(X&1). */
4782 (if (tree_nonzero_bits (@0) == 1)
4784 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4786 (plus (popcount:s @0) (popcount:s @1))
4787 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4788 (popcount (bit_ior @0 @1))))
4789 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4790 (for cmp (le eq ne gt)
4793 (cmp (popcount @0) integer_zerop)
4794 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
4803 r = c ? a1 op a2 : b;
4805 if the target can do it in one go. This makes the operation conditional
4806 on c, so could drop potentially-trapping arithmetic, but that's a valid
4807 simplification if the result of the operation isn't needed. */
4808 (for uncond_op (UNCOND_BINARY)
4809 cond_op (COND_BINARY)
4811 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
4812 (with { tree op_type = TREE_TYPE (@4); }
4813 (if (element_precision (type) == element_precision (op_type))
4814 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
4816 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
4817 (with { tree op_type = TREE_TYPE (@4); }
4818 (if (element_precision (type) == element_precision (op_type))
4819 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))