Update LOCAL_PATCHES after libsanitizer merge.
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_procmaps_mac.cc
blobb0e68fde7626c827dafb373c407f73a802a67aca
1 //===-- sanitizer_procmaps_mac.cc -----------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // Information about the process mappings (Mac-specific parts).
9 //===----------------------------------------------------------------------===//
11 #include "sanitizer_platform.h"
12 #if SANITIZER_MAC
13 #include "sanitizer_common.h"
14 #include "sanitizer_placement_new.h"
15 #include "sanitizer_procmaps.h"
17 #include <mach-o/dyld.h>
18 #include <mach-o/loader.h>
19 #include <mach/mach.h>
21 // These are not available in older macOS SDKs.
22 #ifndef CPU_SUBTYPE_X86_64_H
23 #define CPU_SUBTYPE_X86_64_H ((cpu_subtype_t)8) /* Haswell */
24 #endif
25 #ifndef CPU_SUBTYPE_ARM_V7S
26 #define CPU_SUBTYPE_ARM_V7S ((cpu_subtype_t)11) /* Swift */
27 #endif
28 #ifndef CPU_SUBTYPE_ARM_V7K
29 #define CPU_SUBTYPE_ARM_V7K ((cpu_subtype_t)12)
30 #endif
31 #ifndef CPU_TYPE_ARM64
32 #define CPU_TYPE_ARM64 (CPU_TYPE_ARM | CPU_ARCH_ABI64)
33 #endif
35 namespace __sanitizer {
37 // Contains information used to iterate through sections.
38 struct MemoryMappedSegmentData {
39 char name[kMaxSegName];
40 uptr nsects;
41 const char *current_load_cmd_addr;
42 u32 lc_type;
43 uptr base_virt_addr;
44 uptr addr_mask;
47 template <typename Section>
48 static void NextSectionLoad(LoadedModule *module, MemoryMappedSegmentData *data,
49 bool isWritable) {
50 const Section *sc = (const Section *)data->current_load_cmd_addr;
51 data->current_load_cmd_addr += sizeof(Section);
53 uptr sec_start = (sc->addr & data->addr_mask) + data->base_virt_addr;
54 uptr sec_end = sec_start + sc->size;
55 module->addAddressRange(sec_start, sec_end, /*executable=*/false, isWritable,
56 sc->sectname);
59 void MemoryMappedSegment::AddAddressRanges(LoadedModule *module) {
60 // Don't iterate over sections when the caller hasn't set up the
61 // data pointer, when there are no sections, or when the segment
62 // is executable. Avoid iterating over executable sections because
63 // it will confuse libignore, and because the extra granularity
64 // of information is not needed by any sanitizers.
65 if (!data_ || !data_->nsects || IsExecutable()) {
66 module->addAddressRange(start, end, IsExecutable(), IsWritable(),
67 data_ ? data_->name : nullptr);
68 return;
71 do {
72 if (data_->lc_type == LC_SEGMENT) {
73 NextSectionLoad<struct section>(module, data_, IsWritable());
74 #ifdef MH_MAGIC_64
75 } else if (data_->lc_type == LC_SEGMENT_64) {
76 NextSectionLoad<struct section_64>(module, data_, IsWritable());
77 #endif
79 } while (--data_->nsects);
82 MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) {
83 Reset();
86 MemoryMappingLayout::~MemoryMappingLayout() {
89 // More information about Mach-O headers can be found in mach-o/loader.h
90 // Each Mach-O image has a header (mach_header or mach_header_64) starting with
91 // a magic number, and a list of linker load commands directly following the
92 // header.
93 // A load command is at least two 32-bit words: the command type and the
94 // command size in bytes. We're interested only in segment load commands
95 // (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped
96 // into the task's address space.
97 // The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or
98 // segment_command_64 correspond to the memory address, memory size and the
99 // file offset of the current memory segment.
100 // Because these fields are taken from the images as is, one needs to add
101 // _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime.
103 void MemoryMappingLayout::Reset() {
104 // Count down from the top.
105 // TODO(glider): as per man 3 dyld, iterating over the headers with
106 // _dyld_image_count is thread-unsafe. We need to register callbacks for
107 // adding and removing images which will invalidate the MemoryMappingLayout
108 // state.
109 data_.current_image = _dyld_image_count();
110 data_.current_load_cmd_count = -1;
111 data_.current_load_cmd_addr = 0;
112 data_.current_magic = 0;
113 data_.current_filetype = 0;
114 data_.current_arch = kModuleArchUnknown;
115 internal_memset(data_.current_uuid, 0, kModuleUUIDSize);
118 // The dyld load address should be unchanged throughout process execution,
119 // and it is expensive to compute once many libraries have been loaded,
120 // so cache it here and do not reset.
121 static mach_header *dyld_hdr = 0;
122 static const char kDyldPath[] = "/usr/lib/dyld";
123 static const int kDyldImageIdx = -1;
125 // static
126 void MemoryMappingLayout::CacheMemoryMappings() {
127 // No-op on Mac for now.
130 void MemoryMappingLayout::LoadFromCache() {
131 // No-op on Mac for now.
134 // _dyld_get_image_header() and related APIs don't report dyld itself.
135 // We work around this by manually recursing through the memory map
136 // until we hit a Mach header matching dyld instead. These recurse
137 // calls are expensive, but the first memory map generation occurs
138 // early in the process, when dyld is one of the only images loaded,
139 // so it will be hit after only a few iterations.
140 static mach_header *get_dyld_image_header() {
141 unsigned depth = 1;
142 vm_size_t size = 0;
143 vm_address_t address = 0;
144 kern_return_t err = KERN_SUCCESS;
145 mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64;
147 while (true) {
148 struct vm_region_submap_info_64 info;
149 err = vm_region_recurse_64(mach_task_self(), &address, &size, &depth,
150 (vm_region_info_t)&info, &count);
151 if (err != KERN_SUCCESS) return nullptr;
153 if (size >= sizeof(mach_header) && info.protection & kProtectionRead) {
154 mach_header *hdr = (mach_header *)address;
155 if ((hdr->magic == MH_MAGIC || hdr->magic == MH_MAGIC_64) &&
156 hdr->filetype == MH_DYLINKER) {
157 return hdr;
160 address += size;
164 const mach_header *get_dyld_hdr() {
165 if (!dyld_hdr) dyld_hdr = get_dyld_image_header();
167 return dyld_hdr;
170 // Next and NextSegmentLoad were inspired by base/sysinfo.cc in
171 // Google Perftools, https://github.com/gperftools/gperftools.
173 // NextSegmentLoad scans the current image for the next segment load command
174 // and returns the start and end addresses and file offset of the corresponding
175 // segment.
176 // Note that the segment addresses are not necessarily sorted.
177 template <u32 kLCSegment, typename SegmentCommand>
178 static bool NextSegmentLoad(MemoryMappedSegment *segment,
179 MemoryMappedSegmentData *seg_data, MemoryMappingLayoutData &layout_data) {
180 const char *lc = layout_data.current_load_cmd_addr;
181 layout_data.current_load_cmd_addr += ((const load_command *)lc)->cmdsize;
182 if (((const load_command *)lc)->cmd == kLCSegment) {
183 const SegmentCommand* sc = (const SegmentCommand *)lc;
184 uptr base_virt_addr, addr_mask;
185 if (layout_data.current_image == kDyldImageIdx) {
186 base_virt_addr = (uptr)get_dyld_hdr();
187 // vmaddr is masked with 0xfffff because on macOS versions < 10.12,
188 // it contains an absolute address rather than an offset for dyld.
189 // To make matters even more complicated, this absolute address
190 // isn't actually the absolute segment address, but the offset portion
191 // of the address is accurate when combined with the dyld base address,
192 // and the mask will give just this offset.
193 addr_mask = 0xfffff;
194 } else {
195 base_virt_addr =
196 (uptr)_dyld_get_image_vmaddr_slide(layout_data.current_image);
197 addr_mask = ~0;
200 segment->start = (sc->vmaddr & addr_mask) + base_virt_addr;
201 segment->end = segment->start + sc->vmsize;
202 // Most callers don't need section information, so only fill this struct
203 // when required.
204 if (seg_data) {
205 seg_data->nsects = sc->nsects;
206 seg_data->current_load_cmd_addr =
207 (const char *)lc + sizeof(SegmentCommand);
208 seg_data->lc_type = kLCSegment;
209 seg_data->base_virt_addr = base_virt_addr;
210 seg_data->addr_mask = addr_mask;
211 internal_strncpy(seg_data->name, sc->segname,
212 ARRAY_SIZE(seg_data->name));
215 // Return the initial protection.
216 segment->protection = sc->initprot;
217 segment->offset = (layout_data.current_filetype ==
218 /*MH_EXECUTE*/ 0x2)
219 ? sc->vmaddr
220 : sc->fileoff;
221 if (segment->filename) {
222 const char *src = (layout_data.current_image == kDyldImageIdx)
223 ? kDyldPath
224 : _dyld_get_image_name(layout_data.current_image);
225 internal_strncpy(segment->filename, src, segment->filename_size);
227 segment->arch = layout_data.current_arch;
228 internal_memcpy(segment->uuid, layout_data.current_uuid, kModuleUUIDSize);
229 return true;
231 return false;
234 ModuleArch ModuleArchFromCpuType(cpu_type_t cputype, cpu_subtype_t cpusubtype) {
235 cpusubtype = cpusubtype & ~CPU_SUBTYPE_MASK;
236 switch (cputype) {
237 case CPU_TYPE_I386:
238 return kModuleArchI386;
239 case CPU_TYPE_X86_64:
240 if (cpusubtype == CPU_SUBTYPE_X86_64_ALL) return kModuleArchX86_64;
241 if (cpusubtype == CPU_SUBTYPE_X86_64_H) return kModuleArchX86_64H;
242 CHECK(0 && "Invalid subtype of x86_64");
243 return kModuleArchUnknown;
244 case CPU_TYPE_ARM:
245 if (cpusubtype == CPU_SUBTYPE_ARM_V6) return kModuleArchARMV6;
246 if (cpusubtype == CPU_SUBTYPE_ARM_V7) return kModuleArchARMV7;
247 if (cpusubtype == CPU_SUBTYPE_ARM_V7S) return kModuleArchARMV7S;
248 if (cpusubtype == CPU_SUBTYPE_ARM_V7K) return kModuleArchARMV7K;
249 CHECK(0 && "Invalid subtype of ARM");
250 return kModuleArchUnknown;
251 case CPU_TYPE_ARM64:
252 return kModuleArchARM64;
253 default:
254 CHECK(0 && "Invalid CPU type");
255 return kModuleArchUnknown;
259 static const load_command *NextCommand(const load_command *lc) {
260 return (const load_command *)((const char *)lc + lc->cmdsize);
263 static void FindUUID(const load_command *first_lc, u8 *uuid_output) {
264 for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
265 if (lc->cmd != LC_UUID) continue;
267 const uuid_command *uuid_lc = (const uuid_command *)lc;
268 const uint8_t *uuid = &uuid_lc->uuid[0];
269 internal_memcpy(uuid_output, uuid, kModuleUUIDSize);
270 return;
274 static bool IsModuleInstrumented(const load_command *first_lc) {
275 for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
276 if (lc->cmd != LC_LOAD_DYLIB) continue;
278 const dylib_command *dylib_lc = (const dylib_command *)lc;
279 uint32_t dylib_name_offset = dylib_lc->dylib.name.offset;
280 const char *dylib_name = ((const char *)dylib_lc) + dylib_name_offset;
281 dylib_name = StripModuleName(dylib_name);
282 if (dylib_name != 0 && (internal_strstr(dylib_name, "libclang_rt."))) {
283 return true;
286 return false;
289 bool MemoryMappingLayout::Next(MemoryMappedSegment *segment) {
290 for (; data_.current_image >= kDyldImageIdx; data_.current_image--) {
291 const mach_header *hdr = (data_.current_image == kDyldImageIdx)
292 ? get_dyld_hdr()
293 : _dyld_get_image_header(data_.current_image);
294 if (!hdr) continue;
295 if (data_.current_load_cmd_count < 0) {
296 // Set up for this image;
297 data_.current_load_cmd_count = hdr->ncmds;
298 data_.current_magic = hdr->magic;
299 data_.current_filetype = hdr->filetype;
300 data_.current_arch = ModuleArchFromCpuType(hdr->cputype, hdr->cpusubtype);
301 switch (data_.current_magic) {
302 #ifdef MH_MAGIC_64
303 case MH_MAGIC_64: {
304 data_.current_load_cmd_addr =
305 (const char *)hdr + sizeof(mach_header_64);
306 break;
308 #endif
309 case MH_MAGIC: {
310 data_.current_load_cmd_addr = (const char *)hdr + sizeof(mach_header);
311 break;
313 default: {
314 continue;
317 FindUUID((const load_command *)data_.current_load_cmd_addr,
318 data_.current_uuid);
319 data_.current_instrumented = IsModuleInstrumented(
320 (const load_command *)data_.current_load_cmd_addr);
323 for (; data_.current_load_cmd_count >= 0; data_.current_load_cmd_count--) {
324 switch (data_.current_magic) {
325 // data_.current_magic may be only one of MH_MAGIC, MH_MAGIC_64.
326 #ifdef MH_MAGIC_64
327 case MH_MAGIC_64: {
328 if (NextSegmentLoad<LC_SEGMENT_64, struct segment_command_64>(
329 segment, segment->data_, data_))
330 return true;
331 break;
333 #endif
334 case MH_MAGIC: {
335 if (NextSegmentLoad<LC_SEGMENT, struct segment_command>(
336 segment, segment->data_, data_))
337 return true;
338 break;
342 // If we get here, no more load_cmd's in this image talk about
343 // segments. Go on to the next image.
345 return false;
348 void MemoryMappingLayout::DumpListOfModules(
349 InternalMmapVectorNoCtor<LoadedModule> *modules) {
350 Reset();
351 InternalScopedString module_name(kMaxPathLength);
352 MemoryMappedSegment segment(module_name.data(), kMaxPathLength);
353 MemoryMappedSegmentData data;
354 segment.data_ = &data;
355 while (Next(&segment)) {
356 if (segment.filename[0] == '\0') continue;
357 LoadedModule *cur_module = nullptr;
358 if (!modules->empty() &&
359 0 == internal_strcmp(segment.filename, modules->back().full_name())) {
360 cur_module = &modules->back();
361 } else {
362 modules->push_back(LoadedModule());
363 cur_module = &modules->back();
364 cur_module->set(segment.filename, segment.start, segment.arch,
365 segment.uuid, data_.current_instrumented);
367 segment.AddAddressRanges(cur_module);
371 } // namespace __sanitizer
373 #endif // SANITIZER_MAC