Update LOCAL_PATCHES after libsanitizer merge.
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_allocator_primary64.h
blob119443b3ebe3348b55073f936dc9fee3803db486
1 //===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the Sanitizer Allocator.
9 //
10 //===----------------------------------------------------------------------===//
11 #ifndef SANITIZER_ALLOCATOR_H
12 #error This file must be included inside sanitizer_allocator.h
13 #endif
15 template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
17 // SizeClassAllocator64 -- allocator for 64-bit address space.
18 // The template parameter Params is a class containing the actual parameters.
20 // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
21 // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
22 // Otherwise SpaceBeg=kSpaceBeg (fixed address).
23 // kSpaceSize is a power of two.
24 // At the beginning the entire space is mprotect-ed, then small parts of it
25 // are mapped on demand.
27 // Region: a part of Space dedicated to a single size class.
28 // There are kNumClasses Regions of equal size.
30 // UserChunk: a piece of memory returned to user.
31 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
33 // FreeArray is an array free-d chunks (stored as 4-byte offsets)
35 // A Region looks like this:
36 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
38 struct SizeClassAllocator64FlagMasks { // Bit masks.
39 enum {
40 kRandomShuffleChunks = 1,
44 template <class Params>
45 class SizeClassAllocator64 {
46 public:
47 static const uptr kSpaceBeg = Params::kSpaceBeg;
48 static const uptr kSpaceSize = Params::kSpaceSize;
49 static const uptr kMetadataSize = Params::kMetadataSize;
50 typedef typename Params::SizeClassMap SizeClassMap;
51 typedef typename Params::MapUnmapCallback MapUnmapCallback;
53 static const bool kRandomShuffleChunks =
54 Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
56 typedef SizeClassAllocator64<Params> ThisT;
57 typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
59 // When we know the size class (the region base) we can represent a pointer
60 // as a 4-byte integer (offset from the region start shifted right by 4).
61 typedef u32 CompactPtrT;
62 static const uptr kCompactPtrScale = 4;
63 CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
64 return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
66 uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
67 return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
70 void Init(s32 release_to_os_interval_ms) {
71 uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
72 if (kUsingConstantSpaceBeg) {
73 CHECK_EQ(kSpaceBeg, address_range.Init(TotalSpaceSize,
74 PrimaryAllocatorName, kSpaceBeg));
75 } else {
76 NonConstSpaceBeg = address_range.Init(TotalSpaceSize,
77 PrimaryAllocatorName);
78 CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
80 SetReleaseToOSIntervalMs(release_to_os_interval_ms);
81 MapWithCallbackOrDie(SpaceEnd(), AdditionalSize());
82 // Check that the RegionInfo array is aligned on the CacheLine size.
83 DCHECK_EQ(SpaceEnd() % kCacheLineSize, 0);
86 s32 ReleaseToOSIntervalMs() const {
87 return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
90 void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
91 atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
92 memory_order_relaxed);
95 void ForceReleaseToOS() {
96 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
97 BlockingMutexLock l(&GetRegionInfo(class_id)->mutex);
98 MaybeReleaseToOS(class_id, true /*force*/);
102 static bool CanAllocate(uptr size, uptr alignment) {
103 return size <= SizeClassMap::kMaxSize &&
104 alignment <= SizeClassMap::kMaxSize;
107 NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
108 const CompactPtrT *chunks, uptr n_chunks) {
109 RegionInfo *region = GetRegionInfo(class_id);
110 uptr region_beg = GetRegionBeginBySizeClass(class_id);
111 CompactPtrT *free_array = GetFreeArray(region_beg);
113 BlockingMutexLock l(&region->mutex);
114 uptr old_num_chunks = region->num_freed_chunks;
115 uptr new_num_freed_chunks = old_num_chunks + n_chunks;
116 // Failure to allocate free array space while releasing memory is non
117 // recoverable.
118 if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
119 new_num_freed_chunks))) {
120 Report("FATAL: Internal error: %s's allocator exhausted the free list "
121 "space for size class %zd (%zd bytes).\n", SanitizerToolName,
122 class_id, ClassIdToSize(class_id));
123 Die();
125 for (uptr i = 0; i < n_chunks; i++)
126 free_array[old_num_chunks + i] = chunks[i];
127 region->num_freed_chunks = new_num_freed_chunks;
128 region->stats.n_freed += n_chunks;
130 MaybeReleaseToOS(class_id, false /*force*/);
133 NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
134 CompactPtrT *chunks, uptr n_chunks) {
135 RegionInfo *region = GetRegionInfo(class_id);
136 uptr region_beg = GetRegionBeginBySizeClass(class_id);
137 CompactPtrT *free_array = GetFreeArray(region_beg);
139 BlockingMutexLock l(&region->mutex);
140 if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
141 if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
142 n_chunks - region->num_freed_chunks)))
143 return false;
144 CHECK_GE(region->num_freed_chunks, n_chunks);
146 region->num_freed_chunks -= n_chunks;
147 uptr base_idx = region->num_freed_chunks;
148 for (uptr i = 0; i < n_chunks; i++)
149 chunks[i] = free_array[base_idx + i];
150 region->stats.n_allocated += n_chunks;
151 return true;
154 bool PointerIsMine(const void *p) {
155 uptr P = reinterpret_cast<uptr>(p);
156 if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
157 return P / kSpaceSize == kSpaceBeg / kSpaceSize;
158 return P >= SpaceBeg() && P < SpaceEnd();
161 uptr GetRegionBegin(const void *p) {
162 if (kUsingConstantSpaceBeg)
163 return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
164 uptr space_beg = SpaceBeg();
165 return ((reinterpret_cast<uptr>(p) - space_beg) & ~(kRegionSize - 1)) +
166 space_beg;
169 uptr GetRegionBeginBySizeClass(uptr class_id) const {
170 return SpaceBeg() + kRegionSize * class_id;
173 uptr GetSizeClass(const void *p) {
174 if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
175 return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
176 return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
177 kNumClassesRounded;
180 void *GetBlockBegin(const void *p) {
181 uptr class_id = GetSizeClass(p);
182 uptr size = ClassIdToSize(class_id);
183 if (!size) return nullptr;
184 uptr chunk_idx = GetChunkIdx((uptr)p, size);
185 uptr reg_beg = GetRegionBegin(p);
186 uptr beg = chunk_idx * size;
187 uptr next_beg = beg + size;
188 if (class_id >= kNumClasses) return nullptr;
189 RegionInfo *region = GetRegionInfo(class_id);
190 if (region->mapped_user >= next_beg)
191 return reinterpret_cast<void*>(reg_beg + beg);
192 return nullptr;
195 uptr GetActuallyAllocatedSize(void *p) {
196 CHECK(PointerIsMine(p));
197 return ClassIdToSize(GetSizeClass(p));
200 uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
202 void *GetMetaData(const void *p) {
203 uptr class_id = GetSizeClass(p);
204 uptr size = ClassIdToSize(class_id);
205 uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
206 uptr region_beg = GetRegionBeginBySizeClass(class_id);
207 return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
208 (1 + chunk_idx) * kMetadataSize);
211 uptr TotalMemoryUsed() {
212 uptr res = 0;
213 for (uptr i = 0; i < kNumClasses; i++)
214 res += GetRegionInfo(i)->allocated_user;
215 return res;
218 // Test-only.
219 void TestOnlyUnmap() {
220 UnmapWithCallbackOrDie(SpaceBeg(), kSpaceSize + AdditionalSize());
223 static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
224 uptr stats_size) {
225 for (uptr class_id = 0; class_id < stats_size; class_id++)
226 if (stats[class_id] == start)
227 stats[class_id] = rss;
230 void PrintStats(uptr class_id, uptr rss) {
231 RegionInfo *region = GetRegionInfo(class_id);
232 if (region->mapped_user == 0) return;
233 uptr in_use = region->stats.n_allocated - region->stats.n_freed;
234 uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
235 Printf(
236 "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
237 "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
238 "last released: %6zdK region: 0x%zx\n",
239 region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
240 region->mapped_user >> 10, region->stats.n_allocated,
241 region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
242 rss >> 10, region->rtoi.num_releases,
243 region->rtoi.last_released_bytes >> 10,
244 SpaceBeg() + kRegionSize * class_id);
247 void PrintStats() {
248 uptr rss_stats[kNumClasses];
249 for (uptr class_id = 0; class_id < kNumClasses; class_id++)
250 rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
251 GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
253 uptr total_mapped = 0;
254 uptr total_rss = 0;
255 uptr n_allocated = 0;
256 uptr n_freed = 0;
257 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
258 RegionInfo *region = GetRegionInfo(class_id);
259 if (region->mapped_user != 0) {
260 total_mapped += region->mapped_user;
261 total_rss += rss_stats[class_id];
263 n_allocated += region->stats.n_allocated;
264 n_freed += region->stats.n_freed;
267 Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
268 "%zd allocations; remains %zd\n", total_mapped >> 20,
269 total_rss >> 20, n_allocated, n_allocated - n_freed);
270 for (uptr class_id = 1; class_id < kNumClasses; class_id++)
271 PrintStats(class_id, rss_stats[class_id]);
274 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
275 // introspection API.
276 void ForceLock() {
277 for (uptr i = 0; i < kNumClasses; i++) {
278 GetRegionInfo(i)->mutex.Lock();
282 void ForceUnlock() {
283 for (int i = (int)kNumClasses - 1; i >= 0; i--) {
284 GetRegionInfo(i)->mutex.Unlock();
288 // Iterate over all existing chunks.
289 // The allocator must be locked when calling this function.
290 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
291 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
292 RegionInfo *region = GetRegionInfo(class_id);
293 uptr chunk_size = ClassIdToSize(class_id);
294 uptr region_beg = SpaceBeg() + class_id * kRegionSize;
295 for (uptr chunk = region_beg;
296 chunk < region_beg + region->allocated_user;
297 chunk += chunk_size) {
298 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
299 callback(chunk, arg);
304 static uptr ClassIdToSize(uptr class_id) {
305 return SizeClassMap::Size(class_id);
308 static uptr AdditionalSize() {
309 return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
310 GetPageSizeCached());
313 typedef SizeClassMap SizeClassMapT;
314 static const uptr kNumClasses = SizeClassMap::kNumClasses;
315 static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
317 // A packed array of counters. Each counter occupies 2^n bits, enough to store
318 // counter's max_value. Ctor will try to allocate the required buffer via
319 // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
320 // whether the initialization was successful by checking IsAllocated() result.
321 // For the performance sake, none of the accessors check the validity of the
322 // arguments, it is assumed that index is always in [0, n) range and the value
323 // is not incremented past max_value.
324 template<class MemoryMapperT>
325 class PackedCounterArray {
326 public:
327 PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapperT *mapper)
328 : n(num_counters), memory_mapper(mapper) {
329 CHECK_GT(num_counters, 0);
330 CHECK_GT(max_value, 0);
331 constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
332 // Rounding counter storage size up to the power of two allows for using
333 // bit shifts calculating particular counter's index and offset.
334 uptr counter_size_bits =
335 RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
336 CHECK_LE(counter_size_bits, kMaxCounterBits);
337 counter_size_bits_log = Log2(counter_size_bits);
338 counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
340 uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
341 CHECK_GT(packing_ratio, 0);
342 packing_ratio_log = Log2(packing_ratio);
343 bit_offset_mask = packing_ratio - 1;
345 buffer_size =
346 (RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log) *
347 sizeof(*buffer);
348 buffer = reinterpret_cast<u64*>(
349 memory_mapper->MapPackedCounterArrayBuffer(buffer_size));
351 ~PackedCounterArray() {
352 if (buffer) {
353 memory_mapper->UnmapPackedCounterArrayBuffer(
354 reinterpret_cast<uptr>(buffer), buffer_size);
358 bool IsAllocated() const {
359 return !!buffer;
362 u64 GetCount() const {
363 return n;
366 uptr Get(uptr i) const {
367 DCHECK_LT(i, n);
368 uptr index = i >> packing_ratio_log;
369 uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
370 return (buffer[index] >> bit_offset) & counter_mask;
373 void Inc(uptr i) const {
374 DCHECK_LT(Get(i), counter_mask);
375 uptr index = i >> packing_ratio_log;
376 uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
377 buffer[index] += 1ULL << bit_offset;
380 void IncRange(uptr from, uptr to) const {
381 DCHECK_LE(from, to);
382 for (uptr i = from; i <= to; i++)
383 Inc(i);
386 private:
387 const u64 n;
388 u64 counter_size_bits_log;
389 u64 counter_mask;
390 u64 packing_ratio_log;
391 u64 bit_offset_mask;
393 MemoryMapperT* const memory_mapper;
394 u64 buffer_size;
395 u64* buffer;
398 template<class MemoryMapperT>
399 class FreePagesRangeTracker {
400 public:
401 explicit FreePagesRangeTracker(MemoryMapperT* mapper)
402 : memory_mapper(mapper),
403 page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)),
404 in_the_range(false), current_page(0), current_range_start_page(0) {}
406 void NextPage(bool freed) {
407 if (freed) {
408 if (!in_the_range) {
409 current_range_start_page = current_page;
410 in_the_range = true;
412 } else {
413 CloseOpenedRange();
415 current_page++;
418 void Done() {
419 CloseOpenedRange();
422 private:
423 void CloseOpenedRange() {
424 if (in_the_range) {
425 memory_mapper->ReleasePageRangeToOS(
426 current_range_start_page << page_size_scaled_log,
427 current_page << page_size_scaled_log);
428 in_the_range = false;
432 MemoryMapperT* const memory_mapper;
433 const uptr page_size_scaled_log;
434 bool in_the_range;
435 uptr current_page;
436 uptr current_range_start_page;
439 // Iterates over the free_array to identify memory pages containing freed
440 // chunks only and returns these pages back to OS.
441 // allocated_pages_count is the total number of pages allocated for the
442 // current bucket.
443 template<class MemoryMapperT>
444 static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
445 uptr free_array_count, uptr chunk_size,
446 uptr allocated_pages_count,
447 MemoryMapperT *memory_mapper) {
448 const uptr page_size = GetPageSizeCached();
450 // Figure out the number of chunks per page and whether we can take a fast
451 // path (the number of chunks per page is the same for all pages).
452 uptr full_pages_chunk_count_max;
453 bool same_chunk_count_per_page;
454 if (chunk_size <= page_size && page_size % chunk_size == 0) {
455 // Same number of chunks per page, no cross overs.
456 full_pages_chunk_count_max = page_size / chunk_size;
457 same_chunk_count_per_page = true;
458 } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
459 chunk_size % (page_size % chunk_size) == 0) {
460 // Some chunks are crossing page boundaries, which means that the page
461 // contains one or two partial chunks, but all pages contain the same
462 // number of chunks.
463 full_pages_chunk_count_max = page_size / chunk_size + 1;
464 same_chunk_count_per_page = true;
465 } else if (chunk_size <= page_size) {
466 // Some chunks are crossing page boundaries, which means that the page
467 // contains one or two partial chunks.
468 full_pages_chunk_count_max = page_size / chunk_size + 2;
469 same_chunk_count_per_page = false;
470 } else if (chunk_size > page_size && chunk_size % page_size == 0) {
471 // One chunk covers multiple pages, no cross overs.
472 full_pages_chunk_count_max = 1;
473 same_chunk_count_per_page = true;
474 } else if (chunk_size > page_size) {
475 // One chunk covers multiple pages, Some chunks are crossing page
476 // boundaries. Some pages contain one chunk, some contain two.
477 full_pages_chunk_count_max = 2;
478 same_chunk_count_per_page = false;
479 } else {
480 UNREACHABLE("All chunk_size/page_size ratios must be handled.");
483 PackedCounterArray<MemoryMapperT> counters(allocated_pages_count,
484 full_pages_chunk_count_max,
485 memory_mapper);
486 if (!counters.IsAllocated())
487 return;
489 const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
490 const uptr page_size_scaled = page_size >> kCompactPtrScale;
491 const uptr page_size_scaled_log = Log2(page_size_scaled);
493 // Iterate over free chunks and count how many free chunks affect each
494 // allocated page.
495 if (chunk_size <= page_size && page_size % chunk_size == 0) {
496 // Each chunk affects one page only.
497 for (uptr i = 0; i < free_array_count; i++)
498 counters.Inc(free_array[i] >> page_size_scaled_log);
499 } else {
500 // In all other cases chunks might affect more than one page.
501 for (uptr i = 0; i < free_array_count; i++) {
502 counters.IncRange(
503 free_array[i] >> page_size_scaled_log,
504 (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
508 // Iterate over pages detecting ranges of pages with chunk counters equal
509 // to the expected number of chunks for the particular page.
510 FreePagesRangeTracker<MemoryMapperT> range_tracker(memory_mapper);
511 if (same_chunk_count_per_page) {
512 // Fast path, every page has the same number of chunks affecting it.
513 for (uptr i = 0; i < counters.GetCount(); i++)
514 range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
515 } else {
516 // Show path, go through the pages keeping count how many chunks affect
517 // each page.
518 const uptr pn =
519 chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
520 const uptr pnc = pn * chunk_size_scaled;
521 // The idea is to increment the current page pointer by the first chunk
522 // size, middle portion size (the portion of the page covered by chunks
523 // except the first and the last one) and then the last chunk size, adding
524 // up the number of chunks on the current page and checking on every step
525 // whether the page boundary was crossed.
526 uptr prev_page_boundary = 0;
527 uptr current_boundary = 0;
528 for (uptr i = 0; i < counters.GetCount(); i++) {
529 uptr page_boundary = prev_page_boundary + page_size_scaled;
530 uptr chunks_per_page = pn;
531 if (current_boundary < page_boundary) {
532 if (current_boundary > prev_page_boundary)
533 chunks_per_page++;
534 current_boundary += pnc;
535 if (current_boundary < page_boundary) {
536 chunks_per_page++;
537 current_boundary += chunk_size_scaled;
540 prev_page_boundary = page_boundary;
542 range_tracker.NextPage(counters.Get(i) == chunks_per_page);
545 range_tracker.Done();
548 private:
549 friend class MemoryMapper;
551 ReservedAddressRange address_range;
553 static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
554 // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
555 // In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
556 // elements, but in reality this will not happen. For simplicity we
557 // dedicate 1/8 of the region's virtual space to FreeArray.
558 static const uptr kFreeArraySize = kRegionSize / 8;
560 static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
561 uptr NonConstSpaceBeg;
562 uptr SpaceBeg() const {
563 return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
565 uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; }
566 // kRegionSize must be >= 2^32.
567 COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
568 // kRegionSize must be <= 2^36, see CompactPtrT.
569 COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
570 // Call mmap for user memory with at least this size.
571 static const uptr kUserMapSize = 1 << 16;
572 // Call mmap for metadata memory with at least this size.
573 static const uptr kMetaMapSize = 1 << 16;
574 // Call mmap for free array memory with at least this size.
575 static const uptr kFreeArrayMapSize = 1 << 16;
577 atomic_sint32_t release_to_os_interval_ms_;
579 struct Stats {
580 uptr n_allocated;
581 uptr n_freed;
584 struct ReleaseToOsInfo {
585 uptr n_freed_at_last_release;
586 uptr num_releases;
587 u64 last_release_at_ns;
588 u64 last_released_bytes;
591 struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
592 BlockingMutex mutex;
593 uptr num_freed_chunks; // Number of elements in the freearray.
594 uptr mapped_free_array; // Bytes mapped for freearray.
595 uptr allocated_user; // Bytes allocated for user memory.
596 uptr allocated_meta; // Bytes allocated for metadata.
597 uptr mapped_user; // Bytes mapped for user memory.
598 uptr mapped_meta; // Bytes mapped for metadata.
599 u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
600 bool exhausted; // Whether region is out of space for new chunks.
601 Stats stats;
602 ReleaseToOsInfo rtoi;
604 COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
606 RegionInfo *GetRegionInfo(uptr class_id) const {
607 DCHECK_LT(class_id, kNumClasses);
608 RegionInfo *regions = reinterpret_cast<RegionInfo *>(SpaceEnd());
609 return &regions[class_id];
612 uptr GetMetadataEnd(uptr region_beg) const {
613 return region_beg + kRegionSize - kFreeArraySize;
616 uptr GetChunkIdx(uptr chunk, uptr size) const {
617 if (!kUsingConstantSpaceBeg)
618 chunk -= SpaceBeg();
620 uptr offset = chunk % kRegionSize;
621 // Here we divide by a non-constant. This is costly.
622 // size always fits into 32-bits. If the offset fits too, use 32-bit div.
623 if (offset >> (SANITIZER_WORDSIZE / 2))
624 return offset / size;
625 return (u32)offset / (u32)size;
628 CompactPtrT *GetFreeArray(uptr region_beg) const {
629 return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
632 bool MapWithCallback(uptr beg, uptr size) {
633 uptr mapped = address_range.Map(beg, size);
634 if (UNLIKELY(!mapped))
635 return false;
636 CHECK_EQ(beg, mapped);
637 MapUnmapCallback().OnMap(beg, size);
638 return true;
641 void MapWithCallbackOrDie(uptr beg, uptr size) {
642 CHECK_EQ(beg, address_range.MapOrDie(beg, size));
643 MapUnmapCallback().OnMap(beg, size);
646 void UnmapWithCallbackOrDie(uptr beg, uptr size) {
647 MapUnmapCallback().OnUnmap(beg, size);
648 address_range.Unmap(beg, size);
651 bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
652 uptr num_freed_chunks) {
653 uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
654 if (region->mapped_free_array < needed_space) {
655 uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
656 CHECK_LE(new_mapped_free_array, kFreeArraySize);
657 uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
658 region->mapped_free_array;
659 uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
660 if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size)))
661 return false;
662 region->mapped_free_array = new_mapped_free_array;
664 return true;
667 // Check whether this size class is exhausted.
668 bool IsRegionExhausted(RegionInfo *region, uptr class_id,
669 uptr additional_map_size) {
670 if (LIKELY(region->mapped_user + region->mapped_meta +
671 additional_map_size <= kRegionSize - kFreeArraySize))
672 return false;
673 if (!region->exhausted) {
674 region->exhausted = true;
675 Printf("%s: Out of memory. ", SanitizerToolName);
676 Printf("The process has exhausted %zuMB for size class %zu.\n",
677 kRegionSize >> 20, ClassIdToSize(class_id));
679 return true;
682 NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
683 RegionInfo *region, uptr requested_count) {
684 // region->mutex is held.
685 const uptr region_beg = GetRegionBeginBySizeClass(class_id);
686 const uptr size = ClassIdToSize(class_id);
688 const uptr total_user_bytes =
689 region->allocated_user + requested_count * size;
690 // Map more space for chunks, if necessary.
691 if (LIKELY(total_user_bytes > region->mapped_user)) {
692 if (UNLIKELY(region->mapped_user == 0)) {
693 if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
694 // The random state is initialized from ASLR.
695 region->rand_state = static_cast<u32>(region_beg >> 12);
696 // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
697 // preventing just allocated memory from being released sooner than
698 // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
699 // for short lived processes.
700 // Do it only when the feature is turned on, to avoid a potentially
701 // extraneous syscall.
702 if (ReleaseToOSIntervalMs() >= 0)
703 region->rtoi.last_release_at_ns = MonotonicNanoTime();
705 // Do the mmap for the user memory.
706 const uptr user_map_size =
707 RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
708 if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
709 return false;
710 if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
711 user_map_size)))
712 return false;
713 stat->Add(AllocatorStatMapped, user_map_size);
714 region->mapped_user += user_map_size;
716 const uptr new_chunks_count =
717 (region->mapped_user - region->allocated_user) / size;
719 if (kMetadataSize) {
720 // Calculate the required space for metadata.
721 const uptr total_meta_bytes =
722 region->allocated_meta + new_chunks_count * kMetadataSize;
723 const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
724 RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
725 // Map more space for metadata, if necessary.
726 if (meta_map_size) {
727 if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
728 return false;
729 if (UNLIKELY(!MapWithCallback(
730 GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
731 meta_map_size)))
732 return false;
733 region->mapped_meta += meta_map_size;
737 // If necessary, allocate more space for the free array and populate it with
738 // newly allocated chunks.
739 const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
740 if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
741 return false;
742 CompactPtrT *free_array = GetFreeArray(region_beg);
743 for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
744 i++, chunk += size)
745 free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
746 if (kRandomShuffleChunks)
747 RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
748 &region->rand_state);
750 // All necessary memory is mapped and now it is safe to advance all
751 // 'allocated_*' counters.
752 region->num_freed_chunks += new_chunks_count;
753 region->allocated_user += new_chunks_count * size;
754 CHECK_LE(region->allocated_user, region->mapped_user);
755 region->allocated_meta += new_chunks_count * kMetadataSize;
756 CHECK_LE(region->allocated_meta, region->mapped_meta);
757 region->exhausted = false;
759 // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
760 // MaybeReleaseToOS from releasing just allocated pages or protect these
761 // not yet used chunks some other way.
763 return true;
766 class MemoryMapper {
767 public:
768 MemoryMapper(const ThisT& base_allocator, uptr class_id)
769 : allocator(base_allocator),
770 region_base(base_allocator.GetRegionBeginBySizeClass(class_id)),
771 released_ranges_count(0),
772 released_bytes(0) {
775 uptr GetReleasedRangesCount() const {
776 return released_ranges_count;
779 uptr GetReleasedBytes() const {
780 return released_bytes;
783 uptr MapPackedCounterArrayBuffer(uptr buffer_size) {
784 // TODO(alekseyshl): The idea to explore is to check if we have enough
785 // space between num_freed_chunks*sizeof(CompactPtrT) and
786 // mapped_free_array to fit buffer_size bytes and use that space instead
787 // of mapping a temporary one.
788 return reinterpret_cast<uptr>(
789 MmapOrDieOnFatalError(buffer_size, "ReleaseToOSPageCounters"));
792 void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {
793 UnmapOrDie(reinterpret_cast<void *>(buffer), buffer_size);
796 // Releases [from, to) range of pages back to OS.
797 void ReleasePageRangeToOS(CompactPtrT from, CompactPtrT to) {
798 const uptr from_page = allocator.CompactPtrToPointer(region_base, from);
799 const uptr to_page = allocator.CompactPtrToPointer(region_base, to);
800 ReleaseMemoryPagesToOS(from_page, to_page);
801 released_ranges_count++;
802 released_bytes += to_page - from_page;
805 private:
806 const ThisT& allocator;
807 const uptr region_base;
808 uptr released_ranges_count;
809 uptr released_bytes;
812 // Attempts to release RAM occupied by freed chunks back to OS. The region is
813 // expected to be locked.
814 void MaybeReleaseToOS(uptr class_id, bool force) {
815 RegionInfo *region = GetRegionInfo(class_id);
816 const uptr chunk_size = ClassIdToSize(class_id);
817 const uptr page_size = GetPageSizeCached();
819 uptr n = region->num_freed_chunks;
820 if (n * chunk_size < page_size)
821 return; // No chance to release anything.
822 if ((region->stats.n_freed -
823 region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
824 return; // Nothing new to release.
827 if (!force) {
828 s32 interval_ms = ReleaseToOSIntervalMs();
829 if (interval_ms < 0)
830 return;
832 if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
833 MonotonicNanoTime()) {
834 return; // Memory was returned recently.
838 MemoryMapper memory_mapper(*this, class_id);
840 ReleaseFreeMemoryToOS<MemoryMapper>(
841 GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
842 RoundUpTo(region->allocated_user, page_size) / page_size,
843 &memory_mapper);
845 if (memory_mapper.GetReleasedRangesCount() > 0) {
846 region->rtoi.n_freed_at_last_release = region->stats.n_freed;
847 region->rtoi.num_releases += memory_mapper.GetReleasedRangesCount();
848 region->rtoi.last_released_bytes = memory_mapper.GetReleasedBytes();
850 region->rtoi.last_release_at_ns = MonotonicNanoTime();