Update LOCAL_PATCHES after libsanitizer merge.
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_allocator_primary32.h
blobbdea498fb5ecc3d40ea54b266d7edecd7349831d
1 //===-- sanitizer_allocator_primary32.h -------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the Sanitizer Allocator.
9 //
10 //===----------------------------------------------------------------------===//
11 #ifndef SANITIZER_ALLOCATOR_H
12 #error This file must be included inside sanitizer_allocator.h
13 #endif
15 template<class SizeClassAllocator> struct SizeClassAllocator32LocalCache;
17 // SizeClassAllocator32 -- allocator for 32-bit address space.
18 // This allocator can theoretically be used on 64-bit arch, but there it is less
19 // efficient than SizeClassAllocator64.
21 // [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
22 // be returned by MmapOrDie().
24 // Region:
25 // a result of a single call to MmapAlignedOrDieOnFatalError(kRegionSize,
26 // kRegionSize).
27 // Since the regions are aligned by kRegionSize, there are exactly
28 // kNumPossibleRegions possible regions in the address space and so we keep
29 // a ByteMap possible_regions to store the size classes of each Region.
30 // 0 size class means the region is not used by the allocator.
32 // One Region is used to allocate chunks of a single size class.
33 // A Region looks like this:
34 // UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
36 // In order to avoid false sharing the objects of this class should be
37 // chache-line aligned.
39 struct SizeClassAllocator32FlagMasks { // Bit masks.
40 enum {
41 kRandomShuffleChunks = 1,
42 kUseSeparateSizeClassForBatch = 2,
46 template <class Params>
47 class SizeClassAllocator32 {
48 public:
49 static const uptr kSpaceBeg = Params::kSpaceBeg;
50 static const u64 kSpaceSize = Params::kSpaceSize;
51 static const uptr kMetadataSize = Params::kMetadataSize;
52 typedef typename Params::SizeClassMap SizeClassMap;
53 static const uptr kRegionSizeLog = Params::kRegionSizeLog;
54 typedef typename Params::ByteMap ByteMap;
55 typedef typename Params::MapUnmapCallback MapUnmapCallback;
57 static const bool kRandomShuffleChunks = Params::kFlags &
58 SizeClassAllocator32FlagMasks::kRandomShuffleChunks;
59 static const bool kUseSeparateSizeClassForBatch = Params::kFlags &
60 SizeClassAllocator32FlagMasks::kUseSeparateSizeClassForBatch;
62 struct TransferBatch {
63 static const uptr kMaxNumCached = SizeClassMap::kMaxNumCachedHint - 2;
64 void SetFromArray(void *batch[], uptr count) {
65 DCHECK_LE(count, kMaxNumCached);
66 count_ = count;
67 for (uptr i = 0; i < count; i++)
68 batch_[i] = batch[i];
70 uptr Count() const { return count_; }
71 void Clear() { count_ = 0; }
72 void Add(void *ptr) {
73 batch_[count_++] = ptr;
74 DCHECK_LE(count_, kMaxNumCached);
76 void CopyToArray(void *to_batch[]) const {
77 for (uptr i = 0, n = Count(); i < n; i++)
78 to_batch[i] = batch_[i];
81 // How much memory do we need for a batch containing n elements.
82 static uptr AllocationSizeRequiredForNElements(uptr n) {
83 return sizeof(uptr) * 2 + sizeof(void *) * n;
85 static uptr MaxCached(uptr size) {
86 return Min(kMaxNumCached, SizeClassMap::MaxCachedHint(size));
89 TransferBatch *next;
91 private:
92 uptr count_;
93 void *batch_[kMaxNumCached];
96 static const uptr kBatchSize = sizeof(TransferBatch);
97 COMPILER_CHECK((kBatchSize & (kBatchSize - 1)) == 0);
98 COMPILER_CHECK(kBatchSize == SizeClassMap::kMaxNumCachedHint * sizeof(uptr));
100 static uptr ClassIdToSize(uptr class_id) {
101 return (class_id == SizeClassMap::kBatchClassID) ?
102 kBatchSize : SizeClassMap::Size(class_id);
105 typedef SizeClassAllocator32<Params> ThisT;
106 typedef SizeClassAllocator32LocalCache<ThisT> AllocatorCache;
108 void Init(s32 release_to_os_interval_ms) {
109 possible_regions.Init();
110 internal_memset(size_class_info_array, 0, sizeof(size_class_info_array));
113 s32 ReleaseToOSIntervalMs() const {
114 return kReleaseToOSIntervalNever;
117 void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
118 // This is empty here. Currently only implemented in 64-bit allocator.
121 void ForceReleaseToOS() {
122 // Currently implemented in 64-bit allocator only.
125 void *MapWithCallback(uptr size) {
126 void *res = MmapOrDie(size, PrimaryAllocatorName);
127 MapUnmapCallback().OnMap((uptr)res, size);
128 return res;
131 void UnmapWithCallback(uptr beg, uptr size) {
132 MapUnmapCallback().OnUnmap(beg, size);
133 UnmapOrDie(reinterpret_cast<void *>(beg), size);
136 static bool CanAllocate(uptr size, uptr alignment) {
137 return size <= SizeClassMap::kMaxSize &&
138 alignment <= SizeClassMap::kMaxSize;
141 void *GetMetaData(const void *p) {
142 CHECK(PointerIsMine(p));
143 uptr mem = reinterpret_cast<uptr>(p);
144 uptr beg = ComputeRegionBeg(mem);
145 uptr size = ClassIdToSize(GetSizeClass(p));
146 u32 offset = mem - beg;
147 uptr n = offset / (u32)size; // 32-bit division
148 uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
149 return reinterpret_cast<void*>(meta);
152 NOINLINE TransferBatch *AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
153 uptr class_id) {
154 DCHECK_LT(class_id, kNumClasses);
155 SizeClassInfo *sci = GetSizeClassInfo(class_id);
156 SpinMutexLock l(&sci->mutex);
157 if (sci->free_list.empty()) {
158 if (UNLIKELY(!PopulateFreeList(stat, c, sci, class_id)))
159 return nullptr;
160 DCHECK(!sci->free_list.empty());
162 TransferBatch *b = sci->free_list.front();
163 sci->free_list.pop_front();
164 return b;
167 NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id,
168 TransferBatch *b) {
169 DCHECK_LT(class_id, kNumClasses);
170 CHECK_GT(b->Count(), 0);
171 SizeClassInfo *sci = GetSizeClassInfo(class_id);
172 SpinMutexLock l(&sci->mutex);
173 sci->free_list.push_front(b);
176 bool PointerIsMine(const void *p) {
177 uptr mem = reinterpret_cast<uptr>(p);
178 if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize)
179 return false;
180 return GetSizeClass(p) != 0;
183 uptr GetSizeClass(const void *p) {
184 return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
187 void *GetBlockBegin(const void *p) {
188 CHECK(PointerIsMine(p));
189 uptr mem = reinterpret_cast<uptr>(p);
190 uptr beg = ComputeRegionBeg(mem);
191 uptr size = ClassIdToSize(GetSizeClass(p));
192 u32 offset = mem - beg;
193 u32 n = offset / (u32)size; // 32-bit division
194 uptr res = beg + (n * (u32)size);
195 return reinterpret_cast<void*>(res);
198 uptr GetActuallyAllocatedSize(void *p) {
199 CHECK(PointerIsMine(p));
200 return ClassIdToSize(GetSizeClass(p));
203 uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
205 uptr TotalMemoryUsed() {
206 // No need to lock here.
207 uptr res = 0;
208 for (uptr i = 0; i < kNumPossibleRegions; i++)
209 if (possible_regions[i])
210 res += kRegionSize;
211 return res;
214 void TestOnlyUnmap() {
215 for (uptr i = 0; i < kNumPossibleRegions; i++)
216 if (possible_regions[i])
217 UnmapWithCallback((i * kRegionSize), kRegionSize);
220 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
221 // introspection API.
222 void ForceLock() {
223 for (uptr i = 0; i < kNumClasses; i++) {
224 GetSizeClassInfo(i)->mutex.Lock();
228 void ForceUnlock() {
229 for (int i = kNumClasses - 1; i >= 0; i--) {
230 GetSizeClassInfo(i)->mutex.Unlock();
234 // Iterate over all existing chunks.
235 // The allocator must be locked when calling this function.
236 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
237 for (uptr region = 0; region < kNumPossibleRegions; region++)
238 if (possible_regions[region]) {
239 uptr chunk_size = ClassIdToSize(possible_regions[region]);
240 uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize);
241 uptr region_beg = region * kRegionSize;
242 for (uptr chunk = region_beg;
243 chunk < region_beg + max_chunks_in_region * chunk_size;
244 chunk += chunk_size) {
245 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
246 callback(chunk, arg);
251 void PrintStats() {}
253 static uptr AdditionalSize() { return 0; }
255 typedef SizeClassMap SizeClassMapT;
256 static const uptr kNumClasses = SizeClassMap::kNumClasses;
258 private:
259 static const uptr kRegionSize = 1 << kRegionSizeLog;
260 static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
262 struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) SizeClassInfo {
263 StaticSpinMutex mutex;
264 IntrusiveList<TransferBatch> free_list;
265 u32 rand_state;
267 COMPILER_CHECK(sizeof(SizeClassInfo) % kCacheLineSize == 0);
269 uptr ComputeRegionId(uptr mem) {
270 const uptr res = mem >> kRegionSizeLog;
271 CHECK_LT(res, kNumPossibleRegions);
272 return res;
275 uptr ComputeRegionBeg(uptr mem) {
276 return mem & ~(kRegionSize - 1);
279 uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
280 DCHECK_LT(class_id, kNumClasses);
281 const uptr res = reinterpret_cast<uptr>(MmapAlignedOrDieOnFatalError(
282 kRegionSize, kRegionSize, PrimaryAllocatorName));
283 if (UNLIKELY(!res))
284 return 0;
285 MapUnmapCallback().OnMap(res, kRegionSize);
286 stat->Add(AllocatorStatMapped, kRegionSize);
287 CHECK(IsAligned(res, kRegionSize));
288 possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id));
289 return res;
292 SizeClassInfo *GetSizeClassInfo(uptr class_id) {
293 DCHECK_LT(class_id, kNumClasses);
294 return &size_class_info_array[class_id];
297 bool PopulateBatches(AllocatorCache *c, SizeClassInfo *sci, uptr class_id,
298 TransferBatch **current_batch, uptr max_count,
299 uptr *pointers_array, uptr count) {
300 // If using a separate class for batches, we do not need to shuffle it.
301 if (kRandomShuffleChunks && (!kUseSeparateSizeClassForBatch ||
302 class_id != SizeClassMap::kBatchClassID))
303 RandomShuffle(pointers_array, count, &sci->rand_state);
304 TransferBatch *b = *current_batch;
305 for (uptr i = 0; i < count; i++) {
306 if (!b) {
307 b = c->CreateBatch(class_id, this, (TransferBatch*)pointers_array[i]);
308 if (UNLIKELY(!b))
309 return false;
310 b->Clear();
312 b->Add((void*)pointers_array[i]);
313 if (b->Count() == max_count) {
314 sci->free_list.push_back(b);
315 b = nullptr;
318 *current_batch = b;
319 return true;
322 bool PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
323 SizeClassInfo *sci, uptr class_id) {
324 const uptr region = AllocateRegion(stat, class_id);
325 if (UNLIKELY(!region))
326 return false;
327 if (kRandomShuffleChunks)
328 if (UNLIKELY(sci->rand_state == 0))
329 // The random state is initialized from ASLR (PIE) and time.
330 sci->rand_state = reinterpret_cast<uptr>(sci) ^ NanoTime();
331 const uptr size = ClassIdToSize(class_id);
332 const uptr n_chunks = kRegionSize / (size + kMetadataSize);
333 const uptr max_count = TransferBatch::MaxCached(size);
334 DCHECK_GT(max_count, 0);
335 TransferBatch *b = nullptr;
336 constexpr uptr kShuffleArraySize = 48;
337 uptr shuffle_array[kShuffleArraySize];
338 uptr count = 0;
339 for (uptr i = region; i < region + n_chunks * size; i += size) {
340 shuffle_array[count++] = i;
341 if (count == kShuffleArraySize) {
342 if (UNLIKELY(!PopulateBatches(c, sci, class_id, &b, max_count,
343 shuffle_array, count)))
344 return false;
345 count = 0;
348 if (count) {
349 if (UNLIKELY(!PopulateBatches(c, sci, class_id, &b, max_count,
350 shuffle_array, count)))
351 return false;
353 if (b) {
354 CHECK_GT(b->Count(), 0);
355 sci->free_list.push_back(b);
357 return true;
360 ByteMap possible_regions;
361 SizeClassInfo size_class_info_array[kNumClasses];