1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
30 with Errout
; use Errout
;
31 with Exp_Util
; use Exp_Util
;
32 with Fname
; use Fname
;
33 with Itypes
; use Itypes
;
35 with Lib
.Xref
; use Lib
.Xref
;
36 with Namet
; use Namet
;
37 with Namet
.Sp
; use Namet
.Sp
;
38 with Nlists
; use Nlists
;
39 with Nmake
; use Nmake
;
41 with Output
; use Output
;
42 with Restrict
; use Restrict
;
43 with Rident
; use Rident
;
45 with Sem_Aux
; use Sem_Aux
;
46 with Sem_Case
; use Sem_Case
;
47 with Sem_Cat
; use Sem_Cat
;
48 with Sem_Ch3
; use Sem_Ch3
;
49 with Sem_Ch5
; use Sem_Ch5
;
50 with Sem_Ch6
; use Sem_Ch6
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Disp
; use Sem_Disp
;
53 with Sem_Dist
; use Sem_Dist
;
54 with Sem_Eval
; use Sem_Eval
;
55 with Sem_Res
; use Sem_Res
;
56 with Sem_Type
; use Sem_Type
;
57 with Sem_Util
; use Sem_Util
;
58 with Sem_Warn
; use Sem_Warn
;
59 with Stand
; use Stand
;
60 with Sinfo
; use Sinfo
;
61 with Snames
; use Snames
;
62 with Tbuild
; use Tbuild
;
64 package body Sem_Ch4
is
66 -----------------------
67 -- Local Subprograms --
68 -----------------------
70 procedure Analyze_Concatenation_Rest
(N
: Node_Id
);
71 -- Does the "rest" of the work of Analyze_Concatenation, after the left
72 -- operand has been analyzed. See Analyze_Concatenation for details.
74 procedure Analyze_Expression
(N
: Node_Id
);
75 -- For expressions that are not names, this is just a call to analyze.
76 -- If the expression is a name, it may be a call to a parameterless
77 -- function, and if so must be converted into an explicit call node
78 -- and analyzed as such. This deproceduring must be done during the first
79 -- pass of overload resolution, because otherwise a procedure call with
80 -- overloaded actuals may fail to resolve.
82 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
);
83 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
84 -- is an operator name or an expanded name whose selector is an operator
85 -- name, and one possible interpretation is as a predefined operator.
87 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
);
88 -- If the prefix of a selected_component is overloaded, the proper
89 -- interpretation that yields a record type with the proper selector
90 -- name must be selected.
92 procedure Analyze_User_Defined_Binary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
93 -- Procedure to analyze a user defined binary operator, which is resolved
94 -- like a function, but instead of a list of actuals it is presented
95 -- with the left and right operands of an operator node.
97 procedure Analyze_User_Defined_Unary_Op
(N
: Node_Id
; Op_Id
: Entity_Id
);
98 -- Procedure to analyze a user defined unary operator, which is resolved
99 -- like a function, but instead of a list of actuals, it is presented with
100 -- the operand of the operator node.
102 procedure Ambiguous_Operands
(N
: Node_Id
);
103 -- For equality, membership, and comparison operators with overloaded
104 -- arguments, list possible interpretations.
106 procedure Analyze_One_Call
110 Success
: out Boolean;
111 Skip_First
: Boolean := False);
112 -- Check one interpretation of an overloaded subprogram name for
113 -- compatibility with the types of the actuals in a call. If there is a
114 -- single interpretation which does not match, post error if Report is
117 -- Nam is the entity that provides the formals against which the actuals
118 -- are checked. Nam is either the name of a subprogram, or the internal
119 -- subprogram type constructed for an access_to_subprogram. If the actuals
120 -- are compatible with Nam, then Nam is added to the list of candidate
121 -- interpretations for N, and Success is set to True.
123 -- The flag Skip_First is used when analyzing a call that was rewritten
124 -- from object notation. In this case the first actual may have to receive
125 -- an explicit dereference, depending on the first formal of the operation
126 -- being called. The caller will have verified that the object is legal
127 -- for the call. If the remaining parameters match, the first parameter
128 -- will rewritten as a dereference if needed, prior to completing analysis.
130 procedure Check_Misspelled_Selector
133 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
134 -- spelling of one of the selectors of the Prefix. This is called by
135 -- Analyze_Selected_Component after producing an invalid selector error
138 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean;
139 -- Verify that type T is declared in scope S. Used to find interpretations
140 -- for operators given by expanded names. This is abstracted as a separate
141 -- function to handle extensions to System, where S is System, but T is
142 -- declared in the extension.
144 procedure Find_Arithmetic_Types
148 -- L and R are the operands of an arithmetic operator. Find
149 -- consistent pairs of interpretations for L and R that have a
150 -- numeric type consistent with the semantics of the operator.
152 procedure Find_Comparison_Types
156 -- L and R are operands of a comparison operator. Find consistent
157 -- pairs of interpretations for L and R.
159 procedure Find_Concatenation_Types
163 -- For the four varieties of concatenation
165 procedure Find_Equality_Types
169 -- Ditto for equality operators
171 procedure Find_Boolean_Types
175 -- Ditto for binary logical operations
177 procedure Find_Negation_Types
181 -- Find consistent interpretation for operand of negation operator
183 procedure Find_Non_Universal_Interpretations
188 -- For equality and comparison operators, the result is always boolean,
189 -- and the legality of the operation is determined from the visibility
190 -- of the operand types. If one of the operands has a universal interpre-
191 -- tation, the legality check uses some compatible non-universal
192 -- interpretation of the other operand. N can be an operator node, or
193 -- a function call whose name is an operator designator.
195 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean;
196 -- Find candidate interpretations for the name Obj.Proc when it appears
197 -- in a subprogram renaming declaration.
199 procedure Find_Unary_Types
203 -- Unary arithmetic types: plus, minus, abs
205 procedure Check_Arithmetic_Pair
209 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
210 -- types for left and right operand. Determine whether they constitute
211 -- a valid pair for the given operator, and record the corresponding
212 -- interpretation of the operator node. The node N may be an operator
213 -- node (the usual case) or a function call whose prefix is an operator
214 -- designator. In both cases Op_Id is the operator name itself.
216 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
);
217 -- Give detailed information on overloaded call where none of the
218 -- interpretations match. N is the call node, Nam the designator for
219 -- the overloaded entity being called.
221 function Junk_Operand
(N
: Node_Id
) return Boolean;
222 -- Test for an operand that is an inappropriate entity (e.g. a package
223 -- name or a label). If so, issue an error message and return True. If
224 -- the operand is not an inappropriate entity kind, return False.
226 procedure Operator_Check
(N
: Node_Id
);
227 -- Verify that an operator has received some valid interpretation. If none
228 -- was found, determine whether a use clause would make the operation
229 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
230 -- every type compatible with the operator, even if the operator for the
231 -- type is not directly visible. The routine uses this type to emit a more
232 -- informative message.
234 function Process_Implicit_Dereference_Prefix
236 P
: Node_Id
) return Entity_Id
;
237 -- Called when P is the prefix of an implicit dereference, denoting an
238 -- object E. The function returns the designated type of the prefix, taking
239 -- into account that the designated type of an anonymous access type may be
240 -- a limited view, when the non-limited view is visible.
241 -- If in semantics only mode (-gnatc or generic), the function also records
242 -- that the prefix is a reference to E, if any. Normally, such a reference
243 -- is generated only when the implicit dereference is expanded into an
244 -- explicit one, but for consistency we must generate the reference when
245 -- expansion is disabled as well.
247 procedure Remove_Abstract_Operations
(N
: Node_Id
);
248 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
249 -- operation is not a candidate interpretation.
251 function Try_Indexed_Call
255 Skip_First
: Boolean) return Boolean;
256 -- If a function has defaults for all its actuals, a call to it may in fact
257 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
258 -- interpretation as an indexing, prior to analysis as a call. If both are
259 -- possible, the node is overloaded with both interpretations (same symbol
260 -- but two different types). If the call is written in prefix form, the
261 -- prefix becomes the first parameter in the call, and only the remaining
262 -- actuals must be checked for the presence of defaults.
264 function Try_Indirect_Call
267 Typ
: Entity_Id
) return Boolean;
268 -- Similarly, a function F that needs no actuals can return an access to a
269 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
270 -- the call may be overloaded with both interpretations.
272 function Try_Object_Operation
(N
: Node_Id
) return Boolean;
273 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
274 -- is a call in this notation, it is transformed into a normal subprogram
275 -- call where the prefix is a parameter, and True is returned. If node
276 -- N is not of this form, it is unchanged, and False is returned.
278 procedure wpo
(T
: Entity_Id
);
279 pragma Warnings
(Off
, wpo
);
280 -- Used for debugging: obtain list of primitive operations even if
281 -- type is not frozen and dispatch table is not built yet.
283 ------------------------
284 -- Ambiguous_Operands --
285 ------------------------
287 procedure Ambiguous_Operands
(N
: Node_Id
) is
288 procedure List_Operand_Interps
(Opnd
: Node_Id
);
290 --------------------------
291 -- List_Operand_Interps --
292 --------------------------
294 procedure List_Operand_Interps
(Opnd
: Node_Id
) is
299 if Is_Overloaded
(Opnd
) then
300 if Nkind
(Opnd
) in N_Op
then
302 elsif Nkind
(Opnd
) = N_Function_Call
then
312 if Opnd
= Left_Opnd
(N
) then
313 Error_Msg_N
("\left operand has the following interpretations", N
);
316 ("\right operand has the following interpretations", N
);
320 List_Interps
(Nam
, Err
);
321 end List_Operand_Interps
;
323 -- Start of processing for Ambiguous_Operands
326 if Nkind
(N
) in N_Membership_Test
then
327 Error_Msg_N
("ambiguous operands for membership", N
);
329 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
) then
330 Error_Msg_N
("ambiguous operands for equality", N
);
333 Error_Msg_N
("ambiguous operands for comparison", N
);
336 if All_Errors_Mode
then
337 List_Operand_Interps
(Left_Opnd
(N
));
338 List_Operand_Interps
(Right_Opnd
(N
));
340 Error_Msg_N
("\use -gnatf switch for details", N
);
342 end Ambiguous_Operands
;
344 -----------------------
345 -- Analyze_Aggregate --
346 -----------------------
348 -- Most of the analysis of Aggregates requires that the type be known,
349 -- and is therefore put off until resolution.
351 procedure Analyze_Aggregate
(N
: Node_Id
) is
353 if No
(Etype
(N
)) then
354 Set_Etype
(N
, Any_Composite
);
356 end Analyze_Aggregate
;
358 -----------------------
359 -- Analyze_Allocator --
360 -----------------------
362 procedure Analyze_Allocator
(N
: Node_Id
) is
363 Loc
: constant Source_Ptr
:= Sloc
(N
);
364 Sav_Errs
: constant Nat
:= Serious_Errors_Detected
;
365 E
: Node_Id
:= Expression
(N
);
366 Acc_Type
: Entity_Id
;
372 -- Deal with allocator restrictions
374 -- In accordance with H.4(7), the No_Allocators restriction only applies
375 -- to user-written allocators. The same consideration applies to the
376 -- No_Allocators_Before_Elaboration restriction.
378 if Comes_From_Source
(N
) then
379 Check_Restriction
(No_Allocators
, N
);
381 -- Processing for No_Allocators_After_Elaboration, loop to look at
382 -- enclosing context, checking task case and main subprogram case.
386 while Present
(P
) loop
388 -- In both cases we need a handled sequence of statements, where
389 -- the occurrence of the allocator is within the statements.
391 if Nkind
(P
) = N_Handled_Sequence_Of_Statements
392 and then Is_List_Member
(C
)
393 and then List_Containing
(C
) = Statements
(P
)
395 -- Check for allocator within task body, this is a definite
396 -- violation of No_Allocators_After_Elaboration we can detect.
398 if Nkind
(Original_Node
(Parent
(P
))) = N_Task_Body
then
399 Check_Restriction
(No_Allocators_After_Elaboration
, N
);
403 -- The other case is appearance in a subprogram body. This may
404 -- be a violation if this is a library level subprogram, and it
405 -- turns out to be used as the main program, but only the
406 -- binder knows that, so just record the occurrence.
408 if Nkind
(Original_Node
(Parent
(P
))) = N_Subprogram_Body
409 and then Nkind
(Parent
(Parent
(P
))) = N_Compilation_Unit
411 Set_Has_Allocator
(Current_Sem_Unit
);
420 -- Analyze the allocator
422 if Nkind
(E
) = N_Qualified_Expression
then
423 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
424 Set_Etype
(Acc_Type
, Acc_Type
);
425 Find_Type
(Subtype_Mark
(E
));
427 -- Analyze the qualified expression, and apply the name resolution
428 -- rule given in 4.7 (3).
431 Type_Id
:= Etype
(E
);
432 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
434 Resolve
(Expression
(E
), Type_Id
);
436 if Is_Limited_Type
(Type_Id
)
437 and then Comes_From_Source
(N
)
438 and then not In_Instance_Body
440 if not OK_For_Limited_Init
(Type_Id
, Expression
(E
)) then
441 Error_Msg_N
("initialization not allowed for limited types", N
);
442 Explain_Limited_Type
(Type_Id
, N
);
446 -- A qualified expression requires an exact match of the type,
447 -- class-wide matching is not allowed.
449 -- if Is_Class_Wide_Type (Type_Id)
450 -- and then Base_Type
451 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
453 -- Wrong_Type (Expression (E), Type_Id);
456 Check_Non_Static_Context
(Expression
(E
));
458 -- We don't analyze the qualified expression itself because it's
459 -- part of the allocator
461 Set_Etype
(E
, Type_Id
);
463 -- Case where allocator has a subtype indication
468 Base_Typ
: Entity_Id
;
471 -- If the allocator includes a N_Subtype_Indication then a
472 -- constraint is present, otherwise the node is a subtype mark.
473 -- Introduce an explicit subtype declaration into the tree
474 -- defining some anonymous subtype and rewrite the allocator to
475 -- use this subtype rather than the subtype indication.
477 -- It is important to introduce the explicit subtype declaration
478 -- so that the bounds of the subtype indication are attached to
479 -- the tree in case the allocator is inside a generic unit.
481 if Nkind
(E
) = N_Subtype_Indication
then
483 -- A constraint is only allowed for a composite type in Ada
484 -- 95. In Ada 83, a constraint is also allowed for an
485 -- access-to-composite type, but the constraint is ignored.
487 Find_Type
(Subtype_Mark
(E
));
488 Base_Typ
:= Entity
(Subtype_Mark
(E
));
490 if Is_Elementary_Type
(Base_Typ
) then
491 if not (Ada_Version
= Ada_83
492 and then Is_Access_Type
(Base_Typ
))
494 Error_Msg_N
("constraint not allowed here", E
);
496 if Nkind
(Constraint
(E
)) =
497 N_Index_Or_Discriminant_Constraint
499 Error_Msg_N
-- CODEFIX
500 ("\if qualified expression was meant, " &
501 "use apostrophe", Constraint
(E
));
505 -- Get rid of the bogus constraint:
507 Rewrite
(E
, New_Copy_Tree
(Subtype_Mark
(E
)));
508 Analyze_Allocator
(N
);
511 -- Ada 2005, AI-363: if the designated type has a constrained
512 -- partial view, it cannot receive a discriminant constraint,
513 -- and the allocated object is unconstrained.
515 elsif Ada_Version
>= Ada_2005
516 and then Has_Constrained_Partial_View
(Base_Typ
)
519 ("constraint no allowed when type " &
520 "has a constrained partial view", Constraint
(E
));
523 if Expander_Active
then
524 Def_Id
:= Make_Temporary
(Loc
, 'S');
527 Make_Subtype_Declaration
(Loc
,
528 Defining_Identifier
=> Def_Id
,
529 Subtype_Indication
=> Relocate_Node
(E
)));
531 if Sav_Errs
/= Serious_Errors_Detected
532 and then Nkind
(Constraint
(E
)) =
533 N_Index_Or_Discriminant_Constraint
535 Error_Msg_N
-- CODEFIX
536 ("if qualified expression was meant, " &
537 "use apostrophe!", Constraint
(E
));
540 E
:= New_Occurrence_Of
(Def_Id
, Loc
);
541 Rewrite
(Expression
(N
), E
);
545 Type_Id
:= Process_Subtype
(E
, N
);
546 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
547 Set_Etype
(Acc_Type
, Acc_Type
);
548 Set_Directly_Designated_Type
(Acc_Type
, Type_Id
);
549 Check_Fully_Declared
(Type_Id
, N
);
551 -- Ada 2005 (AI-231): If the designated type is itself an access
552 -- type that excludes null, its default initialization will
553 -- be a null object, and we can insert an unconditional raise
554 -- before the allocator.
556 -- Ada 2012 (AI-104): A not null indication here is altogether
559 if Can_Never_Be_Null
(Type_Id
) then
561 Not_Null_Check
: constant Node_Id
:=
562 Make_Raise_Constraint_Error
(Sloc
(E
),
563 Reason
=> CE_Null_Not_Allowed
);
566 if Ada_Version
>= Ada_2012
then
568 ("an uninitialized allocator cannot have"
569 & " a null exclusion", N
);
571 elsif Expander_Active
then
572 Insert_Action
(N
, Not_Null_Check
);
573 Analyze
(Not_Null_Check
);
576 Error_Msg_N
("null value not allowed here?", E
);
581 -- Check restriction against dynamically allocated protected
582 -- objects. Note that when limited aggregates are supported,
583 -- a similar test should be applied to an allocator with a
584 -- qualified expression ???
586 if Is_Protected_Type
(Type_Id
) then
587 Check_Restriction
(No_Protected_Type_Allocators
, N
);
590 -- Check for missing initialization. Skip this check if we already
591 -- had errors on analyzing the allocator, since in that case these
592 -- are probably cascaded errors.
594 if Is_Indefinite_Subtype
(Type_Id
)
595 and then Serious_Errors_Detected
= Sav_Errs
597 if Is_Class_Wide_Type
(Type_Id
) then
599 ("initialization required in class-wide allocation", N
);
601 if Ada_Version
< Ada_2005
602 and then Is_Limited_Type
(Type_Id
)
604 Error_Msg_N
("unconstrained allocation not allowed", N
);
606 if Is_Array_Type
(Type_Id
) then
608 ("\constraint with array bounds required", N
);
610 elsif Has_Unknown_Discriminants
(Type_Id
) then
613 else pragma Assert
(Has_Discriminants
(Type_Id
));
615 ("\constraint with discriminant values required", N
);
618 -- Limited Ada 2005 and general non-limited case
622 ("uninitialized unconstrained allocation not allowed",
625 if Is_Array_Type
(Type_Id
) then
627 ("\qualified expression or constraint with " &
628 "array bounds required", N
);
630 elsif Has_Unknown_Discriminants
(Type_Id
) then
631 Error_Msg_N
("\qualified expression required", N
);
633 else pragma Assert
(Has_Discriminants
(Type_Id
));
635 ("\qualified expression or constraint with " &
636 "discriminant values required", N
);
644 if Is_Abstract_Type
(Type_Id
) then
645 Error_Msg_N
("cannot allocate abstract object", E
);
648 if Has_Task
(Designated_Type
(Acc_Type
)) then
649 Check_Restriction
(No_Tasking
, N
);
650 Check_Restriction
(Max_Tasks
, N
);
651 Check_Restriction
(No_Task_Allocators
, N
);
653 -- Check that an allocator with task parts isn't for a nested access
654 -- type when restriction No_Task_Hierarchy applies.
656 if not Is_Library_Level_Entity
(Acc_Type
) then
657 Check_Restriction
(No_Task_Hierarchy
, N
);
661 -- Check that an allocator of a nested access type doesn't create a
662 -- protected object when restriction No_Local_Protected_Objects applies.
663 -- We don't have an equivalent to Has_Task for protected types, so only
664 -- cases where the designated type itself is a protected type are
665 -- currently checked. ???
667 if Is_Protected_Type
(Designated_Type
(Acc_Type
))
668 and then not Is_Library_Level_Entity
(Acc_Type
)
670 Check_Restriction
(No_Local_Protected_Objects
, N
);
673 -- If the No_Streams restriction is set, check that the type of the
674 -- object is not, and does not contain, any subtype derived from
675 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
676 -- Has_Stream just for efficiency reasons. There is no point in
677 -- spending time on a Has_Stream check if the restriction is not set.
679 if Restriction_Check_Required
(No_Streams
) then
680 if Has_Stream
(Designated_Type
(Acc_Type
)) then
681 Check_Restriction
(No_Streams
, N
);
685 Set_Etype
(N
, Acc_Type
);
687 if not Is_Library_Level_Entity
(Acc_Type
) then
688 Check_Restriction
(No_Local_Allocators
, N
);
691 if Serious_Errors_Detected
> Sav_Errs
then
692 Set_Error_Posted
(N
);
693 Set_Etype
(N
, Any_Type
);
695 end Analyze_Allocator
;
697 ---------------------------
698 -- Analyze_Arithmetic_Op --
699 ---------------------------
701 procedure Analyze_Arithmetic_Op
(N
: Node_Id
) is
702 L
: constant Node_Id
:= Left_Opnd
(N
);
703 R
: constant Node_Id
:= Right_Opnd
(N
);
707 Candidate_Type
:= Empty
;
708 Analyze_Expression
(L
);
709 Analyze_Expression
(R
);
711 -- If the entity is already set, the node is the instantiation of a
712 -- generic node with a non-local reference, or was manufactured by a
713 -- call to Make_Op_xxx. In either case the entity is known to be valid,
714 -- and we do not need to collect interpretations, instead we just get
715 -- the single possible interpretation.
719 if Present
(Op_Id
) then
720 if Ekind
(Op_Id
) = E_Operator
then
722 if Nkind_In
(N
, N_Op_Divide
, N_Op_Mod
, N_Op_Multiply
, N_Op_Rem
)
723 and then Treat_Fixed_As_Integer
(N
)
727 Set_Etype
(N
, Any_Type
);
728 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
732 Set_Etype
(N
, Any_Type
);
733 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
736 -- Entity is not already set, so we do need to collect interpretations
739 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
740 Set_Etype
(N
, Any_Type
);
742 while Present
(Op_Id
) loop
743 if Ekind
(Op_Id
) = E_Operator
744 and then Present
(Next_Entity
(First_Entity
(Op_Id
)))
746 Find_Arithmetic_Types
(L
, R
, Op_Id
, N
);
748 -- The following may seem superfluous, because an operator cannot
749 -- be generic, but this ignores the cleverness of the author of
752 elsif Is_Overloadable
(Op_Id
) then
753 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
756 Op_Id
:= Homonym
(Op_Id
);
761 end Analyze_Arithmetic_Op
;
767 -- Function, procedure, and entry calls are checked here. The Name in
768 -- the call may be overloaded. The actuals have been analyzed and may
769 -- themselves be overloaded. On exit from this procedure, the node N
770 -- may have zero, one or more interpretations. In the first case an
771 -- error message is produced. In the last case, the node is flagged
772 -- as overloaded and the interpretations are collected in All_Interp.
774 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
775 -- the type-checking is similar to that of other calls.
777 procedure Analyze_Call
(N
: Node_Id
) is
778 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
783 Success
: Boolean := False;
785 Deref
: Boolean := False;
786 -- Flag indicates whether an interpretation of the prefix is a
787 -- parameterless call that returns an access_to_subprogram.
789 function Name_Denotes_Function
return Boolean;
790 -- If the type of the name is an access to subprogram, this may be the
791 -- type of a name, or the return type of the function being called. If
792 -- the name is not an entity then it can denote a protected function.
793 -- Until we distinguish Etype from Return_Type, we must use this routine
794 -- to resolve the meaning of the name in the call.
796 procedure No_Interpretation
;
797 -- Output error message when no valid interpretation exists
799 ---------------------------
800 -- Name_Denotes_Function --
801 ---------------------------
803 function Name_Denotes_Function
return Boolean is
805 if Is_Entity_Name
(Nam
) then
806 return Ekind
(Entity
(Nam
)) = E_Function
;
808 elsif Nkind
(Nam
) = N_Selected_Component
then
809 return Ekind
(Entity
(Selector_Name
(Nam
))) = E_Function
;
814 end Name_Denotes_Function
;
816 -----------------------
817 -- No_Interpretation --
818 -----------------------
820 procedure No_Interpretation
is
821 L
: constant Boolean := Is_List_Member
(N
);
822 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
825 -- If the node is in a list whose parent is not an expression then it
826 -- must be an attempted procedure call.
828 if L
and then K
not in N_Subexpr
then
829 if Ekind
(Entity
(Nam
)) = E_Generic_Procedure
then
831 ("must instantiate generic procedure& before call",
835 ("procedure or entry name expected", Nam
);
838 -- Check for tasking cases where only an entry call will do
841 and then Nkind_In
(K
, N_Entry_Call_Alternative
,
842 N_Triggering_Alternative
)
844 Error_Msg_N
("entry name expected", Nam
);
846 -- Otherwise give general error message
849 Error_Msg_N
("invalid prefix in call", Nam
);
851 end No_Interpretation
;
853 -- Start of processing for Analyze_Call
856 -- Initialize the type of the result of the call to the error type,
857 -- which will be reset if the type is successfully resolved.
859 Set_Etype
(N
, Any_Type
);
863 if not Is_Overloaded
(Nam
) then
865 -- Only one interpretation to check
867 if Ekind
(Etype
(Nam
)) = E_Subprogram_Type
then
868 Nam_Ent
:= Etype
(Nam
);
870 -- If the prefix is an access_to_subprogram, this may be an indirect
871 -- call. This is the case if the name in the call is not an entity
872 -- name, or if it is a function name in the context of a procedure
873 -- call. In this latter case, we have a call to a parameterless
874 -- function that returns a pointer_to_procedure which is the entity
875 -- being called. Finally, F (X) may be a call to a parameterless
876 -- function that returns a pointer to a function with parameters.
878 elsif Is_Access_Type
(Etype
(Nam
))
879 and then Ekind
(Designated_Type
(Etype
(Nam
))) = E_Subprogram_Type
881 (not Name_Denotes_Function
882 or else Nkind
(N
) = N_Procedure_Call_Statement
884 (Nkind
(Parent
(N
)) /= N_Explicit_Dereference
885 and then Is_Entity_Name
(Nam
)
886 and then No
(First_Formal
(Entity
(Nam
)))
887 and then Present
(Actuals
)))
889 Nam_Ent
:= Designated_Type
(Etype
(Nam
));
890 Insert_Explicit_Dereference
(Nam
);
892 -- Selected component case. Simple entry or protected operation,
893 -- where the entry name is given by the selector name.
895 elsif Nkind
(Nam
) = N_Selected_Component
then
896 Nam_Ent
:= Entity
(Selector_Name
(Nam
));
898 if not Ekind_In
(Nam_Ent
, E_Entry
,
903 Error_Msg_N
("name in call is not a callable entity", Nam
);
904 Set_Etype
(N
, Any_Type
);
908 -- If the name is an Indexed component, it can be a call to a member
909 -- of an entry family. The prefix must be a selected component whose
910 -- selector is the entry. Analyze_Procedure_Call normalizes several
911 -- kinds of call into this form.
913 elsif Nkind
(Nam
) = N_Indexed_Component
then
914 if Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
915 Nam_Ent
:= Entity
(Selector_Name
(Prefix
(Nam
)));
917 Error_Msg_N
("name in call is not a callable entity", Nam
);
918 Set_Etype
(N
, Any_Type
);
922 elsif not Is_Entity_Name
(Nam
) then
923 Error_Msg_N
("name in call is not a callable entity", Nam
);
924 Set_Etype
(N
, Any_Type
);
928 Nam_Ent
:= Entity
(Nam
);
930 -- If no interpretations, give error message
932 if not Is_Overloadable
(Nam_Ent
) then
938 -- Operations generated for RACW stub types are called only through
939 -- dispatching, and can never be the static interpretation of a call.
941 if Is_RACW_Stub_Type_Operation
(Nam_Ent
) then
946 Analyze_One_Call
(N
, Nam_Ent
, True, Success
);
948 -- If this is an indirect call, the return type of the access_to
949 -- subprogram may be an incomplete type. At the point of the call,
950 -- use the full type if available, and at the same time update the
951 -- return type of the access_to_subprogram.
954 and then Nkind
(Nam
) = N_Explicit_Dereference
955 and then Ekind
(Etype
(N
)) = E_Incomplete_Type
956 and then Present
(Full_View
(Etype
(N
)))
958 Set_Etype
(N
, Full_View
(Etype
(N
)));
959 Set_Etype
(Nam_Ent
, Etype
(N
));
963 -- An overloaded selected component must denote overloaded operations
964 -- of a concurrent type. The interpretations are attached to the
965 -- simple name of those operations.
967 if Nkind
(Nam
) = N_Selected_Component
then
968 Nam
:= Selector_Name
(Nam
);
971 Get_First_Interp
(Nam
, X
, It
);
973 while Present
(It
.Nam
) loop
977 -- Name may be call that returns an access to subprogram, or more
978 -- generally an overloaded expression one of whose interpretations
979 -- yields an access to subprogram. If the name is an entity, we do
980 -- not dereference, because the node is a call that returns the
981 -- access type: note difference between f(x), where the call may
982 -- return an access subprogram type, and f(x)(y), where the type
983 -- returned by the call to f is implicitly dereferenced to analyze
986 if Is_Access_Type
(Nam_Ent
) then
987 Nam_Ent
:= Designated_Type
(Nam_Ent
);
989 elsif Is_Access_Type
(Etype
(Nam_Ent
))
991 (not Is_Entity_Name
(Nam
)
992 or else Nkind
(N
) = N_Procedure_Call_Statement
)
993 and then Ekind
(Designated_Type
(Etype
(Nam_Ent
)))
996 Nam_Ent
:= Designated_Type
(Etype
(Nam_Ent
));
998 if Is_Entity_Name
(Nam
) then
1003 -- If the call has been rewritten from a prefixed call, the first
1004 -- parameter has been analyzed, but may need a subsequent
1005 -- dereference, so skip its analysis now.
1007 if N
/= Original_Node
(N
)
1008 and then Nkind
(Original_Node
(N
)) = Nkind
(N
)
1009 and then Nkind
(Name
(N
)) /= Nkind
(Name
(Original_Node
(N
)))
1010 and then Present
(Parameter_Associations
(N
))
1011 and then Present
(Etype
(First
(Parameter_Associations
(N
))))
1014 (N
, Nam_Ent
, False, Success
, Skip_First
=> True);
1016 Analyze_One_Call
(N
, Nam_Ent
, False, Success
);
1019 -- If the interpretation succeeds, mark the proper type of the
1020 -- prefix (any valid candidate will do). If not, remove the
1021 -- candidate interpretation. This only needs to be done for
1022 -- overloaded protected operations, for other entities disambi-
1023 -- guation is done directly in Resolve.
1027 and then Nkind
(Parent
(N
)) /= N_Explicit_Dereference
1029 Set_Entity
(Nam
, It
.Nam
);
1030 Insert_Explicit_Dereference
(Nam
);
1031 Set_Etype
(Nam
, Nam_Ent
);
1034 Set_Etype
(Nam
, It
.Typ
);
1037 elsif Nkind_In
(Name
(N
), N_Selected_Component
,
1043 Get_Next_Interp
(X
, It
);
1046 -- If the name is the result of a function call, it can only
1047 -- be a call to a function returning an access to subprogram.
1048 -- Insert explicit dereference.
1050 if Nkind
(Nam
) = N_Function_Call
then
1051 Insert_Explicit_Dereference
(Nam
);
1054 if Etype
(N
) = Any_Type
then
1056 -- None of the interpretations is compatible with the actuals
1058 Diagnose_Call
(N
, Nam
);
1060 -- Special checks for uninstantiated put routines
1062 if Nkind
(N
) = N_Procedure_Call_Statement
1063 and then Is_Entity_Name
(Nam
)
1064 and then Chars
(Nam
) = Name_Put
1065 and then List_Length
(Actuals
) = 1
1068 Arg
: constant Node_Id
:= First
(Actuals
);
1072 if Nkind
(Arg
) = N_Parameter_Association
then
1073 Typ
:= Etype
(Explicit_Actual_Parameter
(Arg
));
1078 if Is_Signed_Integer_Type
(Typ
) then
1080 ("possible missing instantiation of " &
1081 "'Text_'I'O.'Integer_'I'O!", Nam
);
1083 elsif Is_Modular_Integer_Type
(Typ
) then
1085 ("possible missing instantiation of " &
1086 "'Text_'I'O.'Modular_'I'O!", Nam
);
1088 elsif Is_Floating_Point_Type
(Typ
) then
1090 ("possible missing instantiation of " &
1091 "'Text_'I'O.'Float_'I'O!", Nam
);
1093 elsif Is_Ordinary_Fixed_Point_Type
(Typ
) then
1095 ("possible missing instantiation of " &
1096 "'Text_'I'O.'Fixed_'I'O!", Nam
);
1098 elsif Is_Decimal_Fixed_Point_Type
(Typ
) then
1100 ("possible missing instantiation of " &
1101 "'Text_'I'O.'Decimal_'I'O!", Nam
);
1103 elsif Is_Enumeration_Type
(Typ
) then
1105 ("possible missing instantiation of " &
1106 "'Text_'I'O.'Enumeration_'I'O!", Nam
);
1111 elsif not Is_Overloaded
(N
)
1112 and then Is_Entity_Name
(Nam
)
1114 -- Resolution yields a single interpretation. Verify that the
1115 -- reference has capitalization consistent with the declaration.
1117 Set_Entity_With_Style_Check
(Nam
, Entity
(Nam
));
1118 Generate_Reference
(Entity
(Nam
), Nam
);
1120 Set_Etype
(Nam
, Etype
(Entity
(Nam
)));
1122 Remove_Abstract_Operations
(N
);
1129 -----------------------------
1130 -- Analyze_Case_Expression --
1131 -----------------------------
1133 procedure Analyze_Case_Expression
(N
: Node_Id
) is
1134 Expr
: constant Node_Id
:= Expression
(N
);
1135 FirstX
: constant Node_Id
:= Expression
(First
(Alternatives
(N
)));
1137 Exp_Type
: Entity_Id
;
1138 Exp_Btype
: Entity_Id
;
1140 Dont_Care
: Boolean;
1141 Others_Present
: Boolean;
1143 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1144 -- Error routine invoked by the generic instantiation below when
1145 -- the case expression has a non static choice.
1147 package Case_Choices_Processing
is new
1148 Generic_Choices_Processing
1149 (Get_Alternatives
=> Alternatives
,
1150 Get_Choices
=> Discrete_Choices
,
1151 Process_Empty_Choice
=> No_OP
,
1152 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1153 Process_Associated_Node
=> No_OP
);
1154 use Case_Choices_Processing
;
1156 -----------------------------
1157 -- Non_Static_Choice_Error --
1158 -----------------------------
1160 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1162 Flag_Non_Static_Expr
1163 ("choice given in case expression is not static!", Choice
);
1164 end Non_Static_Choice_Error
;
1166 -- Start of processing for Analyze_Case_Expression
1169 if Comes_From_Source
(N
) then
1170 Check_Compiler_Unit
(N
);
1173 Analyze_And_Resolve
(Expr
, Any_Discrete
);
1174 Check_Unset_Reference
(Expr
);
1175 Exp_Type
:= Etype
(Expr
);
1176 Exp_Btype
:= Base_Type
(Exp_Type
);
1178 Alt
:= First
(Alternatives
(N
));
1179 while Present
(Alt
) loop
1180 Analyze
(Expression
(Alt
));
1184 if not Is_Overloaded
(FirstX
) then
1185 Set_Etype
(N
, Etype
(FirstX
));
1193 Set_Etype
(N
, Any_Type
);
1195 Get_First_Interp
(FirstX
, I
, It
);
1196 while Present
(It
.Nam
) loop
1198 -- For each interpretation of the first expression, we only
1199 -- add the interpretation if every other expression in the
1200 -- case expression alternatives has a compatible type.
1202 Alt
:= Next
(First
(Alternatives
(N
)));
1203 while Present
(Alt
) loop
1204 exit when not Has_Compatible_Type
(Expression
(Alt
), It
.Typ
);
1209 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
1212 Get_Next_Interp
(I
, It
);
1217 Exp_Btype
:= Base_Type
(Exp_Type
);
1219 -- The expression must be of a discrete type which must be determinable
1220 -- independently of the context in which the expression occurs, but
1221 -- using the fact that the expression must be of a discrete type.
1222 -- Moreover, the type this expression must not be a character literal
1223 -- (which is always ambiguous).
1225 -- If error already reported by Resolve, nothing more to do
1227 if Exp_Btype
= Any_Discrete
1228 or else Exp_Btype
= Any_Type
1232 elsif Exp_Btype
= Any_Character
then
1234 ("character literal as case expression is ambiguous", Expr
);
1238 -- If the case expression is a formal object of mode in out, then
1239 -- treat it as having a nonstatic subtype by forcing use of the base
1240 -- type (which has to get passed to Check_Case_Choices below). Also
1241 -- use base type when the case expression is parenthesized.
1243 if Paren_Count
(Expr
) > 0
1244 or else (Is_Entity_Name
(Expr
)
1245 and then Ekind
(Entity
(Expr
)) = E_Generic_In_Out_Parameter
)
1247 Exp_Type
:= Exp_Btype
;
1250 -- Call instantiated Analyze_Choices which does the rest of the work
1252 Analyze_Choices
(N
, Exp_Type
, Dont_Care
, Others_Present
);
1254 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1256 ("case on universal integer requires OTHERS choice", Expr
);
1258 end Analyze_Case_Expression
;
1260 ---------------------------
1261 -- Analyze_Comparison_Op --
1262 ---------------------------
1264 procedure Analyze_Comparison_Op
(N
: Node_Id
) is
1265 L
: constant Node_Id
:= Left_Opnd
(N
);
1266 R
: constant Node_Id
:= Right_Opnd
(N
);
1267 Op_Id
: Entity_Id
:= Entity
(N
);
1270 Set_Etype
(N
, Any_Type
);
1271 Candidate_Type
:= Empty
;
1273 Analyze_Expression
(L
);
1274 Analyze_Expression
(R
);
1276 if Present
(Op_Id
) then
1277 if Ekind
(Op_Id
) = E_Operator
then
1278 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1280 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1283 if Is_Overloaded
(L
) then
1284 Set_Etype
(L
, Intersect_Types
(L
, R
));
1288 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1289 while Present
(Op_Id
) loop
1290 if Ekind
(Op_Id
) = E_Operator
then
1291 Find_Comparison_Types
(L
, R
, Op_Id
, N
);
1293 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1296 Op_Id
:= Homonym
(Op_Id
);
1301 end Analyze_Comparison_Op
;
1303 ---------------------------
1304 -- Analyze_Concatenation --
1305 ---------------------------
1307 procedure Analyze_Concatenation
(N
: Node_Id
) is
1309 -- We wish to avoid deep recursion, because concatenations are often
1310 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1311 -- operands nonrecursively until we find something that is not a
1312 -- concatenation (A in this case), or has already been analyzed. We
1313 -- analyze that, and then walk back up the tree following Parent
1314 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1315 -- work at each level. The Parent pointers allow us to avoid recursion,
1316 -- and thus avoid running out of memory.
1322 Candidate_Type
:= Empty
;
1324 -- The following code is equivalent to:
1326 -- Set_Etype (N, Any_Type);
1327 -- Analyze_Expression (Left_Opnd (N));
1328 -- Analyze_Concatenation_Rest (N);
1330 -- where the Analyze_Expression call recurses back here if the left
1331 -- operand is a concatenation.
1333 -- Walk down left operands
1336 Set_Etype
(NN
, Any_Type
);
1337 L
:= Left_Opnd
(NN
);
1338 exit when Nkind
(L
) /= N_Op_Concat
or else Analyzed
(L
);
1342 -- Now (given the above example) NN is A&B and L is A
1344 -- First analyze L ...
1346 Analyze_Expression
(L
);
1348 -- ... then walk NN back up until we reach N (where we started), calling
1349 -- Analyze_Concatenation_Rest along the way.
1352 Analyze_Concatenation_Rest
(NN
);
1356 end Analyze_Concatenation
;
1358 --------------------------------
1359 -- Analyze_Concatenation_Rest --
1360 --------------------------------
1362 -- If the only one-dimensional array type in scope is String,
1363 -- this is the resulting type of the operation. Otherwise there
1364 -- will be a concatenation operation defined for each user-defined
1365 -- one-dimensional array.
1367 procedure Analyze_Concatenation_Rest
(N
: Node_Id
) is
1368 L
: constant Node_Id
:= Left_Opnd
(N
);
1369 R
: constant Node_Id
:= Right_Opnd
(N
);
1370 Op_Id
: Entity_Id
:= Entity
(N
);
1375 Analyze_Expression
(R
);
1377 -- If the entity is present, the node appears in an instance, and
1378 -- denotes a predefined concatenation operation. The resulting type is
1379 -- obtained from the arguments when possible. If the arguments are
1380 -- aggregates, the array type and the concatenation type must be
1383 if Present
(Op_Id
) then
1384 if Ekind
(Op_Id
) = E_Operator
then
1385 LT
:= Base_Type
(Etype
(L
));
1386 RT
:= Base_Type
(Etype
(R
));
1388 if Is_Array_Type
(LT
)
1389 and then (RT
= LT
or else RT
= Base_Type
(Component_Type
(LT
)))
1391 Add_One_Interp
(N
, Op_Id
, LT
);
1393 elsif Is_Array_Type
(RT
)
1394 and then LT
= Base_Type
(Component_Type
(RT
))
1396 Add_One_Interp
(N
, Op_Id
, RT
);
1398 -- If one operand is a string type or a user-defined array type,
1399 -- and the other is a literal, result is of the specific type.
1402 (Root_Type
(LT
) = Standard_String
1403 or else Scope
(LT
) /= Standard_Standard
)
1404 and then Etype
(R
) = Any_String
1406 Add_One_Interp
(N
, Op_Id
, LT
);
1409 (Root_Type
(RT
) = Standard_String
1410 or else Scope
(RT
) /= Standard_Standard
)
1411 and then Etype
(L
) = Any_String
1413 Add_One_Interp
(N
, Op_Id
, RT
);
1415 elsif not Is_Generic_Type
(Etype
(Op_Id
)) then
1416 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1419 -- Type and its operations must be visible
1421 Set_Entity
(N
, Empty
);
1422 Analyze_Concatenation
(N
);
1426 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1430 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Concat
);
1431 while Present
(Op_Id
) loop
1432 if Ekind
(Op_Id
) = E_Operator
then
1434 -- Do not consider operators declared in dead code, they can
1435 -- not be part of the resolution.
1437 if Is_Eliminated
(Op_Id
) then
1440 Find_Concatenation_Types
(L
, R
, Op_Id
, N
);
1444 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1447 Op_Id
:= Homonym
(Op_Id
);
1452 end Analyze_Concatenation_Rest
;
1454 ------------------------------------
1455 -- Analyze_Conditional_Expression --
1456 ------------------------------------
1458 procedure Analyze_Conditional_Expression
(N
: Node_Id
) is
1459 Condition
: constant Node_Id
:= First
(Expressions
(N
));
1460 Then_Expr
: constant Node_Id
:= Next
(Condition
);
1461 Else_Expr
: Node_Id
;
1464 -- Defend against error of missing expressions from previous error
1466 if No
(Then_Expr
) then
1470 Else_Expr
:= Next
(Then_Expr
);
1472 if Comes_From_Source
(N
) then
1473 Check_Compiler_Unit
(N
);
1476 Analyze_Expression
(Condition
);
1477 Analyze_Expression
(Then_Expr
);
1479 if Present
(Else_Expr
) then
1480 Analyze_Expression
(Else_Expr
);
1483 -- If then expression not overloaded, then that decides the type
1485 if not Is_Overloaded
(Then_Expr
) then
1486 Set_Etype
(N
, Etype
(Then_Expr
));
1488 -- Case where then expression is overloaded
1496 Set_Etype
(N
, Any_Type
);
1497 Get_First_Interp
(Then_Expr
, I
, It
);
1498 while Present
(It
.Nam
) loop
1500 -- For each possible interpretation of the Then Expression,
1501 -- add it only if the else expression has a compatible type.
1503 -- Is this right if Else_Expr is empty?
1505 if Has_Compatible_Type
(Else_Expr
, It
.Typ
) then
1506 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
1509 Get_Next_Interp
(I
, It
);
1513 end Analyze_Conditional_Expression
;
1515 -------------------------
1516 -- Analyze_Equality_Op --
1517 -------------------------
1519 procedure Analyze_Equality_Op
(N
: Node_Id
) is
1520 Loc
: constant Source_Ptr
:= Sloc
(N
);
1521 L
: constant Node_Id
:= Left_Opnd
(N
);
1522 R
: constant Node_Id
:= Right_Opnd
(N
);
1526 Set_Etype
(N
, Any_Type
);
1527 Candidate_Type
:= Empty
;
1529 Analyze_Expression
(L
);
1530 Analyze_Expression
(R
);
1532 -- If the entity is set, the node is a generic instance with a non-local
1533 -- reference to the predefined operator or to a user-defined function.
1534 -- It can also be an inequality that is expanded into the negation of a
1535 -- call to a user-defined equality operator.
1537 -- For the predefined case, the result is Boolean, regardless of the
1538 -- type of the operands. The operands may even be limited, if they are
1539 -- generic actuals. If they are overloaded, label the left argument with
1540 -- the common type that must be present, or with the type of the formal
1541 -- of the user-defined function.
1543 if Present
(Entity
(N
)) then
1544 Op_Id
:= Entity
(N
);
1546 if Ekind
(Op_Id
) = E_Operator
then
1547 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
);
1549 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
1552 if Is_Overloaded
(L
) then
1553 if Ekind
(Op_Id
) = E_Operator
then
1554 Set_Etype
(L
, Intersect_Types
(L
, R
));
1556 Set_Etype
(L
, Etype
(First_Formal
(Op_Id
)));
1561 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
1562 while Present
(Op_Id
) loop
1563 if Ekind
(Op_Id
) = E_Operator
then
1564 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1566 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1569 Op_Id
:= Homonym
(Op_Id
);
1573 -- If there was no match, and the operator is inequality, this may
1574 -- be a case where inequality has not been made explicit, as for
1575 -- tagged types. Analyze the node as the negation of an equality
1576 -- operation. This cannot be done earlier, because before analysis
1577 -- we cannot rule out the presence of an explicit inequality.
1579 if Etype
(N
) = Any_Type
1580 and then Nkind
(N
) = N_Op_Ne
1582 Op_Id
:= Get_Name_Entity_Id
(Name_Op_Eq
);
1583 while Present
(Op_Id
) loop
1584 if Ekind
(Op_Id
) = E_Operator
then
1585 Find_Equality_Types
(L
, R
, Op_Id
, N
);
1587 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
1590 Op_Id
:= Homonym
(Op_Id
);
1593 if Etype
(N
) /= Any_Type
then
1594 Op_Id
:= Entity
(N
);
1600 Left_Opnd
=> Left_Opnd
(N
),
1601 Right_Opnd
=> Right_Opnd
(N
))));
1603 Set_Entity
(Right_Opnd
(N
), Op_Id
);
1609 end Analyze_Equality_Op
;
1611 ----------------------------------
1612 -- Analyze_Explicit_Dereference --
1613 ----------------------------------
1615 procedure Analyze_Explicit_Dereference
(N
: Node_Id
) is
1616 Loc
: constant Source_Ptr
:= Sloc
(N
);
1617 P
: constant Node_Id
:= Prefix
(N
);
1623 function Is_Function_Type
return Boolean;
1624 -- Check whether node may be interpreted as an implicit function call
1626 ----------------------
1627 -- Is_Function_Type --
1628 ----------------------
1630 function Is_Function_Type
return Boolean is
1635 if not Is_Overloaded
(N
) then
1636 return Ekind
(Base_Type
(Etype
(N
))) = E_Subprogram_Type
1637 and then Etype
(Base_Type
(Etype
(N
))) /= Standard_Void_Type
;
1640 Get_First_Interp
(N
, I
, It
);
1641 while Present
(It
.Nam
) loop
1642 if Ekind
(Base_Type
(It
.Typ
)) /= E_Subprogram_Type
1643 or else Etype
(Base_Type
(It
.Typ
)) = Standard_Void_Type
1648 Get_Next_Interp
(I
, It
);
1653 end Is_Function_Type
;
1655 -- Start of processing for Analyze_Explicit_Dereference
1659 Set_Etype
(N
, Any_Type
);
1661 -- Test for remote access to subprogram type, and if so return
1662 -- after rewriting the original tree.
1664 if Remote_AST_E_Dereference
(P
) then
1668 -- Normal processing for other than remote access to subprogram type
1670 if not Is_Overloaded
(P
) then
1671 if Is_Access_Type
(Etype
(P
)) then
1673 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1674 -- avoid other problems caused by the Private_Subtype and it is
1675 -- safe to go to the Base_Type because this is the same as
1676 -- converting the access value to its Base_Type.
1679 DT
: Entity_Id
:= Designated_Type
(Etype
(P
));
1682 if Ekind
(DT
) = E_Private_Subtype
1683 and then Is_For_Access_Subtype
(DT
)
1685 DT
:= Base_Type
(DT
);
1688 -- An explicit dereference is a legal occurrence of an
1689 -- incomplete type imported through a limited_with clause,
1690 -- if the full view is visible.
1692 if From_With_Type
(DT
)
1693 and then not From_With_Type
(Scope
(DT
))
1695 (Is_Immediately_Visible
(Scope
(DT
))
1697 (Is_Child_Unit
(Scope
(DT
))
1698 and then Is_Visible_Child_Unit
(Scope
(DT
))))
1700 Set_Etype
(N
, Available_View
(DT
));
1707 elsif Etype
(P
) /= Any_Type
then
1708 Error_Msg_N
("prefix of dereference must be an access type", N
);
1713 Get_First_Interp
(P
, I
, It
);
1714 while Present
(It
.Nam
) loop
1717 if Is_Access_Type
(T
) then
1718 Add_One_Interp
(N
, Designated_Type
(T
), Designated_Type
(T
));
1721 Get_Next_Interp
(I
, It
);
1724 -- Error if no interpretation of the prefix has an access type
1726 if Etype
(N
) = Any_Type
then
1728 ("access type required in prefix of explicit dereference", P
);
1729 Set_Etype
(N
, Any_Type
);
1735 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
1737 and then (Nkind
(Parent
(N
)) /= N_Function_Call
1738 or else N
/= Name
(Parent
(N
)))
1740 and then (Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1741 or else N
/= Name
(Parent
(N
)))
1743 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
1744 and then (Nkind
(Parent
(N
)) /= N_Attribute_Reference
1746 (Attribute_Name
(Parent
(N
)) /= Name_Address
1748 Attribute_Name
(Parent
(N
)) /= Name_Access
))
1750 -- Name is a function call with no actuals, in a context that
1751 -- requires deproceduring (including as an actual in an enclosing
1752 -- function or procedure call). There are some pathological cases
1753 -- where the prefix might include functions that return access to
1754 -- subprograms and others that return a regular type. Disambiguation
1755 -- of those has to take place in Resolve.
1758 Make_Function_Call
(Loc
,
1759 Name
=> Make_Explicit_Dereference
(Loc
, P
),
1760 Parameter_Associations
=> New_List
);
1762 -- If the prefix is overloaded, remove operations that have formals,
1763 -- we know that this is a parameterless call.
1765 if Is_Overloaded
(P
) then
1766 Get_First_Interp
(P
, I
, It
);
1767 while Present
(It
.Nam
) loop
1770 if No
(First_Formal
(Base_Type
(Designated_Type
(T
)))) then
1776 Get_Next_Interp
(I
, It
);
1783 elsif not Is_Function_Type
1784 and then Is_Overloaded
(N
)
1786 -- The prefix may include access to subprograms and other access
1787 -- types. If the context selects the interpretation that is a
1788 -- function call (not a procedure call) we cannot rewrite the node
1789 -- yet, but we include the result of the call interpretation.
1791 Get_First_Interp
(N
, I
, It
);
1792 while Present
(It
.Nam
) loop
1793 if Ekind
(Base_Type
(It
.Typ
)) = E_Subprogram_Type
1794 and then Etype
(Base_Type
(It
.Typ
)) /= Standard_Void_Type
1795 and then Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
1797 Add_One_Interp
(N
, Etype
(It
.Typ
), Etype
(It
.Typ
));
1800 Get_Next_Interp
(I
, It
);
1804 -- A value of remote access-to-class-wide must not be dereferenced
1807 Validate_Remote_Access_To_Class_Wide_Type
(N
);
1808 end Analyze_Explicit_Dereference
;
1810 ------------------------
1811 -- Analyze_Expression --
1812 ------------------------
1814 procedure Analyze_Expression
(N
: Node_Id
) is
1817 Check_Parameterless_Call
(N
);
1818 end Analyze_Expression
;
1820 -------------------------------------
1821 -- Analyze_Expression_With_Actions --
1822 -------------------------------------
1824 procedure Analyze_Expression_With_Actions
(N
: Node_Id
) is
1828 A
:= First
(Actions
(N
));
1835 Analyze_Expression
(Expression
(N
));
1836 Set_Etype
(N
, Etype
(Expression
(N
)));
1837 end Analyze_Expression_With_Actions
;
1839 ------------------------------------
1840 -- Analyze_Indexed_Component_Form --
1841 ------------------------------------
1843 procedure Analyze_Indexed_Component_Form
(N
: Node_Id
) is
1844 P
: constant Node_Id
:= Prefix
(N
);
1845 Exprs
: constant List_Id
:= Expressions
(N
);
1851 procedure Process_Function_Call
;
1852 -- Prefix in indexed component form is an overloadable entity,
1853 -- so the node is a function call. Reformat it as such.
1855 procedure Process_Indexed_Component
;
1856 -- Prefix in indexed component form is actually an indexed component.
1857 -- This routine processes it, knowing that the prefix is already
1860 procedure Process_Indexed_Component_Or_Slice
;
1861 -- An indexed component with a single index may designate a slice if
1862 -- the index is a subtype mark. This routine disambiguates these two
1863 -- cases by resolving the prefix to see if it is a subtype mark.
1865 procedure Process_Overloaded_Indexed_Component
;
1866 -- If the prefix of an indexed component is overloaded, the proper
1867 -- interpretation is selected by the index types and the context.
1869 ---------------------------
1870 -- Process_Function_Call --
1871 ---------------------------
1873 procedure Process_Function_Call
is
1877 Change_Node
(N
, N_Function_Call
);
1879 Set_Parameter_Associations
(N
, Exprs
);
1881 -- Analyze actuals prior to analyzing the call itself
1883 Actual
:= First
(Parameter_Associations
(N
));
1884 while Present
(Actual
) loop
1886 Check_Parameterless_Call
(Actual
);
1888 -- Move to next actual. Note that we use Next, not Next_Actual
1889 -- here. The reason for this is a bit subtle. If a function call
1890 -- includes named associations, the parser recognizes the node as
1891 -- a call, and it is analyzed as such. If all associations are
1892 -- positional, the parser builds an indexed_component node, and
1893 -- it is only after analysis of the prefix that the construct
1894 -- is recognized as a call, in which case Process_Function_Call
1895 -- rewrites the node and analyzes the actuals. If the list of
1896 -- actuals is malformed, the parser may leave the node as an
1897 -- indexed component (despite the presence of named associations).
1898 -- The iterator Next_Actual is equivalent to Next if the list is
1899 -- positional, but follows the normalized chain of actuals when
1900 -- named associations are present. In this case normalization has
1901 -- not taken place, and actuals remain unanalyzed, which leads to
1902 -- subsequent crashes or loops if there is an attempt to continue
1903 -- analysis of the program.
1909 end Process_Function_Call
;
1911 -------------------------------
1912 -- Process_Indexed_Component --
1913 -------------------------------
1915 procedure Process_Indexed_Component
is
1917 Array_Type
: Entity_Id
;
1919 Pent
: Entity_Id
:= Empty
;
1922 Exp
:= First
(Exprs
);
1924 if Is_Overloaded
(P
) then
1925 Process_Overloaded_Indexed_Component
;
1928 Array_Type
:= Etype
(P
);
1930 if Is_Entity_Name
(P
) then
1932 elsif Nkind
(P
) = N_Selected_Component
1933 and then Is_Entity_Name
(Selector_Name
(P
))
1935 Pent
:= Entity
(Selector_Name
(P
));
1938 -- Prefix must be appropriate for an array type, taking into
1939 -- account a possible implicit dereference.
1941 if Is_Access_Type
(Array_Type
) then
1942 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
1943 Array_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, P
);
1946 if Is_Array_Type
(Array_Type
) then
1949 elsif Present
(Pent
) and then Ekind
(Pent
) = E_Entry_Family
then
1951 Set_Etype
(N
, Any_Type
);
1953 if not Has_Compatible_Type
1954 (Exp
, Entry_Index_Type
(Pent
))
1956 Error_Msg_N
("invalid index type in entry name", N
);
1958 elsif Present
(Next
(Exp
)) then
1959 Error_Msg_N
("too many subscripts in entry reference", N
);
1962 Set_Etype
(N
, Etype
(P
));
1967 elsif Is_Record_Type
(Array_Type
)
1968 and then Remote_AST_I_Dereference
(P
)
1972 elsif Array_Type
= Any_Type
then
1973 Set_Etype
(N
, Any_Type
);
1975 -- In most cases the analysis of the prefix will have emitted
1976 -- an error already, but if the prefix may be interpreted as a
1977 -- call in prefixed notation, the report is left to the caller.
1978 -- To prevent cascaded errors, report only if no previous ones.
1980 if Serious_Errors_Detected
= 0 then
1981 Error_Msg_N
("invalid prefix in indexed component", P
);
1983 if Nkind
(P
) = N_Expanded_Name
then
1984 Error_Msg_NE
("\& is not visible", P
, Selector_Name
(P
));
1990 -- Here we definitely have a bad indexing
1993 if Nkind
(Parent
(N
)) = N_Requeue_Statement
1994 and then Present
(Pent
) and then Ekind
(Pent
) = E_Entry
1997 ("REQUEUE does not permit parameters", First
(Exprs
));
1999 elsif Is_Entity_Name
(P
)
2000 and then Etype
(P
) = Standard_Void_Type
2002 Error_Msg_NE
("incorrect use of&", P
, Entity
(P
));
2005 Error_Msg_N
("array type required in indexed component", P
);
2008 Set_Etype
(N
, Any_Type
);
2012 Index
:= First_Index
(Array_Type
);
2013 while Present
(Index
) and then Present
(Exp
) loop
2014 if not Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2015 Wrong_Type
(Exp
, Etype
(Index
));
2016 Set_Etype
(N
, Any_Type
);
2024 Set_Etype
(N
, Component_Type
(Array_Type
));
2026 if Present
(Index
) then
2028 ("too few subscripts in array reference", First
(Exprs
));
2030 elsif Present
(Exp
) then
2031 Error_Msg_N
("too many subscripts in array reference", Exp
);
2034 end Process_Indexed_Component
;
2036 ----------------------------------------
2037 -- Process_Indexed_Component_Or_Slice --
2038 ----------------------------------------
2040 procedure Process_Indexed_Component_Or_Slice
is
2042 Exp
:= First
(Exprs
);
2043 while Present
(Exp
) loop
2044 Analyze_Expression
(Exp
);
2048 Exp
:= First
(Exprs
);
2050 -- If one index is present, and it is a subtype name, then the
2051 -- node denotes a slice (note that the case of an explicit range
2052 -- for a slice was already built as an N_Slice node in the first
2053 -- place, so that case is not handled here).
2055 -- We use a replace rather than a rewrite here because this is one
2056 -- of the cases in which the tree built by the parser is plain wrong.
2059 and then Is_Entity_Name
(Exp
)
2060 and then Is_Type
(Entity
(Exp
))
2063 Make_Slice
(Sloc
(N
),
2065 Discrete_Range
=> New_Copy
(Exp
)));
2068 -- Otherwise (more than one index present, or single index is not
2069 -- a subtype name), then we have the indexed component case.
2072 Process_Indexed_Component
;
2074 end Process_Indexed_Component_Or_Slice
;
2076 ------------------------------------------
2077 -- Process_Overloaded_Indexed_Component --
2078 ------------------------------------------
2080 procedure Process_Overloaded_Indexed_Component
is
2089 Set_Etype
(N
, Any_Type
);
2091 Get_First_Interp
(P
, I
, It
);
2092 while Present
(It
.Nam
) loop
2095 if Is_Access_Type
(Typ
) then
2096 Typ
:= Designated_Type
(Typ
);
2097 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
2100 if Is_Array_Type
(Typ
) then
2102 -- Got a candidate: verify that index types are compatible
2104 Index
:= First_Index
(Typ
);
2106 Exp
:= First
(Exprs
);
2107 while Present
(Index
) and then Present
(Exp
) loop
2108 if Has_Compatible_Type
(Exp
, Etype
(Index
)) then
2120 if Found
and then No
(Index
) and then No
(Exp
) then
2122 Etype
(Component_Type
(Typ
)),
2123 Etype
(Component_Type
(Typ
)));
2127 Get_Next_Interp
(I
, It
);
2130 if Etype
(N
) = Any_Type
then
2131 Error_Msg_N
("no legal interpretation for indexed component", N
);
2132 Set_Is_Overloaded
(N
, False);
2136 end Process_Overloaded_Indexed_Component
;
2138 -- Start of processing for Analyze_Indexed_Component_Form
2141 -- Get name of array, function or type
2145 if Nkind_In
(N
, N_Function_Call
, N_Procedure_Call_Statement
) then
2147 -- If P is an explicit dereference whose prefix is of a
2148 -- remote access-to-subprogram type, then N has already
2149 -- been rewritten as a subprogram call and analyzed.
2154 pragma Assert
(Nkind
(N
) = N_Indexed_Component
);
2156 P_T
:= Base_Type
(Etype
(P
));
2158 if Is_Entity_Name
(P
) and then Present
(Entity
(P
)) then
2161 if Is_Type
(U_N
) then
2163 -- Reformat node as a type conversion
2165 E
:= Remove_Head
(Exprs
);
2167 if Present
(First
(Exprs
)) then
2169 ("argument of type conversion must be single expression", N
);
2172 Change_Node
(N
, N_Type_Conversion
);
2173 Set_Subtype_Mark
(N
, P
);
2175 Set_Expression
(N
, E
);
2177 -- After changing the node, call for the specific Analysis
2178 -- routine directly, to avoid a double call to the expander.
2180 Analyze_Type_Conversion
(N
);
2184 if Is_Overloadable
(U_N
) then
2185 Process_Function_Call
;
2187 elsif Ekind
(Etype
(P
)) = E_Subprogram_Type
2188 or else (Is_Access_Type
(Etype
(P
))
2190 Ekind
(Designated_Type
(Etype
(P
))) =
2193 -- Call to access_to-subprogram with possible implicit dereference
2195 Process_Function_Call
;
2197 elsif Is_Generic_Subprogram
(U_N
) then
2199 -- A common beginner's (or C++ templates fan) error
2201 Error_Msg_N
("generic subprogram cannot be called", N
);
2202 Set_Etype
(N
, Any_Type
);
2206 Process_Indexed_Component_Or_Slice
;
2209 -- If not an entity name, prefix is an expression that may denote
2210 -- an array or an access-to-subprogram.
2213 if Ekind
(P_T
) = E_Subprogram_Type
2214 or else (Is_Access_Type
(P_T
)
2216 Ekind
(Designated_Type
(P_T
)) = E_Subprogram_Type
)
2218 Process_Function_Call
;
2220 elsif Nkind
(P
) = N_Selected_Component
2221 and then Is_Overloadable
(Entity
(Selector_Name
(P
)))
2223 Process_Function_Call
;
2226 -- Indexed component, slice, or a call to a member of a family
2227 -- entry, which will be converted to an entry call later.
2229 Process_Indexed_Component_Or_Slice
;
2232 end Analyze_Indexed_Component_Form
;
2234 ------------------------
2235 -- Analyze_Logical_Op --
2236 ------------------------
2238 procedure Analyze_Logical_Op
(N
: Node_Id
) is
2239 L
: constant Node_Id
:= Left_Opnd
(N
);
2240 R
: constant Node_Id
:= Right_Opnd
(N
);
2241 Op_Id
: Entity_Id
:= Entity
(N
);
2244 Set_Etype
(N
, Any_Type
);
2245 Candidate_Type
:= Empty
;
2247 Analyze_Expression
(L
);
2248 Analyze_Expression
(R
);
2250 if Present
(Op_Id
) then
2252 if Ekind
(Op_Id
) = E_Operator
then
2253 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
2255 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2259 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2260 while Present
(Op_Id
) loop
2261 if Ekind
(Op_Id
) = E_Operator
then
2262 Find_Boolean_Types
(L
, R
, Op_Id
, N
);
2264 Analyze_User_Defined_Binary_Op
(N
, Op_Id
);
2267 Op_Id
:= Homonym
(Op_Id
);
2272 end Analyze_Logical_Op
;
2274 ---------------------------
2275 -- Analyze_Membership_Op --
2276 ---------------------------
2278 procedure Analyze_Membership_Op
(N
: Node_Id
) is
2279 Loc
: constant Source_Ptr
:= Sloc
(N
);
2280 L
: constant Node_Id
:= Left_Opnd
(N
);
2281 R
: constant Node_Id
:= Right_Opnd
(N
);
2283 Index
: Interp_Index
;
2285 Found
: Boolean := False;
2289 procedure Try_One_Interp
(T1
: Entity_Id
);
2290 -- Routine to try one proposed interpretation. Note that the context
2291 -- of the operation plays no role in resolving the arguments, so that
2292 -- if there is more than one interpretation of the operands that is
2293 -- compatible with a membership test, the operation is ambiguous.
2295 --------------------
2296 -- Try_One_Interp --
2297 --------------------
2299 procedure Try_One_Interp
(T1
: Entity_Id
) is
2301 if Has_Compatible_Type
(R
, T1
) then
2303 and then Base_Type
(T1
) /= Base_Type
(T_F
)
2305 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
2307 if It
= No_Interp
then
2308 Ambiguous_Operands
(N
);
2309 Set_Etype
(L
, Any_Type
);
2326 procedure Analyze_Set_Membership
;
2327 -- If a set of alternatives is present, analyze each and find the
2328 -- common type to which they must all resolve.
2330 ----------------------------
2331 -- Analyze_Set_Membership --
2332 ----------------------------
2334 procedure Analyze_Set_Membership
is
2336 Index
: Interp_Index
;
2338 Candidate_Interps
: Node_Id
;
2339 Common_Type
: Entity_Id
:= Empty
;
2343 Candidate_Interps
:= L
;
2345 if not Is_Overloaded
(L
) then
2346 Common_Type
:= Etype
(L
);
2348 Alt
:= First
(Alternatives
(N
));
2349 while Present
(Alt
) loop
2352 if not Has_Compatible_Type
(Alt
, Common_Type
) then
2353 Wrong_Type
(Alt
, Common_Type
);
2360 Alt
:= First
(Alternatives
(N
));
2361 while Present
(Alt
) loop
2363 if not Is_Overloaded
(Alt
) then
2364 Common_Type
:= Etype
(Alt
);
2367 Get_First_Interp
(Alt
, Index
, It
);
2368 while Present
(It
.Typ
) loop
2370 Has_Compatible_Type
(Candidate_Interps
, It
.Typ
)
2372 Remove_Interp
(Index
);
2375 Get_Next_Interp
(Index
, It
);
2378 Get_First_Interp
(Alt
, Index
, It
);
2381 Error_Msg_N
("alternative has no legal type", Alt
);
2385 -- If alternative is not overloaded, we have a unique type
2388 Set_Etype
(Alt
, It
.Typ
);
2389 Get_Next_Interp
(Index
, It
);
2392 Set_Is_Overloaded
(Alt
, False);
2393 Common_Type
:= Etype
(Alt
);
2396 Candidate_Interps
:= Alt
;
2403 Set_Etype
(N
, Standard_Boolean
);
2405 if Present
(Common_Type
) then
2406 Set_Etype
(L
, Common_Type
);
2407 Set_Is_Overloaded
(L
, False);
2410 Error_Msg_N
("cannot resolve membership operation", N
);
2412 end Analyze_Set_Membership
;
2414 -- Start of processing for Analyze_Membership_Op
2417 Analyze_Expression
(L
);
2420 and then Ada_Version
>= Ada_2012
2422 Analyze_Set_Membership
;
2426 if Nkind
(R
) = N_Range
2427 or else (Nkind
(R
) = N_Attribute_Reference
2428 and then Attribute_Name
(R
) = Name_Range
)
2432 if not Is_Overloaded
(L
) then
2433 Try_One_Interp
(Etype
(L
));
2436 Get_First_Interp
(L
, Index
, It
);
2437 while Present
(It
.Typ
) loop
2438 Try_One_Interp
(It
.Typ
);
2439 Get_Next_Interp
(Index
, It
);
2443 -- If not a range, it can be a subtype mark, or else it is a degenerate
2444 -- membership test with a singleton value, i.e. a test for equality.
2448 if Is_Entity_Name
(R
)
2449 and then Is_Type
(Entity
(R
))
2452 Check_Fully_Declared
(Entity
(R
), R
);
2454 elsif Ada_Version
>= Ada_2012
then
2455 if Nkind
(N
) = N_In
then
2471 -- In previous version of the language this is an error that will
2472 -- be diagnosed below.
2478 -- Compatibility between expression and subtype mark or range is
2479 -- checked during resolution. The result of the operation is Boolean
2482 Set_Etype
(N
, Standard_Boolean
);
2484 if Comes_From_Source
(N
)
2485 and then Present
(Right_Opnd
(N
))
2486 and then Is_CPP_Class
(Etype
(Etype
(Right_Opnd
(N
))))
2488 Error_Msg_N
("membership test not applicable to cpp-class types", N
);
2490 end Analyze_Membership_Op
;
2492 ----------------------
2493 -- Analyze_Negation --
2494 ----------------------
2496 procedure Analyze_Negation
(N
: Node_Id
) is
2497 R
: constant Node_Id
:= Right_Opnd
(N
);
2498 Op_Id
: Entity_Id
:= Entity
(N
);
2501 Set_Etype
(N
, Any_Type
);
2502 Candidate_Type
:= Empty
;
2504 Analyze_Expression
(R
);
2506 if Present
(Op_Id
) then
2507 if Ekind
(Op_Id
) = E_Operator
then
2508 Find_Negation_Types
(R
, Op_Id
, N
);
2510 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
2514 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
2515 while Present
(Op_Id
) loop
2516 if Ekind
(Op_Id
) = E_Operator
then
2517 Find_Negation_Types
(R
, Op_Id
, N
);
2519 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
2522 Op_Id
:= Homonym
(Op_Id
);
2527 end Analyze_Negation
;
2533 procedure Analyze_Null
(N
: Node_Id
) is
2535 Set_Etype
(N
, Any_Access
);
2538 ----------------------
2539 -- Analyze_One_Call --
2540 ----------------------
2542 procedure Analyze_One_Call
2546 Success
: out Boolean;
2547 Skip_First
: Boolean := False)
2549 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
2550 Prev_T
: constant Entity_Id
:= Etype
(N
);
2552 Must_Skip
: constant Boolean := Skip_First
2553 or else Nkind
(Original_Node
(N
)) = N_Selected_Component
2555 (Nkind
(Original_Node
(N
)) = N_Indexed_Component
2556 and then Nkind
(Prefix
(Original_Node
(N
)))
2557 = N_Selected_Component
);
2558 -- The first formal must be omitted from the match when trying to find
2559 -- a primitive operation that is a possible interpretation, and also
2560 -- after the call has been rewritten, because the corresponding actual
2561 -- is already known to be compatible, and because this may be an
2562 -- indexing of a call with default parameters.
2566 Is_Indexed
: Boolean := False;
2567 Is_Indirect
: Boolean := False;
2568 Subp_Type
: constant Entity_Id
:= Etype
(Nam
);
2571 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean;
2572 -- There may be a user-defined operator that hides the current
2573 -- interpretation. We must check for this independently of the
2574 -- analysis of the call with the user-defined operation, because
2575 -- the parameter names may be wrong and yet the hiding takes place.
2576 -- This fixes a problem with ACATS test B34014O.
2578 -- When the type Address is a visible integer type, and the DEC
2579 -- system extension is visible, the predefined operator may be
2580 -- hidden as well, by one of the address operations in auxdec.
2581 -- Finally, The abstract operations on address do not hide the
2582 -- predefined operator (this is the purpose of making them abstract).
2584 procedure Indicate_Name_And_Type
;
2585 -- If candidate interpretation matches, indicate name and type of
2586 -- result on call node.
2588 ----------------------------
2589 -- Indicate_Name_And_Type --
2590 ----------------------------
2592 procedure Indicate_Name_And_Type
is
2594 Add_One_Interp
(N
, Nam
, Etype
(Nam
));
2597 -- If the prefix of the call is a name, indicate the entity
2598 -- being called. If it is not a name, it is an expression that
2599 -- denotes an access to subprogram or else an entry or family. In
2600 -- the latter case, the name is a selected component, and the entity
2601 -- being called is noted on the selector.
2603 if not Is_Type
(Nam
) then
2604 if Is_Entity_Name
(Name
(N
)) then
2605 Set_Entity
(Name
(N
), Nam
);
2607 elsif Nkind
(Name
(N
)) = N_Selected_Component
then
2608 Set_Entity
(Selector_Name
(Name
(N
)), Nam
);
2612 if Debug_Flag_E
and not Report
then
2613 Write_Str
(" Overloaded call ");
2614 Write_Int
(Int
(N
));
2615 Write_Str
(" compatible with ");
2616 Write_Int
(Int
(Nam
));
2619 end Indicate_Name_And_Type
;
2621 ------------------------
2622 -- Operator_Hidden_By --
2623 ------------------------
2625 function Operator_Hidden_By
(Fun
: Entity_Id
) return Boolean is
2626 Act1
: constant Node_Id
:= First_Actual
(N
);
2627 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
2628 Form1
: constant Entity_Id
:= First_Formal
(Fun
);
2629 Form2
: constant Entity_Id
:= Next_Formal
(Form1
);
2632 if Ekind
(Fun
) /= E_Function
2633 or else Is_Abstract_Subprogram
(Fun
)
2637 elsif not Has_Compatible_Type
(Act1
, Etype
(Form1
)) then
2640 elsif Present
(Form2
) then
2642 No
(Act2
) or else not Has_Compatible_Type
(Act2
, Etype
(Form2
))
2647 elsif Present
(Act2
) then
2651 -- Now we know that the arity of the operator matches the function,
2652 -- and the function call is a valid interpretation. The function
2653 -- hides the operator if it has the right signature, or if one of
2654 -- its operands is a non-abstract operation on Address when this is
2655 -- a visible integer type.
2657 return Hides_Op
(Fun
, Nam
)
2658 or else Is_Descendent_Of_Address
(Etype
(Form1
))
2661 and then Is_Descendent_Of_Address
(Etype
(Form2
)));
2662 end Operator_Hidden_By
;
2664 -- Start of processing for Analyze_One_Call
2669 -- If the subprogram has no formals or if all the formals have defaults,
2670 -- and the return type is an array type, the node may denote an indexing
2671 -- of the result of a parameterless call. In Ada 2005, the subprogram
2672 -- may have one non-defaulted formal, and the call may have been written
2673 -- in prefix notation, so that the rebuilt parameter list has more than
2676 if not Is_Overloadable
(Nam
)
2677 and then Ekind
(Nam
) /= E_Subprogram_Type
2678 and then Ekind
(Nam
) /= E_Entry_Family
2683 -- An indexing requires at least one actual
2685 if not Is_Empty_List
(Actuals
)
2687 (Needs_No_Actuals
(Nam
)
2689 (Needs_One_Actual
(Nam
)
2690 and then Present
(Next_Actual
(First
(Actuals
)))))
2692 if Is_Array_Type
(Subp_Type
) then
2693 Is_Indexed
:= Try_Indexed_Call
(N
, Nam
, Subp_Type
, Must_Skip
);
2695 elsif Is_Access_Type
(Subp_Type
)
2696 and then Is_Array_Type
(Designated_Type
(Subp_Type
))
2700 (N
, Nam
, Designated_Type
(Subp_Type
), Must_Skip
);
2702 -- The prefix can also be a parameterless function that returns an
2703 -- access to subprogram, in which case this is an indirect call.
2704 -- If this succeeds, an explicit dereference is added later on,
2705 -- in Analyze_Call or Resolve_Call.
2707 elsif Is_Access_Type
(Subp_Type
)
2708 and then Ekind
(Designated_Type
(Subp_Type
)) = E_Subprogram_Type
2710 Is_Indirect
:= Try_Indirect_Call
(N
, Nam
, Subp_Type
);
2715 -- If the call has been transformed into a slice, it is of the form
2716 -- F (Subtype) where F is parameterless. The node has been rewritten in
2717 -- Try_Indexed_Call and there is nothing else to do.
2720 and then Nkind
(N
) = N_Slice
2726 (N
, Nam
, (Report
and not Is_Indexed
and not Is_Indirect
), Norm_OK
);
2730 -- If an indirect call is a possible interpretation, indicate
2731 -- success to the caller.
2737 -- Mismatch in number or names of parameters
2739 elsif Debug_Flag_E
then
2740 Write_Str
(" normalization fails in call ");
2741 Write_Int
(Int
(N
));
2742 Write_Str
(" with subprogram ");
2743 Write_Int
(Int
(Nam
));
2747 -- If the context expects a function call, discard any interpretation
2748 -- that is a procedure. If the node is not overloaded, leave as is for
2749 -- better error reporting when type mismatch is found.
2751 elsif Nkind
(N
) = N_Function_Call
2752 and then Is_Overloaded
(Name
(N
))
2753 and then Ekind
(Nam
) = E_Procedure
2757 -- Ditto for function calls in a procedure context
2759 elsif Nkind
(N
) = N_Procedure_Call_Statement
2760 and then Is_Overloaded
(Name
(N
))
2761 and then Etype
(Nam
) /= Standard_Void_Type
2765 elsif No
(Actuals
) then
2767 -- If Normalize succeeds, then there are default parameters for
2770 Indicate_Name_And_Type
;
2772 elsif Ekind
(Nam
) = E_Operator
then
2773 if Nkind
(N
) = N_Procedure_Call_Statement
then
2777 -- This can occur when the prefix of the call is an operator
2778 -- name or an expanded name whose selector is an operator name.
2780 Analyze_Operator_Call
(N
, Nam
);
2782 if Etype
(N
) /= Prev_T
then
2784 -- Check that operator is not hidden by a function interpretation
2786 if Is_Overloaded
(Name
(N
)) then
2792 Get_First_Interp
(Name
(N
), I
, It
);
2793 while Present
(It
.Nam
) loop
2794 if Operator_Hidden_By
(It
.Nam
) then
2795 Set_Etype
(N
, Prev_T
);
2799 Get_Next_Interp
(I
, It
);
2804 -- If operator matches formals, record its name on the call.
2805 -- If the operator is overloaded, Resolve will select the
2806 -- correct one from the list of interpretations. The call
2807 -- node itself carries the first candidate.
2809 Set_Entity
(Name
(N
), Nam
);
2812 elsif Report
and then Etype
(N
) = Any_Type
then
2813 Error_Msg_N
("incompatible arguments for operator", N
);
2817 -- Normalize_Actuals has chained the named associations in the
2818 -- correct order of the formals.
2820 Actual
:= First_Actual
(N
);
2821 Formal
:= First_Formal
(Nam
);
2823 -- If we are analyzing a call rewritten from object notation,
2824 -- skip first actual, which may be rewritten later as an
2825 -- explicit dereference.
2828 Next_Actual
(Actual
);
2829 Next_Formal
(Formal
);
2832 while Present
(Actual
) and then Present
(Formal
) loop
2833 if Nkind
(Parent
(Actual
)) /= N_Parameter_Association
2834 or else Chars
(Selector_Name
(Parent
(Actual
))) = Chars
(Formal
)
2836 -- The actual can be compatible with the formal, but we must
2837 -- also check that the context is not an address type that is
2838 -- visibly an integer type, as is the case in VMS_64. In this
2839 -- case the use of literals is illegal, except in the body of
2840 -- descendents of system, where arithmetic operations on
2841 -- address are of course used.
2843 if Has_Compatible_Type
(Actual
, Etype
(Formal
))
2845 (Etype
(Actual
) /= Universal_Integer
2846 or else not Is_Descendent_Of_Address
(Etype
(Formal
))
2848 Is_Predefined_File_Name
2849 (Unit_File_Name
(Get_Source_Unit
(N
))))
2851 Next_Actual
(Actual
);
2852 Next_Formal
(Formal
);
2855 if Debug_Flag_E
then
2856 Write_Str
(" type checking fails in call ");
2857 Write_Int
(Int
(N
));
2858 Write_Str
(" with formal ");
2859 Write_Int
(Int
(Formal
));
2860 Write_Str
(" in subprogram ");
2861 Write_Int
(Int
(Nam
));
2865 if Report
and not Is_Indexed
and not Is_Indirect
then
2867 -- Ada 2005 (AI-251): Complete the error notification
2868 -- to help new Ada 2005 users.
2870 if Is_Class_Wide_Type
(Etype
(Formal
))
2871 and then Is_Interface
(Etype
(Etype
(Formal
)))
2872 and then not Interface_Present_In_Ancestor
2873 (Typ
=> Etype
(Actual
),
2874 Iface
=> Etype
(Etype
(Formal
)))
2877 ("(Ada 2005) does not implement interface }",
2878 Actual
, Etype
(Etype
(Formal
)));
2881 Wrong_Type
(Actual
, Etype
(Formal
));
2883 if Nkind
(Actual
) = N_Op_Eq
2884 and then Nkind
(Left_Opnd
(Actual
)) = N_Identifier
2886 Formal
:= First_Formal
(Nam
);
2887 while Present
(Formal
) loop
2888 if Chars
(Left_Opnd
(Actual
)) = Chars
(Formal
) then
2889 Error_Msg_N
-- CODEFIX
2890 ("possible misspelling of `='>`!", Actual
);
2894 Next_Formal
(Formal
);
2898 if All_Errors_Mode
then
2899 Error_Msg_Sloc
:= Sloc
(Nam
);
2901 if Etype
(Formal
) = Any_Type
then
2903 ("there is no legal actual parameter", Actual
);
2906 if Is_Overloadable
(Nam
)
2907 and then Present
(Alias
(Nam
))
2908 and then not Comes_From_Source
(Nam
)
2911 ("\\ =='> in call to inherited operation & #!",
2914 elsif Ekind
(Nam
) = E_Subprogram_Type
then
2916 Access_To_Subprogram_Typ
:
2917 constant Entity_Id
:=
2919 (Associated_Node_For_Itype
(Nam
));
2922 "\\ =='> in call to dereference of &#!",
2923 Actual
, Access_To_Subprogram_Typ
);
2928 ("\\ =='> in call to &#!", Actual
, Nam
);
2938 -- Normalize_Actuals has verified that a default value exists
2939 -- for this formal. Current actual names a subsequent formal.
2941 Next_Formal
(Formal
);
2945 -- On exit, all actuals match
2947 Indicate_Name_And_Type
;
2949 end Analyze_One_Call
;
2951 ---------------------------
2952 -- Analyze_Operator_Call --
2953 ---------------------------
2955 procedure Analyze_Operator_Call
(N
: Node_Id
; Op_Id
: Entity_Id
) is
2956 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
2957 Act1
: constant Node_Id
:= First_Actual
(N
);
2958 Act2
: constant Node_Id
:= Next_Actual
(Act1
);
2961 -- Binary operator case
2963 if Present
(Act2
) then
2965 -- If more than two operands, then not binary operator after all
2967 if Present
(Next_Actual
(Act2
)) then
2970 elsif Op_Name
= Name_Op_Add
2971 or else Op_Name
= Name_Op_Subtract
2972 or else Op_Name
= Name_Op_Multiply
2973 or else Op_Name
= Name_Op_Divide
2974 or else Op_Name
= Name_Op_Mod
2975 or else Op_Name
= Name_Op_Rem
2976 or else Op_Name
= Name_Op_Expon
2978 Find_Arithmetic_Types
(Act1
, Act2
, Op_Id
, N
);
2980 elsif Op_Name
= Name_Op_And
2981 or else Op_Name
= Name_Op_Or
2982 or else Op_Name
= Name_Op_Xor
2984 Find_Boolean_Types
(Act1
, Act2
, Op_Id
, N
);
2986 elsif Op_Name
= Name_Op_Lt
2987 or else Op_Name
= Name_Op_Le
2988 or else Op_Name
= Name_Op_Gt
2989 or else Op_Name
= Name_Op_Ge
2991 Find_Comparison_Types
(Act1
, Act2
, Op_Id
, N
);
2993 elsif Op_Name
= Name_Op_Eq
2994 or else Op_Name
= Name_Op_Ne
2996 Find_Equality_Types
(Act1
, Act2
, Op_Id
, N
);
2998 elsif Op_Name
= Name_Op_Concat
then
2999 Find_Concatenation_Types
(Act1
, Act2
, Op_Id
, N
);
3001 -- Is this else null correct, or should it be an abort???
3007 -- Unary operator case
3010 if Op_Name
= Name_Op_Subtract
or else
3011 Op_Name
= Name_Op_Add
or else
3012 Op_Name
= Name_Op_Abs
3014 Find_Unary_Types
(Act1
, Op_Id
, N
);
3017 Op_Name
= Name_Op_Not
3019 Find_Negation_Types
(Act1
, Op_Id
, N
);
3021 -- Is this else null correct, or should it be an abort???
3027 end Analyze_Operator_Call
;
3029 -------------------------------------------
3030 -- Analyze_Overloaded_Selected_Component --
3031 -------------------------------------------
3033 procedure Analyze_Overloaded_Selected_Component
(N
: Node_Id
) is
3034 Nam
: constant Node_Id
:= Prefix
(N
);
3035 Sel
: constant Node_Id
:= Selector_Name
(N
);
3042 Set_Etype
(Sel
, Any_Type
);
3044 Get_First_Interp
(Nam
, I
, It
);
3045 while Present
(It
.Typ
) loop
3046 if Is_Access_Type
(It
.Typ
) then
3047 T
:= Designated_Type
(It
.Typ
);
3048 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3053 if Is_Record_Type
(T
) then
3055 -- If the prefix is a class-wide type, the visible components are
3056 -- those of the base type.
3058 if Is_Class_Wide_Type
(T
) then
3062 Comp
:= First_Entity
(T
);
3063 while Present
(Comp
) loop
3064 if Chars
(Comp
) = Chars
(Sel
)
3065 and then Is_Visible_Component
(Comp
)
3068 -- AI05-105: if the context is an object renaming with
3069 -- an anonymous access type, the expected type of the
3070 -- object must be anonymous. This is a name resolution rule.
3072 if Nkind
(Parent
(N
)) /= N_Object_Renaming_Declaration
3073 or else No
(Access_Definition
(Parent
(N
)))
3074 or else Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Type
3076 Ekind
(Etype
(Comp
)) = E_Anonymous_Access_Subprogram_Type
3078 Set_Entity
(Sel
, Comp
);
3079 Set_Etype
(Sel
, Etype
(Comp
));
3080 Add_One_Interp
(N
, Etype
(Comp
), Etype
(Comp
));
3082 -- This also specifies a candidate to resolve the name.
3083 -- Further overloading will be resolved from context.
3084 -- The selector name itself does not carry overloading
3087 Set_Etype
(Nam
, It
.Typ
);
3090 -- Named access type in the context of a renaming
3091 -- declaration with an access definition. Remove
3092 -- inapplicable candidate.
3101 elsif Is_Concurrent_Type
(T
) then
3102 Comp
:= First_Entity
(T
);
3103 while Present
(Comp
)
3104 and then Comp
/= First_Private_Entity
(T
)
3106 if Chars
(Comp
) = Chars
(Sel
) then
3107 if Is_Overloadable
(Comp
) then
3108 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
3110 Set_Entity_With_Style_Check
(Sel
, Comp
);
3111 Generate_Reference
(Comp
, Sel
);
3114 Set_Etype
(Sel
, Etype
(Comp
));
3115 Set_Etype
(N
, Etype
(Comp
));
3116 Set_Etype
(Nam
, It
.Typ
);
3118 -- For access type case, introduce explicit dereference for
3119 -- more uniform treatment of entry calls. Do this only once
3120 -- if several interpretations yield an access type.
3122 if Is_Access_Type
(Etype
(Nam
))
3123 and then Nkind
(Nam
) /= N_Explicit_Dereference
3125 Insert_Explicit_Dereference
(Nam
);
3127 (Warn_On_Dereference
, "?implicit dereference", N
);
3134 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
3137 Get_Next_Interp
(I
, It
);
3140 if Etype
(N
) = Any_Type
3141 and then not Try_Object_Operation
(N
)
3143 Error_Msg_NE
("undefined selector& for overloaded prefix", N
, Sel
);
3144 Set_Entity
(Sel
, Any_Id
);
3145 Set_Etype
(Sel
, Any_Type
);
3147 end Analyze_Overloaded_Selected_Component
;
3149 ----------------------------------
3150 -- Analyze_Qualified_Expression --
3151 ----------------------------------
3153 procedure Analyze_Qualified_Expression
(N
: Node_Id
) is
3154 Mark
: constant Entity_Id
:= Subtype_Mark
(N
);
3155 Expr
: constant Node_Id
:= Expression
(N
);
3161 Analyze_Expression
(Expr
);
3163 Set_Etype
(N
, Any_Type
);
3168 if T
= Any_Type
then
3172 Check_Fully_Declared
(T
, N
);
3174 -- If expected type is class-wide, check for exact match before
3175 -- expansion, because if the expression is a dispatching call it
3176 -- may be rewritten as explicit dereference with class-wide result.
3177 -- If expression is overloaded, retain only interpretations that
3178 -- will yield exact matches.
3180 if Is_Class_Wide_Type
(T
) then
3181 if not Is_Overloaded
(Expr
) then
3182 if Base_Type
(Etype
(Expr
)) /= Base_Type
(T
) then
3183 if Nkind
(Expr
) = N_Aggregate
then
3184 Error_Msg_N
("type of aggregate cannot be class-wide", Expr
);
3186 Wrong_Type
(Expr
, T
);
3191 Get_First_Interp
(Expr
, I
, It
);
3193 while Present
(It
.Nam
) loop
3194 if Base_Type
(It
.Typ
) /= Base_Type
(T
) then
3198 Get_Next_Interp
(I
, It
);
3204 end Analyze_Qualified_Expression
;
3206 -----------------------------------
3207 -- Analyze_Quantified_Expression --
3208 -----------------------------------
3210 procedure Analyze_Quantified_Expression
(N
: Node_Id
) is
3211 Loc
: constant Source_Ptr
:= Sloc
(N
);
3212 Ent
: constant Entity_Id
:=
3214 (E_Loop
, Current_Scope
, Sloc
(N
), 'L');
3219 Set_Etype
(Ent
, Standard_Void_Type
);
3220 Set_Parent
(Ent
, N
);
3222 if Present
(Loop_Parameter_Specification
(N
)) then
3224 Make_Iteration_Scheme
(Loc
,
3225 Loop_Parameter_Specification
=>
3226 Loop_Parameter_Specification
(N
));
3229 Make_Iteration_Scheme
(Loc
,
3230 Iterator_Specification
=>
3231 Iterator_Specification
(N
));
3235 Set_Parent
(Iterator
, N
);
3236 Analyze_Iteration_Scheme
(Iterator
);
3238 -- The loop specification may have been converted into an
3239 -- iterator specification during its analysis. Update the
3240 -- quantified node accordingly.
3242 if Present
(Iterator_Specification
(Iterator
)) then
3243 Set_Iterator_Specification
3244 (N
, Iterator_Specification
(Iterator
));
3245 Set_Loop_Parameter_Specification
(N
, Empty
);
3248 Analyze
(Condition
(N
));
3251 Set_Etype
(N
, Standard_Boolean
);
3252 end Analyze_Quantified_Expression
;
3258 procedure Analyze_Range
(N
: Node_Id
) is
3259 L
: constant Node_Id
:= Low_Bound
(N
);
3260 H
: constant Node_Id
:= High_Bound
(N
);
3261 I1
, I2
: Interp_Index
;
3264 procedure Check_Common_Type
(T1
, T2
: Entity_Id
);
3265 -- Verify the compatibility of two types, and choose the
3266 -- non universal one if the other is universal.
3268 procedure Check_High_Bound
(T
: Entity_Id
);
3269 -- Test one interpretation of the low bound against all those
3270 -- of the high bound.
3272 procedure Check_Universal_Expression
(N
: Node_Id
);
3273 -- In Ada83, reject bounds of a universal range that are not
3274 -- literals or entity names.
3276 -----------------------
3277 -- Check_Common_Type --
3278 -----------------------
3280 procedure Check_Common_Type
(T1
, T2
: Entity_Id
) is
3282 if Covers
(T1
=> T1
, T2
=> T2
)
3284 Covers
(T1
=> T2
, T2
=> T1
)
3286 if T1
= Universal_Integer
3287 or else T1
= Universal_Real
3288 or else T1
= Any_Character
3290 Add_One_Interp
(N
, Base_Type
(T2
), Base_Type
(T2
));
3293 Add_One_Interp
(N
, T1
, T1
);
3296 Add_One_Interp
(N
, Base_Type
(T1
), Base_Type
(T1
));
3299 end Check_Common_Type
;
3301 ----------------------
3302 -- Check_High_Bound --
3303 ----------------------
3305 procedure Check_High_Bound
(T
: Entity_Id
) is
3307 if not Is_Overloaded
(H
) then
3308 Check_Common_Type
(T
, Etype
(H
));
3310 Get_First_Interp
(H
, I2
, It2
);
3311 while Present
(It2
.Typ
) loop
3312 Check_Common_Type
(T
, It2
.Typ
);
3313 Get_Next_Interp
(I2
, It2
);
3316 end Check_High_Bound
;
3318 -----------------------------
3319 -- Is_Universal_Expression --
3320 -----------------------------
3322 procedure Check_Universal_Expression
(N
: Node_Id
) is
3324 if Etype
(N
) = Universal_Integer
3325 and then Nkind
(N
) /= N_Integer_Literal
3326 and then not Is_Entity_Name
(N
)
3327 and then Nkind
(N
) /= N_Attribute_Reference
3329 Error_Msg_N
("illegal bound in discrete range", N
);
3331 end Check_Universal_Expression
;
3333 -- Start of processing for Analyze_Range
3336 Set_Etype
(N
, Any_Type
);
3337 Analyze_Expression
(L
);
3338 Analyze_Expression
(H
);
3340 if Etype
(L
) = Any_Type
or else Etype
(H
) = Any_Type
then
3344 if not Is_Overloaded
(L
) then
3345 Check_High_Bound
(Etype
(L
));
3347 Get_First_Interp
(L
, I1
, It1
);
3348 while Present
(It1
.Typ
) loop
3349 Check_High_Bound
(It1
.Typ
);
3350 Get_Next_Interp
(I1
, It1
);
3354 -- If result is Any_Type, then we did not find a compatible pair
3356 if Etype
(N
) = Any_Type
then
3357 Error_Msg_N
("incompatible types in range ", N
);
3361 if Ada_Version
= Ada_83
3363 (Nkind
(Parent
(N
)) = N_Loop_Parameter_Specification
3364 or else Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
)
3366 Check_Universal_Expression
(L
);
3367 Check_Universal_Expression
(H
);
3371 -----------------------
3372 -- Analyze_Reference --
3373 -----------------------
3375 procedure Analyze_Reference
(N
: Node_Id
) is
3376 P
: constant Node_Id
:= Prefix
(N
);
3379 Acc_Type
: Entity_Id
;
3384 -- An interesting error check, if we take the 'Reference of an object
3385 -- for which a pragma Atomic or Volatile has been given, and the type
3386 -- of the object is not Atomic or Volatile, then we are in trouble. The
3387 -- problem is that no trace of the atomic/volatile status will remain
3388 -- for the backend to respect when it deals with the resulting pointer,
3389 -- since the pointer type will not be marked atomic (it is a pointer to
3390 -- the base type of the object).
3392 -- It is not clear if that can ever occur, but in case it does, we will
3393 -- generate an error message. Not clear if this message can ever be
3394 -- generated, and pretty clear that it represents a bug if it is, still
3395 -- seems worth checking, except in CodePeer mode where we do not really
3396 -- care and don't want to bother the user.
3400 if Is_Entity_Name
(P
)
3401 and then Is_Object_Reference
(P
)
3402 and then not CodePeer_Mode
3407 if (Has_Atomic_Components
(E
)
3408 and then not Has_Atomic_Components
(T
))
3410 (Has_Volatile_Components
(E
)
3411 and then not Has_Volatile_Components
(T
))
3412 or else (Is_Atomic
(E
) and then not Is_Atomic
(T
))
3413 or else (Is_Volatile
(E
) and then not Is_Volatile
(T
))
3415 Error_Msg_N
("cannot take reference to Atomic/Volatile object", N
);
3419 -- Carry on with normal processing
3421 Acc_Type
:= Create_Itype
(E_Allocator_Type
, N
);
3422 Set_Etype
(Acc_Type
, Acc_Type
);
3423 Set_Directly_Designated_Type
(Acc_Type
, Etype
(P
));
3424 Set_Etype
(N
, Acc_Type
);
3425 end Analyze_Reference
;
3427 --------------------------------
3428 -- Analyze_Selected_Component --
3429 --------------------------------
3431 -- Prefix is a record type or a task or protected type. In the latter case,
3432 -- the selector must denote a visible entry.
3434 procedure Analyze_Selected_Component
(N
: Node_Id
) is
3435 Name
: constant Node_Id
:= Prefix
(N
);
3436 Sel
: constant Node_Id
:= Selector_Name
(N
);
3439 Has_Candidate
: Boolean := False;
3442 Pent
: Entity_Id
:= Empty
;
3443 Prefix_Type
: Entity_Id
;
3445 Type_To_Use
: Entity_Id
;
3446 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3447 -- a class-wide type, we use its root type, whose components are
3448 -- present in the class-wide type.
3450 Is_Single_Concurrent_Object
: Boolean;
3451 -- Set True if the prefix is a single task or a single protected object
3453 procedure Find_Component_In_Instance
(Rec
: Entity_Id
);
3454 -- In an instance, a component of a private extension may not be visible
3455 -- while it was visible in the generic. Search candidate scope for a
3456 -- component with the proper identifier. This is only done if all other
3457 -- searches have failed. When the match is found (it always will be),
3458 -- the Etype of both N and Sel are set from this component, and the
3459 -- entity of Sel is set to reference this component.
3461 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean;
3462 -- It is known that the parent of N denotes a subprogram call. Comp
3463 -- is an overloadable component of the concurrent type of the prefix.
3464 -- Determine whether all formals of the parent of N and Comp are mode
3465 -- conformant. If the parent node is not analyzed yet it may be an
3466 -- indexed component rather than a function call.
3468 --------------------------------
3469 -- Find_Component_In_Instance --
3470 --------------------------------
3472 procedure Find_Component_In_Instance
(Rec
: Entity_Id
) is
3476 Comp
:= First_Component
(Rec
);
3477 while Present
(Comp
) loop
3478 if Chars
(Comp
) = Chars
(Sel
) then
3479 Set_Entity_With_Style_Check
(Sel
, Comp
);
3480 Set_Etype
(Sel
, Etype
(Comp
));
3481 Set_Etype
(N
, Etype
(Comp
));
3485 Next_Component
(Comp
);
3488 -- This must succeed because code was legal in the generic
3490 raise Program_Error
;
3491 end Find_Component_In_Instance
;
3493 ------------------------------
3494 -- Has_Mode_Conformant_Spec --
3495 ------------------------------
3497 function Has_Mode_Conformant_Spec
(Comp
: Entity_Id
) return Boolean is
3498 Comp_Param
: Entity_Id
;
3500 Param_Typ
: Entity_Id
;
3503 Comp_Param
:= First_Formal
(Comp
);
3505 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
3506 Param
:= First
(Expressions
(Parent
(N
)));
3508 Param
:= First
(Parameter_Associations
(Parent
(N
)));
3511 while Present
(Comp_Param
)
3512 and then Present
(Param
)
3514 Param_Typ
:= Find_Parameter_Type
(Param
);
3516 if Present
(Param_Typ
)
3518 not Conforming_Types
3519 (Etype
(Comp_Param
), Param_Typ
, Mode_Conformant
)
3524 Next_Formal
(Comp_Param
);
3528 -- One of the specs has additional formals
3530 if Present
(Comp_Param
) or else Present
(Param
) then
3535 end Has_Mode_Conformant_Spec
;
3537 -- Start of processing for Analyze_Selected_Component
3540 Set_Etype
(N
, Any_Type
);
3542 if Is_Overloaded
(Name
) then
3543 Analyze_Overloaded_Selected_Component
(N
);
3546 elsif Etype
(Name
) = Any_Type
then
3547 Set_Entity
(Sel
, Any_Id
);
3548 Set_Etype
(Sel
, Any_Type
);
3552 Prefix_Type
:= Etype
(Name
);
3555 if Is_Access_Type
(Prefix_Type
) then
3557 -- A RACW object can never be used as prefix of a selected component
3558 -- since that means it is dereferenced without being a controlling
3559 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
3560 -- reporting an error, we must check whether this is actually a
3561 -- dispatching call in prefix form.
3563 if Is_Remote_Access_To_Class_Wide_Type
(Prefix_Type
)
3564 and then Comes_From_Source
(N
)
3566 if Try_Object_Operation
(N
) then
3570 ("invalid dereference of a remote access-to-class-wide value",
3574 -- Normal case of selected component applied to access type
3577 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3579 if Is_Entity_Name
(Name
) then
3580 Pent
:= Entity
(Name
);
3581 elsif Nkind
(Name
) = N_Selected_Component
3582 and then Is_Entity_Name
(Selector_Name
(Name
))
3584 Pent
:= Entity
(Selector_Name
(Name
));
3587 Prefix_Type
:= Process_Implicit_Dereference_Prefix
(Pent
, Name
);
3590 -- If we have an explicit dereference of a remote access-to-class-wide
3591 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3592 -- have to check for the case of a prefix that is a controlling operand
3593 -- of a prefixed dispatching call, as the dereference is legal in that
3594 -- case. Normally this condition is checked in Validate_Remote_Access_
3595 -- To_Class_Wide_Type, but we have to defer the checking for selected
3596 -- component prefixes because of the prefixed dispatching call case.
3597 -- Note that implicit dereferences are checked for this just above.
3599 elsif Nkind
(Name
) = N_Explicit_Dereference
3600 and then Is_Remote_Access_To_Class_Wide_Type
(Etype
(Prefix
(Name
)))
3601 and then Comes_From_Source
(N
)
3603 if Try_Object_Operation
(N
) then
3607 ("invalid dereference of a remote access-to-class-wide value",
3612 -- (Ada 2005): if the prefix is the limited view of a type, and
3613 -- the context already includes the full view, use the full view
3614 -- in what follows, either to retrieve a component of to find
3615 -- a primitive operation. If the prefix is an explicit dereference,
3616 -- set the type of the prefix to reflect this transformation.
3617 -- If the non-limited view is itself an incomplete type, get the
3618 -- full view if available.
3620 if Is_Incomplete_Type
(Prefix_Type
)
3621 and then From_With_Type
(Prefix_Type
)
3622 and then Present
(Non_Limited_View
(Prefix_Type
))
3624 Prefix_Type
:= Get_Full_View
(Non_Limited_View
(Prefix_Type
));
3626 if Nkind
(N
) = N_Explicit_Dereference
then
3627 Set_Etype
(Prefix
(N
), Prefix_Type
);
3630 elsif Ekind
(Prefix_Type
) = E_Class_Wide_Type
3631 and then From_With_Type
(Prefix_Type
)
3632 and then Present
(Non_Limited_View
(Etype
(Prefix_Type
)))
3635 Class_Wide_Type
(Non_Limited_View
(Etype
(Prefix_Type
)));
3637 if Nkind
(N
) = N_Explicit_Dereference
then
3638 Set_Etype
(Prefix
(N
), Prefix_Type
);
3642 if Ekind
(Prefix_Type
) = E_Private_Subtype
then
3643 Prefix_Type
:= Base_Type
(Prefix_Type
);
3646 Type_To_Use
:= Prefix_Type
;
3648 -- For class-wide types, use the entity list of the root type. This
3649 -- indirection is specially important for private extensions because
3650 -- only the root type get switched (not the class-wide type).
3652 if Is_Class_Wide_Type
(Prefix_Type
) then
3653 Type_To_Use
:= Root_Type
(Prefix_Type
);
3656 -- If the prefix is a single concurrent object, use its name in error
3657 -- messages, rather than that of its anonymous type.
3659 Is_Single_Concurrent_Object
:=
3660 Is_Concurrent_Type
(Prefix_Type
)
3661 and then Is_Internal_Name
(Chars
(Prefix_Type
))
3662 and then not Is_Derived_Type
(Prefix_Type
)
3663 and then Is_Entity_Name
(Name
);
3665 Comp
:= First_Entity
(Type_To_Use
);
3667 -- If the selector has an original discriminant, the node appears in
3668 -- an instance. Replace the discriminant with the corresponding one
3669 -- in the current discriminated type. For nested generics, this must
3670 -- be done transitively, so note the new original discriminant.
3672 if Nkind
(Sel
) = N_Identifier
3673 and then Present
(Original_Discriminant
(Sel
))
3675 Comp
:= Find_Corresponding_Discriminant
(Sel
, Prefix_Type
);
3677 -- Mark entity before rewriting, for completeness and because
3678 -- subsequent semantic checks might examine the original node.
3680 Set_Entity
(Sel
, Comp
);
3681 Rewrite
(Selector_Name
(N
),
3682 New_Occurrence_Of
(Comp
, Sloc
(N
)));
3683 Set_Original_Discriminant
(Selector_Name
(N
), Comp
);
3684 Set_Etype
(N
, Etype
(Comp
));
3686 if Is_Access_Type
(Etype
(Name
)) then
3687 Insert_Explicit_Dereference
(Name
);
3688 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
3691 elsif Is_Record_Type
(Prefix_Type
) then
3693 -- Find component with given name
3695 while Present
(Comp
) loop
3696 if Chars
(Comp
) = Chars
(Sel
)
3697 and then Is_Visible_Component
(Comp
)
3699 Set_Entity_With_Style_Check
(Sel
, Comp
);
3700 Set_Etype
(Sel
, Etype
(Comp
));
3702 if Ekind
(Comp
) = E_Discriminant
then
3703 if Is_Unchecked_Union
(Base_Type
(Prefix_Type
)) then
3705 ("cannot reference discriminant of Unchecked_Union",
3709 if Is_Generic_Type
(Prefix_Type
)
3711 Is_Generic_Type
(Root_Type
(Prefix_Type
))
3713 Set_Original_Discriminant
(Sel
, Comp
);
3717 -- Resolve the prefix early otherwise it is not possible to
3718 -- build the actual subtype of the component: it may need
3719 -- to duplicate this prefix and duplication is only allowed
3720 -- on fully resolved expressions.
3724 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3725 -- subtypes in a package specification.
3728 -- limited with Pkg;
3730 -- type Acc_Inc is access Pkg.T;
3732 -- N : Natural := X.all.Comp; -- ERROR, limited view
3733 -- end Pkg; -- Comp is not visible
3735 if Nkind
(Name
) = N_Explicit_Dereference
3736 and then From_With_Type
(Etype
(Prefix
(Name
)))
3737 and then not Is_Potentially_Use_Visible
(Etype
(Name
))
3738 and then Nkind
(Parent
(Cunit_Entity
(Current_Sem_Unit
))) =
3739 N_Package_Specification
3742 ("premature usage of incomplete}", Prefix
(Name
),
3743 Etype
(Prefix
(Name
)));
3746 -- We never need an actual subtype for the case of a selection
3747 -- for a indexed component of a non-packed array, since in
3748 -- this case gigi generates all the checks and can find the
3749 -- necessary bounds information.
3751 -- We also do not need an actual subtype for the case of a
3752 -- first, last, length, or range attribute applied to a
3753 -- non-packed array, since gigi can again get the bounds in
3754 -- these cases (gigi cannot handle the packed case, since it
3755 -- has the bounds of the packed array type, not the original
3756 -- bounds of the type). However, if the prefix is itself a
3757 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3758 -- as a dynamic-sized temporary, so we do generate an actual
3759 -- subtype for this case.
3761 Parent_N
:= Parent
(N
);
3763 if not Is_Packed
(Etype
(Comp
))
3765 ((Nkind
(Parent_N
) = N_Indexed_Component
3766 and then Nkind
(Name
) /= N_Selected_Component
)
3768 (Nkind
(Parent_N
) = N_Attribute_Reference
3769 and then (Attribute_Name
(Parent_N
) = Name_First
3771 Attribute_Name
(Parent_N
) = Name_Last
3773 Attribute_Name
(Parent_N
) = Name_Length
3775 Attribute_Name
(Parent_N
) = Name_Range
)))
3777 Set_Etype
(N
, Etype
(Comp
));
3779 -- If full analysis is not enabled, we do not generate an
3780 -- actual subtype, because in the absence of expansion
3781 -- reference to a formal of a protected type, for example,
3782 -- will not be properly transformed, and will lead to
3783 -- out-of-scope references in gigi.
3785 -- In all other cases, we currently build an actual subtype.
3786 -- It seems likely that many of these cases can be avoided,
3787 -- but right now, the front end makes direct references to the
3788 -- bounds (e.g. in generating a length check), and if we do
3789 -- not make an actual subtype, we end up getting a direct
3790 -- reference to a discriminant, which will not do.
3792 elsif Full_Analysis
then
3794 Build_Actual_Subtype_Of_Component
(Etype
(Comp
), N
);
3795 Insert_Action
(N
, Act_Decl
);
3797 if No
(Act_Decl
) then
3798 Set_Etype
(N
, Etype
(Comp
));
3801 -- Component type depends on discriminants. Enter the
3802 -- main attributes of the subtype.
3805 Subt
: constant Entity_Id
:=
3806 Defining_Identifier
(Act_Decl
);
3809 Set_Etype
(Subt
, Base_Type
(Etype
(Comp
)));
3810 Set_Ekind
(Subt
, Ekind
(Etype
(Comp
)));
3811 Set_Etype
(N
, Subt
);
3815 -- If Full_Analysis not enabled, just set the Etype
3818 Set_Etype
(N
, Etype
(Comp
));
3824 -- If the prefix is a private extension, check only the visible
3825 -- components of the partial view. This must include the tag,
3826 -- which can appear in expanded code in a tag check.
3828 if Ekind
(Type_To_Use
) = E_Record_Type_With_Private
3829 and then Chars
(Selector_Name
(N
)) /= Name_uTag
3831 exit when Comp
= Last_Entity
(Type_To_Use
);
3837 -- Ada 2005 (AI-252): The selected component can be interpreted as
3838 -- a prefixed view of a subprogram. Depending on the context, this is
3839 -- either a name that can appear in a renaming declaration, or part
3840 -- of an enclosing call given in prefix form.
3842 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3843 -- selected component should resolve to a name.
3845 if Ada_Version
>= Ada_2005
3846 and then Is_Tagged_Type
(Prefix_Type
)
3847 and then not Is_Concurrent_Type
(Prefix_Type
)
3849 if Nkind
(Parent
(N
)) = N_Generic_Association
3850 or else Nkind
(Parent
(N
)) = N_Requeue_Statement
3851 or else Nkind
(Parent
(N
)) = N_Subprogram_Renaming_Declaration
3853 if Find_Primitive_Operation
(N
) then
3857 elsif Try_Object_Operation
(N
) then
3861 -- If the transformation fails, it will be necessary to redo the
3862 -- analysis with all errors enabled, to indicate candidate
3863 -- interpretations and reasons for each failure ???
3867 elsif Is_Private_Type
(Prefix_Type
) then
3869 -- Allow access only to discriminants of the type. If the type has
3870 -- no full view, gigi uses the parent type for the components, so we
3871 -- do the same here.
3873 if No
(Full_View
(Prefix_Type
)) then
3874 Type_To_Use
:= Root_Type
(Base_Type
(Prefix_Type
));
3875 Comp
:= First_Entity
(Type_To_Use
);
3878 while Present
(Comp
) loop
3879 if Chars
(Comp
) = Chars
(Sel
) then
3880 if Ekind
(Comp
) = E_Discriminant
then
3881 Set_Entity_With_Style_Check
(Sel
, Comp
);
3882 Generate_Reference
(Comp
, Sel
);
3884 Set_Etype
(Sel
, Etype
(Comp
));
3885 Set_Etype
(N
, Etype
(Comp
));
3887 if Is_Generic_Type
(Prefix_Type
)
3888 or else Is_Generic_Type
(Root_Type
(Prefix_Type
))
3890 Set_Original_Discriminant
(Sel
, Comp
);
3893 -- Before declaring an error, check whether this is tagged
3894 -- private type and a call to a primitive operation.
3896 elsif Ada_Version
>= Ada_2005
3897 and then Is_Tagged_Type
(Prefix_Type
)
3898 and then Try_Object_Operation
(N
)
3903 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
3904 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
3905 Set_Entity
(Sel
, Any_Id
);
3906 Set_Etype
(N
, Any_Type
);
3915 elsif Is_Concurrent_Type
(Prefix_Type
) then
3917 -- Find visible operation with given name. For a protected type,
3918 -- the possible candidates are discriminants, entries or protected
3919 -- procedures. For a task type, the set can only include entries or
3920 -- discriminants if the task type is not an enclosing scope. If it
3921 -- is an enclosing scope (e.g. in an inner task) then all entities
3922 -- are visible, but the prefix must denote the enclosing scope, i.e.
3923 -- can only be a direct name or an expanded name.
3925 Set_Etype
(Sel
, Any_Type
);
3926 In_Scope
:= In_Open_Scopes
(Prefix_Type
);
3928 while Present
(Comp
) loop
3929 if Chars
(Comp
) = Chars
(Sel
) then
3930 if Is_Overloadable
(Comp
) then
3931 Add_One_Interp
(Sel
, Comp
, Etype
(Comp
));
3933 -- If the prefix is tagged, the correct interpretation may
3934 -- lie in the primitive or class-wide operations of the
3935 -- type. Perform a simple conformance check to determine
3936 -- whether Try_Object_Operation should be invoked even if
3937 -- a visible entity is found.
3939 if Is_Tagged_Type
(Prefix_Type
)
3941 Nkind_In
(Parent
(N
), N_Procedure_Call_Statement
,
3943 N_Indexed_Component
)
3944 and then Has_Mode_Conformant_Spec
(Comp
)
3946 Has_Candidate
:= True;
3949 -- Note: a selected component may not denote a component of a
3950 -- protected type (4.1.3(7)).
3952 elsif Ekind_In
(Comp
, E_Discriminant
, E_Entry_Family
)
3954 and then not Is_Protected_Type
(Prefix_Type
)
3955 and then Is_Entity_Name
(Name
))
3957 Set_Entity_With_Style_Check
(Sel
, Comp
);
3958 Generate_Reference
(Comp
, Sel
);
3964 Set_Etype
(Sel
, Etype
(Comp
));
3965 Set_Etype
(N
, Etype
(Comp
));
3967 if Ekind
(Comp
) = E_Discriminant
then
3968 Set_Original_Discriminant
(Sel
, Comp
);
3971 -- For access type case, introduce explicit dereference for
3972 -- more uniform treatment of entry calls.
3974 if Is_Access_Type
(Etype
(Name
)) then
3975 Insert_Explicit_Dereference
(Name
);
3977 (Warn_On_Dereference
, "?implicit dereference", N
);
3983 exit when not In_Scope
3985 Comp
= First_Private_Entity
(Base_Type
(Prefix_Type
));
3988 -- If there is no visible entity with the given name or none of the
3989 -- visible entities are plausible interpretations, check whether
3990 -- there is some other primitive operation with that name.
3992 if Ada_Version
>= Ada_2005
3993 and then Is_Tagged_Type
(Prefix_Type
)
3995 if (Etype
(N
) = Any_Type
3996 or else not Has_Candidate
)
3997 and then Try_Object_Operation
(N
)
4001 -- If the context is not syntactically a procedure call, it
4002 -- may be a call to a primitive function declared outside of
4003 -- the synchronized type.
4005 -- If the context is a procedure call, there might still be
4006 -- an overloading between an entry and a primitive procedure
4007 -- declared outside of the synchronized type, called in prefix
4008 -- notation. This is harder to disambiguate because in one case
4009 -- the controlling formal is implicit ???
4011 elsif Nkind
(Parent
(N
)) /= N_Procedure_Call_Statement
4012 and then Nkind
(Parent
(N
)) /= N_Indexed_Component
4013 and then Try_Object_Operation
(N
)
4019 if Etype
(N
) = Any_Type
and then Is_Protected_Type
(Prefix_Type
) then
4020 -- Case of a prefix of a protected type: selector might denote
4021 -- an invisible private component.
4023 Comp
:= First_Private_Entity
(Base_Type
(Prefix_Type
));
4024 while Present
(Comp
) and then Chars
(Comp
) /= Chars
(Sel
) loop
4028 if Present
(Comp
) then
4029 if Is_Single_Concurrent_Object
then
4030 Error_Msg_Node_2
:= Entity
(Name
);
4031 Error_Msg_NE
("invisible selector& for &", N
, Sel
);
4034 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4035 Error_Msg_NE
("invisible selector& for }", N
, Sel
);
4041 Set_Is_Overloaded
(N
, Is_Overloaded
(Sel
));
4046 Error_Msg_NE
("invalid prefix in selected component&", N
, Sel
);
4049 -- If N still has no type, the component is not defined in the prefix
4051 if Etype
(N
) = Any_Type
then
4053 if Is_Single_Concurrent_Object
then
4054 Error_Msg_Node_2
:= Entity
(Name
);
4055 Error_Msg_NE
("no selector& for&", N
, Sel
);
4057 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
4059 elsif Is_Generic_Type
(Prefix_Type
)
4060 and then Ekind
(Prefix_Type
) = E_Record_Type_With_Private
4061 and then Prefix_Type
/= Etype
(Prefix_Type
)
4062 and then Is_Record_Type
(Etype
(Prefix_Type
))
4064 -- If this is a derived formal type, the parent may have
4065 -- different visibility at this point. Try for an inherited
4066 -- component before reporting an error.
4068 Set_Etype
(Prefix
(N
), Etype
(Prefix_Type
));
4069 Analyze_Selected_Component
(N
);
4072 -- Similarly, if this is the actual for a formal derived type, the
4073 -- component inherited from the generic parent may not be visible
4074 -- in the actual, but the selected component is legal.
4076 elsif Ekind
(Prefix_Type
) = E_Record_Subtype_With_Private
4077 and then Is_Generic_Actual_Type
(Prefix_Type
)
4078 and then Present
(Full_View
(Prefix_Type
))
4081 Find_Component_In_Instance
4082 (Generic_Parent_Type
(Parent
(Prefix_Type
)));
4085 -- Finally, the formal and the actual may be private extensions,
4086 -- but the generic is declared in a child unit of the parent, and
4087 -- an additional step is needed to retrieve the proper scope.
4090 and then Present
(Parent_Subtype
(Etype
(Base_Type
(Prefix_Type
))))
4092 Find_Component_In_Instance
4093 (Parent_Subtype
(Etype
(Base_Type
(Prefix_Type
))));
4096 -- Component not found, specialize error message when appropriate
4099 if Ekind
(Prefix_Type
) = E_Record_Subtype
then
4101 -- Check whether this is a component of the base type which
4102 -- is absent from a statically constrained subtype. This will
4103 -- raise constraint error at run time, but is not a compile-
4104 -- time error. When the selector is illegal for base type as
4105 -- well fall through and generate a compilation error anyway.
4107 Comp
:= First_Component
(Base_Type
(Prefix_Type
));
4108 while Present
(Comp
) loop
4109 if Chars
(Comp
) = Chars
(Sel
)
4110 and then Is_Visible_Component
(Comp
)
4112 Set_Entity_With_Style_Check
(Sel
, Comp
);
4113 Generate_Reference
(Comp
, Sel
);
4114 Set_Etype
(Sel
, Etype
(Comp
));
4115 Set_Etype
(N
, Etype
(Comp
));
4117 -- Emit appropriate message. Gigi will replace the
4118 -- node subsequently with the appropriate Raise.
4120 Apply_Compile_Time_Constraint_Error
4121 (N
, "component not present in }?",
4122 CE_Discriminant_Check_Failed
,
4123 Ent
=> Prefix_Type
, Rep
=> False);
4124 Set_Raises_Constraint_Error
(N
);
4128 Next_Component
(Comp
);
4133 Error_Msg_Node_2
:= First_Subtype
(Prefix_Type
);
4134 Error_Msg_NE
("no selector& for}", N
, Sel
);
4136 Check_Misspelled_Selector
(Type_To_Use
, Sel
);
4139 Set_Entity
(Sel
, Any_Id
);
4140 Set_Etype
(Sel
, Any_Type
);
4142 end Analyze_Selected_Component
;
4144 ---------------------------
4145 -- Analyze_Short_Circuit --
4146 ---------------------------
4148 procedure Analyze_Short_Circuit
(N
: Node_Id
) is
4149 L
: constant Node_Id
:= Left_Opnd
(N
);
4150 R
: constant Node_Id
:= Right_Opnd
(N
);
4155 Analyze_Expression
(L
);
4156 Analyze_Expression
(R
);
4157 Set_Etype
(N
, Any_Type
);
4159 if not Is_Overloaded
(L
) then
4160 if Root_Type
(Etype
(L
)) = Standard_Boolean
4161 and then Has_Compatible_Type
(R
, Etype
(L
))
4163 Add_One_Interp
(N
, Etype
(L
), Etype
(L
));
4167 Get_First_Interp
(L
, Ind
, It
);
4168 while Present
(It
.Typ
) loop
4169 if Root_Type
(It
.Typ
) = Standard_Boolean
4170 and then Has_Compatible_Type
(R
, It
.Typ
)
4172 Add_One_Interp
(N
, It
.Typ
, It
.Typ
);
4175 Get_Next_Interp
(Ind
, It
);
4179 -- Here we have failed to find an interpretation. Clearly we know that
4180 -- it is not the case that both operands can have an interpretation of
4181 -- Boolean, but this is by far the most likely intended interpretation.
4182 -- So we simply resolve both operands as Booleans, and at least one of
4183 -- these resolutions will generate an error message, and we do not need
4184 -- to give another error message on the short circuit operation itself.
4186 if Etype
(N
) = Any_Type
then
4187 Resolve
(L
, Standard_Boolean
);
4188 Resolve
(R
, Standard_Boolean
);
4189 Set_Etype
(N
, Standard_Boolean
);
4191 end Analyze_Short_Circuit
;
4197 procedure Analyze_Slice
(N
: Node_Id
) is
4198 P
: constant Node_Id
:= Prefix
(N
);
4199 D
: constant Node_Id
:= Discrete_Range
(N
);
4200 Array_Type
: Entity_Id
;
4202 procedure Analyze_Overloaded_Slice
;
4203 -- If the prefix is overloaded, select those interpretations that
4204 -- yield a one-dimensional array type.
4206 ------------------------------
4207 -- Analyze_Overloaded_Slice --
4208 ------------------------------
4210 procedure Analyze_Overloaded_Slice
is
4216 Set_Etype
(N
, Any_Type
);
4218 Get_First_Interp
(P
, I
, It
);
4219 while Present
(It
.Nam
) loop
4222 if Is_Access_Type
(Typ
) then
4223 Typ
:= Designated_Type
(Typ
);
4224 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
4227 if Is_Array_Type
(Typ
)
4228 and then Number_Dimensions
(Typ
) = 1
4229 and then Has_Compatible_Type
(D
, Etype
(First_Index
(Typ
)))
4231 Add_One_Interp
(N
, Typ
, Typ
);
4234 Get_Next_Interp
(I
, It
);
4237 if Etype
(N
) = Any_Type
then
4238 Error_Msg_N
("expect array type in prefix of slice", N
);
4240 end Analyze_Overloaded_Slice
;
4242 -- Start of processing for Analyze_Slice
4248 if Is_Overloaded
(P
) then
4249 Analyze_Overloaded_Slice
;
4252 Array_Type
:= Etype
(P
);
4253 Set_Etype
(N
, Any_Type
);
4255 if Is_Access_Type
(Array_Type
) then
4256 Array_Type
:= Designated_Type
(Array_Type
);
4257 Error_Msg_NW
(Warn_On_Dereference
, "?implicit dereference", N
);
4260 if not Is_Array_Type
(Array_Type
) then
4261 Wrong_Type
(P
, Any_Array
);
4263 elsif Number_Dimensions
(Array_Type
) > 1 then
4265 ("type is not one-dimensional array in slice prefix", N
);
4268 Has_Compatible_Type
(D
, Etype
(First_Index
(Array_Type
)))
4270 Wrong_Type
(D
, Etype
(First_Index
(Array_Type
)));
4273 Set_Etype
(N
, Array_Type
);
4278 -----------------------------
4279 -- Analyze_Type_Conversion --
4280 -----------------------------
4282 procedure Analyze_Type_Conversion
(N
: Node_Id
) is
4283 Expr
: constant Node_Id
:= Expression
(N
);
4287 -- If Conversion_OK is set, then the Etype is already set, and the
4288 -- only processing required is to analyze the expression. This is
4289 -- used to construct certain "illegal" conversions which are not
4290 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4291 -- Sinfo for further details.
4293 if Conversion_OK
(N
) then
4298 -- Otherwise full type analysis is required, as well as some semantic
4299 -- checks to make sure the argument of the conversion is appropriate.
4301 Find_Type
(Subtype_Mark
(N
));
4302 T
:= Entity
(Subtype_Mark
(N
));
4304 Check_Fully_Declared
(T
, N
);
4305 Analyze_Expression
(Expr
);
4306 Validate_Remote_Type_Type_Conversion
(N
);
4308 -- Only remaining step is validity checks on the argument. These
4309 -- are skipped if the conversion does not come from the source.
4311 if not Comes_From_Source
(N
) then
4314 -- If there was an error in a generic unit, no need to replicate the
4315 -- error message. Conversely, constant-folding in the generic may
4316 -- transform the argument of a conversion into a string literal, which
4317 -- is legal. Therefore the following tests are not performed in an
4320 elsif In_Instance
then
4323 elsif Nkind
(Expr
) = N_Null
then
4324 Error_Msg_N
("argument of conversion cannot be null", N
);
4325 Error_Msg_N
("\use qualified expression instead", N
);
4326 Set_Etype
(N
, Any_Type
);
4328 elsif Nkind
(Expr
) = N_Aggregate
then
4329 Error_Msg_N
("argument of conversion cannot be aggregate", N
);
4330 Error_Msg_N
("\use qualified expression instead", N
);
4332 elsif Nkind
(Expr
) = N_Allocator
then
4333 Error_Msg_N
("argument of conversion cannot be an allocator", N
);
4334 Error_Msg_N
("\use qualified expression instead", N
);
4336 elsif Nkind
(Expr
) = N_String_Literal
then
4337 Error_Msg_N
("argument of conversion cannot be string literal", N
);
4338 Error_Msg_N
("\use qualified expression instead", N
);
4340 elsif Nkind
(Expr
) = N_Character_Literal
then
4341 if Ada_Version
= Ada_83
then
4344 Error_Msg_N
("argument of conversion cannot be character literal",
4346 Error_Msg_N
("\use qualified expression instead", N
);
4349 elsif Nkind
(Expr
) = N_Attribute_Reference
4351 (Attribute_Name
(Expr
) = Name_Access
or else
4352 Attribute_Name
(Expr
) = Name_Unchecked_Access
or else
4353 Attribute_Name
(Expr
) = Name_Unrestricted_Access
)
4355 Error_Msg_N
("argument of conversion cannot be access", N
);
4356 Error_Msg_N
("\use qualified expression instead", N
);
4358 end Analyze_Type_Conversion
;
4360 ----------------------
4361 -- Analyze_Unary_Op --
4362 ----------------------
4364 procedure Analyze_Unary_Op
(N
: Node_Id
) is
4365 R
: constant Node_Id
:= Right_Opnd
(N
);
4366 Op_Id
: Entity_Id
:= Entity
(N
);
4369 Set_Etype
(N
, Any_Type
);
4370 Candidate_Type
:= Empty
;
4372 Analyze_Expression
(R
);
4374 if Present
(Op_Id
) then
4375 if Ekind
(Op_Id
) = E_Operator
then
4376 Find_Unary_Types
(R
, Op_Id
, N
);
4378 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
4382 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
4383 while Present
(Op_Id
) loop
4384 if Ekind
(Op_Id
) = E_Operator
then
4385 if No
(Next_Entity
(First_Entity
(Op_Id
))) then
4386 Find_Unary_Types
(R
, Op_Id
, N
);
4389 elsif Is_Overloadable
(Op_Id
) then
4390 Analyze_User_Defined_Unary_Op
(N
, Op_Id
);
4393 Op_Id
:= Homonym
(Op_Id
);
4398 end Analyze_Unary_Op
;
4400 ----------------------------------
4401 -- Analyze_Unchecked_Expression --
4402 ----------------------------------
4404 procedure Analyze_Unchecked_Expression
(N
: Node_Id
) is
4406 Analyze
(Expression
(N
), Suppress
=> All_Checks
);
4407 Set_Etype
(N
, Etype
(Expression
(N
)));
4408 Save_Interps
(Expression
(N
), N
);
4409 end Analyze_Unchecked_Expression
;
4411 ---------------------------------------
4412 -- Analyze_Unchecked_Type_Conversion --
4413 ---------------------------------------
4415 procedure Analyze_Unchecked_Type_Conversion
(N
: Node_Id
) is
4417 Find_Type
(Subtype_Mark
(N
));
4418 Analyze_Expression
(Expression
(N
));
4419 Set_Etype
(N
, Entity
(Subtype_Mark
(N
)));
4420 end Analyze_Unchecked_Type_Conversion
;
4422 ------------------------------------
4423 -- Analyze_User_Defined_Binary_Op --
4424 ------------------------------------
4426 procedure Analyze_User_Defined_Binary_Op
4431 -- Only do analysis if the operator Comes_From_Source, since otherwise
4432 -- the operator was generated by the expander, and all such operators
4433 -- always refer to the operators in package Standard.
4435 if Comes_From_Source
(N
) then
4437 F1
: constant Entity_Id
:= First_Formal
(Op_Id
);
4438 F2
: constant Entity_Id
:= Next_Formal
(F1
);
4441 -- Verify that Op_Id is a visible binary function. Note that since
4442 -- we know Op_Id is overloaded, potentially use visible means use
4443 -- visible for sure (RM 9.4(11)).
4445 if Ekind
(Op_Id
) = E_Function
4446 and then Present
(F2
)
4447 and then (Is_Immediately_Visible
(Op_Id
)
4448 or else Is_Potentially_Use_Visible
(Op_Id
))
4449 and then Has_Compatible_Type
(Left_Opnd
(N
), Etype
(F1
))
4450 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F2
))
4452 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
4454 -- If the left operand is overloaded, indicate that the
4455 -- current type is a viable candidate. This is redundant
4456 -- in most cases, but for equality and comparison operators
4457 -- where the context does not impose a type on the operands,
4458 -- setting the proper type is necessary to avoid subsequent
4459 -- ambiguities during resolution, when both user-defined and
4460 -- predefined operators may be candidates.
4462 if Is_Overloaded
(Left_Opnd
(N
)) then
4463 Set_Etype
(Left_Opnd
(N
), Etype
(F1
));
4466 if Debug_Flag_E
then
4467 Write_Str
("user defined operator ");
4468 Write_Name
(Chars
(Op_Id
));
4469 Write_Str
(" on node ");
4470 Write_Int
(Int
(N
));
4476 end Analyze_User_Defined_Binary_Op
;
4478 -----------------------------------
4479 -- Analyze_User_Defined_Unary_Op --
4480 -----------------------------------
4482 procedure Analyze_User_Defined_Unary_Op
4487 -- Only do analysis if the operator Comes_From_Source, since otherwise
4488 -- the operator was generated by the expander, and all such operators
4489 -- always refer to the operators in package Standard.
4491 if Comes_From_Source
(N
) then
4493 F
: constant Entity_Id
:= First_Formal
(Op_Id
);
4496 -- Verify that Op_Id is a visible unary function. Note that since
4497 -- we know Op_Id is overloaded, potentially use visible means use
4498 -- visible for sure (RM 9.4(11)).
4500 if Ekind
(Op_Id
) = E_Function
4501 and then No
(Next_Formal
(F
))
4502 and then (Is_Immediately_Visible
(Op_Id
)
4503 or else Is_Potentially_Use_Visible
(Op_Id
))
4504 and then Has_Compatible_Type
(Right_Opnd
(N
), Etype
(F
))
4506 Add_One_Interp
(N
, Op_Id
, Etype
(Op_Id
));
4510 end Analyze_User_Defined_Unary_Op
;
4512 ---------------------------
4513 -- Check_Arithmetic_Pair --
4514 ---------------------------
4516 procedure Check_Arithmetic_Pair
4517 (T1
, T2
: Entity_Id
;
4521 Op_Name
: constant Name_Id
:= Chars
(Op_Id
);
4523 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean;
4524 -- Check whether the fixed-point type Typ has a user-defined operator
4525 -- (multiplication or division) that should hide the corresponding
4526 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4527 -- such operators more visible and therefore useful.
4529 -- If the name of the operation is an expanded name with prefix
4530 -- Standard, the predefined universal fixed operator is available,
4531 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4533 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
;
4534 -- Get specific type (i.e. non-universal type if there is one)
4540 function Has_Fixed_Op
(Typ
: Entity_Id
; Op
: Entity_Id
) return Boolean is
4541 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
4547 -- If the universal_fixed operation is given explicitly the rule
4548 -- concerning primitive operations of the type do not apply.
4550 if Nkind
(N
) = N_Function_Call
4551 and then Nkind
(Name
(N
)) = N_Expanded_Name
4552 and then Entity
(Prefix
(Name
(N
))) = Standard_Standard
4557 -- The operation is treated as primitive if it is declared in the
4558 -- same scope as the type, and therefore on the same entity chain.
4560 Ent
:= Next_Entity
(Typ
);
4561 while Present
(Ent
) loop
4562 if Chars
(Ent
) = Chars
(Op
) then
4563 F1
:= First_Formal
(Ent
);
4564 F2
:= Next_Formal
(F1
);
4566 -- The operation counts as primitive if either operand or
4567 -- result are of the given base type, and both operands are
4568 -- fixed point types.
4570 if (Base_Type
(Etype
(F1
)) = Bas
4571 and then Is_Fixed_Point_Type
(Etype
(F2
)))
4574 (Base_Type
(Etype
(F2
)) = Bas
4575 and then Is_Fixed_Point_Type
(Etype
(F1
)))
4578 (Base_Type
(Etype
(Ent
)) = Bas
4579 and then Is_Fixed_Point_Type
(Etype
(F1
))
4580 and then Is_Fixed_Point_Type
(Etype
(F2
)))
4596 function Specific_Type
(T1
, T2
: Entity_Id
) return Entity_Id
is
4598 if T1
= Universal_Integer
or else T1
= Universal_Real
then
4599 return Base_Type
(T2
);
4601 return Base_Type
(T1
);
4605 -- Start of processing for Check_Arithmetic_Pair
4608 if Op_Name
= Name_Op_Add
or else Op_Name
= Name_Op_Subtract
then
4610 if Is_Numeric_Type
(T1
)
4611 and then Is_Numeric_Type
(T2
)
4612 and then (Covers
(T1
=> T1
, T2
=> T2
)
4614 Covers
(T1
=> T2
, T2
=> T1
))
4616 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4619 elsif Op_Name
= Name_Op_Multiply
or else Op_Name
= Name_Op_Divide
then
4621 if Is_Fixed_Point_Type
(T1
)
4622 and then (Is_Fixed_Point_Type
(T2
)
4623 or else T2
= Universal_Real
)
4625 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4626 -- and no further processing is required (this is the case of an
4627 -- operator constructed by Exp_Fixd for a fixed point operation)
4628 -- Otherwise add one interpretation with universal fixed result
4629 -- If the operator is given in functional notation, it comes
4630 -- from source and Fixed_As_Integer cannot apply.
4632 if (Nkind
(N
) not in N_Op
4633 or else not Treat_Fixed_As_Integer
(N
))
4635 (not Has_Fixed_Op
(T1
, Op_Id
)
4636 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
4638 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
4641 elsif Is_Fixed_Point_Type
(T2
)
4642 and then (Nkind
(N
) not in N_Op
4643 or else not Treat_Fixed_As_Integer
(N
))
4644 and then T1
= Universal_Real
4646 (not Has_Fixed_Op
(T1
, Op_Id
)
4647 or else Nkind
(Parent
(N
)) = N_Type_Conversion
)
4649 Add_One_Interp
(N
, Op_Id
, Universal_Fixed
);
4651 elsif Is_Numeric_Type
(T1
)
4652 and then Is_Numeric_Type
(T2
)
4653 and then (Covers
(T1
=> T1
, T2
=> T2
)
4655 Covers
(T1
=> T2
, T2
=> T1
))
4657 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4659 elsif Is_Fixed_Point_Type
(T1
)
4660 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4661 or else T2
= Universal_Integer
)
4663 Add_One_Interp
(N
, Op_Id
, T1
);
4665 elsif T2
= Universal_Real
4666 and then Base_Type
(T1
) = Base_Type
(Standard_Integer
)
4667 and then Op_Name
= Name_Op_Multiply
4669 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
4671 elsif T1
= Universal_Real
4672 and then Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4674 Add_One_Interp
(N
, Op_Id
, Any_Fixed
);
4676 elsif Is_Fixed_Point_Type
(T2
)
4677 and then (Base_Type
(T1
) = Base_Type
(Standard_Integer
)
4678 or else T1
= Universal_Integer
)
4679 and then Op_Name
= Name_Op_Multiply
4681 Add_One_Interp
(N
, Op_Id
, T2
);
4683 elsif T1
= Universal_Real
and then T2
= Universal_Integer
then
4684 Add_One_Interp
(N
, Op_Id
, T1
);
4686 elsif T2
= Universal_Real
4687 and then T1
= Universal_Integer
4688 and then Op_Name
= Name_Op_Multiply
4690 Add_One_Interp
(N
, Op_Id
, T2
);
4693 elsif Op_Name
= Name_Op_Mod
or else Op_Name
= Name_Op_Rem
then
4695 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4696 -- set does not require any special processing, since the Etype is
4697 -- already set (case of operation constructed by Exp_Fixed).
4699 if Is_Integer_Type
(T1
)
4700 and then (Covers
(T1
=> T1
, T2
=> T2
)
4702 Covers
(T1
=> T2
, T2
=> T1
))
4704 Add_One_Interp
(N
, Op_Id
, Specific_Type
(T1
, T2
));
4707 elsif Op_Name
= Name_Op_Expon
then
4708 if Is_Numeric_Type
(T1
)
4709 and then not Is_Fixed_Point_Type
(T1
)
4710 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4711 or else T2
= Universal_Integer
)
4713 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
4716 else pragma Assert
(Nkind
(N
) in N_Op_Shift
);
4718 -- If not one of the predefined operators, the node may be one
4719 -- of the intrinsic functions. Its kind is always specific, and
4720 -- we can use it directly, rather than the name of the operation.
4722 if Is_Integer_Type
(T1
)
4723 and then (Base_Type
(T2
) = Base_Type
(Standard_Integer
)
4724 or else T2
= Universal_Integer
)
4726 Add_One_Interp
(N
, Op_Id
, Base_Type
(T1
));
4729 end Check_Arithmetic_Pair
;
4731 -------------------------------
4732 -- Check_Misspelled_Selector --
4733 -------------------------------
4735 procedure Check_Misspelled_Selector
4736 (Prefix
: Entity_Id
;
4739 Max_Suggestions
: constant := 2;
4740 Nr_Of_Suggestions
: Natural := 0;
4742 Suggestion_1
: Entity_Id
:= Empty
;
4743 Suggestion_2
: Entity_Id
:= Empty
;
4748 -- All the components of the prefix of selector Sel are matched
4749 -- against Sel and a count is maintained of possible misspellings.
4750 -- When at the end of the analysis there are one or two (not more!)
4751 -- possible misspellings, these misspellings will be suggested as
4752 -- possible correction.
4754 if not (Is_Private_Type
(Prefix
) or else Is_Record_Type
(Prefix
)) then
4756 -- Concurrent types should be handled as well ???
4761 Comp
:= First_Entity
(Prefix
);
4762 while Nr_Of_Suggestions
<= Max_Suggestions
and then Present
(Comp
) loop
4763 if Is_Visible_Component
(Comp
) then
4764 if Is_Bad_Spelling_Of
(Chars
(Comp
), Chars
(Sel
)) then
4765 Nr_Of_Suggestions
:= Nr_Of_Suggestions
+ 1;
4767 case Nr_Of_Suggestions
is
4768 when 1 => Suggestion_1
:= Comp
;
4769 when 2 => Suggestion_2
:= Comp
;
4770 when others => exit;
4775 Comp
:= Next_Entity
(Comp
);
4778 -- Report at most two suggestions
4780 if Nr_Of_Suggestions
= 1 then
4781 Error_Msg_NE
-- CODEFIX
4782 ("\possible misspelling of&", Sel
, Suggestion_1
);
4784 elsif Nr_Of_Suggestions
= 2 then
4785 Error_Msg_Node_2
:= Suggestion_2
;
4786 Error_Msg_NE
-- CODEFIX
4787 ("\possible misspelling of& or&", Sel
, Suggestion_1
);
4789 end Check_Misspelled_Selector
;
4791 ----------------------
4792 -- Defined_In_Scope --
4793 ----------------------
4795 function Defined_In_Scope
(T
: Entity_Id
; S
: Entity_Id
) return Boolean
4797 S1
: constant Entity_Id
:= Scope
(Base_Type
(T
));
4800 or else (S1
= System_Aux_Id
and then S
= Scope
(S1
));
4801 end Defined_In_Scope
;
4807 procedure Diagnose_Call
(N
: Node_Id
; Nam
: Node_Id
) is
4813 Void_Interp_Seen
: Boolean := False;
4816 pragma Warnings
(Off
, Boolean);
4819 if Ada_Version
>= Ada_2005
then
4820 Actual
:= First_Actual
(N
);
4821 while Present
(Actual
) loop
4823 -- Ada 2005 (AI-50217): Post an error in case of premature
4824 -- usage of an entity from the limited view.
4826 if not Analyzed
(Etype
(Actual
))
4827 and then From_With_Type
(Etype
(Actual
))
4829 Error_Msg_Qual_Level
:= 1;
4831 ("missing with_clause for scope of imported type&",
4832 Actual
, Etype
(Actual
));
4833 Error_Msg_Qual_Level
:= 0;
4836 Next_Actual
(Actual
);
4840 -- Analyze each candidate call again, with full error reporting
4844 ("no candidate interpretations match the actuals:!", Nam
);
4845 Err_Mode
:= All_Errors_Mode
;
4846 All_Errors_Mode
:= True;
4848 -- If this is a call to an operation of a concurrent type,
4849 -- the failed interpretations have been removed from the
4850 -- name. Recover them to provide full diagnostics.
4852 if Nkind
(Parent
(Nam
)) = N_Selected_Component
then
4853 Set_Entity
(Nam
, Empty
);
4854 New_Nam
:= New_Copy_Tree
(Parent
(Nam
));
4855 Set_Is_Overloaded
(New_Nam
, False);
4856 Set_Is_Overloaded
(Selector_Name
(New_Nam
), False);
4857 Set_Parent
(New_Nam
, Parent
(Parent
(Nam
)));
4858 Analyze_Selected_Component
(New_Nam
);
4859 Get_First_Interp
(Selector_Name
(New_Nam
), X
, It
);
4861 Get_First_Interp
(Nam
, X
, It
);
4864 while Present
(It
.Nam
) loop
4865 if Etype
(It
.Nam
) = Standard_Void_Type
then
4866 Void_Interp_Seen
:= True;
4869 Analyze_One_Call
(N
, It
.Nam
, True, Success
);
4870 Get_Next_Interp
(X
, It
);
4873 if Nkind
(N
) = N_Function_Call
then
4874 Get_First_Interp
(Nam
, X
, It
);
4875 while Present
(It
.Nam
) loop
4876 if Ekind_In
(It
.Nam
, E_Function
, E_Operator
) then
4879 Get_Next_Interp
(X
, It
);
4883 -- If all interpretations are procedures, this deserves a
4884 -- more precise message. Ditto if this appears as the prefix
4885 -- of a selected component, which may be a lexical error.
4888 ("\context requires function call, found procedure name", Nam
);
4890 if Nkind
(Parent
(N
)) = N_Selected_Component
4891 and then N
= Prefix
(Parent
(N
))
4893 Error_Msg_N
-- CODEFIX
4894 ("\period should probably be semicolon", Parent
(N
));
4897 elsif Nkind
(N
) = N_Procedure_Call_Statement
4898 and then not Void_Interp_Seen
4901 "\function name found in procedure call", Nam
);
4904 All_Errors_Mode
:= Err_Mode
;
4907 ---------------------------
4908 -- Find_Arithmetic_Types --
4909 ---------------------------
4911 procedure Find_Arithmetic_Types
4916 Index1
: Interp_Index
;
4917 Index2
: Interp_Index
;
4921 procedure Check_Right_Argument
(T
: Entity_Id
);
4922 -- Check right operand of operator
4924 --------------------------
4925 -- Check_Right_Argument --
4926 --------------------------
4928 procedure Check_Right_Argument
(T
: Entity_Id
) is
4930 if not Is_Overloaded
(R
) then
4931 Check_Arithmetic_Pair
(T
, Etype
(R
), Op_Id
, N
);
4933 Get_First_Interp
(R
, Index2
, It2
);
4934 while Present
(It2
.Typ
) loop
4935 Check_Arithmetic_Pair
(T
, It2
.Typ
, Op_Id
, N
);
4936 Get_Next_Interp
(Index2
, It2
);
4939 end Check_Right_Argument
;
4941 -- Start of processing for Find_Arithmetic_Types
4944 if not Is_Overloaded
(L
) then
4945 Check_Right_Argument
(Etype
(L
));
4948 Get_First_Interp
(L
, Index1
, It1
);
4949 while Present
(It1
.Typ
) loop
4950 Check_Right_Argument
(It1
.Typ
);
4951 Get_Next_Interp
(Index1
, It1
);
4955 end Find_Arithmetic_Types
;
4957 ------------------------
4958 -- Find_Boolean_Types --
4959 ------------------------
4961 procedure Find_Boolean_Types
4966 Index
: Interp_Index
;
4969 procedure Check_Numeric_Argument
(T
: Entity_Id
);
4970 -- Special case for logical operations one of whose operands is an
4971 -- integer literal. If both are literal the result is any modular type.
4973 ----------------------------
4974 -- Check_Numeric_Argument --
4975 ----------------------------
4977 procedure Check_Numeric_Argument
(T
: Entity_Id
) is
4979 if T
= Universal_Integer
then
4980 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
4982 elsif Is_Modular_Integer_Type
(T
) then
4983 Add_One_Interp
(N
, Op_Id
, T
);
4985 end Check_Numeric_Argument
;
4987 -- Start of processing for Find_Boolean_Types
4990 if not Is_Overloaded
(L
) then
4991 if Etype
(L
) = Universal_Integer
4992 or else Etype
(L
) = Any_Modular
4994 if not Is_Overloaded
(R
) then
4995 Check_Numeric_Argument
(Etype
(R
));
4998 Get_First_Interp
(R
, Index
, It
);
4999 while Present
(It
.Typ
) loop
5000 Check_Numeric_Argument
(It
.Typ
);
5001 Get_Next_Interp
(Index
, It
);
5005 -- If operands are aggregates, we must assume that they may be
5006 -- boolean arrays, and leave disambiguation for the second pass.
5007 -- If only one is an aggregate, verify that the other one has an
5008 -- interpretation as a boolean array
5010 elsif Nkind
(L
) = N_Aggregate
then
5011 if Nkind
(R
) = N_Aggregate
then
5012 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
5014 elsif not Is_Overloaded
(R
) then
5015 if Valid_Boolean_Arg
(Etype
(R
)) then
5016 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
5020 Get_First_Interp
(R
, Index
, It
);
5021 while Present
(It
.Typ
) loop
5022 if Valid_Boolean_Arg
(It
.Typ
) then
5023 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5026 Get_Next_Interp
(Index
, It
);
5030 elsif Valid_Boolean_Arg
(Etype
(L
))
5031 and then Has_Compatible_Type
(R
, Etype
(L
))
5033 Add_One_Interp
(N
, Op_Id
, Etype
(L
));
5037 Get_First_Interp
(L
, Index
, It
);
5038 while Present
(It
.Typ
) loop
5039 if Valid_Boolean_Arg
(It
.Typ
)
5040 and then Has_Compatible_Type
(R
, It
.Typ
)
5042 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5045 Get_Next_Interp
(Index
, It
);
5048 end Find_Boolean_Types
;
5050 ---------------------------
5051 -- Find_Comparison_Types --
5052 ---------------------------
5054 procedure Find_Comparison_Types
5059 Index
: Interp_Index
;
5061 Found
: Boolean := False;
5064 Scop
: Entity_Id
:= Empty
;
5066 procedure Try_One_Interp
(T1
: Entity_Id
);
5067 -- Routine to try one proposed interpretation. Note that the context
5068 -- of the operator plays no role in resolving the arguments, so that
5069 -- if there is more than one interpretation of the operands that is
5070 -- compatible with comparison, the operation is ambiguous.
5072 --------------------
5073 -- Try_One_Interp --
5074 --------------------
5076 procedure Try_One_Interp
(T1
: Entity_Id
) is
5079 -- If the operator is an expanded name, then the type of the operand
5080 -- must be defined in the corresponding scope. If the type is
5081 -- universal, the context will impose the correct type.
5084 and then not Defined_In_Scope
(T1
, Scop
)
5085 and then T1
/= Universal_Integer
5086 and then T1
/= Universal_Real
5087 and then T1
/= Any_String
5088 and then T1
/= Any_Composite
5093 if Valid_Comparison_Arg
(T1
)
5094 and then Has_Compatible_Type
(R
, T1
)
5097 and then Base_Type
(T1
) /= Base_Type
(T_F
)
5099 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
5101 if It
= No_Interp
then
5102 Ambiguous_Operands
(N
);
5103 Set_Etype
(L
, Any_Type
);
5117 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
5122 -- Start of processing for Find_Comparison_Types
5125 -- If left operand is aggregate, the right operand has to
5126 -- provide a usable type for it.
5128 if Nkind
(L
) = N_Aggregate
5129 and then Nkind
(R
) /= N_Aggregate
5131 Find_Comparison_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
5135 if Nkind
(N
) = N_Function_Call
5136 and then Nkind
(Name
(N
)) = N_Expanded_Name
5138 Scop
:= Entity
(Prefix
(Name
(N
)));
5140 -- The prefix may be a package renaming, and the subsequent test
5141 -- requires the original package.
5143 if Ekind
(Scop
) = E_Package
5144 and then Present
(Renamed_Entity
(Scop
))
5146 Scop
:= Renamed_Entity
(Scop
);
5147 Set_Entity
(Prefix
(Name
(N
)), Scop
);
5151 if not Is_Overloaded
(L
) then
5152 Try_One_Interp
(Etype
(L
));
5155 Get_First_Interp
(L
, Index
, It
);
5156 while Present
(It
.Typ
) loop
5157 Try_One_Interp
(It
.Typ
);
5158 Get_Next_Interp
(Index
, It
);
5161 end Find_Comparison_Types
;
5163 ----------------------------------------
5164 -- Find_Non_Universal_Interpretations --
5165 ----------------------------------------
5167 procedure Find_Non_Universal_Interpretations
5173 Index
: Interp_Index
;
5177 if T1
= Universal_Integer
5178 or else T1
= Universal_Real
5180 if not Is_Overloaded
(R
) then
5182 (N
, Op_Id
, Standard_Boolean
, Base_Type
(Etype
(R
)));
5184 Get_First_Interp
(R
, Index
, It
);
5185 while Present
(It
.Typ
) loop
5186 if Covers
(It
.Typ
, T1
) then
5188 (N
, Op_Id
, Standard_Boolean
, Base_Type
(It
.Typ
));
5191 Get_Next_Interp
(Index
, It
);
5195 Add_One_Interp
(N
, Op_Id
, Standard_Boolean
, Base_Type
(T1
));
5197 end Find_Non_Universal_Interpretations
;
5199 ------------------------------
5200 -- Find_Concatenation_Types --
5201 ------------------------------
5203 procedure Find_Concatenation_Types
5208 Op_Type
: constant Entity_Id
:= Etype
(Op_Id
);
5211 if Is_Array_Type
(Op_Type
)
5212 and then not Is_Limited_Type
(Op_Type
)
5214 and then (Has_Compatible_Type
(L
, Op_Type
)
5216 Has_Compatible_Type
(L
, Component_Type
(Op_Type
)))
5218 and then (Has_Compatible_Type
(R
, Op_Type
)
5220 Has_Compatible_Type
(R
, Component_Type
(Op_Type
)))
5222 Add_One_Interp
(N
, Op_Id
, Op_Type
);
5224 end Find_Concatenation_Types
;
5226 -------------------------
5227 -- Find_Equality_Types --
5228 -------------------------
5230 procedure Find_Equality_Types
5235 Index
: Interp_Index
;
5237 Found
: Boolean := False;
5240 Scop
: Entity_Id
:= Empty
;
5242 procedure Try_One_Interp
(T1
: Entity_Id
);
5243 -- The context of the equality operator plays no role in resolving the
5244 -- arguments, so that if there is more than one interpretation of the
5245 -- operands that is compatible with equality, the construct is ambiguous
5246 -- and an error can be emitted now, after trying to disambiguate, i.e.
5247 -- applying preference rules.
5249 --------------------
5250 -- Try_One_Interp --
5251 --------------------
5253 procedure Try_One_Interp
(T1
: Entity_Id
) is
5254 Bas
: constant Entity_Id
:= Base_Type
(T1
);
5257 -- If the operator is an expanded name, then the type of the operand
5258 -- must be defined in the corresponding scope. If the type is
5259 -- universal, the context will impose the correct type. An anonymous
5260 -- type for a 'Access reference is also universal in this sense, as
5261 -- the actual type is obtained from context.
5262 -- In Ada 2005, the equality operator for anonymous access types
5263 -- is declared in Standard, and preference rules apply to it.
5265 if Present
(Scop
) then
5266 if Defined_In_Scope
(T1
, Scop
)
5267 or else T1
= Universal_Integer
5268 or else T1
= Universal_Real
5269 or else T1
= Any_Access
5270 or else T1
= Any_String
5271 or else T1
= Any_Composite
5272 or else (Ekind
(T1
) = E_Access_Subprogram_Type
5273 and then not Comes_From_Source
(T1
))
5277 elsif Ekind
(T1
) = E_Anonymous_Access_Type
5278 and then Scop
= Standard_Standard
5283 -- The scope does not contain an operator for the type
5288 -- If we have infix notation, the operator must be usable.
5289 -- Within an instance, if the type is already established we
5290 -- know it is correct.
5291 -- In Ada 2005, the equality on anonymous access types is declared
5292 -- in Standard, and is always visible.
5294 elsif In_Open_Scopes
(Scope
(Bas
))
5295 or else Is_Potentially_Use_Visible
(Bas
)
5296 or else In_Use
(Bas
)
5297 or else (In_Use
(Scope
(Bas
))
5298 and then not Is_Hidden
(Bas
))
5299 or else (In_Instance
5300 and then First_Subtype
(T1
) = First_Subtype
(Etype
(R
)))
5301 or else Ekind
(T1
) = E_Anonymous_Access_Type
5306 -- Save candidate type for subsequent error message, if any
5308 if not Is_Limited_Type
(T1
) then
5309 Candidate_Type
:= T1
;
5315 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5316 -- Do not allow anonymous access types in equality operators.
5318 if Ada_Version
< Ada_2005
5319 and then Ekind
(T1
) = E_Anonymous_Access_Type
5324 if T1
/= Standard_Void_Type
5325 and then not Is_Limited_Type
(T1
)
5326 and then not Is_Limited_Composite
(T1
)
5327 and then Has_Compatible_Type
(R
, T1
)
5330 and then Base_Type
(T1
) /= Base_Type
(T_F
)
5332 It
:= Disambiguate
(L
, I_F
, Index
, Any_Type
);
5334 if It
= No_Interp
then
5335 Ambiguous_Operands
(N
);
5336 Set_Etype
(L
, Any_Type
);
5349 if not Analyzed
(L
) then
5353 Find_Non_Universal_Interpretations
(N
, R
, Op_Id
, T1
);
5355 -- Case of operator was not visible, Etype still set to Any_Type
5357 if Etype
(N
) = Any_Type
then
5361 elsif Scop
= Standard_Standard
5362 and then Ekind
(T1
) = E_Anonymous_Access_Type
5368 -- Start of processing for Find_Equality_Types
5371 -- If left operand is aggregate, the right operand has to
5372 -- provide a usable type for it.
5374 if Nkind
(L
) = N_Aggregate
5375 and then Nkind
(R
) /= N_Aggregate
5377 Find_Equality_Types
(L
=> R
, R
=> L
, Op_Id
=> Op_Id
, N
=> N
);
5381 if Nkind
(N
) = N_Function_Call
5382 and then Nkind
(Name
(N
)) = N_Expanded_Name
5384 Scop
:= Entity
(Prefix
(Name
(N
)));
5386 -- The prefix may be a package renaming, and the subsequent test
5387 -- requires the original package.
5389 if Ekind
(Scop
) = E_Package
5390 and then Present
(Renamed_Entity
(Scop
))
5392 Scop
:= Renamed_Entity
(Scop
);
5393 Set_Entity
(Prefix
(Name
(N
)), Scop
);
5397 if not Is_Overloaded
(L
) then
5398 Try_One_Interp
(Etype
(L
));
5401 Get_First_Interp
(L
, Index
, It
);
5402 while Present
(It
.Typ
) loop
5403 Try_One_Interp
(It
.Typ
);
5404 Get_Next_Interp
(Index
, It
);
5407 end Find_Equality_Types
;
5409 -------------------------
5410 -- Find_Negation_Types --
5411 -------------------------
5413 procedure Find_Negation_Types
5418 Index
: Interp_Index
;
5422 if not Is_Overloaded
(R
) then
5423 if Etype
(R
) = Universal_Integer
then
5424 Add_One_Interp
(N
, Op_Id
, Any_Modular
);
5425 elsif Valid_Boolean_Arg
(Etype
(R
)) then
5426 Add_One_Interp
(N
, Op_Id
, Etype
(R
));
5430 Get_First_Interp
(R
, Index
, It
);
5431 while Present
(It
.Typ
) loop
5432 if Valid_Boolean_Arg
(It
.Typ
) then
5433 Add_One_Interp
(N
, Op_Id
, It
.Typ
);
5436 Get_Next_Interp
(Index
, It
);
5439 end Find_Negation_Types
;
5441 ------------------------------
5442 -- Find_Primitive_Operation --
5443 ------------------------------
5445 function Find_Primitive_Operation
(N
: Node_Id
) return Boolean is
5446 Obj
: constant Node_Id
:= Prefix
(N
);
5447 Op
: constant Node_Id
:= Selector_Name
(N
);
5454 Set_Etype
(Op
, Any_Type
);
5456 if Is_Access_Type
(Etype
(Obj
)) then
5457 Typ
:= Designated_Type
(Etype
(Obj
));
5462 if Is_Class_Wide_Type
(Typ
) then
5463 Typ
:= Root_Type
(Typ
);
5466 Prims
:= Primitive_Operations
(Typ
);
5468 Prim
:= First_Elmt
(Prims
);
5469 while Present
(Prim
) loop
5470 if Chars
(Node
(Prim
)) = Chars
(Op
) then
5471 Add_One_Interp
(Op
, Node
(Prim
), Etype
(Node
(Prim
)));
5472 Set_Etype
(N
, Etype
(Node
(Prim
)));
5478 -- Now look for class-wide operations of the type or any of its
5479 -- ancestors by iterating over the homonyms of the selector.
5482 Cls_Type
: constant Entity_Id
:= Class_Wide_Type
(Typ
);
5486 Hom
:= Current_Entity
(Op
);
5487 while Present
(Hom
) loop
5488 if (Ekind
(Hom
) = E_Procedure
5490 Ekind
(Hom
) = E_Function
)
5491 and then Scope
(Hom
) = Scope
(Typ
)
5492 and then Present
(First_Formal
(Hom
))
5494 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
5496 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
5498 Ekind
(Etype
(First_Formal
(Hom
))) =
5499 E_Anonymous_Access_Type
5502 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
5505 Add_One_Interp
(Op
, Hom
, Etype
(Hom
));
5506 Set_Etype
(N
, Etype
(Hom
));
5509 Hom
:= Homonym
(Hom
);
5513 return Etype
(Op
) /= Any_Type
;
5514 end Find_Primitive_Operation
;
5516 ----------------------
5517 -- Find_Unary_Types --
5518 ----------------------
5520 procedure Find_Unary_Types
5525 Index
: Interp_Index
;
5529 if not Is_Overloaded
(R
) then
5530 if Is_Numeric_Type
(Etype
(R
)) then
5531 Add_One_Interp
(N
, Op_Id
, Base_Type
(Etype
(R
)));
5535 Get_First_Interp
(R
, Index
, It
);
5536 while Present
(It
.Typ
) loop
5537 if Is_Numeric_Type
(It
.Typ
) then
5538 Add_One_Interp
(N
, Op_Id
, Base_Type
(It
.Typ
));
5541 Get_Next_Interp
(Index
, It
);
5544 end Find_Unary_Types
;
5550 function Junk_Operand
(N
: Node_Id
) return Boolean is
5554 if Error_Posted
(N
) then
5558 -- Get entity to be tested
5560 if Is_Entity_Name
(N
)
5561 and then Present
(Entity
(N
))
5565 -- An odd case, a procedure name gets converted to a very peculiar
5566 -- function call, and here is where we detect this happening.
5568 elsif Nkind
(N
) = N_Function_Call
5569 and then Is_Entity_Name
(Name
(N
))
5570 and then Present
(Entity
(Name
(N
)))
5574 -- Another odd case, there are at least some cases of selected
5575 -- components where the selected component is not marked as having
5576 -- an entity, even though the selector does have an entity
5578 elsif Nkind
(N
) = N_Selected_Component
5579 and then Present
(Entity
(Selector_Name
(N
)))
5581 Enode
:= Selector_Name
(N
);
5587 -- Now test the entity we got to see if it is a bad case
5589 case Ekind
(Entity
(Enode
)) is
5593 ("package name cannot be used as operand", Enode
);
5595 when Generic_Unit_Kind
=>
5597 ("generic unit name cannot be used as operand", Enode
);
5601 ("subtype name cannot be used as operand", Enode
);
5605 ("entry name cannot be used as operand", Enode
);
5609 ("procedure name cannot be used as operand", Enode
);
5613 ("exception name cannot be used as operand", Enode
);
5615 when E_Block | E_Label | E_Loop
=>
5617 ("label name cannot be used as operand", Enode
);
5627 --------------------
5628 -- Operator_Check --
5629 --------------------
5631 procedure Operator_Check
(N
: Node_Id
) is
5633 Remove_Abstract_Operations
(N
);
5635 -- Test for case of no interpretation found for operator
5637 if Etype
(N
) = Any_Type
then
5641 Op_Id
: Entity_Id
:= Empty
;
5644 R
:= Right_Opnd
(N
);
5646 if Nkind
(N
) in N_Binary_Op
then
5652 -- If either operand has no type, then don't complain further,
5653 -- since this simply means that we have a propagated error.
5656 or else Etype
(R
) = Any_Type
5657 or else (Nkind
(N
) in N_Binary_Op
and then Etype
(L
) = Any_Type
)
5661 -- We explicitly check for the case of concatenation of component
5662 -- with component to avoid reporting spurious matching array types
5663 -- that might happen to be lurking in distant packages (such as
5664 -- run-time packages). This also prevents inconsistencies in the
5665 -- messages for certain ACVC B tests, which can vary depending on
5666 -- types declared in run-time interfaces. Another improvement when
5667 -- aggregates are present is to look for a well-typed operand.
5669 elsif Present
(Candidate_Type
)
5670 and then (Nkind
(N
) /= N_Op_Concat
5671 or else Is_Array_Type
(Etype
(L
))
5672 or else Is_Array_Type
(Etype
(R
)))
5674 if Nkind
(N
) = N_Op_Concat
then
5675 if Etype
(L
) /= Any_Composite
5676 and then Is_Array_Type
(Etype
(L
))
5678 Candidate_Type
:= Etype
(L
);
5680 elsif Etype
(R
) /= Any_Composite
5681 and then Is_Array_Type
(Etype
(R
))
5683 Candidate_Type
:= Etype
(R
);
5687 Error_Msg_NE
-- CODEFIX
5688 ("operator for} is not directly visible!",
5689 N
, First_Subtype
(Candidate_Type
));
5690 Error_Msg_N
-- CODEFIX
5691 ("use clause would make operation legal!", N
);
5694 -- If either operand is a junk operand (e.g. package name), then
5695 -- post appropriate error messages, but do not complain further.
5697 -- Note that the use of OR in this test instead of OR ELSE is
5698 -- quite deliberate, we may as well check both operands in the
5699 -- binary operator case.
5701 elsif Junk_Operand
(R
)
5702 or (Nkind
(N
) in N_Binary_Op
and then Junk_Operand
(L
))
5706 -- If we have a logical operator, one of whose operands is
5707 -- Boolean, then we know that the other operand cannot resolve to
5708 -- Boolean (since we got no interpretations), but in that case we
5709 -- pretty much know that the other operand should be Boolean, so
5710 -- resolve it that way (generating an error)
5712 elsif Nkind_In
(N
, N_Op_And
, N_Op_Or
, N_Op_Xor
) then
5713 if Etype
(L
) = Standard_Boolean
then
5714 Resolve
(R
, Standard_Boolean
);
5716 elsif Etype
(R
) = Standard_Boolean
then
5717 Resolve
(L
, Standard_Boolean
);
5721 -- For an arithmetic operator or comparison operator, if one
5722 -- of the operands is numeric, then we know the other operand
5723 -- is not the same numeric type. If it is a non-numeric type,
5724 -- then probably it is intended to match the other operand.
5726 elsif Nkind_In
(N
, N_Op_Add
,
5732 Nkind_In
(N
, N_Op_Lt
,
5738 if Is_Numeric_Type
(Etype
(L
))
5739 and then not Is_Numeric_Type
(Etype
(R
))
5741 Resolve
(R
, Etype
(L
));
5744 elsif Is_Numeric_Type
(Etype
(R
))
5745 and then not Is_Numeric_Type
(Etype
(L
))
5747 Resolve
(L
, Etype
(R
));
5751 -- Comparisons on A'Access are common enough to deserve a
5754 elsif Nkind_In
(N
, N_Op_Eq
, N_Op_Ne
)
5755 and then Ekind
(Etype
(L
)) = E_Access_Attribute_Type
5756 and then Ekind
(Etype
(R
)) = E_Access_Attribute_Type
5759 ("two access attributes cannot be compared directly", N
);
5761 ("\use qualified expression for one of the operands",
5765 -- Another one for C programmers
5767 elsif Nkind
(N
) = N_Op_Concat
5768 and then Valid_Boolean_Arg
(Etype
(L
))
5769 and then Valid_Boolean_Arg
(Etype
(R
))
5771 Error_Msg_N
("invalid operands for concatenation", N
);
5772 Error_Msg_N
-- CODEFIX
5773 ("\maybe AND was meant", N
);
5776 -- A special case for comparison of access parameter with null
5778 elsif Nkind
(N
) = N_Op_Eq
5779 and then Is_Entity_Name
(L
)
5780 and then Nkind
(Parent
(Entity
(L
))) = N_Parameter_Specification
5781 and then Nkind
(Parameter_Type
(Parent
(Entity
(L
)))) =
5783 and then Nkind
(R
) = N_Null
5785 Error_Msg_N
("access parameter is not allowed to be null", L
);
5786 Error_Msg_N
("\(call would raise Constraint_Error)", L
);
5789 -- Another special case for exponentiation, where the right
5790 -- operand must be Natural, independently of the base.
5792 elsif Nkind
(N
) = N_Op_Expon
5793 and then Is_Numeric_Type
(Etype
(L
))
5794 and then not Is_Overloaded
(R
)
5796 First_Subtype
(Base_Type
(Etype
(R
))) /= Standard_Integer
5797 and then Base_Type
(Etype
(R
)) /= Universal_Integer
5800 ("exponent must be of type Natural, found}", R
, Etype
(R
));
5804 -- If we fall through then just give general message. Note that in
5805 -- the following messages, if the operand is overloaded we choose
5806 -- an arbitrary type to complain about, but that is probably more
5807 -- useful than not giving a type at all.
5809 if Nkind
(N
) in N_Unary_Op
then
5810 Error_Msg_Node_2
:= Etype
(R
);
5811 Error_Msg_N
("operator& not defined for}", N
);
5815 if Nkind
(N
) in N_Binary_Op
then
5816 if not Is_Overloaded
(L
)
5817 and then not Is_Overloaded
(R
)
5818 and then Base_Type
(Etype
(L
)) = Base_Type
(Etype
(R
))
5820 Error_Msg_Node_2
:= First_Subtype
(Etype
(R
));
5821 Error_Msg_N
("there is no applicable operator& for}", N
);
5824 -- Another attempt to find a fix: one of the candidate
5825 -- interpretations may not be use-visible. This has
5826 -- already been checked for predefined operators, so
5827 -- we examine only user-defined functions.
5829 Op_Id
:= Get_Name_Entity_Id
(Chars
(N
));
5831 while Present
(Op_Id
) loop
5832 if Ekind
(Op_Id
) /= E_Operator
5833 and then Is_Overloadable
(Op_Id
)
5835 if not Is_Immediately_Visible
(Op_Id
)
5836 and then not In_Use
(Scope
(Op_Id
))
5837 and then not Is_Abstract_Subprogram
(Op_Id
)
5838 and then not Is_Hidden
(Op_Id
)
5839 and then Ekind
(Scope
(Op_Id
)) = E_Package
5842 (L
, Etype
(First_Formal
(Op_Id
)))
5844 (Next_Formal
(First_Formal
(Op_Id
)))
5848 Etype
(Next_Formal
(First_Formal
(Op_Id
))))
5851 ("No legal interpretation for operator&", N
);
5853 ("\use clause on& would make operation legal",
5859 Op_Id
:= Homonym
(Op_Id
);
5863 Error_Msg_N
("invalid operand types for operator&", N
);
5865 if Nkind
(N
) /= N_Op_Concat
then
5866 Error_Msg_NE
("\left operand has}!", N
, Etype
(L
));
5867 Error_Msg_NE
("\right operand has}!", N
, Etype
(R
));
5877 -----------------------------------------
5878 -- Process_Implicit_Dereference_Prefix --
5879 -----------------------------------------
5881 function Process_Implicit_Dereference_Prefix
5883 P
: Entity_Id
) return Entity_Id
5886 Typ
: constant Entity_Id
:= Designated_Type
(Etype
(P
));
5890 and then (Operating_Mode
= Check_Semantics
or else not Expander_Active
)
5892 -- We create a dummy reference to E to ensure that the reference
5893 -- is not considered as part of an assignment (an implicit
5894 -- dereference can never assign to its prefix). The Comes_From_Source
5895 -- attribute needs to be propagated for accurate warnings.
5897 Ref
:= New_Reference_To
(E
, Sloc
(P
));
5898 Set_Comes_From_Source
(Ref
, Comes_From_Source
(P
));
5899 Generate_Reference
(E
, Ref
);
5902 -- An implicit dereference is a legal occurrence of an
5903 -- incomplete type imported through a limited_with clause,
5904 -- if the full view is visible.
5906 if From_With_Type
(Typ
)
5907 and then not From_With_Type
(Scope
(Typ
))
5909 (Is_Immediately_Visible
(Scope
(Typ
))
5911 (Is_Child_Unit
(Scope
(Typ
))
5912 and then Is_Visible_Child_Unit
(Scope
(Typ
))))
5914 return Available_View
(Typ
);
5919 end Process_Implicit_Dereference_Prefix
;
5921 --------------------------------
5922 -- Remove_Abstract_Operations --
5923 --------------------------------
5925 procedure Remove_Abstract_Operations
(N
: Node_Id
) is
5926 Abstract_Op
: Entity_Id
:= Empty
;
5927 Address_Kludge
: Boolean := False;
5931 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
5932 -- activate this if either extensions are enabled, or if the abstract
5933 -- operation in question comes from a predefined file. This latter test
5934 -- allows us to use abstract to make operations invisible to users. In
5935 -- particular, if type Address is non-private and abstract subprograms
5936 -- are used to hide its operators, they will be truly hidden.
5938 type Operand_Position
is (First_Op
, Second_Op
);
5939 Univ_Type
: constant Entity_Id
:= Universal_Interpretation
(N
);
5941 procedure Remove_Address_Interpretations
(Op
: Operand_Position
);
5942 -- Ambiguities may arise when the operands are literal and the address
5943 -- operations in s-auxdec are visible. In that case, remove the
5944 -- interpretation of a literal as Address, to retain the semantics of
5945 -- Address as a private type.
5947 ------------------------------------
5948 -- Remove_Address_Interpretations --
5949 ------------------------------------
5951 procedure Remove_Address_Interpretations
(Op
: Operand_Position
) is
5955 if Is_Overloaded
(N
) then
5956 Get_First_Interp
(N
, I
, It
);
5957 while Present
(It
.Nam
) loop
5958 Formal
:= First_Entity
(It
.Nam
);
5960 if Op
= Second_Op
then
5961 Formal
:= Next_Entity
(Formal
);
5964 if Is_Descendent_Of_Address
(Etype
(Formal
)) then
5965 Address_Kludge
:= True;
5969 Get_Next_Interp
(I
, It
);
5972 end Remove_Address_Interpretations
;
5974 -- Start of processing for Remove_Abstract_Operations
5977 if Is_Overloaded
(N
) then
5978 Get_First_Interp
(N
, I
, It
);
5980 while Present
(It
.Nam
) loop
5981 if Is_Overloadable
(It
.Nam
)
5982 and then Is_Abstract_Subprogram
(It
.Nam
)
5983 and then not Is_Dispatching_Operation
(It
.Nam
)
5985 Abstract_Op
:= It
.Nam
;
5987 if Is_Descendent_Of_Address
(It
.Typ
) then
5988 Address_Kludge
:= True;
5992 -- In Ada 2005, this operation does not participate in Overload
5993 -- resolution. If the operation is defined in a predefined
5994 -- unit, it is one of the operations declared abstract in some
5995 -- variants of System, and it must be removed as well.
5997 elsif Ada_Version
>= Ada_2005
5998 or else Is_Predefined_File_Name
5999 (Unit_File_Name
(Get_Source_Unit
(It
.Nam
)))
6006 Get_Next_Interp
(I
, It
);
6009 if No
(Abstract_Op
) then
6011 -- If some interpretation yields an integer type, it is still
6012 -- possible that there are address interpretations. Remove them
6013 -- if one operand is a literal, to avoid spurious ambiguities
6014 -- on systems where Address is a visible integer type.
6016 if Is_Overloaded
(N
)
6017 and then Nkind
(N
) in N_Op
6018 and then Is_Integer_Type
(Etype
(N
))
6020 if Nkind
(N
) in N_Binary_Op
then
6021 if Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
6022 Remove_Address_Interpretations
(Second_Op
);
6024 elsif Nkind
(Right_Opnd
(N
)) = N_Integer_Literal
then
6025 Remove_Address_Interpretations
(First_Op
);
6030 elsif Nkind
(N
) in N_Op
then
6032 -- Remove interpretations that treat literals as addresses. This
6033 -- is never appropriate, even when Address is defined as a visible
6034 -- Integer type. The reason is that we would really prefer Address
6035 -- to behave as a private type, even in this case, which is there
6036 -- only to accommodate oddities of VMS address sizes. If Address
6037 -- is a visible integer type, we get lots of overload ambiguities.
6039 if Nkind
(N
) in N_Binary_Op
then
6041 U1
: constant Boolean :=
6042 Present
(Universal_Interpretation
(Right_Opnd
(N
)));
6043 U2
: constant Boolean :=
6044 Present
(Universal_Interpretation
(Left_Opnd
(N
)));
6048 Remove_Address_Interpretations
(Second_Op
);
6052 Remove_Address_Interpretations
(First_Op
);
6055 if not (U1
and U2
) then
6057 -- Remove corresponding predefined operator, which is
6058 -- always added to the overload set.
6060 Get_First_Interp
(N
, I
, It
);
6061 while Present
(It
.Nam
) loop
6062 if Scope
(It
.Nam
) = Standard_Standard
6063 and then Base_Type
(It
.Typ
) =
6064 Base_Type
(Etype
(Abstract_Op
))
6069 Get_Next_Interp
(I
, It
);
6072 elsif Is_Overloaded
(N
)
6073 and then Present
(Univ_Type
)
6075 -- If both operands have a universal interpretation,
6076 -- it is still necessary to remove interpretations that
6077 -- yield Address. Any remaining ambiguities will be
6078 -- removed in Disambiguate.
6080 Get_First_Interp
(N
, I
, It
);
6081 while Present
(It
.Nam
) loop
6082 if Is_Descendent_Of_Address
(It
.Typ
) then
6085 elsif not Is_Type
(It
.Nam
) then
6086 Set_Entity
(N
, It
.Nam
);
6089 Get_Next_Interp
(I
, It
);
6095 elsif Nkind
(N
) = N_Function_Call
6097 (Nkind
(Name
(N
)) = N_Operator_Symbol
6099 (Nkind
(Name
(N
)) = N_Expanded_Name
6101 Nkind
(Selector_Name
(Name
(N
))) = N_Operator_Symbol
))
6105 Arg1
: constant Node_Id
:= First
(Parameter_Associations
(N
));
6106 U1
: constant Boolean :=
6107 Present
(Universal_Interpretation
(Arg1
));
6108 U2
: constant Boolean :=
6109 Present
(Next
(Arg1
)) and then
6110 Present
(Universal_Interpretation
(Next
(Arg1
)));
6114 Remove_Address_Interpretations
(First_Op
);
6118 Remove_Address_Interpretations
(Second_Op
);
6121 if not (U1
and U2
) then
6122 Get_First_Interp
(N
, I
, It
);
6123 while Present
(It
.Nam
) loop
6124 if Scope
(It
.Nam
) = Standard_Standard
6125 and then It
.Typ
= Base_Type
(Etype
(Abstract_Op
))
6130 Get_Next_Interp
(I
, It
);
6136 -- If the removal has left no valid interpretations, emit an error
6137 -- message now and label node as illegal.
6139 if Present
(Abstract_Op
) then
6140 Get_First_Interp
(N
, I
, It
);
6144 -- Removal of abstract operation left no viable candidate
6146 Set_Etype
(N
, Any_Type
);
6147 Error_Msg_Sloc
:= Sloc
(Abstract_Op
);
6149 ("cannot call abstract operation& declared#", N
, Abstract_Op
);
6151 -- In Ada 2005, an abstract operation may disable predefined
6152 -- operators. Since the context is not yet known, we mark the
6153 -- predefined operators as potentially hidden. Do not include
6154 -- predefined operators when addresses are involved since this
6155 -- case is handled separately.
6157 elsif Ada_Version
>= Ada_2005
6158 and then not Address_Kludge
6160 while Present
(It
.Nam
) loop
6161 if Is_Numeric_Type
(It
.Typ
)
6162 and then Scope
(It
.Typ
) = Standard_Standard
6164 Set_Abstract_Op
(I
, Abstract_Op
);
6167 Get_Next_Interp
(I
, It
);
6172 end Remove_Abstract_Operations
;
6174 -----------------------
6175 -- Try_Indirect_Call --
6176 -----------------------
6178 function Try_Indirect_Call
6181 Typ
: Entity_Id
) return Boolean
6187 pragma Warnings
(Off
, Call_OK
);
6190 Normalize_Actuals
(N
, Designated_Type
(Typ
), False, Call_OK
);
6192 Actual
:= First_Actual
(N
);
6193 Formal
:= First_Formal
(Designated_Type
(Typ
));
6194 while Present
(Actual
) and then Present
(Formal
) loop
6195 if not Has_Compatible_Type
(Actual
, Etype
(Formal
)) then
6200 Next_Formal
(Formal
);
6203 if No
(Actual
) and then No
(Formal
) then
6204 Add_One_Interp
(N
, Nam
, Etype
(Designated_Type
(Typ
)));
6206 -- Nam is a candidate interpretation for the name in the call,
6207 -- if it is not an indirect call.
6209 if not Is_Type
(Nam
)
6210 and then Is_Entity_Name
(Name
(N
))
6212 Set_Entity
(Name
(N
), Nam
);
6219 end Try_Indirect_Call
;
6221 ----------------------
6222 -- Try_Indexed_Call --
6223 ----------------------
6225 function Try_Indexed_Call
6229 Skip_First
: Boolean) return Boolean
6231 Loc
: constant Source_Ptr
:= Sloc
(N
);
6232 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
6237 Actual
:= First
(Actuals
);
6239 -- If the call was originally written in prefix form, skip the first
6240 -- actual, which is obviously not defaulted.
6246 Index
:= First_Index
(Typ
);
6247 while Present
(Actual
) and then Present
(Index
) loop
6249 -- If the parameter list has a named association, the expression
6250 -- is definitely a call and not an indexed component.
6252 if Nkind
(Actual
) = N_Parameter_Association
then
6256 if Is_Entity_Name
(Actual
)
6257 and then Is_Type
(Entity
(Actual
))
6258 and then No
(Next
(Actual
))
6260 -- A single actual that is a type name indicates a slice if the
6261 -- type is discrete, and an error otherwise.
6263 if Is_Discrete_Type
(Entity
(Actual
)) then
6267 Make_Function_Call
(Loc
,
6268 Name
=> Relocate_Node
(Name
(N
))),
6270 New_Occurrence_Of
(Entity
(Actual
), Sloc
(Actual
))));
6275 Error_Msg_N
("invalid use of type in expression", Actual
);
6276 Set_Etype
(N
, Any_Type
);
6281 elsif not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
6289 if No
(Actual
) and then No
(Index
) then
6290 Add_One_Interp
(N
, Nam
, Component_Type
(Typ
));
6292 -- Nam is a candidate interpretation for the name in the call,
6293 -- if it is not an indirect call.
6295 if not Is_Type
(Nam
)
6296 and then Is_Entity_Name
(Name
(N
))
6298 Set_Entity
(Name
(N
), Nam
);
6305 end Try_Indexed_Call
;
6307 --------------------------
6308 -- Try_Object_Operation --
6309 --------------------------
6311 function Try_Object_Operation
(N
: Node_Id
) return Boolean is
6312 K
: constant Node_Kind
:= Nkind
(Parent
(N
));
6313 Is_Subprg_Call
: constant Boolean := Nkind_In
6314 (K
, N_Procedure_Call_Statement
,
6316 Loc
: constant Source_Ptr
:= Sloc
(N
);
6317 Obj
: constant Node_Id
:= Prefix
(N
);
6319 Subprog
: constant Node_Id
:=
6320 Make_Identifier
(Sloc
(Selector_Name
(N
)),
6321 Chars
=> Chars
(Selector_Name
(N
)));
6322 -- Identifier on which possible interpretations will be collected
6324 Report_Error
: Boolean := False;
6325 -- If no candidate interpretation matches the context, redo the
6326 -- analysis with error enabled to provide additional information.
6329 Candidate
: Entity_Id
:= Empty
;
6330 New_Call_Node
: Node_Id
:= Empty
;
6331 Node_To_Replace
: Node_Id
;
6332 Obj_Type
: Entity_Id
:= Etype
(Obj
);
6333 Success
: Boolean := False;
6335 function Valid_Candidate
6338 Subp
: Entity_Id
) return Entity_Id
;
6339 -- If the subprogram is a valid interpretation, record it, and add
6340 -- to the list of interpretations of Subprog.
6342 procedure Complete_Object_Operation
6343 (Call_Node
: Node_Id
;
6344 Node_To_Replace
: Node_Id
);
6345 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
6346 -- Call_Node, insert the object (or its dereference) as the first actual
6347 -- in the call, and complete the analysis of the call.
6349 procedure Report_Ambiguity
(Op
: Entity_Id
);
6350 -- If a prefixed procedure call is ambiguous, indicate whether the
6351 -- call includes an implicit dereference or an implicit 'Access.
6353 procedure Transform_Object_Operation
6354 (Call_Node
: out Node_Id
;
6355 Node_To_Replace
: out Node_Id
);
6356 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
6357 -- Call_Node is the resulting subprogram call, Node_To_Replace is
6358 -- either N or the parent of N, and Subprog is a reference to the
6359 -- subprogram we are trying to match.
6361 function Try_Class_Wide_Operation
6362 (Call_Node
: Node_Id
;
6363 Node_To_Replace
: Node_Id
) return Boolean;
6364 -- Traverse all ancestor types looking for a class-wide subprogram
6365 -- for which the current operation is a valid non-dispatching call.
6367 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
);
6368 -- If prefix is overloaded, its interpretation may include different
6369 -- tagged types, and we must examine the primitive operations and
6370 -- the class-wide operations of each in order to find candidate
6371 -- interpretations for the call as a whole.
6373 function Try_Primitive_Operation
6374 (Call_Node
: Node_Id
;
6375 Node_To_Replace
: Node_Id
) return Boolean;
6376 -- Traverse the list of primitive subprograms looking for a dispatching
6377 -- operation for which the current node is a valid call .
6379 ---------------------
6380 -- Valid_Candidate --
6381 ---------------------
6383 function Valid_Candidate
6386 Subp
: Entity_Id
) return Entity_Id
6388 Arr_Type
: Entity_Id
;
6389 Comp_Type
: Entity_Id
;
6392 -- If the subprogram is a valid interpretation, record it in global
6393 -- variable Subprog, to collect all possible overloadings.
6396 if Subp
/= Entity
(Subprog
) then
6397 Add_One_Interp
(Subprog
, Subp
, Etype
(Subp
));
6401 -- If the call may be an indexed call, retrieve component type of
6402 -- resulting expression, and add possible interpretation.
6407 if Nkind
(Call
) = N_Function_Call
6408 and then Nkind
(Parent
(N
)) = N_Indexed_Component
6409 and then Needs_One_Actual
(Subp
)
6411 if Is_Array_Type
(Etype
(Subp
)) then
6412 Arr_Type
:= Etype
(Subp
);
6414 elsif Is_Access_Type
(Etype
(Subp
))
6415 and then Is_Array_Type
(Designated_Type
(Etype
(Subp
)))
6417 Arr_Type
:= Designated_Type
(Etype
(Subp
));
6421 if Present
(Arr_Type
) then
6423 -- Verify that the actuals (excluding the object) match the types
6431 Actual
:= Next
(First_Actual
(Call
));
6432 Index
:= First_Index
(Arr_Type
);
6433 while Present
(Actual
) and then Present
(Index
) loop
6434 if not Has_Compatible_Type
(Actual
, Etype
(Index
)) then
6439 Next_Actual
(Actual
);
6445 and then Present
(Arr_Type
)
6447 Comp_Type
:= Component_Type
(Arr_Type
);
6451 if Present
(Comp_Type
)
6452 and then Etype
(Subprog
) /= Comp_Type
6454 Add_One_Interp
(Subprog
, Subp
, Comp_Type
);
6458 if Etype
(Call
) /= Any_Type
then
6463 end Valid_Candidate
;
6465 -------------------------------
6466 -- Complete_Object_Operation --
6467 -------------------------------
6469 procedure Complete_Object_Operation
6470 (Call_Node
: Node_Id
;
6471 Node_To_Replace
: Node_Id
)
6473 Control
: constant Entity_Id
:= First_Formal
(Entity
(Subprog
));
6474 Formal_Type
: constant Entity_Id
:= Etype
(Control
);
6475 First_Actual
: Node_Id
;
6478 -- Place the name of the operation, with its interpretations,
6479 -- on the rewritten call.
6481 Set_Name
(Call_Node
, Subprog
);
6483 First_Actual
:= First
(Parameter_Associations
(Call_Node
));
6485 -- For cross-reference purposes, treat the new node as being in
6486 -- the source if the original one is.
6488 Set_Comes_From_Source
(Subprog
, Comes_From_Source
(N
));
6489 Set_Comes_From_Source
(Call_Node
, Comes_From_Source
(N
));
6491 if Nkind
(N
) = N_Selected_Component
6492 and then not Inside_A_Generic
6494 Set_Entity
(Selector_Name
(N
), Entity
(Subprog
));
6497 -- If need be, rewrite first actual as an explicit dereference
6498 -- If the call is overloaded, the rewriting can only be done
6499 -- once the primitive operation is identified.
6501 if Is_Overloaded
(Subprog
) then
6503 -- The prefix itself may be overloaded, and its interpretations
6504 -- must be propagated to the new actual in the call.
6506 if Is_Overloaded
(Obj
) then
6507 Save_Interps
(Obj
, First_Actual
);
6510 Rewrite
(First_Actual
, Obj
);
6512 elsif not Is_Access_Type
(Formal_Type
)
6513 and then Is_Access_Type
(Etype
(Obj
))
6515 Rewrite
(First_Actual
,
6516 Make_Explicit_Dereference
(Sloc
(Obj
), Obj
));
6517 Analyze
(First_Actual
);
6519 -- If we need to introduce an explicit dereference, verify that
6520 -- the resulting actual is compatible with the mode of the formal.
6522 if Ekind
(First_Formal
(Entity
(Subprog
))) /= E_In_Parameter
6523 and then Is_Access_Constant
(Etype
(Obj
))
6526 ("expect variable in call to&", Prefix
(N
), Entity
(Subprog
));
6529 -- Conversely, if the formal is an access parameter and the object
6530 -- is not, replace the actual with a 'Access reference. Its analysis
6531 -- will check that the object is aliased.
6533 elsif Is_Access_Type
(Formal_Type
)
6534 and then not Is_Access_Type
(Etype
(Obj
))
6536 -- A special case: A.all'access is illegal if A is an access to a
6537 -- constant and the context requires an access to a variable.
6539 if not Is_Access_Constant
(Formal_Type
) then
6540 if (Nkind
(Obj
) = N_Explicit_Dereference
6541 and then Is_Access_Constant
(Etype
(Prefix
(Obj
))))
6542 or else not Is_Variable
(Obj
)
6545 ("actual for& must be a variable", Obj
, Control
);
6549 Rewrite
(First_Actual
,
6550 Make_Attribute_Reference
(Loc
,
6551 Attribute_Name
=> Name_Access
,
6552 Prefix
=> Relocate_Node
(Obj
)));
6554 if not Is_Aliased_View
(Obj
) then
6556 ("object in prefixed call to& must be aliased"
6557 & " (RM-2005 4.3.1 (13))",
6558 Prefix
(First_Actual
), Subprog
);
6561 Analyze
(First_Actual
);
6564 if Is_Overloaded
(Obj
) then
6565 Save_Interps
(Obj
, First_Actual
);
6568 Rewrite
(First_Actual
, Obj
);
6571 Rewrite
(Node_To_Replace
, Call_Node
);
6573 -- Propagate the interpretations collected in subprog to the new
6574 -- function call node, to be resolved from context.
6576 if Is_Overloaded
(Subprog
) then
6577 Save_Interps
(Subprog
, Node_To_Replace
);
6580 Analyze
(Node_To_Replace
);
6582 -- If the operation has been rewritten into a call, which may get
6583 -- subsequently an explicit dereference, preserve the type on the
6584 -- original node (selected component or indexed component) for
6585 -- subsequent legality tests, e.g. Is_Variable. which examines
6586 -- the original node.
6588 if Nkind
(Node_To_Replace
) = N_Function_Call
then
6590 (Original_Node
(Node_To_Replace
), Etype
(Node_To_Replace
));
6593 end Complete_Object_Operation
;
6595 ----------------------
6596 -- Report_Ambiguity --
6597 ----------------------
6599 procedure Report_Ambiguity
(Op
: Entity_Id
) is
6600 Access_Formal
: constant Boolean :=
6601 Is_Access_Type
(Etype
(First_Formal
(Op
)));
6602 Access_Actual
: constant Boolean :=
6603 Is_Access_Type
(Etype
(Prefix
(N
)));
6606 Error_Msg_Sloc
:= Sloc
(Op
);
6608 if Access_Formal
and then not Access_Actual
then
6609 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
6611 ("\possible interpretation"
6612 & " (inherited, with implicit 'Access) #", N
);
6615 ("\possible interpretation (with implicit 'Access) #", N
);
6618 elsif not Access_Formal
and then Access_Actual
then
6619 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
6621 ("\possible interpretation"
6622 & " ( inherited, with implicit dereference) #", N
);
6625 ("\possible interpretation (with implicit dereference) #", N
);
6629 if Nkind
(Parent
(Op
)) = N_Full_Type_Declaration
then
6630 Error_Msg_N
("\possible interpretation (inherited)#", N
);
6632 Error_Msg_N
-- CODEFIX
6633 ("\possible interpretation#", N
);
6636 end Report_Ambiguity
;
6638 --------------------------------
6639 -- Transform_Object_Operation --
6640 --------------------------------
6642 procedure Transform_Object_Operation
6643 (Call_Node
: out Node_Id
;
6644 Node_To_Replace
: out Node_Id
)
6646 Dummy
: constant Node_Id
:= New_Copy
(Obj
);
6647 -- Placeholder used as a first parameter in the call, replaced
6648 -- eventually by the proper object.
6650 Parent_Node
: constant Node_Id
:= Parent
(N
);
6656 -- Common case covering 1) Call to a procedure and 2) Call to a
6657 -- function that has some additional actuals.
6659 if Nkind_In
(Parent_Node
, N_Function_Call
,
6660 N_Procedure_Call_Statement
)
6662 -- N is a selected component node containing the name of the
6663 -- subprogram. If N is not the name of the parent node we must
6664 -- not replace the parent node by the new construct. This case
6665 -- occurs when N is a parameterless call to a subprogram that
6666 -- is an actual parameter of a call to another subprogram. For
6668 -- Some_Subprogram (..., Obj.Operation, ...)
6670 and then Name
(Parent_Node
) = N
6672 Node_To_Replace
:= Parent_Node
;
6674 Actuals
:= Parameter_Associations
(Parent_Node
);
6676 if Present
(Actuals
) then
6677 Prepend
(Dummy
, Actuals
);
6679 Actuals
:= New_List
(Dummy
);
6682 if Nkind
(Parent_Node
) = N_Procedure_Call_Statement
then
6684 Make_Procedure_Call_Statement
(Loc
,
6685 Name
=> New_Copy
(Subprog
),
6686 Parameter_Associations
=> Actuals
);
6690 Make_Function_Call
(Loc
,
6691 Name
=> New_Copy
(Subprog
),
6692 Parameter_Associations
=> Actuals
);
6696 -- Before analysis, a function call appears as an indexed component
6697 -- if there are no named associations.
6699 elsif Nkind
(Parent_Node
) = N_Indexed_Component
6700 and then N
= Prefix
(Parent_Node
)
6702 Node_To_Replace
:= Parent_Node
;
6703 Actuals
:= Expressions
(Parent_Node
);
6705 Actual
:= First
(Actuals
);
6706 while Present
(Actual
) loop
6711 Prepend
(Dummy
, Actuals
);
6714 Make_Function_Call
(Loc
,
6715 Name
=> New_Copy
(Subprog
),
6716 Parameter_Associations
=> Actuals
);
6718 -- Parameterless call: Obj.F is rewritten as F (Obj)
6721 Node_To_Replace
:= N
;
6724 Make_Function_Call
(Loc
,
6725 Name
=> New_Copy
(Subprog
),
6726 Parameter_Associations
=> New_List
(Dummy
));
6728 end Transform_Object_Operation
;
6730 ------------------------------
6731 -- Try_Class_Wide_Operation --
6732 ------------------------------
6734 function Try_Class_Wide_Operation
6735 (Call_Node
: Node_Id
;
6736 Node_To_Replace
: Node_Id
) return Boolean
6738 Anc_Type
: Entity_Id
;
6739 Matching_Op
: Entity_Id
:= Empty
;
6742 procedure Traverse_Homonyms
6743 (Anc_Type
: Entity_Id
;
6744 Error
: out Boolean);
6745 -- Traverse the homonym chain of the subprogram searching for those
6746 -- homonyms whose first formal has the Anc_Type's class-wide type,
6747 -- or an anonymous access type designating the class-wide type. If
6748 -- an ambiguity is detected, then Error is set to True.
6750 procedure Traverse_Interfaces
6751 (Anc_Type
: Entity_Id
;
6752 Error
: out Boolean);
6753 -- Traverse the list of interfaces, if any, associated with Anc_Type
6754 -- and search for acceptable class-wide homonyms associated with each
6755 -- interface. If an ambiguity is detected, then Error is set to True.
6757 -----------------------
6758 -- Traverse_Homonyms --
6759 -----------------------
6761 procedure Traverse_Homonyms
6762 (Anc_Type
: Entity_Id
;
6763 Error
: out Boolean)
6765 Cls_Type
: Entity_Id
;
6773 Cls_Type
:= Class_Wide_Type
(Anc_Type
);
6775 Hom
:= Current_Entity
(Subprog
);
6777 -- Find operation whose first parameter is of the class-wide
6778 -- type, a subtype thereof, or an anonymous access to same.
6780 while Present
(Hom
) loop
6781 if (Ekind
(Hom
) = E_Procedure
6783 Ekind
(Hom
) = E_Function
)
6784 and then Scope
(Hom
) = Scope
(Anc_Type
)
6785 and then Present
(First_Formal
(Hom
))
6787 (Base_Type
(Etype
(First_Formal
(Hom
))) = Cls_Type
6789 (Is_Access_Type
(Etype
(First_Formal
(Hom
)))
6791 Ekind
(Etype
(First_Formal
(Hom
))) =
6792 E_Anonymous_Access_Type
6795 (Designated_Type
(Etype
(First_Formal
(Hom
)))) =
6798 Set_Etype
(Call_Node
, Any_Type
);
6799 Set_Is_Overloaded
(Call_Node
, False);
6802 if No
(Matching_Op
) then
6803 Hom_Ref
:= New_Reference_To
(Hom
, Sloc
(Subprog
));
6804 Set_Etype
(Call_Node
, Any_Type
);
6805 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
6807 Set_Name
(Call_Node
, Hom_Ref
);
6812 Report
=> Report_Error
,
6814 Skip_First
=> True);
6817 Valid_Candidate
(Success
, Call_Node
, Hom
);
6823 Report
=> Report_Error
,
6825 Skip_First
=> True);
6827 if Present
(Valid_Candidate
(Success
, Call_Node
, Hom
))
6828 and then Nkind
(Call_Node
) /= N_Function_Call
6830 Error_Msg_NE
("ambiguous call to&", N
, Hom
);
6831 Report_Ambiguity
(Matching_Op
);
6832 Report_Ambiguity
(Hom
);
6839 Hom
:= Homonym
(Hom
);
6841 end Traverse_Homonyms
;
6843 -------------------------
6844 -- Traverse_Interfaces --
6845 -------------------------
6847 procedure Traverse_Interfaces
6848 (Anc_Type
: Entity_Id
;
6849 Error
: out Boolean)
6851 Intface_List
: constant List_Id
:=
6852 Abstract_Interface_List
(Anc_Type
);
6858 if Is_Non_Empty_List
(Intface_List
) then
6859 Intface
:= First
(Intface_List
);
6860 while Present
(Intface
) loop
6862 -- Look for acceptable class-wide homonyms associated with
6865 Traverse_Homonyms
(Etype
(Intface
), Error
);
6871 -- Continue the search by looking at each of the interface's
6872 -- associated interface ancestors.
6874 Traverse_Interfaces
(Etype
(Intface
), Error
);
6883 end Traverse_Interfaces
;
6885 -- Start of processing for Try_Class_Wide_Operation
6888 -- Loop through ancestor types (including interfaces), traversing
6889 -- the homonym chain of the subprogram, trying out those homonyms
6890 -- whose first formal has the class-wide type of the ancestor, or
6891 -- an anonymous access type designating the class-wide type.
6893 Anc_Type
:= Obj_Type
;
6895 -- Look for a match among homonyms associated with the ancestor
6897 Traverse_Homonyms
(Anc_Type
, Error
);
6903 -- Continue the search for matches among homonyms associated with
6904 -- any interfaces implemented by the ancestor.
6906 Traverse_Interfaces
(Anc_Type
, Error
);
6912 exit when Etype
(Anc_Type
) = Anc_Type
;
6913 Anc_Type
:= Etype
(Anc_Type
);
6916 if Present
(Matching_Op
) then
6917 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
6920 return Present
(Matching_Op
);
6921 end Try_Class_Wide_Operation
;
6923 -----------------------------------
6924 -- Try_One_Prefix_Interpretation --
6925 -----------------------------------
6927 procedure Try_One_Prefix_Interpretation
(T
: Entity_Id
) is
6931 if Is_Access_Type
(Obj_Type
) then
6932 Obj_Type
:= Designated_Type
(Obj_Type
);
6935 if Ekind
(Obj_Type
) = E_Private_Subtype
then
6936 Obj_Type
:= Base_Type
(Obj_Type
);
6939 if Is_Class_Wide_Type
(Obj_Type
) then
6940 Obj_Type
:= Etype
(Class_Wide_Type
(Obj_Type
));
6943 -- The type may have be obtained through a limited_with clause,
6944 -- in which case the primitive operations are available on its
6945 -- non-limited view. If still incomplete, retrieve full view.
6947 if Ekind
(Obj_Type
) = E_Incomplete_Type
6948 and then From_With_Type
(Obj_Type
)
6950 Obj_Type
:= Get_Full_View
(Non_Limited_View
(Obj_Type
));
6953 -- If the object is not tagged, or the type is still an incomplete
6954 -- type, this is not a prefixed call.
6956 if not Is_Tagged_Type
(Obj_Type
)
6957 or else Is_Incomplete_Type
(Obj_Type
)
6962 if Try_Primitive_Operation
6963 (Call_Node
=> New_Call_Node
,
6964 Node_To_Replace
=> Node_To_Replace
)
6966 Try_Class_Wide_Operation
6967 (Call_Node
=> New_Call_Node
,
6968 Node_To_Replace
=> Node_To_Replace
)
6972 end Try_One_Prefix_Interpretation
;
6974 -----------------------------
6975 -- Try_Primitive_Operation --
6976 -----------------------------
6978 function Try_Primitive_Operation
6979 (Call_Node
: Node_Id
;
6980 Node_To_Replace
: Node_Id
) return Boolean
6983 Prim_Op
: Entity_Id
;
6984 Matching_Op
: Entity_Id
:= Empty
;
6985 Prim_Op_Ref
: Node_Id
:= Empty
;
6987 Corr_Type
: Entity_Id
:= Empty
;
6988 -- If the prefix is a synchronized type, the controlling type of
6989 -- the primitive operation is the corresponding record type, else
6990 -- this is the object type itself.
6992 Success
: Boolean := False;
6994 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
;
6995 -- For tagged types the candidate interpretations are found in
6996 -- the list of primitive operations of the type and its ancestors.
6997 -- For formal tagged types we have to find the operations declared
6998 -- in the same scope as the type (including in the generic formal
6999 -- part) because the type itself carries no primitive operations,
7000 -- except for formal derived types that inherit the operations of
7001 -- the parent and progenitors.
7002 -- If the context is a generic subprogram body, the generic formals
7003 -- are visible by name, but are not in the entity list of the
7004 -- subprogram because that list starts with the subprogram formals.
7005 -- We retrieve the candidate operations from the generic declaration.
7007 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean;
7008 -- An operation that overrides an inherited operation in the private
7009 -- part of its package may be hidden, but if the inherited operation
7010 -- is visible a direct call to it will dispatch to the private one,
7011 -- which is therefore a valid candidate.
7013 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean;
7014 -- Verify that the prefix, dereferenced if need be, is a valid
7015 -- controlling argument in a call to Op. The remaining actuals
7016 -- are checked in the subsequent call to Analyze_One_Call.
7018 ------------------------------
7019 -- Collect_Generic_Type_Ops --
7020 ------------------------------
7022 function Collect_Generic_Type_Ops
(T
: Entity_Id
) return Elist_Id
is
7023 Bas
: constant Entity_Id
:= Base_Type
(T
);
7024 Candidates
: constant Elist_Id
:= New_Elmt_List
;
7028 procedure Check_Candidate
;
7029 -- The operation is a candidate if its first parameter is a
7030 -- controlling operand of the desired type.
7032 -----------------------
7033 -- Check_Candidate; --
7034 -----------------------
7036 procedure Check_Candidate
is
7038 Formal
:= First_Formal
(Subp
);
7041 and then Is_Controlling_Formal
(Formal
)
7043 (Base_Type
(Etype
(Formal
)) = Bas
7045 (Is_Access_Type
(Etype
(Formal
))
7046 and then Designated_Type
(Etype
(Formal
)) = Bas
))
7048 Append_Elmt
(Subp
, Candidates
);
7050 end Check_Candidate
;
7052 -- Start of processing for Collect_Generic_Type_Ops
7055 if Is_Derived_Type
(T
) then
7056 return Primitive_Operations
(T
);
7058 elsif Ekind_In
(Scope
(T
), E_Procedure
, E_Function
) then
7060 -- Scan the list of generic formals to find subprograms
7061 -- that may have a first controlling formal of the type.
7063 if Nkind
(Unit_Declaration_Node
(Scope
(T
)))
7064 = N_Generic_Subprogram_Declaration
7071 First
(Generic_Formal_Declarations
7072 (Unit_Declaration_Node
(Scope
(T
))));
7073 while Present
(Decl
) loop
7074 if Nkind
(Decl
) in N_Formal_Subprogram_Declaration
then
7075 Subp
:= Defining_Entity
(Decl
);
7086 -- Scan the list of entities declared in the same scope as
7087 -- the type. In general this will be an open scope, given that
7088 -- the call we are analyzing can only appear within a generic
7089 -- declaration or body (either the one that declares T, or a
7092 -- For a subtype representing a generic actual type, go to the
7095 if Is_Generic_Actual_Type
(T
) then
7096 Subp
:= First_Entity
(Scope
(Base_Type
(T
)));
7098 Subp
:= First_Entity
(Scope
(T
));
7101 while Present
(Subp
) loop
7102 if Is_Overloadable
(Subp
) then
7111 end Collect_Generic_Type_Ops
;
7113 ---------------------------
7114 -- Is_Private_Overriding --
7115 ---------------------------
7117 function Is_Private_Overriding
(Op
: Entity_Id
) return Boolean is
7118 Visible_Op
: constant Entity_Id
:= Homonym
(Op
);
7121 return Present
(Visible_Op
)
7122 and then Scope
(Op
) = Scope
(Visible_Op
)
7123 and then not Comes_From_Source
(Visible_Op
)
7124 and then Alias
(Visible_Op
) = Op
7125 and then not Is_Hidden
(Visible_Op
);
7126 end Is_Private_Overriding
;
7128 -----------------------------
7129 -- Valid_First_Argument_Of --
7130 -----------------------------
7132 function Valid_First_Argument_Of
(Op
: Entity_Id
) return Boolean is
7133 Typ
: Entity_Id
:= Etype
(First_Formal
(Op
));
7136 if Is_Concurrent_Type
(Typ
)
7137 and then Present
(Corresponding_Record_Type
(Typ
))
7139 Typ
:= Corresponding_Record_Type
(Typ
);
7142 -- Simple case. Object may be a subtype of the tagged type or
7143 -- may be the corresponding record of a synchronized type.
7145 return Obj_Type
= Typ
7146 or else Base_Type
(Obj_Type
) = Typ
7147 or else Corr_Type
= Typ
7149 -- Prefix can be dereferenced
7152 (Is_Access_Type
(Corr_Type
)
7153 and then Designated_Type
(Corr_Type
) = Typ
)
7155 -- Formal is an access parameter, for which the object
7156 -- can provide an access.
7159 (Ekind
(Typ
) = E_Anonymous_Access_Type
7160 and then Designated_Type
(Typ
) = Base_Type
(Corr_Type
));
7161 end Valid_First_Argument_Of
;
7163 -- Start of processing for Try_Primitive_Operation
7166 -- Look for subprograms in the list of primitive operations. The name
7167 -- must be identical, and the kind of call indicates the expected
7168 -- kind of operation (function or procedure). If the type is a
7169 -- (tagged) synchronized type, the primitive ops are attached to the
7170 -- corresponding record (base) type.
7172 if Is_Concurrent_Type
(Obj_Type
) then
7173 if Present
(Corresponding_Record_Type
(Obj_Type
)) then
7174 Corr_Type
:= Base_Type
(Corresponding_Record_Type
(Obj_Type
));
7175 Elmt
:= First_Elmt
(Primitive_Operations
(Corr_Type
));
7177 Corr_Type
:= Obj_Type
;
7178 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
7181 elsif not Is_Generic_Type
(Obj_Type
) then
7182 Corr_Type
:= Obj_Type
;
7183 Elmt
:= First_Elmt
(Primitive_Operations
(Obj_Type
));
7186 Corr_Type
:= Obj_Type
;
7187 Elmt
:= First_Elmt
(Collect_Generic_Type_Ops
(Obj_Type
));
7190 while Present
(Elmt
) loop
7191 Prim_Op
:= Node
(Elmt
);
7193 if Chars
(Prim_Op
) = Chars
(Subprog
)
7194 and then Present
(First_Formal
(Prim_Op
))
7195 and then Valid_First_Argument_Of
(Prim_Op
)
7197 (Nkind
(Call_Node
) = N_Function_Call
)
7198 = (Ekind
(Prim_Op
) = E_Function
)
7200 -- Ada 2005 (AI-251): If this primitive operation corresponds
7201 -- with an immediate ancestor interface there is no need to add
7202 -- it to the list of interpretations; the corresponding aliased
7203 -- primitive is also in this list of primitive operations and
7204 -- will be used instead.
7206 if (Present
(Interface_Alias
(Prim_Op
))
7207 and then Is_Ancestor
(Find_Dispatching_Type
7208 (Alias
(Prim_Op
)), Corr_Type
))
7210 -- Do not consider hidden primitives unless the type is in an
7211 -- open scope or we are within an instance, where visibility
7212 -- is known to be correct, or else if this is an overriding
7213 -- operation in the private part for an inherited operation.
7215 or else (Is_Hidden
(Prim_Op
)
7216 and then not Is_Immediately_Visible
(Obj_Type
)
7217 and then not In_Instance
7218 and then not Is_Private_Overriding
(Prim_Op
))
7223 Set_Etype
(Call_Node
, Any_Type
);
7224 Set_Is_Overloaded
(Call_Node
, False);
7226 if No
(Matching_Op
) then
7227 Prim_Op_Ref
:= New_Reference_To
(Prim_Op
, Sloc
(Subprog
));
7228 Candidate
:= Prim_Op
;
7230 Set_Parent
(Call_Node
, Parent
(Node_To_Replace
));
7232 Set_Name
(Call_Node
, Prim_Op_Ref
);
7238 Report
=> Report_Error
,
7240 Skip_First
=> True);
7242 Matching_Op
:= Valid_Candidate
(Success
, Call_Node
, Prim_Op
);
7244 -- More than one interpretation, collect for subsequent
7245 -- disambiguation. If this is a procedure call and there
7246 -- is another match, report ambiguity now.
7252 Report
=> Report_Error
,
7254 Skip_First
=> True);
7256 if Present
(Valid_Candidate
(Success
, Call_Node
, Prim_Op
))
7257 and then Nkind
(Call_Node
) /= N_Function_Call
7259 Error_Msg_NE
("ambiguous call to&", N
, Prim_Op
);
7260 Report_Ambiguity
(Matching_Op
);
7261 Report_Ambiguity
(Prim_Op
);
7271 if Present
(Matching_Op
) then
7272 Set_Etype
(Call_Node
, Etype
(Matching_Op
));
7275 return Present
(Matching_Op
);
7276 end Try_Primitive_Operation
;
7278 -- Start of processing for Try_Object_Operation
7281 Analyze_Expression
(Obj
);
7283 -- Analyze the actuals if node is known to be a subprogram call
7285 if Is_Subprg_Call
and then N
= Name
(Parent
(N
)) then
7286 Actual
:= First
(Parameter_Associations
(Parent
(N
)));
7287 while Present
(Actual
) loop
7288 Analyze_Expression
(Actual
);
7293 -- Build a subprogram call node, using a copy of Obj as its first
7294 -- actual. This is a placeholder, to be replaced by an explicit
7295 -- dereference when needed.
7297 Transform_Object_Operation
7298 (Call_Node
=> New_Call_Node
,
7299 Node_To_Replace
=> Node_To_Replace
);
7301 Set_Etype
(New_Call_Node
, Any_Type
);
7302 Set_Etype
(Subprog
, Any_Type
);
7303 Set_Parent
(New_Call_Node
, Parent
(Node_To_Replace
));
7305 if not Is_Overloaded
(Obj
) then
7306 Try_One_Prefix_Interpretation
(Obj_Type
);
7313 Get_First_Interp
(Obj
, I
, It
);
7314 while Present
(It
.Nam
) loop
7315 Try_One_Prefix_Interpretation
(It
.Typ
);
7316 Get_Next_Interp
(I
, It
);
7321 if Etype
(New_Call_Node
) /= Any_Type
then
7322 Complete_Object_Operation
7323 (Call_Node
=> New_Call_Node
,
7324 Node_To_Replace
=> Node_To_Replace
);
7327 elsif Present
(Candidate
) then
7329 -- The argument list is not type correct. Re-analyze with error
7330 -- reporting enabled, and use one of the possible candidates.
7331 -- In All_Errors_Mode, re-analyze all failed interpretations.
7333 if All_Errors_Mode
then
7334 Report_Error
:= True;
7335 if Try_Primitive_Operation
7336 (Call_Node
=> New_Call_Node
,
7337 Node_To_Replace
=> Node_To_Replace
)
7340 Try_Class_Wide_Operation
7341 (Call_Node
=> New_Call_Node
,
7342 Node_To_Replace
=> Node_To_Replace
)
7349 (N
=> New_Call_Node
,
7353 Skip_First
=> True);
7356 -- No need for further errors
7361 -- There was no candidate operation, so report it as an error
7362 -- in the caller: Analyze_Selected_Component.
7366 end Try_Object_Operation
;
7372 procedure wpo
(T
: Entity_Id
) is
7377 if not Is_Tagged_Type
(T
) then
7381 E
:= First_Elmt
(Primitive_Operations
(Base_Type
(T
)));
7382 while Present
(E
) loop
7384 Write_Int
(Int
(Op
));
7385 Write_Str
(" === ");
7386 Write_Name
(Chars
(Op
));
7388 Write_Name
(Chars
(Scope
(Op
)));