1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
46 A short sketch of the algorithm is:
48 Given a scalar variable to be analyzed, follow the SSA edge to
51 - When the definition is a MODIFY_EXPR: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
76 Example 1: Illustration of the basic algorithm.
82 | if (c > 10) exit_loop
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
120 or in terms of a C program:
123 | for (x = 0; x <= 7; x++)
129 Example 2: Illustration of the algorithm on nested loops.
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
158 Example 3: Higher degree polynomials.
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
175 Example 4: Lucas, Fibonacci, or mixers in general.
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
196 Example 5: Flip-flops, or exchangers.
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
214 This transformation is not yet implemented.
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
236 #include "coretypes.h"
242 /* These RTL headers are needed for basic-block.h. */
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
256 static tree
analyze_scalar_evolution_1 (struct loop
*, tree
, tree
);
257 static tree
resolve_mixers (struct loop
*, tree
);
259 /* The cached information about a ssa name VAR, claiming that inside LOOP,
260 the value of VAR can be expressed as CHREC. */
268 /* Counters for the scev database. */
269 static unsigned nb_set_scev
= 0;
270 static unsigned nb_get_scev
= 0;
272 /* The following trees are unique elements. Thus the comparison of
273 another element to these elements should be done on the pointer to
274 these trees, and not on their value. */
276 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
277 tree chrec_not_analyzed_yet
;
279 /* Reserved to the cases where the analyzer has detected an
280 undecidable property at compile time. */
281 tree chrec_dont_know
;
283 /* When the analyzer has detected that a property will never
284 happen, then it qualifies it with chrec_known. */
287 static bitmap already_instantiated
;
289 static htab_t scalar_evolution_info
;
292 /* Constructs a new SCEV_INFO_STR structure. */
294 static inline struct scev_info_str
*
295 new_scev_info_str (tree var
)
297 struct scev_info_str
*res
;
299 res
= xmalloc (sizeof (struct scev_info_str
));
301 res
->chrec
= chrec_not_analyzed_yet
;
306 /* Computes a hash function for database element ELT. */
309 hash_scev_info (const void *elt
)
311 return SSA_NAME_VERSION (((struct scev_info_str
*) elt
)->var
);
314 /* Compares database elements E1 and E2. */
317 eq_scev_info (const void *e1
, const void *e2
)
319 const struct scev_info_str
*elt1
= e1
;
320 const struct scev_info_str
*elt2
= e2
;
322 return elt1
->var
== elt2
->var
;
325 /* Deletes database element E. */
328 del_scev_info (void *e
)
333 /* Get the index corresponding to VAR in the current LOOP. If
334 it's the first time we ask for this VAR, then we return
335 chrec_not_analyzed_yet for this VAR and return its index. */
338 find_var_scev_info (tree var
)
340 struct scev_info_str
*res
;
341 struct scev_info_str tmp
;
345 slot
= htab_find_slot (scalar_evolution_info
, &tmp
, INSERT
);
348 *slot
= new_scev_info_str (var
);
354 /* Return true when CHREC contains symbolic names defined in
358 chrec_contains_symbols_defined_in_loop (tree chrec
, unsigned loop_nb
)
360 if (chrec
== NULL_TREE
)
363 if (TREE_INVARIANT (chrec
))
366 if (TREE_CODE (chrec
) == VAR_DECL
367 || TREE_CODE (chrec
) == PARM_DECL
368 || TREE_CODE (chrec
) == FUNCTION_DECL
369 || TREE_CODE (chrec
) == LABEL_DECL
370 || TREE_CODE (chrec
) == RESULT_DECL
371 || TREE_CODE (chrec
) == FIELD_DECL
)
374 if (TREE_CODE (chrec
) == SSA_NAME
)
376 tree def
= SSA_NAME_DEF_STMT (chrec
);
377 struct loop
*def_loop
= loop_containing_stmt (def
);
378 struct loop
*loop
= current_loops
->parray
[loop_nb
];
380 if (def_loop
== NULL
)
383 if (loop
== def_loop
|| flow_loop_nested_p (loop
, def_loop
))
389 switch (TREE_CODE_LENGTH (TREE_CODE (chrec
)))
392 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec
, 2),
397 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec
, 1),
402 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec
, 0),
411 /* Return true when PHI is a loop-phi-node. */
414 loop_phi_node_p (tree phi
)
416 /* The implementation of this function is based on the following
417 property: "all the loop-phi-nodes of a loop are contained in the
418 loop's header basic block". */
420 return loop_containing_stmt (phi
)->header
== bb_for_stmt (phi
);
423 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
424 In general, in the case of multivariate evolutions we want to get
425 the evolution in different loops. LOOP specifies the level for
426 which to get the evolution.
430 | for (j = 0; j < 100; j++)
432 | for (k = 0; k < 100; k++)
434 | i = k + j; - Here the value of i is a function of j, k.
436 | ... = i - Here the value of i is a function of j.
438 | ... = i - Here the value of i is a scalar.
444 | i_1 = phi (i_0, i_2)
448 This loop has the same effect as:
449 LOOP_1 has the same effect as:
453 The overall effect of the loop, "i_0 + 20" in the previous example,
454 is obtained by passing in the parameters: LOOP = 1,
455 EVOLUTION_FN = {i_0, +, 2}_1.
459 compute_overall_effect_of_inner_loop (struct loop
*loop
, tree evolution_fn
)
463 if (evolution_fn
== chrec_dont_know
)
464 return chrec_dont_know
;
466 else if (TREE_CODE (evolution_fn
) == POLYNOMIAL_CHREC
)
468 if (CHREC_VARIABLE (evolution_fn
) >= (unsigned) loop
->num
)
470 struct loop
*inner_loop
=
471 current_loops
->parray
[CHREC_VARIABLE (evolution_fn
)];
472 tree nb_iter
= number_of_iterations_in_loop (inner_loop
);
474 if (nb_iter
== chrec_dont_know
)
475 return chrec_dont_know
;
480 /* Number of iterations is off by one (the ssa name we
481 analyze must be defined before the exit). */
482 nb_iter
= chrec_fold_minus (chrec_type (nb_iter
),
484 build_int_cst_type (chrec_type (nb_iter
), 1));
486 /* evolution_fn is the evolution function in LOOP. Get
487 its value in the nb_iter-th iteration. */
488 res
= chrec_apply (inner_loop
->num
, evolution_fn
, nb_iter
);
490 /* Continue the computation until ending on a parent of LOOP. */
491 return compute_overall_effect_of_inner_loop (loop
, res
);
498 /* If the evolution function is an invariant, there is nothing to do. */
499 else if (no_evolution_in_loop_p (evolution_fn
, loop
->num
, &val
) && val
)
503 return chrec_dont_know
;
506 /* Determine whether the CHREC is always positive/negative. If the expression
507 cannot be statically analyzed, return false, otherwise set the answer into
511 chrec_is_positive (tree chrec
, bool *value
)
518 switch (TREE_CODE (chrec
))
520 case POLYNOMIAL_CHREC
:
521 if (!chrec_is_positive (CHREC_LEFT (chrec
), &value0
)
522 || !chrec_is_positive (CHREC_RIGHT (chrec
), &value1
))
525 /* FIXME -- overflows. */
526 if (value0
== value1
)
532 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
533 and the proof consists in showing that the sign never
534 changes during the execution of the loop, from 0 to
535 loop->nb_iterations. */
536 if (!evolution_function_is_affine_p (chrec
))
539 nb_iter
= number_of_iterations_in_loop
540 (current_loops
->parray
[CHREC_VARIABLE (chrec
)]);
542 if (chrec_contains_undetermined (nb_iter
))
545 nb_iter
= chrec_fold_minus
546 (chrec_type (nb_iter
), nb_iter
,
547 build_int_cst (chrec_type (nb_iter
), 1));
550 /* TODO -- If the test is after the exit, we may decrease the number of
551 iterations by one. */
553 nb_iter
= chrec_fold_minus
554 (chrec_type (nb_iter
), nb_iter
,
555 build_int_cst (chrec_type (nb_iter
), 1));
558 end_value
= chrec_apply (CHREC_VARIABLE (chrec
), chrec
, nb_iter
);
560 if (!chrec_is_positive (end_value
, &value2
))
564 return value0
== value1
;
567 *value
= (tree_int_cst_sgn (chrec
) == 1);
575 /* Associate CHREC to SCALAR. */
578 set_scalar_evolution (tree scalar
, tree chrec
)
582 if (TREE_CODE (scalar
) != SSA_NAME
)
585 scalar_info
= find_var_scev_info (scalar
);
589 if (dump_flags
& TDF_DETAILS
)
591 fprintf (dump_file
, "(set_scalar_evolution \n");
592 fprintf (dump_file
, " (scalar = ");
593 print_generic_expr (dump_file
, scalar
, 0);
594 fprintf (dump_file
, ")\n (scalar_evolution = ");
595 print_generic_expr (dump_file
, chrec
, 0);
596 fprintf (dump_file
, "))\n");
598 if (dump_flags
& TDF_STATS
)
602 *scalar_info
= chrec
;
605 /* Retrieve the chrec associated to SCALAR in the LOOP. */
608 get_scalar_evolution (tree scalar
)
614 if (dump_flags
& TDF_DETAILS
)
616 fprintf (dump_file
, "(get_scalar_evolution \n");
617 fprintf (dump_file
, " (scalar = ");
618 print_generic_expr (dump_file
, scalar
, 0);
619 fprintf (dump_file
, ")\n");
621 if (dump_flags
& TDF_STATS
)
625 switch (TREE_CODE (scalar
))
628 res
= *find_var_scev_info (scalar
);
637 res
= chrec_not_analyzed_yet
;
641 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
643 fprintf (dump_file
, " (scalar_evolution = ");
644 print_generic_expr (dump_file
, res
, 0);
645 fprintf (dump_file
, "))\n");
651 /* Helper function for add_to_evolution. Returns the evolution
652 function for an assignment of the form "a = b + c", where "a" and
653 "b" are on the strongly connected component. CHREC_BEFORE is the
654 information that we already have collected up to this point.
655 TO_ADD is the evolution of "c".
657 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
658 evolution the expression TO_ADD, otherwise construct an evolution
659 part for this loop. */
662 add_to_evolution_1 (unsigned loop_nb
,
666 switch (TREE_CODE (chrec_before
))
668 case POLYNOMIAL_CHREC
:
669 if (CHREC_VARIABLE (chrec_before
) <= loop_nb
)
673 tree type
= chrec_type (chrec_before
);
675 /* When there is no evolution part in this loop, build it. */
676 if (CHREC_VARIABLE (chrec_before
) < loop_nb
)
680 right
= SCALAR_FLOAT_TYPE_P (type
)
681 ? build_real (type
, dconst0
)
682 : build_int_cst (type
, 0);
686 var
= CHREC_VARIABLE (chrec_before
);
687 left
= CHREC_LEFT (chrec_before
);
688 right
= CHREC_RIGHT (chrec_before
);
691 return build_polynomial_chrec
692 (var
, left
, chrec_fold_plus (type
, right
, to_add
));
695 /* Search the evolution in LOOP_NB. */
696 return build_polynomial_chrec
697 (CHREC_VARIABLE (chrec_before
),
698 add_to_evolution_1 (loop_nb
, CHREC_LEFT (chrec_before
), to_add
),
699 CHREC_RIGHT (chrec_before
));
702 /* These nodes do not depend on a loop. */
703 if (chrec_before
== chrec_dont_know
)
704 return chrec_dont_know
;
705 return build_polynomial_chrec (loop_nb
, chrec_before
, to_add
);
709 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
712 Description (provided for completeness, for those who read code in
713 a plane, and for my poor 62 bytes brain that would have forgotten
714 all this in the next two or three months):
716 The algorithm of translation of programs from the SSA representation
717 into the chrecs syntax is based on a pattern matching. After having
718 reconstructed the overall tree expression for a loop, there are only
719 two cases that can arise:
721 1. a = loop-phi (init, a + expr)
722 2. a = loop-phi (init, expr)
724 where EXPR is either a scalar constant with respect to the analyzed
725 loop (this is a degree 0 polynomial), or an expression containing
726 other loop-phi definitions (these are higher degree polynomials).
733 | a = phi (init, a + 5)
740 | a = phi (inita, 2 * b + 3)
741 | b = phi (initb, b + 1)
744 For the first case, the semantics of the SSA representation is:
746 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
748 that is, there is a loop index "x" that determines the scalar value
749 of the variable during the loop execution. During the first
750 iteration, the value is that of the initial condition INIT, while
751 during the subsequent iterations, it is the sum of the initial
752 condition with the sum of all the values of EXPR from the initial
753 iteration to the before last considered iteration.
755 For the second case, the semantics of the SSA program is:
757 | a (x) = init, if x = 0;
758 | expr (x - 1), otherwise.
760 The second case corresponds to the PEELED_CHREC, whose syntax is
761 close to the syntax of a loop-phi-node:
763 | phi (init, expr) vs. (init, expr)_x
765 The proof of the translation algorithm for the first case is a
766 proof by structural induction based on the degree of EXPR.
769 When EXPR is a constant with respect to the analyzed loop, or in
770 other words when EXPR is a polynomial of degree 0, the evolution of
771 the variable A in the loop is an affine function with an initial
772 condition INIT, and a step EXPR. In order to show this, we start
773 from the semantics of the SSA representation:
775 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
777 and since "expr (j)" is a constant with respect to "j",
779 f (x) = init + x * expr
781 Finally, based on the semantics of the pure sum chrecs, by
782 identification we get the corresponding chrecs syntax:
784 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
785 f (x) -> {init, +, expr}_x
788 Suppose that EXPR is a polynomial of degree N with respect to the
789 analyzed loop_x for which we have already determined that it is
790 written under the chrecs syntax:
792 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
794 We start from the semantics of the SSA program:
796 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
798 | f (x) = init + \sum_{j = 0}^{x - 1}
799 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
801 | f (x) = init + \sum_{j = 0}^{x - 1}
802 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
804 | f (x) = init + \sum_{k = 0}^{n - 1}
805 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
807 | f (x) = init + \sum_{k = 0}^{n - 1}
808 | (b_k * \binom{x}{k + 1})
810 | f (x) = init + b_0 * \binom{x}{1} + ...
811 | + b_{n-1} * \binom{x}{n}
813 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
814 | + b_{n-1} * \binom{x}{n}
817 And finally from the definition of the chrecs syntax, we identify:
818 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
820 This shows the mechanism that stands behind the add_to_evolution
821 function. An important point is that the use of symbolic
822 parameters avoids the need of an analysis schedule.
829 | a = phi (inita, a + 2 + b)
830 | b = phi (initb, b + 1)
833 When analyzing "a", the algorithm keeps "b" symbolically:
835 | a -> {inita, +, 2 + b}_1
837 Then, after instantiation, the analyzer ends on the evolution:
839 | a -> {inita, +, 2 + initb, +, 1}_1
844 add_to_evolution (unsigned loop_nb
,
849 tree type
= chrec_type (to_add
);
850 tree res
= NULL_TREE
;
852 if (to_add
== NULL_TREE
)
855 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
856 instantiated at this point. */
857 if (TREE_CODE (to_add
) == POLYNOMIAL_CHREC
)
858 /* This should not happen. */
859 return chrec_dont_know
;
861 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
863 fprintf (dump_file
, "(add_to_evolution \n");
864 fprintf (dump_file
, " (loop_nb = %d)\n", loop_nb
);
865 fprintf (dump_file
, " (chrec_before = ");
866 print_generic_expr (dump_file
, chrec_before
, 0);
867 fprintf (dump_file
, ")\n (to_add = ");
868 print_generic_expr (dump_file
, to_add
, 0);
869 fprintf (dump_file
, ")\n");
872 if (code
== MINUS_EXPR
)
873 to_add
= chrec_fold_multiply (type
, to_add
, SCALAR_FLOAT_TYPE_P (type
)
874 ? build_real (type
, dconstm1
)
875 : build_int_cst_type (type
, -1));
877 res
= add_to_evolution_1 (loop_nb
, chrec_before
, to_add
);
879 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
881 fprintf (dump_file
, " (res = ");
882 print_generic_expr (dump_file
, res
, 0);
883 fprintf (dump_file
, "))\n");
889 /* Helper function. */
892 set_nb_iterations_in_loop (struct loop
*loop
,
895 res
= chrec_fold_plus (chrec_type (res
), res
,
896 build_int_cst_type (chrec_type (res
), 1));
898 /* FIXME HWI: However we want to store one iteration less than the
899 count of the loop in order to be compatible with the other
900 nb_iter computations in loop-iv. This also allows the
901 representation of nb_iters that are equal to MAX_INT. */
902 if (TREE_CODE (res
) == INTEGER_CST
903 && (TREE_INT_CST_LOW (res
) == 0
904 || TREE_OVERFLOW (res
)))
905 res
= chrec_dont_know
;
907 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
909 fprintf (dump_file
, " (set_nb_iterations_in_loop = ");
910 print_generic_expr (dump_file
, res
, 0);
911 fprintf (dump_file
, "))\n");
914 loop
->nb_iterations
= res
;
920 /* This section selects the loops that will be good candidates for the
921 scalar evolution analysis. For the moment, greedily select all the
922 loop nests we could analyze. */
924 /* Return true when it is possible to analyze the condition expression
928 analyzable_condition (tree expr
)
932 if (TREE_CODE (expr
) != COND_EXPR
)
935 condition
= TREE_OPERAND (expr
, 0);
937 switch (TREE_CODE (condition
))
957 /* For a loop with a single exit edge, return the COND_EXPR that
958 guards the exit edge. If the expression is too difficult to
959 analyze, then give up. */
962 get_loop_exit_condition (struct loop
*loop
)
964 tree res
= NULL_TREE
;
965 edge exit_edge
= loop
->single_exit
;
968 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
969 fprintf (dump_file
, "(get_loop_exit_condition \n ");
975 expr
= last_stmt (exit_edge
->src
);
976 if (analyzable_condition (expr
))
980 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
982 print_generic_expr (dump_file
, res
, 0);
983 fprintf (dump_file
, ")\n");
989 /* Recursively determine and enqueue the exit conditions for a loop. */
992 get_exit_conditions_rec (struct loop
*loop
,
993 VEC(tree
,heap
) **exit_conditions
)
998 /* Recurse on the inner loops, then on the next (sibling) loops. */
999 get_exit_conditions_rec (loop
->inner
, exit_conditions
);
1000 get_exit_conditions_rec (loop
->next
, exit_conditions
);
1002 if (loop
->single_exit
)
1004 tree loop_condition
= get_loop_exit_condition (loop
);
1007 VEC_safe_push (tree
, heap
, *exit_conditions
, loop_condition
);
1011 /* Select the candidate loop nests for the analysis. This function
1012 initializes the EXIT_CONDITIONS array. */
1015 select_loops_exit_conditions (struct loops
*loops
,
1016 VEC(tree
,heap
) **exit_conditions
)
1018 struct loop
*function_body
= loops
->parray
[0];
1020 get_exit_conditions_rec (function_body
->inner
, exit_conditions
);
1024 /* Depth first search algorithm. */
1026 typedef enum t_bool
{
1033 static t_bool
follow_ssa_edge (struct loop
*loop
, tree
, tree
, tree
*, int);
1035 /* Follow the ssa edge into the right hand side RHS of an assignment.
1036 Return true if the strongly connected component has been found. */
1039 follow_ssa_edge_in_rhs (struct loop
*loop
, tree at_stmt
, tree rhs
,
1040 tree halting_phi
, tree
*evolution_of_loop
, int limit
)
1042 t_bool res
= t_false
;
1044 tree type_rhs
= TREE_TYPE (rhs
);
1046 /* The RHS is one of the following cases:
1052 - other cases are not yet handled. */
1053 switch (TREE_CODE (rhs
))
1056 /* This assignment is under the form "a_1 = (cast) rhs. */
1057 res
= follow_ssa_edge_in_rhs (loop
, at_stmt
, TREE_OPERAND (rhs
, 0),
1058 halting_phi
, evolution_of_loop
, limit
);
1059 *evolution_of_loop
= chrec_convert (TREE_TYPE (rhs
),
1060 *evolution_of_loop
, at_stmt
);
1064 /* This assignment is under the form "a_1 = 7". */
1069 /* This assignment is under the form: "a_1 = b_2". */
1070 res
= follow_ssa_edge
1071 (loop
, SSA_NAME_DEF_STMT (rhs
), halting_phi
, evolution_of_loop
, limit
);
1075 /* This case is under the form "rhs0 + rhs1". */
1076 rhs0
= TREE_OPERAND (rhs
, 0);
1077 rhs1
= TREE_OPERAND (rhs
, 1);
1078 STRIP_TYPE_NOPS (rhs0
);
1079 STRIP_TYPE_NOPS (rhs1
);
1081 if (TREE_CODE (rhs0
) == SSA_NAME
)
1083 if (TREE_CODE (rhs1
) == SSA_NAME
)
1085 /* Match an assignment under the form:
1087 res
= follow_ssa_edge
1088 (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
,
1089 evolution_of_loop
, limit
);
1092 *evolution_of_loop
= add_to_evolution
1094 chrec_convert (type_rhs
, *evolution_of_loop
, at_stmt
),
1097 else if (res
== t_false
)
1099 res
= follow_ssa_edge
1100 (loop
, SSA_NAME_DEF_STMT (rhs1
), halting_phi
,
1101 evolution_of_loop
, limit
);
1104 *evolution_of_loop
= add_to_evolution
1106 chrec_convert (type_rhs
, *evolution_of_loop
, at_stmt
),
1109 else if (res
== t_dont_know
)
1110 *evolution_of_loop
= chrec_dont_know
;
1113 else if (res
== t_dont_know
)
1114 *evolution_of_loop
= chrec_dont_know
;
1119 /* Match an assignment under the form:
1121 res
= follow_ssa_edge
1122 (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
,
1123 evolution_of_loop
, limit
);
1125 *evolution_of_loop
= add_to_evolution
1126 (loop
->num
, chrec_convert (type_rhs
, *evolution_of_loop
,
1130 else if (res
== t_dont_know
)
1131 *evolution_of_loop
= chrec_dont_know
;
1135 else if (TREE_CODE (rhs1
) == SSA_NAME
)
1137 /* Match an assignment under the form:
1139 res
= follow_ssa_edge
1140 (loop
, SSA_NAME_DEF_STMT (rhs1
), halting_phi
,
1141 evolution_of_loop
, limit
);
1143 *evolution_of_loop
= add_to_evolution
1144 (loop
->num
, chrec_convert (type_rhs
, *evolution_of_loop
,
1148 else if (res
== t_dont_know
)
1149 *evolution_of_loop
= chrec_dont_know
;
1153 /* Otherwise, match an assignment under the form:
1155 /* And there is nothing to do. */
1161 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1162 rhs0
= TREE_OPERAND (rhs
, 0);
1163 rhs1
= TREE_OPERAND (rhs
, 1);
1164 STRIP_TYPE_NOPS (rhs0
);
1165 STRIP_TYPE_NOPS (rhs1
);
1167 if (TREE_CODE (rhs0
) == SSA_NAME
)
1169 /* Match an assignment under the form:
1171 res
= follow_ssa_edge (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
,
1172 evolution_of_loop
, limit
);
1174 *evolution_of_loop
= add_to_evolution
1175 (loop
->num
, chrec_convert (type_rhs
, *evolution_of_loop
, at_stmt
),
1178 else if (res
== t_dont_know
)
1179 *evolution_of_loop
= chrec_dont_know
;
1182 /* Otherwise, match an assignment under the form:
1184 /* And there is nothing to do. */
1190 /* This case is under the form "opnd0 = rhs0 * rhs1". */
1191 rhs0
= TREE_OPERAND (rhs
, 0);
1192 rhs1
= TREE_OPERAND (rhs
, 1);
1193 STRIP_TYPE_NOPS (rhs0
);
1194 STRIP_TYPE_NOPS (rhs1
);
1196 if (TREE_CODE (rhs0
) == SSA_NAME
)
1198 if (TREE_CODE (rhs1
) == SSA_NAME
)
1200 /* Match an assignment under the form:
1202 res
= follow_ssa_edge
1203 (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
,
1204 evolution_of_loop
, limit
);
1206 if (res
== t_true
|| res
== t_dont_know
)
1207 *evolution_of_loop
= chrec_dont_know
;
1209 else if (res
== t_false
)
1211 res
= follow_ssa_edge
1212 (loop
, SSA_NAME_DEF_STMT (rhs1
), halting_phi
,
1213 evolution_of_loop
, limit
);
1215 if (res
== t_true
|| res
== t_dont_know
)
1216 *evolution_of_loop
= chrec_dont_know
;
1222 /* Match an assignment under the form:
1224 res
= follow_ssa_edge
1225 (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
,
1226 evolution_of_loop
, limit
);
1227 if (res
== t_true
|| res
== t_dont_know
)
1228 *evolution_of_loop
= chrec_dont_know
;
1232 else if (TREE_CODE (rhs1
) == SSA_NAME
)
1234 /* Match an assignment under the form:
1236 res
= follow_ssa_edge
1237 (loop
, SSA_NAME_DEF_STMT (rhs1
), halting_phi
,
1238 evolution_of_loop
, limit
);
1239 if (res
== t_true
|| res
== t_dont_know
)
1240 *evolution_of_loop
= chrec_dont_know
;
1244 /* Otherwise, match an assignment under the form:
1246 /* And there is nothing to do. */
1253 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1254 It must be handled as a copy assignment of the form a_1 = a_2. */
1255 tree op0
= ASSERT_EXPR_VAR (rhs
);
1256 if (TREE_CODE (op0
) == SSA_NAME
)
1257 res
= follow_ssa_edge (loop
, SSA_NAME_DEF_STMT (op0
),
1258 halting_phi
, evolution_of_loop
, limit
);
1273 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1276 backedge_phi_arg_p (tree phi
, int i
)
1278 edge e
= PHI_ARG_EDGE (phi
, i
);
1280 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1281 about updating it anywhere, and this should work as well most of the
1283 if (e
->flags
& EDGE_IRREDUCIBLE_LOOP
)
1289 /* Helper function for one branch of the condition-phi-node. Return
1290 true if the strongly connected component has been found following
1293 static inline t_bool
1294 follow_ssa_edge_in_condition_phi_branch (int i
,
1298 tree
*evolution_of_branch
,
1299 tree init_cond
, int limit
)
1301 tree branch
= PHI_ARG_DEF (condition_phi
, i
);
1302 *evolution_of_branch
= chrec_dont_know
;
1304 /* Do not follow back edges (they must belong to an irreducible loop, which
1305 we really do not want to worry about). */
1306 if (backedge_phi_arg_p (condition_phi
, i
))
1309 if (TREE_CODE (branch
) == SSA_NAME
)
1311 *evolution_of_branch
= init_cond
;
1312 return follow_ssa_edge (loop
, SSA_NAME_DEF_STMT (branch
), halting_phi
,
1313 evolution_of_branch
, limit
);
1316 /* This case occurs when one of the condition branches sets
1317 the variable to a constant: i.e. a phi-node like
1318 "a_2 = PHI <a_7(5), 2(6)>;".
1320 FIXME: This case have to be refined correctly:
1321 in some cases it is possible to say something better than
1322 chrec_dont_know, for example using a wrap-around notation. */
1326 /* This function merges the branches of a condition-phi-node in a
1330 follow_ssa_edge_in_condition_phi (struct loop
*loop
,
1333 tree
*evolution_of_loop
, int limit
)
1336 tree init
= *evolution_of_loop
;
1337 tree evolution_of_branch
;
1338 t_bool res
= follow_ssa_edge_in_condition_phi_branch (0, loop
, condition_phi
,
1340 &evolution_of_branch
,
1342 if (res
== t_false
|| res
== t_dont_know
)
1345 *evolution_of_loop
= evolution_of_branch
;
1347 for (i
= 1; i
< PHI_NUM_ARGS (condition_phi
); i
++)
1349 /* Quickly give up when the evolution of one of the branches is
1351 if (*evolution_of_loop
== chrec_dont_know
)
1354 res
= follow_ssa_edge_in_condition_phi_branch (i
, loop
, condition_phi
,
1356 &evolution_of_branch
,
1358 if (res
== t_false
|| res
== t_dont_know
)
1361 *evolution_of_loop
= chrec_merge (*evolution_of_loop
,
1362 evolution_of_branch
);
1368 /* Follow an SSA edge in an inner loop. It computes the overall
1369 effect of the loop, and following the symbolic initial conditions,
1370 it follows the edges in the parent loop. The inner loop is
1371 considered as a single statement. */
1374 follow_ssa_edge_inner_loop_phi (struct loop
*outer_loop
,
1377 tree
*evolution_of_loop
, int limit
)
1379 struct loop
*loop
= loop_containing_stmt (loop_phi_node
);
1380 tree ev
= analyze_scalar_evolution (loop
, PHI_RESULT (loop_phi_node
));
1382 /* Sometimes, the inner loop is too difficult to analyze, and the
1383 result of the analysis is a symbolic parameter. */
1384 if (ev
== PHI_RESULT (loop_phi_node
))
1386 t_bool res
= t_false
;
1389 for (i
= 0; i
< PHI_NUM_ARGS (loop_phi_node
); i
++)
1391 tree arg
= PHI_ARG_DEF (loop_phi_node
, i
);
1394 /* Follow the edges that exit the inner loop. */
1395 bb
= PHI_ARG_EDGE (loop_phi_node
, i
)->src
;
1396 if (!flow_bb_inside_loop_p (loop
, bb
))
1397 res
= follow_ssa_edge_in_rhs (outer_loop
, loop_phi_node
,
1399 evolution_of_loop
, limit
);
1404 /* If the path crosses this loop-phi, give up. */
1406 *evolution_of_loop
= chrec_dont_know
;
1411 /* Otherwise, compute the overall effect of the inner loop. */
1412 ev
= compute_overall_effect_of_inner_loop (loop
, ev
);
1413 return follow_ssa_edge_in_rhs (outer_loop
, loop_phi_node
, ev
, halting_phi
,
1414 evolution_of_loop
, limit
);
1417 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1418 path that is analyzed on the return walk. */
1421 follow_ssa_edge (struct loop
*loop
, tree def
, tree halting_phi
,
1422 tree
*evolution_of_loop
, int limit
)
1424 struct loop
*def_loop
;
1426 if (TREE_CODE (def
) == NOP_EXPR
)
1429 /* Give up if the path is longer than the MAX that we allow. */
1430 if (limit
++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE
))
1433 def_loop
= loop_containing_stmt (def
);
1435 switch (TREE_CODE (def
))
1438 if (!loop_phi_node_p (def
))
1439 /* DEF is a condition-phi-node. Follow the branches, and
1440 record their evolutions. Finally, merge the collected
1441 information and set the approximation to the main
1443 return follow_ssa_edge_in_condition_phi
1444 (loop
, def
, halting_phi
, evolution_of_loop
, limit
);
1446 /* When the analyzed phi is the halting_phi, the
1447 depth-first search is over: we have found a path from
1448 the halting_phi to itself in the loop. */
1449 if (def
== halting_phi
)
1452 /* Otherwise, the evolution of the HALTING_PHI depends
1453 on the evolution of another loop-phi-node, i.e. the
1454 evolution function is a higher degree polynomial. */
1455 if (def_loop
== loop
)
1459 if (flow_loop_nested_p (loop
, def_loop
))
1460 return follow_ssa_edge_inner_loop_phi
1461 (loop
, def
, halting_phi
, evolution_of_loop
, limit
);
1467 return follow_ssa_edge_in_rhs (loop
, def
,
1468 TREE_OPERAND (def
, 1),
1470 evolution_of_loop
, limit
);
1473 /* At this level of abstraction, the program is just a set
1474 of MODIFY_EXPRs and PHI_NODEs. In principle there is no
1475 other node to be handled. */
1482 /* Given a LOOP_PHI_NODE, this function determines the evolution
1483 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1486 analyze_evolution_in_loop (tree loop_phi_node
,
1490 tree evolution_function
= chrec_not_analyzed_yet
;
1491 struct loop
*loop
= loop_containing_stmt (loop_phi_node
);
1494 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1496 fprintf (dump_file
, "(analyze_evolution_in_loop \n");
1497 fprintf (dump_file
, " (loop_phi_node = ");
1498 print_generic_expr (dump_file
, loop_phi_node
, 0);
1499 fprintf (dump_file
, ")\n");
1502 for (i
= 0; i
< PHI_NUM_ARGS (loop_phi_node
); i
++)
1504 tree arg
= PHI_ARG_DEF (loop_phi_node
, i
);
1505 tree ssa_chain
, ev_fn
;
1508 /* Select the edges that enter the loop body. */
1509 bb
= PHI_ARG_EDGE (loop_phi_node
, i
)->src
;
1510 if (!flow_bb_inside_loop_p (loop
, bb
))
1513 if (TREE_CODE (arg
) == SSA_NAME
)
1515 ssa_chain
= SSA_NAME_DEF_STMT (arg
);
1517 /* Pass in the initial condition to the follow edge function. */
1519 res
= follow_ssa_edge (loop
, ssa_chain
, loop_phi_node
, &ev_fn
, 0);
1524 /* When it is impossible to go back on the same
1525 loop_phi_node by following the ssa edges, the
1526 evolution is represented by a peeled chrec, i.e. the
1527 first iteration, EV_FN has the value INIT_COND, then
1528 all the other iterations it has the value of ARG.
1529 For the moment, PEELED_CHREC nodes are not built. */
1531 ev_fn
= chrec_dont_know
;
1533 /* When there are multiple back edges of the loop (which in fact never
1534 happens currently, but nevertheless), merge their evolutions. */
1535 evolution_function
= chrec_merge (evolution_function
, ev_fn
);
1538 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1540 fprintf (dump_file
, " (evolution_function = ");
1541 print_generic_expr (dump_file
, evolution_function
, 0);
1542 fprintf (dump_file
, "))\n");
1545 return evolution_function
;
1548 /* Given a loop-phi-node, return the initial conditions of the
1549 variable on entry of the loop. When the CCP has propagated
1550 constants into the loop-phi-node, the initial condition is
1551 instantiated, otherwise the initial condition is kept symbolic.
1552 This analyzer does not analyze the evolution outside the current
1553 loop, and leaves this task to the on-demand tree reconstructor. */
1556 analyze_initial_condition (tree loop_phi_node
)
1559 tree init_cond
= chrec_not_analyzed_yet
;
1560 struct loop
*loop
= bb_for_stmt (loop_phi_node
)->loop_father
;
1562 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1564 fprintf (dump_file
, "(analyze_initial_condition \n");
1565 fprintf (dump_file
, " (loop_phi_node = \n");
1566 print_generic_expr (dump_file
, loop_phi_node
, 0);
1567 fprintf (dump_file
, ")\n");
1570 for (i
= 0; i
< PHI_NUM_ARGS (loop_phi_node
); i
++)
1572 tree branch
= PHI_ARG_DEF (loop_phi_node
, i
);
1573 basic_block bb
= PHI_ARG_EDGE (loop_phi_node
, i
)->src
;
1575 /* When the branch is oriented to the loop's body, it does
1576 not contribute to the initial condition. */
1577 if (flow_bb_inside_loop_p (loop
, bb
))
1580 if (init_cond
== chrec_not_analyzed_yet
)
1586 if (TREE_CODE (branch
) == SSA_NAME
)
1588 init_cond
= chrec_dont_know
;
1592 init_cond
= chrec_merge (init_cond
, branch
);
1595 /* Ooops -- a loop without an entry??? */
1596 if (init_cond
== chrec_not_analyzed_yet
)
1597 init_cond
= chrec_dont_know
;
1599 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1601 fprintf (dump_file
, " (init_cond = ");
1602 print_generic_expr (dump_file
, init_cond
, 0);
1603 fprintf (dump_file
, "))\n");
1609 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1612 interpret_loop_phi (struct loop
*loop
, tree loop_phi_node
)
1615 struct loop
*phi_loop
= loop_containing_stmt (loop_phi_node
);
1618 if (phi_loop
!= loop
)
1620 struct loop
*subloop
;
1621 tree evolution_fn
= analyze_scalar_evolution
1622 (phi_loop
, PHI_RESULT (loop_phi_node
));
1624 /* Dive one level deeper. */
1625 subloop
= superloop_at_depth (phi_loop
, loop
->depth
+ 1);
1627 /* Interpret the subloop. */
1628 res
= compute_overall_effect_of_inner_loop (subloop
, evolution_fn
);
1632 /* Otherwise really interpret the loop phi. */
1633 init_cond
= analyze_initial_condition (loop_phi_node
);
1634 res
= analyze_evolution_in_loop (loop_phi_node
, init_cond
);
1639 /* This function merges the branches of a condition-phi-node,
1640 contained in the outermost loop, and whose arguments are already
1644 interpret_condition_phi (struct loop
*loop
, tree condition_phi
)
1647 tree res
= chrec_not_analyzed_yet
;
1649 for (i
= 0; i
< PHI_NUM_ARGS (condition_phi
); i
++)
1653 if (backedge_phi_arg_p (condition_phi
, i
))
1655 res
= chrec_dont_know
;
1659 branch_chrec
= analyze_scalar_evolution
1660 (loop
, PHI_ARG_DEF (condition_phi
, i
));
1662 res
= chrec_merge (res
, branch_chrec
);
1668 /* Interpret the right hand side of a modify_expr OPND1. If we didn't
1669 analyze this node before, follow the definitions until ending
1670 either on an analyzed modify_expr, or on a loop-phi-node. On the
1671 return path, this function propagates evolutions (ala constant copy
1672 propagation). OPND1 is not a GIMPLE expression because we could
1673 analyze the effect of an inner loop: see interpret_loop_phi. */
1676 interpret_rhs_modify_expr (struct loop
*loop
, tree at_stmt
,
1677 tree opnd1
, tree type
)
1679 tree res
, opnd10
, opnd11
, chrec10
, chrec11
;
1681 if (is_gimple_min_invariant (opnd1
))
1682 return chrec_convert (type
, opnd1
, at_stmt
);
1684 switch (TREE_CODE (opnd1
))
1687 opnd10
= TREE_OPERAND (opnd1
, 0);
1688 opnd11
= TREE_OPERAND (opnd1
, 1);
1689 chrec10
= analyze_scalar_evolution (loop
, opnd10
);
1690 chrec11
= analyze_scalar_evolution (loop
, opnd11
);
1691 chrec10
= chrec_convert (type
, chrec10
, at_stmt
);
1692 chrec11
= chrec_convert (type
, chrec11
, at_stmt
);
1693 res
= chrec_fold_plus (type
, chrec10
, chrec11
);
1697 opnd10
= TREE_OPERAND (opnd1
, 0);
1698 opnd11
= TREE_OPERAND (opnd1
, 1);
1699 chrec10
= analyze_scalar_evolution (loop
, opnd10
);
1700 chrec11
= analyze_scalar_evolution (loop
, opnd11
);
1701 chrec10
= chrec_convert (type
, chrec10
, at_stmt
);
1702 chrec11
= chrec_convert (type
, chrec11
, at_stmt
);
1703 res
= chrec_fold_minus (type
, chrec10
, chrec11
);
1707 opnd10
= TREE_OPERAND (opnd1
, 0);
1708 chrec10
= analyze_scalar_evolution (loop
, opnd10
);
1709 chrec10
= chrec_convert (type
, chrec10
, at_stmt
);
1710 res
= chrec_fold_multiply (type
, chrec10
, SCALAR_FLOAT_TYPE_P (type
)
1711 ? build_real (type
, dconstm1
)
1712 : build_int_cst_type (type
, -1));
1716 opnd10
= TREE_OPERAND (opnd1
, 0);
1717 opnd11
= TREE_OPERAND (opnd1
, 1);
1718 chrec10
= analyze_scalar_evolution (loop
, opnd10
);
1719 chrec11
= analyze_scalar_evolution (loop
, opnd11
);
1720 chrec10
= chrec_convert (type
, chrec10
, at_stmt
);
1721 chrec11
= chrec_convert (type
, chrec11
, at_stmt
);
1722 res
= chrec_fold_multiply (type
, chrec10
, chrec11
);
1726 res
= chrec_convert (type
, analyze_scalar_evolution (loop
, opnd1
),
1731 opnd10
= ASSERT_EXPR_VAR (opnd1
);
1732 res
= chrec_convert (type
, analyze_scalar_evolution (loop
, opnd10
),
1738 opnd10
= TREE_OPERAND (opnd1
, 0);
1739 chrec10
= analyze_scalar_evolution (loop
, opnd10
);
1740 res
= chrec_convert (type
, chrec10
, at_stmt
);
1744 res
= chrec_dont_know
;
1753 /* This section contains all the entry points:
1754 - number_of_iterations_in_loop,
1755 - analyze_scalar_evolution,
1756 - instantiate_parameters.
1759 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1760 common ancestor of DEF_LOOP and USE_LOOP. */
1763 compute_scalar_evolution_in_loop (struct loop
*wrto_loop
,
1764 struct loop
*def_loop
,
1768 if (def_loop
== wrto_loop
)
1771 def_loop
= superloop_at_depth (def_loop
, wrto_loop
->depth
+ 1);
1772 res
= compute_overall_effect_of_inner_loop (def_loop
, ev
);
1774 return analyze_scalar_evolution_1 (wrto_loop
, res
, chrec_not_analyzed_yet
);
1777 /* Helper recursive function. */
1780 analyze_scalar_evolution_1 (struct loop
*loop
, tree var
, tree res
)
1782 tree def
, type
= TREE_TYPE (var
);
1784 struct loop
*def_loop
;
1787 return chrec_dont_know
;
1789 if (TREE_CODE (var
) != SSA_NAME
)
1790 return interpret_rhs_modify_expr (loop
, NULL_TREE
, var
, type
);
1792 def
= SSA_NAME_DEF_STMT (var
);
1793 bb
= bb_for_stmt (def
);
1794 def_loop
= bb
? bb
->loop_father
: NULL
;
1797 || !flow_bb_inside_loop_p (loop
, bb
))
1799 /* Keep the symbolic form. */
1804 if (res
!= chrec_not_analyzed_yet
)
1806 if (loop
!= bb
->loop_father
)
1807 res
= compute_scalar_evolution_in_loop
1808 (find_common_loop (loop
, bb
->loop_father
), bb
->loop_father
, res
);
1813 if (loop
!= def_loop
)
1815 res
= analyze_scalar_evolution_1 (def_loop
, var
, chrec_not_analyzed_yet
);
1816 res
= compute_scalar_evolution_in_loop (loop
, def_loop
, res
);
1821 switch (TREE_CODE (def
))
1824 res
= interpret_rhs_modify_expr (loop
, def
, TREE_OPERAND (def
, 1), type
);
1828 if (loop_phi_node_p (def
))
1829 res
= interpret_loop_phi (loop
, def
);
1831 res
= interpret_condition_phi (loop
, def
);
1835 res
= chrec_dont_know
;
1841 /* Keep the symbolic form. */
1842 if (res
== chrec_dont_know
)
1845 if (loop
== def_loop
)
1846 set_scalar_evolution (var
, res
);
1851 /* Entry point for the scalar evolution analyzer.
1852 Analyzes and returns the scalar evolution of the ssa_name VAR.
1853 LOOP_NB is the identifier number of the loop in which the variable
1856 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1857 pointer to the statement that uses this variable, in order to
1858 determine the evolution function of the variable, use the following
1861 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1862 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1863 tree chrec_instantiated = instantiate_parameters
1864 (loop_nb, chrec_with_symbols);
1868 analyze_scalar_evolution (struct loop
*loop
, tree var
)
1872 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1874 fprintf (dump_file
, "(analyze_scalar_evolution \n");
1875 fprintf (dump_file
, " (loop_nb = %d)\n", loop
->num
);
1876 fprintf (dump_file
, " (scalar = ");
1877 print_generic_expr (dump_file
, var
, 0);
1878 fprintf (dump_file
, ")\n");
1881 res
= analyze_scalar_evolution_1 (loop
, var
, get_scalar_evolution (var
));
1883 if (TREE_CODE (var
) == SSA_NAME
&& res
== chrec_dont_know
)
1886 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1887 fprintf (dump_file
, ")\n");
1892 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1893 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1897 analyze_scalar_evolution_in_loop (struct loop
*wrto_loop
, struct loop
*use_loop
,
1905 ev
= analyze_scalar_evolution (use_loop
, ev
);
1906 ev
= resolve_mixers (use_loop
, ev
);
1908 if (use_loop
== wrto_loop
)
1911 /* If the value of the use changes in the inner loop, we cannot express
1912 its value in the outer loop (we might try to return interval chrec,
1913 but we do not have a user for it anyway) */
1914 if (!no_evolution_in_loop_p (ev
, use_loop
->num
, &val
)
1916 return chrec_dont_know
;
1918 use_loop
= use_loop
->outer
;
1922 /* Returns instantiated value for VERSION in CACHE. */
1925 get_instantiated_value (htab_t cache
, tree version
)
1927 struct scev_info_str
*info
, pattern
;
1929 pattern
.var
= version
;
1930 info
= htab_find (cache
, &pattern
);
1938 /* Sets instantiated value for VERSION to VAL in CACHE. */
1941 set_instantiated_value (htab_t cache
, tree version
, tree val
)
1943 struct scev_info_str
*info
, pattern
;
1946 pattern
.var
= version
;
1947 slot
= htab_find_slot (cache
, &pattern
, INSERT
);
1952 info
= *slot
= new_scev_info_str (version
);
1956 /* Return the closed_loop_phi node for VAR. If there is none, return
1960 loop_closed_phi_def (tree var
)
1966 if (var
== NULL_TREE
1967 || TREE_CODE (var
) != SSA_NAME
)
1970 loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (var
));
1971 exit
= loop
->single_exit
;
1975 for (phi
= phi_nodes (exit
->dest
); phi
; phi
= PHI_CHAIN (phi
))
1976 if (PHI_ARG_DEF_FROM_EDGE (phi
, exit
) == var
)
1977 return PHI_RESULT (phi
);
1982 /* Analyze all the parameters of the chrec that were left under a symbolic form,
1983 with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
1984 of already instantiated values. FLAGS modify the way chrecs are
1987 /* Values for FLAGS. */
1990 INSERT_SUPERLOOP_CHRECS
= 1, /* Loop invariants are replaced with chrecs
1992 FOLD_CONVERSIONS
= 2 /* The conversions that may wrap in
1993 signed/pointer type are folded, as long as the
1994 value of the chrec is preserved. */
1998 instantiate_parameters_1 (struct loop
*loop
, tree chrec
, int flags
, htab_t cache
)
2000 tree res
, op0
, op1
, op2
;
2002 struct loop
*def_loop
;
2004 if (automatically_generated_chrec_p (chrec
)
2005 || is_gimple_min_invariant (chrec
))
2008 switch (TREE_CODE (chrec
))
2011 def_bb
= bb_for_stmt (SSA_NAME_DEF_STMT (chrec
));
2013 /* A parameter (or loop invariant and we do not want to include
2014 evolutions in outer loops), nothing to do. */
2016 || (!(flags
& INSERT_SUPERLOOP_CHRECS
)
2017 && !flow_bb_inside_loop_p (loop
, def_bb
)))
2020 /* We cache the value of instantiated variable to avoid exponential
2021 time complexity due to reevaluations. We also store the convenient
2022 value in the cache in order to prevent infinite recursion -- we do
2023 not want to instantiate the SSA_NAME if it is in a mixer
2024 structure. This is used for avoiding the instantiation of
2025 recursively defined functions, such as:
2027 | a_2 -> {0, +, 1, +, a_2}_1 */
2029 res
= get_instantiated_value (cache
, chrec
);
2033 /* Store the convenient value for chrec in the structure. If it
2034 is defined outside of the loop, we may just leave it in symbolic
2035 form, otherwise we need to admit that we do not know its behavior
2037 res
= !flow_bb_inside_loop_p (loop
, def_bb
) ? chrec
: chrec_dont_know
;
2038 set_instantiated_value (cache
, chrec
, res
);
2040 /* To make things even more complicated, instantiate_parameters_1
2041 calls analyze_scalar_evolution that may call # of iterations
2042 analysis that may in turn call instantiate_parameters_1 again.
2043 To prevent the infinite recursion, keep also the bitmap of
2044 ssa names that are being instantiated globally. */
2045 if (bitmap_bit_p (already_instantiated
, SSA_NAME_VERSION (chrec
)))
2048 def_loop
= find_common_loop (loop
, def_bb
->loop_father
);
2050 /* If the analysis yields a parametric chrec, instantiate the
2052 bitmap_set_bit (already_instantiated
, SSA_NAME_VERSION (chrec
));
2053 res
= analyze_scalar_evolution (def_loop
, chrec
);
2055 /* Don't instantiate loop-closed-ssa phi nodes. */
2056 if (TREE_CODE (res
) == SSA_NAME
2057 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res
)) == NULL
2058 || (loop_containing_stmt (SSA_NAME_DEF_STMT (res
))->depth
2059 > def_loop
->depth
)))
2062 res
= loop_closed_phi_def (chrec
);
2066 if (res
== NULL_TREE
)
2067 res
= chrec_dont_know
;
2070 else if (res
!= chrec_dont_know
)
2071 res
= instantiate_parameters_1 (loop
, res
, flags
, cache
);
2073 bitmap_clear_bit (already_instantiated
, SSA_NAME_VERSION (chrec
));
2075 /* Store the correct value to the cache. */
2076 set_instantiated_value (cache
, chrec
, res
);
2079 case POLYNOMIAL_CHREC
:
2080 op0
= instantiate_parameters_1 (loop
, CHREC_LEFT (chrec
),
2082 if (op0
== chrec_dont_know
)
2083 return chrec_dont_know
;
2085 op1
= instantiate_parameters_1 (loop
, CHREC_RIGHT (chrec
),
2087 if (op1
== chrec_dont_know
)
2088 return chrec_dont_know
;
2090 if (CHREC_LEFT (chrec
) != op0
2091 || CHREC_RIGHT (chrec
) != op1
)
2092 chrec
= build_polynomial_chrec (CHREC_VARIABLE (chrec
), op0
, op1
);
2096 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2098 if (op0
== chrec_dont_know
)
2099 return chrec_dont_know
;
2101 op1
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 1),
2103 if (op1
== chrec_dont_know
)
2104 return chrec_dont_know
;
2106 if (TREE_OPERAND (chrec
, 0) != op0
2107 || TREE_OPERAND (chrec
, 1) != op1
)
2108 chrec
= chrec_fold_plus (TREE_TYPE (chrec
), op0
, op1
);
2112 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2114 if (op0
== chrec_dont_know
)
2115 return chrec_dont_know
;
2117 op1
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 1),
2119 if (op1
== chrec_dont_know
)
2120 return chrec_dont_know
;
2122 if (TREE_OPERAND (chrec
, 0) != op0
2123 || TREE_OPERAND (chrec
, 1) != op1
)
2124 chrec
= chrec_fold_minus (TREE_TYPE (chrec
), op0
, op1
);
2128 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2130 if (op0
== chrec_dont_know
)
2131 return chrec_dont_know
;
2133 op1
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 1),
2135 if (op1
== chrec_dont_know
)
2136 return chrec_dont_know
;
2138 if (TREE_OPERAND (chrec
, 0) != op0
2139 || TREE_OPERAND (chrec
, 1) != op1
)
2140 chrec
= chrec_fold_multiply (TREE_TYPE (chrec
), op0
, op1
);
2145 case NON_LVALUE_EXPR
:
2146 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2148 if (op0
== chrec_dont_know
)
2149 return chrec_dont_know
;
2151 if (flags
& FOLD_CONVERSIONS
)
2153 tree tmp
= chrec_convert_aggressive (TREE_TYPE (chrec
), op0
);
2158 if (op0
== TREE_OPERAND (chrec
, 0))
2161 return chrec_convert (TREE_TYPE (chrec
), op0
, NULL_TREE
);
2163 case SCEV_NOT_KNOWN
:
2164 return chrec_dont_know
;
2173 switch (TREE_CODE_LENGTH (TREE_CODE (chrec
)))
2176 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2178 if (op0
== chrec_dont_know
)
2179 return chrec_dont_know
;
2181 op1
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 1),
2183 if (op1
== chrec_dont_know
)
2184 return chrec_dont_know
;
2186 op2
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 2),
2188 if (op2
== chrec_dont_know
)
2189 return chrec_dont_know
;
2191 if (op0
== TREE_OPERAND (chrec
, 0)
2192 && op1
== TREE_OPERAND (chrec
, 1)
2193 && op2
== TREE_OPERAND (chrec
, 2))
2196 return fold_build3 (TREE_CODE (chrec
),
2197 TREE_TYPE (chrec
), op0
, op1
, op2
);
2200 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2202 if (op0
== chrec_dont_know
)
2203 return chrec_dont_know
;
2205 op1
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 1),
2207 if (op1
== chrec_dont_know
)
2208 return chrec_dont_know
;
2210 if (op0
== TREE_OPERAND (chrec
, 0)
2211 && op1
== TREE_OPERAND (chrec
, 1))
2213 return fold_build2 (TREE_CODE (chrec
), TREE_TYPE (chrec
), op0
, op1
);
2216 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2218 if (op0
== chrec_dont_know
)
2219 return chrec_dont_know
;
2220 if (op0
== TREE_OPERAND (chrec
, 0))
2222 return fold_build1 (TREE_CODE (chrec
), TREE_TYPE (chrec
), op0
);
2231 /* Too complicated to handle. */
2232 return chrec_dont_know
;
2235 /* Analyze all the parameters of the chrec that were left under a
2236 symbolic form. LOOP is the loop in which symbolic names have to
2237 be analyzed and instantiated. */
2240 instantiate_parameters (struct loop
*loop
,
2244 htab_t cache
= htab_create (10, hash_scev_info
, eq_scev_info
, del_scev_info
);
2246 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2248 fprintf (dump_file
, "(instantiate_parameters \n");
2249 fprintf (dump_file
, " (loop_nb = %d)\n", loop
->num
);
2250 fprintf (dump_file
, " (chrec = ");
2251 print_generic_expr (dump_file
, chrec
, 0);
2252 fprintf (dump_file
, ")\n");
2255 res
= instantiate_parameters_1 (loop
, chrec
, INSERT_SUPERLOOP_CHRECS
, cache
);
2257 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2259 fprintf (dump_file
, " (res = ");
2260 print_generic_expr (dump_file
, res
, 0);
2261 fprintf (dump_file
, "))\n");
2264 htab_delete (cache
);
2269 /* Similar to instantiate_parameters, but does not introduce the
2270 evolutions in outer loops for LOOP invariants in CHREC, and does not
2271 care about causing overflows, as long as they do not affect value
2272 of an expression. */
2275 resolve_mixers (struct loop
*loop
, tree chrec
)
2277 htab_t cache
= htab_create (10, hash_scev_info
, eq_scev_info
, del_scev_info
);
2278 tree ret
= instantiate_parameters_1 (loop
, chrec
, FOLD_CONVERSIONS
, cache
);
2279 htab_delete (cache
);
2283 /* Entry point for the analysis of the number of iterations pass.
2284 This function tries to safely approximate the number of iterations
2285 the loop will run. When this property is not decidable at compile
2286 time, the result is chrec_dont_know. Otherwise the result is
2287 a scalar or a symbolic parameter.
2289 Example of analysis: suppose that the loop has an exit condition:
2291 "if (b > 49) goto end_loop;"
2293 and that in a previous analysis we have determined that the
2294 variable 'b' has an evolution function:
2296 "EF = {23, +, 5}_2".
2298 When we evaluate the function at the point 5, i.e. the value of the
2299 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2300 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2301 the loop body has been executed 6 times. */
2304 number_of_iterations_in_loop (struct loop
*loop
)
2308 struct tree_niter_desc niter_desc
;
2310 /* Determine whether the number_of_iterations_in_loop has already
2312 res
= loop
->nb_iterations
;
2315 res
= chrec_dont_know
;
2317 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2318 fprintf (dump_file
, "(number_of_iterations_in_loop\n");
2320 exit
= loop
->single_exit
;
2324 if (!number_of_iterations_exit (loop
, exit
, &niter_desc
, false))
2327 type
= TREE_TYPE (niter_desc
.niter
);
2328 if (integer_nonzerop (niter_desc
.may_be_zero
))
2329 res
= build_int_cst (type
, 0);
2330 else if (integer_zerop (niter_desc
.may_be_zero
))
2331 res
= niter_desc
.niter
;
2333 res
= chrec_dont_know
;
2336 return set_nb_iterations_in_loop (loop
, res
);
2339 /* One of the drivers for testing the scalar evolutions analysis.
2340 This function computes the number of iterations for all the loops
2341 from the EXIT_CONDITIONS array. */
2344 number_of_iterations_for_all_loops (VEC(tree
,heap
) **exit_conditions
)
2347 unsigned nb_chrec_dont_know_loops
= 0;
2348 unsigned nb_static_loops
= 0;
2351 for (i
= 0; VEC_iterate (tree
, *exit_conditions
, i
, cond
); i
++)
2353 tree res
= number_of_iterations_in_loop (loop_containing_stmt (cond
));
2354 if (chrec_contains_undetermined (res
))
2355 nb_chrec_dont_know_loops
++;
2362 fprintf (dump_file
, "\n(\n");
2363 fprintf (dump_file
, "-----------------------------------------\n");
2364 fprintf (dump_file
, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops
);
2365 fprintf (dump_file
, "%d\tnb_static_loops\n", nb_static_loops
);
2366 fprintf (dump_file
, "%d\tnb_total_loops\n", current_loops
->num
);
2367 fprintf (dump_file
, "-----------------------------------------\n");
2368 fprintf (dump_file
, ")\n\n");
2370 print_loop_ir (dump_file
);
2376 /* Counters for the stats. */
2382 unsigned nb_affine_multivar
;
2383 unsigned nb_higher_poly
;
2384 unsigned nb_chrec_dont_know
;
2385 unsigned nb_undetermined
;
2388 /* Reset the counters. */
2391 reset_chrecs_counters (struct chrec_stats
*stats
)
2393 stats
->nb_chrecs
= 0;
2394 stats
->nb_affine
= 0;
2395 stats
->nb_affine_multivar
= 0;
2396 stats
->nb_higher_poly
= 0;
2397 stats
->nb_chrec_dont_know
= 0;
2398 stats
->nb_undetermined
= 0;
2401 /* Dump the contents of a CHREC_STATS structure. */
2404 dump_chrecs_stats (FILE *file
, struct chrec_stats
*stats
)
2406 fprintf (file
, "\n(\n");
2407 fprintf (file
, "-----------------------------------------\n");
2408 fprintf (file
, "%d\taffine univariate chrecs\n", stats
->nb_affine
);
2409 fprintf (file
, "%d\taffine multivariate chrecs\n", stats
->nb_affine_multivar
);
2410 fprintf (file
, "%d\tdegree greater than 2 polynomials\n",
2411 stats
->nb_higher_poly
);
2412 fprintf (file
, "%d\tchrec_dont_know chrecs\n", stats
->nb_chrec_dont_know
);
2413 fprintf (file
, "-----------------------------------------\n");
2414 fprintf (file
, "%d\ttotal chrecs\n", stats
->nb_chrecs
);
2415 fprintf (file
, "%d\twith undetermined coefficients\n",
2416 stats
->nb_undetermined
);
2417 fprintf (file
, "-----------------------------------------\n");
2418 fprintf (file
, "%d\tchrecs in the scev database\n",
2419 (int) htab_elements (scalar_evolution_info
));
2420 fprintf (file
, "%d\tsets in the scev database\n", nb_set_scev
);
2421 fprintf (file
, "%d\tgets in the scev database\n", nb_get_scev
);
2422 fprintf (file
, "-----------------------------------------\n");
2423 fprintf (file
, ")\n\n");
2426 /* Gather statistics about CHREC. */
2429 gather_chrec_stats (tree chrec
, struct chrec_stats
*stats
)
2431 if (dump_file
&& (dump_flags
& TDF_STATS
))
2433 fprintf (dump_file
, "(classify_chrec ");
2434 print_generic_expr (dump_file
, chrec
, 0);
2435 fprintf (dump_file
, "\n");
2440 if (chrec
== NULL_TREE
)
2442 stats
->nb_undetermined
++;
2446 switch (TREE_CODE (chrec
))
2448 case POLYNOMIAL_CHREC
:
2449 if (evolution_function_is_affine_p (chrec
))
2451 if (dump_file
&& (dump_flags
& TDF_STATS
))
2452 fprintf (dump_file
, " affine_univariate\n");
2455 else if (evolution_function_is_affine_multivariate_p (chrec
))
2457 if (dump_file
&& (dump_flags
& TDF_STATS
))
2458 fprintf (dump_file
, " affine_multivariate\n");
2459 stats
->nb_affine_multivar
++;
2463 if (dump_file
&& (dump_flags
& TDF_STATS
))
2464 fprintf (dump_file
, " higher_degree_polynomial\n");
2465 stats
->nb_higher_poly
++;
2474 if (chrec_contains_undetermined (chrec
))
2476 if (dump_file
&& (dump_flags
& TDF_STATS
))
2477 fprintf (dump_file
, " undetermined\n");
2478 stats
->nb_undetermined
++;
2481 if (dump_file
&& (dump_flags
& TDF_STATS
))
2482 fprintf (dump_file
, ")\n");
2485 /* One of the drivers for testing the scalar evolutions analysis.
2486 This function analyzes the scalar evolution of all the scalars
2487 defined as loop phi nodes in one of the loops from the
2488 EXIT_CONDITIONS array.
2490 TODO Optimization: A loop is in canonical form if it contains only
2491 a single scalar loop phi node. All the other scalars that have an
2492 evolution in the loop are rewritten in function of this single
2493 index. This allows the parallelization of the loop. */
2496 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree
,heap
) **exit_conditions
)
2499 struct chrec_stats stats
;
2502 reset_chrecs_counters (&stats
);
2504 for (i
= 0; VEC_iterate (tree
, *exit_conditions
, i
, cond
); i
++)
2510 loop
= loop_containing_stmt (cond
);
2513 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
2514 if (is_gimple_reg (PHI_RESULT (phi
)))
2516 chrec
= instantiate_parameters
2518 analyze_scalar_evolution (loop
, PHI_RESULT (phi
)));
2520 if (dump_file
&& (dump_flags
& TDF_STATS
))
2521 gather_chrec_stats (chrec
, &stats
);
2525 if (dump_file
&& (dump_flags
& TDF_STATS
))
2526 dump_chrecs_stats (dump_file
, &stats
);
2529 /* Callback for htab_traverse, gathers information on chrecs in the
2533 gather_stats_on_scev_database_1 (void **slot
, void *stats
)
2535 struct scev_info_str
*entry
= *slot
;
2537 gather_chrec_stats (entry
->chrec
, stats
);
2542 /* Classify the chrecs of the whole database. */
2545 gather_stats_on_scev_database (void)
2547 struct chrec_stats stats
;
2552 reset_chrecs_counters (&stats
);
2554 htab_traverse (scalar_evolution_info
, gather_stats_on_scev_database_1
,
2557 dump_chrecs_stats (dump_file
, &stats
);
2565 initialize_scalar_evolutions_analyzer (void)
2567 /* The elements below are unique. */
2568 if (chrec_dont_know
== NULL_TREE
)
2570 chrec_not_analyzed_yet
= NULL_TREE
;
2571 chrec_dont_know
= make_node (SCEV_NOT_KNOWN
);
2572 chrec_known
= make_node (SCEV_KNOWN
);
2573 TREE_TYPE (chrec_dont_know
) = void_type_node
;
2574 TREE_TYPE (chrec_known
) = void_type_node
;
2578 /* Initialize the analysis of scalar evolutions for LOOPS. */
2581 scev_initialize (struct loops
*loops
)
2584 current_loops
= loops
;
2586 scalar_evolution_info
= htab_create (100, hash_scev_info
,
2587 eq_scev_info
, del_scev_info
);
2588 already_instantiated
= BITMAP_ALLOC (NULL
);
2590 initialize_scalar_evolutions_analyzer ();
2592 for (i
= 1; i
< loops
->num
; i
++)
2593 if (loops
->parray
[i
])
2594 loops
->parray
[i
]->nb_iterations
= NULL_TREE
;
2597 /* Cleans up the information cached by the scalar evolutions analysis. */
2605 if (!scalar_evolution_info
|| !current_loops
)
2608 htab_empty (scalar_evolution_info
);
2609 for (i
= 1; i
< current_loops
->num
; i
++)
2611 loop
= current_loops
->parray
[i
];
2613 loop
->nb_iterations
= NULL_TREE
;
2617 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2618 its BASE and STEP if possible. If ALLOW_NONCONSTANT_STEP is true, we
2619 want STEP to be invariant in LOOP. Otherwise we require it to be an
2620 integer constant. */
2623 simple_iv (struct loop
*loop
, tree stmt
, tree op
, tree
*base
, tree
*step
,
2624 bool allow_nonconstant_step
)
2626 basic_block bb
= bb_for_stmt (stmt
);
2632 type
= TREE_TYPE (op
);
2633 if (TREE_CODE (type
) != INTEGER_TYPE
2634 && TREE_CODE (type
) != POINTER_TYPE
)
2637 ev
= analyze_scalar_evolution_in_loop (loop
, bb
->loop_father
, op
);
2638 if (chrec_contains_undetermined (ev
))
2641 if (tree_does_not_contain_chrecs (ev
)
2642 && !chrec_contains_symbols_defined_in_loop (ev
, loop
->num
))
2648 if (TREE_CODE (ev
) != POLYNOMIAL_CHREC
2649 || CHREC_VARIABLE (ev
) != (unsigned) loop
->num
)
2652 *step
= CHREC_RIGHT (ev
);
2653 if (allow_nonconstant_step
)
2655 if (tree_contains_chrecs (*step
, NULL
)
2656 || chrec_contains_symbols_defined_in_loop (*step
, loop
->num
))
2659 else if (TREE_CODE (*step
) != INTEGER_CST
)
2662 *base
= CHREC_LEFT (ev
);
2663 if (tree_contains_chrecs (*base
, NULL
)
2664 || chrec_contains_symbols_defined_in_loop (*base
, loop
->num
))
2670 /* Runs the analysis of scalar evolutions. */
2673 scev_analysis (void)
2675 VEC(tree
,heap
) *exit_conditions
;
2677 exit_conditions
= VEC_alloc (tree
, heap
, 37);
2678 select_loops_exit_conditions (current_loops
, &exit_conditions
);
2680 if (dump_file
&& (dump_flags
& TDF_STATS
))
2681 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions
);
2683 number_of_iterations_for_all_loops (&exit_conditions
);
2684 VEC_free (tree
, heap
, exit_conditions
);
2687 /* Finalize the scalar evolution analysis. */
2690 scev_finalize (void)
2692 htab_delete (scalar_evolution_info
);
2693 BITMAP_FREE (already_instantiated
);
2696 /* Replace ssa names for that scev can prove they are constant by the
2697 appropriate constants. Also perform final value replacement in loops,
2698 in case the replacement expressions are cheap.
2700 We only consider SSA names defined by phi nodes; rest is left to the
2701 ordinary constant propagation pass. */
2704 scev_const_prop (void)
2707 tree name
, phi
, next_phi
, type
, ev
;
2708 struct loop
*loop
, *ex_loop
;
2709 bitmap ssa_names_to_remove
= NULL
;
2717 loop
= bb
->loop_father
;
2719 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
2721 name
= PHI_RESULT (phi
);
2723 if (!is_gimple_reg (name
))
2726 type
= TREE_TYPE (name
);
2728 if (!POINTER_TYPE_P (type
)
2729 && !INTEGRAL_TYPE_P (type
))
2732 ev
= resolve_mixers (loop
, analyze_scalar_evolution (loop
, name
));
2733 if (!is_gimple_min_invariant (ev
)
2734 || !may_propagate_copy (name
, ev
))
2737 /* Replace the uses of the name. */
2739 replace_uses_by (name
, ev
);
2741 if (!ssa_names_to_remove
)
2742 ssa_names_to_remove
= BITMAP_ALLOC (NULL
);
2743 bitmap_set_bit (ssa_names_to_remove
, SSA_NAME_VERSION (name
));
2747 /* Remove the ssa names that were replaced by constants. We do not remove them
2748 directly in the previous cycle, since this invalidates scev cache. */
2749 if (ssa_names_to_remove
)
2754 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove
, 0, i
, bi
)
2756 name
= ssa_name (i
);
2757 phi
= SSA_NAME_DEF_STMT (name
);
2759 gcc_assert (TREE_CODE (phi
) == PHI_NODE
);
2760 remove_phi_node (phi
, NULL
);
2763 BITMAP_FREE (ssa_names_to_remove
);
2767 /* Now the regular final value replacement. */
2768 for (i
= current_loops
->num
- 1; i
> 0; i
--)
2773 loop
= current_loops
->parray
[i
];
2777 /* If we do not know exact number of iterations of the loop, we cannot
2778 replace the final value. */
2779 exit
= loop
->single_exit
;
2781 || number_of_iterations_in_loop (loop
) == chrec_dont_know
)
2783 ex_loop
= exit
->dest
->loop_father
;
2785 for (phi
= phi_nodes (exit
->dest
); phi
; phi
= next_phi
)
2787 next_phi
= PHI_CHAIN (phi
);
2788 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2789 if (!is_gimple_reg (def
)
2790 || expr_invariant_in_loop_p (loop
, def
))
2793 if (!POINTER_TYPE_P (TREE_TYPE (def
))
2794 && !INTEGRAL_TYPE_P (TREE_TYPE (def
)))
2797 def
= analyze_scalar_evolution_in_loop (ex_loop
, ex_loop
, def
);
2798 if (!tree_does_not_contain_chrecs (def
)
2799 || chrec_contains_symbols_defined_in_loop (def
, loop
->num
)
2800 || def
== PHI_RESULT (phi
)
2801 || (TREE_CODE (def
) == SSA_NAME
2802 && loop_containing_stmt (SSA_NAME_DEF_STMT (def
))
2803 && loop_containing_stmt (phi
)
2804 && loop_containing_stmt (SSA_NAME_DEF_STMT (def
))
2805 == loop_containing_stmt (phi
)))
2808 /* If computing the expression is expensive, let it remain in
2809 loop. TODO -- we should take the cost of computing the expression
2810 in loop into account. */
2811 if (force_expr_to_var_cost (def
) >= target_spill_cost
)
2813 def
= unshare_expr (def
);
2815 if (is_gimple_val (def
))
2818 def
= force_gimple_operand (def
, &stmts
, true,
2819 SSA_NAME_VAR (PHI_RESULT (phi
)));
2820 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi
, exit
), def
);
2822 compute_phi_arg_on_exit (exit
, stmts
, def
);