predicates.md (any_QIreg_operand): Rename from q_regs_operand.
[official-gcc.git] / gcc / fibonacci_heap.h
blob0d9226bbca9def94a12a5d682725573a42cfb65a
1 /* Vector API for GNU compiler.
2 Copyright (C) 1998-2015 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin (dan@cgsoftware.com).
4 Re-implemented in C++ by Martin Liska <mliska@suse.cz>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Fibonacci heaps are somewhat complex, but, there's an article in
23 DDJ that explains them pretty well:
25 http://www.ddj.com/articles/1997/9701/9701o/9701o.htm?topic=algoritms
27 Introduction to algorithms by Corman and Rivest also goes over them.
29 The original paper that introduced them is "Fibonacci heaps and their
30 uses in improved network optimization algorithms" by Tarjan and
31 Fredman (JACM 34(3), July 1987).
33 Amortized and real worst case time for operations:
35 ExtractMin: O(lg n) amortized. O(n) worst case.
36 DecreaseKey: O(1) amortized. O(lg n) worst case.
37 Insert: O(1) amortized.
38 Union: O(1) amortized. */
40 #ifndef GCC_FIBONACCI_HEAP_H
41 #define GCC_FIBONACCI_HEAP_H
43 /* Forward definition. */
45 template<class K, class V>
46 class fibonacci_heap;
48 /* Fibonacci heap node class. */
50 template<class K, class V>
51 class fibonacci_node
53 typedef fibonacci_node<K,V> fibonacci_node_t;
54 friend class fibonacci_heap<K,V>;
56 public:
57 /* Default constructor. */
58 fibonacci_node (): m_parent (NULL), m_child (NULL), m_left (this),
59 m_right (this), m_degree (0), m_mark (0)
63 /* Constructor for a node with given KEY. */
64 fibonacci_node (K key): m_parent (NULL), m_child (NULL), m_left (this),
65 m_right (this), m_key (key),
66 m_degree (0), m_mark (0)
70 /* Compare fibonacci node with OTHER node. */
71 int compare (fibonacci_node_t *other)
73 if (m_key < other->m_key)
74 return -1;
75 if (m_key > other->m_key)
76 return 1;
77 return 0;
80 /* Compare the node with a given KEY. */
81 int compare_data (K key)
83 return fibonacci_node_t (key).compare (this);
86 /* Remove fibonacci heap node. */
87 fibonacci_node_t *remove ();
89 /* Link the node with PARENT. */
90 void link (fibonacci_node_t *parent);
92 /* Return key associated with the node. */
93 K get_key ()
95 return m_key;
98 /* Return data associated with the node. */
99 V *get_data ()
101 return m_data;
104 private:
105 /* Put node B after this node. */
106 void insert_after (fibonacci_node_t *b);
108 /* Insert fibonacci node B after this node. */
109 void insert_before (fibonacci_node_t *b)
111 m_left->insert_after (b);
114 /* Parent node. */
115 fibonacci_node *m_parent;
116 /* Child node. */
117 fibonacci_node *m_child;
118 /* Left sibling. */
119 fibonacci_node *m_left;
120 /* Right node. */
121 fibonacci_node *m_right;
122 /* Key associated with node. */
123 K m_key;
124 /* Data associated with node. */
125 V *m_data;
127 #if defined (__GNUC__) && (!defined (SIZEOF_INT) || SIZEOF_INT < 4)
128 /* Degree of the node. */
129 __extension__ unsigned long int m_degree : 31;
130 /* Mark of the node. */
131 __extension__ unsigned long int m_mark : 1;
132 #else
133 /* Degree of the node. */
134 unsigned int m_degree : 31;
135 /* Mark of the node. */
136 unsigned int m_mark : 1;
137 #endif
140 /* Fibonacci heap class. */
141 template<class K, class V>
142 class fibonacci_heap
144 typedef fibonacci_node<K,V> fibonacci_node_t;
145 friend class fibonacci_node<K,V>;
147 public:
148 /* Default constructor. */
149 fibonacci_heap (K global_min_key): m_nodes (0), m_min (NULL), m_root (NULL),
150 m_global_min_key (global_min_key)
154 /* Destructor. */
155 ~fibonacci_heap ()
157 while (m_min != NULL)
158 delete (extract_minimum_node ());
161 /* Insert new node given by KEY and DATA associated with the key. */
162 fibonacci_node_t *insert (K key, V *data);
164 /* Return true if no entry is present. */
165 bool empty ()
167 return m_nodes == 0;
170 /* Return the number of nodes. */
171 size_t nodes ()
173 return m_nodes;
176 /* Return minimal key presented in the heap. */
177 K min_key ()
179 if (m_min == NULL)
180 gcc_unreachable ();
182 return m_min->m_key;
185 /* For given NODE, set new KEY value. */
186 K replace_key (fibonacci_node_t *node, K key)
188 K okey = node->m_key;
190 replace_key_data (node, key, node->m_data);
191 return okey;
194 /* For given NODE, decrease value to new KEY. */
195 K decrease_key (fibonacci_node_t *node, K key)
197 gcc_assert (key <= node->m_key);
198 return replace_key (node, key);
201 /* For given NODE, set new KEY and DATA value. */
202 V *replace_key_data (fibonacci_node_t *node, K key, V *data);
204 /* Extract minimum node in the heap. If RELEASE is specified,
205 memory is released. */
206 V *extract_min (bool release = true);
208 /* Return value associated with minimum node in the heap. */
209 V *min ()
211 if (m_min == NULL)
212 return NULL;
214 return m_min->m_data;
217 /* Replace data associated with NODE and replace it with DATA. */
218 V *replace_data (fibonacci_node_t *node, V *data)
220 return replace_key_data (node, node->m_key, data);
223 /* Delete NODE in the heap. */
224 V *delete_node (fibonacci_node_t *node, bool release = true);
226 /* Union the heap with HEAPB. */
227 fibonacci_heap *union_with (fibonacci_heap *heapb);
229 private:
230 /* Insert new NODE given by KEY and DATA associated with the key. */
231 fibonacci_node_t *insert (fibonacci_node_t *node, K key, V *data);
233 /* Insert it into the root list. */
234 void insert_root (fibonacci_node_t *node);
236 /* Remove NODE from PARENT's child list. */
237 void cut (fibonacci_node_t *node, fibonacci_node_t *parent);
239 /* Process cut of node Y and do it recursivelly. */
240 void cascading_cut (fibonacci_node_t *y);
242 /* Extract minimum node from the heap. */
243 fibonacci_node_t * extract_minimum_node ();
245 /* Remove root NODE from the heap. */
246 void remove_root (fibonacci_node_t *node);
248 /* Consolidate heap. */
249 void consolidate ();
251 /* Number of nodes. */
252 size_t m_nodes;
253 /* Minimum node of the heap. */
254 fibonacci_node_t *m_min;
255 /* Root node of the heap. */
256 fibonacci_node_t *m_root;
257 /* Global minimum given in the heap construction. */
258 K m_global_min_key;
261 /* Remove fibonacci heap node. */
263 template<class K, class V>
264 fibonacci_node<K,V> *
265 fibonacci_node<K,V>::remove ()
267 fibonacci_node<K,V> *ret;
269 if (this == m_left)
270 ret = NULL;
271 else
272 ret = m_left;
274 if (m_parent != NULL && m_parent->m_child == this)
275 m_parent->m_child = ret;
277 m_right->m_left = m_left;
278 m_left->m_right = m_right;
280 m_parent = NULL;
281 m_left = this;
282 m_right = this;
284 return ret;
287 /* Link the node with PARENT. */
289 template<class K, class V>
290 void
291 fibonacci_node<K,V>::link (fibonacci_node<K,V> *parent)
293 if (parent->m_child == NULL)
294 parent->m_child = this;
295 else
296 parent->m_child->insert_before (this);
297 m_parent = parent;
298 parent->m_degree++;
299 m_mark = 0;
302 /* Put node B after this node. */
304 template<class K, class V>
305 void
306 fibonacci_node<K,V>::insert_after (fibonacci_node<K,V> *b)
308 fibonacci_node<K,V> *a = this;
310 if (a == a->m_right)
312 a->m_right = b;
313 a->m_left = b;
314 b->m_right = a;
315 b->m_left = a;
317 else
319 b->m_right = a->m_right;
320 a->m_right->m_left = b;
321 a->m_right = b;
322 b->m_left = a;
326 /* Insert new node given by KEY and DATA associated with the key. */
328 template<class K, class V>
329 fibonacci_node<K,V>*
330 fibonacci_heap<K,V>::insert (K key, V *data)
332 /* Create the new node. */
333 fibonacci_node<K,V> *node = new fibonacci_node_t ();
335 return insert (node, key, data);
338 /* Insert new NODE given by KEY and DATA associated with the key. */
340 template<class K, class V>
341 fibonacci_node<K,V>*
342 fibonacci_heap<K,V>::insert (fibonacci_node_t *node, K key, V *data)
344 /* Set the node's data. */
345 node->m_data = data;
346 node->m_key = key;
348 /* Insert it into the root list. */
349 insert_root (node);
351 /* If their was no minimum, or this key is less than the min,
352 it's the new min. */
353 if (m_min == NULL || node->m_key < m_min->m_key)
354 m_min = node;
356 m_nodes++;
358 return node;
361 /* For given NODE, set new KEY and DATA value. */
362 template<class K, class V>
364 fibonacci_heap<K,V>::replace_key_data (fibonacci_node<K,V> *node, K key,
365 V *data)
367 K okey;
368 fibonacci_node<K,V> *y;
369 V *odata = node->m_data;
371 /* If we wanted to, we do a real increase by redeleting and
372 inserting. */
373 if (node->compare_data (key) > 0)
375 delete_node (node, false);
377 node = new (node) fibonacci_node_t ();
378 insert (node, key, data);
380 return odata;
383 okey = node->m_key;
384 node->m_data = data;
385 node->m_key = key;
386 y = node->m_parent;
388 /* Short-circuit if the key is the same, as we then don't have to
389 do anything. Except if we're trying to force the new node to
390 be the new minimum for delete. */
391 if (okey == key && okey != m_global_min_key)
392 return odata;
394 /* These two compares are specifically <= 0 to make sure that in the case
395 of equality, a node we replaced the data on, becomes the new min. This
396 is needed so that delete's call to extractmin gets the right node. */
397 if (y != NULL && node->compare (y) <= 0)
399 cut (node, y);
400 cascading_cut (y);
403 if (node->compare (m_min) <= 0)
404 m_min = node;
406 return odata;
409 /* Extract minimum node in the heap. */
410 template<class K, class V>
412 fibonacci_heap<K,V>::extract_min (bool release)
414 fibonacci_node<K,V> *z;
415 V *ret = NULL;
417 /* If we don't have a min set, it means we have no nodes. */
418 if (m_min != NULL)
420 /* Otherwise, extract the min node, free the node, and return the
421 node's data. */
422 z = extract_minimum_node ();
423 ret = z->m_data;
425 if (release)
426 delete (z);
429 return ret;
432 /* Delete NODE in the heap, if RELEASE is specified memory is released. */
434 template<class K, class V>
436 fibonacci_heap<K,V>::delete_node (fibonacci_node<K,V> *node, bool release)
438 V *ret = node->m_data;
440 /* To perform delete, we just make it the min key, and extract. */
441 replace_key (node, m_global_min_key);
442 if (node != m_min)
444 fprintf (stderr, "Can't force minimum on fibheap.\n");
445 abort ();
447 extract_min (release);
449 return ret;
452 /* Union the heap with HEAPB. */
454 template<class K, class V>
455 fibonacci_heap<K,V>*
456 fibonacci_heap<K,V>::union_with (fibonacci_heap<K,V> *heapb)
458 fibonacci_heap<K,V> *heapa = this;
460 fibonacci_node<K,V> *a_root, *b_root, *temp;
462 /* If one of the heaps is empty, the union is just the other heap. */
463 if ((a_root = heapa->m_root) == NULL)
465 delete (heapa);
466 return heapb;
468 if ((b_root = heapb->m_root) == NULL)
470 delete (heapb);
471 return heapa;
474 /* Merge them to the next nodes on the opposite chain. */
475 a_root->m_left->m_right = b_root;
476 b_root->m_left->m_right = a_root;
477 temp = a_root->m_left;
478 a_root->m_left = b_root->m_left;
479 b_root->m_left = temp;
480 heapa->m_nodes += heapb->m_nodes;
482 /* And set the new minimum, if it's changed. */
483 if (heapb->min->compare (heapa->min) < 0)
484 heapa->m_min = heapb->m_min;
486 delete (heapb);
487 return heapa;
490 /* Insert it into the root list. */
492 template<class K, class V>
493 void
494 fibonacci_heap<K,V>::insert_root (fibonacci_node_t *node)
496 /* If the heap is currently empty, the new node becomes the singleton
497 circular root list. */
498 if (m_root == NULL)
500 m_root = node;
501 node->m_left = node;
502 node->m_right = node;
503 return;
506 /* Otherwise, insert it in the circular root list between the root
507 and it's right node. */
508 m_root->insert_after (node);
511 /* Remove NODE from PARENT's child list. */
513 template<class K, class V>
514 void
515 fibonacci_heap<K,V>::cut (fibonacci_node<K,V> *node,
516 fibonacci_node<K,V> *parent)
518 node->remove ();
519 parent->m_degree--;
520 insert_root (node);
521 node->m_parent = NULL;
522 node->m_mark = 0;
525 /* Process cut of node Y and do it recursivelly. */
527 template<class K, class V>
528 void
529 fibonacci_heap<K,V>::cascading_cut (fibonacci_node<K,V> *y)
531 fibonacci_node<K,V> *z;
533 while ((z = y->m_parent) != NULL)
535 if (y->m_mark == 0)
537 y->m_mark = 1;
538 return;
540 else
542 cut (y, z);
543 y = z;
548 /* Extract minimum node from the heap. */
549 template<class K, class V>
550 fibonacci_node<K,V>*
551 fibonacci_heap<K,V>::extract_minimum_node ()
553 fibonacci_node<K,V> *ret = m_min;
554 fibonacci_node<K,V> *x, *y, *orig;
556 /* Attach the child list of the minimum node to the root list of the heap.
557 If there is no child list, we don't do squat. */
558 for (x = ret->m_child, orig = NULL; x != orig && x != NULL; x = y)
560 if (orig == NULL)
561 orig = x;
562 y = x->m_right;
563 x->m_parent = NULL;
564 insert_root (x);
567 /* Remove the old root. */
568 remove_root (ret);
569 m_nodes--;
571 /* If we are left with no nodes, then the min is NULL. */
572 if (m_nodes == 0)
573 m_min = NULL;
574 else
576 /* Otherwise, consolidate to find new minimum, as well as do the reorg
577 work that needs to be done. */
578 m_min = ret->m_right;
579 consolidate ();
582 return ret;
585 /* Remove root NODE from the heap. */
587 template<class K, class V>
588 void
589 fibonacci_heap<K,V>::remove_root (fibonacci_node<K,V> *node)
591 if (node->m_left == node)
592 m_root = NULL;
593 else
594 m_root = node->remove ();
597 /* Consolidate heap. */
599 template<class K, class V>
600 void fibonacci_heap<K,V>::consolidate ()
602 int D = 1 + 8 * sizeof (long);
603 auto_vec<fibonacci_node<K,V> *> a (D);
604 a.safe_grow_cleared (D);
605 fibonacci_node<K,V> *w, *x, *y;
606 int i, d;
608 while ((w = m_root) != NULL)
610 x = w;
611 remove_root (w);
612 d = x->m_degree;
613 while (a[d] != NULL)
615 y = a[d];
616 if (x->compare (y) > 0)
617 std::swap (x, y);
618 y->link (x);
619 a[d] = NULL;
620 d++;
622 a[d] = x;
624 m_min = NULL;
625 for (i = 0; i < D; i++)
626 if (a[i] != NULL)
628 insert_root (a[i]);
629 if (m_min == NULL || a[i]->compare (m_min) < 0)
630 m_min = a[i];
634 #endif // GCC_FIBONACCI_HEAP_H