2008-09-04 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ira-int.h
blob727eeae905cdbedae051174db11440f69f45e6c4
1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "cfgloop.h"
23 #include "ira.h"
24 #include "alloc-pool.h"
26 /* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
29 #ifdef ENABLE_CHECKING
30 #define ENABLE_IRA_CHECKING
31 #endif
33 #ifdef ENABLE_IRA_CHECKING
34 #define ira_assert(c) gcc_assert (c)
35 #else
36 #define ira_assert(c)
37 #endif
39 /* Compute register frequency from edge frequency FREQ. It is
40 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
41 profile driven feedback is available and the function is never
42 executed, frequency is always equivalent. Otherwise rescale the
43 edge frequency. */
44 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
45 (optimize_size || (flag_branch_probabilities && !ENTRY_BLOCK_PTR->count) \
46 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
47 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
49 /* All natural loops. */
50 extern struct loops ira_loops;
52 /* A modified value of flag `-fira-verbose' used internally. */
53 extern int internal_flag_ira_verbose;
55 /* Dump file of the allocator if it is not NULL. */
56 extern FILE *ira_dump_file;
58 /* Typedefs for pointers to allocno live range, allocno, and copy of
59 allocnos. */
60 typedef struct ira_allocno_live_range *allocno_live_range_t;
61 typedef struct ira_allocno *ira_allocno_t;
62 typedef struct ira_allocno_copy *ira_copy_t;
64 /* Definition of vector of allocnos and copies. */
65 DEF_VEC_P(ira_allocno_t);
66 DEF_VEC_ALLOC_P(ira_allocno_t, heap);
67 DEF_VEC_P(ira_copy_t);
68 DEF_VEC_ALLOC_P(ira_copy_t, heap);
70 /* Typedef for pointer to the subsequent structure. */
71 typedef struct ira_loop_tree_node *ira_loop_tree_node_t;
73 /* In general case, IRA is a regional allocator. The regions are
74 nested and form a tree. Currently regions are natural loops. The
75 following structure describes loop tree node (representing basic
76 block or loop). We need such tree because the loop tree from
77 cfgloop.h is not convenient for the optimization: basic blocks are
78 not a part of the tree from cfgloop.h. We also use the nodes for
79 storing additional information about basic blocks/loops for the
80 register allocation purposes. */
81 struct ira_loop_tree_node
83 /* The node represents basic block if children == NULL. */
84 basic_block bb; /* NULL for loop. */
85 struct loop *loop; /* NULL for BB. */
86 /* The next (loop) node of with the same parent. SUBLOOP_NEXT is
87 always NULL for BBs. */
88 ira_loop_tree_node_t subloop_next, next;
89 /* The first (loop) node immediately inside the node. SUBLOOPS is
90 always NULL for BBs. */
91 ira_loop_tree_node_t subloops, children;
92 /* The node immediately containing given node. */
93 ira_loop_tree_node_t parent;
95 /* Loop level in range [0, ira_loop_tree_height). */
96 int level;
98 /* All the following members are defined only for nodes representing
99 loops. */
101 /* Allocnos in the loop corresponding to their regnos. If it is
102 NULL the loop does not form a separate register allocation region
103 (e.g. because it has abnormal enter/exit edges and we can not put
104 code for register shuffling on the edges if a different
105 allocation is used for a pseudo-register on different sides of
106 the edges). Caps are not in the map (remember we can have more
107 one cap with the same regno in a region). */
108 ira_allocno_t *regno_allocno_map;
110 /* Maximal register pressure inside loop for given register class
111 (defined only for the cover classes). */
112 int reg_pressure[N_REG_CLASSES];
114 /* Numbers of allocnos referred or living in the loop node (except
115 for its subloops). */
116 bitmap all_allocnos;
118 /* Numbers of allocnos living at the loop borders. */
119 bitmap border_allocnos;
121 /* Regnos of pseudos modified in the loop node (including its
122 subloops). */
123 bitmap modified_regnos;
125 /* Numbers of copies referred in the corresponding loop. */
126 bitmap local_copies;
129 /* The root of the loop tree corresponding to the all function. */
130 extern ira_loop_tree_node_t ira_loop_tree_root;
132 /* Height of the loop tree. */
133 extern int ira_loop_tree_height;
135 /* All nodes representing basic blocks are referred through the
136 following array. We can not use basic block member `aux' for this
137 because it is used for insertion of insns on edges. */
138 extern ira_loop_tree_node_t ira_bb_nodes;
140 /* Two access macros to the nodes representing basic blocks. */
141 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
142 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
143 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
144 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
146 fprintf (stderr, \
147 "\n%s: %d: error in %s: it is not a block node\n", \
148 __FILE__, __LINE__, __FUNCTION__); \
149 gcc_unreachable (); \
151 _node; }))
152 #else
153 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
154 #endif
156 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
158 /* All nodes representing loops are referred through the following
159 array. */
160 extern ira_loop_tree_node_t ira_loop_nodes;
162 /* Two access macros to the nodes representing loops. */
163 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
164 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
165 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]);\
166 if (_node->children == NULL || _node->bb != NULL || _node->loop == NULL)\
168 fprintf (stderr, \
169 "\n%s: %d: error in %s: it is not a loop node\n", \
170 __FILE__, __LINE__, __FUNCTION__); \
171 gcc_unreachable (); \
173 _node; }))
174 #else
175 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
176 #endif
178 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
182 /* The structure describes program points where a given allocno lives.
183 To save memory we store allocno conflicts only for the same cover
184 class allocnos which is enough to assign hard registers. To find
185 conflicts for other allocnos (e.g. to assign stack memory slot) we
186 use the live ranges. If the live ranges of two allocnos are
187 intersected, the allocnos are in conflict. */
188 struct ira_allocno_live_range
190 /* Allocno whose live range is described by given structure. */
191 ira_allocno_t allocno;
192 /* Program point range. */
193 int start, finish;
194 /* Next structure describing program points where the allocno
195 lives. */
196 allocno_live_range_t next;
197 /* Pointer to structures with the same start/finish. */
198 allocno_live_range_t start_next, finish_next;
201 /* Program points are enumerated by numbers from range
202 0..IRA_MAX_POINT-1. There are approximately two times more program
203 points than insns. Program points are places in the program where
204 liveness info can be changed. In most general case (there are more
205 complicated cases too) some program points correspond to places
206 where input operand dies and other ones correspond to places where
207 output operands are born. */
208 extern int ira_max_point;
210 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
211 live ranges with given start/finish point. */
212 extern allocno_live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
214 /* A structure representing an allocno (allocation entity). Allocno
215 represents a pseudo-register in an allocation region. If
216 pseudo-register does not live in a region but it lives in the
217 nested regions, it is represented in the region by special allocno
218 called *cap*. There may be more one cap representing the same
219 pseudo-register in region. It means that the corresponding
220 pseudo-register lives in more one non-intersected subregion. */
221 struct ira_allocno
223 /* The allocno order number starting with 0. Each allocno has an
224 unique number and the number is never changed for the
225 allocno. */
226 int num;
227 /* Regno for allocno or cap. */
228 int regno;
229 /* Mode of the allocno which is the mode of the corresponding
230 pseudo-register. */
231 enum machine_mode mode;
232 /* Final rtx representation of the allocno. */
233 rtx reg;
234 /* Hard register assigned to given allocno. Negative value means
235 that memory was allocated to the allocno. During the reload,
236 spilled allocno has value equal to the corresponding stack slot
237 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
238 reload (at this point pseudo-register has only one allocno) which
239 did not get stack slot yet. */
240 int hard_regno;
241 /* Allocnos with the same regno are linked by the following member.
242 Allocnos corresponding to inner loops are first in the list (it
243 corresponds to depth-first traverse of the loops). */
244 ira_allocno_t next_regno_allocno;
245 /* There may be different allocnos with the same regno in different
246 regions. Allocnos are bound to the corresponding loop tree node.
247 Pseudo-register may have only one regular allocno with given loop
248 tree node but more than one cap (see comments above). */
249 ira_loop_tree_node_t loop_tree_node;
250 /* Accumulated usage references of the allocno. Here and below,
251 word 'accumulated' means info for given region and all nested
252 subregions. In this case, 'accumulated' means sum of references
253 of the corresponding pseudo-register in this region and in all
254 nested subregions recursively. */
255 int nrefs;
256 /* Accumulated frequency of usage of the allocno. */
257 int freq;
258 /* Register class which should be used for allocation for given
259 allocno. NO_REGS means that we should use memory. */
260 enum reg_class cover_class;
261 /* Minimal accumulated cost of usage register of the cover class for
262 the allocno. */
263 int cover_class_cost;
264 /* Minimal accumulated, and updated costs of memory for the allocno.
265 At the allocation start, the original and updated costs are
266 equal. The updated cost may be changed after finishing
267 allocation in a region and starting allocation in a subregion.
268 The change reflects the cost of spill/restore code on the
269 subregion border if we assign memory to the pseudo in the
270 subregion. */
271 int memory_cost, updated_memory_cost;
272 /* Accumulated number of points where the allocno lives and there is
273 excess pressure for its class. Excess pressure for a register
274 class at some point means that there are more allocnos of given
275 register class living at the point than number of hard-registers
276 of the class available for the allocation. */
277 int excess_pressure_points_num;
278 /* Copies to other non-conflicting allocnos. The copies can
279 represent move insn or potential move insn usually because of two
280 operand insn constraints. */
281 ira_copy_t allocno_copies;
282 /* It is a allocno (cap) representing given allocno on upper loop tree
283 level. */
284 ira_allocno_t cap;
285 /* It is a link to allocno (cap) on lower loop level represented by
286 given cap. Null if given allocno is not a cap. */
287 ira_allocno_t cap_member;
288 /* Coalesced allocnos form a cyclic list. One allocno given by
289 FIRST_COALESCED_ALLOCNO represents all coalesced allocnos. The
290 list is chained by NEXT_COALESCED_ALLOCNO. */
291 ira_allocno_t first_coalesced_allocno;
292 ira_allocno_t next_coalesced_allocno;
293 /* Pointer to structures describing at what program point the
294 allocno lives. We always maintain the list in such way that *the
295 ranges in the list are not intersected and ordered by decreasing
296 their program points*. */
297 allocno_live_range_t live_ranges;
298 /* Before building conflicts the two member values are
299 correspondingly minimal and maximal points of the accumulated
300 allocno live ranges. After building conflicts the values are
301 correspondingly minimal and maximal conflict ids of allocnos with
302 which given allocno can conflict. */
303 int min, max;
304 /* The unique member value represents given allocno in conflict bit
305 vectors. */
306 int conflict_id;
307 /* Vector of accumulated conflicting allocnos with NULL end marker
308 (if CONFLICT_VEC_P is true) or conflict bit vector otherwise.
309 Only allocnos with the same cover class are in the vector or in
310 the bit vector. */
311 void *conflict_allocno_array;
312 /* Allocated size of the previous array. */
313 unsigned int conflict_allocno_array_size;
314 /* Number of accumulated conflicts in the vector of conflicting
315 allocnos. */
316 int conflict_allocnos_num;
317 /* Initial and accumulated hard registers conflicting with this
318 allocno and as a consequences can not be assigned to the allocno.
319 All non-allocatable hard regs and hard regs of cover classes
320 different from given allocno one are included in the sets. */
321 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs;
322 /* Accumulated frequency of calls which given allocno
323 intersects. */
324 int call_freq;
325 /* Length of the previous array (number of the intersected calls). */
326 int calls_crossed_num;
327 /* Non NULL if we remove restoring value from given allocno to
328 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
329 allocno value is not changed inside the loop. */
330 ira_allocno_t mem_optimized_dest;
331 /* TRUE if the allocno assigned to memory was a destination of
332 removed move (see ira-emit.c) at loop exit because the value of
333 the corresponding pseudo-register is not changed inside the
334 loop. */
335 unsigned int mem_optimized_dest_p : 1;
336 /* TRUE if the corresponding pseudo-register has disjoint live
337 ranges and the other allocnos of the pseudo-register except this
338 one changed REG. */
339 unsigned int somewhere_renamed_p : 1;
340 /* TRUE if allocno with the same REGNO in a subregion has been
341 renamed, in other words, got a new pseudo-register. */
342 unsigned int child_renamed_p : 1;
343 /* During the reload, value TRUE means that we should not reassign a
344 hard register to the allocno got memory earlier. It is set up
345 when we removed memory-memory move insn before each iteration of
346 the reload. */
347 unsigned int dont_reassign_p : 1;
348 #ifdef STACK_REGS
349 /* Set to TRUE if allocno can't be assigned to the stack hard
350 register correspondingly in this region and area including the
351 region and all its subregions recursively. */
352 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1;
353 #endif
354 /* TRUE value means that the allocno was not removed yet from the
355 conflicting graph during colouring. */
356 unsigned int in_graph_p : 1;
357 /* TRUE if a hard register or memory has been assigned to the
358 allocno. */
359 unsigned int assigned_p : 1;
360 /* TRUE if it is put on the stack to make other allocnos
361 colorable. */
362 unsigned int may_be_spilled_p : 1;
363 /* TRUE if the allocno was removed from the splay tree used to
364 choose allocn for spilling (see ira-color.c::. */
365 unsigned int splay_removed_p : 1;
366 /* TRUE if conflicts for given allocno are represented by vector of
367 pointers to the conflicting allocnos. Otherwise, we use a bit
368 vector where a bit with given index represents allocno with the
369 same number. */
370 unsigned int conflict_vec_p : 1;
371 /* Array of usage costs (accumulated and the one updated during
372 coloring) for each hard register of the allocno cover class. The
373 member value can be NULL if all costs are the same and equal to
374 COVER_CLASS_COST. For example, the costs of two different hard
375 registers can be different if one hard register is callee-saved
376 and another one is callee-used and the allocno lives through
377 calls. Another example can be case when for some insn the
378 corresponding pseudo-register value should be put in specific
379 register class (e.g. AREG for x86) which is a strict subset of
380 the allocno cover class (GENERAL_REGS for x86). We have updated
381 costs to reflect the situation when the usage cost of a hard
382 register is decreased because the allocno is connected to another
383 allocno by a copy and the another allocno has been assigned to
384 the hard register. */
385 int *hard_reg_costs, *updated_hard_reg_costs;
386 /* Array of decreasing costs (accumulated and the one updated during
387 coloring) for allocnos conflicting with given allocno for hard
388 regno of the allocno cover class. The member value can be NULL
389 if all costs are the same. These costs are used to reflect
390 preferences of other allocnos not assigned yet during assigning
391 to given allocno. */
392 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs;
393 /* Number of the same cover class allocnos with TRUE in_graph_p
394 value and conflicting with given allocno during each point of
395 graph coloring. */
396 int left_conflicts_num;
397 /* Number of hard registers of the allocno cover class really
398 available for the allocno allocation. */
399 int available_regs_num;
400 /* Allocnos in a bucket (used in coloring) chained by the following
401 two members. */
402 ira_allocno_t next_bucket_allocno;
403 ira_allocno_t prev_bucket_allocno;
404 /* Used for temporary purposes. */
405 int temp;
408 /* All members of the allocno structures should be accessed only
409 through the following macros. */
410 #define ALLOCNO_NUM(A) ((A)->num)
411 #define ALLOCNO_REGNO(A) ((A)->regno)
412 #define ALLOCNO_REG(A) ((A)->reg)
413 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
414 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
415 #define ALLOCNO_CAP(A) ((A)->cap)
416 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
417 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY(A) ((A)->conflict_allocno_array)
418 #define ALLOCNO_CONFLICT_ALLOCNO_ARRAY_SIZE(A) \
419 ((A)->conflict_allocno_array_size)
420 #define ALLOCNO_CONFLICT_ALLOCNOS_NUM(A) \
421 ((A)->conflict_allocnos_num)
422 #define ALLOCNO_CONFLICT_HARD_REGS(A) ((A)->conflict_hard_regs)
423 #define ALLOCNO_TOTAL_CONFLICT_HARD_REGS(A) ((A)->total_conflict_hard_regs)
424 #define ALLOCNO_NREFS(A) ((A)->nrefs)
425 #define ALLOCNO_FREQ(A) ((A)->freq)
426 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
427 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
428 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
429 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
430 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
431 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
432 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
433 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
434 #ifdef STACK_REGS
435 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
436 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
437 #endif
438 #define ALLOCNO_IN_GRAPH_P(A) ((A)->in_graph_p)
439 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
440 #define ALLOCNO_MAY_BE_SPILLED_P(A) ((A)->may_be_spilled_p)
441 #define ALLOCNO_SPLAY_REMOVED_P(A) ((A)->splay_removed_p)
442 #define ALLOCNO_CONFLICT_VEC_P(A) ((A)->conflict_vec_p)
443 #define ALLOCNO_MODE(A) ((A)->mode)
444 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
445 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
446 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
447 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
448 ((A)->conflict_hard_reg_costs)
449 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
450 ((A)->updated_conflict_hard_reg_costs)
451 #define ALLOCNO_LEFT_CONFLICTS_NUM(A) ((A)->left_conflicts_num)
452 #define ALLOCNO_COVER_CLASS(A) ((A)->cover_class)
453 #define ALLOCNO_COVER_CLASS_COST(A) ((A)->cover_class_cost)
454 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
455 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
456 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) ((A)->excess_pressure_points_num)
457 #define ALLOCNO_AVAILABLE_REGS_NUM(A) ((A)->available_regs_num)
458 #define ALLOCNO_NEXT_BUCKET_ALLOCNO(A) ((A)->next_bucket_allocno)
459 #define ALLOCNO_PREV_BUCKET_ALLOCNO(A) ((A)->prev_bucket_allocno)
460 #define IRA_ALLOCNO_TEMP(A) ((A)->temp)
461 #define ALLOCNO_FIRST_COALESCED_ALLOCNO(A) ((A)->first_coalesced_allocno)
462 #define ALLOCNO_NEXT_COALESCED_ALLOCNO(A) ((A)->next_coalesced_allocno)
463 #define ALLOCNO_LIVE_RANGES(A) ((A)->live_ranges)
464 #define ALLOCNO_MIN(A) ((A)->min)
465 #define ALLOCNO_MAX(A) ((A)->max)
466 #define ALLOCNO_CONFLICT_ID(A) ((A)->conflict_id)
468 /* Map regno -> allocnos with given regno (see comments for
469 allocno member `next_regno_allocno'). */
470 extern ira_allocno_t *ira_regno_allocno_map;
472 /* Array of references to all allocnos. The order number of the
473 allocno corresponds to the index in the array. Removed allocnos
474 have NULL element value. */
475 extern ira_allocno_t *ira_allocnos;
477 /* Sizes of the previous array. */
478 extern int ira_allocnos_num;
480 /* Map conflict id -> allocno with given conflict id (see comments for
481 allocno member `conflict_id'). */
482 extern ira_allocno_t *ira_conflict_id_allocno_map;
484 /* The following structure represents a copy of two allocnos. The
485 copies represent move insns or potential move insns usually because
486 of two operand insn constraints. To remove register shuffle, we
487 also create copies between allocno which is output of an insn and
488 allocno becoming dead in the insn. */
489 struct ira_allocno_copy
491 /* The unique order number of the copy node starting with 0. */
492 int num;
493 /* Allocnos connected by the copy. The first allocno should have
494 smaller order number than the second one. */
495 ira_allocno_t first, second;
496 /* Execution frequency of the copy. */
497 int freq;
498 /* It is a move insn which is an origin of the copy. The member
499 value for the copy representing two operand insn constraints or
500 for the copy created to remove register shuffle is NULL. In last
501 case the copy frequency is smaller than the corresponding insn
502 execution frequency. */
503 rtx insn;
504 /* All copies with the same allocno as FIRST are linked by the two
505 following members. */
506 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy;
507 /* All copies with the same allocno as SECOND are linked by the two
508 following members. */
509 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy;
510 /* Region from which given copy is originated. */
511 ira_loop_tree_node_t loop_tree_node;
514 /* Array of references to all copies. The order number of the copy
515 corresponds to the index in the array. Removed copies have NULL
516 element value. */
517 extern ira_copy_t *ira_copies;
519 /* Size of the previous array. */
520 extern int ira_copies_num;
522 /* The following structure describes a stack slot used for spilled
523 pseudo-registers. */
524 struct ira_spilled_reg_stack_slot
526 /* pseudo-registers assigned to the stack slot. */
527 regset_head spilled_regs;
528 /* RTL representation of the stack slot. */
529 rtx mem;
530 /* Size of the stack slot. */
531 unsigned int width;
534 /* The number of elements in the following array. */
535 extern int ira_spilled_reg_stack_slots_num;
537 /* The following array contains info about spilled pseudo-registers
538 stack slots used in current function so far. */
539 extern struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
541 /* Correspondingly overall cost of the allocation, cost of the
542 allocnos assigned to hard-registers, cost of the allocnos assigned
543 to memory, cost of loads, stores and register move insns generated
544 for pseudo-register live range splitting (see ira-emit.c). */
545 extern int ira_overall_cost;
546 extern int ira_reg_cost, ira_mem_cost;
547 extern int ira_load_cost, ira_store_cost, ira_shuffle_cost;
548 extern int ira_move_loops_num, ira_additional_jumps_num;
550 /* Map: register class x machine mode -> number of hard registers of
551 given class needed to store value of given mode. If the number for
552 some hard-registers of the register class is different, the size
553 will be negative. */
554 extern int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
556 /* Maximal value of the previous array elements. */
557 extern int ira_max_nregs;
559 /* The number of bits in each element of array used to implement a bit
560 vector of allocnos and what type that element has. We use the
561 largest integer format on the host machine. */
562 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
563 #define IRA_INT_TYPE HOST_WIDE_INT
565 /* Set, clear or test bit number I in R, a bit vector of elements with
566 minimal index and maximal index equal correspondingly to MIN and
567 MAX. */
568 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
570 #define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
571 (({ int _min = (MIN), _max = (MAX), _i = (I); \
572 if (_i < _min || _i > _max) \
574 fprintf (stderr, \
575 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
576 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
577 gcc_unreachable (); \
579 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
580 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
583 #define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
584 (({ int _min = (MIN), _max = (MAX), _i = (I); \
585 if (_i < _min || _i > _max) \
587 fprintf (stderr, \
588 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
589 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
590 gcc_unreachable (); \
592 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
593 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
595 #define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) __extension__ \
596 (({ int _min = (MIN), _max = (MAX), _i = (I); \
597 if (_i < _min || _i > _max) \
599 fprintf (stderr, \
600 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
601 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
602 gcc_unreachable (); \
604 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
605 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
607 #else
609 #define SET_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
610 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
611 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
613 #define CLEAR_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
614 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
615 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
617 #define TEST_ALLOCNO_SET_BIT(R, I, MIN, MAX) \
618 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
619 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
621 #endif
623 /* The iterator for allocno set implemented ed as allocno bit
624 vector. */
625 typedef struct {
627 /* Array containing the allocno bit vector. */
628 IRA_INT_TYPE *vec;
630 /* The number of the current element in the vector. */
631 unsigned int word_num;
633 /* The number of bits in the bit vector. */
634 unsigned int nel;
636 /* The current bit index of the bit vector. */
637 unsigned int bit_num;
639 /* Index corresponding to the 1st bit of the bit vector. */
640 int start_val;
642 /* The word of the bit vector currently visited. */
643 unsigned IRA_INT_TYPE word;
644 } ira_allocno_set_iterator;
646 /* Initialize the iterator I for allocnos bit vector VEC containing
647 minimal and maximal values MIN and MAX. */
648 static inline void
649 ira_allocno_set_iter_init (ira_allocno_set_iterator *i,
650 IRA_INT_TYPE *vec, int min, int max)
652 i->vec = vec;
653 i->word_num = 0;
654 i->nel = max < min ? 0 : max - min + 1;
655 i->start_val = min;
656 i->bit_num = 0;
657 i->word = i->nel == 0 ? 0 : vec[0];
660 /* Return TRUE if we have more allocnos to visit, in which case *N is
661 set to the allocno number to be visited. Otherwise, return
662 FALSE. */
663 static inline bool
664 ira_allocno_set_iter_cond (ira_allocno_set_iterator *i, int *n)
666 /* Skip words that are zeros. */
667 for (; i->word == 0; i->word = i->vec[i->word_num])
669 i->word_num++;
670 i->bit_num = i->word_num * IRA_INT_BITS;
672 /* If we have reached the end, break. */
673 if (i->bit_num >= i->nel)
674 return false;
677 /* Skip bits that are zero. */
678 for (; (i->word & 1) == 0; i->word >>= 1)
679 i->bit_num++;
681 *n = (int) i->bit_num + i->start_val;
683 return true;
686 /* Advance to the next allocno in the set. */
687 static inline void
688 ira_allocno_set_iter_next (ira_allocno_set_iterator *i)
690 i->word >>= 1;
691 i->bit_num++;
694 /* Loop over all elements of allocno set given by bit vector VEC and
695 their minimal and maximal values MIN and MAX. In each iteration, N
696 is set to the number of next allocno. ITER is an instance of
697 ira_allocno_set_iterator used to iterate the allocnos in the set. */
698 #define FOR_EACH_ALLOCNO_IN_SET(VEC, MIN, MAX, N, ITER) \
699 for (ira_allocno_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
700 ira_allocno_set_iter_cond (&(ITER), &(N)); \
701 ira_allocno_set_iter_next (&(ITER)))
703 /* ira.c: */
705 /* Hard regsets whose all bits are correspondingly zero or one. */
706 extern HARD_REG_SET ira_zero_hard_reg_set;
707 extern HARD_REG_SET ira_one_hard_reg_set;
709 /* Map: hard regs X modes -> set of hard registers for storing value
710 of given mode starting with given hard register. */
711 extern HARD_REG_SET ira_reg_mode_hard_regset
712 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
714 /* Arrays analogous to macros MEMORY_MOVE_COST and
715 REGISTER_MOVE_COST. */
716 extern short ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
717 extern move_table *ira_register_move_cost[MAX_MACHINE_MODE];
719 /* Similar to may_move_in_cost but it is calculated in IRA instead of
720 regclass. Another difference we take only available hard registers
721 into account to figure out that one register class is a subset of
722 the another one. */
723 extern move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
725 /* Similar to may_move_out_cost but it is calculated in IRA instead of
726 regclass. Another difference we take only available hard registers
727 into account to figure out that one register class is a subset of
728 the another one. */
729 extern move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
731 /* Register class subset relation: TRUE if the first class is a subset
732 of the second one considering only hard registers available for the
733 allocation. */
734 extern int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
736 /* Array of number of hard registers of given class which are
737 available for the allocation. The order is defined by the
738 allocation order. */
739 extern short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
741 /* The number of elements of the above array for given register
742 class. */
743 extern int ira_class_hard_regs_num[N_REG_CLASSES];
745 /* Index (in ira_class_hard_regs) for given register class and hard
746 register (in general case a hard register can belong to several
747 register classes). The index is negative for hard registers
748 unavailable for the allocation. */
749 extern short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
751 /* Function specific hard registers can not be used for the register
752 allocation. */
753 extern HARD_REG_SET ira_no_alloc_regs;
755 /* Number of given class hard registers available for the register
756 allocation for given classes. */
757 extern int ira_available_class_regs[N_REG_CLASSES];
759 /* Array whose values are hard regset of hard registers available for
760 the allocation of given register class whose HARD_REGNO_MODE_OK
761 values for given mode are zero. */
762 extern HARD_REG_SET prohibited_class_mode_regs
763 [N_REG_CLASSES][NUM_MACHINE_MODES];
765 /* Array whose values are hard regset of hard registers for which
766 move of the hard register in given mode into itself is
767 prohibited. */
768 extern HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
770 /* Number of cover classes. Cover classes is non-intersected register
771 classes containing all hard-registers available for the
772 allocation. */
773 extern int ira_reg_class_cover_size;
775 /* The array containing cover classes (see also comments for macro
776 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
777 used for this. */
778 extern enum reg_class ira_reg_class_cover[N_REG_CLASSES];
780 /* The value is number of elements in the subsequent array. */
781 extern int ira_important_classes_num;
783 /* The array containing non-empty classes (including non-empty cover
784 classes) which are subclasses of cover classes. Such classes is
785 important for calculation of the hard register usage costs. */
786 extern enum reg_class ira_important_classes[N_REG_CLASSES];
788 /* The array containing indexes of important classes in the previous
789 array. The array elements are defined only for important
790 classes. */
791 extern int ira_important_class_nums[N_REG_CLASSES];
793 /* Map of all register classes to corresponding cover class containing
794 the given class. If given class is not a subset of a cover class,
795 we translate it into the cheapest cover class. */
796 extern enum reg_class ira_class_translate[N_REG_CLASSES];
798 /* The biggest important class inside of intersection of the two
799 classes (that is calculated taking only hard registers available
800 for allocation into account). If the both classes contain no hard
801 registers available for allocation, the value is calculated with
802 taking all hard-registers including fixed ones into account. */
803 extern enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
805 /* The biggest important class inside of union of the two classes
806 (that is calculated taking only hard registers available for
807 allocation into account). If the both classes contain no hard
808 registers available for allocation, the value is calculated with
809 taking all hard-registers including fixed ones into account. In
810 other words, the value is the corresponding reg_class_subunion
811 value. */
812 extern enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
814 extern void *ira_allocate (size_t);
815 extern void *ira_reallocate (void *, size_t);
816 extern void ira_free (void *addr);
817 extern bitmap ira_allocate_bitmap (void);
818 extern void ira_free_bitmap (bitmap);
819 extern void ira_print_disposition (FILE *);
820 extern void ira_debug_disposition (void);
821 extern void ira_debug_class_cover (void);
822 extern void ira_init_register_move_cost (enum machine_mode);
824 /* The length of the two following arrays. */
825 extern int ira_reg_equiv_len;
827 /* The element value is TRUE if the corresponding regno value is
828 invariant. */
829 extern bool *ira_reg_equiv_invariant_p;
831 /* The element value is equiv constant of given pseudo-register or
832 NULL_RTX. */
833 extern rtx *ira_reg_equiv_const;
835 /* ira-build.c */
837 /* The current loop tree node and its regno allocno map. */
838 extern ira_loop_tree_node_t ira_curr_loop_tree_node;
839 extern ira_allocno_t *ira_curr_regno_allocno_map;
841 extern void ira_debug_copy (ira_copy_t);
842 extern void ira_debug_copies (void);
843 extern void ira_debug_allocno_copies (ira_allocno_t);
845 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t,
846 void (*) (ira_loop_tree_node_t),
847 void (*) (ira_loop_tree_node_t));
848 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t);
849 extern void ira_set_allocno_cover_class (ira_allocno_t, enum reg_class);
850 extern bool ira_conflict_vector_profitable_p (ira_allocno_t, int);
851 extern void ira_allocate_allocno_conflict_vec (ira_allocno_t, int);
852 extern void ira_allocate_allocno_conflicts (ira_allocno_t, int);
853 extern void ira_add_allocno_conflict (ira_allocno_t, ira_allocno_t);
854 extern void ira_print_expanded_allocno (ira_allocno_t);
855 extern allocno_live_range_t ira_create_allocno_live_range
856 (ira_allocno_t, int, int, allocno_live_range_t);
857 extern void ira_finish_allocno_live_range (allocno_live_range_t);
858 extern void ira_free_allocno_updated_costs (ira_allocno_t);
859 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t,
860 int, rtx, ira_loop_tree_node_t);
861 extern void ira_add_allocno_copy_to_list (ira_copy_t);
862 extern void ira_swap_allocno_copy_ends_if_necessary (ira_copy_t);
863 extern void ira_remove_allocno_copy_from_list (ira_copy_t);
864 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int, rtx,
865 ira_loop_tree_node_t);
867 extern int *ira_allocate_cost_vector (enum reg_class);
868 extern void ira_free_cost_vector (int *, enum reg_class);
870 extern void ira_flattening (int, int);
871 extern bool ira_build (bool);
872 extern void ira_destroy (void);
874 /* ira-costs.c */
875 extern void ira_init_costs_once (void);
876 extern void ira_init_costs (void);
877 extern void ira_finish_costs_once (void);
878 extern void ira_costs (void);
879 extern void ira_tune_allocno_costs_and_cover_classes (void);
881 /* ira-lives.c */
883 extern void ira_rebuild_start_finish_chains (void);
884 extern void ira_print_live_range_list (FILE *, allocno_live_range_t);
885 extern void ira_debug_live_range_list (allocno_live_range_t);
886 extern void ira_debug_allocno_live_ranges (ira_allocno_t);
887 extern void ira_debug_live_ranges (void);
888 extern void ira_create_allocno_live_ranges (void);
889 extern void ira_finish_allocno_live_ranges (void);
891 /* ira-conflicts.c */
892 extern bool ira_allocno_live_ranges_intersect_p (ira_allocno_t, ira_allocno_t);
893 extern bool ira_pseudo_live_ranges_intersect_p (int, int);
894 extern void ira_debug_conflicts (bool);
895 extern void ira_build_conflicts (void);
897 /* ira-color.c */
898 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool);
899 extern void ira_reassign_conflict_allocnos (int);
900 extern void ira_initiate_assign (void);
901 extern void ira_finish_assign (void);
902 extern void ira_color (void);
903 extern void ira_fast_allocation (void);
905 /* ira-emit.c */
906 extern void ira_emit (bool);
910 /* The iterator for all allocnos. */
911 typedef struct {
912 /* The number of the current element in IRA_ALLOCNOS. */
913 int n;
914 } ira_allocno_iterator;
916 /* Initialize the iterator I. */
917 static inline void
918 ira_allocno_iter_init (ira_allocno_iterator *i)
920 i->n = 0;
923 /* Return TRUE if we have more allocnos to visit, in which case *A is
924 set to the allocno to be visited. Otherwise, return FALSE. */
925 static inline bool
926 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a)
928 int n;
930 for (n = i->n; n < ira_allocnos_num; n++)
931 if (ira_allocnos[n] != NULL)
933 *a = ira_allocnos[n];
934 i->n = n + 1;
935 return true;
937 return false;
940 /* Loop over all allocnos. In each iteration, A is set to the next
941 allocno. ITER is an instance of ira_allocno_iterator used to iterate
942 the allocnos. */
943 #define FOR_EACH_ALLOCNO(A, ITER) \
944 for (ira_allocno_iter_init (&(ITER)); \
945 ira_allocno_iter_cond (&(ITER), &(A));)
950 /* The iterator for copies. */
951 typedef struct {
952 /* The number of the current element in IRA_COPIES. */
953 int n;
954 } ira_copy_iterator;
956 /* Initialize the iterator I. */
957 static inline void
958 ira_copy_iter_init (ira_copy_iterator *i)
960 i->n = 0;
963 /* Return TRUE if we have more copies to visit, in which case *CP is
964 set to the copy to be visited. Otherwise, return FALSE. */
965 static inline bool
966 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp)
968 int n;
970 for (n = i->n; n < ira_copies_num; n++)
971 if (ira_copies[n] != NULL)
973 *cp = ira_copies[n];
974 i->n = n + 1;
975 return true;
977 return false;
980 /* Loop over all copies. In each iteration, C is set to the next
981 copy. ITER is an instance of ira_copy_iterator used to iterate
982 the copies. */
983 #define FOR_EACH_COPY(C, ITER) \
984 for (ira_copy_iter_init (&(ITER)); \
985 ira_copy_iter_cond (&(ITER), &(C));)
990 /* The iterator for allocno conflicts. */
991 typedef struct {
993 /* TRUE if the conflicts are represented by vector of allocnos. */
994 bool allocno_conflict_vec_p;
996 /* The conflict vector or conflict bit vector. */
997 void *vec;
999 /* The number of the current element in the vector (of type
1000 ira_allocno_t or IRA_INT_TYPE). */
1001 unsigned int word_num;
1003 /* The bit vector size. It is defined only if
1004 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1005 unsigned int size;
1007 /* The current bit index of bit vector. It is defined only if
1008 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1009 unsigned int bit_num;
1011 /* Allocno conflict id corresponding to the 1st bit of the bit
1012 vector. It is defined only if ALLOCNO_CONFLICT_VEC_P is
1013 FALSE. */
1014 int base_conflict_id;
1016 /* The word of bit vector currently visited. It is defined only if
1017 ALLOCNO_CONFLICT_VEC_P is FALSE. */
1018 unsigned IRA_INT_TYPE word;
1019 } ira_allocno_conflict_iterator;
1021 /* Initialize the iterator I with ALLOCNO conflicts. */
1022 static inline void
1023 ira_allocno_conflict_iter_init (ira_allocno_conflict_iterator *i,
1024 ira_allocno_t allocno)
1026 i->allocno_conflict_vec_p = ALLOCNO_CONFLICT_VEC_P (allocno);
1027 i->vec = ALLOCNO_CONFLICT_ALLOCNO_ARRAY (allocno);
1028 i->word_num = 0;
1029 if (i->allocno_conflict_vec_p)
1030 i->size = i->bit_num = i->base_conflict_id = i->word = 0;
1031 else
1033 if (ALLOCNO_MIN (allocno) > ALLOCNO_MAX (allocno))
1034 i->size = 0;
1035 else
1036 i->size = ((ALLOCNO_MAX (allocno) - ALLOCNO_MIN (allocno)
1037 + IRA_INT_BITS)
1038 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE);
1039 i->bit_num = 0;
1040 i->base_conflict_id = ALLOCNO_MIN (allocno);
1041 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]);
1045 /* Return TRUE if we have more conflicting allocnos to visit, in which
1046 case *A is set to the allocno to be visited. Otherwise, return
1047 FALSE. */
1048 static inline bool
1049 ira_allocno_conflict_iter_cond (ira_allocno_conflict_iterator *i,
1050 ira_allocno_t *a)
1052 ira_allocno_t conflict_allocno;
1054 if (i->allocno_conflict_vec_p)
1056 conflict_allocno = ((ira_allocno_t *) i->vec)[i->word_num];
1057 if (conflict_allocno == NULL)
1058 return false;
1059 *a = conflict_allocno;
1060 return true;
1062 else
1064 /* Skip words that are zeros. */
1065 for (; i->word == 0; i->word = ((IRA_INT_TYPE *) i->vec)[i->word_num])
1067 i->word_num++;
1069 /* If we have reached the end, break. */
1070 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size)
1071 return false;
1073 i->bit_num = i->word_num * IRA_INT_BITS;
1076 /* Skip bits that are zero. */
1077 for (; (i->word & 1) == 0; i->word >>= 1)
1078 i->bit_num++;
1080 *a = ira_conflict_id_allocno_map[i->bit_num + i->base_conflict_id];
1082 return true;
1086 /* Advance to the next conflicting allocno. */
1087 static inline void
1088 ira_allocno_conflict_iter_next (ira_allocno_conflict_iterator *i)
1090 if (i->allocno_conflict_vec_p)
1091 i->word_num++;
1092 else
1094 i->word >>= 1;
1095 i->bit_num++;
1099 /* Loop over all allocnos conflicting with ALLOCNO. In each
1100 iteration, A is set to the next conflicting allocno. ITER is an
1101 instance of ira_allocno_conflict_iterator used to iterate the
1102 conflicts. */
1103 #define FOR_EACH_ALLOCNO_CONFLICT(ALLOCNO, A, ITER) \
1104 for (ira_allocno_conflict_iter_init (&(ITER), (ALLOCNO)); \
1105 ira_allocno_conflict_iter_cond (&(ITER), &(A)); \
1106 ira_allocno_conflict_iter_next (&(ITER)))
1110 /* The function returns TRUE if hard registers starting with
1111 HARD_REGNO and containing value of MODE are not in set
1112 HARD_REGSET. */
1113 static inline bool
1114 ira_hard_reg_not_in_set_p (int hard_regno, enum machine_mode mode,
1115 HARD_REG_SET hard_regset)
1117 int i;
1119 ira_assert (hard_regno >= 0);
1120 for (i = hard_regno_nregs[hard_regno][mode] - 1; i >= 0; i--)
1121 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i))
1122 return false;
1123 return true;
1128 /* To save memory we use a lazy approach for allocation and
1129 initialization of the cost vectors. We do this only when it is
1130 really necessary. */
1132 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1133 initialize the elements by VAL if it is necessary */
1134 static inline void
1135 ira_allocate_and_set_costs (int **vec, enum reg_class cover_class, int val)
1137 int i, *reg_costs;
1138 int len;
1140 if (*vec != NULL)
1141 return;
1142 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1143 len = ira_class_hard_regs_num[cover_class];
1144 for (i = 0; i < len; i++)
1145 reg_costs[i] = val;
1148 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1149 copy values of vector SRC into the vector if it is necessary */
1150 static inline void
1151 ira_allocate_and_copy_costs (int **vec, enum reg_class cover_class, int *src)
1153 int len;
1155 if (*vec != NULL || src == NULL)
1156 return;
1157 *vec = ira_allocate_cost_vector (cover_class);
1158 len = ira_class_hard_regs_num[cover_class];
1159 memcpy (*vec, src, sizeof (int) * len);
1162 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1163 add values of vector SRC into the vector if it is necessary */
1164 static inline void
1165 ira_allocate_and_accumulate_costs (int **vec, enum reg_class cover_class,
1166 int *src)
1168 int i, len;
1170 if (src == NULL)
1171 return;
1172 len = ira_class_hard_regs_num[cover_class];
1173 if (*vec == NULL)
1175 *vec = ira_allocate_cost_vector (cover_class);
1176 memset (*vec, 0, sizeof (int) * len);
1178 for (i = 0; i < len; i++)
1179 (*vec)[i] += src[i];
1182 /* Allocate cost vector *VEC for hard registers of COVER_CLASS and
1183 copy values of vector SRC into the vector or initialize it by VAL
1184 (if SRC is null). */
1185 static inline void
1186 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class cover_class,
1187 int val, int *src)
1189 int i, *reg_costs;
1190 int len;
1192 if (*vec != NULL)
1193 return;
1194 *vec = reg_costs = ira_allocate_cost_vector (cover_class);
1195 len = ira_class_hard_regs_num[cover_class];
1196 if (src != NULL)
1197 memcpy (reg_costs, src, sizeof (int) * len);
1198 else
1200 for (i = 0; i < len; i++)
1201 reg_costs[i] = val;