1 /* Implementation of the MATMUL intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
25 #include "libgfortran.h"
27 /* Dimensions: retarray(x,y) a(x, count) b(count,y).
28 Either a or b can be rank 1. In this case x or y is 1. */
30 __matmul_c4 (gfc_array_c4
* retarray
, gfc_array_c4
* a
, gfc_array_c4
* b
)
52 assert (GFC_DESCRIPTOR_RANK (a
) == 2
53 || GFC_DESCRIPTOR_RANK (b
) == 2);
56 dest
= retarray
->data
;
58 if (retarray
->dim
[0].stride
== 0)
59 retarray
->dim
[0].stride
= 1;
60 if (a
->dim
[0].stride
== 0)
62 if (b
->dim
[0].stride
== 0)
66 if (GFC_DESCRIPTOR_RANK (retarray
) == 1)
68 rxstride
= retarray
->dim
[0].stride
;
73 rxstride
= retarray
->dim
[0].stride
;
74 rystride
= retarray
->dim
[1].stride
;
77 /* If we have rank 1 parameters, zero the absent stride, and set the size to
79 if (GFC_DESCRIPTOR_RANK (a
) == 1)
81 astride
= a
->dim
[0].stride
;
82 count
= a
->dim
[0].ubound
+ 1 - a
->dim
[0].lbound
;
89 astride
= a
->dim
[1].stride
;
90 count
= a
->dim
[1].ubound
+ 1 - a
->dim
[1].lbound
;
91 xstride
= a
->dim
[0].stride
;
92 xcount
= a
->dim
[0].ubound
+ 1 - a
->dim
[0].lbound
;
94 if (GFC_DESCRIPTOR_RANK (b
) == 1)
96 bstride
= b
->dim
[0].stride
;
97 assert(count
== b
->dim
[0].ubound
+ 1 - b
->dim
[0].lbound
);
104 bstride
= b
->dim
[0].stride
;
105 assert(count
== b
->dim
[0].ubound
+ 1 - b
->dim
[0].lbound
);
106 ystride
= b
->dim
[1].stride
;
107 ycount
= b
->dim
[1].ubound
+ 1 - b
->dim
[1].lbound
;
110 for (y
= 0; y
< ycount
; y
++)
112 for (x
= 0; x
< xcount
; x
++)
114 /* Do the summation for this element. For real and integer types
115 this is the same as DOT_PRODUCT. For complex types we use do
116 a*b, not conjg(a)*b. */
121 for (n
= 0; n
< count
; n
++)
133 abase
-= xstride
* xcount
;
135 dest
+= rystride
- (rxstride
* xcount
);