[PATCH 9/13] x86 musl support
[official-gcc.git] / gcc / tree-vect-data-refs.c
blob7e938996866a11868309ccac91ca5fc7dce032be
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "tree.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "tm_p.h"
40 #include "target.h"
41 #include "predict.h"
42 #include "hard-reg-set.h"
43 #include "function.h"
44 #include "dominance.h"
45 #include "cfg.h"
46 #include "basic-block.h"
47 #include "gimple-pretty-print.h"
48 #include "tree-ssa-alias.h"
49 #include "internal-fn.h"
50 #include "tree-eh.h"
51 #include "gimple-expr.h"
52 #include "is-a.h"
53 #include "gimple.h"
54 #include "gimplify.h"
55 #include "gimple-iterator.h"
56 #include "gimplify-me.h"
57 #include "gimple-ssa.h"
58 #include "tree-phinodes.h"
59 #include "ssa-iterators.h"
60 #include "stringpool.h"
61 #include "tree-ssanames.h"
62 #include "tree-ssa-loop-ivopts.h"
63 #include "tree-ssa-loop-manip.h"
64 #include "tree-ssa-loop.h"
65 #include "cfgloop.h"
66 #include "tree-chrec.h"
67 #include "tree-scalar-evolution.h"
68 #include "tree-vectorizer.h"
69 #include "diagnostic-core.h"
70 #include "hash-map.h"
71 #include "plugin-api.h"
72 #include "ipa-ref.h"
73 #include "cgraph.h"
74 /* Need to include rtl.h, expr.h, etc. for optabs. */
75 #include "hashtab.h"
76 #include "rtl.h"
77 #include "flags.h"
78 #include "statistics.h"
79 #include "real.h"
80 #include "fixed-value.h"
81 #include "insn-config.h"
82 #include "expmed.h"
83 #include "dojump.h"
84 #include "explow.h"
85 #include "calls.h"
86 #include "emit-rtl.h"
87 #include "varasm.h"
88 #include "stmt.h"
89 #include "expr.h"
90 #include "insn-codes.h"
91 #include "optabs.h"
92 #include "builtins.h"
94 /* Return true if load- or store-lanes optab OPTAB is implemented for
95 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
97 static bool
98 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
99 tree vectype, unsigned HOST_WIDE_INT count)
101 machine_mode mode, array_mode;
102 bool limit_p;
104 mode = TYPE_MODE (vectype);
105 limit_p = !targetm.array_mode_supported_p (mode, count);
106 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
107 MODE_INT, limit_p);
109 if (array_mode == BLKmode)
111 if (dump_enabled_p ())
112 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
113 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
114 GET_MODE_NAME (mode), count);
115 return false;
118 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
120 if (dump_enabled_p ())
121 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
122 "cannot use %s<%s><%s>\n", name,
123 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
124 return false;
127 if (dump_enabled_p ())
128 dump_printf_loc (MSG_NOTE, vect_location,
129 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
130 GET_MODE_NAME (mode));
132 return true;
136 /* Return the smallest scalar part of STMT.
137 This is used to determine the vectype of the stmt. We generally set the
138 vectype according to the type of the result (lhs). For stmts whose
139 result-type is different than the type of the arguments (e.g., demotion,
140 promotion), vectype will be reset appropriately (later). Note that we have
141 to visit the smallest datatype in this function, because that determines the
142 VF. If the smallest datatype in the loop is present only as the rhs of a
143 promotion operation - we'd miss it.
144 Such a case, where a variable of this datatype does not appear in the lhs
145 anywhere in the loop, can only occur if it's an invariant: e.g.:
146 'int_x = (int) short_inv', which we'd expect to have been optimized away by
147 invariant motion. However, we cannot rely on invariant motion to always
148 take invariants out of the loop, and so in the case of promotion we also
149 have to check the rhs.
150 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
151 types. */
153 tree
154 vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
155 HOST_WIDE_INT *rhs_size_unit)
157 tree scalar_type = gimple_expr_type (stmt);
158 HOST_WIDE_INT lhs, rhs;
160 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
162 if (is_gimple_assign (stmt)
163 && (gimple_assign_cast_p (stmt)
164 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
165 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
166 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
168 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
170 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
171 if (rhs < lhs)
172 scalar_type = rhs_type;
175 *lhs_size_unit = lhs;
176 *rhs_size_unit = rhs;
177 return scalar_type;
181 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
182 tested at run-time. Return TRUE if DDR was successfully inserted.
183 Return false if versioning is not supported. */
185 static bool
186 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
188 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
190 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
191 return false;
193 if (dump_enabled_p ())
195 dump_printf_loc (MSG_NOTE, vect_location,
196 "mark for run-time aliasing test between ");
197 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
198 dump_printf (MSG_NOTE, " and ");
199 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
200 dump_printf (MSG_NOTE, "\n");
203 if (optimize_loop_nest_for_size_p (loop))
205 if (dump_enabled_p ())
206 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
207 "versioning not supported when optimizing"
208 " for size.\n");
209 return false;
212 /* FORNOW: We don't support versioning with outer-loop vectorization. */
213 if (loop->inner)
215 if (dump_enabled_p ())
216 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
217 "versioning not yet supported for outer-loops.\n");
218 return false;
221 /* FORNOW: We don't support creating runtime alias tests for non-constant
222 step. */
223 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
224 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
226 if (dump_enabled_p ())
227 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
228 "versioning not yet supported for non-constant "
229 "step\n");
230 return false;
233 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
234 return true;
238 /* Function vect_analyze_data_ref_dependence.
240 Return TRUE if there (might) exist a dependence between a memory-reference
241 DRA and a memory-reference DRB. When versioning for alias may check a
242 dependence at run-time, return FALSE. Adjust *MAX_VF according to
243 the data dependence. */
245 static bool
246 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
247 loop_vec_info loop_vinfo, int *max_vf)
249 unsigned int i;
250 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
251 struct data_reference *dra = DDR_A (ddr);
252 struct data_reference *drb = DDR_B (ddr);
253 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
254 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
255 lambda_vector dist_v;
256 unsigned int loop_depth;
258 /* In loop analysis all data references should be vectorizable. */
259 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
260 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
261 gcc_unreachable ();
263 /* Independent data accesses. */
264 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
265 return false;
267 if (dra == drb
268 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
269 return false;
271 /* Even if we have an anti-dependence then, as the vectorized loop covers at
272 least two scalar iterations, there is always also a true dependence.
273 As the vectorizer does not re-order loads and stores we can ignore
274 the anti-dependence if TBAA can disambiguate both DRs similar to the
275 case with known negative distance anti-dependences (positive
276 distance anti-dependences would violate TBAA constraints). */
277 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
278 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
279 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
280 get_alias_set (DR_REF (drb))))
281 return false;
283 /* Unknown data dependence. */
284 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
286 /* If user asserted safelen consecutive iterations can be
287 executed concurrently, assume independence. */
288 if (loop->safelen >= 2)
290 if (loop->safelen < *max_vf)
291 *max_vf = loop->safelen;
292 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
293 return false;
296 if (STMT_VINFO_GATHER_P (stmtinfo_a)
297 || STMT_VINFO_GATHER_P (stmtinfo_b))
299 if (dump_enabled_p ())
301 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
302 "versioning for alias not supported for: "
303 "can't determine dependence between ");
304 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
305 DR_REF (dra));
306 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
307 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
308 DR_REF (drb));
309 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
311 return true;
314 if (dump_enabled_p ())
316 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
317 "versioning for alias required: "
318 "can't determine dependence between ");
319 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
320 DR_REF (dra));
321 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
322 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
323 DR_REF (drb));
324 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
327 /* Add to list of ddrs that need to be tested at run-time. */
328 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
331 /* Known data dependence. */
332 if (DDR_NUM_DIST_VECTS (ddr) == 0)
334 /* If user asserted safelen consecutive iterations can be
335 executed concurrently, assume independence. */
336 if (loop->safelen >= 2)
338 if (loop->safelen < *max_vf)
339 *max_vf = loop->safelen;
340 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
341 return false;
344 if (STMT_VINFO_GATHER_P (stmtinfo_a)
345 || STMT_VINFO_GATHER_P (stmtinfo_b))
347 if (dump_enabled_p ())
349 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
350 "versioning for alias not supported for: "
351 "bad dist vector for ");
352 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
353 DR_REF (dra));
354 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
355 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
356 DR_REF (drb));
357 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
359 return true;
362 if (dump_enabled_p ())
364 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
365 "versioning for alias required: "
366 "bad dist vector for ");
367 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
368 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
369 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
370 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
372 /* Add to list of ddrs that need to be tested at run-time. */
373 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
376 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
377 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
379 int dist = dist_v[loop_depth];
381 if (dump_enabled_p ())
382 dump_printf_loc (MSG_NOTE, vect_location,
383 "dependence distance = %d.\n", dist);
385 if (dist == 0)
387 if (dump_enabled_p ())
389 dump_printf_loc (MSG_NOTE, vect_location,
390 "dependence distance == 0 between ");
391 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
392 dump_printf (MSG_NOTE, " and ");
393 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
394 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
397 /* When we perform grouped accesses and perform implicit CSE
398 by detecting equal accesses and doing disambiguation with
399 runtime alias tests like for
400 .. = a[i];
401 .. = a[i+1];
402 a[i] = ..;
403 a[i+1] = ..;
404 *p = ..;
405 .. = a[i];
406 .. = a[i+1];
407 where we will end up loading { a[i], a[i+1] } once, make
408 sure that inserting group loads before the first load and
409 stores after the last store will do the right thing.
410 Similar for groups like
411 a[i] = ...;
412 ... = a[i];
413 a[i+1] = ...;
414 where loads from the group interleave with the store. */
415 if (STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
416 || STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
418 gimple earlier_stmt;
419 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
420 if (DR_IS_WRITE
421 (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
423 if (dump_enabled_p ())
424 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
425 "READ_WRITE dependence in interleaving."
426 "\n");
427 return true;
431 continue;
434 if (dist > 0 && DDR_REVERSED_P (ddr))
436 /* If DDR_REVERSED_P the order of the data-refs in DDR was
437 reversed (to make distance vector positive), and the actual
438 distance is negative. */
439 if (dump_enabled_p ())
440 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
441 "dependence distance negative.\n");
442 /* Record a negative dependence distance to later limit the
443 amount of stmt copying / unrolling we can perform.
444 Only need to handle read-after-write dependence. */
445 if (DR_IS_READ (drb)
446 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
447 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
448 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
449 continue;
452 if (abs (dist) >= 2
453 && abs (dist) < *max_vf)
455 /* The dependence distance requires reduction of the maximal
456 vectorization factor. */
457 *max_vf = abs (dist);
458 if (dump_enabled_p ())
459 dump_printf_loc (MSG_NOTE, vect_location,
460 "adjusting maximal vectorization factor to %i\n",
461 *max_vf);
464 if (abs (dist) >= *max_vf)
466 /* Dependence distance does not create dependence, as far as
467 vectorization is concerned, in this case. */
468 if (dump_enabled_p ())
469 dump_printf_loc (MSG_NOTE, vect_location,
470 "dependence distance >= VF.\n");
471 continue;
474 if (dump_enabled_p ())
476 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
477 "not vectorized, possible dependence "
478 "between data-refs ");
479 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
480 dump_printf (MSG_NOTE, " and ");
481 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
482 dump_printf (MSG_NOTE, "\n");
485 return true;
488 return false;
491 /* Function vect_analyze_data_ref_dependences.
493 Examine all the data references in the loop, and make sure there do not
494 exist any data dependences between them. Set *MAX_VF according to
495 the maximum vectorization factor the data dependences allow. */
497 bool
498 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
500 unsigned int i;
501 struct data_dependence_relation *ddr;
503 if (dump_enabled_p ())
504 dump_printf_loc (MSG_NOTE, vect_location,
505 "=== vect_analyze_data_ref_dependences ===\n");
507 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
508 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
509 &LOOP_VINFO_DDRS (loop_vinfo),
510 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
511 return false;
513 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
514 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
515 return false;
517 return true;
521 /* Function vect_slp_analyze_data_ref_dependence.
523 Return TRUE if there (might) exist a dependence between a memory-reference
524 DRA and a memory-reference DRB. When versioning for alias may check a
525 dependence at run-time, return FALSE. Adjust *MAX_VF according to
526 the data dependence. */
528 static bool
529 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
531 struct data_reference *dra = DDR_A (ddr);
532 struct data_reference *drb = DDR_B (ddr);
534 /* We need to check dependences of statements marked as unvectorizable
535 as well, they still can prohibit vectorization. */
537 /* Independent data accesses. */
538 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
539 return false;
541 if (dra == drb)
542 return false;
544 /* Read-read is OK. */
545 if (DR_IS_READ (dra) && DR_IS_READ (drb))
546 return false;
548 /* If dra and drb are part of the same interleaving chain consider
549 them independent. */
550 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
551 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
552 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
553 return false;
555 /* Unknown data dependence. */
556 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
558 if (dump_enabled_p ())
560 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
561 "can't determine dependence between ");
562 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
563 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
564 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
565 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
568 else if (dump_enabled_p ())
570 dump_printf_loc (MSG_NOTE, vect_location,
571 "determined dependence between ");
572 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
573 dump_printf (MSG_NOTE, " and ");
574 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
575 dump_printf (MSG_NOTE, "\n");
578 /* We do not vectorize basic blocks with write-write dependencies. */
579 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
580 return true;
582 /* If we have a read-write dependence check that the load is before the store.
583 When we vectorize basic blocks, vector load can be only before
584 corresponding scalar load, and vector store can be only after its
585 corresponding scalar store. So the order of the acceses is preserved in
586 case the load is before the store. */
587 gimple earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
588 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
590 /* That only holds for load-store pairs taking part in vectorization. */
591 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dra)))
592 && STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (drb))))
593 return false;
596 return true;
600 /* Function vect_analyze_data_ref_dependences.
602 Examine all the data references in the basic-block, and make sure there
603 do not exist any data dependences between them. Set *MAX_VF according to
604 the maximum vectorization factor the data dependences allow. */
606 bool
607 vect_slp_analyze_data_ref_dependences (bb_vec_info bb_vinfo)
609 struct data_dependence_relation *ddr;
610 unsigned int i;
612 if (dump_enabled_p ())
613 dump_printf_loc (MSG_NOTE, vect_location,
614 "=== vect_slp_analyze_data_ref_dependences ===\n");
616 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
617 &BB_VINFO_DDRS (bb_vinfo),
618 vNULL, true))
619 return false;
621 FOR_EACH_VEC_ELT (BB_VINFO_DDRS (bb_vinfo), i, ddr)
622 if (vect_slp_analyze_data_ref_dependence (ddr))
623 return false;
625 return true;
629 /* Function vect_compute_data_ref_alignment
631 Compute the misalignment of the data reference DR.
633 Output:
634 1. If during the misalignment computation it is found that the data reference
635 cannot be vectorized then false is returned.
636 2. DR_MISALIGNMENT (DR) is defined.
638 FOR NOW: No analysis is actually performed. Misalignment is calculated
639 only for trivial cases. TODO. */
641 static bool
642 vect_compute_data_ref_alignment (struct data_reference *dr)
644 gimple stmt = DR_STMT (dr);
645 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
646 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
647 struct loop *loop = NULL;
648 tree ref = DR_REF (dr);
649 tree vectype;
650 tree base, base_addr;
651 bool base_aligned;
652 tree misalign = NULL_TREE;
653 tree aligned_to;
654 unsigned HOST_WIDE_INT alignment;
656 if (dump_enabled_p ())
657 dump_printf_loc (MSG_NOTE, vect_location,
658 "vect_compute_data_ref_alignment:\n");
660 if (loop_vinfo)
661 loop = LOOP_VINFO_LOOP (loop_vinfo);
663 /* Initialize misalignment to unknown. */
664 SET_DR_MISALIGNMENT (dr, -1);
666 /* Strided loads perform only component accesses, misalignment information
667 is irrelevant for them. */
668 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info)
669 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
670 return true;
672 if (tree_fits_shwi_p (DR_STEP (dr)))
673 misalign = DR_INIT (dr);
674 aligned_to = DR_ALIGNED_TO (dr);
675 base_addr = DR_BASE_ADDRESS (dr);
676 vectype = STMT_VINFO_VECTYPE (stmt_info);
678 /* In case the dataref is in an inner-loop of the loop that is being
679 vectorized (LOOP), we use the base and misalignment information
680 relative to the outer-loop (LOOP). This is ok only if the misalignment
681 stays the same throughout the execution of the inner-loop, which is why
682 we have to check that the stride of the dataref in the inner-loop evenly
683 divides by the vector size. */
684 if (loop && nested_in_vect_loop_p (loop, stmt))
686 tree step = DR_STEP (dr);
688 if (tree_fits_shwi_p (step)
689 && tree_to_shwi (step) % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
691 if (dump_enabled_p ())
692 dump_printf_loc (MSG_NOTE, vect_location,
693 "inner step divides the vector-size.\n");
694 misalign = STMT_VINFO_DR_INIT (stmt_info);
695 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
696 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
698 else
700 if (dump_enabled_p ())
701 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
702 "inner step doesn't divide the vector-size.\n");
703 misalign = NULL_TREE;
707 /* Similarly, if we're doing basic-block vectorization, we can only use
708 base and misalignment information relative to an innermost loop if the
709 misalignment stays the same throughout the execution of the loop.
710 As above, this is the case if the stride of the dataref evenly divides
711 by the vector size. */
712 if (!loop)
714 tree step = DR_STEP (dr);
716 if (tree_fits_shwi_p (step)
717 && tree_to_shwi (step) % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
719 if (dump_enabled_p ())
720 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
721 "SLP: step doesn't divide the vector-size.\n");
722 misalign = NULL_TREE;
726 alignment = TYPE_ALIGN_UNIT (vectype);
728 if ((compare_tree_int (aligned_to, alignment) < 0)
729 || !misalign)
731 if (dump_enabled_p ())
733 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
734 "Unknown alignment for access: ");
735 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
736 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
738 return true;
741 /* To look at alignment of the base we have to preserve an inner MEM_REF
742 as that carries alignment information of the actual access. */
743 base = ref;
744 while (handled_component_p (base))
745 base = TREE_OPERAND (base, 0);
746 if (TREE_CODE (base) == MEM_REF)
747 base = build2 (MEM_REF, TREE_TYPE (base), base_addr,
748 build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)), 0));
750 if (get_object_alignment (base) >= TYPE_ALIGN (vectype))
751 base_aligned = true;
752 else
753 base_aligned = false;
755 if (!base_aligned)
757 /* Strip an inner MEM_REF to a bare decl if possible. */
758 if (TREE_CODE (base) == MEM_REF
759 && integer_zerop (TREE_OPERAND (base, 1))
760 && TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
761 base = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
763 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype)))
765 if (dump_enabled_p ())
767 dump_printf_loc (MSG_NOTE, vect_location,
768 "can't force alignment of ref: ");
769 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
770 dump_printf (MSG_NOTE, "\n");
772 return true;
775 /* Force the alignment of the decl.
776 NOTE: This is the only change to the code we make during
777 the analysis phase, before deciding to vectorize the loop. */
778 if (dump_enabled_p ())
780 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
781 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
782 dump_printf (MSG_NOTE, "\n");
785 ((dataref_aux *)dr->aux)->base_decl = base;
786 ((dataref_aux *)dr->aux)->base_misaligned = true;
789 /* If this is a backward running DR then first access in the larger
790 vectype actually is N-1 elements before the address in the DR.
791 Adjust misalign accordingly. */
792 if (tree_int_cst_sgn (DR_STEP (dr)) < 0)
794 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
795 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
796 otherwise we wouldn't be here. */
797 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
798 /* PLUS because DR_STEP was negative. */
799 misalign = size_binop (PLUS_EXPR, misalign, offset);
802 SET_DR_MISALIGNMENT (dr,
803 wi::mod_floor (misalign, alignment, SIGNED).to_uhwi ());
805 if (dump_enabled_p ())
807 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
808 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
809 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
810 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
813 return true;
817 /* Function vect_compute_data_refs_alignment
819 Compute the misalignment of data references in the loop.
820 Return FALSE if a data reference is found that cannot be vectorized. */
822 static bool
823 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
824 bb_vec_info bb_vinfo)
826 vec<data_reference_p> datarefs;
827 struct data_reference *dr;
828 unsigned int i;
830 if (loop_vinfo)
831 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
832 else
833 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
835 FOR_EACH_VEC_ELT (datarefs, i, dr)
836 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
837 && !vect_compute_data_ref_alignment (dr))
839 if (bb_vinfo)
841 /* Mark unsupported statement as unvectorizable. */
842 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
843 continue;
845 else
846 return false;
849 return true;
853 /* Function vect_update_misalignment_for_peel
855 DR - the data reference whose misalignment is to be adjusted.
856 DR_PEEL - the data reference whose misalignment is being made
857 zero in the vector loop by the peel.
858 NPEEL - the number of iterations in the peel loop if the misalignment
859 of DR_PEEL is known at compile time. */
861 static void
862 vect_update_misalignment_for_peel (struct data_reference *dr,
863 struct data_reference *dr_peel, int npeel)
865 unsigned int i;
866 vec<dr_p> same_align_drs;
867 struct data_reference *current_dr;
868 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
869 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
870 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
871 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
873 /* For interleaved data accesses the step in the loop must be multiplied by
874 the size of the interleaving group. */
875 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
876 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
877 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
878 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
880 /* It can be assumed that the data refs with the same alignment as dr_peel
881 are aligned in the vector loop. */
882 same_align_drs
883 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
884 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
886 if (current_dr != dr)
887 continue;
888 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
889 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
890 SET_DR_MISALIGNMENT (dr, 0);
891 return;
894 if (known_alignment_for_access_p (dr)
895 && known_alignment_for_access_p (dr_peel))
897 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
898 int misal = DR_MISALIGNMENT (dr);
899 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
900 misal += negative ? -npeel * dr_size : npeel * dr_size;
901 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
902 SET_DR_MISALIGNMENT (dr, misal);
903 return;
906 if (dump_enabled_p ())
907 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.\n");
908 SET_DR_MISALIGNMENT (dr, -1);
912 /* Function vect_verify_datarefs_alignment
914 Return TRUE if all data references in the loop can be
915 handled with respect to alignment. */
917 bool
918 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
920 vec<data_reference_p> datarefs;
921 struct data_reference *dr;
922 enum dr_alignment_support supportable_dr_alignment;
923 unsigned int i;
925 if (loop_vinfo)
926 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
927 else
928 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
930 FOR_EACH_VEC_ELT (datarefs, i, dr)
932 gimple stmt = DR_STMT (dr);
933 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
935 if (!STMT_VINFO_RELEVANT_P (stmt_info))
936 continue;
938 /* For interleaving, only the alignment of the first access matters.
939 Skip statements marked as not vectorizable. */
940 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
941 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
942 || !STMT_VINFO_VECTORIZABLE (stmt_info))
943 continue;
945 /* Strided loads perform only component accesses, alignment is
946 irrelevant for them. */
947 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info)
948 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
949 continue;
951 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
952 if (!supportable_dr_alignment)
954 if (dump_enabled_p ())
956 if (DR_IS_READ (dr))
957 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
958 "not vectorized: unsupported unaligned load.");
959 else
960 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
961 "not vectorized: unsupported unaligned "
962 "store.");
964 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
965 DR_REF (dr));
966 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
968 return false;
970 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
971 dump_printf_loc (MSG_NOTE, vect_location,
972 "Vectorizing an unaligned access.\n");
974 return true;
977 /* Given an memory reference EXP return whether its alignment is less
978 than its size. */
980 static bool
981 not_size_aligned (tree exp)
983 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
984 return true;
986 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
987 > get_object_alignment (exp));
990 /* Function vector_alignment_reachable_p
992 Return true if vector alignment for DR is reachable by peeling
993 a few loop iterations. Return false otherwise. */
995 static bool
996 vector_alignment_reachable_p (struct data_reference *dr)
998 gimple stmt = DR_STMT (dr);
999 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1000 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1002 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1004 /* For interleaved access we peel only if number of iterations in
1005 the prolog loop ({VF - misalignment}), is a multiple of the
1006 number of the interleaved accesses. */
1007 int elem_size, mis_in_elements;
1008 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1010 /* FORNOW: handle only known alignment. */
1011 if (!known_alignment_for_access_p (dr))
1012 return false;
1014 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
1015 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1017 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
1018 return false;
1021 /* If misalignment is known at the compile time then allow peeling
1022 only if natural alignment is reachable through peeling. */
1023 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1025 HOST_WIDE_INT elmsize =
1026 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1027 if (dump_enabled_p ())
1029 dump_printf_loc (MSG_NOTE, vect_location,
1030 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1031 dump_printf (MSG_NOTE,
1032 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
1034 if (DR_MISALIGNMENT (dr) % elmsize)
1036 if (dump_enabled_p ())
1037 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1038 "data size does not divide the misalignment.\n");
1039 return false;
1043 if (!known_alignment_for_access_p (dr))
1045 tree type = TREE_TYPE (DR_REF (dr));
1046 bool is_packed = not_size_aligned (DR_REF (dr));
1047 if (dump_enabled_p ())
1048 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1049 "Unknown misalignment, is_packed = %d\n",is_packed);
1050 if ((TYPE_USER_ALIGN (type) && !is_packed)
1051 || targetm.vectorize.vector_alignment_reachable (type, is_packed))
1052 return true;
1053 else
1054 return false;
1057 return true;
1061 /* Calculate the cost of the memory access represented by DR. */
1063 static void
1064 vect_get_data_access_cost (struct data_reference *dr,
1065 unsigned int *inside_cost,
1066 unsigned int *outside_cost,
1067 stmt_vector_for_cost *body_cost_vec)
1069 gimple stmt = DR_STMT (dr);
1070 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1071 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1072 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1073 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1074 int ncopies = vf / nunits;
1076 if (DR_IS_READ (dr))
1077 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1078 NULL, body_cost_vec, false);
1079 else
1080 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1082 if (dump_enabled_p ())
1083 dump_printf_loc (MSG_NOTE, vect_location,
1084 "vect_get_data_access_cost: inside_cost = %d, "
1085 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1089 /* Insert DR into peeling hash table with NPEEL as key. */
1091 static void
1092 vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
1093 int npeel)
1095 struct _vect_peel_info elem, *slot;
1096 _vect_peel_info **new_slot;
1097 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1099 elem.npeel = npeel;
1100 slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find (&elem);
1101 if (slot)
1102 slot->count++;
1103 else
1105 slot = XNEW (struct _vect_peel_info);
1106 slot->npeel = npeel;
1107 slot->dr = dr;
1108 slot->count = 1;
1109 new_slot
1110 = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find_slot (slot, INSERT);
1111 *new_slot = slot;
1114 if (!supportable_dr_alignment
1115 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1116 slot->count += VECT_MAX_COST;
1120 /* Traverse peeling hash table to find peeling option that aligns maximum
1121 number of data accesses. */
1124 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1125 _vect_peel_extended_info *max)
1127 vect_peel_info elem = *slot;
1129 if (elem->count > max->peel_info.count
1130 || (elem->count == max->peel_info.count
1131 && max->peel_info.npeel > elem->npeel))
1133 max->peel_info.npeel = elem->npeel;
1134 max->peel_info.count = elem->count;
1135 max->peel_info.dr = elem->dr;
1138 return 1;
1142 /* Traverse peeling hash table and calculate cost for each peeling option.
1143 Find the one with the lowest cost. */
1146 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1147 _vect_peel_extended_info *min)
1149 vect_peel_info elem = *slot;
1150 int save_misalignment, dummy;
1151 unsigned int inside_cost = 0, outside_cost = 0, i;
1152 gimple stmt = DR_STMT (elem->dr);
1153 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1154 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1155 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1156 struct data_reference *dr;
1157 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1159 prologue_cost_vec.create (2);
1160 body_cost_vec.create (2);
1161 epilogue_cost_vec.create (2);
1163 FOR_EACH_VEC_ELT (datarefs, i, dr)
1165 stmt = DR_STMT (dr);
1166 stmt_info = vinfo_for_stmt (stmt);
1167 /* For interleaving, only the alignment of the first access
1168 matters. */
1169 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1170 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1171 continue;
1173 save_misalignment = DR_MISALIGNMENT (dr);
1174 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
1175 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1176 &body_cost_vec);
1177 SET_DR_MISALIGNMENT (dr, save_misalignment);
1180 auto_vec<stmt_info_for_cost> scalar_cost_vec;
1181 vect_get_single_scalar_iteration_cost (loop_vinfo, &scalar_cost_vec);
1182 outside_cost += vect_get_known_peeling_cost
1183 (loop_vinfo, elem->npeel, &dummy,
1184 &scalar_cost_vec, &prologue_cost_vec, &epilogue_cost_vec);
1186 /* Prologue and epilogue costs are added to the target model later.
1187 These costs depend only on the scalar iteration cost, the
1188 number of peeling iterations finally chosen, and the number of
1189 misaligned statements. So discard the information found here. */
1190 prologue_cost_vec.release ();
1191 epilogue_cost_vec.release ();
1193 if (inside_cost < min->inside_cost
1194 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1196 min->inside_cost = inside_cost;
1197 min->outside_cost = outside_cost;
1198 min->body_cost_vec.release ();
1199 min->body_cost_vec = body_cost_vec;
1200 min->peel_info.dr = elem->dr;
1201 min->peel_info.npeel = elem->npeel;
1203 else
1204 body_cost_vec.release ();
1206 return 1;
1210 /* Choose best peeling option by traversing peeling hash table and either
1211 choosing an option with the lowest cost (if cost model is enabled) or the
1212 option that aligns as many accesses as possible. */
1214 static struct data_reference *
1215 vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
1216 unsigned int *npeel,
1217 stmt_vector_for_cost *body_cost_vec)
1219 struct _vect_peel_extended_info res;
1221 res.peel_info.dr = NULL;
1222 res.body_cost_vec = stmt_vector_for_cost ();
1224 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1226 res.inside_cost = INT_MAX;
1227 res.outside_cost = INT_MAX;
1228 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1229 ->traverse <_vect_peel_extended_info *,
1230 vect_peeling_hash_get_lowest_cost> (&res);
1232 else
1234 res.peel_info.count = 0;
1235 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1236 ->traverse <_vect_peel_extended_info *,
1237 vect_peeling_hash_get_most_frequent> (&res);
1240 *npeel = res.peel_info.npeel;
1241 *body_cost_vec = res.body_cost_vec;
1242 return res.peel_info.dr;
1246 /* Function vect_enhance_data_refs_alignment
1248 This pass will use loop versioning and loop peeling in order to enhance
1249 the alignment of data references in the loop.
1251 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1252 original loop is to be vectorized. Any other loops that are created by
1253 the transformations performed in this pass - are not supposed to be
1254 vectorized. This restriction will be relaxed.
1256 This pass will require a cost model to guide it whether to apply peeling
1257 or versioning or a combination of the two. For example, the scheme that
1258 intel uses when given a loop with several memory accesses, is as follows:
1259 choose one memory access ('p') which alignment you want to force by doing
1260 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1261 other accesses are not necessarily aligned, or (2) use loop versioning to
1262 generate one loop in which all accesses are aligned, and another loop in
1263 which only 'p' is necessarily aligned.
1265 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1266 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1267 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1269 Devising a cost model is the most critical aspect of this work. It will
1270 guide us on which access to peel for, whether to use loop versioning, how
1271 many versions to create, etc. The cost model will probably consist of
1272 generic considerations as well as target specific considerations (on
1273 powerpc for example, misaligned stores are more painful than misaligned
1274 loads).
1276 Here are the general steps involved in alignment enhancements:
1278 -- original loop, before alignment analysis:
1279 for (i=0; i<N; i++){
1280 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1281 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1284 -- After vect_compute_data_refs_alignment:
1285 for (i=0; i<N; i++){
1286 x = q[i]; # DR_MISALIGNMENT(q) = 3
1287 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1290 -- Possibility 1: we do loop versioning:
1291 if (p is aligned) {
1292 for (i=0; i<N; i++){ # loop 1A
1293 x = q[i]; # DR_MISALIGNMENT(q) = 3
1294 p[i] = y; # DR_MISALIGNMENT(p) = 0
1297 else {
1298 for (i=0; i<N; i++){ # loop 1B
1299 x = q[i]; # DR_MISALIGNMENT(q) = 3
1300 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1304 -- Possibility 2: we do loop peeling:
1305 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1306 x = q[i];
1307 p[i] = y;
1309 for (i = 3; i < N; i++){ # loop 2A
1310 x = q[i]; # DR_MISALIGNMENT(q) = 0
1311 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1314 -- Possibility 3: combination of loop peeling and versioning:
1315 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1316 x = q[i];
1317 p[i] = y;
1319 if (p is aligned) {
1320 for (i = 3; i<N; i++){ # loop 3A
1321 x = q[i]; # DR_MISALIGNMENT(q) = 0
1322 p[i] = y; # DR_MISALIGNMENT(p) = 0
1325 else {
1326 for (i = 3; i<N; i++){ # loop 3B
1327 x = q[i]; # DR_MISALIGNMENT(q) = 0
1328 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1332 These loops are later passed to loop_transform to be vectorized. The
1333 vectorizer will use the alignment information to guide the transformation
1334 (whether to generate regular loads/stores, or with special handling for
1335 misalignment). */
1337 bool
1338 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1340 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1341 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1342 enum dr_alignment_support supportable_dr_alignment;
1343 struct data_reference *dr0 = NULL, *first_store = NULL;
1344 struct data_reference *dr;
1345 unsigned int i, j;
1346 bool do_peeling = false;
1347 bool do_versioning = false;
1348 bool stat;
1349 gimple stmt;
1350 stmt_vec_info stmt_info;
1351 unsigned int npeel = 0;
1352 bool all_misalignments_unknown = true;
1353 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1354 unsigned possible_npeel_number = 1;
1355 tree vectype;
1356 unsigned int nelements, mis, same_align_drs_max = 0;
1357 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost ();
1359 if (dump_enabled_p ())
1360 dump_printf_loc (MSG_NOTE, vect_location,
1361 "=== vect_enhance_data_refs_alignment ===\n");
1363 /* While cost model enhancements are expected in the future, the high level
1364 view of the code at this time is as follows:
1366 A) If there is a misaligned access then see if peeling to align
1367 this access can make all data references satisfy
1368 vect_supportable_dr_alignment. If so, update data structures
1369 as needed and return true.
1371 B) If peeling wasn't possible and there is a data reference with an
1372 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1373 then see if loop versioning checks can be used to make all data
1374 references satisfy vect_supportable_dr_alignment. If so, update
1375 data structures as needed and return true.
1377 C) If neither peeling nor versioning were successful then return false if
1378 any data reference does not satisfy vect_supportable_dr_alignment.
1380 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1382 Note, Possibility 3 above (which is peeling and versioning together) is not
1383 being done at this time. */
1385 /* (1) Peeling to force alignment. */
1387 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1388 Considerations:
1389 + How many accesses will become aligned due to the peeling
1390 - How many accesses will become unaligned due to the peeling,
1391 and the cost of misaligned accesses.
1392 - The cost of peeling (the extra runtime checks, the increase
1393 in code size). */
1395 FOR_EACH_VEC_ELT (datarefs, i, dr)
1397 stmt = DR_STMT (dr);
1398 stmt_info = vinfo_for_stmt (stmt);
1400 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1401 continue;
1403 /* For interleaving, only the alignment of the first access
1404 matters. */
1405 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1406 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1407 continue;
1409 /* For invariant accesses there is nothing to enhance. */
1410 if (integer_zerop (DR_STEP (dr)))
1411 continue;
1413 /* Strided loads perform only component accesses, alignment is
1414 irrelevant for them. */
1415 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info)
1416 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1417 continue;
1419 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1420 do_peeling = vector_alignment_reachable_p (dr);
1421 if (do_peeling)
1423 if (known_alignment_for_access_p (dr))
1425 unsigned int npeel_tmp;
1426 bool negative = tree_int_cst_compare (DR_STEP (dr),
1427 size_zero_node) < 0;
1429 /* Save info about DR in the hash table. */
1430 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
1431 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1432 = new hash_table<peel_info_hasher> (1);
1434 vectype = STMT_VINFO_VECTYPE (stmt_info);
1435 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1436 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1437 TREE_TYPE (DR_REF (dr))));
1438 npeel_tmp = (negative
1439 ? (mis - nelements) : (nelements - mis))
1440 & (nelements - 1);
1442 /* For multiple types, it is possible that the bigger type access
1443 will have more than one peeling option. E.g., a loop with two
1444 types: one of size (vector size / 4), and the other one of
1445 size (vector size / 8). Vectorization factor will 8. If both
1446 access are misaligned by 3, the first one needs one scalar
1447 iteration to be aligned, and the second one needs 5. But the
1448 the first one will be aligned also by peeling 5 scalar
1449 iterations, and in that case both accesses will be aligned.
1450 Hence, except for the immediate peeling amount, we also want
1451 to try to add full vector size, while we don't exceed
1452 vectorization factor.
1453 We do this automtically for cost model, since we calculate cost
1454 for every peeling option. */
1455 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1456 possible_npeel_number = vf /nelements;
1458 /* Handle the aligned case. We may decide to align some other
1459 access, making DR unaligned. */
1460 if (DR_MISALIGNMENT (dr) == 0)
1462 npeel_tmp = 0;
1463 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1464 possible_npeel_number++;
1467 for (j = 0; j < possible_npeel_number; j++)
1469 gcc_assert (npeel_tmp <= vf);
1470 vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
1471 npeel_tmp += nelements;
1474 all_misalignments_unknown = false;
1475 /* Data-ref that was chosen for the case that all the
1476 misalignments are unknown is not relevant anymore, since we
1477 have a data-ref with known alignment. */
1478 dr0 = NULL;
1480 else
1482 /* If we don't know any misalignment values, we prefer
1483 peeling for data-ref that has the maximum number of data-refs
1484 with the same alignment, unless the target prefers to align
1485 stores over load. */
1486 if (all_misalignments_unknown)
1488 unsigned same_align_drs
1489 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1490 if (!dr0
1491 || same_align_drs_max < same_align_drs)
1493 same_align_drs_max = same_align_drs;
1494 dr0 = dr;
1496 /* For data-refs with the same number of related
1497 accesses prefer the one where the misalign
1498 computation will be invariant in the outermost loop. */
1499 else if (same_align_drs_max == same_align_drs)
1501 struct loop *ivloop0, *ivloop;
1502 ivloop0 = outermost_invariant_loop_for_expr
1503 (loop, DR_BASE_ADDRESS (dr0));
1504 ivloop = outermost_invariant_loop_for_expr
1505 (loop, DR_BASE_ADDRESS (dr));
1506 if ((ivloop && !ivloop0)
1507 || (ivloop && ivloop0
1508 && flow_loop_nested_p (ivloop, ivloop0)))
1509 dr0 = dr;
1512 if (!first_store && DR_IS_WRITE (dr))
1513 first_store = dr;
1516 /* If there are both known and unknown misaligned accesses in the
1517 loop, we choose peeling amount according to the known
1518 accesses. */
1519 if (!supportable_dr_alignment)
1521 dr0 = dr;
1522 if (!first_store && DR_IS_WRITE (dr))
1523 first_store = dr;
1527 else
1529 if (!aligned_access_p (dr))
1531 if (dump_enabled_p ())
1532 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1533 "vector alignment may not be reachable\n");
1534 break;
1539 /* Check if we can possibly peel the loop. */
1540 if (!vect_can_advance_ivs_p (loop_vinfo)
1541 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1542 do_peeling = false;
1544 /* If we don't know how many times the peeling loop will run
1545 assume it will run VF-1 times and disable peeling if the remaining
1546 iters are less than the vectorization factor. */
1547 if (do_peeling
1548 && all_misalignments_unknown
1549 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1550 && (LOOP_VINFO_INT_NITERS (loop_vinfo)
1551 < 2 * (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1))
1552 do_peeling = false;
1554 if (do_peeling
1555 && all_misalignments_unknown
1556 && vect_supportable_dr_alignment (dr0, false))
1558 /* Check if the target requires to prefer stores over loads, i.e., if
1559 misaligned stores are more expensive than misaligned loads (taking
1560 drs with same alignment into account). */
1561 if (first_store && DR_IS_READ (dr0))
1563 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1564 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1565 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1566 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
1567 stmt_vector_for_cost dummy;
1568 dummy.create (2);
1570 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1571 &dummy);
1572 vect_get_data_access_cost (first_store, &store_inside_cost,
1573 &store_outside_cost, &dummy);
1575 dummy.release ();
1577 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1578 aligning the load DR0). */
1579 load_inside_penalty = store_inside_cost;
1580 load_outside_penalty = store_outside_cost;
1581 for (i = 0;
1582 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1583 DR_STMT (first_store))).iterate (i, &dr);
1584 i++)
1585 if (DR_IS_READ (dr))
1587 load_inside_penalty += load_inside_cost;
1588 load_outside_penalty += load_outside_cost;
1590 else
1592 load_inside_penalty += store_inside_cost;
1593 load_outside_penalty += store_outside_cost;
1596 /* Calculate the penalty for leaving DR0 unaligned (by
1597 aligning the FIRST_STORE). */
1598 store_inside_penalty = load_inside_cost;
1599 store_outside_penalty = load_outside_cost;
1600 for (i = 0;
1601 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1602 DR_STMT (dr0))).iterate (i, &dr);
1603 i++)
1604 if (DR_IS_READ (dr))
1606 store_inside_penalty += load_inside_cost;
1607 store_outside_penalty += load_outside_cost;
1609 else
1611 store_inside_penalty += store_inside_cost;
1612 store_outside_penalty += store_outside_cost;
1615 if (load_inside_penalty > store_inside_penalty
1616 || (load_inside_penalty == store_inside_penalty
1617 && load_outside_penalty > store_outside_penalty))
1618 dr0 = first_store;
1621 /* In case there are only loads with different unknown misalignments, use
1622 peeling only if it may help to align other accesses in the loop. */
1623 if (!first_store
1624 && !STMT_VINFO_SAME_ALIGN_REFS (
1625 vinfo_for_stmt (DR_STMT (dr0))).length ()
1626 && vect_supportable_dr_alignment (dr0, false)
1627 != dr_unaligned_supported)
1628 do_peeling = false;
1631 if (do_peeling && !dr0)
1633 /* Peeling is possible, but there is no data access that is not supported
1634 unless aligned. So we try to choose the best possible peeling. */
1636 /* We should get here only if there are drs with known misalignment. */
1637 gcc_assert (!all_misalignments_unknown);
1639 /* Choose the best peeling from the hash table. */
1640 dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
1641 &body_cost_vec);
1642 if (!dr0 || !npeel)
1643 do_peeling = false;
1645 /* If peeling by npeel will result in a remaining loop not iterating
1646 enough to be vectorized then do not peel. */
1647 if (do_peeling
1648 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1649 && (LOOP_VINFO_INT_NITERS (loop_vinfo)
1650 < LOOP_VINFO_VECT_FACTOR (loop_vinfo) + npeel))
1651 do_peeling = false;
1654 if (do_peeling)
1656 stmt = DR_STMT (dr0);
1657 stmt_info = vinfo_for_stmt (stmt);
1658 vectype = STMT_VINFO_VECTYPE (stmt_info);
1659 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1661 if (known_alignment_for_access_p (dr0))
1663 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1664 size_zero_node) < 0;
1665 if (!npeel)
1667 /* Since it's known at compile time, compute the number of
1668 iterations in the peeled loop (the peeling factor) for use in
1669 updating DR_MISALIGNMENT values. The peeling factor is the
1670 vectorization factor minus the misalignment as an element
1671 count. */
1672 mis = DR_MISALIGNMENT (dr0);
1673 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1674 npeel = ((negative ? mis - nelements : nelements - mis)
1675 & (nelements - 1));
1678 /* For interleaved data access every iteration accesses all the
1679 members of the group, therefore we divide the number of iterations
1680 by the group size. */
1681 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1682 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1683 npeel /= GROUP_SIZE (stmt_info);
1685 if (dump_enabled_p ())
1686 dump_printf_loc (MSG_NOTE, vect_location,
1687 "Try peeling by %d\n", npeel);
1690 /* Ensure that all data refs can be vectorized after the peel. */
1691 FOR_EACH_VEC_ELT (datarefs, i, dr)
1693 int save_misalignment;
1695 if (dr == dr0)
1696 continue;
1698 stmt = DR_STMT (dr);
1699 stmt_info = vinfo_for_stmt (stmt);
1700 /* For interleaving, only the alignment of the first access
1701 matters. */
1702 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1703 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1704 continue;
1706 /* Strided loads perform only component accesses, alignment is
1707 irrelevant for them. */
1708 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info)
1709 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1710 continue;
1712 save_misalignment = DR_MISALIGNMENT (dr);
1713 vect_update_misalignment_for_peel (dr, dr0, npeel);
1714 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1715 SET_DR_MISALIGNMENT (dr, save_misalignment);
1717 if (!supportable_dr_alignment)
1719 do_peeling = false;
1720 break;
1724 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1726 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1727 if (!stat)
1728 do_peeling = false;
1729 else
1731 body_cost_vec.release ();
1732 return stat;
1736 if (do_peeling)
1738 unsigned max_allowed_peel
1739 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1740 if (max_allowed_peel != (unsigned)-1)
1742 unsigned max_peel = npeel;
1743 if (max_peel == 0)
1745 gimple dr_stmt = DR_STMT (dr0);
1746 stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
1747 tree vtype = STMT_VINFO_VECTYPE (vinfo);
1748 max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
1750 if (max_peel > max_allowed_peel)
1752 do_peeling = false;
1753 if (dump_enabled_p ())
1754 dump_printf_loc (MSG_NOTE, vect_location,
1755 "Disable peeling, max peels reached: %d\n", max_peel);
1760 if (do_peeling)
1762 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1763 If the misalignment of DR_i is identical to that of dr0 then set
1764 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1765 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1766 by the peeling factor times the element size of DR_i (MOD the
1767 vectorization factor times the size). Otherwise, the
1768 misalignment of DR_i must be set to unknown. */
1769 FOR_EACH_VEC_ELT (datarefs, i, dr)
1770 if (dr != dr0)
1771 vect_update_misalignment_for_peel (dr, dr0, npeel);
1773 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1774 if (npeel)
1775 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
1776 else
1777 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1778 = DR_MISALIGNMENT (dr0);
1779 SET_DR_MISALIGNMENT (dr0, 0);
1780 if (dump_enabled_p ())
1782 dump_printf_loc (MSG_NOTE, vect_location,
1783 "Alignment of access forced using peeling.\n");
1784 dump_printf_loc (MSG_NOTE, vect_location,
1785 "Peeling for alignment will be applied.\n");
1787 /* The inside-loop cost will be accounted for in vectorizable_load
1788 and vectorizable_store correctly with adjusted alignments.
1789 Drop the body_cst_vec on the floor here. */
1790 body_cost_vec.release ();
1792 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1793 gcc_assert (stat);
1794 return stat;
1798 body_cost_vec.release ();
1800 /* (2) Versioning to force alignment. */
1802 /* Try versioning if:
1803 1) optimize loop for speed
1804 2) there is at least one unsupported misaligned data ref with an unknown
1805 misalignment, and
1806 3) all misaligned data refs with a known misalignment are supported, and
1807 4) the number of runtime alignment checks is within reason. */
1809 do_versioning =
1810 optimize_loop_nest_for_speed_p (loop)
1811 && (!loop->inner); /* FORNOW */
1813 if (do_versioning)
1815 FOR_EACH_VEC_ELT (datarefs, i, dr)
1817 stmt = DR_STMT (dr);
1818 stmt_info = vinfo_for_stmt (stmt);
1820 /* For interleaving, only the alignment of the first access
1821 matters. */
1822 if (aligned_access_p (dr)
1823 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1824 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
1825 continue;
1827 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1829 /* Strided loads perform only component accesses, alignment is
1830 irrelevant for them. */
1831 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
1832 continue;
1833 do_versioning = false;
1834 break;
1837 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1839 if (!supportable_dr_alignment)
1841 gimple stmt;
1842 int mask;
1843 tree vectype;
1845 if (known_alignment_for_access_p (dr)
1846 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
1847 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
1849 do_versioning = false;
1850 break;
1853 stmt = DR_STMT (dr);
1854 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1855 gcc_assert (vectype);
1857 /* The rightmost bits of an aligned address must be zeros.
1858 Construct the mask needed for this test. For example,
1859 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1860 mask must be 15 = 0xf. */
1861 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
1863 /* FORNOW: use the same mask to test all potentially unaligned
1864 references in the loop. The vectorizer currently supports
1865 a single vector size, see the reference to
1866 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1867 vectorization factor is computed. */
1868 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
1869 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
1870 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
1871 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
1872 DR_STMT (dr));
1876 /* Versioning requires at least one misaligned data reference. */
1877 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1878 do_versioning = false;
1879 else if (!do_versioning)
1880 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1883 if (do_versioning)
1885 vec<gimple> may_misalign_stmts
1886 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1887 gimple stmt;
1889 /* It can now be assumed that the data references in the statements
1890 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1891 of the loop being vectorized. */
1892 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
1894 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1895 dr = STMT_VINFO_DATA_REF (stmt_info);
1896 SET_DR_MISALIGNMENT (dr, 0);
1897 if (dump_enabled_p ())
1898 dump_printf_loc (MSG_NOTE, vect_location,
1899 "Alignment of access forced using versioning.\n");
1902 if (dump_enabled_p ())
1903 dump_printf_loc (MSG_NOTE, vect_location,
1904 "Versioning for alignment will be applied.\n");
1906 /* Peeling and versioning can't be done together at this time. */
1907 gcc_assert (! (do_peeling && do_versioning));
1909 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1910 gcc_assert (stat);
1911 return stat;
1914 /* This point is reached if neither peeling nor versioning is being done. */
1915 gcc_assert (! (do_peeling || do_versioning));
1917 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1918 return stat;
1922 /* Function vect_find_same_alignment_drs.
1924 Update group and alignment relations according to the chosen
1925 vectorization factor. */
1927 static void
1928 vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
1929 loop_vec_info loop_vinfo)
1931 unsigned int i;
1932 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1933 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1934 struct data_reference *dra = DDR_A (ddr);
1935 struct data_reference *drb = DDR_B (ddr);
1936 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
1937 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
1938 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
1939 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
1940 lambda_vector dist_v;
1941 unsigned int loop_depth;
1943 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1944 return;
1946 if (dra == drb)
1947 return;
1949 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1950 return;
1952 /* Loop-based vectorization and known data dependence. */
1953 if (DDR_NUM_DIST_VECTS (ddr) == 0)
1954 return;
1956 /* Data-dependence analysis reports a distance vector of zero
1957 for data-references that overlap only in the first iteration
1958 but have different sign step (see PR45764).
1959 So as a sanity check require equal DR_STEP. */
1960 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
1961 return;
1963 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
1964 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1966 int dist = dist_v[loop_depth];
1968 if (dump_enabled_p ())
1969 dump_printf_loc (MSG_NOTE, vect_location,
1970 "dependence distance = %d.\n", dist);
1972 /* Same loop iteration. */
1973 if (dist == 0
1974 || (dist % vectorization_factor == 0 && dra_size == drb_size))
1976 /* Two references with distance zero have the same alignment. */
1977 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
1978 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
1979 if (dump_enabled_p ())
1981 dump_printf_loc (MSG_NOTE, vect_location,
1982 "accesses have the same alignment.\n");
1983 dump_printf (MSG_NOTE,
1984 "dependence distance modulo vf == 0 between ");
1985 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
1986 dump_printf (MSG_NOTE, " and ");
1987 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
1988 dump_printf (MSG_NOTE, "\n");
1995 /* Function vect_analyze_data_refs_alignment
1997 Analyze the alignment of the data-references in the loop.
1998 Return FALSE if a data reference is found that cannot be vectorized. */
2000 bool
2001 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
2002 bb_vec_info bb_vinfo)
2004 if (dump_enabled_p ())
2005 dump_printf_loc (MSG_NOTE, vect_location,
2006 "=== vect_analyze_data_refs_alignment ===\n");
2008 /* Mark groups of data references with same alignment using
2009 data dependence information. */
2010 if (loop_vinfo)
2012 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
2013 struct data_dependence_relation *ddr;
2014 unsigned int i;
2016 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2017 vect_find_same_alignment_drs (ddr, loop_vinfo);
2020 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
2022 if (dump_enabled_p ())
2023 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2024 "not vectorized: can't calculate alignment "
2025 "for data ref.\n");
2026 return false;
2029 return true;
2033 /* Analyze groups of accesses: check that DR belongs to a group of
2034 accesses of legal size, step, etc. Detect gaps, single element
2035 interleaving, and other special cases. Set grouped access info.
2036 Collect groups of strided stores for further use in SLP analysis. */
2038 static bool
2039 vect_analyze_group_access (struct data_reference *dr)
2041 tree step = DR_STEP (dr);
2042 tree scalar_type = TREE_TYPE (DR_REF (dr));
2043 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2044 gimple stmt = DR_STMT (dr);
2045 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2046 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2047 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2048 HOST_WIDE_INT dr_step = -1;
2049 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2050 bool slp_impossible = false;
2051 struct loop *loop = NULL;
2053 if (loop_vinfo)
2054 loop = LOOP_VINFO_LOOP (loop_vinfo);
2056 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2057 size of the interleaving group (including gaps). */
2058 if (tree_fits_shwi_p (step))
2060 dr_step = tree_to_shwi (step);
2061 groupsize = absu_hwi (dr_step) / type_size;
2063 else
2064 groupsize = 0;
2066 /* Not consecutive access is possible only if it is a part of interleaving. */
2067 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2069 /* Check if it this DR is a part of interleaving, and is a single
2070 element of the group that is accessed in the loop. */
2072 /* Gaps are supported only for loads. STEP must be a multiple of the type
2073 size. The size of the group must be a power of 2. */
2074 if (DR_IS_READ (dr)
2075 && (dr_step % type_size) == 0
2076 && groupsize > 0
2077 && exact_log2 (groupsize) != -1)
2079 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2080 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2081 if (dump_enabled_p ())
2083 dump_printf_loc (MSG_NOTE, vect_location,
2084 "Detected single element interleaving ");
2085 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2086 dump_printf (MSG_NOTE, " step ");
2087 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2088 dump_printf (MSG_NOTE, "\n");
2091 if (loop_vinfo)
2093 if (dump_enabled_p ())
2094 dump_printf_loc (MSG_NOTE, vect_location,
2095 "Data access with gaps requires scalar "
2096 "epilogue loop\n");
2097 if (loop->inner)
2099 if (dump_enabled_p ())
2100 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2101 "Peeling for outer loop is not"
2102 " supported\n");
2103 return false;
2106 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2109 return true;
2112 if (dump_enabled_p ())
2114 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2115 "not consecutive access ");
2116 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2117 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2120 if (bb_vinfo)
2122 /* Mark the statement as unvectorizable. */
2123 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2124 return true;
2127 return false;
2130 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2132 /* First stmt in the interleaving chain. Check the chain. */
2133 gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2134 struct data_reference *data_ref = dr;
2135 unsigned int count = 1;
2136 tree prev_init = DR_INIT (data_ref);
2137 gimple prev = stmt;
2138 HOST_WIDE_INT diff, gaps = 0;
2140 while (next)
2142 /* Skip same data-refs. In case that two or more stmts share
2143 data-ref (supported only for loads), we vectorize only the first
2144 stmt, and the rest get their vectorized loads from the first
2145 one. */
2146 if (!tree_int_cst_compare (DR_INIT (data_ref),
2147 DR_INIT (STMT_VINFO_DATA_REF (
2148 vinfo_for_stmt (next)))))
2150 if (DR_IS_WRITE (data_ref))
2152 if (dump_enabled_p ())
2153 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2154 "Two store stmts share the same dr.\n");
2155 return false;
2158 /* For load use the same data-ref load. */
2159 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2161 prev = next;
2162 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2163 continue;
2166 prev = next;
2167 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2169 /* All group members have the same STEP by construction. */
2170 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2172 /* Check that the distance between two accesses is equal to the type
2173 size. Otherwise, we have gaps. */
2174 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2175 - TREE_INT_CST_LOW (prev_init)) / type_size;
2176 if (diff != 1)
2178 /* FORNOW: SLP of accesses with gaps is not supported. */
2179 slp_impossible = true;
2180 if (DR_IS_WRITE (data_ref))
2182 if (dump_enabled_p ())
2183 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2184 "interleaved store with gaps\n");
2185 return false;
2188 gaps += diff - 1;
2191 last_accessed_element += diff;
2193 /* Store the gap from the previous member of the group. If there is no
2194 gap in the access, GROUP_GAP is always 1. */
2195 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2197 prev_init = DR_INIT (data_ref);
2198 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2199 /* Count the number of data-refs in the chain. */
2200 count++;
2203 if (groupsize == 0)
2204 groupsize = count + gaps;
2206 /* Check that the size of the interleaving is equal to count for stores,
2207 i.e., that there are no gaps. */
2208 if (groupsize != count)
2210 if (DR_IS_READ (dr))
2212 slp_impossible = true;
2213 /* There is a gap after the last load in the group. This gap is a
2214 difference between the groupsize and the number of elements.
2215 When there is no gap, this difference should be 0. */
2216 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
2218 else
2220 if (dump_enabled_p ())
2221 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2222 "interleaved store with gaps\n");
2223 return false;
2227 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2228 if (dump_enabled_p ())
2229 dump_printf_loc (MSG_NOTE, vect_location,
2230 "Detected interleaving of size %d\n", (int)groupsize);
2232 /* SLP: create an SLP data structure for every interleaving group of
2233 stores for further analysis in vect_analyse_slp. */
2234 if (DR_IS_WRITE (dr) && !slp_impossible)
2236 if (loop_vinfo)
2237 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2238 if (bb_vinfo)
2239 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2242 /* There is a gap in the end of the group. */
2243 if (groupsize - last_accessed_element > 0 && loop_vinfo)
2245 if (dump_enabled_p ())
2246 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2247 "Data access with gaps requires scalar "
2248 "epilogue loop\n");
2249 if (loop->inner)
2251 if (dump_enabled_p ())
2252 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2253 "Peeling for outer loop is not supported\n");
2254 return false;
2257 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2261 return true;
2265 /* Analyze the access pattern of the data-reference DR.
2266 In case of non-consecutive accesses call vect_analyze_group_access() to
2267 analyze groups of accesses. */
2269 static bool
2270 vect_analyze_data_ref_access (struct data_reference *dr)
2272 tree step = DR_STEP (dr);
2273 tree scalar_type = TREE_TYPE (DR_REF (dr));
2274 gimple stmt = DR_STMT (dr);
2275 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2276 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2277 struct loop *loop = NULL;
2279 if (loop_vinfo)
2280 loop = LOOP_VINFO_LOOP (loop_vinfo);
2282 if (loop_vinfo && !step)
2284 if (dump_enabled_p ())
2285 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2286 "bad data-ref access in loop\n");
2287 return false;
2290 /* Allow invariant loads in not nested loops. */
2291 if (loop_vinfo && integer_zerop (step))
2293 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2294 if (nested_in_vect_loop_p (loop, stmt))
2296 if (dump_enabled_p ())
2297 dump_printf_loc (MSG_NOTE, vect_location,
2298 "zero step in inner loop of nest\n");
2299 return false;
2301 return DR_IS_READ (dr);
2304 if (loop && nested_in_vect_loop_p (loop, stmt))
2306 /* Interleaved accesses are not yet supported within outer-loop
2307 vectorization for references in the inner-loop. */
2308 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2310 /* For the rest of the analysis we use the outer-loop step. */
2311 step = STMT_VINFO_DR_STEP (stmt_info);
2312 if (integer_zerop (step))
2314 if (dump_enabled_p ())
2315 dump_printf_loc (MSG_NOTE, vect_location,
2316 "zero step in outer loop.\n");
2317 if (DR_IS_READ (dr))
2318 return true;
2319 else
2320 return false;
2324 /* Consecutive? */
2325 if (TREE_CODE (step) == INTEGER_CST)
2327 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2328 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2329 || (dr_step < 0
2330 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2332 /* Mark that it is not interleaving. */
2333 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2334 return true;
2338 if (loop && nested_in_vect_loop_p (loop, stmt))
2340 if (dump_enabled_p ())
2341 dump_printf_loc (MSG_NOTE, vect_location,
2342 "grouped access in outer loop.\n");
2343 return false;
2347 /* Assume this is a DR handled by non-constant strided load case. */
2348 if (TREE_CODE (step) != INTEGER_CST)
2349 return (STMT_VINFO_STRIDE_LOAD_P (stmt_info)
2350 && (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
2351 || vect_analyze_group_access (dr)));
2353 /* Not consecutive access - check if it's a part of interleaving group. */
2354 return vect_analyze_group_access (dr);
2359 /* A helper function used in the comparator function to sort data
2360 references. T1 and T2 are two data references to be compared.
2361 The function returns -1, 0, or 1. */
2363 static int
2364 compare_tree (tree t1, tree t2)
2366 int i, cmp;
2367 enum tree_code code;
2368 char tclass;
2370 if (t1 == t2)
2371 return 0;
2372 if (t1 == NULL)
2373 return -1;
2374 if (t2 == NULL)
2375 return 1;
2378 if (TREE_CODE (t1) != TREE_CODE (t2))
2379 return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
2381 code = TREE_CODE (t1);
2382 switch (code)
2384 /* For const values, we can just use hash values for comparisons. */
2385 case INTEGER_CST:
2386 case REAL_CST:
2387 case FIXED_CST:
2388 case STRING_CST:
2389 case COMPLEX_CST:
2390 case VECTOR_CST:
2392 hashval_t h1 = iterative_hash_expr (t1, 0);
2393 hashval_t h2 = iterative_hash_expr (t2, 0);
2394 if (h1 != h2)
2395 return h1 < h2 ? -1 : 1;
2396 break;
2399 case SSA_NAME:
2400 cmp = compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
2401 if (cmp != 0)
2402 return cmp;
2404 if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
2405 return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
2406 break;
2408 default:
2409 tclass = TREE_CODE_CLASS (code);
2411 /* For var-decl, we could compare their UIDs. */
2412 if (tclass == tcc_declaration)
2414 if (DECL_UID (t1) != DECL_UID (t2))
2415 return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
2416 break;
2419 /* For expressions with operands, compare their operands recursively. */
2420 for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
2422 cmp = compare_tree (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
2423 if (cmp != 0)
2424 return cmp;
2428 return 0;
2432 /* Compare two data-references DRA and DRB to group them into chunks
2433 suitable for grouping. */
2435 static int
2436 dr_group_sort_cmp (const void *dra_, const void *drb_)
2438 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2439 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
2440 int cmp;
2442 /* Stabilize sort. */
2443 if (dra == drb)
2444 return 0;
2446 /* Ordering of DRs according to base. */
2447 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0))
2449 cmp = compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb));
2450 if (cmp != 0)
2451 return cmp;
2454 /* And according to DR_OFFSET. */
2455 if (!dr_equal_offsets_p (dra, drb))
2457 cmp = compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2458 if (cmp != 0)
2459 return cmp;
2462 /* Put reads before writes. */
2463 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2464 return DR_IS_READ (dra) ? -1 : 1;
2466 /* Then sort after access size. */
2467 if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2468 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))), 0))
2470 cmp = compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2471 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2472 if (cmp != 0)
2473 return cmp;
2476 /* And after step. */
2477 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2479 cmp = compare_tree (DR_STEP (dra), DR_STEP (drb));
2480 if (cmp != 0)
2481 return cmp;
2484 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2485 cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
2486 if (cmp == 0)
2487 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2488 return cmp;
2491 /* Function vect_analyze_data_ref_accesses.
2493 Analyze the access pattern of all the data references in the loop.
2495 FORNOW: the only access pattern that is considered vectorizable is a
2496 simple step 1 (consecutive) access.
2498 FORNOW: handle only arrays and pointer accesses. */
2500 bool
2501 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
2503 unsigned int i;
2504 vec<data_reference_p> datarefs;
2505 struct data_reference *dr;
2507 if (dump_enabled_p ())
2508 dump_printf_loc (MSG_NOTE, vect_location,
2509 "=== vect_analyze_data_ref_accesses ===\n");
2511 if (loop_vinfo)
2512 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2513 else
2514 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
2516 if (datarefs.is_empty ())
2517 return true;
2519 /* Sort the array of datarefs to make building the interleaving chains
2520 linear. Don't modify the original vector's order, it is needed for
2521 determining what dependencies are reversed. */
2522 vec<data_reference_p> datarefs_copy = datarefs.copy ();
2523 datarefs_copy.qsort (dr_group_sort_cmp);
2525 /* Build the interleaving chains. */
2526 for (i = 0; i < datarefs_copy.length () - 1;)
2528 data_reference_p dra = datarefs_copy[i];
2529 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2530 stmt_vec_info lastinfo = NULL;
2531 for (i = i + 1; i < datarefs_copy.length (); ++i)
2533 data_reference_p drb = datarefs_copy[i];
2534 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2536 /* ??? Imperfect sorting (non-compatible types, non-modulo
2537 accesses, same accesses) can lead to a group to be artificially
2538 split here as we don't just skip over those. If it really
2539 matters we can push those to a worklist and re-iterate
2540 over them. The we can just skip ahead to the next DR here. */
2542 /* Check that the data-refs have same first location (except init)
2543 and they are both either store or load (not load and store,
2544 not masked loads or stores). */
2545 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2546 || !operand_equal_p (DR_BASE_ADDRESS (dra),
2547 DR_BASE_ADDRESS (drb), 0)
2548 || !dr_equal_offsets_p (dra, drb)
2549 || !gimple_assign_single_p (DR_STMT (dra))
2550 || !gimple_assign_single_p (DR_STMT (drb)))
2551 break;
2553 /* Check that the data-refs have the same constant size. */
2554 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2555 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
2556 if (!tree_fits_uhwi_p (sza)
2557 || !tree_fits_uhwi_p (szb)
2558 || !tree_int_cst_equal (sza, szb))
2559 break;
2561 /* Check that the data-refs have the same step. */
2562 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2563 break;
2565 /* Do not place the same access in the interleaving chain twice. */
2566 if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
2567 break;
2569 /* Check the types are compatible.
2570 ??? We don't distinguish this during sorting. */
2571 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
2572 TREE_TYPE (DR_REF (drb))))
2573 break;
2575 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2576 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
2577 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
2578 gcc_assert (init_a < init_b);
2580 /* If init_b == init_a + the size of the type * k, we have an
2581 interleaving, and DRA is accessed before DRB. */
2582 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
2583 if ((init_b - init_a) % type_size_a != 0)
2584 break;
2586 /* If we have a store, the accesses are adjacent. This splits
2587 groups into chunks we support (we don't support vectorization
2588 of stores with gaps). */
2589 if (!DR_IS_READ (dra)
2590 && (init_b - (HOST_WIDE_INT) TREE_INT_CST_LOW
2591 (DR_INIT (datarefs_copy[i-1]))
2592 != type_size_a))
2593 break;
2595 /* If the step (if not zero or non-constant) is greater than the
2596 difference between data-refs' inits this splits groups into
2597 suitable sizes. */
2598 if (tree_fits_shwi_p (DR_STEP (dra)))
2600 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
2601 if (step != 0 && step <= (init_b - init_a))
2602 break;
2605 if (dump_enabled_p ())
2607 dump_printf_loc (MSG_NOTE, vect_location,
2608 "Detected interleaving ");
2609 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2610 dump_printf (MSG_NOTE, " and ");
2611 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2612 dump_printf (MSG_NOTE, "\n");
2615 /* Link the found element into the group list. */
2616 if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
2618 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
2619 lastinfo = stmtinfo_a;
2621 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
2622 GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
2623 lastinfo = stmtinfo_b;
2627 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
2628 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2629 && !vect_analyze_data_ref_access (dr))
2631 if (dump_enabled_p ())
2632 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2633 "not vectorized: complicated access pattern.\n");
2635 if (bb_vinfo)
2637 /* Mark the statement as not vectorizable. */
2638 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2639 continue;
2641 else
2643 datarefs_copy.release ();
2644 return false;
2648 datarefs_copy.release ();
2649 return true;
2653 /* Operator == between two dr_with_seg_len objects.
2655 This equality operator is used to make sure two data refs
2656 are the same one so that we will consider to combine the
2657 aliasing checks of those two pairs of data dependent data
2658 refs. */
2660 static bool
2661 operator == (const dr_with_seg_len& d1,
2662 const dr_with_seg_len& d2)
2664 return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
2665 DR_BASE_ADDRESS (d2.dr), 0)
2666 && compare_tree (d1.offset, d2.offset) == 0
2667 && compare_tree (d1.seg_len, d2.seg_len) == 0;
2670 /* Function comp_dr_with_seg_len_pair.
2672 Comparison function for sorting objects of dr_with_seg_len_pair_t
2673 so that we can combine aliasing checks in one scan. */
2675 static int
2676 comp_dr_with_seg_len_pair (const void *p1_, const void *p2_)
2678 const dr_with_seg_len_pair_t* p1 = (const dr_with_seg_len_pair_t *) p1_;
2679 const dr_with_seg_len_pair_t* p2 = (const dr_with_seg_len_pair_t *) p2_;
2681 const dr_with_seg_len &p11 = p1->first,
2682 &p12 = p1->second,
2683 &p21 = p2->first,
2684 &p22 = p2->second;
2686 /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
2687 if a and c have the same basic address snd step, and b and d have the same
2688 address and step. Therefore, if any a&c or b&d don't have the same address
2689 and step, we don't care the order of those two pairs after sorting. */
2690 int comp_res;
2692 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p11.dr),
2693 DR_BASE_ADDRESS (p21.dr))) != 0)
2694 return comp_res;
2695 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p12.dr),
2696 DR_BASE_ADDRESS (p22.dr))) != 0)
2697 return comp_res;
2698 if ((comp_res = compare_tree (DR_STEP (p11.dr), DR_STEP (p21.dr))) != 0)
2699 return comp_res;
2700 if ((comp_res = compare_tree (DR_STEP (p12.dr), DR_STEP (p22.dr))) != 0)
2701 return comp_res;
2702 if ((comp_res = compare_tree (p11.offset, p21.offset)) != 0)
2703 return comp_res;
2704 if ((comp_res = compare_tree (p12.offset, p22.offset)) != 0)
2705 return comp_res;
2707 return 0;
2710 /* Function vect_vfa_segment_size.
2712 Create an expression that computes the size of segment
2713 that will be accessed for a data reference. The functions takes into
2714 account that realignment loads may access one more vector.
2716 Input:
2717 DR: The data reference.
2718 LENGTH_FACTOR: segment length to consider.
2720 Return an expression whose value is the size of segment which will be
2721 accessed by DR. */
2723 static tree
2724 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2726 tree segment_length;
2728 if (integer_zerop (DR_STEP (dr)))
2729 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2730 else
2731 segment_length = size_binop (MULT_EXPR,
2732 fold_convert (sizetype, DR_STEP (dr)),
2733 fold_convert (sizetype, length_factor));
2735 if (vect_supportable_dr_alignment (dr, false)
2736 == dr_explicit_realign_optimized)
2738 tree vector_size = TYPE_SIZE_UNIT
2739 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2741 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2743 return segment_length;
2746 /* Function vect_prune_runtime_alias_test_list.
2748 Prune a list of ddrs to be tested at run-time by versioning for alias.
2749 Merge several alias checks into one if possible.
2750 Return FALSE if resulting list of ddrs is longer then allowed by
2751 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2753 bool
2754 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2756 vec<ddr_p> may_alias_ddrs =
2757 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2758 vec<dr_with_seg_len_pair_t>& comp_alias_ddrs =
2759 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2760 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2761 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2763 ddr_p ddr;
2764 unsigned int i;
2765 tree length_factor;
2767 if (dump_enabled_p ())
2768 dump_printf_loc (MSG_NOTE, vect_location,
2769 "=== vect_prune_runtime_alias_test_list ===\n");
2771 if (may_alias_ddrs.is_empty ())
2772 return true;
2774 /* Basically, for each pair of dependent data refs store_ptr_0
2775 and load_ptr_0, we create an expression:
2777 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2778 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2780 for aliasing checks. However, in some cases we can decrease
2781 the number of checks by combining two checks into one. For
2782 example, suppose we have another pair of data refs store_ptr_0
2783 and load_ptr_1, and if the following condition is satisfied:
2785 load_ptr_0 < load_ptr_1 &&
2786 load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
2788 (this condition means, in each iteration of vectorized loop,
2789 the accessed memory of store_ptr_0 cannot be between the memory
2790 of load_ptr_0 and load_ptr_1.)
2792 we then can use only the following expression to finish the
2793 alising checks between store_ptr_0 & load_ptr_0 and
2794 store_ptr_0 & load_ptr_1:
2796 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2797 || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
2799 Note that we only consider that load_ptr_0 and load_ptr_1 have the
2800 same basic address. */
2802 comp_alias_ddrs.create (may_alias_ddrs.length ());
2804 /* First, we collect all data ref pairs for aliasing checks. */
2805 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
2807 struct data_reference *dr_a, *dr_b;
2808 gimple dr_group_first_a, dr_group_first_b;
2809 tree segment_length_a, segment_length_b;
2810 gimple stmt_a, stmt_b;
2812 dr_a = DDR_A (ddr);
2813 stmt_a = DR_STMT (DDR_A (ddr));
2814 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2815 if (dr_group_first_a)
2817 stmt_a = dr_group_first_a;
2818 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2821 dr_b = DDR_B (ddr);
2822 stmt_b = DR_STMT (DDR_B (ddr));
2823 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2824 if (dr_group_first_b)
2826 stmt_b = dr_group_first_b;
2827 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2830 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2831 length_factor = scalar_loop_iters;
2832 else
2833 length_factor = size_int (vect_factor);
2834 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2835 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2837 dr_with_seg_len_pair_t dr_with_seg_len_pair
2838 (dr_with_seg_len (dr_a, segment_length_a),
2839 dr_with_seg_len (dr_b, segment_length_b));
2841 if (compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)) > 0)
2842 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
2844 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
2847 /* Second, we sort the collected data ref pairs so that we can scan
2848 them once to combine all possible aliasing checks. */
2849 comp_alias_ddrs.qsort (comp_dr_with_seg_len_pair);
2851 /* Third, we scan the sorted dr pairs and check if we can combine
2852 alias checks of two neighbouring dr pairs. */
2853 for (size_t i = 1; i < comp_alias_ddrs.length (); ++i)
2855 /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
2856 dr_with_seg_len *dr_a1 = &comp_alias_ddrs[i-1].first,
2857 *dr_b1 = &comp_alias_ddrs[i-1].second,
2858 *dr_a2 = &comp_alias_ddrs[i].first,
2859 *dr_b2 = &comp_alias_ddrs[i].second;
2861 /* Remove duplicate data ref pairs. */
2862 if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
2864 if (dump_enabled_p ())
2866 dump_printf_loc (MSG_NOTE, vect_location,
2867 "found equal ranges ");
2868 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2869 DR_REF (dr_a1->dr));
2870 dump_printf (MSG_NOTE, ", ");
2871 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2872 DR_REF (dr_b1->dr));
2873 dump_printf (MSG_NOTE, " and ");
2874 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2875 DR_REF (dr_a2->dr));
2876 dump_printf (MSG_NOTE, ", ");
2877 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2878 DR_REF (dr_b2->dr));
2879 dump_printf (MSG_NOTE, "\n");
2882 comp_alias_ddrs.ordered_remove (i--);
2883 continue;
2886 if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
2888 /* We consider the case that DR_B1 and DR_B2 are same memrefs,
2889 and DR_A1 and DR_A2 are two consecutive memrefs. */
2890 if (*dr_a1 == *dr_a2)
2892 std::swap (dr_a1, dr_b1);
2893 std::swap (dr_a2, dr_b2);
2896 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
2897 DR_BASE_ADDRESS (dr_a2->dr),
2899 || !tree_fits_shwi_p (dr_a1->offset)
2900 || !tree_fits_shwi_p (dr_a2->offset))
2901 continue;
2903 HOST_WIDE_INT diff = (tree_to_shwi (dr_a2->offset)
2904 - tree_to_shwi (dr_a1->offset));
2907 /* Now we check if the following condition is satisfied:
2909 DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
2911 where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
2912 SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
2913 have to make a best estimation. We can get the minimum value
2914 of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
2915 then either of the following two conditions can guarantee the
2916 one above:
2918 1: DIFF <= MIN_SEG_LEN_B
2919 2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
2923 HOST_WIDE_INT min_seg_len_b = (tree_fits_shwi_p (dr_b1->seg_len)
2924 ? tree_to_shwi (dr_b1->seg_len)
2925 : vect_factor);
2927 if (diff <= min_seg_len_b
2928 || (tree_fits_shwi_p (dr_a1->seg_len)
2929 && diff - tree_to_shwi (dr_a1->seg_len) < min_seg_len_b))
2931 if (dump_enabled_p ())
2933 dump_printf_loc (MSG_NOTE, vect_location,
2934 "merging ranges for ");
2935 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2936 DR_REF (dr_a1->dr));
2937 dump_printf (MSG_NOTE, ", ");
2938 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2939 DR_REF (dr_b1->dr));
2940 dump_printf (MSG_NOTE, " and ");
2941 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2942 DR_REF (dr_a2->dr));
2943 dump_printf (MSG_NOTE, ", ");
2944 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2945 DR_REF (dr_b2->dr));
2946 dump_printf (MSG_NOTE, "\n");
2949 dr_a1->seg_len = size_binop (PLUS_EXPR,
2950 dr_a2->seg_len, size_int (diff));
2951 comp_alias_ddrs.ordered_remove (i--);
2956 dump_printf_loc (MSG_NOTE, vect_location,
2957 "improved number of alias checks from %d to %d\n",
2958 may_alias_ddrs.length (), comp_alias_ddrs.length ());
2959 if ((int) comp_alias_ddrs.length () >
2960 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
2961 return false;
2963 return true;
2966 /* Check whether a non-affine read in stmt is suitable for gather load
2967 and if so, return a builtin decl for that operation. */
2969 tree
2970 vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
2971 tree *offp, int *scalep)
2973 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
2974 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2975 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2976 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2977 tree offtype = NULL_TREE;
2978 tree decl, base, off;
2979 machine_mode pmode;
2980 int punsignedp, pvolatilep;
2982 base = DR_REF (dr);
2983 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
2984 see if we can use the def stmt of the address. */
2985 if (is_gimple_call (stmt)
2986 && gimple_call_internal_p (stmt)
2987 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2988 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
2989 && TREE_CODE (base) == MEM_REF
2990 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2991 && integer_zerop (TREE_OPERAND (base, 1))
2992 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
2994 gimple def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
2995 if (is_gimple_assign (def_stmt)
2996 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
2997 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
3000 /* The gather builtins need address of the form
3001 loop_invariant + vector * {1, 2, 4, 8}
3003 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3004 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3005 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3006 multiplications and additions in it. To get a vector, we need
3007 a single SSA_NAME that will be defined in the loop and will
3008 contain everything that is not loop invariant and that can be
3009 vectorized. The following code attempts to find such a preexistng
3010 SSA_NAME OFF and put the loop invariants into a tree BASE
3011 that can be gimplified before the loop. */
3012 base = get_inner_reference (base, &pbitsize, &pbitpos, &off,
3013 &pmode, &punsignedp, &pvolatilep, false);
3014 gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
3016 if (TREE_CODE (base) == MEM_REF)
3018 if (!integer_zerop (TREE_OPERAND (base, 1)))
3020 if (off == NULL_TREE)
3022 offset_int moff = mem_ref_offset (base);
3023 off = wide_int_to_tree (sizetype, moff);
3025 else
3026 off = size_binop (PLUS_EXPR, off,
3027 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3029 base = TREE_OPERAND (base, 0);
3031 else
3032 base = build_fold_addr_expr (base);
3034 if (off == NULL_TREE)
3035 off = size_zero_node;
3037 /* If base is not loop invariant, either off is 0, then we start with just
3038 the constant offset in the loop invariant BASE and continue with base
3039 as OFF, otherwise give up.
3040 We could handle that case by gimplifying the addition of base + off
3041 into some SSA_NAME and use that as off, but for now punt. */
3042 if (!expr_invariant_in_loop_p (loop, base))
3044 if (!integer_zerop (off))
3045 return NULL_TREE;
3046 off = base;
3047 base = size_int (pbitpos / BITS_PER_UNIT);
3049 /* Otherwise put base + constant offset into the loop invariant BASE
3050 and continue with OFF. */
3051 else
3053 base = fold_convert (sizetype, base);
3054 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
3057 /* OFF at this point may be either a SSA_NAME or some tree expression
3058 from get_inner_reference. Try to peel off loop invariants from it
3059 into BASE as long as possible. */
3060 STRIP_NOPS (off);
3061 while (offtype == NULL_TREE)
3063 enum tree_code code;
3064 tree op0, op1, add = NULL_TREE;
3066 if (TREE_CODE (off) == SSA_NAME)
3068 gimple def_stmt = SSA_NAME_DEF_STMT (off);
3070 if (expr_invariant_in_loop_p (loop, off))
3071 return NULL_TREE;
3073 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3074 break;
3076 op0 = gimple_assign_rhs1 (def_stmt);
3077 code = gimple_assign_rhs_code (def_stmt);
3078 op1 = gimple_assign_rhs2 (def_stmt);
3080 else
3082 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3083 return NULL_TREE;
3084 code = TREE_CODE (off);
3085 extract_ops_from_tree (off, &code, &op0, &op1);
3087 switch (code)
3089 case POINTER_PLUS_EXPR:
3090 case PLUS_EXPR:
3091 if (expr_invariant_in_loop_p (loop, op0))
3093 add = op0;
3094 off = op1;
3095 do_add:
3096 add = fold_convert (sizetype, add);
3097 if (scale != 1)
3098 add = size_binop (MULT_EXPR, add, size_int (scale));
3099 base = size_binop (PLUS_EXPR, base, add);
3100 continue;
3102 if (expr_invariant_in_loop_p (loop, op1))
3104 add = op1;
3105 off = op0;
3106 goto do_add;
3108 break;
3109 case MINUS_EXPR:
3110 if (expr_invariant_in_loop_p (loop, op1))
3112 add = fold_convert (sizetype, op1);
3113 add = size_binop (MINUS_EXPR, size_zero_node, add);
3114 off = op0;
3115 goto do_add;
3117 break;
3118 case MULT_EXPR:
3119 if (scale == 1 && tree_fits_shwi_p (op1))
3121 scale = tree_to_shwi (op1);
3122 off = op0;
3123 continue;
3125 break;
3126 case SSA_NAME:
3127 off = op0;
3128 continue;
3129 CASE_CONVERT:
3130 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3131 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3132 break;
3133 if (TYPE_PRECISION (TREE_TYPE (op0))
3134 == TYPE_PRECISION (TREE_TYPE (off)))
3136 off = op0;
3137 continue;
3139 if (TYPE_PRECISION (TREE_TYPE (op0))
3140 < TYPE_PRECISION (TREE_TYPE (off)))
3142 off = op0;
3143 offtype = TREE_TYPE (off);
3144 STRIP_NOPS (off);
3145 continue;
3147 break;
3148 default:
3149 break;
3151 break;
3154 /* If at the end OFF still isn't a SSA_NAME or isn't
3155 defined in the loop, punt. */
3156 if (TREE_CODE (off) != SSA_NAME
3157 || expr_invariant_in_loop_p (loop, off))
3158 return NULL_TREE;
3160 if (offtype == NULL_TREE)
3161 offtype = TREE_TYPE (off);
3163 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
3164 offtype, scale);
3165 if (decl == NULL_TREE)
3166 return NULL_TREE;
3168 if (basep)
3169 *basep = base;
3170 if (offp)
3171 *offp = off;
3172 if (scalep)
3173 *scalep = scale;
3174 return decl;
3177 /* Function vect_analyze_data_refs.
3179 Find all the data references in the loop or basic block.
3181 The general structure of the analysis of data refs in the vectorizer is as
3182 follows:
3183 1- vect_analyze_data_refs(loop/bb): call
3184 compute_data_dependences_for_loop/bb to find and analyze all data-refs
3185 in the loop/bb and their dependences.
3186 2- vect_analyze_dependences(): apply dependence testing using ddrs.
3187 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
3188 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
3192 bool
3193 vect_analyze_data_refs (loop_vec_info loop_vinfo,
3194 bb_vec_info bb_vinfo,
3195 int *min_vf, unsigned *n_stmts)
3197 struct loop *loop = NULL;
3198 basic_block bb = NULL;
3199 unsigned int i;
3200 vec<data_reference_p> datarefs;
3201 struct data_reference *dr;
3202 tree scalar_type;
3204 if (dump_enabled_p ())
3205 dump_printf_loc (MSG_NOTE, vect_location,
3206 "=== vect_analyze_data_refs ===\n");
3208 if (loop_vinfo)
3210 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
3212 loop = LOOP_VINFO_LOOP (loop_vinfo);
3213 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
3214 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
3216 if (dump_enabled_p ())
3217 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3218 "not vectorized: loop contains function calls"
3219 " or data references that cannot be analyzed\n");
3220 return false;
3223 for (i = 0; i < loop->num_nodes; i++)
3225 gimple_stmt_iterator gsi;
3227 for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
3229 gimple stmt = gsi_stmt (gsi);
3230 if (is_gimple_debug (stmt))
3231 continue;
3232 ++*n_stmts;
3233 if (!find_data_references_in_stmt (loop, stmt, &datarefs))
3235 if (is_gimple_call (stmt) && loop->safelen)
3237 tree fndecl = gimple_call_fndecl (stmt), op;
3238 if (fndecl != NULL_TREE)
3240 struct cgraph_node *node = cgraph_node::get (fndecl);
3241 if (node != NULL && node->simd_clones != NULL)
3243 unsigned int j, n = gimple_call_num_args (stmt);
3244 for (j = 0; j < n; j++)
3246 op = gimple_call_arg (stmt, j);
3247 if (DECL_P (op)
3248 || (REFERENCE_CLASS_P (op)
3249 && get_base_address (op)))
3250 break;
3252 op = gimple_call_lhs (stmt);
3253 /* Ignore #pragma omp declare simd functions
3254 if they don't have data references in the
3255 call stmt itself. */
3256 if (j == n
3257 && !(op
3258 && (DECL_P (op)
3259 || (REFERENCE_CLASS_P (op)
3260 && get_base_address (op)))))
3261 continue;
3265 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3266 if (dump_enabled_p ())
3267 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3268 "not vectorized: loop contains function "
3269 "calls or data references that cannot "
3270 "be analyzed\n");
3271 return false;
3276 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3278 else
3280 gimple_stmt_iterator gsi;
3282 bb = BB_VINFO_BB (bb_vinfo);
3283 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3285 gimple stmt = gsi_stmt (gsi);
3286 if (is_gimple_debug (stmt))
3287 continue;
3288 ++*n_stmts;
3289 if (!find_data_references_in_stmt (NULL, stmt,
3290 &BB_VINFO_DATAREFS (bb_vinfo)))
3292 /* Mark the rest of the basic-block as unvectorizable. */
3293 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3295 stmt = gsi_stmt (gsi);
3296 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
3298 break;
3302 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
3305 /* Go through the data-refs, check that the analysis succeeded. Update
3306 pointer from stmt_vec_info struct to DR and vectype. */
3308 FOR_EACH_VEC_ELT (datarefs, i, dr)
3310 gimple stmt;
3311 stmt_vec_info stmt_info;
3312 tree base, offset, init;
3313 bool gather = false;
3314 bool simd_lane_access = false;
3315 int vf;
3317 again:
3318 if (!dr || !DR_REF (dr))
3320 if (dump_enabled_p ())
3321 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3322 "not vectorized: unhandled data-ref\n");
3323 return false;
3326 stmt = DR_STMT (dr);
3327 stmt_info = vinfo_for_stmt (stmt);
3329 /* Discard clobbers from the dataref vector. We will remove
3330 clobber stmts during vectorization. */
3331 if (gimple_clobber_p (stmt))
3333 free_data_ref (dr);
3334 if (i == datarefs.length () - 1)
3336 datarefs.pop ();
3337 break;
3339 datarefs.ordered_remove (i);
3340 dr = datarefs[i];
3341 goto again;
3344 /* Check that analysis of the data-ref succeeded. */
3345 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3346 || !DR_STEP (dr))
3348 bool maybe_gather
3349 = DR_IS_READ (dr)
3350 && !TREE_THIS_VOLATILE (DR_REF (dr))
3351 && targetm.vectorize.builtin_gather != NULL;
3352 bool maybe_simd_lane_access
3353 = loop_vinfo && loop->simduid;
3355 /* If target supports vector gather loads, or if this might be
3356 a SIMD lane access, see if they can't be used. */
3357 if (loop_vinfo
3358 && (maybe_gather || maybe_simd_lane_access)
3359 && !nested_in_vect_loop_p (loop, stmt))
3361 struct data_reference *newdr
3362 = create_data_ref (NULL, loop_containing_stmt (stmt),
3363 DR_REF (dr), stmt, true);
3364 gcc_assert (newdr != NULL && DR_REF (newdr));
3365 if (DR_BASE_ADDRESS (newdr)
3366 && DR_OFFSET (newdr)
3367 && DR_INIT (newdr)
3368 && DR_STEP (newdr)
3369 && integer_zerop (DR_STEP (newdr)))
3371 if (maybe_simd_lane_access)
3373 tree off = DR_OFFSET (newdr);
3374 STRIP_NOPS (off);
3375 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
3376 && TREE_CODE (off) == MULT_EXPR
3377 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
3379 tree step = TREE_OPERAND (off, 1);
3380 off = TREE_OPERAND (off, 0);
3381 STRIP_NOPS (off);
3382 if (CONVERT_EXPR_P (off)
3383 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
3384 0)))
3385 < TYPE_PRECISION (TREE_TYPE (off)))
3386 off = TREE_OPERAND (off, 0);
3387 if (TREE_CODE (off) == SSA_NAME)
3389 gimple def = SSA_NAME_DEF_STMT (off);
3390 tree reft = TREE_TYPE (DR_REF (newdr));
3391 if (is_gimple_call (def)
3392 && gimple_call_internal_p (def)
3393 && (gimple_call_internal_fn (def)
3394 == IFN_GOMP_SIMD_LANE))
3396 tree arg = gimple_call_arg (def, 0);
3397 gcc_assert (TREE_CODE (arg) == SSA_NAME);
3398 arg = SSA_NAME_VAR (arg);
3399 if (arg == loop->simduid
3400 /* For now. */
3401 && tree_int_cst_equal
3402 (TYPE_SIZE_UNIT (reft),
3403 step))
3405 DR_OFFSET (newdr) = ssize_int (0);
3406 DR_STEP (newdr) = step;
3407 DR_ALIGNED_TO (newdr)
3408 = size_int (BIGGEST_ALIGNMENT);
3409 dr = newdr;
3410 simd_lane_access = true;
3416 if (!simd_lane_access && maybe_gather)
3418 dr = newdr;
3419 gather = true;
3422 if (!gather && !simd_lane_access)
3423 free_data_ref (newdr);
3426 if (!gather && !simd_lane_access)
3428 if (dump_enabled_p ())
3430 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3431 "not vectorized: data ref analysis "
3432 "failed ");
3433 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3434 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3437 if (bb_vinfo)
3438 break;
3440 return false;
3444 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3446 if (dump_enabled_p ())
3447 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3448 "not vectorized: base addr of dr is a "
3449 "constant\n");
3451 if (bb_vinfo)
3452 break;
3454 if (gather || simd_lane_access)
3455 free_data_ref (dr);
3456 return false;
3459 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3461 if (dump_enabled_p ())
3463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3464 "not vectorized: volatile type ");
3465 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3466 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3469 if (bb_vinfo)
3470 break;
3472 return false;
3475 if (stmt_can_throw_internal (stmt))
3477 if (dump_enabled_p ())
3479 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3480 "not vectorized: statement can throw an "
3481 "exception ");
3482 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3483 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3486 if (bb_vinfo)
3487 break;
3489 if (gather || simd_lane_access)
3490 free_data_ref (dr);
3491 return false;
3494 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3495 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3497 if (dump_enabled_p ())
3499 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3500 "not vectorized: statement is bitfield "
3501 "access ");
3502 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3503 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3506 if (bb_vinfo)
3507 break;
3509 if (gather || simd_lane_access)
3510 free_data_ref (dr);
3511 return false;
3514 base = unshare_expr (DR_BASE_ADDRESS (dr));
3515 offset = unshare_expr (DR_OFFSET (dr));
3516 init = unshare_expr (DR_INIT (dr));
3518 if (is_gimple_call (stmt)
3519 && (!gimple_call_internal_p (stmt)
3520 || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
3521 && gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
3523 if (dump_enabled_p ())
3525 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3526 "not vectorized: dr in a call ");
3527 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3528 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3531 if (bb_vinfo)
3532 break;
3534 if (gather || simd_lane_access)
3535 free_data_ref (dr);
3536 return false;
3539 /* Update DR field in stmt_vec_info struct. */
3541 /* If the dataref is in an inner-loop of the loop that is considered for
3542 for vectorization, we also want to analyze the access relative to
3543 the outer-loop (DR contains information only relative to the
3544 inner-most enclosing loop). We do that by building a reference to the
3545 first location accessed by the inner-loop, and analyze it relative to
3546 the outer-loop. */
3547 if (loop && nested_in_vect_loop_p (loop, stmt))
3549 tree outer_step, outer_base, outer_init;
3550 HOST_WIDE_INT pbitsize, pbitpos;
3551 tree poffset;
3552 machine_mode pmode;
3553 int punsignedp, pvolatilep;
3554 affine_iv base_iv, offset_iv;
3555 tree dinit;
3557 /* Build a reference to the first location accessed by the
3558 inner-loop: *(BASE+INIT). (The first location is actually
3559 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3560 tree inner_base = build_fold_indirect_ref
3561 (fold_build_pointer_plus (base, init));
3563 if (dump_enabled_p ())
3565 dump_printf_loc (MSG_NOTE, vect_location,
3566 "analyze in outer-loop: ");
3567 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
3568 dump_printf (MSG_NOTE, "\n");
3571 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
3572 &poffset, &pmode, &punsignedp, &pvolatilep, false);
3573 gcc_assert (outer_base != NULL_TREE);
3575 if (pbitpos % BITS_PER_UNIT != 0)
3577 if (dump_enabled_p ())
3578 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3579 "failed: bit offset alignment.\n");
3580 return false;
3583 outer_base = build_fold_addr_expr (outer_base);
3584 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
3585 &base_iv, false))
3587 if (dump_enabled_p ())
3588 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3589 "failed: evolution of base is not affine.\n");
3590 return false;
3593 if (offset)
3595 if (poffset)
3596 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
3597 poffset);
3598 else
3599 poffset = offset;
3602 if (!poffset)
3604 offset_iv.base = ssize_int (0);
3605 offset_iv.step = ssize_int (0);
3607 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
3608 &offset_iv, false))
3610 if (dump_enabled_p ())
3611 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3612 "evolution of offset is not affine.\n");
3613 return false;
3616 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3617 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3618 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3619 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3620 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3622 outer_step = size_binop (PLUS_EXPR,
3623 fold_convert (ssizetype, base_iv.step),
3624 fold_convert (ssizetype, offset_iv.step));
3626 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3627 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3628 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
3629 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
3630 STMT_VINFO_DR_OFFSET (stmt_info) =
3631 fold_convert (ssizetype, offset_iv.base);
3632 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
3633 size_int (highest_pow2_factor (offset_iv.base));
3635 if (dump_enabled_p ())
3637 dump_printf_loc (MSG_NOTE, vect_location,
3638 "\touter base_address: ");
3639 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3640 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3641 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3642 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3643 STMT_VINFO_DR_OFFSET (stmt_info));
3644 dump_printf (MSG_NOTE,
3645 "\n\touter constant offset from base address: ");
3646 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3647 STMT_VINFO_DR_INIT (stmt_info));
3648 dump_printf (MSG_NOTE, "\n\touter step: ");
3649 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3650 STMT_VINFO_DR_STEP (stmt_info));
3651 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3652 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3653 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
3654 dump_printf (MSG_NOTE, "\n");
3658 if (STMT_VINFO_DATA_REF (stmt_info))
3660 if (dump_enabled_p ())
3662 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3663 "not vectorized: more than one data ref "
3664 "in stmt: ");
3665 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3666 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3669 if (bb_vinfo)
3670 break;
3672 if (gather || simd_lane_access)
3673 free_data_ref (dr);
3674 return false;
3677 STMT_VINFO_DATA_REF (stmt_info) = dr;
3678 if (simd_lane_access)
3680 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
3681 free_data_ref (datarefs[i]);
3682 datarefs[i] = dr;
3685 /* Set vectype for STMT. */
3686 scalar_type = TREE_TYPE (DR_REF (dr));
3687 STMT_VINFO_VECTYPE (stmt_info)
3688 = get_vectype_for_scalar_type (scalar_type);
3689 if (!STMT_VINFO_VECTYPE (stmt_info))
3691 if (dump_enabled_p ())
3693 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3694 "not vectorized: no vectype for stmt: ");
3695 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3696 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3697 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3698 scalar_type);
3699 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3702 if (bb_vinfo)
3703 break;
3705 if (gather || simd_lane_access)
3707 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3708 if (gather)
3709 free_data_ref (dr);
3711 return false;
3713 else
3715 if (dump_enabled_p ())
3717 dump_printf_loc (MSG_NOTE, vect_location,
3718 "got vectype for stmt: ");
3719 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3720 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3721 STMT_VINFO_VECTYPE (stmt_info));
3722 dump_printf (MSG_NOTE, "\n");
3726 /* Adjust the minimal vectorization factor according to the
3727 vector type. */
3728 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3729 if (vf > *min_vf)
3730 *min_vf = vf;
3732 if (gather)
3734 tree off;
3736 gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
3737 if (gather
3738 && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3739 gather = false;
3740 if (!gather)
3742 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3743 free_data_ref (dr);
3744 if (dump_enabled_p ())
3746 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3747 "not vectorized: not suitable for gather "
3748 "load ");
3749 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3750 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3752 return false;
3755 datarefs[i] = dr;
3756 STMT_VINFO_GATHER_P (stmt_info) = true;
3758 else if (loop_vinfo
3759 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3761 if (nested_in_vect_loop_p (loop, stmt)
3762 || !DR_IS_READ (dr))
3764 if (dump_enabled_p ())
3766 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3767 "not vectorized: not suitable for strided "
3768 "load ");
3769 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3770 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3772 return false;
3774 STMT_VINFO_STRIDE_LOAD_P (stmt_info) = true;
3778 /* If we stopped analysis at the first dataref we could not analyze
3779 when trying to vectorize a basic-block mark the rest of the datarefs
3780 as not vectorizable and truncate the vector of datarefs. That
3781 avoids spending useless time in analyzing their dependence. */
3782 if (i != datarefs.length ())
3784 gcc_assert (bb_vinfo != NULL);
3785 for (unsigned j = i; j < datarefs.length (); ++j)
3787 data_reference_p dr = datarefs[j];
3788 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
3789 free_data_ref (dr);
3791 datarefs.truncate (i);
3794 return true;
3798 /* Function vect_get_new_vect_var.
3800 Returns a name for a new variable. The current naming scheme appends the
3801 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3802 the name of vectorizer generated variables, and appends that to NAME if
3803 provided. */
3805 tree
3806 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3808 const char *prefix;
3809 tree new_vect_var;
3811 switch (var_kind)
3813 case vect_simple_var:
3814 prefix = "vect";
3815 break;
3816 case vect_scalar_var:
3817 prefix = "stmp";
3818 break;
3819 case vect_pointer_var:
3820 prefix = "vectp";
3821 break;
3822 default:
3823 gcc_unreachable ();
3826 if (name)
3828 char* tmp = concat (prefix, "_", name, NULL);
3829 new_vect_var = create_tmp_reg (type, tmp);
3830 free (tmp);
3832 else
3833 new_vect_var = create_tmp_reg (type, prefix);
3835 return new_vect_var;
3838 /* Duplicate ptr info and set alignment/misaligment on NAME from DR. */
3840 static void
3841 vect_duplicate_ssa_name_ptr_info (tree name, data_reference *dr,
3842 stmt_vec_info stmt_info)
3844 duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr));
3845 unsigned int align = TYPE_ALIGN_UNIT (STMT_VINFO_VECTYPE (stmt_info));
3846 int misalign = DR_MISALIGNMENT (dr);
3847 if (misalign == -1)
3848 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
3849 else
3850 set_ptr_info_alignment (SSA_NAME_PTR_INFO (name), align, misalign);
3853 /* Function vect_create_addr_base_for_vector_ref.
3855 Create an expression that computes the address of the first memory location
3856 that will be accessed for a data reference.
3858 Input:
3859 STMT: The statement containing the data reference.
3860 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3861 OFFSET: Optional. If supplied, it is be added to the initial address.
3862 LOOP: Specify relative to which loop-nest should the address be computed.
3863 For example, when the dataref is in an inner-loop nested in an
3864 outer-loop that is now being vectorized, LOOP can be either the
3865 outer-loop, or the inner-loop. The first memory location accessed
3866 by the following dataref ('in' points to short):
3868 for (i=0; i<N; i++)
3869 for (j=0; j<M; j++)
3870 s += in[i+j]
3872 is as follows:
3873 if LOOP=i_loop: &in (relative to i_loop)
3874 if LOOP=j_loop: &in+i*2B (relative to j_loop)
3875 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
3876 initial address. Unlike OFFSET, which is number of elements to
3877 be added, BYTE_OFFSET is measured in bytes.
3879 Output:
3880 1. Return an SSA_NAME whose value is the address of the memory location of
3881 the first vector of the data reference.
3882 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3883 these statement(s) which define the returned SSA_NAME.
3885 FORNOW: We are only handling array accesses with step 1. */
3887 tree
3888 vect_create_addr_base_for_vector_ref (gimple stmt,
3889 gimple_seq *new_stmt_list,
3890 tree offset,
3891 struct loop *loop,
3892 tree byte_offset)
3894 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3895 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3896 tree data_ref_base;
3897 const char *base_name;
3898 tree addr_base;
3899 tree dest;
3900 gimple_seq seq = NULL;
3901 tree base_offset;
3902 tree init;
3903 tree vect_ptr_type;
3904 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
3905 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3907 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
3909 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
3911 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
3913 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3914 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
3915 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
3917 else
3919 data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
3920 base_offset = unshare_expr (DR_OFFSET (dr));
3921 init = unshare_expr (DR_INIT (dr));
3924 if (loop_vinfo)
3925 base_name = get_name (data_ref_base);
3926 else
3928 base_offset = ssize_int (0);
3929 init = ssize_int (0);
3930 base_name = get_name (DR_REF (dr));
3933 /* Create base_offset */
3934 base_offset = size_binop (PLUS_EXPR,
3935 fold_convert (sizetype, base_offset),
3936 fold_convert (sizetype, init));
3938 if (offset)
3940 offset = fold_build2 (MULT_EXPR, sizetype,
3941 fold_convert (sizetype, offset), step);
3942 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3943 base_offset, offset);
3945 if (byte_offset)
3947 byte_offset = fold_convert (sizetype, byte_offset);
3948 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3949 base_offset, byte_offset);
3952 /* base + base_offset */
3953 if (loop_vinfo)
3954 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
3955 else
3957 addr_base = build1 (ADDR_EXPR,
3958 build_pointer_type (TREE_TYPE (DR_REF (dr))),
3959 unshare_expr (DR_REF (dr)));
3962 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
3963 addr_base = fold_convert (vect_ptr_type, addr_base);
3964 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
3965 addr_base = force_gimple_operand (addr_base, &seq, false, dest);
3966 gimple_seq_add_seq (new_stmt_list, seq);
3968 if (DR_PTR_INFO (dr)
3969 && TREE_CODE (addr_base) == SSA_NAME)
3971 vect_duplicate_ssa_name_ptr_info (addr_base, dr, stmt_info);
3972 if (offset || byte_offset)
3973 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
3976 if (dump_enabled_p ())
3978 dump_printf_loc (MSG_NOTE, vect_location, "created ");
3979 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
3980 dump_printf (MSG_NOTE, "\n");
3983 return addr_base;
3987 /* Function vect_create_data_ref_ptr.
3989 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
3990 location accessed in the loop by STMT, along with the def-use update
3991 chain to appropriately advance the pointer through the loop iterations.
3992 Also set aliasing information for the pointer. This pointer is used by
3993 the callers to this function to create a memory reference expression for
3994 vector load/store access.
3996 Input:
3997 1. STMT: a stmt that references memory. Expected to be of the form
3998 GIMPLE_ASSIGN <name, data-ref> or
3999 GIMPLE_ASSIGN <data-ref, name>.
4000 2. AGGR_TYPE: the type of the reference, which should be either a vector
4001 or an array.
4002 3. AT_LOOP: the loop where the vector memref is to be created.
4003 4. OFFSET (optional): an offset to be added to the initial address accessed
4004 by the data-ref in STMT.
4005 5. BSI: location where the new stmts are to be placed if there is no loop
4006 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4007 pointing to the initial address.
4008 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
4009 to the initial address accessed by the data-ref in STMT. This is
4010 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
4011 in bytes.
4013 Output:
4014 1. Declare a new ptr to vector_type, and have it point to the base of the
4015 data reference (initial addressed accessed by the data reference).
4016 For example, for vector of type V8HI, the following code is generated:
4018 v8hi *ap;
4019 ap = (v8hi *)initial_address;
4021 if OFFSET is not supplied:
4022 initial_address = &a[init];
4023 if OFFSET is supplied:
4024 initial_address = &a[init + OFFSET];
4025 if BYTE_OFFSET is supplied:
4026 initial_address = &a[init] + BYTE_OFFSET;
4028 Return the initial_address in INITIAL_ADDRESS.
4030 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4031 update the pointer in each iteration of the loop.
4033 Return the increment stmt that updates the pointer in PTR_INCR.
4035 3. Set INV_P to true if the access pattern of the data reference in the
4036 vectorized loop is invariant. Set it to false otherwise.
4038 4. Return the pointer. */
4040 tree
4041 vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
4042 tree offset, tree *initial_address,
4043 gimple_stmt_iterator *gsi, gimple *ptr_incr,
4044 bool only_init, bool *inv_p, tree byte_offset)
4046 const char *base_name;
4047 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4048 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4049 struct loop *loop = NULL;
4050 bool nested_in_vect_loop = false;
4051 struct loop *containing_loop = NULL;
4052 tree aggr_ptr_type;
4053 tree aggr_ptr;
4054 tree new_temp;
4055 gimple vec_stmt;
4056 gimple_seq new_stmt_list = NULL;
4057 edge pe = NULL;
4058 basic_block new_bb;
4059 tree aggr_ptr_init;
4060 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4061 tree aptr;
4062 gimple_stmt_iterator incr_gsi;
4063 bool insert_after;
4064 tree indx_before_incr, indx_after_incr;
4065 gimple incr;
4066 tree step;
4067 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4069 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
4070 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4072 if (loop_vinfo)
4074 loop = LOOP_VINFO_LOOP (loop_vinfo);
4075 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4076 containing_loop = (gimple_bb (stmt))->loop_father;
4077 pe = loop_preheader_edge (loop);
4079 else
4081 gcc_assert (bb_vinfo);
4082 only_init = true;
4083 *ptr_incr = NULL;
4086 /* Check the step (evolution) of the load in LOOP, and record
4087 whether it's invariant. */
4088 if (nested_in_vect_loop)
4089 step = STMT_VINFO_DR_STEP (stmt_info);
4090 else
4091 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
4093 if (integer_zerop (step))
4094 *inv_p = true;
4095 else
4096 *inv_p = false;
4098 /* Create an expression for the first address accessed by this load
4099 in LOOP. */
4100 base_name = get_name (DR_BASE_ADDRESS (dr));
4102 if (dump_enabled_p ())
4104 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4105 dump_printf_loc (MSG_NOTE, vect_location,
4106 "create %s-pointer variable to type: ",
4107 get_tree_code_name (TREE_CODE (aggr_type)));
4108 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
4109 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4110 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4111 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4112 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4113 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4114 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4115 else
4116 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4117 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
4118 dump_printf (MSG_NOTE, "\n");
4121 /* (1) Create the new aggregate-pointer variable.
4122 Vector and array types inherit the alias set of their component
4123 type by default so we need to use a ref-all pointer if the data
4124 reference does not conflict with the created aggregated data
4125 reference because it is not addressable. */
4126 bool need_ref_all = false;
4127 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4128 get_alias_set (DR_REF (dr))))
4129 need_ref_all = true;
4130 /* Likewise for any of the data references in the stmt group. */
4131 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
4133 gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
4136 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4137 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4138 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4139 get_alias_set (DR_REF (sdr))))
4141 need_ref_all = true;
4142 break;
4144 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
4146 while (orig_stmt);
4148 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4149 need_ref_all);
4150 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4153 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4154 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4155 def-use update cycles for the pointer: one relative to the outer-loop
4156 (LOOP), which is what steps (3) and (4) below do. The other is relative
4157 to the inner-loop (which is the inner-most loop containing the dataref),
4158 and this is done be step (5) below.
4160 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4161 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4162 redundant. Steps (3),(4) create the following:
4164 vp0 = &base_addr;
4165 LOOP: vp1 = phi(vp0,vp2)
4168 vp2 = vp1 + step
4169 goto LOOP
4171 If there is an inner-loop nested in loop, then step (5) will also be
4172 applied, and an additional update in the inner-loop will be created:
4174 vp0 = &base_addr;
4175 LOOP: vp1 = phi(vp0,vp2)
4177 inner: vp3 = phi(vp1,vp4)
4178 vp4 = vp3 + inner_step
4179 if () goto inner
4181 vp2 = vp1 + step
4182 if () goto LOOP */
4184 /* (2) Calculate the initial address of the aggregate-pointer, and set
4185 the aggregate-pointer to point to it before the loop. */
4187 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
4189 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
4190 offset, loop, byte_offset);
4191 if (new_stmt_list)
4193 if (pe)
4195 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4196 gcc_assert (!new_bb);
4198 else
4199 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
4202 *initial_address = new_temp;
4204 /* Create: p = (aggr_type *) initial_base */
4205 if (TREE_CODE (new_temp) != SSA_NAME
4206 || !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
4208 vec_stmt = gimple_build_assign (aggr_ptr,
4209 fold_convert (aggr_ptr_type, new_temp));
4210 aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
4211 /* Copy the points-to information if it exists. */
4212 if (DR_PTR_INFO (dr))
4213 vect_duplicate_ssa_name_ptr_info (aggr_ptr_init, dr, stmt_info);
4214 gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
4215 if (pe)
4217 new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
4218 gcc_assert (!new_bb);
4220 else
4221 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
4223 else
4224 aggr_ptr_init = new_temp;
4226 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4227 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4228 inner-loop nested in LOOP (during outer-loop vectorization). */
4230 /* No update in loop is required. */
4231 if (only_init && (!loop_vinfo || at_loop == loop))
4232 aptr = aggr_ptr_init;
4233 else
4235 /* The step of the aggregate pointer is the type size. */
4236 tree iv_step = TYPE_SIZE_UNIT (aggr_type);
4237 /* One exception to the above is when the scalar step of the load in
4238 LOOP is zero. In this case the step here is also zero. */
4239 if (*inv_p)
4240 iv_step = size_zero_node;
4241 else if (tree_int_cst_sgn (step) == -1)
4242 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
4244 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4246 create_iv (aggr_ptr_init,
4247 fold_convert (aggr_ptr_type, iv_step),
4248 aggr_ptr, loop, &incr_gsi, insert_after,
4249 &indx_before_incr, &indx_after_incr);
4250 incr = gsi_stmt (incr_gsi);
4251 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4253 /* Copy the points-to information if it exists. */
4254 if (DR_PTR_INFO (dr))
4256 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr, stmt_info);
4257 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr, stmt_info);
4259 if (ptr_incr)
4260 *ptr_incr = incr;
4262 aptr = indx_before_incr;
4265 if (!nested_in_vect_loop || only_init)
4266 return aptr;
4269 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4270 nested in LOOP, if exists. */
4272 gcc_assert (nested_in_vect_loop);
4273 if (!only_init)
4275 standard_iv_increment_position (containing_loop, &incr_gsi,
4276 &insert_after);
4277 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
4278 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4279 &indx_after_incr);
4280 incr = gsi_stmt (incr_gsi);
4281 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4283 /* Copy the points-to information if it exists. */
4284 if (DR_PTR_INFO (dr))
4286 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr, stmt_info);
4287 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr, stmt_info);
4289 if (ptr_incr)
4290 *ptr_incr = incr;
4292 return indx_before_incr;
4294 else
4295 gcc_unreachable ();
4299 /* Function bump_vector_ptr
4301 Increment a pointer (to a vector type) by vector-size. If requested,
4302 i.e. if PTR-INCR is given, then also connect the new increment stmt
4303 to the existing def-use update-chain of the pointer, by modifying
4304 the PTR_INCR as illustrated below:
4306 The pointer def-use update-chain before this function:
4307 DATAREF_PTR = phi (p_0, p_2)
4308 ....
4309 PTR_INCR: p_2 = DATAREF_PTR + step
4311 The pointer def-use update-chain after this function:
4312 DATAREF_PTR = phi (p_0, p_2)
4313 ....
4314 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4315 ....
4316 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4318 Input:
4319 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4320 in the loop.
4321 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4322 the loop. The increment amount across iterations is expected
4323 to be vector_size.
4324 BSI - location where the new update stmt is to be placed.
4325 STMT - the original scalar memory-access stmt that is being vectorized.
4326 BUMP - optional. The offset by which to bump the pointer. If not given,
4327 the offset is assumed to be vector_size.
4329 Output: Return NEW_DATAREF_PTR as illustrated above.
4333 tree
4334 bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
4335 gimple stmt, tree bump)
4337 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4338 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4339 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4340 tree update = TYPE_SIZE_UNIT (vectype);
4341 gassign *incr_stmt;
4342 ssa_op_iter iter;
4343 use_operand_p use_p;
4344 tree new_dataref_ptr;
4346 if (bump)
4347 update = bump;
4349 new_dataref_ptr = copy_ssa_name (dataref_ptr);
4350 incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
4351 dataref_ptr, update);
4352 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4354 /* Copy the points-to information if it exists. */
4355 if (DR_PTR_INFO (dr))
4357 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4358 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4361 if (!ptr_incr)
4362 return new_dataref_ptr;
4364 /* Update the vector-pointer's cross-iteration increment. */
4365 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4367 tree use = USE_FROM_PTR (use_p);
4369 if (use == dataref_ptr)
4370 SET_USE (use_p, new_dataref_ptr);
4371 else
4372 gcc_assert (tree_int_cst_compare (use, update) == 0);
4375 return new_dataref_ptr;
4379 /* Function vect_create_destination_var.
4381 Create a new temporary of type VECTYPE. */
4383 tree
4384 vect_create_destination_var (tree scalar_dest, tree vectype)
4386 tree vec_dest;
4387 const char *name;
4388 char *new_name;
4389 tree type;
4390 enum vect_var_kind kind;
4392 kind = vectype ? vect_simple_var : vect_scalar_var;
4393 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4395 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4397 name = get_name (scalar_dest);
4398 if (name)
4399 new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
4400 else
4401 new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
4402 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4403 free (new_name);
4405 return vec_dest;
4408 /* Function vect_grouped_store_supported.
4410 Returns TRUE if interleave high and interleave low permutations
4411 are supported, and FALSE otherwise. */
4413 bool
4414 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4416 machine_mode mode = TYPE_MODE (vectype);
4418 /* vect_permute_store_chain requires the group size to be equal to 3 or
4419 be a power of two. */
4420 if (count != 3 && exact_log2 (count) == -1)
4422 if (dump_enabled_p ())
4423 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4424 "the size of the group of accesses"
4425 " is not a power of 2 or not eqaul to 3\n");
4426 return false;
4429 /* Check that the permutation is supported. */
4430 if (VECTOR_MODE_P (mode))
4432 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4433 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4435 if (count == 3)
4437 unsigned int j0 = 0, j1 = 0, j2 = 0;
4438 unsigned int i, j;
4440 for (j = 0; j < 3; j++)
4442 int nelt0 = ((3 - j) * nelt) % 3;
4443 int nelt1 = ((3 - j) * nelt + 1) % 3;
4444 int nelt2 = ((3 - j) * nelt + 2) % 3;
4445 for (i = 0; i < nelt; i++)
4447 if (3 * i + nelt0 < nelt)
4448 sel[3 * i + nelt0] = j0++;
4449 if (3 * i + nelt1 < nelt)
4450 sel[3 * i + nelt1] = nelt + j1++;
4451 if (3 * i + nelt2 < nelt)
4452 sel[3 * i + nelt2] = 0;
4454 if (!can_vec_perm_p (mode, false, sel))
4456 if (dump_enabled_p ())
4457 dump_printf (MSG_MISSED_OPTIMIZATION,
4458 "permutaion op not supported by target.\n");
4459 return false;
4462 for (i = 0; i < nelt; i++)
4464 if (3 * i + nelt0 < nelt)
4465 sel[3 * i + nelt0] = 3 * i + nelt0;
4466 if (3 * i + nelt1 < nelt)
4467 sel[3 * i + nelt1] = 3 * i + nelt1;
4468 if (3 * i + nelt2 < nelt)
4469 sel[3 * i + nelt2] = nelt + j2++;
4471 if (!can_vec_perm_p (mode, false, sel))
4473 if (dump_enabled_p ())
4474 dump_printf (MSG_MISSED_OPTIMIZATION,
4475 "permutaion op not supported by target.\n");
4476 return false;
4479 return true;
4481 else
4483 /* If length is not equal to 3 then only power of 2 is supported. */
4484 gcc_assert (exact_log2 (count) != -1);
4486 for (i = 0; i < nelt / 2; i++)
4488 sel[i * 2] = i;
4489 sel[i * 2 + 1] = i + nelt;
4491 if (can_vec_perm_p (mode, false, sel))
4493 for (i = 0; i < nelt; i++)
4494 sel[i] += nelt / 2;
4495 if (can_vec_perm_p (mode, false, sel))
4496 return true;
4501 if (dump_enabled_p ())
4502 dump_printf (MSG_MISSED_OPTIMIZATION,
4503 "permutaion op not supported by target.\n");
4504 return false;
4508 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4509 type VECTYPE. */
4511 bool
4512 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4514 return vect_lanes_optab_supported_p ("vec_store_lanes",
4515 vec_store_lanes_optab,
4516 vectype, count);
4520 /* Function vect_permute_store_chain.
4522 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4523 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
4524 the data correctly for the stores. Return the final references for stores
4525 in RESULT_CHAIN.
4527 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4528 The input is 4 vectors each containing 8 elements. We assign a number to
4529 each element, the input sequence is:
4531 1st vec: 0 1 2 3 4 5 6 7
4532 2nd vec: 8 9 10 11 12 13 14 15
4533 3rd vec: 16 17 18 19 20 21 22 23
4534 4th vec: 24 25 26 27 28 29 30 31
4536 The output sequence should be:
4538 1st vec: 0 8 16 24 1 9 17 25
4539 2nd vec: 2 10 18 26 3 11 19 27
4540 3rd vec: 4 12 20 28 5 13 21 30
4541 4th vec: 6 14 22 30 7 15 23 31
4543 i.e., we interleave the contents of the four vectors in their order.
4545 We use interleave_high/low instructions to create such output. The input of
4546 each interleave_high/low operation is two vectors:
4547 1st vec 2nd vec
4548 0 1 2 3 4 5 6 7
4549 the even elements of the result vector are obtained left-to-right from the
4550 high/low elements of the first vector. The odd elements of the result are
4551 obtained left-to-right from the high/low elements of the second vector.
4552 The output of interleave_high will be: 0 4 1 5
4553 and of interleave_low: 2 6 3 7
4556 The permutation is done in log LENGTH stages. In each stage interleave_high
4557 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4558 where the first argument is taken from the first half of DR_CHAIN and the
4559 second argument from it's second half.
4560 In our example,
4562 I1: interleave_high (1st vec, 3rd vec)
4563 I2: interleave_low (1st vec, 3rd vec)
4564 I3: interleave_high (2nd vec, 4th vec)
4565 I4: interleave_low (2nd vec, 4th vec)
4567 The output for the first stage is:
4569 I1: 0 16 1 17 2 18 3 19
4570 I2: 4 20 5 21 6 22 7 23
4571 I3: 8 24 9 25 10 26 11 27
4572 I4: 12 28 13 29 14 30 15 31
4574 The output of the second stage, i.e. the final result is:
4576 I1: 0 8 16 24 1 9 17 25
4577 I2: 2 10 18 26 3 11 19 27
4578 I3: 4 12 20 28 5 13 21 30
4579 I4: 6 14 22 30 7 15 23 31. */
4581 void
4582 vect_permute_store_chain (vec<tree> dr_chain,
4583 unsigned int length,
4584 gimple stmt,
4585 gimple_stmt_iterator *gsi,
4586 vec<tree> *result_chain)
4588 tree vect1, vect2, high, low;
4589 gimple perm_stmt;
4590 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4591 tree perm_mask_low, perm_mask_high;
4592 tree data_ref;
4593 tree perm3_mask_low, perm3_mask_high;
4594 unsigned int i, n, log_length = exact_log2 (length);
4595 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4596 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4598 result_chain->quick_grow (length);
4599 memcpy (result_chain->address (), dr_chain.address (),
4600 length * sizeof (tree));
4602 if (length == 3)
4604 unsigned int j0 = 0, j1 = 0, j2 = 0;
4606 for (j = 0; j < 3; j++)
4608 int nelt0 = ((3 - j) * nelt) % 3;
4609 int nelt1 = ((3 - j) * nelt + 1) % 3;
4610 int nelt2 = ((3 - j) * nelt + 2) % 3;
4612 for (i = 0; i < nelt; i++)
4614 if (3 * i + nelt0 < nelt)
4615 sel[3 * i + nelt0] = j0++;
4616 if (3 * i + nelt1 < nelt)
4617 sel[3 * i + nelt1] = nelt + j1++;
4618 if (3 * i + nelt2 < nelt)
4619 sel[3 * i + nelt2] = 0;
4621 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4623 for (i = 0; i < nelt; i++)
4625 if (3 * i + nelt0 < nelt)
4626 sel[3 * i + nelt0] = 3 * i + nelt0;
4627 if (3 * i + nelt1 < nelt)
4628 sel[3 * i + nelt1] = 3 * i + nelt1;
4629 if (3 * i + nelt2 < nelt)
4630 sel[3 * i + nelt2] = nelt + j2++;
4632 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4634 vect1 = dr_chain[0];
4635 vect2 = dr_chain[1];
4637 /* Create interleaving stmt:
4638 low = VEC_PERM_EXPR <vect1, vect2,
4639 {j, nelt, *, j + 1, nelt + j + 1, *,
4640 j + 2, nelt + j + 2, *, ...}> */
4641 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
4642 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
4643 vect2, perm3_mask_low);
4644 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4646 vect1 = data_ref;
4647 vect2 = dr_chain[2];
4648 /* Create interleaving stmt:
4649 low = VEC_PERM_EXPR <vect1, vect2,
4650 {0, 1, nelt + j, 3, 4, nelt + j + 1,
4651 6, 7, nelt + j + 2, ...}> */
4652 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
4653 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
4654 vect2, perm3_mask_high);
4655 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4656 (*result_chain)[j] = data_ref;
4659 else
4661 /* If length is not equal to 3 then only power of 2 is supported. */
4662 gcc_assert (exact_log2 (length) != -1);
4664 for (i = 0, n = nelt / 2; i < n; i++)
4666 sel[i * 2] = i;
4667 sel[i * 2 + 1] = i + nelt;
4669 perm_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4671 for (i = 0; i < nelt; i++)
4672 sel[i] += nelt / 2;
4673 perm_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4675 for (i = 0, n = log_length; i < n; i++)
4677 for (j = 0; j < length/2; j++)
4679 vect1 = dr_chain[j];
4680 vect2 = dr_chain[j+length/2];
4682 /* Create interleaving stmt:
4683 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
4684 ...}> */
4685 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4686 perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
4687 vect2, perm_mask_high);
4688 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4689 (*result_chain)[2*j] = high;
4691 /* Create interleaving stmt:
4692 low = VEC_PERM_EXPR <vect1, vect2,
4693 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
4694 ...}> */
4695 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4696 perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
4697 vect2, perm_mask_low);
4698 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4699 (*result_chain)[2*j+1] = low;
4701 memcpy (dr_chain.address (), result_chain->address (),
4702 length * sizeof (tree));
4707 /* Function vect_setup_realignment
4709 This function is called when vectorizing an unaligned load using
4710 the dr_explicit_realign[_optimized] scheme.
4711 This function generates the following code at the loop prolog:
4713 p = initial_addr;
4714 x msq_init = *(floor(p)); # prolog load
4715 realignment_token = call target_builtin;
4716 loop:
4717 x msq = phi (msq_init, ---)
4719 The stmts marked with x are generated only for the case of
4720 dr_explicit_realign_optimized.
4722 The code above sets up a new (vector) pointer, pointing to the first
4723 location accessed by STMT, and a "floor-aligned" load using that pointer.
4724 It also generates code to compute the "realignment-token" (if the relevant
4725 target hook was defined), and creates a phi-node at the loop-header bb
4726 whose arguments are the result of the prolog-load (created by this
4727 function) and the result of a load that takes place in the loop (to be
4728 created by the caller to this function).
4730 For the case of dr_explicit_realign_optimized:
4731 The caller to this function uses the phi-result (msq) to create the
4732 realignment code inside the loop, and sets up the missing phi argument,
4733 as follows:
4734 loop:
4735 msq = phi (msq_init, lsq)
4736 lsq = *(floor(p')); # load in loop
4737 result = realign_load (msq, lsq, realignment_token);
4739 For the case of dr_explicit_realign:
4740 loop:
4741 msq = *(floor(p)); # load in loop
4742 p' = p + (VS-1);
4743 lsq = *(floor(p')); # load in loop
4744 result = realign_load (msq, lsq, realignment_token);
4746 Input:
4747 STMT - (scalar) load stmt to be vectorized. This load accesses
4748 a memory location that may be unaligned.
4749 BSI - place where new code is to be inserted.
4750 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4751 is used.
4753 Output:
4754 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4755 target hook, if defined.
4756 Return value - the result of the loop-header phi node. */
4758 tree
4759 vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
4760 tree *realignment_token,
4761 enum dr_alignment_support alignment_support_scheme,
4762 tree init_addr,
4763 struct loop **at_loop)
4765 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4766 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4767 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4768 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4769 struct loop *loop = NULL;
4770 edge pe = NULL;
4771 tree scalar_dest = gimple_assign_lhs (stmt);
4772 tree vec_dest;
4773 gimple inc;
4774 tree ptr;
4775 tree data_ref;
4776 basic_block new_bb;
4777 tree msq_init = NULL_TREE;
4778 tree new_temp;
4779 gphi *phi_stmt;
4780 tree msq = NULL_TREE;
4781 gimple_seq stmts = NULL;
4782 bool inv_p;
4783 bool compute_in_loop = false;
4784 bool nested_in_vect_loop = false;
4785 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4786 struct loop *loop_for_initial_load = NULL;
4788 if (loop_vinfo)
4790 loop = LOOP_VINFO_LOOP (loop_vinfo);
4791 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4794 gcc_assert (alignment_support_scheme == dr_explicit_realign
4795 || alignment_support_scheme == dr_explicit_realign_optimized);
4797 /* We need to generate three things:
4798 1. the misalignment computation
4799 2. the extra vector load (for the optimized realignment scheme).
4800 3. the phi node for the two vectors from which the realignment is
4801 done (for the optimized realignment scheme). */
4803 /* 1. Determine where to generate the misalignment computation.
4805 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4806 calculation will be generated by this function, outside the loop (in the
4807 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4808 caller, inside the loop.
4810 Background: If the misalignment remains fixed throughout the iterations of
4811 the loop, then both realignment schemes are applicable, and also the
4812 misalignment computation can be done outside LOOP. This is because we are
4813 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4814 are a multiple of VS (the Vector Size), and therefore the misalignment in
4815 different vectorized LOOP iterations is always the same.
4816 The problem arises only if the memory access is in an inner-loop nested
4817 inside LOOP, which is now being vectorized using outer-loop vectorization.
4818 This is the only case when the misalignment of the memory access may not
4819 remain fixed throughout the iterations of the inner-loop (as explained in
4820 detail in vect_supportable_dr_alignment). In this case, not only is the
4821 optimized realignment scheme not applicable, but also the misalignment
4822 computation (and generation of the realignment token that is passed to
4823 REALIGN_LOAD) have to be done inside the loop.
4825 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4826 or not, which in turn determines if the misalignment is computed inside
4827 the inner-loop, or outside LOOP. */
4829 if (init_addr != NULL_TREE || !loop_vinfo)
4831 compute_in_loop = true;
4832 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4836 /* 2. Determine where to generate the extra vector load.
4838 For the optimized realignment scheme, instead of generating two vector
4839 loads in each iteration, we generate a single extra vector load in the
4840 preheader of the loop, and in each iteration reuse the result of the
4841 vector load from the previous iteration. In case the memory access is in
4842 an inner-loop nested inside LOOP, which is now being vectorized using
4843 outer-loop vectorization, we need to determine whether this initial vector
4844 load should be generated at the preheader of the inner-loop, or can be
4845 generated at the preheader of LOOP. If the memory access has no evolution
4846 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4847 to be generated inside LOOP (in the preheader of the inner-loop). */
4849 if (nested_in_vect_loop)
4851 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4852 bool invariant_in_outerloop =
4853 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4854 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4856 else
4857 loop_for_initial_load = loop;
4858 if (at_loop)
4859 *at_loop = loop_for_initial_load;
4861 if (loop_for_initial_load)
4862 pe = loop_preheader_edge (loop_for_initial_load);
4864 /* 3. For the case of the optimized realignment, create the first vector
4865 load at the loop preheader. */
4867 if (alignment_support_scheme == dr_explicit_realign_optimized)
4869 /* Create msq_init = *(floor(p1)) in the loop preheader */
4870 gassign *new_stmt;
4872 gcc_assert (!compute_in_loop);
4873 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4874 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
4875 NULL_TREE, &init_addr, NULL, &inc,
4876 true, &inv_p);
4877 new_temp = copy_ssa_name (ptr);
4878 new_stmt = gimple_build_assign
4879 (new_temp, BIT_AND_EXPR, ptr,
4880 build_int_cst (TREE_TYPE (ptr),
4881 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
4882 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4883 gcc_assert (!new_bb);
4884 data_ref
4885 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
4886 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
4887 new_stmt = gimple_build_assign (vec_dest, data_ref);
4888 new_temp = make_ssa_name (vec_dest, new_stmt);
4889 gimple_assign_set_lhs (new_stmt, new_temp);
4890 if (pe)
4892 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4893 gcc_assert (!new_bb);
4895 else
4896 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4898 msq_init = gimple_assign_lhs (new_stmt);
4901 /* 4. Create realignment token using a target builtin, if available.
4902 It is done either inside the containing loop, or before LOOP (as
4903 determined above). */
4905 if (targetm.vectorize.builtin_mask_for_load)
4907 gcall *new_stmt;
4908 tree builtin_decl;
4910 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
4911 if (!init_addr)
4913 /* Generate the INIT_ADDR computation outside LOOP. */
4914 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
4915 NULL_TREE, loop);
4916 if (loop)
4918 pe = loop_preheader_edge (loop);
4919 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
4920 gcc_assert (!new_bb);
4922 else
4923 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
4926 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
4927 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
4928 vec_dest =
4929 vect_create_destination_var (scalar_dest,
4930 gimple_call_return_type (new_stmt));
4931 new_temp = make_ssa_name (vec_dest, new_stmt);
4932 gimple_call_set_lhs (new_stmt, new_temp);
4934 if (compute_in_loop)
4935 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4936 else
4938 /* Generate the misalignment computation outside LOOP. */
4939 pe = loop_preheader_edge (loop);
4940 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4941 gcc_assert (!new_bb);
4944 *realignment_token = gimple_call_lhs (new_stmt);
4946 /* The result of the CALL_EXPR to this builtin is determined from
4947 the value of the parameter and no global variables are touched
4948 which makes the builtin a "const" function. Requiring the
4949 builtin to have the "const" attribute makes it unnecessary
4950 to call mark_call_clobbered. */
4951 gcc_assert (TREE_READONLY (builtin_decl));
4954 if (alignment_support_scheme == dr_explicit_realign)
4955 return msq;
4957 gcc_assert (!compute_in_loop);
4958 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
4961 /* 5. Create msq = phi <msq_init, lsq> in loop */
4963 pe = loop_preheader_edge (containing_loop);
4964 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4965 msq = make_ssa_name (vec_dest);
4966 phi_stmt = create_phi_node (msq, containing_loop->header);
4967 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
4969 return msq;
4973 /* Function vect_grouped_load_supported.
4975 Returns TRUE if even and odd permutations are supported,
4976 and FALSE otherwise. */
4978 bool
4979 vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
4981 machine_mode mode = TYPE_MODE (vectype);
4983 /* vect_permute_load_chain requires the group size to be equal to 3 or
4984 be a power of two. */
4985 if (count != 3 && exact_log2 (count) == -1)
4987 if (dump_enabled_p ())
4988 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4989 "the size of the group of accesses"
4990 " is not a power of 2 or not equal to 3\n");
4991 return false;
4994 /* Check that the permutation is supported. */
4995 if (VECTOR_MODE_P (mode))
4997 unsigned int i, j, nelt = GET_MODE_NUNITS (mode);
4998 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5000 if (count == 3)
5002 unsigned int k;
5003 for (k = 0; k < 3; k++)
5005 for (i = 0; i < nelt; i++)
5006 if (3 * i + k < 2 * nelt)
5007 sel[i] = 3 * i + k;
5008 else
5009 sel[i] = 0;
5010 if (!can_vec_perm_p (mode, false, sel))
5012 if (dump_enabled_p ())
5013 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5014 "shuffle of 3 loads is not supported by"
5015 " target\n");
5016 return false;
5018 for (i = 0, j = 0; i < nelt; i++)
5019 if (3 * i + k < 2 * nelt)
5020 sel[i] = i;
5021 else
5022 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5023 if (!can_vec_perm_p (mode, false, sel))
5025 if (dump_enabled_p ())
5026 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5027 "shuffle of 3 loads is not supported by"
5028 " target\n");
5029 return false;
5032 return true;
5034 else
5036 /* If length is not equal to 3 then only power of 2 is supported. */
5037 gcc_assert (exact_log2 (count) != -1);
5038 for (i = 0; i < nelt; i++)
5039 sel[i] = i * 2;
5040 if (can_vec_perm_p (mode, false, sel))
5042 for (i = 0; i < nelt; i++)
5043 sel[i] = i * 2 + 1;
5044 if (can_vec_perm_p (mode, false, sel))
5045 return true;
5050 if (dump_enabled_p ())
5051 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5052 "extract even/odd not supported by target\n");
5053 return false;
5056 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
5057 type VECTYPE. */
5059 bool
5060 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
5062 return vect_lanes_optab_supported_p ("vec_load_lanes",
5063 vec_load_lanes_optab,
5064 vectype, count);
5067 /* Function vect_permute_load_chain.
5069 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
5070 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5071 the input data correctly. Return the final references for loads in
5072 RESULT_CHAIN.
5074 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5075 The input is 4 vectors each containing 8 elements. We assign a number to each
5076 element, the input sequence is:
5078 1st vec: 0 1 2 3 4 5 6 7
5079 2nd vec: 8 9 10 11 12 13 14 15
5080 3rd vec: 16 17 18 19 20 21 22 23
5081 4th vec: 24 25 26 27 28 29 30 31
5083 The output sequence should be:
5085 1st vec: 0 4 8 12 16 20 24 28
5086 2nd vec: 1 5 9 13 17 21 25 29
5087 3rd vec: 2 6 10 14 18 22 26 30
5088 4th vec: 3 7 11 15 19 23 27 31
5090 i.e., the first output vector should contain the first elements of each
5091 interleaving group, etc.
5093 We use extract_even/odd instructions to create such output. The input of
5094 each extract_even/odd operation is two vectors
5095 1st vec 2nd vec
5096 0 1 2 3 4 5 6 7
5098 and the output is the vector of extracted even/odd elements. The output of
5099 extract_even will be: 0 2 4 6
5100 and of extract_odd: 1 3 5 7
5103 The permutation is done in log LENGTH stages. In each stage extract_even
5104 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5105 their order. In our example,
5107 E1: extract_even (1st vec, 2nd vec)
5108 E2: extract_odd (1st vec, 2nd vec)
5109 E3: extract_even (3rd vec, 4th vec)
5110 E4: extract_odd (3rd vec, 4th vec)
5112 The output for the first stage will be:
5114 E1: 0 2 4 6 8 10 12 14
5115 E2: 1 3 5 7 9 11 13 15
5116 E3: 16 18 20 22 24 26 28 30
5117 E4: 17 19 21 23 25 27 29 31
5119 In order to proceed and create the correct sequence for the next stage (or
5120 for the correct output, if the second stage is the last one, as in our
5121 example), we first put the output of extract_even operation and then the
5122 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5123 The input for the second stage is:
5125 1st vec (E1): 0 2 4 6 8 10 12 14
5126 2nd vec (E3): 16 18 20 22 24 26 28 30
5127 3rd vec (E2): 1 3 5 7 9 11 13 15
5128 4th vec (E4): 17 19 21 23 25 27 29 31
5130 The output of the second stage:
5132 E1: 0 4 8 12 16 20 24 28
5133 E2: 2 6 10 14 18 22 26 30
5134 E3: 1 5 9 13 17 21 25 29
5135 E4: 3 7 11 15 19 23 27 31
5137 And RESULT_CHAIN after reordering:
5139 1st vec (E1): 0 4 8 12 16 20 24 28
5140 2nd vec (E3): 1 5 9 13 17 21 25 29
5141 3rd vec (E2): 2 6 10 14 18 22 26 30
5142 4th vec (E4): 3 7 11 15 19 23 27 31. */
5144 static void
5145 vect_permute_load_chain (vec<tree> dr_chain,
5146 unsigned int length,
5147 gimple stmt,
5148 gimple_stmt_iterator *gsi,
5149 vec<tree> *result_chain)
5151 tree data_ref, first_vect, second_vect;
5152 tree perm_mask_even, perm_mask_odd;
5153 tree perm3_mask_low, perm3_mask_high;
5154 gimple perm_stmt;
5155 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5156 unsigned int i, j, log_length = exact_log2 (length);
5157 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5158 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5160 result_chain->quick_grow (length);
5161 memcpy (result_chain->address (), dr_chain.address (),
5162 length * sizeof (tree));
5164 if (length == 3)
5166 unsigned int k;
5168 for (k = 0; k < 3; k++)
5170 for (i = 0; i < nelt; i++)
5171 if (3 * i + k < 2 * nelt)
5172 sel[i] = 3 * i + k;
5173 else
5174 sel[i] = 0;
5175 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
5177 for (i = 0, j = 0; i < nelt; i++)
5178 if (3 * i + k < 2 * nelt)
5179 sel[i] = i;
5180 else
5181 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5183 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
5185 first_vect = dr_chain[0];
5186 second_vect = dr_chain[1];
5188 /* Create interleaving stmt (low part of):
5189 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5190 ...}> */
5191 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5192 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5193 second_vect, perm3_mask_low);
5194 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5196 /* Create interleaving stmt (high part of):
5197 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5198 ...}> */
5199 first_vect = data_ref;
5200 second_vect = dr_chain[2];
5201 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5202 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5203 second_vect, perm3_mask_high);
5204 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5205 (*result_chain)[k] = data_ref;
5208 else
5210 /* If length is not equal to 3 then only power of 2 is supported. */
5211 gcc_assert (exact_log2 (length) != -1);
5213 for (i = 0; i < nelt; ++i)
5214 sel[i] = i * 2;
5215 perm_mask_even = vect_gen_perm_mask_checked (vectype, sel);
5217 for (i = 0; i < nelt; ++i)
5218 sel[i] = i * 2 + 1;
5219 perm_mask_odd = vect_gen_perm_mask_checked (vectype, sel);
5221 for (i = 0; i < log_length; i++)
5223 for (j = 0; j < length; j += 2)
5225 first_vect = dr_chain[j];
5226 second_vect = dr_chain[j+1];
5228 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5229 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
5230 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5231 first_vect, second_vect,
5232 perm_mask_even);
5233 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5234 (*result_chain)[j/2] = data_ref;
5236 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5237 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
5238 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5239 first_vect, second_vect,
5240 perm_mask_odd);
5241 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5242 (*result_chain)[j/2+length/2] = data_ref;
5244 memcpy (dr_chain.address (), result_chain->address (),
5245 length * sizeof (tree));
5250 /* Function vect_shift_permute_load_chain.
5252 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5253 sequence of stmts to reorder the input data accordingly.
5254 Return the final references for loads in RESULT_CHAIN.
5255 Return true if successed, false otherwise.
5257 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5258 The input is 3 vectors each containing 8 elements. We assign a
5259 number to each element, the input sequence is:
5261 1st vec: 0 1 2 3 4 5 6 7
5262 2nd vec: 8 9 10 11 12 13 14 15
5263 3rd vec: 16 17 18 19 20 21 22 23
5265 The output sequence should be:
5267 1st vec: 0 3 6 9 12 15 18 21
5268 2nd vec: 1 4 7 10 13 16 19 22
5269 3rd vec: 2 5 8 11 14 17 20 23
5271 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
5273 First we shuffle all 3 vectors to get correct elements order:
5275 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
5276 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
5277 3rd vec: (16 19 22) (17 20 23) (18 21)
5279 Next we unite and shift vector 3 times:
5281 1st step:
5282 shift right by 6 the concatenation of:
5283 "1st vec" and "2nd vec"
5284 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
5285 "2nd vec" and "3rd vec"
5286 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
5287 "3rd vec" and "1st vec"
5288 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
5289 | New vectors |
5291 So that now new vectors are:
5293 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
5294 2nd vec: (10 13) (16 19 22) (17 20 23)
5295 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
5297 2nd step:
5298 shift right by 5 the concatenation of:
5299 "1st vec" and "3rd vec"
5300 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
5301 "2nd vec" and "1st vec"
5302 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
5303 "3rd vec" and "2nd vec"
5304 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
5305 | New vectors |
5307 So that now new vectors are:
5309 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
5310 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
5311 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
5313 3rd step:
5314 shift right by 5 the concatenation of:
5315 "1st vec" and "1st vec"
5316 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
5317 shift right by 3 the concatenation of:
5318 "2nd vec" and "2nd vec"
5319 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
5320 | New vectors |
5322 So that now all vectors are READY:
5323 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
5324 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
5325 3rd vec: ( 1 4 7) (10 13) (16 19 22)
5327 This algorithm is faster than one in vect_permute_load_chain if:
5328 1. "shift of a concatination" is faster than general permutation.
5329 This is usually so.
5330 2. The TARGET machine can't execute vector instructions in parallel.
5331 This is because each step of the algorithm depends on previous.
5332 The algorithm in vect_permute_load_chain is much more parallel.
5334 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
5337 static bool
5338 vect_shift_permute_load_chain (vec<tree> dr_chain,
5339 unsigned int length,
5340 gimple stmt,
5341 gimple_stmt_iterator *gsi,
5342 vec<tree> *result_chain)
5344 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
5345 tree perm2_mask1, perm2_mask2, perm3_mask;
5346 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
5347 gimple perm_stmt;
5349 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5350 unsigned int i;
5351 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5352 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5353 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5354 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5356 result_chain->quick_grow (length);
5357 memcpy (result_chain->address (), dr_chain.address (),
5358 length * sizeof (tree));
5360 if (exact_log2 (length) != -1 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 4)
5362 unsigned int j, log_length = exact_log2 (length);
5363 for (i = 0; i < nelt / 2; ++i)
5364 sel[i] = i * 2;
5365 for (i = 0; i < nelt / 2; ++i)
5366 sel[nelt / 2 + i] = i * 2 + 1;
5367 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5369 if (dump_enabled_p ())
5370 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5371 "shuffle of 2 fields structure is not \
5372 supported by target\n");
5373 return false;
5375 perm2_mask1 = vect_gen_perm_mask_checked (vectype, sel);
5377 for (i = 0; i < nelt / 2; ++i)
5378 sel[i] = i * 2 + 1;
5379 for (i = 0; i < nelt / 2; ++i)
5380 sel[nelt / 2 + i] = i * 2;
5381 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5383 if (dump_enabled_p ())
5384 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5385 "shuffle of 2 fields structure is not \
5386 supported by target\n");
5387 return false;
5389 perm2_mask2 = vect_gen_perm_mask_checked (vectype, sel);
5391 /* Generating permutation constant to shift all elements.
5392 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
5393 for (i = 0; i < nelt; i++)
5394 sel[i] = nelt / 2 + i;
5395 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5397 if (dump_enabled_p ())
5398 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5399 "shift permutation is not supported by target\n");
5400 return false;
5402 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5404 /* Generating permutation constant to select vector from 2.
5405 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
5406 for (i = 0; i < nelt / 2; i++)
5407 sel[i] = i;
5408 for (i = nelt / 2; i < nelt; i++)
5409 sel[i] = nelt + i;
5410 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5412 if (dump_enabled_p ())
5413 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5414 "select is not supported by target\n");
5415 return false;
5417 select_mask = vect_gen_perm_mask_checked (vectype, sel);
5419 for (i = 0; i < log_length; i++)
5421 for (j = 0; j < length; j += 2)
5423 first_vect = dr_chain[j];
5424 second_vect = dr_chain[j + 1];
5426 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5427 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5428 first_vect, first_vect,
5429 perm2_mask1);
5430 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5431 vect[0] = data_ref;
5433 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5434 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5435 second_vect, second_vect,
5436 perm2_mask2);
5437 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5438 vect[1] = data_ref;
5440 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
5441 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5442 vect[0], vect[1], shift1_mask);
5443 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5444 (*result_chain)[j/2 + length/2] = data_ref;
5446 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
5447 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5448 vect[0], vect[1], select_mask);
5449 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5450 (*result_chain)[j/2] = data_ref;
5452 memcpy (dr_chain.address (), result_chain->address (),
5453 length * sizeof (tree));
5455 return true;
5457 if (length == 3 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 2)
5459 unsigned int k = 0, l = 0;
5461 /* Generating permutation constant to get all elements in rigth order.
5462 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
5463 for (i = 0; i < nelt; i++)
5465 if (3 * k + (l % 3) >= nelt)
5467 k = 0;
5468 l += (3 - (nelt % 3));
5470 sel[i] = 3 * k + (l % 3);
5471 k++;
5473 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5475 if (dump_enabled_p ())
5476 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5477 "shuffle of 3 fields structure is not \
5478 supported by target\n");
5479 return false;
5481 perm3_mask = vect_gen_perm_mask_checked (vectype, sel);
5483 /* Generating permutation constant to shift all elements.
5484 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
5485 for (i = 0; i < nelt; i++)
5486 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
5487 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5489 if (dump_enabled_p ())
5490 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5491 "shift permutation is not supported by target\n");
5492 return false;
5494 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5496 /* Generating permutation constant to shift all elements.
5497 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5498 for (i = 0; i < nelt; i++)
5499 sel[i] = 2 * (nelt / 3) + 1 + i;
5500 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5502 if (dump_enabled_p ())
5503 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5504 "shift permutation is not supported by target\n");
5505 return false;
5507 shift2_mask = vect_gen_perm_mask_checked (vectype, sel);
5509 /* Generating permutation constant to shift all elements.
5510 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
5511 for (i = 0; i < nelt; i++)
5512 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
5513 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5515 if (dump_enabled_p ())
5516 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5517 "shift permutation is not supported by target\n");
5518 return false;
5520 shift3_mask = vect_gen_perm_mask_checked (vectype, sel);
5522 /* Generating permutation constant to shift all elements.
5523 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5524 for (i = 0; i < nelt; i++)
5525 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
5526 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5528 if (dump_enabled_p ())
5529 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5530 "shift permutation is not supported by target\n");
5531 return false;
5533 shift4_mask = vect_gen_perm_mask_checked (vectype, sel);
5535 for (k = 0; k < 3; k++)
5537 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
5538 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5539 dr_chain[k], dr_chain[k],
5540 perm3_mask);
5541 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5542 vect[k] = data_ref;
5545 for (k = 0; k < 3; k++)
5547 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
5548 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5549 vect[k % 3], vect[(k + 1) % 3],
5550 shift1_mask);
5551 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5552 vect_shift[k] = data_ref;
5555 for (k = 0; k < 3; k++)
5557 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
5558 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5559 vect_shift[(4 - k) % 3],
5560 vect_shift[(3 - k) % 3],
5561 shift2_mask);
5562 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5563 vect[k] = data_ref;
5566 (*result_chain)[3 - (nelt % 3)] = vect[2];
5568 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
5569 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
5570 vect[0], shift3_mask);
5571 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5572 (*result_chain)[nelt % 3] = data_ref;
5574 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
5575 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
5576 vect[1], shift4_mask);
5577 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5578 (*result_chain)[0] = data_ref;
5579 return true;
5581 return false;
5584 /* Function vect_transform_grouped_load.
5586 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
5587 to perform their permutation and ascribe the result vectorized statements to
5588 the scalar statements.
5591 void
5592 vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
5593 gimple_stmt_iterator *gsi)
5595 machine_mode mode;
5596 vec<tree> result_chain = vNULL;
5598 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
5599 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
5600 vectors, that are ready for vector computation. */
5601 result_chain.create (size);
5603 /* If reassociation width for vector type is 2 or greater target machine can
5604 execute 2 or more vector instructions in parallel. Otherwise try to
5605 get chain for loads group using vect_shift_permute_load_chain. */
5606 mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
5607 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
5608 || exact_log2 (size) != -1
5609 || !vect_shift_permute_load_chain (dr_chain, size, stmt,
5610 gsi, &result_chain))
5611 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
5612 vect_record_grouped_load_vectors (stmt, result_chain);
5613 result_chain.release ();
5616 /* RESULT_CHAIN contains the output of a group of grouped loads that were
5617 generated as part of the vectorization of STMT. Assign the statement
5618 for each vector to the associated scalar statement. */
5620 void
5621 vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
5623 gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
5624 gimple next_stmt, new_stmt;
5625 unsigned int i, gap_count;
5626 tree tmp_data_ref;
5628 /* Put a permuted data-ref in the VECTORIZED_STMT field.
5629 Since we scan the chain starting from it's first node, their order
5630 corresponds the order of data-refs in RESULT_CHAIN. */
5631 next_stmt = first_stmt;
5632 gap_count = 1;
5633 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
5635 if (!next_stmt)
5636 break;
5638 /* Skip the gaps. Loads created for the gaps will be removed by dead
5639 code elimination pass later. No need to check for the first stmt in
5640 the group, since it always exists.
5641 GROUP_GAP is the number of steps in elements from the previous
5642 access (if there is no gap GROUP_GAP is 1). We skip loads that
5643 correspond to the gaps. */
5644 if (next_stmt != first_stmt
5645 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
5647 gap_count++;
5648 continue;
5651 while (next_stmt)
5653 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
5654 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
5655 copies, and we put the new vector statement in the first available
5656 RELATED_STMT. */
5657 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
5658 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
5659 else
5661 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5663 gimple prev_stmt =
5664 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
5665 gimple rel_stmt =
5666 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
5667 while (rel_stmt)
5669 prev_stmt = rel_stmt;
5670 rel_stmt =
5671 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
5674 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
5675 new_stmt;
5679 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5680 gap_count = 1;
5681 /* If NEXT_STMT accesses the same DR as the previous statement,
5682 put the same TMP_DATA_REF as its vectorized statement; otherwise
5683 get the next data-ref from RESULT_CHAIN. */
5684 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5685 break;
5690 /* Function vect_force_dr_alignment_p.
5692 Returns whether the alignment of a DECL can be forced to be aligned
5693 on ALIGNMENT bit boundary. */
5695 bool
5696 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
5698 if (TREE_CODE (decl) != VAR_DECL)
5699 return false;
5701 if (decl_in_symtab_p (decl)
5702 && !symtab_node::get (decl)->can_increase_alignment_p ())
5703 return false;
5705 if (TREE_STATIC (decl))
5706 return (alignment <= MAX_OFILE_ALIGNMENT);
5707 else
5708 return (alignment <= MAX_STACK_ALIGNMENT);
5712 /* Return whether the data reference DR is supported with respect to its
5713 alignment.
5714 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
5715 it is aligned, i.e., check if it is possible to vectorize it with different
5716 alignment. */
5718 enum dr_alignment_support
5719 vect_supportable_dr_alignment (struct data_reference *dr,
5720 bool check_aligned_accesses)
5722 gimple stmt = DR_STMT (dr);
5723 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5724 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5725 machine_mode mode = TYPE_MODE (vectype);
5726 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5727 struct loop *vect_loop = NULL;
5728 bool nested_in_vect_loop = false;
5730 if (aligned_access_p (dr) && !check_aligned_accesses)
5731 return dr_aligned;
5733 /* For now assume all conditional loads/stores support unaligned
5734 access without any special code. */
5735 if (is_gimple_call (stmt)
5736 && gimple_call_internal_p (stmt)
5737 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
5738 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
5739 return dr_unaligned_supported;
5741 if (loop_vinfo)
5743 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
5744 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
5747 /* Possibly unaligned access. */
5749 /* We can choose between using the implicit realignment scheme (generating
5750 a misaligned_move stmt) and the explicit realignment scheme (generating
5751 aligned loads with a REALIGN_LOAD). There are two variants to the
5752 explicit realignment scheme: optimized, and unoptimized.
5753 We can optimize the realignment only if the step between consecutive
5754 vector loads is equal to the vector size. Since the vector memory
5755 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
5756 is guaranteed that the misalignment amount remains the same throughout the
5757 execution of the vectorized loop. Therefore, we can create the
5758 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
5759 at the loop preheader.
5761 However, in the case of outer-loop vectorization, when vectorizing a
5762 memory access in the inner-loop nested within the LOOP that is now being
5763 vectorized, while it is guaranteed that the misalignment of the
5764 vectorized memory access will remain the same in different outer-loop
5765 iterations, it is *not* guaranteed that is will remain the same throughout
5766 the execution of the inner-loop. This is because the inner-loop advances
5767 with the original scalar step (and not in steps of VS). If the inner-loop
5768 step happens to be a multiple of VS, then the misalignment remains fixed
5769 and we can use the optimized realignment scheme. For example:
5771 for (i=0; i<N; i++)
5772 for (j=0; j<M; j++)
5773 s += a[i+j];
5775 When vectorizing the i-loop in the above example, the step between
5776 consecutive vector loads is 1, and so the misalignment does not remain
5777 fixed across the execution of the inner-loop, and the realignment cannot
5778 be optimized (as illustrated in the following pseudo vectorized loop):
5780 for (i=0; i<N; i+=4)
5781 for (j=0; j<M; j++){
5782 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
5783 // when j is {0,1,2,3,4,5,6,7,...} respectively.
5784 // (assuming that we start from an aligned address).
5787 We therefore have to use the unoptimized realignment scheme:
5789 for (i=0; i<N; i+=4)
5790 for (j=k; j<M; j+=4)
5791 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
5792 // that the misalignment of the initial address is
5793 // 0).
5795 The loop can then be vectorized as follows:
5797 for (k=0; k<4; k++){
5798 rt = get_realignment_token (&vp[k]);
5799 for (i=0; i<N; i+=4){
5800 v1 = vp[i+k];
5801 for (j=k; j<M; j+=4){
5802 v2 = vp[i+j+VS-1];
5803 va = REALIGN_LOAD <v1,v2,rt>;
5804 vs += va;
5805 v1 = v2;
5808 } */
5810 if (DR_IS_READ (dr))
5812 bool is_packed = false;
5813 tree type = (TREE_TYPE (DR_REF (dr)));
5815 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
5816 && (!targetm.vectorize.builtin_mask_for_load
5817 || targetm.vectorize.builtin_mask_for_load ()))
5819 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5820 if ((nested_in_vect_loop
5821 && (TREE_INT_CST_LOW (DR_STEP (dr))
5822 != GET_MODE_SIZE (TYPE_MODE (vectype))))
5823 || !loop_vinfo)
5824 return dr_explicit_realign;
5825 else
5826 return dr_explicit_realign_optimized;
5828 if (!known_alignment_for_access_p (dr))
5829 is_packed = not_size_aligned (DR_REF (dr));
5831 if ((TYPE_USER_ALIGN (type) && !is_packed)
5832 || targetm.vectorize.
5833 support_vector_misalignment (mode, type,
5834 DR_MISALIGNMENT (dr), is_packed))
5835 /* Can't software pipeline the loads, but can at least do them. */
5836 return dr_unaligned_supported;
5838 else
5840 bool is_packed = false;
5841 tree type = (TREE_TYPE (DR_REF (dr)));
5843 if (!known_alignment_for_access_p (dr))
5844 is_packed = not_size_aligned (DR_REF (dr));
5846 if ((TYPE_USER_ALIGN (type) && !is_packed)
5847 || targetm.vectorize.
5848 support_vector_misalignment (mode, type,
5849 DR_MISALIGNMENT (dr), is_packed))
5850 return dr_unaligned_supported;
5853 /* Unsupported. */
5854 return dr_unaligned_unsupported;