1 /* A Fibonacci heap datatype.
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin (dan@cgsoftware.com).
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
34 #include "libiberty.h"
38 #define FIBHEAPKEY_MIN LONG_MIN
40 static void fibheap_ins_root (fibheap_t
, fibnode_t
);
41 static void fibheap_rem_root (fibheap_t
, fibnode_t
);
42 static void fibheap_consolidate (fibheap_t
);
43 static void fibheap_link (fibheap_t
, fibnode_t
, fibnode_t
);
44 static void fibheap_cut (fibheap_t
, fibnode_t
, fibnode_t
);
45 static void fibheap_cascading_cut (fibheap_t
, fibnode_t
);
46 static fibnode_t
fibheap_extr_min_node (fibheap_t
);
47 static int fibheap_compare (fibheap_t
, fibnode_t
, fibnode_t
);
48 static int fibheap_comp_data (fibheap_t
, fibheapkey_t
, void *, fibnode_t
);
49 static fibnode_t
fibnode_new (void);
50 static void fibnode_insert_after (fibnode_t
, fibnode_t
);
51 #define fibnode_insert_before(a, b) fibnode_insert_after (a->left, b)
52 static fibnode_t
fibnode_remove (fibnode_t
);
55 /* Create a new fibonacci heap. */
59 return (fibheap_t
) xcalloc (1, sizeof (struct fibheap
));
62 /* Create a new fibonacci heap node. */
68 node
= (fibnode_t
) xcalloc (1, sizeof *node
);
76 fibheap_compare (fibheap_t heap ATTRIBUTE_UNUSED
, fibnode_t a
, fibnode_t b
)
86 fibheap_comp_data (fibheap_t heap
, fibheapkey_t key
, void *data
, fibnode_t b
)
93 return fibheap_compare (heap
, &a
, b
);
96 /* Insert DATA, with priority KEY, into HEAP. */
98 fibheap_insert (fibheap_t heap
, fibheapkey_t key
, void *data
)
102 /* Create the new node. */
103 node
= fibnode_new ();
105 /* Set the node's data. */
109 /* Insert it into the root list. */
110 fibheap_ins_root (heap
, node
);
112 /* If their was no minimum, or this key is less than the min,
114 if (heap
->min
== NULL
|| node
->key
< heap
->min
->key
)
122 /* Return the data of the minimum node (if we know it). */
124 fibheap_min (fibheap_t heap
)
126 /* If there is no min, we can't easily return it. */
127 if (heap
->min
== NULL
)
129 return heap
->min
->data
;
132 /* Return the key of the minimum node (if we know it). */
134 fibheap_min_key (fibheap_t heap
)
136 /* If there is no min, we can't easily return it. */
137 if (heap
->min
== NULL
)
139 return heap
->min
->key
;
142 /* Union HEAPA and HEAPB into a new heap. */
144 fibheap_union (fibheap_t heapa
, fibheap_t heapb
)
146 fibnode_t a_root
, b_root
, temp
;
148 /* If one of the heaps is empty, the union is just the other heap. */
149 if ((a_root
= heapa
->root
) == NULL
)
154 if ((b_root
= heapb
->root
) == NULL
)
160 /* Merge them to the next nodes on the opposite chain. */
161 a_root
->left
->right
= b_root
;
162 b_root
->left
->right
= a_root
;
164 a_root
->left
= b_root
->left
;
166 heapa
->nodes
+= heapb
->nodes
;
168 /* And set the new minimum, if it's changed. */
169 if (fibheap_compare (heapa
, heapb
->min
, heapa
->min
) < 0)
170 heapa
->min
= heapb
->min
;
176 /* Extract the data of the minimum node from HEAP. */
178 fibheap_extract_min (fibheap_t heap
)
183 /* If we don't have a min set, it means we have no nodes. */
184 if (heap
->min
!= NULL
)
186 /* Otherwise, extract the min node, free the node, and return the
188 z
= fibheap_extr_min_node (heap
);
196 /* Replace both the KEY and the DATA associated with NODE. */
198 fibheap_replace_key_data (fibheap_t heap
, fibnode_t node
,
199 fibheapkey_t key
, void *data
)
205 /* If we wanted to, we could actually do a real increase by redeleting and
206 inserting. However, this would require O (log n) time. So just bail out
208 if (fibheap_comp_data (heap
, key
, data
, node
) > 0)
220 /* These two compares are specifically <= 0 to make sure that in the case
221 of equality, a node we replaced the data on, becomes the new min. This
222 is needed so that delete's call to extractmin gets the right node. */
223 if (y
!= NULL
&& fibheap_compare (heap
, node
, y
) <= 0)
225 fibheap_cut (heap
, node
, y
);
226 fibheap_cascading_cut (heap
, y
);
229 if (fibheap_compare (heap
, node
, heap
->min
) <= 0)
235 /* Replace the DATA associated with NODE. */
237 fibheap_replace_data (fibheap_t heap
, fibnode_t node
, void *data
)
239 return fibheap_replace_key_data (heap
, node
, node
->key
, data
);
242 /* Replace the KEY associated with NODE. */
244 fibheap_replace_key (fibheap_t heap
, fibnode_t node
, fibheapkey_t key
)
246 int okey
= node
->key
;
247 fibheap_replace_key_data (heap
, node
, key
, node
->data
);
251 /* Delete NODE from HEAP. */
253 fibheap_delete_node (fibheap_t heap
, fibnode_t node
)
255 void *ret
= node
->data
;
257 /* To perform delete, we just make it the min key, and extract. */
258 fibheap_replace_key (heap
, node
, FIBHEAPKEY_MIN
);
259 fibheap_extract_min (heap
);
266 fibheap_delete (fibheap_t heap
)
268 while (heap
->min
!= NULL
)
269 free (fibheap_extr_min_node (heap
));
274 /* Determine if HEAP is empty. */
276 fibheap_empty (fibheap_t heap
)
278 return heap
->nodes
== 0;
281 /* Extract the minimum node of the heap. */
283 fibheap_extr_min_node (fibheap_t heap
)
285 fibnode_t ret
= heap
->min
;
286 fibnode_t x
, y
, orig
;
288 /* Attach the child list of the minimum node to the root list of the heap.
289 If there is no child list, we don't do squat. */
290 for (x
= ret
->child
, orig
= NULL
; x
!= orig
&& x
!= NULL
; x
= y
)
296 fibheap_ins_root (heap
, x
);
299 /* Remove the old root. */
300 fibheap_rem_root (heap
, ret
);
303 /* If we are left with no nodes, then the min is NULL. */
304 if (heap
->nodes
== 0)
308 /* Otherwise, consolidate to find new minimum, as well as do the reorg
309 work that needs to be done. */
310 heap
->min
= ret
->right
;
311 fibheap_consolidate (heap
);
317 /* Insert NODE into the root list of HEAP. */
319 fibheap_ins_root (fibheap_t heap
, fibnode_t node
)
321 /* If the heap is currently empty, the new node becomes the singleton
322 circular root list. */
323 if (heap
->root
== NULL
)
331 /* Otherwise, insert it in the circular root list between the root
332 and it's right node. */
333 fibnode_insert_after (heap
->root
, node
);
336 /* Remove NODE from the rootlist of HEAP. */
338 fibheap_rem_root (fibheap_t heap
, fibnode_t node
)
340 if (node
->left
== node
)
343 heap
->root
= fibnode_remove (node
);
346 /* Consolidate the heap. */
348 fibheap_consolidate (fibheap_t heap
)
350 fibnode_t a
[1 + 8 * sizeof (long)];
358 D
= 1 + 8 * sizeof (long);
360 memset (a
, 0, sizeof (fibnode_t
) * D
);
362 while ((w
= heap
->root
) != NULL
)
365 fibheap_rem_root (heap
, w
);
370 if (fibheap_compare (heap
, x
, y
) > 0)
377 fibheap_link (heap
, y
, x
);
384 for (i
= 0; i
< D
; i
++)
387 fibheap_ins_root (heap
, a
[i
]);
388 if (heap
->min
== NULL
|| fibheap_compare (heap
, a
[i
], heap
->min
) < 0)
393 /* Make NODE a child of PARENT. */
395 fibheap_link (fibheap_t heap ATTRIBUTE_UNUSED
,
396 fibnode_t node
, fibnode_t parent
)
398 if (parent
->child
== NULL
)
399 parent
->child
= node
;
401 fibnode_insert_before (parent
->child
, node
);
402 node
->parent
= parent
;
407 /* Remove NODE from PARENT's child list. */
409 fibheap_cut (fibheap_t heap
, fibnode_t node
, fibnode_t parent
)
411 fibnode_remove (node
);
413 fibheap_ins_root (heap
, node
);
419 fibheap_cascading_cut (fibheap_t heap
, fibnode_t y
)
423 while ((z
= y
->parent
) != NULL
)
432 fibheap_cut (heap
, y
, z
);
439 fibnode_insert_after (fibnode_t a
, fibnode_t b
)
458 fibnode_remove (fibnode_t node
)
462 if (node
== node
->left
)
467 if (node
->parent
!= NULL
&& node
->parent
->child
== node
)
468 node
->parent
->child
= ret
;
470 node
->right
->left
= node
->left
;
471 node
->left
->right
= node
->right
;