[PR 70965] Schedule extra rebuild_cgraph_edges
[official-gcc.git] / gcc / tree-ssa-loop-ivopts.c
blob5c667a201a78f6b1e7eaaaef3029b21135bf6ceb
1 /* Induction variable optimizations.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
25 following steps:
27 1) The interesting uses of induction variables are found. This includes
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
33 Note the interesting uses are categorized and handled in group.
34 Generally, address type uses are grouped together if their iv bases
35 are different in constant offset.
37 2) Candidates for the induction variables are found. This includes
39 -- old induction variables
40 -- the variables defined by expressions derived from the "interesting
41 groups/uses" above
43 3) The optimal (w.r. to a cost function) set of variables is chosen. The
44 cost function assigns a cost to sets of induction variables and consists
45 of three parts:
47 -- The group/use costs. Each of the interesting groups/uses chooses
48 the best induction variable in the set and adds its cost to the sum.
49 The cost reflects the time spent on modifying the induction variables
50 value to be usable for the given purpose (adding base and offset for
51 arrays, etc.).
52 -- The variable costs. Each of the variables has a cost assigned that
53 reflects the costs associated with incrementing the value of the
54 variable. The original variables are somewhat preferred.
55 -- The set cost. Depending on the size of the set, extra cost may be
56 added to reflect register pressure.
58 All the costs are defined in a machine-specific way, using the target
59 hooks and machine descriptions to determine them.
61 4) The trees are transformed to use the new variables, the dead code is
62 removed.
64 All of this is done loop by loop. Doing it globally is theoretically
65 possible, it might give a better performance and it might enable us
66 to decide costs more precisely, but getting all the interactions right
67 would be complicated. */
69 #include "config.h"
70 #include "system.h"
71 #include "coretypes.h"
72 #include "backend.h"
73 #include "rtl.h"
74 #include "tree.h"
75 #include "gimple.h"
76 #include "cfghooks.h"
77 #include "tree-pass.h"
78 #include "memmodel.h"
79 #include "tm_p.h"
80 #include "ssa.h"
81 #include "expmed.h"
82 #include "insn-config.h"
83 #include "emit-rtl.h"
84 #include "recog.h"
85 #include "cgraph.h"
86 #include "gimple-pretty-print.h"
87 #include "alias.h"
88 #include "fold-const.h"
89 #include "stor-layout.h"
90 #include "tree-eh.h"
91 #include "gimplify.h"
92 #include "gimple-iterator.h"
93 #include "gimplify-me.h"
94 #include "tree-cfg.h"
95 #include "tree-ssa-loop-ivopts.h"
96 #include "tree-ssa-loop-manip.h"
97 #include "tree-ssa-loop-niter.h"
98 #include "tree-ssa-loop.h"
99 #include "explow.h"
100 #include "expr.h"
101 #include "tree-dfa.h"
102 #include "tree-ssa.h"
103 #include "cfgloop.h"
104 #include "tree-scalar-evolution.h"
105 #include "params.h"
106 #include "tree-affine.h"
107 #include "tree-ssa-propagate.h"
108 #include "tree-ssa-address.h"
109 #include "builtins.h"
110 #include "tree-vectorizer.h"
112 /* FIXME: Expressions are expanded to RTL in this pass to determine the
113 cost of different addressing modes. This should be moved to a TBD
114 interface between the GIMPLE and RTL worlds. */
116 /* The infinite cost. */
117 #define INFTY 10000000
119 /* Returns the expected number of loop iterations for LOOP.
120 The average trip count is computed from profile data if it
121 exists. */
123 static inline HOST_WIDE_INT
124 avg_loop_niter (struct loop *loop)
126 HOST_WIDE_INT niter = estimated_stmt_executions_int (loop);
127 if (niter == -1)
129 niter = likely_max_stmt_executions_int (loop);
131 if (niter == -1 || niter > PARAM_VALUE (PARAM_AVG_LOOP_NITER))
132 return PARAM_VALUE (PARAM_AVG_LOOP_NITER);
135 return niter;
138 struct iv_use;
140 /* Representation of the induction variable. */
141 struct iv
143 tree base; /* Initial value of the iv. */
144 tree base_object; /* A memory object to that the induction variable points. */
145 tree step; /* Step of the iv (constant only). */
146 tree ssa_name; /* The ssa name with the value. */
147 struct iv_use *nonlin_use; /* The identifier in the use if it is the case. */
148 bool biv_p; /* Is it a biv? */
149 bool no_overflow; /* True if the iv doesn't overflow. */
150 bool have_address_use;/* For biv, indicate if it's used in any address
151 type use. */
154 /* Per-ssa version information (induction variable descriptions, etc.). */
155 struct version_info
157 tree name; /* The ssa name. */
158 struct iv *iv; /* Induction variable description. */
159 bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
160 an expression that is not an induction variable. */
161 bool preserve_biv; /* For the original biv, whether to preserve it. */
162 unsigned inv_id; /* Id of an invariant. */
165 /* Types of uses. */
166 enum use_type
168 USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
169 USE_ADDRESS, /* Use in an address. */
170 USE_COMPARE /* Use is a compare. */
173 /* Cost of a computation. */
174 struct comp_cost
176 comp_cost (): cost (0), complexity (0), scratch (0)
179 comp_cost (int cost, unsigned complexity, int scratch = 0)
180 : cost (cost), complexity (complexity), scratch (scratch)
183 /* Returns true if COST is infinite. */
184 bool infinite_cost_p ();
186 /* Adds costs COST1 and COST2. */
187 friend comp_cost operator+ (comp_cost cost1, comp_cost cost2);
189 /* Adds COST to the comp_cost. */
190 comp_cost operator+= (comp_cost cost);
192 /* Adds constant C to this comp_cost. */
193 comp_cost operator+= (HOST_WIDE_INT c);
195 /* Subtracts constant C to this comp_cost. */
196 comp_cost operator-= (HOST_WIDE_INT c);
198 /* Divide the comp_cost by constant C. */
199 comp_cost operator/= (HOST_WIDE_INT c);
201 /* Multiply the comp_cost by constant C. */
202 comp_cost operator*= (HOST_WIDE_INT c);
204 /* Subtracts costs COST1 and COST2. */
205 friend comp_cost operator- (comp_cost cost1, comp_cost cost2);
207 /* Subtracts COST from this comp_cost. */
208 comp_cost operator-= (comp_cost cost);
210 /* Returns true if COST1 is smaller than COST2. */
211 friend bool operator< (comp_cost cost1, comp_cost cost2);
213 /* Returns true if COST1 and COST2 are equal. */
214 friend bool operator== (comp_cost cost1, comp_cost cost2);
216 /* Returns true if COST1 is smaller or equal than COST2. */
217 friend bool operator<= (comp_cost cost1, comp_cost cost2);
219 int cost; /* The runtime cost. */
220 unsigned complexity; /* The estimate of the complexity of the code for
221 the computation (in no concrete units --
222 complexity field should be larger for more
223 complex expressions and addressing modes). */
224 int scratch; /* Scratch used during cost computation. */
227 static const comp_cost no_cost;
228 static const comp_cost infinite_cost (INFTY, INFTY, INFTY);
230 bool
231 comp_cost::infinite_cost_p ()
233 return cost == INFTY;
236 comp_cost
237 operator+ (comp_cost cost1, comp_cost cost2)
239 if (cost1.infinite_cost_p () || cost2.infinite_cost_p ())
240 return infinite_cost;
242 cost1.cost += cost2.cost;
243 cost1.complexity += cost2.complexity;
245 return cost1;
248 comp_cost
249 operator- (comp_cost cost1, comp_cost cost2)
251 if (cost1.infinite_cost_p ())
252 return infinite_cost;
254 gcc_assert (!cost2.infinite_cost_p ());
256 cost1.cost -= cost2.cost;
257 cost1.complexity -= cost2.complexity;
259 return cost1;
262 comp_cost
263 comp_cost::operator+= (comp_cost cost)
265 *this = *this + cost;
266 return *this;
269 comp_cost
270 comp_cost::operator+= (HOST_WIDE_INT c)
272 if (infinite_cost_p ())
273 return *this;
275 this->cost += c;
277 return *this;
280 comp_cost
281 comp_cost::operator-= (HOST_WIDE_INT c)
283 if (infinite_cost_p ())
284 return *this;
286 this->cost -= c;
288 return *this;
291 comp_cost
292 comp_cost::operator/= (HOST_WIDE_INT c)
294 if (infinite_cost_p ())
295 return *this;
297 this->cost /= c;
299 return *this;
302 comp_cost
303 comp_cost::operator*= (HOST_WIDE_INT c)
305 if (infinite_cost_p ())
306 return *this;
308 this->cost *= c;
310 return *this;
313 comp_cost
314 comp_cost::operator-= (comp_cost cost)
316 *this = *this - cost;
317 return *this;
320 bool
321 operator< (comp_cost cost1, comp_cost cost2)
323 if (cost1.cost == cost2.cost)
324 return cost1.complexity < cost2.complexity;
326 return cost1.cost < cost2.cost;
329 bool
330 operator== (comp_cost cost1, comp_cost cost2)
332 return cost1.cost == cost2.cost
333 && cost1.complexity == cost2.complexity;
336 bool
337 operator<= (comp_cost cost1, comp_cost cost2)
339 return cost1 < cost2 || cost1 == cost2;
342 struct iv_inv_expr_ent;
344 /* The candidate - cost pair. */
345 struct cost_pair
347 struct iv_cand *cand; /* The candidate. */
348 comp_cost cost; /* The cost. */
349 bitmap depends_on; /* The list of invariants that have to be
350 preserved. */
351 tree value; /* For final value elimination, the expression for
352 the final value of the iv. For iv elimination,
353 the new bound to compare with. */
354 enum tree_code comp; /* For iv elimination, the comparison. */
355 iv_inv_expr_ent *inv_expr; /* Loop invariant expression. */
358 /* Use. */
359 struct iv_use
361 unsigned id; /* The id of the use. */
362 unsigned group_id; /* The group id the use belongs to. */
363 enum use_type type; /* Type of the use. */
364 struct iv *iv; /* The induction variable it is based on. */
365 gimple *stmt; /* Statement in that it occurs. */
366 tree *op_p; /* The place where it occurs. */
368 tree addr_base; /* Base address with const offset stripped. */
369 unsigned HOST_WIDE_INT addr_offset;
370 /* Const offset stripped from base address. */
373 /* Group of uses. */
374 struct iv_group
376 /* The id of the group. */
377 unsigned id;
378 /* Uses of the group are of the same type. */
379 enum use_type type;
380 /* The set of "related" IV candidates, plus the important ones. */
381 bitmap related_cands;
382 /* Number of IV candidates in the cost_map. */
383 unsigned n_map_members;
384 /* The costs wrto the iv candidates. */
385 struct cost_pair *cost_map;
386 /* The selected candidate for the group. */
387 struct iv_cand *selected;
388 /* Uses in the group. */
389 vec<struct iv_use *> vuses;
392 /* The position where the iv is computed. */
393 enum iv_position
395 IP_NORMAL, /* At the end, just before the exit condition. */
396 IP_END, /* At the end of the latch block. */
397 IP_BEFORE_USE, /* Immediately before a specific use. */
398 IP_AFTER_USE, /* Immediately after a specific use. */
399 IP_ORIGINAL /* The original biv. */
402 /* The induction variable candidate. */
403 struct iv_cand
405 unsigned id; /* The number of the candidate. */
406 bool important; /* Whether this is an "important" candidate, i.e. such
407 that it should be considered by all uses. */
408 ENUM_BITFIELD(iv_position) pos : 8; /* Where it is computed. */
409 gimple *incremented_at;/* For original biv, the statement where it is
410 incremented. */
411 tree var_before; /* The variable used for it before increment. */
412 tree var_after; /* The variable used for it after increment. */
413 struct iv *iv; /* The value of the candidate. NULL for
414 "pseudocandidate" used to indicate the possibility
415 to replace the final value of an iv by direct
416 computation of the value. */
417 unsigned cost; /* Cost of the candidate. */
418 unsigned cost_step; /* Cost of the candidate's increment operation. */
419 struct iv_use *ainc_use; /* For IP_{BEFORE,AFTER}_USE candidates, the place
420 where it is incremented. */
421 bitmap depends_on; /* The list of invariants that are used in step of the
422 biv. */
423 struct iv *orig_iv; /* The original iv if this cand is added from biv with
424 smaller type. */
427 /* Hashtable entry for common candidate derived from iv uses. */
428 struct iv_common_cand
430 tree base;
431 tree step;
432 /* IV uses from which this common candidate is derived. */
433 auto_vec<struct iv_use *> uses;
434 hashval_t hash;
437 /* Hashtable helpers. */
439 struct iv_common_cand_hasher : delete_ptr_hash <iv_common_cand>
441 static inline hashval_t hash (const iv_common_cand *);
442 static inline bool equal (const iv_common_cand *, const iv_common_cand *);
445 /* Hash function for possible common candidates. */
447 inline hashval_t
448 iv_common_cand_hasher::hash (const iv_common_cand *ccand)
450 return ccand->hash;
453 /* Hash table equality function for common candidates. */
455 inline bool
456 iv_common_cand_hasher::equal (const iv_common_cand *ccand1,
457 const iv_common_cand *ccand2)
459 return (ccand1->hash == ccand2->hash
460 && operand_equal_p (ccand1->base, ccand2->base, 0)
461 && operand_equal_p (ccand1->step, ccand2->step, 0)
462 && (TYPE_PRECISION (TREE_TYPE (ccand1->base))
463 == TYPE_PRECISION (TREE_TYPE (ccand2->base))));
466 /* Loop invariant expression hashtable entry. */
468 struct iv_inv_expr_ent
470 /* Tree expression of the entry. */
471 tree expr;
472 /* Unique indentifier. */
473 int id;
474 /* Hash value. */
475 hashval_t hash;
478 /* Sort iv_inv_expr_ent pair A and B by id field. */
480 static int
481 sort_iv_inv_expr_ent (const void *a, const void *b)
483 const iv_inv_expr_ent * const *e1 = (const iv_inv_expr_ent * const *) (a);
484 const iv_inv_expr_ent * const *e2 = (const iv_inv_expr_ent * const *) (b);
486 unsigned id1 = (*e1)->id;
487 unsigned id2 = (*e2)->id;
489 if (id1 < id2)
490 return -1;
491 else if (id1 > id2)
492 return 1;
493 else
494 return 0;
497 /* Hashtable helpers. */
499 struct iv_inv_expr_hasher : free_ptr_hash <iv_inv_expr_ent>
501 static inline hashval_t hash (const iv_inv_expr_ent *);
502 static inline bool equal (const iv_inv_expr_ent *, const iv_inv_expr_ent *);
505 /* Hash function for loop invariant expressions. */
507 inline hashval_t
508 iv_inv_expr_hasher::hash (const iv_inv_expr_ent *expr)
510 return expr->hash;
513 /* Hash table equality function for expressions. */
515 inline bool
516 iv_inv_expr_hasher::equal (const iv_inv_expr_ent *expr1,
517 const iv_inv_expr_ent *expr2)
519 return expr1->hash == expr2->hash
520 && operand_equal_p (expr1->expr, expr2->expr, 0);
523 struct ivopts_data
525 /* The currently optimized loop. */
526 struct loop *current_loop;
527 source_location loop_loc;
529 /* Numbers of iterations for all exits of the current loop. */
530 hash_map<edge, tree_niter_desc *> *niters;
532 /* Number of registers used in it. */
533 unsigned regs_used;
535 /* The size of version_info array allocated. */
536 unsigned version_info_size;
538 /* The array of information for the ssa names. */
539 struct version_info *version_info;
541 /* The hashtable of loop invariant expressions created
542 by ivopt. */
543 hash_table<iv_inv_expr_hasher> *inv_expr_tab;
545 /* Loop invariant expression id. */
546 int max_inv_expr_id;
548 /* The bitmap of indices in version_info whose value was changed. */
549 bitmap relevant;
551 /* The uses of induction variables. */
552 vec<iv_group *> vgroups;
554 /* The candidates. */
555 vec<iv_cand *> vcands;
557 /* A bitmap of important candidates. */
558 bitmap important_candidates;
560 /* Cache used by tree_to_aff_combination_expand. */
561 hash_map<tree, name_expansion *> *name_expansion_cache;
563 /* The hashtable of common candidates derived from iv uses. */
564 hash_table<iv_common_cand_hasher> *iv_common_cand_tab;
566 /* The common candidates. */
567 vec<iv_common_cand *> iv_common_cands;
569 /* The maximum invariant id. */
570 unsigned max_inv_id;
572 /* Number of no_overflow BIVs which are not used in memory address. */
573 unsigned bivs_not_used_in_addr;
575 /* Obstack for iv structure. */
576 struct obstack iv_obstack;
578 /* Whether to consider just related and important candidates when replacing a
579 use. */
580 bool consider_all_candidates;
582 /* Are we optimizing for speed? */
583 bool speed;
585 /* Whether the loop body includes any function calls. */
586 bool body_includes_call;
588 /* Whether the loop body can only be exited via single exit. */
589 bool loop_single_exit_p;
592 /* An assignment of iv candidates to uses. */
594 struct iv_ca
596 /* The number of uses covered by the assignment. */
597 unsigned upto;
599 /* Number of uses that cannot be expressed by the candidates in the set. */
600 unsigned bad_groups;
602 /* Candidate assigned to a use, together with the related costs. */
603 struct cost_pair **cand_for_group;
605 /* Number of times each candidate is used. */
606 unsigned *n_cand_uses;
608 /* The candidates used. */
609 bitmap cands;
611 /* The number of candidates in the set. */
612 unsigned n_cands;
614 /* Total number of registers needed. */
615 unsigned n_regs;
617 /* Total cost of expressing uses. */
618 comp_cost cand_use_cost;
620 /* Total cost of candidates. */
621 unsigned cand_cost;
623 /* Number of times each invariant is used. */
624 unsigned *n_invariant_uses;
626 /* Hash set with used invariant expression. */
627 hash_map <iv_inv_expr_ent *, unsigned> *used_inv_exprs;
629 /* Total cost of the assignment. */
630 comp_cost cost;
633 /* Difference of two iv candidate assignments. */
635 struct iv_ca_delta
637 /* Changed group. */
638 struct iv_group *group;
640 /* An old assignment (for rollback purposes). */
641 struct cost_pair *old_cp;
643 /* A new assignment. */
644 struct cost_pair *new_cp;
646 /* Next change in the list. */
647 struct iv_ca_delta *next;
650 /* Bound on number of candidates below that all candidates are considered. */
652 #define CONSIDER_ALL_CANDIDATES_BOUND \
653 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
655 /* If there are more iv occurrences, we just give up (it is quite unlikely that
656 optimizing such a loop would help, and it would take ages). */
658 #define MAX_CONSIDERED_GROUPS \
659 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
661 /* If there are at most this number of ivs in the set, try removing unnecessary
662 ivs from the set always. */
664 #define ALWAYS_PRUNE_CAND_SET_BOUND \
665 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
667 /* The list of trees for that the decl_rtl field must be reset is stored
668 here. */
670 static vec<tree> decl_rtl_to_reset;
672 static comp_cost force_expr_to_var_cost (tree, bool);
674 /* The single loop exit if it dominates the latch, NULL otherwise. */
676 edge
677 single_dom_exit (struct loop *loop)
679 edge exit = single_exit (loop);
681 if (!exit)
682 return NULL;
684 if (!just_once_each_iteration_p (loop, exit->src))
685 return NULL;
687 return exit;
690 /* Dumps information about the induction variable IV to FILE. Don't dump
691 variable's name if DUMP_NAME is FALSE. The information is dumped with
692 preceding spaces indicated by INDENT_LEVEL. */
694 void
695 dump_iv (FILE *file, struct iv *iv, bool dump_name, unsigned indent_level)
697 const char *p;
698 const char spaces[9] = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\0'};
700 if (indent_level > 4)
701 indent_level = 4;
702 p = spaces + 8 - (indent_level << 1);
704 fprintf (file, "%sIV struct:\n", p);
705 if (iv->ssa_name && dump_name)
707 fprintf (file, "%s SSA_NAME:\t", p);
708 print_generic_expr (file, iv->ssa_name, TDF_SLIM);
709 fprintf (file, "\n");
712 fprintf (file, "%s Type:\t", p);
713 print_generic_expr (file, TREE_TYPE (iv->base), TDF_SLIM);
714 fprintf (file, "\n");
716 fprintf (file, "%s Base:\t", p);
717 print_generic_expr (file, iv->base, TDF_SLIM);
718 fprintf (file, "\n");
720 fprintf (file, "%s Step:\t", p);
721 print_generic_expr (file, iv->step, TDF_SLIM);
722 fprintf (file, "\n");
724 if (iv->base_object)
726 fprintf (file, "%s Object:\t", p);
727 print_generic_expr (file, iv->base_object, TDF_SLIM);
728 fprintf (file, "\n");
731 fprintf (file, "%s Biv:\t%c\n", p, iv->biv_p ? 'Y' : 'N');
733 fprintf (file, "%s Overflowness wrto loop niter:\t%s\n",
734 p, iv->no_overflow ? "No-overflow" : "Overflow");
737 /* Dumps information about the USE to FILE. */
739 void
740 dump_use (FILE *file, struct iv_use *use)
742 fprintf (file, " Use %d.%d:\n", use->group_id, use->id);
743 fprintf (file, " At stmt:\t");
744 print_gimple_stmt (file, use->stmt, 0, 0);
745 fprintf (file, " At pos:\t");
746 if (use->op_p)
747 print_generic_expr (file, *use->op_p, TDF_SLIM);
748 fprintf (file, "\n");
749 dump_iv (file, use->iv, false, 2);
752 /* Dumps information about the uses to FILE. */
754 void
755 dump_groups (FILE *file, struct ivopts_data *data)
757 unsigned i, j;
758 struct iv_group *group;
760 for (i = 0; i < data->vgroups.length (); i++)
762 group = data->vgroups[i];
763 fprintf (file, "Group %d:\n", group->id);
764 if (group->type == USE_NONLINEAR_EXPR)
765 fprintf (file, " Type:\tGENERIC\n");
766 else if (group->type == USE_ADDRESS)
767 fprintf (file, " Type:\tADDRESS\n");
768 else
770 gcc_assert (group->type == USE_COMPARE);
771 fprintf (file, " Type:\tCOMPARE\n");
773 for (j = 0; j < group->vuses.length (); j++)
774 dump_use (file, group->vuses[j]);
778 /* Dumps information about induction variable candidate CAND to FILE. */
780 void
781 dump_cand (FILE *file, struct iv_cand *cand)
783 struct iv *iv = cand->iv;
785 fprintf (file, "Candidate %d:\n", cand->id);
786 if (cand->depends_on)
788 fprintf (file, " Depend on: ");
789 dump_bitmap (file, cand->depends_on);
792 if (cand->var_before)
794 fprintf (file, " Var befor: ");
795 print_generic_expr (file, cand->var_before, TDF_SLIM);
796 fprintf (file, "\n");
798 if (cand->var_after)
800 fprintf (file, " Var after: ");
801 print_generic_expr (file, cand->var_after, TDF_SLIM);
802 fprintf (file, "\n");
805 switch (cand->pos)
807 case IP_NORMAL:
808 fprintf (file, " Incr POS: before exit test\n");
809 break;
811 case IP_BEFORE_USE:
812 fprintf (file, " Incr POS: before use %d\n", cand->ainc_use->id);
813 break;
815 case IP_AFTER_USE:
816 fprintf (file, " Incr POS: after use %d\n", cand->ainc_use->id);
817 break;
819 case IP_END:
820 fprintf (file, " Incr POS: at end\n");
821 break;
823 case IP_ORIGINAL:
824 fprintf (file, " Incr POS: orig biv\n");
825 break;
828 dump_iv (file, iv, false, 1);
831 /* Returns the info for ssa version VER. */
833 static inline struct version_info *
834 ver_info (struct ivopts_data *data, unsigned ver)
836 return data->version_info + ver;
839 /* Returns the info for ssa name NAME. */
841 static inline struct version_info *
842 name_info (struct ivopts_data *data, tree name)
844 return ver_info (data, SSA_NAME_VERSION (name));
847 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
848 emitted in LOOP. */
850 static bool
851 stmt_after_ip_normal_pos (struct loop *loop, gimple *stmt)
853 basic_block bb = ip_normal_pos (loop), sbb = gimple_bb (stmt);
855 gcc_assert (bb);
857 if (sbb == loop->latch)
858 return true;
860 if (sbb != bb)
861 return false;
863 return stmt == last_stmt (bb);
866 /* Returns true if STMT if after the place where the original induction
867 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
868 if the positions are identical. */
870 static bool
871 stmt_after_inc_pos (struct iv_cand *cand, gimple *stmt, bool true_if_equal)
873 basic_block cand_bb = gimple_bb (cand->incremented_at);
874 basic_block stmt_bb = gimple_bb (stmt);
876 if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
877 return false;
879 if (stmt_bb != cand_bb)
880 return true;
882 if (true_if_equal
883 && gimple_uid (stmt) == gimple_uid (cand->incremented_at))
884 return true;
885 return gimple_uid (stmt) > gimple_uid (cand->incremented_at);
888 /* Returns true if STMT if after the place where the induction variable
889 CAND is incremented in LOOP. */
891 static bool
892 stmt_after_increment (struct loop *loop, struct iv_cand *cand, gimple *stmt)
894 switch (cand->pos)
896 case IP_END:
897 return false;
899 case IP_NORMAL:
900 return stmt_after_ip_normal_pos (loop, stmt);
902 case IP_ORIGINAL:
903 case IP_AFTER_USE:
904 return stmt_after_inc_pos (cand, stmt, false);
906 case IP_BEFORE_USE:
907 return stmt_after_inc_pos (cand, stmt, true);
909 default:
910 gcc_unreachable ();
914 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
916 static bool
917 abnormal_ssa_name_p (tree exp)
919 if (!exp)
920 return false;
922 if (TREE_CODE (exp) != SSA_NAME)
923 return false;
925 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp) != 0;
928 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
929 abnormal phi node. Callback for for_each_index. */
931 static bool
932 idx_contains_abnormal_ssa_name_p (tree base, tree *index,
933 void *data ATTRIBUTE_UNUSED)
935 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
937 if (abnormal_ssa_name_p (TREE_OPERAND (base, 2)))
938 return false;
939 if (abnormal_ssa_name_p (TREE_OPERAND (base, 3)))
940 return false;
943 return !abnormal_ssa_name_p (*index);
946 /* Returns true if EXPR contains a ssa name that occurs in an
947 abnormal phi node. */
949 bool
950 contains_abnormal_ssa_name_p (tree expr)
952 enum tree_code code;
953 enum tree_code_class codeclass;
955 if (!expr)
956 return false;
958 code = TREE_CODE (expr);
959 codeclass = TREE_CODE_CLASS (code);
961 if (code == SSA_NAME)
962 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
964 if (code == INTEGER_CST
965 || is_gimple_min_invariant (expr))
966 return false;
968 if (code == ADDR_EXPR)
969 return !for_each_index (&TREE_OPERAND (expr, 0),
970 idx_contains_abnormal_ssa_name_p,
971 NULL);
973 if (code == COND_EXPR)
974 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0))
975 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1))
976 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 2));
978 switch (codeclass)
980 case tcc_binary:
981 case tcc_comparison:
982 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
983 return true;
985 /* Fallthru. */
986 case tcc_unary:
987 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
988 return true;
990 break;
992 default:
993 gcc_unreachable ();
996 return false;
999 /* Returns the structure describing number of iterations determined from
1000 EXIT of DATA->current_loop, or NULL if something goes wrong. */
1002 static struct tree_niter_desc *
1003 niter_for_exit (struct ivopts_data *data, edge exit)
1005 struct tree_niter_desc *desc;
1006 tree_niter_desc **slot;
1008 if (!data->niters)
1010 data->niters = new hash_map<edge, tree_niter_desc *>;
1011 slot = NULL;
1013 else
1014 slot = data->niters->get (exit);
1016 if (!slot)
1018 /* Try to determine number of iterations. We cannot safely work with ssa
1019 names that appear in phi nodes on abnormal edges, so that we do not
1020 create overlapping life ranges for them (PR 27283). */
1021 desc = XNEW (struct tree_niter_desc);
1022 if (!number_of_iterations_exit (data->current_loop,
1023 exit, desc, true)
1024 || contains_abnormal_ssa_name_p (desc->niter))
1026 XDELETE (desc);
1027 desc = NULL;
1029 data->niters->put (exit, desc);
1031 else
1032 desc = *slot;
1034 return desc;
1037 /* Returns the structure describing number of iterations determined from
1038 single dominating exit of DATA->current_loop, or NULL if something
1039 goes wrong. */
1041 static struct tree_niter_desc *
1042 niter_for_single_dom_exit (struct ivopts_data *data)
1044 edge exit = single_dom_exit (data->current_loop);
1046 if (!exit)
1047 return NULL;
1049 return niter_for_exit (data, exit);
1052 /* Initializes data structures used by the iv optimization pass, stored
1053 in DATA. */
1055 static void
1056 tree_ssa_iv_optimize_init (struct ivopts_data *data)
1058 data->version_info_size = 2 * num_ssa_names;
1059 data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
1060 data->relevant = BITMAP_ALLOC (NULL);
1061 data->important_candidates = BITMAP_ALLOC (NULL);
1062 data->max_inv_id = 0;
1063 data->niters = NULL;
1064 data->vgroups.create (20);
1065 data->vcands.create (20);
1066 data->inv_expr_tab = new hash_table<iv_inv_expr_hasher> (10);
1067 data->max_inv_expr_id = 0;
1068 data->name_expansion_cache = NULL;
1069 data->iv_common_cand_tab = new hash_table<iv_common_cand_hasher> (10);
1070 data->iv_common_cands.create (20);
1071 decl_rtl_to_reset.create (20);
1072 gcc_obstack_init (&data->iv_obstack);
1075 /* Returns a memory object to that EXPR points. In case we are able to
1076 determine that it does not point to any such object, NULL is returned. */
1078 static tree
1079 determine_base_object (tree expr)
1081 enum tree_code code = TREE_CODE (expr);
1082 tree base, obj;
1084 /* If this is a pointer casted to any type, we need to determine
1085 the base object for the pointer; so handle conversions before
1086 throwing away non-pointer expressions. */
1087 if (CONVERT_EXPR_P (expr))
1088 return determine_base_object (TREE_OPERAND (expr, 0));
1090 if (!POINTER_TYPE_P (TREE_TYPE (expr)))
1091 return NULL_TREE;
1093 switch (code)
1095 case INTEGER_CST:
1096 return NULL_TREE;
1098 case ADDR_EXPR:
1099 obj = TREE_OPERAND (expr, 0);
1100 base = get_base_address (obj);
1102 if (!base)
1103 return expr;
1105 if (TREE_CODE (base) == MEM_REF)
1106 return determine_base_object (TREE_OPERAND (base, 0));
1108 return fold_convert (ptr_type_node,
1109 build_fold_addr_expr (base));
1111 case POINTER_PLUS_EXPR:
1112 return determine_base_object (TREE_OPERAND (expr, 0));
1114 case PLUS_EXPR:
1115 case MINUS_EXPR:
1116 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
1117 gcc_unreachable ();
1119 default:
1120 return fold_convert (ptr_type_node, expr);
1124 /* Return true if address expression with non-DECL_P operand appears
1125 in EXPR. */
1127 static bool
1128 contain_complex_addr_expr (tree expr)
1130 bool res = false;
1132 STRIP_NOPS (expr);
1133 switch (TREE_CODE (expr))
1135 case POINTER_PLUS_EXPR:
1136 case PLUS_EXPR:
1137 case MINUS_EXPR:
1138 res |= contain_complex_addr_expr (TREE_OPERAND (expr, 0));
1139 res |= contain_complex_addr_expr (TREE_OPERAND (expr, 1));
1140 break;
1142 case ADDR_EXPR:
1143 return (!DECL_P (TREE_OPERAND (expr, 0)));
1145 default:
1146 return false;
1149 return res;
1152 /* Allocates an induction variable with given initial value BASE and step STEP
1153 for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */
1155 static struct iv *
1156 alloc_iv (struct ivopts_data *data, tree base, tree step,
1157 bool no_overflow = false)
1159 tree expr = base;
1160 struct iv *iv = (struct iv*) obstack_alloc (&data->iv_obstack,
1161 sizeof (struct iv));
1162 gcc_assert (step != NULL_TREE);
1164 /* Lower address expression in base except ones with DECL_P as operand.
1165 By doing this:
1166 1) More accurate cost can be computed for address expressions;
1167 2) Duplicate candidates won't be created for bases in different
1168 forms, like &a[0] and &a. */
1169 STRIP_NOPS (expr);
1170 if ((TREE_CODE (expr) == ADDR_EXPR && !DECL_P (TREE_OPERAND (expr, 0)))
1171 || contain_complex_addr_expr (expr))
1173 aff_tree comb;
1174 tree_to_aff_combination (expr, TREE_TYPE (base), &comb);
1175 base = fold_convert (TREE_TYPE (base), aff_combination_to_tree (&comb));
1178 iv->base = base;
1179 iv->base_object = determine_base_object (base);
1180 iv->step = step;
1181 iv->biv_p = false;
1182 iv->nonlin_use = NULL;
1183 iv->ssa_name = NULL_TREE;
1184 if (!no_overflow
1185 && !iv_can_overflow_p (data->current_loop, TREE_TYPE (base),
1186 base, step))
1187 no_overflow = true;
1188 iv->no_overflow = no_overflow;
1189 iv->have_address_use = false;
1191 return iv;
1194 /* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV
1195 doesn't overflow. */
1197 static void
1198 set_iv (struct ivopts_data *data, tree iv, tree base, tree step,
1199 bool no_overflow)
1201 struct version_info *info = name_info (data, iv);
1203 gcc_assert (!info->iv);
1205 bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
1206 info->iv = alloc_iv (data, base, step, no_overflow);
1207 info->iv->ssa_name = iv;
1210 /* Finds induction variable declaration for VAR. */
1212 static struct iv *
1213 get_iv (struct ivopts_data *data, tree var)
1215 basic_block bb;
1216 tree type = TREE_TYPE (var);
1218 if (!POINTER_TYPE_P (type)
1219 && !INTEGRAL_TYPE_P (type))
1220 return NULL;
1222 if (!name_info (data, var)->iv)
1224 bb = gimple_bb (SSA_NAME_DEF_STMT (var));
1226 if (!bb
1227 || !flow_bb_inside_loop_p (data->current_loop, bb))
1228 set_iv (data, var, var, build_int_cst (type, 0), true);
1231 return name_info (data, var)->iv;
1234 /* Return the first non-invariant ssa var found in EXPR. */
1236 static tree
1237 extract_single_var_from_expr (tree expr)
1239 int i, n;
1240 tree tmp;
1241 enum tree_code code;
1243 if (!expr || is_gimple_min_invariant (expr))
1244 return NULL;
1246 code = TREE_CODE (expr);
1247 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1249 n = TREE_OPERAND_LENGTH (expr);
1250 for (i = 0; i < n; i++)
1252 tmp = extract_single_var_from_expr (TREE_OPERAND (expr, i));
1254 if (tmp)
1255 return tmp;
1258 return (TREE_CODE (expr) == SSA_NAME) ? expr : NULL;
1261 /* Finds basic ivs. */
1263 static bool
1264 find_bivs (struct ivopts_data *data)
1266 gphi *phi;
1267 affine_iv iv;
1268 tree step, type, base, stop;
1269 bool found = false;
1270 struct loop *loop = data->current_loop;
1271 gphi_iterator psi;
1273 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1275 phi = psi.phi ();
1277 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
1278 continue;
1280 if (virtual_operand_p (PHI_RESULT (phi)))
1281 continue;
1283 if (!simple_iv (loop, loop, PHI_RESULT (phi), &iv, true))
1284 continue;
1286 if (integer_zerop (iv.step))
1287 continue;
1289 step = iv.step;
1290 base = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1291 /* Stop expanding iv base at the first ssa var referred by iv step.
1292 Ideally we should stop at any ssa var, because that's expensive
1293 and unusual to happen, we just do it on the first one.
1295 See PR64705 for the rationale. */
1296 stop = extract_single_var_from_expr (step);
1297 base = expand_simple_operations (base, stop);
1298 if (contains_abnormal_ssa_name_p (base)
1299 || contains_abnormal_ssa_name_p (step))
1300 continue;
1302 type = TREE_TYPE (PHI_RESULT (phi));
1303 base = fold_convert (type, base);
1304 if (step)
1306 if (POINTER_TYPE_P (type))
1307 step = convert_to_ptrofftype (step);
1308 else
1309 step = fold_convert (type, step);
1312 set_iv (data, PHI_RESULT (phi), base, step, iv.no_overflow);
1313 found = true;
1316 return found;
1319 /* Marks basic ivs. */
1321 static void
1322 mark_bivs (struct ivopts_data *data)
1324 gphi *phi;
1325 gimple *def;
1326 tree var;
1327 struct iv *iv, *incr_iv;
1328 struct loop *loop = data->current_loop;
1329 basic_block incr_bb;
1330 gphi_iterator psi;
1332 data->bivs_not_used_in_addr = 0;
1333 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1335 phi = psi.phi ();
1337 iv = get_iv (data, PHI_RESULT (phi));
1338 if (!iv)
1339 continue;
1341 var = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1342 def = SSA_NAME_DEF_STMT (var);
1343 /* Don't mark iv peeled from other one as biv. */
1344 if (def
1345 && gimple_code (def) == GIMPLE_PHI
1346 && gimple_bb (def) == loop->header)
1347 continue;
1349 incr_iv = get_iv (data, var);
1350 if (!incr_iv)
1351 continue;
1353 /* If the increment is in the subloop, ignore it. */
1354 incr_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
1355 if (incr_bb->loop_father != data->current_loop
1356 || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
1357 continue;
1359 iv->biv_p = true;
1360 incr_iv->biv_p = true;
1361 if (iv->no_overflow)
1362 data->bivs_not_used_in_addr++;
1363 if (incr_iv->no_overflow)
1364 data->bivs_not_used_in_addr++;
1368 /* Checks whether STMT defines a linear induction variable and stores its
1369 parameters to IV. */
1371 static bool
1372 find_givs_in_stmt_scev (struct ivopts_data *data, gimple *stmt, affine_iv *iv)
1374 tree lhs, stop;
1375 struct loop *loop = data->current_loop;
1377 iv->base = NULL_TREE;
1378 iv->step = NULL_TREE;
1380 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1381 return false;
1383 lhs = gimple_assign_lhs (stmt);
1384 if (TREE_CODE (lhs) != SSA_NAME)
1385 return false;
1387 if (!simple_iv (loop, loop_containing_stmt (stmt), lhs, iv, true))
1388 return false;
1390 /* Stop expanding iv base at the first ssa var referred by iv step.
1391 Ideally we should stop at any ssa var, because that's expensive
1392 and unusual to happen, we just do it on the first one.
1394 See PR64705 for the rationale. */
1395 stop = extract_single_var_from_expr (iv->step);
1396 iv->base = expand_simple_operations (iv->base, stop);
1397 if (contains_abnormal_ssa_name_p (iv->base)
1398 || contains_abnormal_ssa_name_p (iv->step))
1399 return false;
1401 /* If STMT could throw, then do not consider STMT as defining a GIV.
1402 While this will suppress optimizations, we can not safely delete this
1403 GIV and associated statements, even if it appears it is not used. */
1404 if (stmt_could_throw_p (stmt))
1405 return false;
1407 return true;
1410 /* Finds general ivs in statement STMT. */
1412 static void
1413 find_givs_in_stmt (struct ivopts_data *data, gimple *stmt)
1415 affine_iv iv;
1417 if (!find_givs_in_stmt_scev (data, stmt, &iv))
1418 return;
1420 set_iv (data, gimple_assign_lhs (stmt), iv.base, iv.step, iv.no_overflow);
1423 /* Finds general ivs in basic block BB. */
1425 static void
1426 find_givs_in_bb (struct ivopts_data *data, basic_block bb)
1428 gimple_stmt_iterator bsi;
1430 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1431 find_givs_in_stmt (data, gsi_stmt (bsi));
1434 /* Finds general ivs. */
1436 static void
1437 find_givs (struct ivopts_data *data)
1439 struct loop *loop = data->current_loop;
1440 basic_block *body = get_loop_body_in_dom_order (loop);
1441 unsigned i;
1443 for (i = 0; i < loop->num_nodes; i++)
1444 find_givs_in_bb (data, body[i]);
1445 free (body);
1448 /* For each ssa name defined in LOOP determines whether it is an induction
1449 variable and if so, its initial value and step. */
1451 static bool
1452 find_induction_variables (struct ivopts_data *data)
1454 unsigned i;
1455 bitmap_iterator bi;
1457 if (!find_bivs (data))
1458 return false;
1460 find_givs (data);
1461 mark_bivs (data);
1463 if (dump_file && (dump_flags & TDF_DETAILS))
1465 struct tree_niter_desc *niter = niter_for_single_dom_exit (data);
1467 if (niter)
1469 fprintf (dump_file, " number of iterations ");
1470 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1471 if (!integer_zerop (niter->may_be_zero))
1473 fprintf (dump_file, "; zero if ");
1474 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1476 fprintf (dump_file, "\n");
1479 fprintf (dump_file, "\n<Induction Vars>:\n");
1480 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
1482 struct version_info *info = ver_info (data, i);
1483 if (info->iv && info->iv->step && !integer_zerop (info->iv->step))
1484 dump_iv (dump_file, ver_info (data, i)->iv, true, 0);
1488 return true;
1491 /* Records a use of TYPE at *USE_P in STMT whose value is IV in GROUP.
1492 For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET
1493 is the const offset stripped from IV base; for other types use, both
1494 are zero by default. */
1496 static struct iv_use *
1497 record_use (struct iv_group *group, tree *use_p, struct iv *iv,
1498 gimple *stmt, enum use_type type, tree addr_base,
1499 unsigned HOST_WIDE_INT addr_offset)
1501 struct iv_use *use = XCNEW (struct iv_use);
1503 use->id = group->vuses.length ();
1504 use->group_id = group->id;
1505 use->type = type;
1506 use->iv = iv;
1507 use->stmt = stmt;
1508 use->op_p = use_p;
1509 use->addr_base = addr_base;
1510 use->addr_offset = addr_offset;
1512 group->vuses.safe_push (use);
1513 return use;
1516 /* Checks whether OP is a loop-level invariant and if so, records it.
1517 NONLINEAR_USE is true if the invariant is used in a way we do not
1518 handle specially. */
1520 static void
1521 record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
1523 basic_block bb;
1524 struct version_info *info;
1526 if (TREE_CODE (op) != SSA_NAME
1527 || virtual_operand_p (op))
1528 return;
1530 bb = gimple_bb (SSA_NAME_DEF_STMT (op));
1531 if (bb
1532 && flow_bb_inside_loop_p (data->current_loop, bb))
1533 return;
1535 info = name_info (data, op);
1536 info->name = op;
1537 info->has_nonlin_use |= nonlinear_use;
1538 if (!info->inv_id)
1539 info->inv_id = ++data->max_inv_id;
1540 bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
1543 static tree
1544 strip_offset (tree expr, unsigned HOST_WIDE_INT *offset);
1546 /* Record a group of TYPE. */
1548 static struct iv_group *
1549 record_group (struct ivopts_data *data, enum use_type type)
1551 struct iv_group *group = XCNEW (struct iv_group);
1553 group->id = data->vgroups.length ();
1554 group->type = type;
1555 group->related_cands = BITMAP_ALLOC (NULL);
1556 group->vuses.create (1);
1558 data->vgroups.safe_push (group);
1559 return group;
1562 /* Record a use of TYPE at *USE_P in STMT whose value is IV in a group.
1563 New group will be created if there is no existing group for the use. */
1565 static struct iv_use *
1566 record_group_use (struct ivopts_data *data, tree *use_p,
1567 struct iv *iv, gimple *stmt, enum use_type type)
1569 tree addr_base = NULL;
1570 struct iv_group *group = NULL;
1571 unsigned HOST_WIDE_INT addr_offset = 0;
1573 /* Record non address type use in a new group. */
1574 if (type == USE_ADDRESS && iv->base_object)
1576 unsigned int i;
1578 addr_base = strip_offset (iv->base, &addr_offset);
1579 for (i = 0; i < data->vgroups.length (); i++)
1581 struct iv_use *use;
1583 group = data->vgroups[i];
1584 use = group->vuses[0];
1585 if (use->type != USE_ADDRESS || !use->iv->base_object)
1586 continue;
1588 /* Check if it has the same stripped base and step. */
1589 if (operand_equal_p (iv->base_object, use->iv->base_object, 0)
1590 && operand_equal_p (iv->step, use->iv->step, 0)
1591 && operand_equal_p (addr_base, use->addr_base, 0))
1592 break;
1594 if (i == data->vgroups.length ())
1595 group = NULL;
1598 if (!group)
1599 group = record_group (data, type);
1601 return record_use (group, use_p, iv, stmt, type, addr_base, addr_offset);
1604 /* Checks whether the use OP is interesting and if so, records it. */
1606 static struct iv_use *
1607 find_interesting_uses_op (struct ivopts_data *data, tree op)
1609 struct iv *iv;
1610 gimple *stmt;
1611 struct iv_use *use;
1613 if (TREE_CODE (op) != SSA_NAME)
1614 return NULL;
1616 iv = get_iv (data, op);
1617 if (!iv)
1618 return NULL;
1620 if (iv->nonlin_use)
1622 gcc_assert (iv->nonlin_use->type == USE_NONLINEAR_EXPR);
1623 return iv->nonlin_use;
1626 if (integer_zerop (iv->step))
1628 record_invariant (data, op, true);
1629 return NULL;
1632 stmt = SSA_NAME_DEF_STMT (op);
1633 gcc_assert (gimple_code (stmt) == GIMPLE_PHI || is_gimple_assign (stmt));
1635 use = record_group_use (data, NULL, iv, stmt, USE_NONLINEAR_EXPR);
1636 iv->nonlin_use = use;
1637 return use;
1640 /* Given a condition in statement STMT, checks whether it is a compare
1641 of an induction variable and an invariant. If this is the case,
1642 CONTROL_VAR is set to location of the iv, BOUND to the location of
1643 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1644 induction variable descriptions, and true is returned. If this is not
1645 the case, CONTROL_VAR and BOUND are set to the arguments of the
1646 condition and false is returned. */
1648 static bool
1649 extract_cond_operands (struct ivopts_data *data, gimple *stmt,
1650 tree **control_var, tree **bound,
1651 struct iv **iv_var, struct iv **iv_bound)
1653 /* The objects returned when COND has constant operands. */
1654 static struct iv const_iv;
1655 static tree zero;
1656 tree *op0 = &zero, *op1 = &zero;
1657 struct iv *iv0 = &const_iv, *iv1 = &const_iv;
1658 bool ret = false;
1660 if (gimple_code (stmt) == GIMPLE_COND)
1662 gcond *cond_stmt = as_a <gcond *> (stmt);
1663 op0 = gimple_cond_lhs_ptr (cond_stmt);
1664 op1 = gimple_cond_rhs_ptr (cond_stmt);
1666 else
1668 op0 = gimple_assign_rhs1_ptr (stmt);
1669 op1 = gimple_assign_rhs2_ptr (stmt);
1672 zero = integer_zero_node;
1673 const_iv.step = integer_zero_node;
1675 if (TREE_CODE (*op0) == SSA_NAME)
1676 iv0 = get_iv (data, *op0);
1677 if (TREE_CODE (*op1) == SSA_NAME)
1678 iv1 = get_iv (data, *op1);
1680 /* Exactly one of the compared values must be an iv, and the other one must
1681 be an invariant. */
1682 if (!iv0 || !iv1)
1683 goto end;
1685 if (integer_zerop (iv0->step))
1687 /* Control variable may be on the other side. */
1688 std::swap (op0, op1);
1689 std::swap (iv0, iv1);
1691 ret = !integer_zerop (iv0->step) && integer_zerop (iv1->step);
1693 end:
1694 if (control_var)
1695 *control_var = op0;
1696 if (iv_var)
1697 *iv_var = iv0;
1698 if (bound)
1699 *bound = op1;
1700 if (iv_bound)
1701 *iv_bound = iv1;
1703 return ret;
1706 /* Checks whether the condition in STMT is interesting and if so,
1707 records it. */
1709 static void
1710 find_interesting_uses_cond (struct ivopts_data *data, gimple *stmt)
1712 tree *var_p, *bound_p;
1713 struct iv *var_iv;
1715 if (!extract_cond_operands (data, stmt, &var_p, &bound_p, &var_iv, NULL))
1717 find_interesting_uses_op (data, *var_p);
1718 find_interesting_uses_op (data, *bound_p);
1719 return;
1722 record_group_use (data, NULL, var_iv, stmt, USE_COMPARE);
1725 /* Returns the outermost loop EXPR is obviously invariant in
1726 relative to the loop LOOP, i.e. if all its operands are defined
1727 outside of the returned loop. Returns NULL if EXPR is not
1728 even obviously invariant in LOOP. */
1730 struct loop *
1731 outermost_invariant_loop_for_expr (struct loop *loop, tree expr)
1733 basic_block def_bb;
1734 unsigned i, len;
1736 if (is_gimple_min_invariant (expr))
1737 return current_loops->tree_root;
1739 if (TREE_CODE (expr) == SSA_NAME)
1741 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
1742 if (def_bb)
1744 if (flow_bb_inside_loop_p (loop, def_bb))
1745 return NULL;
1746 return superloop_at_depth (loop,
1747 loop_depth (def_bb->loop_father) + 1);
1750 return current_loops->tree_root;
1753 if (!EXPR_P (expr))
1754 return NULL;
1756 unsigned maxdepth = 0;
1757 len = TREE_OPERAND_LENGTH (expr);
1758 for (i = 0; i < len; i++)
1760 struct loop *ivloop;
1761 if (!TREE_OPERAND (expr, i))
1762 continue;
1764 ivloop = outermost_invariant_loop_for_expr (loop, TREE_OPERAND (expr, i));
1765 if (!ivloop)
1766 return NULL;
1767 maxdepth = MAX (maxdepth, loop_depth (ivloop));
1770 return superloop_at_depth (loop, maxdepth);
1773 /* Returns true if expression EXPR is obviously invariant in LOOP,
1774 i.e. if all its operands are defined outside of the LOOP. LOOP
1775 should not be the function body. */
1777 bool
1778 expr_invariant_in_loop_p (struct loop *loop, tree expr)
1780 basic_block def_bb;
1781 unsigned i, len;
1783 gcc_assert (loop_depth (loop) > 0);
1785 if (is_gimple_min_invariant (expr))
1786 return true;
1788 if (TREE_CODE (expr) == SSA_NAME)
1790 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
1791 if (def_bb
1792 && flow_bb_inside_loop_p (loop, def_bb))
1793 return false;
1795 return true;
1798 if (!EXPR_P (expr))
1799 return false;
1801 len = TREE_OPERAND_LENGTH (expr);
1802 for (i = 0; i < len; i++)
1803 if (TREE_OPERAND (expr, i)
1804 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (expr, i)))
1805 return false;
1807 return true;
1810 /* Given expression EXPR which computes inductive values with respect
1811 to loop recorded in DATA, this function returns biv from which EXPR
1812 is derived by tracing definition chains of ssa variables in EXPR. */
1814 static struct iv*
1815 find_deriving_biv_for_expr (struct ivopts_data *data, tree expr)
1817 struct iv *iv;
1818 unsigned i, n;
1819 tree e2, e1;
1820 enum tree_code code;
1821 gimple *stmt;
1823 if (expr == NULL_TREE)
1824 return NULL;
1826 if (is_gimple_min_invariant (expr))
1827 return NULL;
1829 code = TREE_CODE (expr);
1830 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1832 n = TREE_OPERAND_LENGTH (expr);
1833 for (i = 0; i < n; i++)
1835 iv = find_deriving_biv_for_expr (data, TREE_OPERAND (expr, i));
1836 if (iv)
1837 return iv;
1841 /* Stop if it's not ssa name. */
1842 if (code != SSA_NAME)
1843 return NULL;
1845 iv = get_iv (data, expr);
1846 if (!iv || integer_zerop (iv->step))
1847 return NULL;
1848 else if (iv->biv_p)
1849 return iv;
1851 stmt = SSA_NAME_DEF_STMT (expr);
1852 if (gphi *phi = dyn_cast <gphi *> (stmt))
1854 ssa_op_iter iter;
1855 use_operand_p use_p;
1857 if (virtual_operand_p (gimple_phi_result (phi)))
1858 return NULL;
1860 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
1862 tree use = USE_FROM_PTR (use_p);
1863 iv = find_deriving_biv_for_expr (data, use);
1864 if (iv)
1865 return iv;
1867 return NULL;
1869 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1870 return NULL;
1872 e1 = gimple_assign_rhs1 (stmt);
1873 code = gimple_assign_rhs_code (stmt);
1874 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1875 return find_deriving_biv_for_expr (data, e1);
1877 switch (code)
1879 case MULT_EXPR:
1880 case PLUS_EXPR:
1881 case MINUS_EXPR:
1882 case POINTER_PLUS_EXPR:
1883 /* Increments, decrements and multiplications by a constant
1884 are simple. */
1885 e2 = gimple_assign_rhs2 (stmt);
1886 iv = find_deriving_biv_for_expr (data, e2);
1887 if (iv)
1888 return iv;
1889 gcc_fallthrough ();
1891 CASE_CONVERT:
1892 /* Casts are simple. */
1893 return find_deriving_biv_for_expr (data, e1);
1895 default:
1896 break;
1899 return NULL;
1902 /* Record BIV, its predecessor and successor that they are used in
1903 address type uses. */
1905 static void
1906 record_biv_for_address_use (struct ivopts_data *data, struct iv *biv)
1908 unsigned i;
1909 tree type, base_1, base_2;
1910 bitmap_iterator bi;
1912 if (!biv || !biv->biv_p || integer_zerop (biv->step)
1913 || biv->have_address_use || !biv->no_overflow)
1914 return;
1916 type = TREE_TYPE (biv->base);
1917 if (!INTEGRAL_TYPE_P (type))
1918 return;
1920 biv->have_address_use = true;
1921 data->bivs_not_used_in_addr--;
1922 base_1 = fold_build2 (PLUS_EXPR, type, biv->base, biv->step);
1923 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
1925 struct iv *iv = ver_info (data, i)->iv;
1927 if (!iv || !iv->biv_p || integer_zerop (iv->step)
1928 || iv->have_address_use || !iv->no_overflow)
1929 continue;
1931 if (type != TREE_TYPE (iv->base)
1932 || !INTEGRAL_TYPE_P (TREE_TYPE (iv->base)))
1933 continue;
1935 if (!operand_equal_p (biv->step, iv->step, 0))
1936 continue;
1938 base_2 = fold_build2 (PLUS_EXPR, type, iv->base, iv->step);
1939 if (operand_equal_p (base_1, iv->base, 0)
1940 || operand_equal_p (base_2, biv->base, 0))
1942 iv->have_address_use = true;
1943 data->bivs_not_used_in_addr--;
1948 /* Cumulates the steps of indices into DATA and replaces their values with the
1949 initial ones. Returns false when the value of the index cannot be determined.
1950 Callback for for_each_index. */
1952 struct ifs_ivopts_data
1954 struct ivopts_data *ivopts_data;
1955 gimple *stmt;
1956 tree step;
1959 static bool
1960 idx_find_step (tree base, tree *idx, void *data)
1962 struct ifs_ivopts_data *dta = (struct ifs_ivopts_data *) data;
1963 struct iv *iv;
1964 bool use_overflow_semantics = false;
1965 tree step, iv_base, iv_step, lbound, off;
1966 struct loop *loop = dta->ivopts_data->current_loop;
1968 /* If base is a component ref, require that the offset of the reference
1969 be invariant. */
1970 if (TREE_CODE (base) == COMPONENT_REF)
1972 off = component_ref_field_offset (base);
1973 return expr_invariant_in_loop_p (loop, off);
1976 /* If base is array, first check whether we will be able to move the
1977 reference out of the loop (in order to take its address in strength
1978 reduction). In order for this to work we need both lower bound
1979 and step to be loop invariants. */
1980 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
1982 /* Moreover, for a range, the size needs to be invariant as well. */
1983 if (TREE_CODE (base) == ARRAY_RANGE_REF
1984 && !expr_invariant_in_loop_p (loop, TYPE_SIZE (TREE_TYPE (base))))
1985 return false;
1987 step = array_ref_element_size (base);
1988 lbound = array_ref_low_bound (base);
1990 if (!expr_invariant_in_loop_p (loop, step)
1991 || !expr_invariant_in_loop_p (loop, lbound))
1992 return false;
1995 if (TREE_CODE (*idx) != SSA_NAME)
1996 return true;
1998 iv = get_iv (dta->ivopts_data, *idx);
1999 if (!iv)
2000 return false;
2002 /* XXX We produce for a base of *D42 with iv->base being &x[0]
2003 *&x[0], which is not folded and does not trigger the
2004 ARRAY_REF path below. */
2005 *idx = iv->base;
2007 if (integer_zerop (iv->step))
2008 return true;
2010 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
2012 step = array_ref_element_size (base);
2014 /* We only handle addresses whose step is an integer constant. */
2015 if (TREE_CODE (step) != INTEGER_CST)
2016 return false;
2018 else
2019 /* The step for pointer arithmetics already is 1 byte. */
2020 step = size_one_node;
2022 iv_base = iv->base;
2023 iv_step = iv->step;
2024 if (iv->no_overflow && nowrap_type_p (TREE_TYPE (iv_step)))
2025 use_overflow_semantics = true;
2027 if (!convert_affine_scev (dta->ivopts_data->current_loop,
2028 sizetype, &iv_base, &iv_step, dta->stmt,
2029 use_overflow_semantics))
2031 /* The index might wrap. */
2032 return false;
2035 step = fold_build2 (MULT_EXPR, sizetype, step, iv_step);
2036 dta->step = fold_build2 (PLUS_EXPR, sizetype, dta->step, step);
2038 if (dta->ivopts_data->bivs_not_used_in_addr)
2040 if (!iv->biv_p)
2041 iv = find_deriving_biv_for_expr (dta->ivopts_data, iv->ssa_name);
2043 record_biv_for_address_use (dta->ivopts_data, iv);
2045 return true;
2048 /* Records use in index IDX. Callback for for_each_index. Ivopts data
2049 object is passed to it in DATA. */
2051 static bool
2052 idx_record_use (tree base, tree *idx,
2053 void *vdata)
2055 struct ivopts_data *data = (struct ivopts_data *) vdata;
2056 find_interesting_uses_op (data, *idx);
2057 if (TREE_CODE (base) == ARRAY_REF || TREE_CODE (base) == ARRAY_RANGE_REF)
2059 find_interesting_uses_op (data, array_ref_element_size (base));
2060 find_interesting_uses_op (data, array_ref_low_bound (base));
2062 return true;
2065 /* If we can prove that TOP = cst * BOT for some constant cst,
2066 store cst to MUL and return true. Otherwise return false.
2067 The returned value is always sign-extended, regardless of the
2068 signedness of TOP and BOT. */
2070 static bool
2071 constant_multiple_of (tree top, tree bot, widest_int *mul)
2073 tree mby;
2074 enum tree_code code;
2075 unsigned precision = TYPE_PRECISION (TREE_TYPE (top));
2076 widest_int res, p0, p1;
2078 STRIP_NOPS (top);
2079 STRIP_NOPS (bot);
2081 if (operand_equal_p (top, bot, 0))
2083 *mul = 1;
2084 return true;
2087 code = TREE_CODE (top);
2088 switch (code)
2090 case MULT_EXPR:
2091 mby = TREE_OPERAND (top, 1);
2092 if (TREE_CODE (mby) != INTEGER_CST)
2093 return false;
2095 if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &res))
2096 return false;
2098 *mul = wi::sext (res * wi::to_widest (mby), precision);
2099 return true;
2101 case PLUS_EXPR:
2102 case MINUS_EXPR:
2103 if (!constant_multiple_of (TREE_OPERAND (top, 0), bot, &p0)
2104 || !constant_multiple_of (TREE_OPERAND (top, 1), bot, &p1))
2105 return false;
2107 if (code == MINUS_EXPR)
2108 p1 = -p1;
2109 *mul = wi::sext (p0 + p1, precision);
2110 return true;
2112 case INTEGER_CST:
2113 if (TREE_CODE (bot) != INTEGER_CST)
2114 return false;
2116 p0 = widest_int::from (top, SIGNED);
2117 p1 = widest_int::from (bot, SIGNED);
2118 if (p1 == 0)
2119 return false;
2120 *mul = wi::sext (wi::divmod_trunc (p0, p1, SIGNED, &res), precision);
2121 return res == 0;
2123 default:
2124 return false;
2128 /* Return true if memory reference REF with step STEP may be unaligned. */
2130 static bool
2131 may_be_unaligned_p (tree ref, tree step)
2133 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
2134 thus they are not misaligned. */
2135 if (TREE_CODE (ref) == TARGET_MEM_REF)
2136 return false;
2138 unsigned int align = TYPE_ALIGN (TREE_TYPE (ref));
2139 if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref))) > align)
2140 align = GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref)));
2142 unsigned HOST_WIDE_INT bitpos;
2143 unsigned int ref_align;
2144 get_object_alignment_1 (ref, &ref_align, &bitpos);
2145 if (ref_align < align
2146 || (bitpos % align) != 0
2147 || (bitpos % BITS_PER_UNIT) != 0)
2148 return true;
2150 unsigned int trailing_zeros = tree_ctz (step);
2151 if (trailing_zeros < HOST_BITS_PER_INT
2152 && (1U << trailing_zeros) * BITS_PER_UNIT < align)
2153 return true;
2155 return false;
2158 /* Return true if EXPR may be non-addressable. */
2160 bool
2161 may_be_nonaddressable_p (tree expr)
2163 switch (TREE_CODE (expr))
2165 case TARGET_MEM_REF:
2166 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
2167 target, thus they are always addressable. */
2168 return false;
2170 case MEM_REF:
2171 /* Likewise for MEM_REFs, modulo the storage order. */
2172 return REF_REVERSE_STORAGE_ORDER (expr);
2174 case BIT_FIELD_REF:
2175 if (REF_REVERSE_STORAGE_ORDER (expr))
2176 return true;
2177 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2179 case COMPONENT_REF:
2180 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0))))
2181 return true;
2182 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1))
2183 || may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2185 case ARRAY_REF:
2186 case ARRAY_RANGE_REF:
2187 if (TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (TREE_OPERAND (expr, 0))))
2188 return true;
2189 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2191 case VIEW_CONVERT_EXPR:
2192 /* This kind of view-conversions may wrap non-addressable objects
2193 and make them look addressable. After some processing the
2194 non-addressability may be uncovered again, causing ADDR_EXPRs
2195 of inappropriate objects to be built. */
2196 if (is_gimple_reg (TREE_OPERAND (expr, 0))
2197 || !is_gimple_addressable (TREE_OPERAND (expr, 0)))
2198 return true;
2199 return may_be_nonaddressable_p (TREE_OPERAND (expr, 0));
2201 CASE_CONVERT:
2202 return true;
2204 default:
2205 break;
2208 return false;
2211 /* Finds addresses in *OP_P inside STMT. */
2213 static void
2214 find_interesting_uses_address (struct ivopts_data *data, gimple *stmt,
2215 tree *op_p)
2217 tree base = *op_p, step = size_zero_node;
2218 struct iv *civ;
2219 struct ifs_ivopts_data ifs_ivopts_data;
2221 /* Do not play with volatile memory references. A bit too conservative,
2222 perhaps, but safe. */
2223 if (gimple_has_volatile_ops (stmt))
2224 goto fail;
2226 /* Ignore bitfields for now. Not really something terribly complicated
2227 to handle. TODO. */
2228 if (TREE_CODE (base) == BIT_FIELD_REF)
2229 goto fail;
2231 base = unshare_expr (base);
2233 if (TREE_CODE (base) == TARGET_MEM_REF)
2235 tree type = build_pointer_type (TREE_TYPE (base));
2236 tree astep;
2238 if (TMR_BASE (base)
2239 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)
2241 civ = get_iv (data, TMR_BASE (base));
2242 if (!civ)
2243 goto fail;
2245 TMR_BASE (base) = civ->base;
2246 step = civ->step;
2248 if (TMR_INDEX2 (base)
2249 && TREE_CODE (TMR_INDEX2 (base)) == SSA_NAME)
2251 civ = get_iv (data, TMR_INDEX2 (base));
2252 if (!civ)
2253 goto fail;
2255 TMR_INDEX2 (base) = civ->base;
2256 step = civ->step;
2258 if (TMR_INDEX (base)
2259 && TREE_CODE (TMR_INDEX (base)) == SSA_NAME)
2261 civ = get_iv (data, TMR_INDEX (base));
2262 if (!civ)
2263 goto fail;
2265 TMR_INDEX (base) = civ->base;
2266 astep = civ->step;
2268 if (astep)
2270 if (TMR_STEP (base))
2271 astep = fold_build2 (MULT_EXPR, type, TMR_STEP (base), astep);
2273 step = fold_build2 (PLUS_EXPR, type, step, astep);
2277 if (integer_zerop (step))
2278 goto fail;
2279 base = tree_mem_ref_addr (type, base);
2281 else
2283 ifs_ivopts_data.ivopts_data = data;
2284 ifs_ivopts_data.stmt = stmt;
2285 ifs_ivopts_data.step = size_zero_node;
2286 if (!for_each_index (&base, idx_find_step, &ifs_ivopts_data)
2287 || integer_zerop (ifs_ivopts_data.step))
2288 goto fail;
2289 step = ifs_ivopts_data.step;
2291 /* Check that the base expression is addressable. This needs
2292 to be done after substituting bases of IVs into it. */
2293 if (may_be_nonaddressable_p (base))
2294 goto fail;
2296 /* Moreover, on strict alignment platforms, check that it is
2297 sufficiently aligned. */
2298 if (STRICT_ALIGNMENT && may_be_unaligned_p (base, step))
2299 goto fail;
2301 base = build_fold_addr_expr (base);
2303 /* Substituting bases of IVs into the base expression might
2304 have caused folding opportunities. */
2305 if (TREE_CODE (base) == ADDR_EXPR)
2307 tree *ref = &TREE_OPERAND (base, 0);
2308 while (handled_component_p (*ref))
2309 ref = &TREE_OPERAND (*ref, 0);
2310 if (TREE_CODE (*ref) == MEM_REF)
2312 tree tem = fold_binary (MEM_REF, TREE_TYPE (*ref),
2313 TREE_OPERAND (*ref, 0),
2314 TREE_OPERAND (*ref, 1));
2315 if (tem)
2316 *ref = tem;
2321 civ = alloc_iv (data, base, step);
2322 record_group_use (data, op_p, civ, stmt, USE_ADDRESS);
2323 return;
2325 fail:
2326 for_each_index (op_p, idx_record_use, data);
2329 /* Finds and records invariants used in STMT. */
2331 static void
2332 find_invariants_stmt (struct ivopts_data *data, gimple *stmt)
2334 ssa_op_iter iter;
2335 use_operand_p use_p;
2336 tree op;
2338 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
2340 op = USE_FROM_PTR (use_p);
2341 record_invariant (data, op, false);
2345 /* Finds interesting uses of induction variables in the statement STMT. */
2347 static void
2348 find_interesting_uses_stmt (struct ivopts_data *data, gimple *stmt)
2350 struct iv *iv;
2351 tree op, *lhs, *rhs;
2352 ssa_op_iter iter;
2353 use_operand_p use_p;
2354 enum tree_code code;
2356 find_invariants_stmt (data, stmt);
2358 if (gimple_code (stmt) == GIMPLE_COND)
2360 find_interesting_uses_cond (data, stmt);
2361 return;
2364 if (is_gimple_assign (stmt))
2366 lhs = gimple_assign_lhs_ptr (stmt);
2367 rhs = gimple_assign_rhs1_ptr (stmt);
2369 if (TREE_CODE (*lhs) == SSA_NAME)
2371 /* If the statement defines an induction variable, the uses are not
2372 interesting by themselves. */
2374 iv = get_iv (data, *lhs);
2376 if (iv && !integer_zerop (iv->step))
2377 return;
2380 code = gimple_assign_rhs_code (stmt);
2381 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
2382 && (REFERENCE_CLASS_P (*rhs)
2383 || is_gimple_val (*rhs)))
2385 if (REFERENCE_CLASS_P (*rhs))
2386 find_interesting_uses_address (data, stmt, rhs);
2387 else
2388 find_interesting_uses_op (data, *rhs);
2390 if (REFERENCE_CLASS_P (*lhs))
2391 find_interesting_uses_address (data, stmt, lhs);
2392 return;
2394 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2396 find_interesting_uses_cond (data, stmt);
2397 return;
2400 /* TODO -- we should also handle address uses of type
2402 memory = call (whatever);
2406 call (memory). */
2409 if (gimple_code (stmt) == GIMPLE_PHI
2410 && gimple_bb (stmt) == data->current_loop->header)
2412 iv = get_iv (data, PHI_RESULT (stmt));
2414 if (iv && !integer_zerop (iv->step))
2415 return;
2418 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
2420 op = USE_FROM_PTR (use_p);
2422 if (TREE_CODE (op) != SSA_NAME)
2423 continue;
2425 iv = get_iv (data, op);
2426 if (!iv)
2427 continue;
2429 find_interesting_uses_op (data, op);
2433 /* Finds interesting uses of induction variables outside of loops
2434 on loop exit edge EXIT. */
2436 static void
2437 find_interesting_uses_outside (struct ivopts_data *data, edge exit)
2439 gphi *phi;
2440 gphi_iterator psi;
2441 tree def;
2443 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2445 phi = psi.phi ();
2446 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2447 if (!virtual_operand_p (def))
2448 find_interesting_uses_op (data, def);
2452 /* Compute maximum offset of [base + offset] addressing mode
2453 for memory reference represented by USE. */
2455 static HOST_WIDE_INT
2456 compute_max_addr_offset (struct iv_use *use)
2458 int width;
2459 rtx reg, addr;
2460 HOST_WIDE_INT i, off;
2461 unsigned list_index, num;
2462 addr_space_t as;
2463 machine_mode mem_mode, addr_mode;
2464 static vec<HOST_WIDE_INT> max_offset_list;
2466 as = TYPE_ADDR_SPACE (TREE_TYPE (use->iv->base));
2467 mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
2469 num = max_offset_list.length ();
2470 list_index = (unsigned) as * MAX_MACHINE_MODE + (unsigned) mem_mode;
2471 if (list_index >= num)
2473 max_offset_list.safe_grow (list_index + MAX_MACHINE_MODE);
2474 for (; num < max_offset_list.length (); num++)
2475 max_offset_list[num] = -1;
2478 off = max_offset_list[list_index];
2479 if (off != -1)
2480 return off;
2482 addr_mode = targetm.addr_space.address_mode (as);
2483 reg = gen_raw_REG (addr_mode, LAST_VIRTUAL_REGISTER + 1);
2484 addr = gen_rtx_fmt_ee (PLUS, addr_mode, reg, NULL_RTX);
2486 width = GET_MODE_BITSIZE (addr_mode) - 1;
2487 if (width > (HOST_BITS_PER_WIDE_INT - 1))
2488 width = HOST_BITS_PER_WIDE_INT - 1;
2490 for (i = width; i > 0; i--)
2492 off = (HOST_WIDE_INT_1U << i) - 1;
2493 XEXP (addr, 1) = gen_int_mode (off, addr_mode);
2494 if (memory_address_addr_space_p (mem_mode, addr, as))
2495 break;
2497 /* For some strict-alignment targets, the offset must be naturally
2498 aligned. Try an aligned offset if mem_mode is not QImode. */
2499 off = (HOST_WIDE_INT_1U << i);
2500 if (off > GET_MODE_SIZE (mem_mode) && mem_mode != QImode)
2502 off -= GET_MODE_SIZE (mem_mode);
2503 XEXP (addr, 1) = gen_int_mode (off, addr_mode);
2504 if (memory_address_addr_space_p (mem_mode, addr, as))
2505 break;
2508 if (i == 0)
2509 off = 0;
2511 max_offset_list[list_index] = off;
2512 return off;
2515 /* Comparison function to sort group in ascending order of addr_offset. */
2517 static int
2518 group_compare_offset (const void *a, const void *b)
2520 const struct iv_use *const *u1 = (const struct iv_use *const *) a;
2521 const struct iv_use *const *u2 = (const struct iv_use *const *) b;
2523 if ((*u1)->addr_offset != (*u2)->addr_offset)
2524 return (*u1)->addr_offset < (*u2)->addr_offset ? -1 : 1;
2525 else
2526 return 0;
2529 /* Check if small groups should be split. Return true if no group
2530 contains more than two uses with distinct addr_offsets. Return
2531 false otherwise. We want to split such groups because:
2533 1) Small groups don't have much benefit and may interfer with
2534 general candidate selection.
2535 2) Size for problem with only small groups is usually small and
2536 general algorithm can handle it well.
2538 TODO -- Above claim may not hold when we want to merge memory
2539 accesses with conseuctive addresses. */
2541 static bool
2542 split_small_address_groups_p (struct ivopts_data *data)
2544 unsigned int i, j, distinct = 1;
2545 struct iv_use *pre;
2546 struct iv_group *group;
2548 for (i = 0; i < data->vgroups.length (); i++)
2550 group = data->vgroups[i];
2551 if (group->vuses.length () == 1)
2552 continue;
2554 gcc_assert (group->type == USE_ADDRESS);
2555 if (group->vuses.length () == 2)
2557 if (group->vuses[0]->addr_offset > group->vuses[1]->addr_offset)
2558 std::swap (group->vuses[0], group->vuses[1]);
2560 else
2561 group->vuses.qsort (group_compare_offset);
2563 if (distinct > 2)
2564 continue;
2566 distinct = 1;
2567 for (pre = group->vuses[0], j = 1; j < group->vuses.length (); j++)
2569 if (group->vuses[j]->addr_offset != pre->addr_offset)
2571 pre = group->vuses[j];
2572 distinct++;
2575 if (distinct > 2)
2576 break;
2580 return (distinct <= 2);
2583 /* For each group of address type uses, this function further groups
2584 these uses according to the maximum offset supported by target's
2585 [base + offset] addressing mode. */
2587 static void
2588 split_address_groups (struct ivopts_data *data)
2590 unsigned int i, j;
2591 HOST_WIDE_INT max_offset = -1;
2593 /* Reset max offset to split all small groups. */
2594 if (split_small_address_groups_p (data))
2595 max_offset = 0;
2597 for (i = 0; i < data->vgroups.length (); i++)
2599 struct iv_group *group = data->vgroups[i];
2600 struct iv_use *use = group->vuses[0];
2602 use->id = 0;
2603 use->group_id = group->id;
2604 if (group->vuses.length () == 1)
2605 continue;
2607 if (max_offset != 0)
2608 max_offset = compute_max_addr_offset (use);
2610 for (j = 1; j < group->vuses.length (); j++)
2612 struct iv_use *next = group->vuses[j];
2614 /* Only uses with offset that can fit in offset part against
2615 the first use can be grouped together. */
2616 if (next->addr_offset - use->addr_offset
2617 > (unsigned HOST_WIDE_INT) max_offset)
2618 break;
2620 next->id = j;
2621 next->group_id = group->id;
2623 /* Split group. */
2624 if (j < group->vuses.length ())
2626 struct iv_group *new_group = record_group (data, group->type);
2627 new_group->vuses.safe_splice (group->vuses);
2628 new_group->vuses.block_remove (0, j);
2629 group->vuses.truncate (j);
2634 /* Finds uses of the induction variables that are interesting. */
2636 static void
2637 find_interesting_uses (struct ivopts_data *data)
2639 basic_block bb;
2640 gimple_stmt_iterator bsi;
2641 basic_block *body = get_loop_body (data->current_loop);
2642 unsigned i;
2643 edge e;
2645 for (i = 0; i < data->current_loop->num_nodes; i++)
2647 edge_iterator ei;
2648 bb = body[i];
2650 FOR_EACH_EDGE (e, ei, bb->succs)
2651 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2652 && !flow_bb_inside_loop_p (data->current_loop, e->dest))
2653 find_interesting_uses_outside (data, e);
2655 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2656 find_interesting_uses_stmt (data, gsi_stmt (bsi));
2657 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2658 if (!is_gimple_debug (gsi_stmt (bsi)))
2659 find_interesting_uses_stmt (data, gsi_stmt (bsi));
2662 split_address_groups (data);
2664 if (dump_file && (dump_flags & TDF_DETAILS))
2666 bitmap_iterator bi;
2668 fprintf (dump_file, "\n<Invariant Vars>:\n");
2669 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
2671 struct version_info *info = ver_info (data, i);
2672 if (info->inv_id)
2674 fprintf (dump_file, "Inv %d:\t", info->inv_id);
2675 print_generic_expr (dump_file, info->name, TDF_SLIM);
2676 fprintf (dump_file, "%s\n",
2677 info->has_nonlin_use ? "" : "\t(eliminable)");
2681 fprintf (dump_file, "\n<IV Groups>:\n");
2682 dump_groups (dump_file, data);
2683 fprintf (dump_file, "\n");
2686 free (body);
2689 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2690 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2691 we are at the top-level of the processed address. */
2693 static tree
2694 strip_offset_1 (tree expr, bool inside_addr, bool top_compref,
2695 HOST_WIDE_INT *offset)
2697 tree op0 = NULL_TREE, op1 = NULL_TREE, tmp, step;
2698 enum tree_code code;
2699 tree type, orig_type = TREE_TYPE (expr);
2700 HOST_WIDE_INT off0, off1, st;
2701 tree orig_expr = expr;
2703 STRIP_NOPS (expr);
2705 type = TREE_TYPE (expr);
2706 code = TREE_CODE (expr);
2707 *offset = 0;
2709 switch (code)
2711 case INTEGER_CST:
2712 if (!cst_and_fits_in_hwi (expr)
2713 || integer_zerop (expr))
2714 return orig_expr;
2716 *offset = int_cst_value (expr);
2717 return build_int_cst (orig_type, 0);
2719 case POINTER_PLUS_EXPR:
2720 case PLUS_EXPR:
2721 case MINUS_EXPR:
2722 op0 = TREE_OPERAND (expr, 0);
2723 op1 = TREE_OPERAND (expr, 1);
2725 op0 = strip_offset_1 (op0, false, false, &off0);
2726 op1 = strip_offset_1 (op1, false, false, &off1);
2728 *offset = (code == MINUS_EXPR ? off0 - off1 : off0 + off1);
2729 if (op0 == TREE_OPERAND (expr, 0)
2730 && op1 == TREE_OPERAND (expr, 1))
2731 return orig_expr;
2733 if (integer_zerop (op1))
2734 expr = op0;
2735 else if (integer_zerop (op0))
2737 if (code == MINUS_EXPR)
2738 expr = fold_build1 (NEGATE_EXPR, type, op1);
2739 else
2740 expr = op1;
2742 else
2743 expr = fold_build2 (code, type, op0, op1);
2745 return fold_convert (orig_type, expr);
2747 case MULT_EXPR:
2748 op1 = TREE_OPERAND (expr, 1);
2749 if (!cst_and_fits_in_hwi (op1))
2750 return orig_expr;
2752 op0 = TREE_OPERAND (expr, 0);
2753 op0 = strip_offset_1 (op0, false, false, &off0);
2754 if (op0 == TREE_OPERAND (expr, 0))
2755 return orig_expr;
2757 *offset = off0 * int_cst_value (op1);
2758 if (integer_zerop (op0))
2759 expr = op0;
2760 else
2761 expr = fold_build2 (MULT_EXPR, type, op0, op1);
2763 return fold_convert (orig_type, expr);
2765 case ARRAY_REF:
2766 case ARRAY_RANGE_REF:
2767 if (!inside_addr)
2768 return orig_expr;
2770 step = array_ref_element_size (expr);
2771 if (!cst_and_fits_in_hwi (step))
2772 break;
2774 st = int_cst_value (step);
2775 op1 = TREE_OPERAND (expr, 1);
2776 op1 = strip_offset_1 (op1, false, false, &off1);
2777 *offset = off1 * st;
2779 if (top_compref
2780 && integer_zerop (op1))
2782 /* Strip the component reference completely. */
2783 op0 = TREE_OPERAND (expr, 0);
2784 op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
2785 *offset += off0;
2786 return op0;
2788 break;
2790 case COMPONENT_REF:
2792 tree field;
2794 if (!inside_addr)
2795 return orig_expr;
2797 tmp = component_ref_field_offset (expr);
2798 field = TREE_OPERAND (expr, 1);
2799 if (top_compref
2800 && cst_and_fits_in_hwi (tmp)
2801 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field)))
2803 HOST_WIDE_INT boffset, abs_off;
2805 /* Strip the component reference completely. */
2806 op0 = TREE_OPERAND (expr, 0);
2807 op0 = strip_offset_1 (op0, inside_addr, top_compref, &off0);
2808 boffset = int_cst_value (DECL_FIELD_BIT_OFFSET (field));
2809 abs_off = abs_hwi (boffset) / BITS_PER_UNIT;
2810 if (boffset < 0)
2811 abs_off = -abs_off;
2813 *offset = off0 + int_cst_value (tmp) + abs_off;
2814 return op0;
2817 break;
2819 case ADDR_EXPR:
2820 op0 = TREE_OPERAND (expr, 0);
2821 op0 = strip_offset_1 (op0, true, true, &off0);
2822 *offset += off0;
2824 if (op0 == TREE_OPERAND (expr, 0))
2825 return orig_expr;
2827 expr = build_fold_addr_expr (op0);
2828 return fold_convert (orig_type, expr);
2830 case MEM_REF:
2831 /* ??? Offset operand? */
2832 inside_addr = false;
2833 break;
2835 default:
2836 return orig_expr;
2839 /* Default handling of expressions for that we want to recurse into
2840 the first operand. */
2841 op0 = TREE_OPERAND (expr, 0);
2842 op0 = strip_offset_1 (op0, inside_addr, false, &off0);
2843 *offset += off0;
2845 if (op0 == TREE_OPERAND (expr, 0)
2846 && (!op1 || op1 == TREE_OPERAND (expr, 1)))
2847 return orig_expr;
2849 expr = copy_node (expr);
2850 TREE_OPERAND (expr, 0) = op0;
2851 if (op1)
2852 TREE_OPERAND (expr, 1) = op1;
2854 /* Inside address, we might strip the top level component references,
2855 thus changing type of the expression. Handling of ADDR_EXPR
2856 will fix that. */
2857 expr = fold_convert (orig_type, expr);
2859 return expr;
2862 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2864 static tree
2865 strip_offset (tree expr, unsigned HOST_WIDE_INT *offset)
2867 HOST_WIDE_INT off;
2868 tree core = strip_offset_1 (expr, false, false, &off);
2869 *offset = off;
2870 return core;
2873 /* Returns variant of TYPE that can be used as base for different uses.
2874 We return unsigned type with the same precision, which avoids problems
2875 with overflows. */
2877 static tree
2878 generic_type_for (tree type)
2880 if (POINTER_TYPE_P (type))
2881 return unsigned_type_for (type);
2883 if (TYPE_UNSIGNED (type))
2884 return type;
2886 return unsigned_type_for (type);
2889 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2890 the bitmap to that we should store it. */
2892 static struct ivopts_data *fd_ivopts_data;
2893 static tree
2894 find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
2896 bitmap *depends_on = (bitmap *) data;
2897 struct version_info *info;
2899 if (TREE_CODE (*expr_p) != SSA_NAME)
2900 return NULL_TREE;
2901 info = name_info (fd_ivopts_data, *expr_p);
2903 if (!info->inv_id || info->has_nonlin_use)
2904 return NULL_TREE;
2906 if (!*depends_on)
2907 *depends_on = BITMAP_ALLOC (NULL);
2908 bitmap_set_bit (*depends_on, info->inv_id);
2910 return NULL_TREE;
2913 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2914 position to POS. If USE is not NULL, the candidate is set as related to
2915 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2916 replacement of the final value of the iv by a direct computation. */
2918 static struct iv_cand *
2919 add_candidate_1 (struct ivopts_data *data,
2920 tree base, tree step, bool important, enum iv_position pos,
2921 struct iv_use *use, gimple *incremented_at,
2922 struct iv *orig_iv = NULL)
2924 unsigned i;
2925 struct iv_cand *cand = NULL;
2926 tree type, orig_type;
2928 gcc_assert (base && step);
2930 /* -fkeep-gc-roots-live means that we have to keep a real pointer
2931 live, but the ivopts code may replace a real pointer with one
2932 pointing before or after the memory block that is then adjusted
2933 into the memory block during the loop. FIXME: It would likely be
2934 better to actually force the pointer live and still use ivopts;
2935 for example, it would be enough to write the pointer into memory
2936 and keep it there until after the loop. */
2937 if (flag_keep_gc_roots_live && POINTER_TYPE_P (TREE_TYPE (base)))
2938 return NULL;
2940 /* For non-original variables, make sure their values are computed in a type
2941 that does not invoke undefined behavior on overflows (since in general,
2942 we cannot prove that these induction variables are non-wrapping). */
2943 if (pos != IP_ORIGINAL)
2945 orig_type = TREE_TYPE (base);
2946 type = generic_type_for (orig_type);
2947 if (type != orig_type)
2949 base = fold_convert (type, base);
2950 step = fold_convert (type, step);
2954 for (i = 0; i < data->vcands.length (); i++)
2956 cand = data->vcands[i];
2958 if (cand->pos != pos)
2959 continue;
2961 if (cand->incremented_at != incremented_at
2962 || ((pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
2963 && cand->ainc_use != use))
2964 continue;
2966 if (operand_equal_p (base, cand->iv->base, 0)
2967 && operand_equal_p (step, cand->iv->step, 0)
2968 && (TYPE_PRECISION (TREE_TYPE (base))
2969 == TYPE_PRECISION (TREE_TYPE (cand->iv->base))))
2970 break;
2973 if (i == data->vcands.length ())
2975 cand = XCNEW (struct iv_cand);
2976 cand->id = i;
2977 cand->iv = alloc_iv (data, base, step);
2978 cand->pos = pos;
2979 if (pos != IP_ORIGINAL)
2981 cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
2982 cand->var_after = cand->var_before;
2984 cand->important = important;
2985 cand->incremented_at = incremented_at;
2986 data->vcands.safe_push (cand);
2988 if (TREE_CODE (step) != INTEGER_CST)
2990 fd_ivopts_data = data;
2991 walk_tree (&step, find_depends, &cand->depends_on, NULL);
2994 if (pos == IP_AFTER_USE || pos == IP_BEFORE_USE)
2995 cand->ainc_use = use;
2996 else
2997 cand->ainc_use = NULL;
2999 cand->orig_iv = orig_iv;
3000 if (dump_file && (dump_flags & TDF_DETAILS))
3001 dump_cand (dump_file, cand);
3004 cand->important |= important;
3006 /* Relate candidate to the group for which it is added. */
3007 if (use)
3008 bitmap_set_bit (data->vgroups[use->group_id]->related_cands, i);
3010 return cand;
3013 /* Returns true if incrementing the induction variable at the end of the LOOP
3014 is allowed.
3016 The purpose is to avoid splitting latch edge with a biv increment, thus
3017 creating a jump, possibly confusing other optimization passes and leaving
3018 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
3019 is not available (so we do not have a better alternative), or if the latch
3020 edge is already nonempty. */
3022 static bool
3023 allow_ip_end_pos_p (struct loop *loop)
3025 if (!ip_normal_pos (loop))
3026 return true;
3028 if (!empty_block_p (ip_end_pos (loop)))
3029 return true;
3031 return false;
3034 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
3035 Important field is set to IMPORTANT. */
3037 static void
3038 add_autoinc_candidates (struct ivopts_data *data, tree base, tree step,
3039 bool important, struct iv_use *use)
3041 basic_block use_bb = gimple_bb (use->stmt);
3042 machine_mode mem_mode;
3043 unsigned HOST_WIDE_INT cstepi;
3045 /* If we insert the increment in any position other than the standard
3046 ones, we must ensure that it is incremented once per iteration.
3047 It must not be in an inner nested loop, or one side of an if
3048 statement. */
3049 if (use_bb->loop_father != data->current_loop
3050 || !dominated_by_p (CDI_DOMINATORS, data->current_loop->latch, use_bb)
3051 || stmt_could_throw_p (use->stmt)
3052 || !cst_and_fits_in_hwi (step))
3053 return;
3055 cstepi = int_cst_value (step);
3057 mem_mode = TYPE_MODE (TREE_TYPE (*use->op_p));
3058 if (((USE_LOAD_PRE_INCREMENT (mem_mode)
3059 || USE_STORE_PRE_INCREMENT (mem_mode))
3060 && GET_MODE_SIZE (mem_mode) == cstepi)
3061 || ((USE_LOAD_PRE_DECREMENT (mem_mode)
3062 || USE_STORE_PRE_DECREMENT (mem_mode))
3063 && GET_MODE_SIZE (mem_mode) == -cstepi))
3065 enum tree_code code = MINUS_EXPR;
3066 tree new_base;
3067 tree new_step = step;
3069 if (POINTER_TYPE_P (TREE_TYPE (base)))
3071 new_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
3072 code = POINTER_PLUS_EXPR;
3074 else
3075 new_step = fold_convert (TREE_TYPE (base), new_step);
3076 new_base = fold_build2 (code, TREE_TYPE (base), base, new_step);
3077 add_candidate_1 (data, new_base, step, important, IP_BEFORE_USE, use,
3078 use->stmt);
3080 if (((USE_LOAD_POST_INCREMENT (mem_mode)
3081 || USE_STORE_POST_INCREMENT (mem_mode))
3082 && GET_MODE_SIZE (mem_mode) == cstepi)
3083 || ((USE_LOAD_POST_DECREMENT (mem_mode)
3084 || USE_STORE_POST_DECREMENT (mem_mode))
3085 && GET_MODE_SIZE (mem_mode) == -cstepi))
3087 add_candidate_1 (data, base, step, important, IP_AFTER_USE, use,
3088 use->stmt);
3092 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
3093 position to POS. If USE is not NULL, the candidate is set as related to
3094 it. The candidate computation is scheduled before exit condition and at
3095 the end of loop. */
3097 static void
3098 add_candidate (struct ivopts_data *data,
3099 tree base, tree step, bool important, struct iv_use *use,
3100 struct iv *orig_iv = NULL)
3102 if (ip_normal_pos (data->current_loop))
3103 add_candidate_1 (data, base, step, important,
3104 IP_NORMAL, use, NULL, orig_iv);
3105 if (ip_end_pos (data->current_loop)
3106 && allow_ip_end_pos_p (data->current_loop))
3107 add_candidate_1 (data, base, step, important, IP_END, use, NULL, orig_iv);
3110 /* Adds standard iv candidates. */
3112 static void
3113 add_standard_iv_candidates (struct ivopts_data *data)
3115 add_candidate (data, integer_zero_node, integer_one_node, true, NULL);
3117 /* The same for a double-integer type if it is still fast enough. */
3118 if (TYPE_PRECISION
3119 (long_integer_type_node) > TYPE_PRECISION (integer_type_node)
3120 && TYPE_PRECISION (long_integer_type_node) <= BITS_PER_WORD)
3121 add_candidate (data, build_int_cst (long_integer_type_node, 0),
3122 build_int_cst (long_integer_type_node, 1), true, NULL);
3124 /* The same for a double-integer type if it is still fast enough. */
3125 if (TYPE_PRECISION
3126 (long_long_integer_type_node) > TYPE_PRECISION (long_integer_type_node)
3127 && TYPE_PRECISION (long_long_integer_type_node) <= BITS_PER_WORD)
3128 add_candidate (data, build_int_cst (long_long_integer_type_node, 0),
3129 build_int_cst (long_long_integer_type_node, 1), true, NULL);
3133 /* Adds candidates bases on the old induction variable IV. */
3135 static void
3136 add_iv_candidate_for_biv (struct ivopts_data *data, struct iv *iv)
3138 gimple *phi;
3139 tree def;
3140 struct iv_cand *cand;
3142 /* Check if this biv is used in address type use. */
3143 if (iv->no_overflow && iv->have_address_use
3144 && INTEGRAL_TYPE_P (TREE_TYPE (iv->base))
3145 && TYPE_PRECISION (TREE_TYPE (iv->base)) < TYPE_PRECISION (sizetype))
3147 tree base = fold_convert (sizetype, iv->base);
3148 tree step = fold_convert (sizetype, iv->step);
3150 /* Add iv cand of same precision as index part in TARGET_MEM_REF. */
3151 add_candidate (data, base, step, true, NULL, iv);
3152 /* Add iv cand of the original type only if it has nonlinear use. */
3153 if (iv->nonlin_use)
3154 add_candidate (data, iv->base, iv->step, true, NULL);
3156 else
3157 add_candidate (data, iv->base, iv->step, true, NULL);
3159 /* The same, but with initial value zero. */
3160 if (POINTER_TYPE_P (TREE_TYPE (iv->base)))
3161 add_candidate (data, size_int (0), iv->step, true, NULL);
3162 else
3163 add_candidate (data, build_int_cst (TREE_TYPE (iv->base), 0),
3164 iv->step, true, NULL);
3166 phi = SSA_NAME_DEF_STMT (iv->ssa_name);
3167 if (gimple_code (phi) == GIMPLE_PHI)
3169 /* Additionally record the possibility of leaving the original iv
3170 untouched. */
3171 def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (data->current_loop));
3172 /* Don't add candidate if it's from another PHI node because
3173 it's an affine iv appearing in the form of PEELED_CHREC. */
3174 phi = SSA_NAME_DEF_STMT (def);
3175 if (gimple_code (phi) != GIMPLE_PHI)
3177 cand = add_candidate_1 (data,
3178 iv->base, iv->step, true, IP_ORIGINAL, NULL,
3179 SSA_NAME_DEF_STMT (def));
3180 if (cand)
3182 cand->var_before = iv->ssa_name;
3183 cand->var_after = def;
3186 else
3187 gcc_assert (gimple_bb (phi) == data->current_loop->header);
3191 /* Adds candidates based on the old induction variables. */
3193 static void
3194 add_iv_candidate_for_bivs (struct ivopts_data *data)
3196 unsigned i;
3197 struct iv *iv;
3198 bitmap_iterator bi;
3200 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
3202 iv = ver_info (data, i)->iv;
3203 if (iv && iv->biv_p && !integer_zerop (iv->step))
3204 add_iv_candidate_for_biv (data, iv);
3208 /* Record common candidate {BASE, STEP} derived from USE in hashtable. */
3210 static void
3211 record_common_cand (struct ivopts_data *data, tree base,
3212 tree step, struct iv_use *use)
3214 struct iv_common_cand ent;
3215 struct iv_common_cand **slot;
3217 ent.base = base;
3218 ent.step = step;
3219 ent.hash = iterative_hash_expr (base, 0);
3220 ent.hash = iterative_hash_expr (step, ent.hash);
3222 slot = data->iv_common_cand_tab->find_slot (&ent, INSERT);
3223 if (*slot == NULL)
3225 *slot = new iv_common_cand ();
3226 (*slot)->base = base;
3227 (*slot)->step = step;
3228 (*slot)->uses.create (8);
3229 (*slot)->hash = ent.hash;
3230 data->iv_common_cands.safe_push ((*slot));
3233 gcc_assert (use != NULL);
3234 (*slot)->uses.safe_push (use);
3235 return;
3238 /* Comparison function used to sort common candidates. */
3240 static int
3241 common_cand_cmp (const void *p1, const void *p2)
3243 unsigned n1, n2;
3244 const struct iv_common_cand *const *const ccand1
3245 = (const struct iv_common_cand *const *)p1;
3246 const struct iv_common_cand *const *const ccand2
3247 = (const struct iv_common_cand *const *)p2;
3249 n1 = (*ccand1)->uses.length ();
3250 n2 = (*ccand2)->uses.length ();
3251 return n2 - n1;
3254 /* Adds IV candidates based on common candidated recorded. */
3256 static void
3257 add_iv_candidate_derived_from_uses (struct ivopts_data *data)
3259 unsigned i, j;
3260 struct iv_cand *cand_1, *cand_2;
3262 data->iv_common_cands.qsort (common_cand_cmp);
3263 for (i = 0; i < data->iv_common_cands.length (); i++)
3265 struct iv_common_cand *ptr = data->iv_common_cands[i];
3267 /* Only add IV candidate if it's derived from multiple uses. */
3268 if (ptr->uses.length () <= 1)
3269 break;
3271 cand_1 = NULL;
3272 cand_2 = NULL;
3273 if (ip_normal_pos (data->current_loop))
3274 cand_1 = add_candidate_1 (data, ptr->base, ptr->step,
3275 false, IP_NORMAL, NULL, NULL);
3277 if (ip_end_pos (data->current_loop)
3278 && allow_ip_end_pos_p (data->current_loop))
3279 cand_2 = add_candidate_1 (data, ptr->base, ptr->step,
3280 false, IP_END, NULL, NULL);
3282 /* Bind deriving uses and the new candidates. */
3283 for (j = 0; j < ptr->uses.length (); j++)
3285 struct iv_group *group = data->vgroups[ptr->uses[j]->group_id];
3286 if (cand_1)
3287 bitmap_set_bit (group->related_cands, cand_1->id);
3288 if (cand_2)
3289 bitmap_set_bit (group->related_cands, cand_2->id);
3293 /* Release data since it is useless from this point. */
3294 data->iv_common_cand_tab->empty ();
3295 data->iv_common_cands.truncate (0);
3298 /* Adds candidates based on the value of USE's iv. */
3300 static void
3301 add_iv_candidate_for_use (struct ivopts_data *data, struct iv_use *use)
3303 unsigned HOST_WIDE_INT offset;
3304 tree base;
3305 tree basetype;
3306 struct iv *iv = use->iv;
3308 add_candidate (data, iv->base, iv->step, false, use);
3310 /* Record common candidate for use in case it can be shared by others. */
3311 record_common_cand (data, iv->base, iv->step, use);
3313 /* Record common candidate with initial value zero. */
3314 basetype = TREE_TYPE (iv->base);
3315 if (POINTER_TYPE_P (basetype))
3316 basetype = sizetype;
3317 record_common_cand (data, build_int_cst (basetype, 0), iv->step, use);
3319 /* Record common candidate with constant offset stripped in base.
3320 Like the use itself, we also add candidate directly for it. */
3321 base = strip_offset (iv->base, &offset);
3322 if (offset || base != iv->base)
3324 record_common_cand (data, base, iv->step, use);
3325 add_candidate (data, base, iv->step, false, use);
3328 /* Record common candidate with base_object removed in base. */
3329 if (iv->base_object != NULL)
3331 unsigned i;
3332 aff_tree aff_base;
3333 tree step, base_object = iv->base_object;
3335 base = iv->base;
3336 step = iv->step;
3337 STRIP_NOPS (base);
3338 STRIP_NOPS (step);
3339 STRIP_NOPS (base_object);
3340 tree_to_aff_combination (base, TREE_TYPE (base), &aff_base);
3341 for (i = 0; i < aff_base.n; i++)
3343 if (aff_base.elts[i].coef != 1)
3344 continue;
3346 if (operand_equal_p (aff_base.elts[i].val, base_object, 0))
3347 break;
3349 if (i < aff_base.n)
3351 aff_combination_remove_elt (&aff_base, i);
3352 base = aff_combination_to_tree (&aff_base);
3353 basetype = TREE_TYPE (base);
3354 if (POINTER_TYPE_P (basetype))
3355 basetype = sizetype;
3357 step = fold_convert (basetype, step);
3358 record_common_cand (data, base, step, use);
3359 /* Also record common candidate with offset stripped. */
3360 base = strip_offset (base, &offset);
3361 if (offset)
3362 record_common_cand (data, base, step, use);
3366 /* At last, add auto-incremental candidates. Make such variables
3367 important since other iv uses with same base object may be based
3368 on it. */
3369 if (use != NULL && use->type == USE_ADDRESS)
3370 add_autoinc_candidates (data, iv->base, iv->step, true, use);
3373 /* Adds candidates based on the uses. */
3375 static void
3376 add_iv_candidate_for_groups (struct ivopts_data *data)
3378 unsigned i;
3380 /* Only add candidate for the first use in group. */
3381 for (i = 0; i < data->vgroups.length (); i++)
3383 struct iv_group *group = data->vgroups[i];
3385 gcc_assert (group->vuses[0] != NULL);
3386 add_iv_candidate_for_use (data, group->vuses[0]);
3388 add_iv_candidate_derived_from_uses (data);
3391 /* Record important candidates and add them to related_cands bitmaps. */
3393 static void
3394 record_important_candidates (struct ivopts_data *data)
3396 unsigned i;
3397 struct iv_group *group;
3399 for (i = 0; i < data->vcands.length (); i++)
3401 struct iv_cand *cand = data->vcands[i];
3403 if (cand->important)
3404 bitmap_set_bit (data->important_candidates, i);
3407 data->consider_all_candidates = (data->vcands.length ()
3408 <= CONSIDER_ALL_CANDIDATES_BOUND);
3410 /* Add important candidates to groups' related_cands bitmaps. */
3411 for (i = 0; i < data->vgroups.length (); i++)
3413 group = data->vgroups[i];
3414 bitmap_ior_into (group->related_cands, data->important_candidates);
3418 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
3419 If consider_all_candidates is true, we use a two-dimensional array, otherwise
3420 we allocate a simple list to every use. */
3422 static void
3423 alloc_use_cost_map (struct ivopts_data *data)
3425 unsigned i, size, s;
3427 for (i = 0; i < data->vgroups.length (); i++)
3429 struct iv_group *group = data->vgroups[i];
3431 if (data->consider_all_candidates)
3432 size = data->vcands.length ();
3433 else
3435 s = bitmap_count_bits (group->related_cands);
3437 /* Round up to the power of two, so that moduling by it is fast. */
3438 size = s ? (1 << ceil_log2 (s)) : 1;
3441 group->n_map_members = size;
3442 group->cost_map = XCNEWVEC (struct cost_pair, size);
3446 /* Sets cost of (GROUP, CAND) pair to COST and record that it depends
3447 on invariants DEPENDS_ON and that the value used in expressing it
3448 is VALUE, and in case of iv elimination the comparison operator is COMP. */
3450 static void
3451 set_group_iv_cost (struct ivopts_data *data,
3452 struct iv_group *group, struct iv_cand *cand,
3453 comp_cost cost, bitmap depends_on, tree value,
3454 enum tree_code comp, iv_inv_expr_ent *inv_expr)
3456 unsigned i, s;
3458 if (cost.infinite_cost_p ())
3460 BITMAP_FREE (depends_on);
3461 return;
3464 if (data->consider_all_candidates)
3466 group->cost_map[cand->id].cand = cand;
3467 group->cost_map[cand->id].cost = cost;
3468 group->cost_map[cand->id].depends_on = depends_on;
3469 group->cost_map[cand->id].value = value;
3470 group->cost_map[cand->id].comp = comp;
3471 group->cost_map[cand->id].inv_expr = inv_expr;
3472 return;
3475 /* n_map_members is a power of two, so this computes modulo. */
3476 s = cand->id & (group->n_map_members - 1);
3477 for (i = s; i < group->n_map_members; i++)
3478 if (!group->cost_map[i].cand)
3479 goto found;
3480 for (i = 0; i < s; i++)
3481 if (!group->cost_map[i].cand)
3482 goto found;
3484 gcc_unreachable ();
3486 found:
3487 group->cost_map[i].cand = cand;
3488 group->cost_map[i].cost = cost;
3489 group->cost_map[i].depends_on = depends_on;
3490 group->cost_map[i].value = value;
3491 group->cost_map[i].comp = comp;
3492 group->cost_map[i].inv_expr = inv_expr;
3495 /* Gets cost of (GROUP, CAND) pair. */
3497 static struct cost_pair *
3498 get_group_iv_cost (struct ivopts_data *data, struct iv_group *group,
3499 struct iv_cand *cand)
3501 unsigned i, s;
3502 struct cost_pair *ret;
3504 if (!cand)
3505 return NULL;
3507 if (data->consider_all_candidates)
3509 ret = group->cost_map + cand->id;
3510 if (!ret->cand)
3511 return NULL;
3513 return ret;
3516 /* n_map_members is a power of two, so this computes modulo. */
3517 s = cand->id & (group->n_map_members - 1);
3518 for (i = s; i < group->n_map_members; i++)
3519 if (group->cost_map[i].cand == cand)
3520 return group->cost_map + i;
3521 else if (group->cost_map[i].cand == NULL)
3522 return NULL;
3523 for (i = 0; i < s; i++)
3524 if (group->cost_map[i].cand == cand)
3525 return group->cost_map + i;
3526 else if (group->cost_map[i].cand == NULL)
3527 return NULL;
3529 return NULL;
3532 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
3533 static rtx
3534 produce_memory_decl_rtl (tree obj, int *regno)
3536 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (obj));
3537 machine_mode address_mode = targetm.addr_space.address_mode (as);
3538 rtx x;
3540 gcc_assert (obj);
3541 if (TREE_STATIC (obj) || DECL_EXTERNAL (obj))
3543 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
3544 x = gen_rtx_SYMBOL_REF (address_mode, name);
3545 SET_SYMBOL_REF_DECL (x, obj);
3546 x = gen_rtx_MEM (DECL_MODE (obj), x);
3547 set_mem_addr_space (x, as);
3548 targetm.encode_section_info (obj, x, true);
3550 else
3552 x = gen_raw_REG (address_mode, (*regno)++);
3553 x = gen_rtx_MEM (DECL_MODE (obj), x);
3554 set_mem_addr_space (x, as);
3557 return x;
3560 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
3561 walk_tree. DATA contains the actual fake register number. */
3563 static tree
3564 prepare_decl_rtl (tree *expr_p, int *ws, void *data)
3566 tree obj = NULL_TREE;
3567 rtx x = NULL_RTX;
3568 int *regno = (int *) data;
3570 switch (TREE_CODE (*expr_p))
3572 case ADDR_EXPR:
3573 for (expr_p = &TREE_OPERAND (*expr_p, 0);
3574 handled_component_p (*expr_p);
3575 expr_p = &TREE_OPERAND (*expr_p, 0))
3576 continue;
3577 obj = *expr_p;
3578 if (DECL_P (obj) && HAS_RTL_P (obj) && !DECL_RTL_SET_P (obj))
3579 x = produce_memory_decl_rtl (obj, regno);
3580 break;
3582 case SSA_NAME:
3583 *ws = 0;
3584 obj = SSA_NAME_VAR (*expr_p);
3585 /* Defer handling of anonymous SSA_NAMEs to the expander. */
3586 if (!obj)
3587 return NULL_TREE;
3588 if (!DECL_RTL_SET_P (obj))
3589 x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
3590 break;
3592 case VAR_DECL:
3593 case PARM_DECL:
3594 case RESULT_DECL:
3595 *ws = 0;
3596 obj = *expr_p;
3598 if (DECL_RTL_SET_P (obj))
3599 break;
3601 if (DECL_MODE (obj) == BLKmode)
3602 x = produce_memory_decl_rtl (obj, regno);
3603 else
3604 x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
3606 break;
3608 default:
3609 break;
3612 if (x)
3614 decl_rtl_to_reset.safe_push (obj);
3615 SET_DECL_RTL (obj, x);
3618 return NULL_TREE;
3621 /* Determines cost of the computation of EXPR. */
3623 static unsigned
3624 computation_cost (tree expr, bool speed)
3626 rtx_insn *seq;
3627 rtx rslt;
3628 tree type = TREE_TYPE (expr);
3629 unsigned cost;
3630 /* Avoid using hard regs in ways which may be unsupported. */
3631 int regno = LAST_VIRTUAL_REGISTER + 1;
3632 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3633 enum node_frequency real_frequency = node->frequency;
3635 node->frequency = NODE_FREQUENCY_NORMAL;
3636 crtl->maybe_hot_insn_p = speed;
3637 walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
3638 start_sequence ();
3639 rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
3640 seq = get_insns ();
3641 end_sequence ();
3642 default_rtl_profile ();
3643 node->frequency = real_frequency;
3645 cost = seq_cost (seq, speed);
3646 if (MEM_P (rslt))
3647 cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type),
3648 TYPE_ADDR_SPACE (type), speed);
3649 else if (!REG_P (rslt))
3650 cost += set_src_cost (rslt, TYPE_MODE (type), speed);
3652 return cost;
3655 /* Returns variable containing the value of candidate CAND at statement AT. */
3657 static tree
3658 var_at_stmt (struct loop *loop, struct iv_cand *cand, gimple *stmt)
3660 if (stmt_after_increment (loop, cand, stmt))
3661 return cand->var_after;
3662 else
3663 return cand->var_before;
3666 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
3667 same precision that is at least as wide as the precision of TYPE, stores
3668 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
3669 type of A and B. */
3671 static tree
3672 determine_common_wider_type (tree *a, tree *b)
3674 tree wider_type = NULL;
3675 tree suba, subb;
3676 tree atype = TREE_TYPE (*a);
3678 if (CONVERT_EXPR_P (*a))
3680 suba = TREE_OPERAND (*a, 0);
3681 wider_type = TREE_TYPE (suba);
3682 if (TYPE_PRECISION (wider_type) < TYPE_PRECISION (atype))
3683 return atype;
3685 else
3686 return atype;
3688 if (CONVERT_EXPR_P (*b))
3690 subb = TREE_OPERAND (*b, 0);
3691 if (TYPE_PRECISION (wider_type) != TYPE_PRECISION (TREE_TYPE (subb)))
3692 return atype;
3694 else
3695 return atype;
3697 *a = suba;
3698 *b = subb;
3699 return wider_type;
3702 /* Determines the expression by that USE is expressed from induction variable
3703 CAND at statement AT in LOOP. The expression is stored in a decomposed
3704 form into AFF. Returns false if USE cannot be expressed using CAND. */
3706 static bool
3707 get_computation_aff (struct loop *loop,
3708 struct iv_use *use, struct iv_cand *cand, gimple *at,
3709 struct aff_tree *aff)
3711 tree ubase = use->iv->base;
3712 tree ustep = use->iv->step;
3713 tree cbase = cand->iv->base;
3714 tree cstep = cand->iv->step, cstep_common;
3715 tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
3716 tree common_type, var;
3717 tree uutype;
3718 aff_tree cbase_aff, var_aff;
3719 widest_int rat;
3721 if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
3723 /* We do not have a precision to express the values of use. */
3724 return false;
3727 var = var_at_stmt (loop, cand, at);
3728 uutype = unsigned_type_for (utype);
3730 /* If the conversion is not noop, perform it. */
3731 if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
3733 if (cand->orig_iv != NULL && CONVERT_EXPR_P (cbase)
3734 && (CONVERT_EXPR_P (cstep) || TREE_CODE (cstep) == INTEGER_CST))
3736 tree inner_base, inner_step, inner_type;
3737 inner_base = TREE_OPERAND (cbase, 0);
3738 if (CONVERT_EXPR_P (cstep))
3739 inner_step = TREE_OPERAND (cstep, 0);
3740 else
3741 inner_step = cstep;
3743 inner_type = TREE_TYPE (inner_base);
3744 /* If candidate is added from a biv whose type is smaller than
3745 ctype, we know both candidate and the biv won't overflow.
3746 In this case, it's safe to skip the convertion in candidate.
3747 As an example, (unsigned short)((unsigned long)A) equals to
3748 (unsigned short)A, if A has a type no larger than short. */
3749 if (TYPE_PRECISION (inner_type) <= TYPE_PRECISION (uutype))
3751 cbase = inner_base;
3752 cstep = inner_step;
3755 cstep = fold_convert (uutype, cstep);
3756 cbase = fold_convert (uutype, cbase);
3757 var = fold_convert (uutype, var);
3760 /* Ratio is 1 when computing the value of biv cand by itself.
3761 We can't rely on constant_multiple_of in this case because the
3762 use is created after the original biv is selected. The call
3763 could fail because of inconsistent fold behavior. See PR68021
3764 for more information. */
3765 if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt)
3767 gcc_assert (is_gimple_assign (use->stmt));
3768 gcc_assert (use->iv->ssa_name == cand->var_after);
3769 gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
3770 rat = 1;
3772 else if (!constant_multiple_of (ustep, cstep, &rat))
3773 return false;
3775 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3776 type, we achieve better folding by computing their difference in this
3777 wider type, and cast the result to UUTYPE. We do not need to worry about
3778 overflows, as all the arithmetics will in the end be performed in UUTYPE
3779 anyway. */
3780 common_type = determine_common_wider_type (&ubase, &cbase);
3782 /* use = ubase - ratio * cbase + ratio * var. */
3783 tree_to_aff_combination (ubase, common_type, aff);
3784 tree_to_aff_combination (cbase, common_type, &cbase_aff);
3785 tree_to_aff_combination (var, uutype, &var_aff);
3787 /* We need to shift the value if we are after the increment. */
3788 if (stmt_after_increment (loop, cand, at))
3790 aff_tree cstep_aff;
3792 if (common_type != uutype)
3793 cstep_common = fold_convert (common_type, cstep);
3794 else
3795 cstep_common = cstep;
3797 tree_to_aff_combination (cstep_common, common_type, &cstep_aff);
3798 aff_combination_add (&cbase_aff, &cstep_aff);
3801 aff_combination_scale (&cbase_aff, -rat);
3802 aff_combination_add (aff, &cbase_aff);
3803 if (common_type != uutype)
3804 aff_combination_convert (aff, uutype);
3806 aff_combination_scale (&var_aff, rat);
3807 aff_combination_add (aff, &var_aff);
3809 return true;
3812 /* Return the type of USE. */
3814 static tree
3815 get_use_type (struct iv_use *use)
3817 tree base_type = TREE_TYPE (use->iv->base);
3818 tree type;
3820 if (use->type == USE_ADDRESS)
3822 /* The base_type may be a void pointer. Create a pointer type based on
3823 the mem_ref instead. */
3824 type = build_pointer_type (TREE_TYPE (*use->op_p));
3825 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type))
3826 == TYPE_ADDR_SPACE (TREE_TYPE (base_type)));
3828 else
3829 type = base_type;
3831 return type;
3834 /* Determines the expression by that USE is expressed from induction variable
3835 CAND at statement AT in LOOP. The computation is unshared. */
3837 static tree
3838 get_computation_at (struct loop *loop,
3839 struct iv_use *use, struct iv_cand *cand, gimple *at)
3841 aff_tree aff;
3842 tree type = get_use_type (use);
3844 if (!get_computation_aff (loop, use, cand, at, &aff))
3845 return NULL_TREE;
3846 unshare_aff_combination (&aff);
3847 return fold_convert (type, aff_combination_to_tree (&aff));
3850 /* Determines the expression by that USE is expressed from induction variable
3851 CAND in LOOP. The computation is unshared. */
3853 static tree
3854 get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
3856 return get_computation_at (loop, use, cand, use->stmt);
3859 /* Adjust the cost COST for being in loop setup rather than loop body.
3860 If we're optimizing for space, the loop setup overhead is constant;
3861 if we're optimizing for speed, amortize it over the per-iteration cost. */
3862 static unsigned
3863 adjust_setup_cost (struct ivopts_data *data, unsigned cost)
3865 if (cost == INFTY)
3866 return cost;
3867 else if (optimize_loop_for_speed_p (data->current_loop))
3868 return cost / avg_loop_niter (data->current_loop);
3869 else
3870 return cost;
3873 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3874 validity for a memory reference accessing memory of mode MODE in
3875 address space AS. */
3878 bool
3879 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio, machine_mode mode,
3880 addr_space_t as)
3882 #define MAX_RATIO 128
3883 unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mode;
3884 static vec<sbitmap> valid_mult_list;
3885 sbitmap valid_mult;
3887 if (data_index >= valid_mult_list.length ())
3888 valid_mult_list.safe_grow_cleared (data_index + 1);
3890 valid_mult = valid_mult_list[data_index];
3891 if (!valid_mult)
3893 machine_mode address_mode = targetm.addr_space.address_mode (as);
3894 rtx reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
3895 rtx reg2 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
3896 rtx addr, scaled;
3897 HOST_WIDE_INT i;
3899 valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
3900 bitmap_clear (valid_mult);
3901 scaled = gen_rtx_fmt_ee (MULT, address_mode, reg1, NULL_RTX);
3902 addr = gen_rtx_fmt_ee (PLUS, address_mode, scaled, reg2);
3903 for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
3905 XEXP (scaled, 1) = gen_int_mode (i, address_mode);
3906 if (memory_address_addr_space_p (mode, addr, as)
3907 || memory_address_addr_space_p (mode, scaled, as))
3908 bitmap_set_bit (valid_mult, i + MAX_RATIO);
3911 if (dump_file && (dump_flags & TDF_DETAILS))
3913 fprintf (dump_file, " allowed multipliers:");
3914 for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
3915 if (bitmap_bit_p (valid_mult, i + MAX_RATIO))
3916 fprintf (dump_file, " %d", (int) i);
3917 fprintf (dump_file, "\n");
3918 fprintf (dump_file, "\n");
3921 valid_mult_list[data_index] = valid_mult;
3924 if (ratio > MAX_RATIO || ratio < -MAX_RATIO)
3925 return false;
3927 return bitmap_bit_p (valid_mult, ratio + MAX_RATIO);
3930 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3931 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3932 variable is omitted. Compute the cost for a memory reference that accesses
3933 a memory location of mode MEM_MODE in address space AS.
3935 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3936 size of MEM_MODE / RATIO) is available. To make this determination, we
3937 look at the size of the increment to be made, which is given in CSTEP.
3938 CSTEP may be zero if the step is unknown.
3939 STMT_AFTER_INC is true iff the statement we're looking at is after the
3940 increment of the original biv.
3942 TODO -- there must be some better way. This all is quite crude. */
3944 enum ainc_type
3946 AINC_PRE_INC, /* Pre increment. */
3947 AINC_PRE_DEC, /* Pre decrement. */
3948 AINC_POST_INC, /* Post increment. */
3949 AINC_POST_DEC, /* Post decrement. */
3950 AINC_NONE /* Also the number of auto increment types. */
3953 struct address_cost_data
3955 HOST_WIDE_INT min_offset, max_offset;
3956 unsigned costs[2][2][2][2];
3957 unsigned ainc_costs[AINC_NONE];
3961 static comp_cost
3962 get_address_cost (bool symbol_present, bool var_present,
3963 unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio,
3964 HOST_WIDE_INT cstep, machine_mode mem_mode,
3965 addr_space_t as, bool speed,
3966 bool stmt_after_inc, bool *may_autoinc)
3968 machine_mode address_mode = targetm.addr_space.address_mode (as);
3969 static vec<address_cost_data *> address_cost_data_list;
3970 unsigned int data_index = (int) as * MAX_MACHINE_MODE + (int) mem_mode;
3971 address_cost_data *data;
3972 static bool has_preinc[MAX_MACHINE_MODE], has_postinc[MAX_MACHINE_MODE];
3973 static bool has_predec[MAX_MACHINE_MODE], has_postdec[MAX_MACHINE_MODE];
3974 unsigned cost, acost, complexity;
3975 enum ainc_type autoinc_type;
3976 bool offset_p, ratio_p, autoinc;
3977 HOST_WIDE_INT s_offset, autoinc_offset, msize;
3978 unsigned HOST_WIDE_INT mask;
3979 unsigned bits;
3981 if (data_index >= address_cost_data_list.length ())
3982 address_cost_data_list.safe_grow_cleared (data_index + 1);
3984 data = address_cost_data_list[data_index];
3985 if (!data)
3987 HOST_WIDE_INT i;
3988 HOST_WIDE_INT rat, off = 0;
3989 int old_cse_not_expected, width;
3990 unsigned sym_p, var_p, off_p, rat_p, add_c;
3991 rtx_insn *seq;
3992 rtx addr, base;
3993 rtx reg0, reg1;
3995 data = (address_cost_data *) xcalloc (1, sizeof (*data));
3997 reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
3999 width = GET_MODE_BITSIZE (address_mode) - 1;
4000 if (width > (HOST_BITS_PER_WIDE_INT - 1))
4001 width = HOST_BITS_PER_WIDE_INT - 1;
4002 addr = gen_rtx_fmt_ee (PLUS, address_mode, reg1, NULL_RTX);
4004 for (i = width; i >= 0; i--)
4006 off = -(HOST_WIDE_INT_1U << i);
4007 XEXP (addr, 1) = gen_int_mode (off, address_mode);
4008 if (memory_address_addr_space_p (mem_mode, addr, as))
4009 break;
4011 data->min_offset = (i == -1? 0 : off);
4013 for (i = width; i >= 0; i--)
4015 off = (HOST_WIDE_INT_1U << i) - 1;
4016 XEXP (addr, 1) = gen_int_mode (off, address_mode);
4017 if (memory_address_addr_space_p (mem_mode, addr, as))
4018 break;
4019 /* For some strict-alignment targets, the offset must be naturally
4020 aligned. Try an aligned offset if mem_mode is not QImode. */
4021 off = mem_mode != QImode
4022 ? (HOST_WIDE_INT_1U << i)
4023 - GET_MODE_SIZE (mem_mode)
4024 : 0;
4025 if (off > 0)
4027 XEXP (addr, 1) = gen_int_mode (off, address_mode);
4028 if (memory_address_addr_space_p (mem_mode, addr, as))
4029 break;
4032 if (i == -1)
4033 off = 0;
4034 data->max_offset = off;
4036 if (dump_file && (dump_flags & TDF_DETAILS))
4038 fprintf (dump_file, "get_address_cost:\n");
4039 fprintf (dump_file, " min offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
4040 GET_MODE_NAME (mem_mode),
4041 data->min_offset);
4042 fprintf (dump_file, " max offset %s " HOST_WIDE_INT_PRINT_DEC "\n",
4043 GET_MODE_NAME (mem_mode),
4044 data->max_offset);
4047 rat = 1;
4048 for (i = 2; i <= MAX_RATIO; i++)
4049 if (multiplier_allowed_in_address_p (i, mem_mode, as))
4051 rat = i;
4052 break;
4055 /* Compute the cost of various addressing modes. */
4056 acost = 0;
4057 reg0 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 1);
4058 reg1 = gen_raw_REG (address_mode, LAST_VIRTUAL_REGISTER + 2);
4060 if (USE_LOAD_PRE_DECREMENT (mem_mode)
4061 || USE_STORE_PRE_DECREMENT (mem_mode))
4063 addr = gen_rtx_PRE_DEC (address_mode, reg0);
4064 has_predec[mem_mode]
4065 = memory_address_addr_space_p (mem_mode, addr, as);
4067 if (has_predec[mem_mode])
4068 data->ainc_costs[AINC_PRE_DEC]
4069 = address_cost (addr, mem_mode, as, speed);
4071 if (USE_LOAD_POST_DECREMENT (mem_mode)
4072 || USE_STORE_POST_DECREMENT (mem_mode))
4074 addr = gen_rtx_POST_DEC (address_mode, reg0);
4075 has_postdec[mem_mode]
4076 = memory_address_addr_space_p (mem_mode, addr, as);
4078 if (has_postdec[mem_mode])
4079 data->ainc_costs[AINC_POST_DEC]
4080 = address_cost (addr, mem_mode, as, speed);
4082 if (USE_LOAD_PRE_INCREMENT (mem_mode)
4083 || USE_STORE_PRE_DECREMENT (mem_mode))
4085 addr = gen_rtx_PRE_INC (address_mode, reg0);
4086 has_preinc[mem_mode]
4087 = memory_address_addr_space_p (mem_mode, addr, as);
4089 if (has_preinc[mem_mode])
4090 data->ainc_costs[AINC_PRE_INC]
4091 = address_cost (addr, mem_mode, as, speed);
4093 if (USE_LOAD_POST_INCREMENT (mem_mode)
4094 || USE_STORE_POST_INCREMENT (mem_mode))
4096 addr = gen_rtx_POST_INC (address_mode, reg0);
4097 has_postinc[mem_mode]
4098 = memory_address_addr_space_p (mem_mode, addr, as);
4100 if (has_postinc[mem_mode])
4101 data->ainc_costs[AINC_POST_INC]
4102 = address_cost (addr, mem_mode, as, speed);
4104 for (i = 0; i < 16; i++)
4106 sym_p = i & 1;
4107 var_p = (i >> 1) & 1;
4108 off_p = (i >> 2) & 1;
4109 rat_p = (i >> 3) & 1;
4111 addr = reg0;
4112 if (rat_p)
4113 addr = gen_rtx_fmt_ee (MULT, address_mode, addr,
4114 gen_int_mode (rat, address_mode));
4116 if (var_p)
4117 addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, reg1);
4119 if (sym_p)
4121 base = gen_rtx_SYMBOL_REF (address_mode, ggc_strdup (""));
4122 /* ??? We can run into trouble with some backends by presenting
4123 it with symbols which haven't been properly passed through
4124 targetm.encode_section_info. By setting the local bit, we
4125 enhance the probability of things working. */
4126 SYMBOL_REF_FLAGS (base) = SYMBOL_FLAG_LOCAL;
4128 if (off_p)
4129 base = gen_rtx_fmt_e (CONST, address_mode,
4130 gen_rtx_fmt_ee
4131 (PLUS, address_mode, base,
4132 gen_int_mode (off, address_mode)));
4134 else if (off_p)
4135 base = gen_int_mode (off, address_mode);
4136 else
4137 base = NULL_RTX;
4139 if (base)
4140 addr = gen_rtx_fmt_ee (PLUS, address_mode, addr, base);
4142 start_sequence ();
4143 /* To avoid splitting addressing modes, pretend that no cse will
4144 follow. */
4145 old_cse_not_expected = cse_not_expected;
4146 cse_not_expected = true;
4147 addr = memory_address_addr_space (mem_mode, addr, as);
4148 cse_not_expected = old_cse_not_expected;
4149 seq = get_insns ();
4150 end_sequence ();
4152 acost = seq_cost (seq, speed);
4153 acost += address_cost (addr, mem_mode, as, speed);
4155 if (!acost)
4156 acost = 1;
4157 data->costs[sym_p][var_p][off_p][rat_p] = acost;
4160 /* On some targets, it is quite expensive to load symbol to a register,
4161 which makes addresses that contain symbols look much more expensive.
4162 However, the symbol will have to be loaded in any case before the
4163 loop (and quite likely we have it in register already), so it does not
4164 make much sense to penalize them too heavily. So make some final
4165 tweaks for the SYMBOL_PRESENT modes:
4167 If VAR_PRESENT is false, and the mode obtained by changing symbol to
4168 var is cheaper, use this mode with small penalty.
4169 If VAR_PRESENT is true, try whether the mode with
4170 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
4171 if this is the case, use it. */
4172 add_c = add_cost (speed, address_mode);
4173 for (i = 0; i < 8; i++)
4175 var_p = i & 1;
4176 off_p = (i >> 1) & 1;
4177 rat_p = (i >> 2) & 1;
4179 acost = data->costs[0][1][off_p][rat_p] + 1;
4180 if (var_p)
4181 acost += add_c;
4183 if (acost < data->costs[1][var_p][off_p][rat_p])
4184 data->costs[1][var_p][off_p][rat_p] = acost;
4187 if (dump_file && (dump_flags & TDF_DETAILS))
4189 fprintf (dump_file, "<Address Costs>:\n");
4191 for (i = 0; i < 16; i++)
4193 sym_p = i & 1;
4194 var_p = (i >> 1) & 1;
4195 off_p = (i >> 2) & 1;
4196 rat_p = (i >> 3) & 1;
4198 fprintf (dump_file, " ");
4199 if (sym_p)
4200 fprintf (dump_file, "sym + ");
4201 if (var_p)
4202 fprintf (dump_file, "var + ");
4203 if (off_p)
4204 fprintf (dump_file, "cst + ");
4205 if (rat_p)
4206 fprintf (dump_file, "rat * ");
4208 acost = data->costs[sym_p][var_p][off_p][rat_p];
4209 fprintf (dump_file, "index costs %d\n", acost);
4211 if (has_predec[mem_mode] || has_postdec[mem_mode]
4212 || has_preinc[mem_mode] || has_postinc[mem_mode])
4213 fprintf (dump_file, " May include autoinc/dec\n");
4214 fprintf (dump_file, "\n");
4217 address_cost_data_list[data_index] = data;
4220 bits = GET_MODE_BITSIZE (address_mode);
4221 mask = ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
4222 offset &= mask;
4223 if ((offset >> (bits - 1) & 1))
4224 offset |= ~mask;
4225 s_offset = offset;
4227 autoinc = false;
4228 autoinc_type = AINC_NONE;
4229 msize = GET_MODE_SIZE (mem_mode);
4230 autoinc_offset = offset;
4231 if (stmt_after_inc)
4232 autoinc_offset += ratio * cstep;
4233 if (symbol_present || var_present || ratio != 1)
4234 autoinc = false;
4235 else
4237 if (has_postinc[mem_mode] && autoinc_offset == 0
4238 && msize == cstep)
4239 autoinc_type = AINC_POST_INC;
4240 else if (has_postdec[mem_mode] && autoinc_offset == 0
4241 && msize == -cstep)
4242 autoinc_type = AINC_POST_DEC;
4243 else if (has_preinc[mem_mode] && autoinc_offset == msize
4244 && msize == cstep)
4245 autoinc_type = AINC_PRE_INC;
4246 else if (has_predec[mem_mode] && autoinc_offset == -msize
4247 && msize == -cstep)
4248 autoinc_type = AINC_PRE_DEC;
4250 if (autoinc_type != AINC_NONE)
4251 autoinc = true;
4254 cost = 0;
4255 offset_p = (s_offset != 0
4256 && data->min_offset <= s_offset
4257 && s_offset <= data->max_offset);
4258 ratio_p = (ratio != 1
4259 && multiplier_allowed_in_address_p (ratio, mem_mode, as));
4261 if (ratio != 1 && !ratio_p)
4262 cost += mult_by_coeff_cost (ratio, address_mode, speed);
4264 if (s_offset && !offset_p && !symbol_present)
4265 cost += add_cost (speed, address_mode);
4267 if (may_autoinc)
4268 *may_autoinc = autoinc;
4269 if (autoinc)
4270 acost = data->ainc_costs[autoinc_type];
4271 else
4272 acost = data->costs[symbol_present][var_present][offset_p][ratio_p];
4273 complexity = (symbol_present != 0) + (var_present != 0) + offset_p + ratio_p;
4274 return comp_cost (cost + acost, complexity);
4277 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
4278 EXPR operand holding the shift. COST0 and COST1 are the costs for
4279 calculating the operands of EXPR. Returns true if successful, and returns
4280 the cost in COST. */
4282 static bool
4283 get_shiftadd_cost (tree expr, machine_mode mode, comp_cost cost0,
4284 comp_cost cost1, tree mult, bool speed, comp_cost *cost)
4286 comp_cost res;
4287 tree op1 = TREE_OPERAND (expr, 1);
4288 tree cst = TREE_OPERAND (mult, 1);
4289 tree multop = TREE_OPERAND (mult, 0);
4290 int m = exact_log2 (int_cst_value (cst));
4291 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
4292 int as_cost, sa_cost;
4293 bool mult_in_op1;
4295 if (!(m >= 0 && m < maxm))
4296 return false;
4298 STRIP_NOPS (op1);
4299 mult_in_op1 = operand_equal_p (op1, mult, 0);
4301 as_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
4303 /* If the target has a cheap shift-and-add or shift-and-sub instruction,
4304 use that in preference to a shift insn followed by an add insn. */
4305 sa_cost = (TREE_CODE (expr) != MINUS_EXPR
4306 ? shiftadd_cost (speed, mode, m)
4307 : (mult_in_op1
4308 ? shiftsub1_cost (speed, mode, m)
4309 : shiftsub0_cost (speed, mode, m)));
4311 res = comp_cost (MIN (as_cost, sa_cost), 0);
4312 res += (mult_in_op1 ? cost0 : cost1);
4314 STRIP_NOPS (multop);
4315 if (!is_gimple_val (multop))
4316 res += force_expr_to_var_cost (multop, speed);
4318 *cost = res;
4319 return true;
4322 /* Estimates cost of forcing expression EXPR into a variable. */
4324 static comp_cost
4325 force_expr_to_var_cost (tree expr, bool speed)
4327 static bool costs_initialized = false;
4328 static unsigned integer_cost [2];
4329 static unsigned symbol_cost [2];
4330 static unsigned address_cost [2];
4331 tree op0, op1;
4332 comp_cost cost0, cost1, cost;
4333 machine_mode mode;
4335 if (!costs_initialized)
4337 tree type = build_pointer_type (integer_type_node);
4338 tree var, addr;
4339 rtx x;
4340 int i;
4342 var = create_tmp_var_raw (integer_type_node, "test_var");
4343 TREE_STATIC (var) = 1;
4344 x = produce_memory_decl_rtl (var, NULL);
4345 SET_DECL_RTL (var, x);
4347 addr = build1 (ADDR_EXPR, type, var);
4350 for (i = 0; i < 2; i++)
4352 integer_cost[i] = computation_cost (build_int_cst (integer_type_node,
4353 2000), i);
4355 symbol_cost[i] = computation_cost (addr, i) + 1;
4357 address_cost[i]
4358 = computation_cost (fold_build_pointer_plus_hwi (addr, 2000), i) + 1;
4359 if (dump_file && (dump_flags & TDF_DETAILS))
4361 fprintf (dump_file, "force_expr_to_var_cost %s costs:\n", i ? "speed" : "size");
4362 fprintf (dump_file, " integer %d\n", (int) integer_cost[i]);
4363 fprintf (dump_file, " symbol %d\n", (int) symbol_cost[i]);
4364 fprintf (dump_file, " address %d\n", (int) address_cost[i]);
4365 fprintf (dump_file, " other %d\n", (int) target_spill_cost[i]);
4366 fprintf (dump_file, "\n");
4370 costs_initialized = true;
4373 STRIP_NOPS (expr);
4375 if (SSA_VAR_P (expr))
4376 return no_cost;
4378 if (is_gimple_min_invariant (expr))
4380 if (TREE_CODE (expr) == INTEGER_CST)
4381 return comp_cost (integer_cost [speed], 0);
4383 if (TREE_CODE (expr) == ADDR_EXPR)
4385 tree obj = TREE_OPERAND (expr, 0);
4387 if (VAR_P (obj)
4388 || TREE_CODE (obj) == PARM_DECL
4389 || TREE_CODE (obj) == RESULT_DECL)
4390 return comp_cost (symbol_cost [speed], 0);
4393 return comp_cost (address_cost [speed], 0);
4396 switch (TREE_CODE (expr))
4398 case POINTER_PLUS_EXPR:
4399 case PLUS_EXPR:
4400 case MINUS_EXPR:
4401 case MULT_EXPR:
4402 op0 = TREE_OPERAND (expr, 0);
4403 op1 = TREE_OPERAND (expr, 1);
4404 STRIP_NOPS (op0);
4405 STRIP_NOPS (op1);
4406 break;
4408 CASE_CONVERT:
4409 case NEGATE_EXPR:
4410 op0 = TREE_OPERAND (expr, 0);
4411 STRIP_NOPS (op0);
4412 op1 = NULL_TREE;
4413 break;
4415 default:
4416 /* Just an arbitrary value, FIXME. */
4417 return comp_cost (target_spill_cost[speed], 0);
4420 if (op0 == NULL_TREE
4421 || TREE_CODE (op0) == SSA_NAME || CONSTANT_CLASS_P (op0))
4422 cost0 = no_cost;
4423 else
4424 cost0 = force_expr_to_var_cost (op0, speed);
4426 if (op1 == NULL_TREE
4427 || TREE_CODE (op1) == SSA_NAME || CONSTANT_CLASS_P (op1))
4428 cost1 = no_cost;
4429 else
4430 cost1 = force_expr_to_var_cost (op1, speed);
4432 mode = TYPE_MODE (TREE_TYPE (expr));
4433 switch (TREE_CODE (expr))
4435 case POINTER_PLUS_EXPR:
4436 case PLUS_EXPR:
4437 case MINUS_EXPR:
4438 case NEGATE_EXPR:
4439 cost = comp_cost (add_cost (speed, mode), 0);
4440 if (TREE_CODE (expr) != NEGATE_EXPR)
4442 tree mult = NULL_TREE;
4443 comp_cost sa_cost;
4444 if (TREE_CODE (op1) == MULT_EXPR)
4445 mult = op1;
4446 else if (TREE_CODE (op0) == MULT_EXPR)
4447 mult = op0;
4449 if (mult != NULL_TREE
4450 && cst_and_fits_in_hwi (TREE_OPERAND (mult, 1))
4451 && get_shiftadd_cost (expr, mode, cost0, cost1, mult,
4452 speed, &sa_cost))
4453 return sa_cost;
4455 break;
4457 CASE_CONVERT:
4459 tree inner_mode, outer_mode;
4460 outer_mode = TREE_TYPE (expr);
4461 inner_mode = TREE_TYPE (op0);
4462 cost = comp_cost (convert_cost (TYPE_MODE (outer_mode),
4463 TYPE_MODE (inner_mode), speed), 0);
4465 break;
4467 case MULT_EXPR:
4468 if (cst_and_fits_in_hwi (op0))
4469 cost = comp_cost (mult_by_coeff_cost (int_cst_value (op0),
4470 mode, speed), 0);
4471 else if (cst_and_fits_in_hwi (op1))
4472 cost = comp_cost (mult_by_coeff_cost (int_cst_value (op1),
4473 mode, speed), 0);
4474 else
4475 return comp_cost (target_spill_cost [speed], 0);
4476 break;
4478 default:
4479 gcc_unreachable ();
4482 cost += cost0;
4483 cost += cost1;
4485 /* Bound the cost by target_spill_cost. The parts of complicated
4486 computations often are either loop invariant or at least can
4487 be shared between several iv uses, so letting this grow without
4488 limits would not give reasonable results. */
4489 if (cost.cost > (int) target_spill_cost [speed])
4490 cost.cost = target_spill_cost [speed];
4492 return cost;
4495 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
4496 invariants the computation depends on. */
4498 static comp_cost
4499 force_var_cost (struct ivopts_data *data,
4500 tree expr, bitmap *depends_on)
4502 if (depends_on)
4504 fd_ivopts_data = data;
4505 walk_tree (&expr, find_depends, depends_on, NULL);
4508 return force_expr_to_var_cost (expr, data->speed);
4511 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
4512 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
4513 to false if the corresponding part is missing. DEPENDS_ON is a set of the
4514 invariants the computation depends on. */
4516 static comp_cost
4517 split_address_cost (struct ivopts_data *data,
4518 tree addr, bool *symbol_present, bool *var_present,
4519 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
4521 tree core;
4522 HOST_WIDE_INT bitsize;
4523 HOST_WIDE_INT bitpos;
4524 tree toffset;
4525 machine_mode mode;
4526 int unsignedp, reversep, volatilep;
4528 core = get_inner_reference (addr, &bitsize, &bitpos, &toffset, &mode,
4529 &unsignedp, &reversep, &volatilep);
4531 if (toffset != 0
4532 || bitpos % BITS_PER_UNIT != 0
4533 || reversep
4534 || !VAR_P (core))
4536 *symbol_present = false;
4537 *var_present = true;
4538 fd_ivopts_data = data;
4539 if (depends_on)
4540 walk_tree (&addr, find_depends, depends_on, NULL);
4542 return comp_cost (target_spill_cost[data->speed], 0);
4545 *offset += bitpos / BITS_PER_UNIT;
4546 if (TREE_STATIC (core)
4547 || DECL_EXTERNAL (core))
4549 *symbol_present = true;
4550 *var_present = false;
4551 return no_cost;
4554 *symbol_present = false;
4555 *var_present = true;
4556 return no_cost;
4559 /* Estimates cost of expressing difference of addresses E1 - E2 as
4560 var + symbol + offset. The value of offset is added to OFFSET,
4561 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4562 part is missing. DEPENDS_ON is a set of the invariants the computation
4563 depends on. */
4565 static comp_cost
4566 ptr_difference_cost (struct ivopts_data *data,
4567 tree e1, tree e2, bool *symbol_present, bool *var_present,
4568 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
4570 HOST_WIDE_INT diff = 0;
4571 aff_tree aff_e1, aff_e2;
4572 tree type;
4574 gcc_assert (TREE_CODE (e1) == ADDR_EXPR);
4576 if (ptr_difference_const (e1, e2, &diff))
4578 *offset += diff;
4579 *symbol_present = false;
4580 *var_present = false;
4581 return no_cost;
4584 if (integer_zerop (e2))
4585 return split_address_cost (data, TREE_OPERAND (e1, 0),
4586 symbol_present, var_present, offset, depends_on);
4588 *symbol_present = false;
4589 *var_present = true;
4591 type = signed_type_for (TREE_TYPE (e1));
4592 tree_to_aff_combination (e1, type, &aff_e1);
4593 tree_to_aff_combination (e2, type, &aff_e2);
4594 aff_combination_scale (&aff_e2, -1);
4595 aff_combination_add (&aff_e1, &aff_e2);
4597 return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
4600 /* Estimates cost of expressing difference E1 - E2 as
4601 var + symbol + offset. The value of offset is added to OFFSET,
4602 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4603 part is missing. DEPENDS_ON is a set of the invariants the computation
4604 depends on. */
4606 static comp_cost
4607 difference_cost (struct ivopts_data *data,
4608 tree e1, tree e2, bool *symbol_present, bool *var_present,
4609 unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
4611 machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
4612 unsigned HOST_WIDE_INT off1, off2;
4613 aff_tree aff_e1, aff_e2;
4614 tree type;
4616 e1 = strip_offset (e1, &off1);
4617 e2 = strip_offset (e2, &off2);
4618 *offset += off1 - off2;
4620 STRIP_NOPS (e1);
4621 STRIP_NOPS (e2);
4623 if (TREE_CODE (e1) == ADDR_EXPR)
4624 return ptr_difference_cost (data, e1, e2, symbol_present, var_present,
4625 offset, depends_on);
4626 *symbol_present = false;
4628 if (operand_equal_p (e1, e2, 0))
4630 *var_present = false;
4631 return no_cost;
4634 *var_present = true;
4636 if (integer_zerop (e2))
4637 return force_var_cost (data, e1, depends_on);
4639 if (integer_zerop (e1))
4641 comp_cost cost = force_var_cost (data, e2, depends_on);
4642 cost += mult_by_coeff_cost (-1, mode, data->speed);
4643 return cost;
4646 type = signed_type_for (TREE_TYPE (e1));
4647 tree_to_aff_combination (e1, type, &aff_e1);
4648 tree_to_aff_combination (e2, type, &aff_e2);
4649 aff_combination_scale (&aff_e2, -1);
4650 aff_combination_add (&aff_e1, &aff_e2);
4652 return force_var_cost (data, aff_combination_to_tree (&aff_e1), depends_on);
4655 /* Returns true if AFF1 and AFF2 are identical. */
4657 static bool
4658 compare_aff_trees (aff_tree *aff1, aff_tree *aff2)
4660 unsigned i;
4662 if (aff1->n != aff2->n)
4663 return false;
4665 for (i = 0; i < aff1->n; i++)
4667 if (aff1->elts[i].coef != aff2->elts[i].coef)
4668 return false;
4670 if (!operand_equal_p (aff1->elts[i].val, aff2->elts[i].val, 0))
4671 return false;
4673 return true;
4676 /* Stores EXPR in DATA->inv_expr_tab, return pointer to iv_inv_expr_ent. */
4678 static iv_inv_expr_ent *
4679 record_inv_expr (struct ivopts_data *data, tree expr)
4681 struct iv_inv_expr_ent ent;
4682 struct iv_inv_expr_ent **slot;
4684 ent.expr = expr;
4685 ent.hash = iterative_hash_expr (expr, 0);
4686 slot = data->inv_expr_tab->find_slot (&ent, INSERT);
4688 if (!*slot)
4690 *slot = XNEW (struct iv_inv_expr_ent);
4691 (*slot)->expr = expr;
4692 (*slot)->hash = ent.hash;
4693 (*slot)->id = data->max_inv_expr_id++;
4696 return *slot;
4699 /* Returns the invariant expression if expression UBASE - RATIO * CBASE
4700 requires a new compiler generated temporary. Returns -1 otherwise.
4701 ADDRESS_P is a flag indicating if the expression is for address
4702 computation. */
4704 static iv_inv_expr_ent *
4705 get_loop_invariant_expr (struct ivopts_data *data, tree ubase,
4706 tree cbase, HOST_WIDE_INT ratio,
4707 bool address_p)
4709 aff_tree ubase_aff, cbase_aff;
4710 tree expr, ub, cb;
4712 STRIP_NOPS (ubase);
4713 STRIP_NOPS (cbase);
4714 ub = ubase;
4715 cb = cbase;
4717 if ((TREE_CODE (ubase) == INTEGER_CST)
4718 && (TREE_CODE (cbase) == INTEGER_CST))
4719 return NULL;
4721 /* Strips the constant part. */
4722 if (TREE_CODE (ubase) == PLUS_EXPR
4723 || TREE_CODE (ubase) == MINUS_EXPR
4724 || TREE_CODE (ubase) == POINTER_PLUS_EXPR)
4726 if (TREE_CODE (TREE_OPERAND (ubase, 1)) == INTEGER_CST)
4727 ubase = TREE_OPERAND (ubase, 0);
4730 /* Strips the constant part. */
4731 if (TREE_CODE (cbase) == PLUS_EXPR
4732 || TREE_CODE (cbase) == MINUS_EXPR
4733 || TREE_CODE (cbase) == POINTER_PLUS_EXPR)
4735 if (TREE_CODE (TREE_OPERAND (cbase, 1)) == INTEGER_CST)
4736 cbase = TREE_OPERAND (cbase, 0);
4739 if (address_p)
4741 if (((TREE_CODE (ubase) == SSA_NAME)
4742 || (TREE_CODE (ubase) == ADDR_EXPR
4743 && is_gimple_min_invariant (ubase)))
4744 && (TREE_CODE (cbase) == INTEGER_CST))
4745 return NULL;
4747 if (((TREE_CODE (cbase) == SSA_NAME)
4748 || (TREE_CODE (cbase) == ADDR_EXPR
4749 && is_gimple_min_invariant (cbase)))
4750 && (TREE_CODE (ubase) == INTEGER_CST))
4751 return NULL;
4754 if (ratio == 1)
4756 if (operand_equal_p (ubase, cbase, 0))
4757 return NULL;
4759 if (TREE_CODE (ubase) == ADDR_EXPR
4760 && TREE_CODE (cbase) == ADDR_EXPR)
4762 tree usym, csym;
4764 usym = TREE_OPERAND (ubase, 0);
4765 csym = TREE_OPERAND (cbase, 0);
4766 if (TREE_CODE (usym) == ARRAY_REF)
4768 tree ind = TREE_OPERAND (usym, 1);
4769 if (TREE_CODE (ind) == INTEGER_CST
4770 && tree_fits_shwi_p (ind)
4771 && tree_to_shwi (ind) == 0)
4772 usym = TREE_OPERAND (usym, 0);
4774 if (TREE_CODE (csym) == ARRAY_REF)
4776 tree ind = TREE_OPERAND (csym, 1);
4777 if (TREE_CODE (ind) == INTEGER_CST
4778 && tree_fits_shwi_p (ind)
4779 && tree_to_shwi (ind) == 0)
4780 csym = TREE_OPERAND (csym, 0);
4782 if (operand_equal_p (usym, csym, 0))
4783 return NULL;
4785 /* Now do more complex comparison */
4786 tree_to_aff_combination (ubase, TREE_TYPE (ubase), &ubase_aff);
4787 tree_to_aff_combination (cbase, TREE_TYPE (cbase), &cbase_aff);
4788 if (compare_aff_trees (&ubase_aff, &cbase_aff))
4789 return NULL;
4792 tree_to_aff_combination (ub, TREE_TYPE (ub), &ubase_aff);
4793 tree_to_aff_combination (cb, TREE_TYPE (cb), &cbase_aff);
4795 aff_combination_scale (&cbase_aff, -1 * ratio);
4796 aff_combination_add (&ubase_aff, &cbase_aff);
4797 expr = aff_combination_to_tree (&ubase_aff);
4798 return record_inv_expr (data, expr);
4801 /* Scale (multiply) the computed COST (except scratch part that should be
4802 hoisted out a loop) by header->frequency / AT->frequency,
4803 which makes expected cost more accurate. */
4805 static comp_cost
4806 get_scaled_computation_cost_at (ivopts_data *data, gimple *at, iv_cand *cand,
4807 comp_cost cost)
4809 int loop_freq = data->current_loop->header->frequency;
4810 int bb_freq = gimple_bb (at)->frequency;
4811 if (loop_freq != 0)
4813 gcc_assert (cost.scratch <= cost.cost);
4814 int scaled_cost
4815 = cost.scratch + (cost.cost - cost.scratch) * bb_freq / loop_freq;
4817 if (dump_file && (dump_flags & TDF_DETAILS))
4818 fprintf (dump_file, "Scaling iv_use based on cand %d "
4819 "by %2.2f: %d (scratch: %d) -> %d (%d/%d)\n",
4820 cand->id, 1.0f * bb_freq / loop_freq, cost.cost,
4821 cost.scratch, scaled_cost, bb_freq, loop_freq);
4823 cost.cost = scaled_cost;
4826 return cost;
4829 /* Determines the cost of the computation by that USE is expressed
4830 from induction variable CAND. If ADDRESS_P is true, we just need
4831 to create an address from it, otherwise we want to get it into
4832 register. A set of invariants we depend on is stored in
4833 DEPENDS_ON. AT is the statement at that the value is computed.
4834 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4835 addressing is likely. */
4837 static comp_cost
4838 get_computation_cost_at (struct ivopts_data *data,
4839 struct iv_use *use, struct iv_cand *cand,
4840 bool address_p, bitmap *depends_on, gimple *at,
4841 bool *can_autoinc,
4842 iv_inv_expr_ent **inv_expr)
4844 tree ubase = use->iv->base, ustep = use->iv->step;
4845 tree cbase, cstep;
4846 tree utype = TREE_TYPE (ubase), ctype;
4847 unsigned HOST_WIDE_INT cstepi, offset = 0;
4848 HOST_WIDE_INT ratio, aratio;
4849 bool var_present, symbol_present, stmt_is_after_inc;
4850 comp_cost cost;
4851 widest_int rat;
4852 bool speed = optimize_bb_for_speed_p (gimple_bb (at));
4853 machine_mode mem_mode = (address_p
4854 ? TYPE_MODE (TREE_TYPE (*use->op_p))
4855 : VOIDmode);
4857 if (depends_on)
4858 *depends_on = NULL;
4860 /* Only consider real candidates. */
4861 if (!cand->iv)
4862 return infinite_cost;
4864 cbase = cand->iv->base;
4865 cstep = cand->iv->step;
4866 ctype = TREE_TYPE (cbase);
4868 if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
4870 /* We do not have a precision to express the values of use. */
4871 return infinite_cost;
4874 if (address_p
4875 || (use->iv->base_object
4876 && cand->iv->base_object
4877 && POINTER_TYPE_P (TREE_TYPE (use->iv->base_object))
4878 && POINTER_TYPE_P (TREE_TYPE (cand->iv->base_object))))
4880 /* Do not try to express address of an object with computation based
4881 on address of a different object. This may cause problems in rtl
4882 level alias analysis (that does not expect this to be happening,
4883 as this is illegal in C), and would be unlikely to be useful
4884 anyway. */
4885 if (use->iv->base_object
4886 && cand->iv->base_object
4887 && !operand_equal_p (use->iv->base_object, cand->iv->base_object, 0))
4888 return infinite_cost;
4891 if (TYPE_PRECISION (utype) < TYPE_PRECISION (ctype))
4893 /* TODO -- add direct handling of this case. */
4894 goto fallback;
4897 /* CSTEPI is removed from the offset in case statement is after the
4898 increment. If the step is not constant, we use zero instead.
4899 This is a bit imprecise (there is the extra addition), but
4900 redundancy elimination is likely to transform the code so that
4901 it uses value of the variable before increment anyway,
4902 so it is not that much unrealistic. */
4903 if (cst_and_fits_in_hwi (cstep))
4904 cstepi = int_cst_value (cstep);
4905 else
4906 cstepi = 0;
4908 if (!constant_multiple_of (ustep, cstep, &rat))
4909 return infinite_cost;
4911 if (wi::fits_shwi_p (rat))
4912 ratio = rat.to_shwi ();
4913 else
4914 return infinite_cost;
4916 STRIP_NOPS (cbase);
4917 ctype = TREE_TYPE (cbase);
4919 stmt_is_after_inc = stmt_after_increment (data->current_loop, cand, at);
4921 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4922 or ratio == 1, it is better to handle this like
4924 ubase - ratio * cbase + ratio * var
4926 (also holds in the case ratio == -1, TODO. */
4928 if (cst_and_fits_in_hwi (cbase))
4930 offset = - ratio * (unsigned HOST_WIDE_INT) int_cst_value (cbase);
4931 cost = difference_cost (data,
4932 ubase, build_int_cst (utype, 0),
4933 &symbol_present, &var_present, &offset,
4934 depends_on);
4935 cost /= avg_loop_niter (data->current_loop);
4937 else if (ratio == 1)
4939 tree real_cbase = cbase;
4941 /* Check to see if any adjustment is needed. */
4942 if (cstepi == 0 && stmt_is_after_inc)
4944 aff_tree real_cbase_aff;
4945 aff_tree cstep_aff;
4947 tree_to_aff_combination (cbase, TREE_TYPE (real_cbase),
4948 &real_cbase_aff);
4949 tree_to_aff_combination (cstep, TREE_TYPE (cstep), &cstep_aff);
4951 aff_combination_add (&real_cbase_aff, &cstep_aff);
4952 real_cbase = aff_combination_to_tree (&real_cbase_aff);
4955 cost = difference_cost (data,
4956 ubase, real_cbase,
4957 &symbol_present, &var_present, &offset,
4958 depends_on);
4959 cost /= avg_loop_niter (data->current_loop);
4961 else if (address_p
4962 && !POINTER_TYPE_P (ctype)
4963 && multiplier_allowed_in_address_p
4964 (ratio, mem_mode,
4965 TYPE_ADDR_SPACE (TREE_TYPE (utype))))
4967 tree real_cbase = cbase;
4969 if (cstepi == 0 && stmt_is_after_inc)
4971 if (POINTER_TYPE_P (ctype))
4972 real_cbase = fold_build2 (POINTER_PLUS_EXPR, ctype, cbase, cstep);
4973 else
4974 real_cbase = fold_build2 (PLUS_EXPR, ctype, cbase, cstep);
4976 real_cbase = fold_build2 (MULT_EXPR, ctype, real_cbase,
4977 build_int_cst (ctype, ratio));
4978 cost = difference_cost (data,
4979 ubase, real_cbase,
4980 &symbol_present, &var_present, &offset,
4981 depends_on);
4982 cost /= avg_loop_niter (data->current_loop);
4984 else
4986 cost = force_var_cost (data, cbase, depends_on);
4987 cost += difference_cost (data, ubase, build_int_cst (utype, 0),
4988 &symbol_present, &var_present, &offset,
4989 depends_on);
4990 cost /= avg_loop_niter (data->current_loop);
4991 cost += add_cost (data->speed, TYPE_MODE (ctype));
4994 /* Record setup cost in scratch field. */
4995 cost.scratch = cost.cost;
4997 if (inv_expr && depends_on && *depends_on)
4999 *inv_expr = get_loop_invariant_expr (data, ubase, cbase, ratio,
5000 address_p);
5001 /* Clear depends on. */
5002 if (*inv_expr != NULL)
5003 bitmap_clear (*depends_on);
5006 /* If we are after the increment, the value of the candidate is higher by
5007 one iteration. */
5008 if (stmt_is_after_inc)
5009 offset -= ratio * cstepi;
5011 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
5012 (symbol/var1/const parts may be omitted). If we are looking for an
5013 address, find the cost of addressing this. */
5014 if (address_p)
5016 cost += get_address_cost (symbol_present, var_present,
5017 offset, ratio, cstepi,
5018 mem_mode,
5019 TYPE_ADDR_SPACE (TREE_TYPE (utype)),
5020 speed, stmt_is_after_inc, can_autoinc);
5021 return get_scaled_computation_cost_at (data, at, cand, cost);
5024 /* Otherwise estimate the costs for computing the expression. */
5025 if (!symbol_present && !var_present && !offset)
5027 if (ratio != 1)
5028 cost += mult_by_coeff_cost (ratio, TYPE_MODE (ctype), speed);
5029 return get_scaled_computation_cost_at (data, at, cand, cost);
5032 /* Symbol + offset should be compile-time computable so consider that they
5033 are added once to the variable, if present. */
5034 if (var_present && (symbol_present || offset))
5035 cost += adjust_setup_cost (data,
5036 add_cost (speed, TYPE_MODE (ctype)));
5038 /* Having offset does not affect runtime cost in case it is added to
5039 symbol, but it increases complexity. */
5040 if (offset)
5041 cost.complexity++;
5043 cost += add_cost (speed, TYPE_MODE (ctype));
5045 aratio = ratio > 0 ? ratio : -ratio;
5046 if (aratio != 1)
5047 cost += mult_by_coeff_cost (aratio, TYPE_MODE (ctype), speed);
5049 return get_scaled_computation_cost_at (data, at, cand, cost);
5051 fallback:
5052 if (can_autoinc)
5053 *can_autoinc = false;
5055 /* Just get the expression, expand it and measure the cost. */
5056 tree comp = get_computation_at (data->current_loop, use, cand, at);
5058 if (!comp)
5059 return infinite_cost;
5061 if (address_p)
5062 comp = build_simple_mem_ref (comp);
5064 cost = comp_cost (computation_cost (comp, speed), 0);
5066 return get_scaled_computation_cost_at (data, at, cand, cost);
5069 /* Determines the cost of the computation by that USE is expressed
5070 from induction variable CAND. If ADDRESS_P is true, we just need
5071 to create an address from it, otherwise we want to get it into
5072 register. A set of invariants we depend on is stored in
5073 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
5074 autoinc addressing is likely. */
5076 static comp_cost
5077 get_computation_cost (struct ivopts_data *data,
5078 struct iv_use *use, struct iv_cand *cand,
5079 bool address_p, bitmap *depends_on,
5080 bool *can_autoinc, iv_inv_expr_ent **inv_expr)
5082 return get_computation_cost_at (data,
5083 use, cand, address_p, depends_on, use->stmt,
5084 can_autoinc, inv_expr);
5087 /* Determines cost of computing the use in GROUP with CAND in a generic
5088 expression. */
5090 static bool
5091 determine_group_iv_cost_generic (struct ivopts_data *data,
5092 struct iv_group *group, struct iv_cand *cand)
5094 comp_cost cost;
5095 iv_inv_expr_ent *inv_expr = NULL;
5096 bitmap depends_on = NULL;
5097 struct iv_use *use = group->vuses[0];
5099 /* The simple case first -- if we need to express value of the preserved
5100 original biv, the cost is 0. This also prevents us from counting the
5101 cost of increment twice -- once at this use and once in the cost of
5102 the candidate. */
5103 if (cand->pos == IP_ORIGINAL && cand->incremented_at == use->stmt)
5104 cost = no_cost;
5105 else
5106 cost = get_computation_cost (data, use, cand, false,
5107 &depends_on, NULL, &inv_expr);
5109 set_group_iv_cost (data, group, cand, cost, depends_on,
5110 NULL_TREE, ERROR_MARK, inv_expr);
5111 return !cost.infinite_cost_p ();
5114 /* Determines cost of computing uses in GROUP with CAND in addresses. */
5116 static bool
5117 determine_group_iv_cost_address (struct ivopts_data *data,
5118 struct iv_group *group, struct iv_cand *cand)
5120 unsigned i;
5121 bitmap depends_on;
5122 bool can_autoinc;
5123 iv_inv_expr_ent *inv_expr = NULL;
5124 struct iv_use *use = group->vuses[0];
5125 comp_cost sum_cost = no_cost, cost;
5127 cost = get_computation_cost (data, use, cand, true,
5128 &depends_on, &can_autoinc, &inv_expr);
5130 sum_cost = cost;
5131 if (!sum_cost.infinite_cost_p () && cand->ainc_use == use)
5133 if (can_autoinc)
5134 sum_cost -= cand->cost_step;
5135 /* If we generated the candidate solely for exploiting autoincrement
5136 opportunities, and it turns out it can't be used, set the cost to
5137 infinity to make sure we ignore it. */
5138 else if (cand->pos == IP_AFTER_USE || cand->pos == IP_BEFORE_USE)
5139 sum_cost = infinite_cost;
5142 /* Uses in a group can share setup code, so only add setup cost once. */
5143 cost -= cost.scratch;
5144 /* Compute and add costs for rest uses of this group. */
5145 for (i = 1; i < group->vuses.length () && !sum_cost.infinite_cost_p (); i++)
5147 struct iv_use *next = group->vuses[i];
5149 /* TODO: We could skip computing cost for sub iv_use when it has the
5150 same cost as the first iv_use, but the cost really depends on the
5151 offset and where the iv_use is. */
5152 cost = get_computation_cost (data, next, cand, true,
5153 NULL, &can_autoinc, NULL);
5154 sum_cost += cost;
5156 set_group_iv_cost (data, group, cand, sum_cost, depends_on,
5157 NULL_TREE, ERROR_MARK, inv_expr);
5159 return !sum_cost.infinite_cost_p ();
5162 /* Computes value of candidate CAND at position AT in iteration NITER, and
5163 stores it to VAL. */
5165 static void
5166 cand_value_at (struct loop *loop, struct iv_cand *cand, gimple *at, tree niter,
5167 aff_tree *val)
5169 aff_tree step, delta, nit;
5170 struct iv *iv = cand->iv;
5171 tree type = TREE_TYPE (iv->base);
5172 tree steptype;
5173 if (POINTER_TYPE_P (type))
5174 steptype = sizetype;
5175 else
5176 steptype = unsigned_type_for (type);
5178 tree_to_aff_combination (iv->step, TREE_TYPE (iv->step), &step);
5179 aff_combination_convert (&step, steptype);
5180 tree_to_aff_combination (niter, TREE_TYPE (niter), &nit);
5181 aff_combination_convert (&nit, steptype);
5182 aff_combination_mult (&nit, &step, &delta);
5183 if (stmt_after_increment (loop, cand, at))
5184 aff_combination_add (&delta, &step);
5186 tree_to_aff_combination (iv->base, type, val);
5187 if (!POINTER_TYPE_P (type))
5188 aff_combination_convert (val, steptype);
5189 aff_combination_add (val, &delta);
5192 /* Returns period of induction variable iv. */
5194 static tree
5195 iv_period (struct iv *iv)
5197 tree step = iv->step, period, type;
5198 tree pow2div;
5200 gcc_assert (step && TREE_CODE (step) == INTEGER_CST);
5202 type = unsigned_type_for (TREE_TYPE (step));
5203 /* Period of the iv is lcm (step, type_range)/step -1,
5204 i.e., N*type_range/step - 1. Since type range is power
5205 of two, N == (step >> num_of_ending_zeros_binary (step),
5206 so the final result is
5208 (type_range >> num_of_ending_zeros_binary (step)) - 1
5211 pow2div = num_ending_zeros (step);
5213 period = build_low_bits_mask (type,
5214 (TYPE_PRECISION (type)
5215 - tree_to_uhwi (pow2div)));
5217 return period;
5220 /* Returns the comparison operator used when eliminating the iv USE. */
5222 static enum tree_code
5223 iv_elimination_compare (struct ivopts_data *data, struct iv_use *use)
5225 struct loop *loop = data->current_loop;
5226 basic_block ex_bb;
5227 edge exit;
5229 ex_bb = gimple_bb (use->stmt);
5230 exit = EDGE_SUCC (ex_bb, 0);
5231 if (flow_bb_inside_loop_p (loop, exit->dest))
5232 exit = EDGE_SUCC (ex_bb, 1);
5234 return (exit->flags & EDGE_TRUE_VALUE ? EQ_EXPR : NE_EXPR);
5237 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
5238 we only detect the situation that BASE = SOMETHING + OFFSET, where the
5239 calculation is performed in non-wrapping type.
5241 TODO: More generally, we could test for the situation that
5242 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
5243 This would require knowing the sign of OFFSET. */
5245 static bool
5246 difference_cannot_overflow_p (struct ivopts_data *data, tree base, tree offset)
5248 enum tree_code code;
5249 tree e1, e2;
5250 aff_tree aff_e1, aff_e2, aff_offset;
5252 if (!nowrap_type_p (TREE_TYPE (base)))
5253 return false;
5255 base = expand_simple_operations (base);
5257 if (TREE_CODE (base) == SSA_NAME)
5259 gimple *stmt = SSA_NAME_DEF_STMT (base);
5261 if (gimple_code (stmt) != GIMPLE_ASSIGN)
5262 return false;
5264 code = gimple_assign_rhs_code (stmt);
5265 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
5266 return false;
5268 e1 = gimple_assign_rhs1 (stmt);
5269 e2 = gimple_assign_rhs2 (stmt);
5271 else
5273 code = TREE_CODE (base);
5274 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
5275 return false;
5276 e1 = TREE_OPERAND (base, 0);
5277 e2 = TREE_OPERAND (base, 1);
5280 /* Use affine expansion as deeper inspection to prove the equality. */
5281 tree_to_aff_combination_expand (e2, TREE_TYPE (e2),
5282 &aff_e2, &data->name_expansion_cache);
5283 tree_to_aff_combination_expand (offset, TREE_TYPE (offset),
5284 &aff_offset, &data->name_expansion_cache);
5285 aff_combination_scale (&aff_offset, -1);
5286 switch (code)
5288 case PLUS_EXPR:
5289 aff_combination_add (&aff_e2, &aff_offset);
5290 if (aff_combination_zero_p (&aff_e2))
5291 return true;
5293 tree_to_aff_combination_expand (e1, TREE_TYPE (e1),
5294 &aff_e1, &data->name_expansion_cache);
5295 aff_combination_add (&aff_e1, &aff_offset);
5296 return aff_combination_zero_p (&aff_e1);
5298 case POINTER_PLUS_EXPR:
5299 aff_combination_add (&aff_e2, &aff_offset);
5300 return aff_combination_zero_p (&aff_e2);
5302 default:
5303 return false;
5307 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
5308 comparison with CAND. NITER describes the number of iterations of
5309 the loops. If successful, the comparison in COMP_P is altered accordingly.
5311 We aim to handle the following situation:
5313 sometype *base, *p;
5314 int a, b, i;
5316 i = a;
5317 p = p_0 = base + a;
5321 bla (*p);
5322 p++;
5323 i++;
5325 while (i < b);
5327 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
5328 We aim to optimize this to
5330 p = p_0 = base + a;
5333 bla (*p);
5334 p++;
5336 while (p < p_0 - a + b);
5338 This preserves the correctness, since the pointer arithmetics does not
5339 overflow. More precisely:
5341 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
5342 overflow in computing it or the values of p.
5343 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
5344 overflow. To prove this, we use the fact that p_0 = base + a. */
5346 static bool
5347 iv_elimination_compare_lt (struct ivopts_data *data,
5348 struct iv_cand *cand, enum tree_code *comp_p,
5349 struct tree_niter_desc *niter)
5351 tree cand_type, a, b, mbz, nit_type = TREE_TYPE (niter->niter), offset;
5352 struct aff_tree nit, tmpa, tmpb;
5353 enum tree_code comp;
5354 HOST_WIDE_INT step;
5356 /* We need to know that the candidate induction variable does not overflow.
5357 While more complex analysis may be used to prove this, for now just
5358 check that the variable appears in the original program and that it
5359 is computed in a type that guarantees no overflows. */
5360 cand_type = TREE_TYPE (cand->iv->base);
5361 if (cand->pos != IP_ORIGINAL || !nowrap_type_p (cand_type))
5362 return false;
5364 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
5365 the calculation of the BOUND could overflow, making the comparison
5366 invalid. */
5367 if (!data->loop_single_exit_p)
5368 return false;
5370 /* We need to be able to decide whether candidate is increasing or decreasing
5371 in order to choose the right comparison operator. */
5372 if (!cst_and_fits_in_hwi (cand->iv->step))
5373 return false;
5374 step = int_cst_value (cand->iv->step);
5376 /* Check that the number of iterations matches the expected pattern:
5377 a + 1 > b ? 0 : b - a - 1. */
5378 mbz = niter->may_be_zero;
5379 if (TREE_CODE (mbz) == GT_EXPR)
5381 /* Handle a + 1 > b. */
5382 tree op0 = TREE_OPERAND (mbz, 0);
5383 if (TREE_CODE (op0) == PLUS_EXPR && integer_onep (TREE_OPERAND (op0, 1)))
5385 a = TREE_OPERAND (op0, 0);
5386 b = TREE_OPERAND (mbz, 1);
5388 else
5389 return false;
5391 else if (TREE_CODE (mbz) == LT_EXPR)
5393 tree op1 = TREE_OPERAND (mbz, 1);
5395 /* Handle b < a + 1. */
5396 if (TREE_CODE (op1) == PLUS_EXPR && integer_onep (TREE_OPERAND (op1, 1)))
5398 a = TREE_OPERAND (op1, 0);
5399 b = TREE_OPERAND (mbz, 0);
5401 else
5402 return false;
5404 else
5405 return false;
5407 /* Expected number of iterations is B - A - 1. Check that it matches
5408 the actual number, i.e., that B - A - NITER = 1. */
5409 tree_to_aff_combination (niter->niter, nit_type, &nit);
5410 tree_to_aff_combination (fold_convert (nit_type, a), nit_type, &tmpa);
5411 tree_to_aff_combination (fold_convert (nit_type, b), nit_type, &tmpb);
5412 aff_combination_scale (&nit, -1);
5413 aff_combination_scale (&tmpa, -1);
5414 aff_combination_add (&tmpb, &tmpa);
5415 aff_combination_add (&tmpb, &nit);
5416 if (tmpb.n != 0 || tmpb.offset != 1)
5417 return false;
5419 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
5420 overflow. */
5421 offset = fold_build2 (MULT_EXPR, TREE_TYPE (cand->iv->step),
5422 cand->iv->step,
5423 fold_convert (TREE_TYPE (cand->iv->step), a));
5424 if (!difference_cannot_overflow_p (data, cand->iv->base, offset))
5425 return false;
5427 /* Determine the new comparison operator. */
5428 comp = step < 0 ? GT_EXPR : LT_EXPR;
5429 if (*comp_p == NE_EXPR)
5430 *comp_p = comp;
5431 else if (*comp_p == EQ_EXPR)
5432 *comp_p = invert_tree_comparison (comp, false);
5433 else
5434 gcc_unreachable ();
5436 return true;
5439 /* Check whether it is possible to express the condition in USE by comparison
5440 of candidate CAND. If so, store the value compared with to BOUND, and the
5441 comparison operator to COMP. */
5443 static bool
5444 may_eliminate_iv (struct ivopts_data *data,
5445 struct iv_use *use, struct iv_cand *cand, tree *bound,
5446 enum tree_code *comp)
5448 basic_block ex_bb;
5449 edge exit;
5450 tree period;
5451 struct loop *loop = data->current_loop;
5452 aff_tree bnd;
5453 struct tree_niter_desc *desc = NULL;
5455 if (TREE_CODE (cand->iv->step) != INTEGER_CST)
5456 return false;
5458 /* For now works only for exits that dominate the loop latch.
5459 TODO: extend to other conditions inside loop body. */
5460 ex_bb = gimple_bb (use->stmt);
5461 if (use->stmt != last_stmt (ex_bb)
5462 || gimple_code (use->stmt) != GIMPLE_COND
5463 || !dominated_by_p (CDI_DOMINATORS, loop->latch, ex_bb))
5464 return false;
5466 exit = EDGE_SUCC (ex_bb, 0);
5467 if (flow_bb_inside_loop_p (loop, exit->dest))
5468 exit = EDGE_SUCC (ex_bb, 1);
5469 if (flow_bb_inside_loop_p (loop, exit->dest))
5470 return false;
5472 desc = niter_for_exit (data, exit);
5473 if (!desc)
5474 return false;
5476 /* Determine whether we can use the variable to test the exit condition.
5477 This is the case iff the period of the induction variable is greater
5478 than the number of iterations for which the exit condition is true. */
5479 period = iv_period (cand->iv);
5481 /* If the number of iterations is constant, compare against it directly. */
5482 if (TREE_CODE (desc->niter) == INTEGER_CST)
5484 /* See cand_value_at. */
5485 if (stmt_after_increment (loop, cand, use->stmt))
5487 if (!tree_int_cst_lt (desc->niter, period))
5488 return false;
5490 else
5492 if (tree_int_cst_lt (period, desc->niter))
5493 return false;
5497 /* If not, and if this is the only possible exit of the loop, see whether
5498 we can get a conservative estimate on the number of iterations of the
5499 entire loop and compare against that instead. */
5500 else
5502 widest_int period_value, max_niter;
5504 max_niter = desc->max;
5505 if (stmt_after_increment (loop, cand, use->stmt))
5506 max_niter += 1;
5507 period_value = wi::to_widest (period);
5508 if (wi::gtu_p (max_niter, period_value))
5510 /* See if we can take advantage of inferred loop bound
5511 information. */
5512 if (data->loop_single_exit_p)
5514 if (!max_loop_iterations (loop, &max_niter))
5515 return false;
5516 /* The loop bound is already adjusted by adding 1. */
5517 if (wi::gtu_p (max_niter, period_value))
5518 return false;
5520 else
5521 return false;
5525 cand_value_at (loop, cand, use->stmt, desc->niter, &bnd);
5527 *bound = fold_convert (TREE_TYPE (cand->iv->base),
5528 aff_combination_to_tree (&bnd));
5529 *comp = iv_elimination_compare (data, use);
5531 /* It is unlikely that computing the number of iterations using division
5532 would be more profitable than keeping the original induction variable. */
5533 if (expression_expensive_p (*bound))
5534 return false;
5536 /* Sometimes, it is possible to handle the situation that the number of
5537 iterations may be zero unless additional assumtions by using <
5538 instead of != in the exit condition.
5540 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
5541 base the exit condition on it. However, that is often too
5542 expensive. */
5543 if (!integer_zerop (desc->may_be_zero))
5544 return iv_elimination_compare_lt (data, cand, comp, desc);
5546 return true;
5549 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
5550 be copied, if it is used in the loop body and DATA->body_includes_call. */
5552 static int
5553 parm_decl_cost (struct ivopts_data *data, tree bound)
5555 tree sbound = bound;
5556 STRIP_NOPS (sbound);
5558 if (TREE_CODE (sbound) == SSA_NAME
5559 && SSA_NAME_IS_DEFAULT_DEF (sbound)
5560 && TREE_CODE (SSA_NAME_VAR (sbound)) == PARM_DECL
5561 && data->body_includes_call)
5562 return COSTS_N_INSNS (1);
5564 return 0;
5567 /* Determines cost of computing the use in GROUP with CAND in a condition. */
5569 static bool
5570 determine_group_iv_cost_cond (struct ivopts_data *data,
5571 struct iv_group *group, struct iv_cand *cand)
5573 tree bound = NULL_TREE;
5574 struct iv *cmp_iv;
5575 bitmap depends_on_elim = NULL, depends_on_express = NULL, depends_on;
5576 comp_cost elim_cost, express_cost, cost, bound_cost;
5577 bool ok;
5578 iv_inv_expr_ent *elim_inv_expr = NULL, *express_inv_expr = NULL, *inv_expr;
5579 tree *control_var, *bound_cst;
5580 enum tree_code comp = ERROR_MARK;
5581 struct iv_use *use = group->vuses[0];
5583 gcc_assert (cand->iv);
5585 /* Try iv elimination. */
5586 if (may_eliminate_iv (data, use, cand, &bound, &comp))
5588 elim_cost = force_var_cost (data, bound, &depends_on_elim);
5589 if (elim_cost.cost == 0)
5590 elim_cost.cost = parm_decl_cost (data, bound);
5591 else if (TREE_CODE (bound) == INTEGER_CST)
5592 elim_cost.cost = 0;
5593 /* If we replace a loop condition 'i < n' with 'p < base + n',
5594 depends_on_elim will have 'base' and 'n' set, which implies
5595 that both 'base' and 'n' will be live during the loop. More likely,
5596 'base + n' will be loop invariant, resulting in only one live value
5597 during the loop. So in that case we clear depends_on_elim and set
5598 elim_inv_expr_id instead. */
5599 if (depends_on_elim && bitmap_count_bits (depends_on_elim) > 1)
5601 elim_inv_expr = record_inv_expr (data, bound);
5602 bitmap_clear (depends_on_elim);
5604 /* The bound is a loop invariant, so it will be only computed
5605 once. */
5606 elim_cost.cost = adjust_setup_cost (data, elim_cost.cost);
5608 else
5609 elim_cost = infinite_cost;
5611 /* Try expressing the original giv. If it is compared with an invariant,
5612 note that we cannot get rid of it. */
5613 ok = extract_cond_operands (data, use->stmt, &control_var, &bound_cst,
5614 NULL, &cmp_iv);
5615 gcc_assert (ok);
5617 /* When the condition is a comparison of the candidate IV against
5618 zero, prefer this IV.
5620 TODO: The constant that we're subtracting from the cost should
5621 be target-dependent. This information should be added to the
5622 target costs for each backend. */
5623 if (!elim_cost.infinite_cost_p () /* Do not try to decrease infinite! */
5624 && integer_zerop (*bound_cst)
5625 && (operand_equal_p (*control_var, cand->var_after, 0)
5626 || operand_equal_p (*control_var, cand->var_before, 0)))
5627 elim_cost -= 1;
5629 express_cost = get_computation_cost (data, use, cand, false,
5630 &depends_on_express, NULL,
5631 &express_inv_expr);
5632 fd_ivopts_data = data;
5633 walk_tree (&cmp_iv->base, find_depends, &depends_on_express, NULL);
5635 /* Count the cost of the original bound as well. */
5636 bound_cost = force_var_cost (data, *bound_cst, NULL);
5637 if (bound_cost.cost == 0)
5638 bound_cost.cost = parm_decl_cost (data, *bound_cst);
5639 else if (TREE_CODE (*bound_cst) == INTEGER_CST)
5640 bound_cost.cost = 0;
5641 express_cost += bound_cost;
5643 /* Choose the better approach, preferring the eliminated IV. */
5644 if (elim_cost <= express_cost)
5646 cost = elim_cost;
5647 depends_on = depends_on_elim;
5648 depends_on_elim = NULL;
5649 inv_expr = elim_inv_expr;
5651 else
5653 cost = express_cost;
5654 depends_on = depends_on_express;
5655 depends_on_express = NULL;
5656 bound = NULL_TREE;
5657 comp = ERROR_MARK;
5658 inv_expr = express_inv_expr;
5661 set_group_iv_cost (data, group, cand, cost,
5662 depends_on, bound, comp, inv_expr);
5664 if (depends_on_elim)
5665 BITMAP_FREE (depends_on_elim);
5666 if (depends_on_express)
5667 BITMAP_FREE (depends_on_express);
5669 return !cost.infinite_cost_p ();
5672 /* Determines cost of computing uses in GROUP with CAND. Returns false
5673 if USE cannot be represented with CAND. */
5675 static bool
5676 determine_group_iv_cost (struct ivopts_data *data,
5677 struct iv_group *group, struct iv_cand *cand)
5679 switch (group->type)
5681 case USE_NONLINEAR_EXPR:
5682 return determine_group_iv_cost_generic (data, group, cand);
5684 case USE_ADDRESS:
5685 return determine_group_iv_cost_address (data, group, cand);
5687 case USE_COMPARE:
5688 return determine_group_iv_cost_cond (data, group, cand);
5690 default:
5691 gcc_unreachable ();
5695 /* Return true if get_computation_cost indicates that autoincrement is
5696 a possibility for the pair of USE and CAND, false otherwise. */
5698 static bool
5699 autoinc_possible_for_pair (struct ivopts_data *data, struct iv_use *use,
5700 struct iv_cand *cand)
5702 bitmap depends_on;
5703 bool can_autoinc;
5704 comp_cost cost;
5706 if (use->type != USE_ADDRESS)
5707 return false;
5709 cost = get_computation_cost (data, use, cand, true, &depends_on,
5710 &can_autoinc, NULL);
5712 BITMAP_FREE (depends_on);
5714 return !cost.infinite_cost_p () && can_autoinc;
5717 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
5718 use that allows autoincrement, and set their AINC_USE if possible. */
5720 static void
5721 set_autoinc_for_original_candidates (struct ivopts_data *data)
5723 unsigned i, j;
5725 for (i = 0; i < data->vcands.length (); i++)
5727 struct iv_cand *cand = data->vcands[i];
5728 struct iv_use *closest_before = NULL;
5729 struct iv_use *closest_after = NULL;
5730 if (cand->pos != IP_ORIGINAL)
5731 continue;
5733 for (j = 0; j < data->vgroups.length (); j++)
5735 struct iv_group *group = data->vgroups[j];
5736 struct iv_use *use = group->vuses[0];
5737 unsigned uid = gimple_uid (use->stmt);
5739 if (gimple_bb (use->stmt) != gimple_bb (cand->incremented_at))
5740 continue;
5742 if (uid < gimple_uid (cand->incremented_at)
5743 && (closest_before == NULL
5744 || uid > gimple_uid (closest_before->stmt)))
5745 closest_before = use;
5747 if (uid > gimple_uid (cand->incremented_at)
5748 && (closest_after == NULL
5749 || uid < gimple_uid (closest_after->stmt)))
5750 closest_after = use;
5753 if (closest_before != NULL
5754 && autoinc_possible_for_pair (data, closest_before, cand))
5755 cand->ainc_use = closest_before;
5756 else if (closest_after != NULL
5757 && autoinc_possible_for_pair (data, closest_after, cand))
5758 cand->ainc_use = closest_after;
5762 /* Finds the candidates for the induction variables. */
5764 static void
5765 find_iv_candidates (struct ivopts_data *data)
5767 /* Add commonly used ivs. */
5768 add_standard_iv_candidates (data);
5770 /* Add old induction variables. */
5771 add_iv_candidate_for_bivs (data);
5773 /* Add induction variables derived from uses. */
5774 add_iv_candidate_for_groups (data);
5776 set_autoinc_for_original_candidates (data);
5778 /* Record the important candidates. */
5779 record_important_candidates (data);
5781 if (dump_file && (dump_flags & TDF_DETAILS))
5783 unsigned i;
5785 fprintf (dump_file, "\n<Important Candidates>:\t");
5786 for (i = 0; i < data->vcands.length (); i++)
5787 if (data->vcands[i]->important)
5788 fprintf (dump_file, " %d,", data->vcands[i]->id);
5789 fprintf (dump_file, "\n");
5791 fprintf (dump_file, "\n<Group, Cand> Related:\n");
5792 for (i = 0; i < data->vgroups.length (); i++)
5794 struct iv_group *group = data->vgroups[i];
5796 if (group->related_cands)
5798 fprintf (dump_file, " Group %d:\t", group->id);
5799 dump_bitmap (dump_file, group->related_cands);
5802 fprintf (dump_file, "\n");
5806 /* Determines costs of computing use of iv with an iv candidate. */
5808 static void
5809 determine_group_iv_costs (struct ivopts_data *data)
5811 unsigned i, j;
5812 struct iv_cand *cand;
5813 struct iv_group *group;
5814 bitmap to_clear = BITMAP_ALLOC (NULL);
5816 alloc_use_cost_map (data);
5818 for (i = 0; i < data->vgroups.length (); i++)
5820 group = data->vgroups[i];
5822 if (data->consider_all_candidates)
5824 for (j = 0; j < data->vcands.length (); j++)
5826 cand = data->vcands[j];
5827 determine_group_iv_cost (data, group, cand);
5830 else
5832 bitmap_iterator bi;
5834 EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, j, bi)
5836 cand = data->vcands[j];
5837 if (!determine_group_iv_cost (data, group, cand))
5838 bitmap_set_bit (to_clear, j);
5841 /* Remove the candidates for that the cost is infinite from
5842 the list of related candidates. */
5843 bitmap_and_compl_into (group->related_cands, to_clear);
5844 bitmap_clear (to_clear);
5848 BITMAP_FREE (to_clear);
5850 if (dump_file && (dump_flags & TDF_DETAILS))
5852 fprintf (dump_file, "\n<Invariant Expressions>:\n");
5853 auto_vec <iv_inv_expr_ent *> list (data->inv_expr_tab->elements ());
5855 for (hash_table<iv_inv_expr_hasher>::iterator it
5856 = data->inv_expr_tab->begin (); it != data->inv_expr_tab->end ();
5857 ++it)
5858 list.safe_push (*it);
5860 list.qsort (sort_iv_inv_expr_ent);
5862 for (i = 0; i < list.length (); ++i)
5864 fprintf (dump_file, "inv_expr %d: \t", i);
5865 print_generic_expr (dump_file, list[i]->expr, TDF_SLIM);
5866 fprintf (dump_file, "\n");
5869 fprintf (dump_file, "\n<Group-candidate Costs>:\n");
5871 for (i = 0; i < data->vgroups.length (); i++)
5873 group = data->vgroups[i];
5875 fprintf (dump_file, "Group %d:\n", i);
5876 fprintf (dump_file, " cand\tcost\tcompl.\tinv.ex.\tdepends on\n");
5877 for (j = 0; j < group->n_map_members; j++)
5879 if (!group->cost_map[j].cand
5880 || group->cost_map[j].cost.infinite_cost_p ())
5881 continue;
5883 fprintf (dump_file, " %d\t%d\t%d\t",
5884 group->cost_map[j].cand->id,
5885 group->cost_map[j].cost.cost,
5886 group->cost_map[j].cost.complexity);
5887 if (group->cost_map[j].inv_expr != NULL)
5888 fprintf (dump_file, "%d\t",
5889 group->cost_map[j].inv_expr->id);
5890 else
5891 fprintf (dump_file, "\t");
5892 if (group->cost_map[j].depends_on)
5893 bitmap_print (dump_file,
5894 group->cost_map[j].depends_on, "","");
5895 fprintf (dump_file, "\n");
5898 fprintf (dump_file, "\n");
5900 fprintf (dump_file, "\n");
5904 /* Determines cost of the candidate CAND. */
5906 static void
5907 determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
5909 comp_cost cost_base;
5910 unsigned cost, cost_step;
5911 tree base;
5913 if (!cand->iv)
5915 cand->cost = 0;
5916 return;
5919 /* There are two costs associated with the candidate -- its increment
5920 and its initialization. The second is almost negligible for any loop
5921 that rolls enough, so we take it just very little into account. */
5923 base = cand->iv->base;
5924 cost_base = force_var_cost (data, base, NULL);
5925 /* It will be exceptional that the iv register happens to be initialized with
5926 the proper value at no cost. In general, there will at least be a regcopy
5927 or a const set. */
5928 if (cost_base.cost == 0)
5929 cost_base.cost = COSTS_N_INSNS (1);
5930 cost_step = add_cost (data->speed, TYPE_MODE (TREE_TYPE (base)));
5932 cost = cost_step + adjust_setup_cost (data, cost_base.cost);
5934 /* Prefer the original ivs unless we may gain something by replacing it.
5935 The reason is to make debugging simpler; so this is not relevant for
5936 artificial ivs created by other optimization passes. */
5937 if (cand->pos != IP_ORIGINAL
5938 || !SSA_NAME_VAR (cand->var_before)
5939 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand->var_before)))
5940 cost++;
5942 /* Prefer not to insert statements into latch unless there are some
5943 already (so that we do not create unnecessary jumps). */
5944 if (cand->pos == IP_END
5945 && empty_block_p (ip_end_pos (data->current_loop)))
5946 cost++;
5948 cand->cost = cost;
5949 cand->cost_step = cost_step;
5952 /* Determines costs of computation of the candidates. */
5954 static void
5955 determine_iv_costs (struct ivopts_data *data)
5957 unsigned i;
5959 if (dump_file && (dump_flags & TDF_DETAILS))
5961 fprintf (dump_file, "<Candidate Costs>:\n");
5962 fprintf (dump_file, " cand\tcost\n");
5965 for (i = 0; i < data->vcands.length (); i++)
5967 struct iv_cand *cand = data->vcands[i];
5969 determine_iv_cost (data, cand);
5971 if (dump_file && (dump_flags & TDF_DETAILS))
5972 fprintf (dump_file, " %d\t%d\n", i, cand->cost);
5975 if (dump_file && (dump_flags & TDF_DETAILS))
5976 fprintf (dump_file, "\n");
5979 /* Calculates cost for having SIZE induction variables. */
5981 static unsigned
5982 ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
5984 /* We add size to the cost, so that we prefer eliminating ivs
5985 if possible. */
5986 return size + estimate_reg_pressure_cost (size, data->regs_used, data->speed,
5987 data->body_includes_call);
5990 /* For each size of the induction variable set determine the penalty. */
5992 static void
5993 determine_set_costs (struct ivopts_data *data)
5995 unsigned j, n;
5996 gphi *phi;
5997 gphi_iterator psi;
5998 tree op;
5999 struct loop *loop = data->current_loop;
6000 bitmap_iterator bi;
6002 if (dump_file && (dump_flags & TDF_DETAILS))
6004 fprintf (dump_file, "<Global Costs>:\n");
6005 fprintf (dump_file, " target_avail_regs %d\n", target_avail_regs);
6006 fprintf (dump_file, " target_clobbered_regs %d\n", target_clobbered_regs);
6007 fprintf (dump_file, " target_reg_cost %d\n", target_reg_cost[data->speed]);
6008 fprintf (dump_file, " target_spill_cost %d\n", target_spill_cost[data->speed]);
6011 n = 0;
6012 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
6014 phi = psi.phi ();
6015 op = PHI_RESULT (phi);
6017 if (virtual_operand_p (op))
6018 continue;
6020 if (get_iv (data, op))
6021 continue;
6023 n++;
6026 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
6028 struct version_info *info = ver_info (data, j);
6030 if (info->inv_id && info->has_nonlin_use)
6031 n++;
6034 data->regs_used = n;
6035 if (dump_file && (dump_flags & TDF_DETAILS))
6036 fprintf (dump_file, " regs_used %d\n", n);
6038 if (dump_file && (dump_flags & TDF_DETAILS))
6040 fprintf (dump_file, " cost for size:\n");
6041 fprintf (dump_file, " ivs\tcost\n");
6042 for (j = 0; j <= 2 * target_avail_regs; j++)
6043 fprintf (dump_file, " %d\t%d\n", j,
6044 ivopts_global_cost_for_size (data, j));
6045 fprintf (dump_file, "\n");
6049 /* Returns true if A is a cheaper cost pair than B. */
6051 static bool
6052 cheaper_cost_pair (struct cost_pair *a, struct cost_pair *b)
6054 if (!a)
6055 return false;
6057 if (!b)
6058 return true;
6060 if (a->cost < b->cost)
6061 return true;
6063 if (b->cost < a->cost)
6064 return false;
6066 /* In case the costs are the same, prefer the cheaper candidate. */
6067 if (a->cand->cost < b->cand->cost)
6068 return true;
6070 return false;
6074 /* Returns candidate by that USE is expressed in IVS. */
6076 static struct cost_pair *
6077 iv_ca_cand_for_group (struct iv_ca *ivs, struct iv_group *group)
6079 return ivs->cand_for_group[group->id];
6082 /* Computes the cost field of IVS structure. */
6084 static void
6085 iv_ca_recount_cost (struct ivopts_data *data, struct iv_ca *ivs)
6087 comp_cost cost = ivs->cand_use_cost;
6089 cost += ivs->cand_cost;
6091 cost += ivopts_global_cost_for_size (data,
6092 ivs->n_regs
6093 + ivs->used_inv_exprs->elements ());
6095 ivs->cost = cost;
6098 /* Remove invariants in set INVS to set IVS. */
6100 static void
6101 iv_ca_set_remove_invariants (struct iv_ca *ivs, bitmap invs)
6103 bitmap_iterator bi;
6104 unsigned iid;
6106 if (!invs)
6107 return;
6109 EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
6111 ivs->n_invariant_uses[iid]--;
6112 if (ivs->n_invariant_uses[iid] == 0)
6113 ivs->n_regs--;
6117 /* Set USE not to be expressed by any candidate in IVS. */
6119 static void
6120 iv_ca_set_no_cp (struct ivopts_data *data, struct iv_ca *ivs,
6121 struct iv_group *group)
6123 unsigned gid = group->id, cid;
6124 struct cost_pair *cp;
6126 cp = ivs->cand_for_group[gid];
6127 if (!cp)
6128 return;
6129 cid = cp->cand->id;
6131 ivs->bad_groups++;
6132 ivs->cand_for_group[gid] = NULL;
6133 ivs->n_cand_uses[cid]--;
6135 if (ivs->n_cand_uses[cid] == 0)
6137 bitmap_clear_bit (ivs->cands, cid);
6138 /* Do not count the pseudocandidates. */
6139 if (cp->cand->iv)
6140 ivs->n_regs--;
6141 ivs->n_cands--;
6142 ivs->cand_cost -= cp->cand->cost;
6144 iv_ca_set_remove_invariants (ivs, cp->cand->depends_on);
6147 ivs->cand_use_cost -= cp->cost;
6149 iv_ca_set_remove_invariants (ivs, cp->depends_on);
6151 if (cp->inv_expr != NULL)
6153 unsigned *slot = ivs->used_inv_exprs->get (cp->inv_expr);
6154 --(*slot);
6155 if (*slot == 0)
6156 ivs->used_inv_exprs->remove (cp->inv_expr);
6158 iv_ca_recount_cost (data, ivs);
6161 /* Add invariants in set INVS to set IVS. */
6163 static void
6164 iv_ca_set_add_invariants (struct iv_ca *ivs, bitmap invs)
6166 bitmap_iterator bi;
6167 unsigned iid;
6169 if (!invs)
6170 return;
6172 EXECUTE_IF_SET_IN_BITMAP (invs, 0, iid, bi)
6174 ivs->n_invariant_uses[iid]++;
6175 if (ivs->n_invariant_uses[iid] == 1)
6176 ivs->n_regs++;
6180 /* Set cost pair for GROUP in set IVS to CP. */
6182 static void
6183 iv_ca_set_cp (struct ivopts_data *data, struct iv_ca *ivs,
6184 struct iv_group *group, struct cost_pair *cp)
6186 unsigned gid = group->id, cid;
6188 if (ivs->cand_for_group[gid] == cp)
6189 return;
6191 if (ivs->cand_for_group[gid])
6192 iv_ca_set_no_cp (data, ivs, group);
6194 if (cp)
6196 cid = cp->cand->id;
6198 ivs->bad_groups--;
6199 ivs->cand_for_group[gid] = cp;
6200 ivs->n_cand_uses[cid]++;
6201 if (ivs->n_cand_uses[cid] == 1)
6203 bitmap_set_bit (ivs->cands, cid);
6204 /* Do not count the pseudocandidates. */
6205 if (cp->cand->iv)
6206 ivs->n_regs++;
6207 ivs->n_cands++;
6208 ivs->cand_cost += cp->cand->cost;
6210 iv_ca_set_add_invariants (ivs, cp->cand->depends_on);
6213 ivs->cand_use_cost += cp->cost;
6214 iv_ca_set_add_invariants (ivs, cp->depends_on);
6216 if (cp->inv_expr != NULL)
6218 unsigned *slot = &ivs->used_inv_exprs->get_or_insert (cp->inv_expr);
6219 ++(*slot);
6221 iv_ca_recount_cost (data, ivs);
6225 /* Extend set IVS by expressing USE by some of the candidates in it
6226 if possible. Consider all important candidates if candidates in
6227 set IVS don't give any result. */
6229 static void
6230 iv_ca_add_group (struct ivopts_data *data, struct iv_ca *ivs,
6231 struct iv_group *group)
6233 struct cost_pair *best_cp = NULL, *cp;
6234 bitmap_iterator bi;
6235 unsigned i;
6236 struct iv_cand *cand;
6238 gcc_assert (ivs->upto >= group->id);
6239 ivs->upto++;
6240 ivs->bad_groups++;
6242 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
6244 cand = data->vcands[i];
6245 cp = get_group_iv_cost (data, group, cand);
6246 if (cheaper_cost_pair (cp, best_cp))
6247 best_cp = cp;
6250 if (best_cp == NULL)
6252 EXECUTE_IF_SET_IN_BITMAP (data->important_candidates, 0, i, bi)
6254 cand = data->vcands[i];
6255 cp = get_group_iv_cost (data, group, cand);
6256 if (cheaper_cost_pair (cp, best_cp))
6257 best_cp = cp;
6261 iv_ca_set_cp (data, ivs, group, best_cp);
6264 /* Get cost for assignment IVS. */
6266 static comp_cost
6267 iv_ca_cost (struct iv_ca *ivs)
6269 /* This was a conditional expression but it triggered a bug in
6270 Sun C 5.5. */
6271 if (ivs->bad_groups)
6272 return infinite_cost;
6273 else
6274 return ivs->cost;
6277 /* Returns true if all dependences of CP are among invariants in IVS. */
6279 static bool
6280 iv_ca_has_deps (struct iv_ca *ivs, struct cost_pair *cp)
6282 unsigned i;
6283 bitmap_iterator bi;
6285 if (!cp->depends_on)
6286 return true;
6288 EXECUTE_IF_SET_IN_BITMAP (cp->depends_on, 0, i, bi)
6290 if (ivs->n_invariant_uses[i] == 0)
6291 return false;
6294 return true;
6297 /* Creates change of expressing GROUP by NEW_CP instead of OLD_CP and chains
6298 it before NEXT. */
6300 static struct iv_ca_delta *
6301 iv_ca_delta_add (struct iv_group *group, struct cost_pair *old_cp,
6302 struct cost_pair *new_cp, struct iv_ca_delta *next)
6304 struct iv_ca_delta *change = XNEW (struct iv_ca_delta);
6306 change->group = group;
6307 change->old_cp = old_cp;
6308 change->new_cp = new_cp;
6309 change->next = next;
6311 return change;
6314 /* Joins two lists of changes L1 and L2. Destructive -- old lists
6315 are rewritten. */
6317 static struct iv_ca_delta *
6318 iv_ca_delta_join (struct iv_ca_delta *l1, struct iv_ca_delta *l2)
6320 struct iv_ca_delta *last;
6322 if (!l2)
6323 return l1;
6325 if (!l1)
6326 return l2;
6328 for (last = l1; last->next; last = last->next)
6329 continue;
6330 last->next = l2;
6332 return l1;
6335 /* Reverse the list of changes DELTA, forming the inverse to it. */
6337 static struct iv_ca_delta *
6338 iv_ca_delta_reverse (struct iv_ca_delta *delta)
6340 struct iv_ca_delta *act, *next, *prev = NULL;
6342 for (act = delta; act; act = next)
6344 next = act->next;
6345 act->next = prev;
6346 prev = act;
6348 std::swap (act->old_cp, act->new_cp);
6351 return prev;
6354 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
6355 reverted instead. */
6357 static void
6358 iv_ca_delta_commit (struct ivopts_data *data, struct iv_ca *ivs,
6359 struct iv_ca_delta *delta, bool forward)
6361 struct cost_pair *from, *to;
6362 struct iv_ca_delta *act;
6364 if (!forward)
6365 delta = iv_ca_delta_reverse (delta);
6367 for (act = delta; act; act = act->next)
6369 from = act->old_cp;
6370 to = act->new_cp;
6371 gcc_assert (iv_ca_cand_for_group (ivs, act->group) == from);
6372 iv_ca_set_cp (data, ivs, act->group, to);
6375 if (!forward)
6376 iv_ca_delta_reverse (delta);
6379 /* Returns true if CAND is used in IVS. */
6381 static bool
6382 iv_ca_cand_used_p (struct iv_ca *ivs, struct iv_cand *cand)
6384 return ivs->n_cand_uses[cand->id] > 0;
6387 /* Returns number of induction variable candidates in the set IVS. */
6389 static unsigned
6390 iv_ca_n_cands (struct iv_ca *ivs)
6392 return ivs->n_cands;
6395 /* Free the list of changes DELTA. */
6397 static void
6398 iv_ca_delta_free (struct iv_ca_delta **delta)
6400 struct iv_ca_delta *act, *next;
6402 for (act = *delta; act; act = next)
6404 next = act->next;
6405 free (act);
6408 *delta = NULL;
6411 /* Allocates new iv candidates assignment. */
6413 static struct iv_ca *
6414 iv_ca_new (struct ivopts_data *data)
6416 struct iv_ca *nw = XNEW (struct iv_ca);
6418 nw->upto = 0;
6419 nw->bad_groups = 0;
6420 nw->cand_for_group = XCNEWVEC (struct cost_pair *,
6421 data->vgroups.length ());
6422 nw->n_cand_uses = XCNEWVEC (unsigned, data->vcands.length ());
6423 nw->cands = BITMAP_ALLOC (NULL);
6424 nw->n_cands = 0;
6425 nw->n_regs = 0;
6426 nw->cand_use_cost = no_cost;
6427 nw->cand_cost = 0;
6428 nw->n_invariant_uses = XCNEWVEC (unsigned, data->max_inv_id + 1);
6429 nw->used_inv_exprs = new hash_map <iv_inv_expr_ent *, unsigned> (13);
6430 nw->cost = no_cost;
6432 return nw;
6435 /* Free memory occupied by the set IVS. */
6437 static void
6438 iv_ca_free (struct iv_ca **ivs)
6440 free ((*ivs)->cand_for_group);
6441 free ((*ivs)->n_cand_uses);
6442 BITMAP_FREE ((*ivs)->cands);
6443 free ((*ivs)->n_invariant_uses);
6444 delete ((*ivs)->used_inv_exprs);
6445 free (*ivs);
6446 *ivs = NULL;
6449 /* Dumps IVS to FILE. */
6451 static void
6452 iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
6454 unsigned i;
6455 comp_cost cost = iv_ca_cost (ivs);
6457 fprintf (file, " cost: %d (complexity %d)\n", cost.cost,
6458 cost.complexity);
6459 fprintf (file, " cand_cost: %d\n cand_group_cost: %d (complexity %d)\n",
6460 ivs->cand_cost, ivs->cand_use_cost.cost,
6461 ivs->cand_use_cost.complexity);
6462 bitmap_print (file, ivs->cands, " candidates: ","\n");
6464 for (i = 0; i < ivs->upto; i++)
6466 struct iv_group *group = data->vgroups[i];
6467 struct cost_pair *cp = iv_ca_cand_for_group (ivs, group);
6468 if (cp)
6469 fprintf (file, " group:%d --> iv_cand:%d, cost=(%d,%d)\n",
6470 group->id, cp->cand->id, cp->cost.cost,
6471 cp->cost.complexity);
6472 else
6473 fprintf (file, " group:%d --> ??\n", group->id);
6476 const char *pref = "";
6477 fprintf (file, " invariant variables: ");
6478 for (i = 1; i <= data->max_inv_id; i++)
6479 if (ivs->n_invariant_uses[i])
6481 fprintf (file, "%s%d", pref, i);
6482 pref = ", ";
6485 pref = "";
6486 fprintf (file, "\n invariant expressions: ");
6487 for (hash_map<iv_inv_expr_ent *, unsigned>::iterator it
6488 = ivs->used_inv_exprs->begin (); it != ivs->used_inv_exprs->end (); ++it)
6490 fprintf (file, "%s%d", pref, (*it).first->id);
6491 pref = ", ";
6494 fprintf (file, "\n\n");
6497 /* Try changing candidate in IVS to CAND for each use. Return cost of the
6498 new set, and store differences in DELTA. Number of induction variables
6499 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
6500 the function will try to find a solution with mimimal iv candidates. */
6502 static comp_cost
6503 iv_ca_extend (struct ivopts_data *data, struct iv_ca *ivs,
6504 struct iv_cand *cand, struct iv_ca_delta **delta,
6505 unsigned *n_ivs, bool min_ncand)
6507 unsigned i;
6508 comp_cost cost;
6509 struct iv_group *group;
6510 struct cost_pair *old_cp, *new_cp;
6512 *delta = NULL;
6513 for (i = 0; i < ivs->upto; i++)
6515 group = data->vgroups[i];
6516 old_cp = iv_ca_cand_for_group (ivs, group);
6518 if (old_cp
6519 && old_cp->cand == cand)
6520 continue;
6522 new_cp = get_group_iv_cost (data, group, cand);
6523 if (!new_cp)
6524 continue;
6526 if (!min_ncand && !iv_ca_has_deps (ivs, new_cp))
6527 continue;
6529 if (!min_ncand && !cheaper_cost_pair (new_cp, old_cp))
6530 continue;
6532 *delta = iv_ca_delta_add (group, old_cp, new_cp, *delta);
6535 iv_ca_delta_commit (data, ivs, *delta, true);
6536 cost = iv_ca_cost (ivs);
6537 if (n_ivs)
6538 *n_ivs = iv_ca_n_cands (ivs);
6539 iv_ca_delta_commit (data, ivs, *delta, false);
6541 return cost;
6544 /* Try narrowing set IVS by removing CAND. Return the cost of
6545 the new set and store the differences in DELTA. START is
6546 the candidate with which we start narrowing. */
6548 static comp_cost
6549 iv_ca_narrow (struct ivopts_data *data, struct iv_ca *ivs,
6550 struct iv_cand *cand, struct iv_cand *start,
6551 struct iv_ca_delta **delta)
6553 unsigned i, ci;
6554 struct iv_group *group;
6555 struct cost_pair *old_cp, *new_cp, *cp;
6556 bitmap_iterator bi;
6557 struct iv_cand *cnd;
6558 comp_cost cost, best_cost, acost;
6560 *delta = NULL;
6561 for (i = 0; i < data->vgroups.length (); i++)
6563 group = data->vgroups[i];
6565 old_cp = iv_ca_cand_for_group (ivs, group);
6566 if (old_cp->cand != cand)
6567 continue;
6569 best_cost = iv_ca_cost (ivs);
6570 /* Start narrowing with START. */
6571 new_cp = get_group_iv_cost (data, group, start);
6573 if (data->consider_all_candidates)
6575 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, ci, bi)
6577 if (ci == cand->id || (start && ci == start->id))
6578 continue;
6580 cnd = data->vcands[ci];
6582 cp = get_group_iv_cost (data, group, cnd);
6583 if (!cp)
6584 continue;
6586 iv_ca_set_cp (data, ivs, group, cp);
6587 acost = iv_ca_cost (ivs);
6589 if (acost < best_cost)
6591 best_cost = acost;
6592 new_cp = cp;
6596 else
6598 EXECUTE_IF_AND_IN_BITMAP (group->related_cands, ivs->cands, 0, ci, bi)
6600 if (ci == cand->id || (start && ci == start->id))
6601 continue;
6603 cnd = data->vcands[ci];
6605 cp = get_group_iv_cost (data, group, cnd);
6606 if (!cp)
6607 continue;
6609 iv_ca_set_cp (data, ivs, group, cp);
6610 acost = iv_ca_cost (ivs);
6612 if (acost < best_cost)
6614 best_cost = acost;
6615 new_cp = cp;
6619 /* Restore to old cp for use. */
6620 iv_ca_set_cp (data, ivs, group, old_cp);
6622 if (!new_cp)
6624 iv_ca_delta_free (delta);
6625 return infinite_cost;
6628 *delta = iv_ca_delta_add (group, old_cp, new_cp, *delta);
6631 iv_ca_delta_commit (data, ivs, *delta, true);
6632 cost = iv_ca_cost (ivs);
6633 iv_ca_delta_commit (data, ivs, *delta, false);
6635 return cost;
6638 /* Try optimizing the set of candidates IVS by removing candidates different
6639 from to EXCEPT_CAND from it. Return cost of the new set, and store
6640 differences in DELTA. */
6642 static comp_cost
6643 iv_ca_prune (struct ivopts_data *data, struct iv_ca *ivs,
6644 struct iv_cand *except_cand, struct iv_ca_delta **delta)
6646 bitmap_iterator bi;
6647 struct iv_ca_delta *act_delta, *best_delta;
6648 unsigned i;
6649 comp_cost best_cost, acost;
6650 struct iv_cand *cand;
6652 best_delta = NULL;
6653 best_cost = iv_ca_cost (ivs);
6655 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
6657 cand = data->vcands[i];
6659 if (cand == except_cand)
6660 continue;
6662 acost = iv_ca_narrow (data, ivs, cand, except_cand, &act_delta);
6664 if (acost < best_cost)
6666 best_cost = acost;
6667 iv_ca_delta_free (&best_delta);
6668 best_delta = act_delta;
6670 else
6671 iv_ca_delta_free (&act_delta);
6674 if (!best_delta)
6676 *delta = NULL;
6677 return best_cost;
6680 /* Recurse to possibly remove other unnecessary ivs. */
6681 iv_ca_delta_commit (data, ivs, best_delta, true);
6682 best_cost = iv_ca_prune (data, ivs, except_cand, delta);
6683 iv_ca_delta_commit (data, ivs, best_delta, false);
6684 *delta = iv_ca_delta_join (best_delta, *delta);
6685 return best_cost;
6688 /* Check if CAND_IDX is a candidate other than OLD_CAND and has
6689 cheaper local cost for GROUP than BEST_CP. Return pointer to
6690 the corresponding cost_pair, otherwise just return BEST_CP. */
6692 static struct cost_pair*
6693 cheaper_cost_with_cand (struct ivopts_data *data, struct iv_group *group,
6694 unsigned int cand_idx, struct iv_cand *old_cand,
6695 struct cost_pair *best_cp)
6697 struct iv_cand *cand;
6698 struct cost_pair *cp;
6700 gcc_assert (old_cand != NULL && best_cp != NULL);
6701 if (cand_idx == old_cand->id)
6702 return best_cp;
6704 cand = data->vcands[cand_idx];
6705 cp = get_group_iv_cost (data, group, cand);
6706 if (cp != NULL && cheaper_cost_pair (cp, best_cp))
6707 return cp;
6709 return best_cp;
6712 /* Try breaking local optimal fixed-point for IVS by replacing candidates
6713 which are used by more than one iv uses. For each of those candidates,
6714 this function tries to represent iv uses under that candidate using
6715 other ones with lower local cost, then tries to prune the new set.
6716 If the new set has lower cost, It returns the new cost after recording
6717 candidate replacement in list DELTA. */
6719 static comp_cost
6720 iv_ca_replace (struct ivopts_data *data, struct iv_ca *ivs,
6721 struct iv_ca_delta **delta)
6723 bitmap_iterator bi, bj;
6724 unsigned int i, j, k;
6725 struct iv_cand *cand;
6726 comp_cost orig_cost, acost;
6727 struct iv_ca_delta *act_delta, *tmp_delta;
6728 struct cost_pair *old_cp, *best_cp = NULL;
6730 *delta = NULL;
6731 orig_cost = iv_ca_cost (ivs);
6733 EXECUTE_IF_SET_IN_BITMAP (ivs->cands, 0, i, bi)
6735 if (ivs->n_cand_uses[i] == 1
6736 || ivs->n_cand_uses[i] > ALWAYS_PRUNE_CAND_SET_BOUND)
6737 continue;
6739 cand = data->vcands[i];
6741 act_delta = NULL;
6742 /* Represent uses under current candidate using other ones with
6743 lower local cost. */
6744 for (j = 0; j < ivs->upto; j++)
6746 struct iv_group *group = data->vgroups[j];
6747 old_cp = iv_ca_cand_for_group (ivs, group);
6749 if (old_cp->cand != cand)
6750 continue;
6752 best_cp = old_cp;
6753 if (data->consider_all_candidates)
6754 for (k = 0; k < data->vcands.length (); k++)
6755 best_cp = cheaper_cost_with_cand (data, group, k,
6756 old_cp->cand, best_cp);
6757 else
6758 EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, k, bj)
6759 best_cp = cheaper_cost_with_cand (data, group, k,
6760 old_cp->cand, best_cp);
6762 if (best_cp == old_cp)
6763 continue;
6765 act_delta = iv_ca_delta_add (group, old_cp, best_cp, act_delta);
6767 /* No need for further prune. */
6768 if (!act_delta)
6769 continue;
6771 /* Prune the new candidate set. */
6772 iv_ca_delta_commit (data, ivs, act_delta, true);
6773 acost = iv_ca_prune (data, ivs, NULL, &tmp_delta);
6774 iv_ca_delta_commit (data, ivs, act_delta, false);
6775 act_delta = iv_ca_delta_join (act_delta, tmp_delta);
6777 if (acost < orig_cost)
6779 *delta = act_delta;
6780 return acost;
6782 else
6783 iv_ca_delta_free (&act_delta);
6786 return orig_cost;
6789 /* Tries to extend the sets IVS in the best possible way in order to
6790 express the GROUP. If ORIGINALP is true, prefer candidates from
6791 the original set of IVs, otherwise favor important candidates not
6792 based on any memory object. */
6794 static bool
6795 try_add_cand_for (struct ivopts_data *data, struct iv_ca *ivs,
6796 struct iv_group *group, bool originalp)
6798 comp_cost best_cost, act_cost;
6799 unsigned i;
6800 bitmap_iterator bi;
6801 struct iv_cand *cand;
6802 struct iv_ca_delta *best_delta = NULL, *act_delta;
6803 struct cost_pair *cp;
6805 iv_ca_add_group (data, ivs, group);
6806 best_cost = iv_ca_cost (ivs);
6807 cp = iv_ca_cand_for_group (ivs, group);
6808 if (cp)
6810 best_delta = iv_ca_delta_add (group, NULL, cp, NULL);
6811 iv_ca_set_no_cp (data, ivs, group);
6814 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
6815 first try important candidates not based on any memory object. Only if
6816 this fails, try the specific ones. Rationale -- in loops with many
6817 variables the best choice often is to use just one generic biv. If we
6818 added here many ivs specific to the uses, the optimization algorithm later
6819 would be likely to get stuck in a local minimum, thus causing us to create
6820 too many ivs. The approach from few ivs to more seems more likely to be
6821 successful -- starting from few ivs, replacing an expensive use by a
6822 specific iv should always be a win. */
6823 EXECUTE_IF_SET_IN_BITMAP (group->related_cands, 0, i, bi)
6825 cand = data->vcands[i];
6827 if (originalp && cand->pos !=IP_ORIGINAL)
6828 continue;
6830 if (!originalp && cand->iv->base_object != NULL_TREE)
6831 continue;
6833 if (iv_ca_cand_used_p (ivs, cand))
6834 continue;
6836 cp = get_group_iv_cost (data, group, cand);
6837 if (!cp)
6838 continue;
6840 iv_ca_set_cp (data, ivs, group, cp);
6841 act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL,
6842 true);
6843 iv_ca_set_no_cp (data, ivs, group);
6844 act_delta = iv_ca_delta_add (group, NULL, cp, act_delta);
6846 if (act_cost < best_cost)
6848 best_cost = act_cost;
6850 iv_ca_delta_free (&best_delta);
6851 best_delta = act_delta;
6853 else
6854 iv_ca_delta_free (&act_delta);
6857 if (best_cost.infinite_cost_p ())
6859 for (i = 0; i < group->n_map_members; i++)
6861 cp = group->cost_map + i;
6862 cand = cp->cand;
6863 if (!cand)
6864 continue;
6866 /* Already tried this. */
6867 if (cand->important)
6869 if (originalp && cand->pos == IP_ORIGINAL)
6870 continue;
6871 if (!originalp && cand->iv->base_object == NULL_TREE)
6872 continue;
6875 if (iv_ca_cand_used_p (ivs, cand))
6876 continue;
6878 act_delta = NULL;
6879 iv_ca_set_cp (data, ivs, group, cp);
6880 act_cost = iv_ca_extend (data, ivs, cand, &act_delta, NULL, true);
6881 iv_ca_set_no_cp (data, ivs, group);
6882 act_delta = iv_ca_delta_add (group,
6883 iv_ca_cand_for_group (ivs, group),
6884 cp, act_delta);
6886 if (act_cost < best_cost)
6888 best_cost = act_cost;
6890 if (best_delta)
6891 iv_ca_delta_free (&best_delta);
6892 best_delta = act_delta;
6894 else
6895 iv_ca_delta_free (&act_delta);
6899 iv_ca_delta_commit (data, ivs, best_delta, true);
6900 iv_ca_delta_free (&best_delta);
6902 return !best_cost.infinite_cost_p ();
6905 /* Finds an initial assignment of candidates to uses. */
6907 static struct iv_ca *
6908 get_initial_solution (struct ivopts_data *data, bool originalp)
6910 unsigned i;
6911 struct iv_ca *ivs = iv_ca_new (data);
6913 for (i = 0; i < data->vgroups.length (); i++)
6914 if (!try_add_cand_for (data, ivs, data->vgroups[i], originalp))
6916 iv_ca_free (&ivs);
6917 return NULL;
6920 return ivs;
6923 /* Tries to improve set of induction variables IVS. TRY_REPLACE_P
6924 points to a bool variable, this function tries to break local
6925 optimal fixed-point by replacing candidates in IVS if it's true. */
6927 static bool
6928 try_improve_iv_set (struct ivopts_data *data,
6929 struct iv_ca *ivs, bool *try_replace_p)
6931 unsigned i, n_ivs;
6932 comp_cost acost, best_cost = iv_ca_cost (ivs);
6933 struct iv_ca_delta *best_delta = NULL, *act_delta, *tmp_delta;
6934 struct iv_cand *cand;
6936 /* Try extending the set of induction variables by one. */
6937 for (i = 0; i < data->vcands.length (); i++)
6939 cand = data->vcands[i];
6941 if (iv_ca_cand_used_p (ivs, cand))
6942 continue;
6944 acost = iv_ca_extend (data, ivs, cand, &act_delta, &n_ivs, false);
6945 if (!act_delta)
6946 continue;
6948 /* If we successfully added the candidate and the set is small enough,
6949 try optimizing it by removing other candidates. */
6950 if (n_ivs <= ALWAYS_PRUNE_CAND_SET_BOUND)
6952 iv_ca_delta_commit (data, ivs, act_delta, true);
6953 acost = iv_ca_prune (data, ivs, cand, &tmp_delta);
6954 iv_ca_delta_commit (data, ivs, act_delta, false);
6955 act_delta = iv_ca_delta_join (act_delta, tmp_delta);
6958 if (acost < best_cost)
6960 best_cost = acost;
6961 iv_ca_delta_free (&best_delta);
6962 best_delta = act_delta;
6964 else
6965 iv_ca_delta_free (&act_delta);
6968 if (!best_delta)
6970 /* Try removing the candidates from the set instead. */
6971 best_cost = iv_ca_prune (data, ivs, NULL, &best_delta);
6973 if (!best_delta && *try_replace_p)
6975 *try_replace_p = false;
6976 /* So far candidate selecting algorithm tends to choose fewer IVs
6977 so that it can handle cases in which loops have many variables
6978 but the best choice is often to use only one general biv. One
6979 weakness is it can't handle opposite cases, in which different
6980 candidates should be chosen with respect to each use. To solve
6981 the problem, we replace candidates in a manner described by the
6982 comments of iv_ca_replace, thus give general algorithm a chance
6983 to break local optimal fixed-point in these cases. */
6984 best_cost = iv_ca_replace (data, ivs, &best_delta);
6987 if (!best_delta)
6988 return false;
6991 iv_ca_delta_commit (data, ivs, best_delta, true);
6992 gcc_assert (best_cost == iv_ca_cost (ivs));
6993 iv_ca_delta_free (&best_delta);
6994 return true;
6997 /* Attempts to find the optimal set of induction variables. We do simple
6998 greedy heuristic -- we try to replace at most one candidate in the selected
6999 solution and remove the unused ivs while this improves the cost. */
7001 static struct iv_ca *
7002 find_optimal_iv_set_1 (struct ivopts_data *data, bool originalp)
7004 struct iv_ca *set;
7005 bool try_replace_p = true;
7007 /* Get the initial solution. */
7008 set = get_initial_solution (data, originalp);
7009 if (!set)
7011 if (dump_file && (dump_flags & TDF_DETAILS))
7012 fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
7013 return NULL;
7016 if (dump_file && (dump_flags & TDF_DETAILS))
7018 fprintf (dump_file, "Initial set of candidates:\n");
7019 iv_ca_dump (data, dump_file, set);
7022 while (try_improve_iv_set (data, set, &try_replace_p))
7024 if (dump_file && (dump_flags & TDF_DETAILS))
7026 fprintf (dump_file, "Improved to:\n");
7027 iv_ca_dump (data, dump_file, set);
7031 return set;
7034 static struct iv_ca *
7035 find_optimal_iv_set (struct ivopts_data *data)
7037 unsigned i;
7038 comp_cost cost, origcost;
7039 struct iv_ca *set, *origset;
7041 /* Determine the cost based on a strategy that starts with original IVs,
7042 and try again using a strategy that prefers candidates not based
7043 on any IVs. */
7044 origset = find_optimal_iv_set_1 (data, true);
7045 set = find_optimal_iv_set_1 (data, false);
7047 if (!origset && !set)
7048 return NULL;
7050 origcost = origset ? iv_ca_cost (origset) : infinite_cost;
7051 cost = set ? iv_ca_cost (set) : infinite_cost;
7053 if (dump_file && (dump_flags & TDF_DETAILS))
7055 fprintf (dump_file, "Original cost %d (complexity %d)\n\n",
7056 origcost.cost, origcost.complexity);
7057 fprintf (dump_file, "Final cost %d (complexity %d)\n\n",
7058 cost.cost, cost.complexity);
7061 /* Choose the one with the best cost. */
7062 if (origcost <= cost)
7064 if (set)
7065 iv_ca_free (&set);
7066 set = origset;
7068 else if (origset)
7069 iv_ca_free (&origset);
7071 for (i = 0; i < data->vgroups.length (); i++)
7073 struct iv_group *group = data->vgroups[i];
7074 group->selected = iv_ca_cand_for_group (set, group)->cand;
7077 return set;
7080 /* Creates a new induction variable corresponding to CAND. */
7082 static void
7083 create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
7085 gimple_stmt_iterator incr_pos;
7086 tree base;
7087 struct iv_use *use;
7088 struct iv_group *group;
7089 bool after = false;
7091 if (!cand->iv)
7092 return;
7094 switch (cand->pos)
7096 case IP_NORMAL:
7097 incr_pos = gsi_last_bb (ip_normal_pos (data->current_loop));
7098 break;
7100 case IP_END:
7101 incr_pos = gsi_last_bb (ip_end_pos (data->current_loop));
7102 after = true;
7103 break;
7105 case IP_AFTER_USE:
7106 after = true;
7107 /* fall through */
7108 case IP_BEFORE_USE:
7109 incr_pos = gsi_for_stmt (cand->incremented_at);
7110 break;
7112 case IP_ORIGINAL:
7113 /* Mark that the iv is preserved. */
7114 name_info (data, cand->var_before)->preserve_biv = true;
7115 name_info (data, cand->var_after)->preserve_biv = true;
7117 /* Rewrite the increment so that it uses var_before directly. */
7118 use = find_interesting_uses_op (data, cand->var_after);
7119 group = data->vgroups[use->group_id];
7120 group->selected = cand;
7121 return;
7124 gimple_add_tmp_var (cand->var_before);
7126 base = unshare_expr (cand->iv->base);
7128 create_iv (base, unshare_expr (cand->iv->step),
7129 cand->var_before, data->current_loop,
7130 &incr_pos, after, &cand->var_before, &cand->var_after);
7133 /* Creates new induction variables described in SET. */
7135 static void
7136 create_new_ivs (struct ivopts_data *data, struct iv_ca *set)
7138 unsigned i;
7139 struct iv_cand *cand;
7140 bitmap_iterator bi;
7142 EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
7144 cand = data->vcands[i];
7145 create_new_iv (data, cand);
7148 if (dump_file && (dump_flags & TDF_DETAILS))
7150 fprintf (dump_file, "Selected IV set for loop %d",
7151 data->current_loop->num);
7152 if (data->loop_loc != UNKNOWN_LOCATION)
7153 fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc),
7154 LOCATION_LINE (data->loop_loc));
7155 fprintf (dump_file, ", " HOST_WIDE_INT_PRINT_DEC " avg niters",
7156 avg_loop_niter (data->current_loop));
7157 fprintf (dump_file, ", " HOST_WIDE_INT_PRINT_UNSIGNED " expressions",
7158 (unsigned HOST_WIDE_INT) set->used_inv_exprs->elements ());
7159 fprintf (dump_file, ", %lu IVs:\n", bitmap_count_bits (set->cands));
7160 EXECUTE_IF_SET_IN_BITMAP (set->cands, 0, i, bi)
7162 cand = data->vcands[i];
7163 dump_cand (dump_file, cand);
7165 fprintf (dump_file, "\n");
7169 /* Rewrites USE (definition of iv used in a nonlinear expression)
7170 using candidate CAND. */
7172 static void
7173 rewrite_use_nonlinear_expr (struct ivopts_data *data,
7174 struct iv_use *use, struct iv_cand *cand)
7176 tree comp;
7177 tree op, tgt;
7178 gassign *ass;
7179 gimple_stmt_iterator bsi;
7181 /* An important special case -- if we are asked to express value of
7182 the original iv by itself, just exit; there is no need to
7183 introduce a new computation (that might also need casting the
7184 variable to unsigned and back). */
7185 if (cand->pos == IP_ORIGINAL
7186 && cand->incremented_at == use->stmt)
7188 enum tree_code stmt_code;
7190 gcc_assert (is_gimple_assign (use->stmt));
7191 gcc_assert (gimple_assign_lhs (use->stmt) == cand->var_after);
7193 /* Check whether we may leave the computation unchanged.
7194 This is the case only if it does not rely on other
7195 computations in the loop -- otherwise, the computation
7196 we rely upon may be removed in remove_unused_ivs,
7197 thus leading to ICE. */
7198 stmt_code = gimple_assign_rhs_code (use->stmt);
7199 if (stmt_code == PLUS_EXPR
7200 || stmt_code == MINUS_EXPR
7201 || stmt_code == POINTER_PLUS_EXPR)
7203 if (gimple_assign_rhs1 (use->stmt) == cand->var_before)
7204 op = gimple_assign_rhs2 (use->stmt);
7205 else if (gimple_assign_rhs2 (use->stmt) == cand->var_before)
7206 op = gimple_assign_rhs1 (use->stmt);
7207 else
7208 op = NULL_TREE;
7210 else
7211 op = NULL_TREE;
7213 if (op && expr_invariant_in_loop_p (data->current_loop, op))
7214 return;
7217 comp = get_computation (data->current_loop, use, cand);
7218 gcc_assert (comp != NULL_TREE);
7220 switch (gimple_code (use->stmt))
7222 case GIMPLE_PHI:
7223 tgt = PHI_RESULT (use->stmt);
7225 /* If we should keep the biv, do not replace it. */
7226 if (name_info (data, tgt)->preserve_biv)
7227 return;
7229 bsi = gsi_after_labels (gimple_bb (use->stmt));
7230 break;
7232 case GIMPLE_ASSIGN:
7233 tgt = gimple_assign_lhs (use->stmt);
7234 bsi = gsi_for_stmt (use->stmt);
7235 break;
7237 default:
7238 gcc_unreachable ();
7241 if (!valid_gimple_rhs_p (comp)
7242 || (gimple_code (use->stmt) != GIMPLE_PHI
7243 /* We can't allow re-allocating the stmt as it might be pointed
7244 to still. */
7245 && (get_gimple_rhs_num_ops (TREE_CODE (comp))
7246 >= gimple_num_ops (gsi_stmt (bsi)))))
7248 comp = force_gimple_operand_gsi (&bsi, comp, true, NULL_TREE,
7249 true, GSI_SAME_STMT);
7250 if (POINTER_TYPE_P (TREE_TYPE (tgt)))
7252 duplicate_ssa_name_ptr_info (comp, SSA_NAME_PTR_INFO (tgt));
7253 /* As this isn't a plain copy we have to reset alignment
7254 information. */
7255 if (SSA_NAME_PTR_INFO (comp))
7256 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp));
7260 if (gimple_code (use->stmt) == GIMPLE_PHI)
7262 ass = gimple_build_assign (tgt, comp);
7263 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
7265 bsi = gsi_for_stmt (use->stmt);
7266 remove_phi_node (&bsi, false);
7268 else
7270 gimple_assign_set_rhs_from_tree (&bsi, comp);
7271 use->stmt = gsi_stmt (bsi);
7275 /* Performs a peephole optimization to reorder the iv update statement with
7276 a mem ref to enable instruction combining in later phases. The mem ref uses
7277 the iv value before the update, so the reordering transformation requires
7278 adjustment of the offset. CAND is the selected IV_CAND.
7280 Example:
7282 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
7283 iv2 = iv1 + 1;
7285 if (t < val) (1)
7286 goto L;
7287 goto Head;
7290 directly propagating t over to (1) will introduce overlapping live range
7291 thus increase register pressure. This peephole transform it into:
7294 iv2 = iv1 + 1;
7295 t = MEM_REF (base, iv2, 8, 8);
7296 if (t < val)
7297 goto L;
7298 goto Head;
7301 static void
7302 adjust_iv_update_pos (struct iv_cand *cand, struct iv_use *use)
7304 tree var_after;
7305 gimple *iv_update, *stmt;
7306 basic_block bb;
7307 gimple_stmt_iterator gsi, gsi_iv;
7309 if (cand->pos != IP_NORMAL)
7310 return;
7312 var_after = cand->var_after;
7313 iv_update = SSA_NAME_DEF_STMT (var_after);
7315 bb = gimple_bb (iv_update);
7316 gsi = gsi_last_nondebug_bb (bb);
7317 stmt = gsi_stmt (gsi);
7319 /* Only handle conditional statement for now. */
7320 if (gimple_code (stmt) != GIMPLE_COND)
7321 return;
7323 gsi_prev_nondebug (&gsi);
7324 stmt = gsi_stmt (gsi);
7325 if (stmt != iv_update)
7326 return;
7328 gsi_prev_nondebug (&gsi);
7329 if (gsi_end_p (gsi))
7330 return;
7332 stmt = gsi_stmt (gsi);
7333 if (gimple_code (stmt) != GIMPLE_ASSIGN)
7334 return;
7336 if (stmt != use->stmt)
7337 return;
7339 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
7340 return;
7342 if (dump_file && (dump_flags & TDF_DETAILS))
7344 fprintf (dump_file, "Reordering \n");
7345 print_gimple_stmt (dump_file, iv_update, 0, 0);
7346 print_gimple_stmt (dump_file, use->stmt, 0, 0);
7347 fprintf (dump_file, "\n");
7350 gsi = gsi_for_stmt (use->stmt);
7351 gsi_iv = gsi_for_stmt (iv_update);
7352 gsi_move_before (&gsi_iv, &gsi);
7354 cand->pos = IP_BEFORE_USE;
7355 cand->incremented_at = use->stmt;
7358 /* Rewrites USE (address that is an iv) using candidate CAND. */
7360 static void
7361 rewrite_use_address (struct ivopts_data *data,
7362 struct iv_use *use, struct iv_cand *cand)
7364 aff_tree aff;
7365 gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
7366 tree base_hint = NULL_TREE;
7367 tree ref, iv;
7368 bool ok;
7370 adjust_iv_update_pos (cand, use);
7371 ok = get_computation_aff (data->current_loop, use, cand, use->stmt, &aff);
7372 gcc_assert (ok);
7373 unshare_aff_combination (&aff);
7375 /* To avoid undefined overflow problems, all IV candidates use unsigned
7376 integer types. The drawback is that this makes it impossible for
7377 create_mem_ref to distinguish an IV that is based on a memory object
7378 from one that represents simply an offset.
7380 To work around this problem, we pass a hint to create_mem_ref that
7381 indicates which variable (if any) in aff is an IV based on a memory
7382 object. Note that we only consider the candidate. If this is not
7383 based on an object, the base of the reference is in some subexpression
7384 of the use -- but these will use pointer types, so they are recognized
7385 by the create_mem_ref heuristics anyway. */
7386 if (cand->iv->base_object)
7387 base_hint = var_at_stmt (data->current_loop, cand, use->stmt);
7389 iv = var_at_stmt (data->current_loop, cand, use->stmt);
7390 ref = create_mem_ref (&bsi, TREE_TYPE (*use->op_p), &aff,
7391 reference_alias_ptr_type (*use->op_p),
7392 iv, base_hint, data->speed);
7393 copy_ref_info (ref, *use->op_p);
7394 *use->op_p = ref;
7397 /* Rewrites USE (the condition such that one of the arguments is an iv) using
7398 candidate CAND. */
7400 static void
7401 rewrite_use_compare (struct ivopts_data *data,
7402 struct iv_use *use, struct iv_cand *cand)
7404 tree comp, *var_p, op, bound;
7405 gimple_stmt_iterator bsi = gsi_for_stmt (use->stmt);
7406 enum tree_code compare;
7407 struct iv_group *group = data->vgroups[use->group_id];
7408 struct cost_pair *cp = get_group_iv_cost (data, group, cand);
7409 bool ok;
7411 bound = cp->value;
7412 if (bound)
7414 tree var = var_at_stmt (data->current_loop, cand, use->stmt);
7415 tree var_type = TREE_TYPE (var);
7416 gimple_seq stmts;
7418 if (dump_file && (dump_flags & TDF_DETAILS))
7420 fprintf (dump_file, "Replacing exit test: ");
7421 print_gimple_stmt (dump_file, use->stmt, 0, TDF_SLIM);
7423 compare = cp->comp;
7424 bound = unshare_expr (fold_convert (var_type, bound));
7425 op = force_gimple_operand (bound, &stmts, true, NULL_TREE);
7426 if (stmts)
7427 gsi_insert_seq_on_edge_immediate (
7428 loop_preheader_edge (data->current_loop),
7429 stmts);
7431 gcond *cond_stmt = as_a <gcond *> (use->stmt);
7432 gimple_cond_set_lhs (cond_stmt, var);
7433 gimple_cond_set_code (cond_stmt, compare);
7434 gimple_cond_set_rhs (cond_stmt, op);
7435 return;
7438 /* The induction variable elimination failed; just express the original
7439 giv. */
7440 comp = get_computation (data->current_loop, use, cand);
7441 gcc_assert (comp != NULL_TREE);
7443 ok = extract_cond_operands (data, use->stmt, &var_p, NULL, NULL, NULL);
7444 gcc_assert (ok);
7446 *var_p = force_gimple_operand_gsi (&bsi, comp, true, SSA_NAME_VAR (*var_p),
7447 true, GSI_SAME_STMT);
7450 /* Rewrite the groups using the selected induction variables. */
7452 static void
7453 rewrite_groups (struct ivopts_data *data)
7455 unsigned i, j;
7457 for (i = 0; i < data->vgroups.length (); i++)
7459 struct iv_group *group = data->vgroups[i];
7460 struct iv_cand *cand = group->selected;
7462 gcc_assert (cand);
7464 if (group->type == USE_NONLINEAR_EXPR)
7466 for (j = 0; j < group->vuses.length (); j++)
7468 rewrite_use_nonlinear_expr (data, group->vuses[j], cand);
7469 update_stmt (group->vuses[j]->stmt);
7472 else if (group->type == USE_ADDRESS)
7474 for (j = 0; j < group->vuses.length (); j++)
7476 rewrite_use_address (data, group->vuses[j], cand);
7477 update_stmt (group->vuses[j]->stmt);
7480 else
7482 gcc_assert (group->type == USE_COMPARE);
7484 for (j = 0; j < group->vuses.length (); j++)
7486 rewrite_use_compare (data, group->vuses[j], cand);
7487 update_stmt (group->vuses[j]->stmt);
7493 /* Removes the ivs that are not used after rewriting. */
7495 static void
7496 remove_unused_ivs (struct ivopts_data *data)
7498 unsigned j;
7499 bitmap_iterator bi;
7500 bitmap toremove = BITMAP_ALLOC (NULL);
7502 /* Figure out an order in which to release SSA DEFs so that we don't
7503 release something that we'd have to propagate into a debug stmt
7504 afterwards. */
7505 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j, bi)
7507 struct version_info *info;
7509 info = ver_info (data, j);
7510 if (info->iv
7511 && !integer_zerop (info->iv->step)
7512 && !info->inv_id
7513 && !info->iv->nonlin_use
7514 && !info->preserve_biv)
7516 bitmap_set_bit (toremove, SSA_NAME_VERSION (info->iv->ssa_name));
7518 tree def = info->iv->ssa_name;
7520 if (MAY_HAVE_DEBUG_STMTS && SSA_NAME_DEF_STMT (def))
7522 imm_use_iterator imm_iter;
7523 use_operand_p use_p;
7524 gimple *stmt;
7525 int count = 0;
7527 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
7529 if (!gimple_debug_bind_p (stmt))
7530 continue;
7532 /* We just want to determine whether to do nothing
7533 (count == 0), to substitute the computed
7534 expression into a single use of the SSA DEF by
7535 itself (count == 1), or to use a debug temp
7536 because the SSA DEF is used multiple times or as
7537 part of a larger expression (count > 1). */
7538 count++;
7539 if (gimple_debug_bind_get_value (stmt) != def)
7540 count++;
7542 if (count > 1)
7543 BREAK_FROM_IMM_USE_STMT (imm_iter);
7546 if (!count)
7547 continue;
7549 struct iv_use dummy_use;
7550 struct iv_cand *best_cand = NULL, *cand;
7551 unsigned i, best_pref = 0, cand_pref;
7553 memset (&dummy_use, 0, sizeof (dummy_use));
7554 dummy_use.iv = info->iv;
7555 for (i = 0; i < data->vgroups.length () && i < 64; i++)
7557 cand = data->vgroups[i]->selected;
7558 if (cand == best_cand)
7559 continue;
7560 cand_pref = operand_equal_p (cand->iv->step,
7561 info->iv->step, 0)
7562 ? 4 : 0;
7563 cand_pref
7564 += TYPE_MODE (TREE_TYPE (cand->iv->base))
7565 == TYPE_MODE (TREE_TYPE (info->iv->base))
7566 ? 2 : 0;
7567 cand_pref
7568 += TREE_CODE (cand->iv->base) == INTEGER_CST
7569 ? 1 : 0;
7570 if (best_cand == NULL || best_pref < cand_pref)
7572 best_cand = cand;
7573 best_pref = cand_pref;
7577 if (!best_cand)
7578 continue;
7580 tree comp = get_computation_at (data->current_loop,
7581 &dummy_use, best_cand,
7582 SSA_NAME_DEF_STMT (def));
7583 if (!comp)
7584 continue;
7586 if (count > 1)
7588 tree vexpr = make_node (DEBUG_EXPR_DECL);
7589 DECL_ARTIFICIAL (vexpr) = 1;
7590 TREE_TYPE (vexpr) = TREE_TYPE (comp);
7591 if (SSA_NAME_VAR (def))
7592 SET_DECL_MODE (vexpr, DECL_MODE (SSA_NAME_VAR (def)));
7593 else
7594 SET_DECL_MODE (vexpr, TYPE_MODE (TREE_TYPE (vexpr)));
7595 gdebug *def_temp
7596 = gimple_build_debug_bind (vexpr, comp, NULL);
7597 gimple_stmt_iterator gsi;
7599 if (gimple_code (SSA_NAME_DEF_STMT (def)) == GIMPLE_PHI)
7600 gsi = gsi_after_labels (gimple_bb
7601 (SSA_NAME_DEF_STMT (def)));
7602 else
7603 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (def));
7605 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
7606 comp = vexpr;
7609 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, def)
7611 if (!gimple_debug_bind_p (stmt))
7612 continue;
7614 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
7615 SET_USE (use_p, comp);
7617 update_stmt (stmt);
7623 release_defs_bitset (toremove);
7625 BITMAP_FREE (toremove);
7628 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
7629 for hash_map::traverse. */
7631 bool
7632 free_tree_niter_desc (edge const &, tree_niter_desc *const &value, void *)
7634 free (value);
7635 return true;
7638 /* Frees data allocated by the optimization of a single loop. */
7640 static void
7641 free_loop_data (struct ivopts_data *data)
7643 unsigned i, j;
7644 bitmap_iterator bi;
7645 tree obj;
7647 if (data->niters)
7649 data->niters->traverse<void *, free_tree_niter_desc> (NULL);
7650 delete data->niters;
7651 data->niters = NULL;
7654 EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i, bi)
7656 struct version_info *info;
7658 info = ver_info (data, i);
7659 info->iv = NULL;
7660 info->has_nonlin_use = false;
7661 info->preserve_biv = false;
7662 info->inv_id = 0;
7664 bitmap_clear (data->relevant);
7665 bitmap_clear (data->important_candidates);
7667 for (i = 0; i < data->vgroups.length (); i++)
7669 struct iv_group *group = data->vgroups[i];
7671 for (j = 0; j < group->vuses.length (); j++)
7672 free (group->vuses[j]);
7673 group->vuses.release ();
7675 BITMAP_FREE (group->related_cands);
7676 for (j = 0; j < group->n_map_members; j++)
7677 if (group->cost_map[j].depends_on)
7678 BITMAP_FREE (group->cost_map[j].depends_on);
7680 free (group->cost_map);
7681 free (group);
7683 data->vgroups.truncate (0);
7685 for (i = 0; i < data->vcands.length (); i++)
7687 struct iv_cand *cand = data->vcands[i];
7689 if (cand->depends_on)
7690 BITMAP_FREE (cand->depends_on);
7691 free (cand);
7693 data->vcands.truncate (0);
7695 if (data->version_info_size < num_ssa_names)
7697 data->version_info_size = 2 * num_ssa_names;
7698 free (data->version_info);
7699 data->version_info = XCNEWVEC (struct version_info, data->version_info_size);
7702 data->max_inv_id = 0;
7704 FOR_EACH_VEC_ELT (decl_rtl_to_reset, i, obj)
7705 SET_DECL_RTL (obj, NULL_RTX);
7707 decl_rtl_to_reset.truncate (0);
7709 data->inv_expr_tab->empty ();
7710 data->max_inv_expr_id = 0;
7712 data->iv_common_cand_tab->empty ();
7713 data->iv_common_cands.truncate (0);
7716 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
7717 loop tree. */
7719 static void
7720 tree_ssa_iv_optimize_finalize (struct ivopts_data *data)
7722 free_loop_data (data);
7723 free (data->version_info);
7724 BITMAP_FREE (data->relevant);
7725 BITMAP_FREE (data->important_candidates);
7727 decl_rtl_to_reset.release ();
7728 data->vgroups.release ();
7729 data->vcands.release ();
7730 delete data->inv_expr_tab;
7731 data->inv_expr_tab = NULL;
7732 free_affine_expand_cache (&data->name_expansion_cache);
7733 delete data->iv_common_cand_tab;
7734 data->iv_common_cand_tab = NULL;
7735 data->iv_common_cands.release ();
7736 obstack_free (&data->iv_obstack, NULL);
7739 /* Returns true if the loop body BODY includes any function calls. */
7741 static bool
7742 loop_body_includes_call (basic_block *body, unsigned num_nodes)
7744 gimple_stmt_iterator gsi;
7745 unsigned i;
7747 for (i = 0; i < num_nodes; i++)
7748 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
7750 gimple *stmt = gsi_stmt (gsi);
7751 if (is_gimple_call (stmt)
7752 && !gimple_call_internal_p (stmt)
7753 && !is_inexpensive_builtin (gimple_call_fndecl (stmt)))
7754 return true;
7756 return false;
7759 /* Optimizes the LOOP. Returns true if anything changed. */
7761 static bool
7762 tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
7764 bool changed = false;
7765 struct iv_ca *iv_ca;
7766 edge exit = single_dom_exit (loop);
7767 basic_block *body;
7769 gcc_assert (!data->niters);
7770 data->current_loop = loop;
7771 data->loop_loc = find_loop_location (loop);
7772 data->speed = optimize_loop_for_speed_p (loop);
7774 if (dump_file && (dump_flags & TDF_DETAILS))
7776 fprintf (dump_file, "Processing loop %d", loop->num);
7777 if (data->loop_loc != UNKNOWN_LOCATION)
7778 fprintf (dump_file, " at %s:%d", LOCATION_FILE (data->loop_loc),
7779 LOCATION_LINE (data->loop_loc));
7780 fprintf (dump_file, "\n");
7782 if (exit)
7784 fprintf (dump_file, " single exit %d -> %d, exit condition ",
7785 exit->src->index, exit->dest->index);
7786 print_gimple_stmt (dump_file, last_stmt (exit->src), 0, TDF_SLIM);
7787 fprintf (dump_file, "\n");
7790 fprintf (dump_file, "\n");
7793 body = get_loop_body (loop);
7794 data->body_includes_call = loop_body_includes_call (body, loop->num_nodes);
7795 renumber_gimple_stmt_uids_in_blocks (body, loop->num_nodes);
7796 free (body);
7798 data->loop_single_exit_p = exit != NULL && loop_only_exit_p (loop, exit);
7800 /* For each ssa name determines whether it behaves as an induction variable
7801 in some loop. */
7802 if (!find_induction_variables (data))
7803 goto finish;
7805 /* Finds interesting uses (item 1). */
7806 find_interesting_uses (data);
7807 if (data->vgroups.length () > MAX_CONSIDERED_GROUPS)
7808 goto finish;
7810 /* Finds candidates for the induction variables (item 2). */
7811 find_iv_candidates (data);
7813 /* Calculates the costs (item 3, part 1). */
7814 determine_iv_costs (data);
7815 determine_group_iv_costs (data);
7816 determine_set_costs (data);
7818 /* Find the optimal set of induction variables (item 3, part 2). */
7819 iv_ca = find_optimal_iv_set (data);
7820 if (!iv_ca)
7821 goto finish;
7822 changed = true;
7824 /* Create the new induction variables (item 4, part 1). */
7825 create_new_ivs (data, iv_ca);
7826 iv_ca_free (&iv_ca);
7828 /* Rewrite the uses (item 4, part 2). */
7829 rewrite_groups (data);
7831 /* Remove the ivs that are unused after rewriting. */
7832 remove_unused_ivs (data);
7834 /* We have changed the structure of induction variables; it might happen
7835 that definitions in the scev database refer to some of them that were
7836 eliminated. */
7837 scev_reset ();
7839 finish:
7840 free_loop_data (data);
7842 return changed;
7845 /* Main entry point. Optimizes induction variables in loops. */
7847 void
7848 tree_ssa_iv_optimize (void)
7850 struct loop *loop;
7851 struct ivopts_data data;
7853 tree_ssa_iv_optimize_init (&data);
7855 /* Optimize the loops starting with the innermost ones. */
7856 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
7858 if (dump_file && (dump_flags & TDF_DETAILS))
7859 flow_loop_dump (loop, dump_file, NULL, 1);
7861 tree_ssa_iv_optimize_loop (&data, loop);
7864 tree_ssa_iv_optimize_finalize (&data);