* config/alpha/alpha.c (alpha_build_builtin_va_list): Pass location to
[official-gcc.git] / gcc / config / mips / mips.c
blob62753a3fea7dd888f4e66ebbee074f8051a6d57b
1 /* Subroutines used for MIPS code generation.
2 Copyright (C) 1989, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky, lich@inria.inria.fr.
6 Changes by Michael Meissner, meissner@osf.org.
7 64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
8 Brendan Eich, brendan@microunity.com.
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include <signal.h>
31 #include "rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "conditions.h"
37 #include "insn-attr.h"
38 #include "recog.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "tree.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "flags.h"
47 #include "reload.h"
48 #include "tm_p.h"
49 #include "ggc.h"
50 #include "gstab.h"
51 #include "hashtab.h"
52 #include "debug.h"
53 #include "target.h"
54 #include "target-def.h"
55 #include "integrate.h"
56 #include "langhooks.h"
57 #include "cfglayout.h"
58 #include "sched-int.h"
59 #include "gimple.h"
60 #include "bitmap.h"
61 #include "diagnostic.h"
63 /* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
64 #define UNSPEC_ADDRESS_P(X) \
65 (GET_CODE (X) == UNSPEC \
66 && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
67 && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
69 /* Extract the symbol or label from UNSPEC wrapper X. */
70 #define UNSPEC_ADDRESS(X) \
71 XVECEXP (X, 0, 0)
73 /* Extract the symbol type from UNSPEC wrapper X. */
74 #define UNSPEC_ADDRESS_TYPE(X) \
75 ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
77 /* The maximum distance between the top of the stack frame and the
78 value $sp has when we save and restore registers.
80 The value for normal-mode code must be a SMALL_OPERAND and must
81 preserve the maximum stack alignment. We therefore use a value
82 of 0x7ff0 in this case.
84 MIPS16e SAVE and RESTORE instructions can adjust the stack pointer by
85 up to 0x7f8 bytes and can usually save or restore all the registers
86 that we need to save or restore. (Note that we can only use these
87 instructions for o32, for which the stack alignment is 8 bytes.)
89 We use a maximum gap of 0x100 or 0x400 for MIPS16 code when SAVE and
90 RESTORE are not available. We can then use unextended instructions
91 to save and restore registers, and to allocate and deallocate the top
92 part of the frame. */
93 #define MIPS_MAX_FIRST_STACK_STEP \
94 (!TARGET_MIPS16 ? 0x7ff0 \
95 : GENERATE_MIPS16E_SAVE_RESTORE ? 0x7f8 \
96 : TARGET_64BIT ? 0x100 : 0x400)
98 /* True if INSN is a mips.md pattern or asm statement. */
99 #define USEFUL_INSN_P(INSN) \
100 (INSN_P (INSN) \
101 && GET_CODE (PATTERN (INSN)) != USE \
102 && GET_CODE (PATTERN (INSN)) != CLOBBER \
103 && GET_CODE (PATTERN (INSN)) != ADDR_VEC \
104 && GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC)
106 /* If INSN is a delayed branch sequence, return the first instruction
107 in the sequence, otherwise return INSN itself. */
108 #define SEQ_BEGIN(INSN) \
109 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
110 ? XVECEXP (PATTERN (INSN), 0, 0) \
111 : (INSN))
113 /* Likewise for the last instruction in a delayed branch sequence. */
114 #define SEQ_END(INSN) \
115 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
116 ? XVECEXP (PATTERN (INSN), 0, XVECLEN (PATTERN (INSN), 0) - 1) \
117 : (INSN))
119 /* Execute the following loop body with SUBINSN set to each instruction
120 between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive. */
121 #define FOR_EACH_SUBINSN(SUBINSN, INSN) \
122 for ((SUBINSN) = SEQ_BEGIN (INSN); \
123 (SUBINSN) != NEXT_INSN (SEQ_END (INSN)); \
124 (SUBINSN) = NEXT_INSN (SUBINSN))
126 /* True if bit BIT is set in VALUE. */
127 #define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)
129 /* Classifies an address.
131 ADDRESS_REG
132 A natural register + offset address. The register satisfies
133 mips_valid_base_register_p and the offset is a const_arith_operand.
135 ADDRESS_LO_SUM
136 A LO_SUM rtx. The first operand is a valid base register and
137 the second operand is a symbolic address.
139 ADDRESS_CONST_INT
140 A signed 16-bit constant address.
142 ADDRESS_SYMBOLIC:
143 A constant symbolic address. */
144 enum mips_address_type {
145 ADDRESS_REG,
146 ADDRESS_LO_SUM,
147 ADDRESS_CONST_INT,
148 ADDRESS_SYMBOLIC
151 /* Enumerates the setting of the -mr10k-cache-barrier option. */
152 enum mips_r10k_cache_barrier_setting {
153 R10K_CACHE_BARRIER_NONE,
154 R10K_CACHE_BARRIER_STORE,
155 R10K_CACHE_BARRIER_LOAD_STORE
158 /* Macros to create an enumeration identifier for a function prototype. */
159 #define MIPS_FTYPE_NAME1(A, B) MIPS_##A##_FTYPE_##B
160 #define MIPS_FTYPE_NAME2(A, B, C) MIPS_##A##_FTYPE_##B##_##C
161 #define MIPS_FTYPE_NAME3(A, B, C, D) MIPS_##A##_FTYPE_##B##_##C##_##D
162 #define MIPS_FTYPE_NAME4(A, B, C, D, E) MIPS_##A##_FTYPE_##B##_##C##_##D##_##E
164 /* Classifies the prototype of a built-in function. */
165 enum mips_function_type {
166 #define DEF_MIPS_FTYPE(NARGS, LIST) MIPS_FTYPE_NAME##NARGS LIST,
167 #include "config/mips/mips-ftypes.def"
168 #undef DEF_MIPS_FTYPE
169 MIPS_MAX_FTYPE_MAX
172 /* Specifies how a built-in function should be converted into rtl. */
173 enum mips_builtin_type {
174 /* The function corresponds directly to an .md pattern. The return
175 value is mapped to operand 0 and the arguments are mapped to
176 operands 1 and above. */
177 MIPS_BUILTIN_DIRECT,
179 /* The function corresponds directly to an .md pattern. There is no return
180 value and the arguments are mapped to operands 0 and above. */
181 MIPS_BUILTIN_DIRECT_NO_TARGET,
183 /* The function corresponds to a comparison instruction followed by
184 a mips_cond_move_tf_ps pattern. The first two arguments are the
185 values to compare and the second two arguments are the vector
186 operands for the movt.ps or movf.ps instruction (in assembly order). */
187 MIPS_BUILTIN_MOVF,
188 MIPS_BUILTIN_MOVT,
190 /* The function corresponds to a V2SF comparison instruction. Operand 0
191 of this instruction is the result of the comparison, which has mode
192 CCV2 or CCV4. The function arguments are mapped to operands 1 and
193 above. The function's return value is an SImode boolean that is
194 true under the following conditions:
196 MIPS_BUILTIN_CMP_ANY: one of the registers is true
197 MIPS_BUILTIN_CMP_ALL: all of the registers are true
198 MIPS_BUILTIN_CMP_LOWER: the first register is true
199 MIPS_BUILTIN_CMP_UPPER: the second register is true. */
200 MIPS_BUILTIN_CMP_ANY,
201 MIPS_BUILTIN_CMP_ALL,
202 MIPS_BUILTIN_CMP_UPPER,
203 MIPS_BUILTIN_CMP_LOWER,
205 /* As above, but the instruction only sets a single $fcc register. */
206 MIPS_BUILTIN_CMP_SINGLE,
208 /* For generating bposge32 branch instructions in MIPS32 DSP ASE. */
209 MIPS_BUILTIN_BPOSGE32
212 /* Invoke MACRO (COND) for each C.cond.fmt condition. */
213 #define MIPS_FP_CONDITIONS(MACRO) \
214 MACRO (f), \
215 MACRO (un), \
216 MACRO (eq), \
217 MACRO (ueq), \
218 MACRO (olt), \
219 MACRO (ult), \
220 MACRO (ole), \
221 MACRO (ule), \
222 MACRO (sf), \
223 MACRO (ngle), \
224 MACRO (seq), \
225 MACRO (ngl), \
226 MACRO (lt), \
227 MACRO (nge), \
228 MACRO (le), \
229 MACRO (ngt)
231 /* Enumerates the codes above as MIPS_FP_COND_<X>. */
232 #define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
233 enum mips_fp_condition {
234 MIPS_FP_CONDITIONS (DECLARE_MIPS_COND)
237 /* Index X provides the string representation of MIPS_FP_COND_<X>. */
238 #define STRINGIFY(X) #X
239 static const char *const mips_fp_conditions[] = {
240 MIPS_FP_CONDITIONS (STRINGIFY)
243 /* Information about a function's frame layout. */
244 struct GTY(()) mips_frame_info {
245 /* The size of the frame in bytes. */
246 HOST_WIDE_INT total_size;
248 /* The number of bytes allocated to variables. */
249 HOST_WIDE_INT var_size;
251 /* The number of bytes allocated to outgoing function arguments. */
252 HOST_WIDE_INT args_size;
254 /* The number of bytes allocated to the .cprestore slot, or 0 if there
255 is no such slot. */
256 HOST_WIDE_INT cprestore_size;
258 /* Bit X is set if the function saves or restores GPR X. */
259 unsigned int mask;
261 /* Likewise FPR X. */
262 unsigned int fmask;
264 /* Likewise doubleword accumulator X ($acX). */
265 unsigned int acc_mask;
267 /* The number of GPRs, FPRs, doubleword accumulators and COP0
268 registers saved. */
269 unsigned int num_gp;
270 unsigned int num_fp;
271 unsigned int num_acc;
272 unsigned int num_cop0_regs;
274 /* The offset of the topmost GPR, FPR, accumulator and COP0-register
275 save slots from the top of the frame, or zero if no such slots are
276 needed. */
277 HOST_WIDE_INT gp_save_offset;
278 HOST_WIDE_INT fp_save_offset;
279 HOST_WIDE_INT acc_save_offset;
280 HOST_WIDE_INT cop0_save_offset;
282 /* Likewise, but giving offsets from the bottom of the frame. */
283 HOST_WIDE_INT gp_sp_offset;
284 HOST_WIDE_INT fp_sp_offset;
285 HOST_WIDE_INT acc_sp_offset;
286 HOST_WIDE_INT cop0_sp_offset;
288 /* The offset of arg_pointer_rtx from the bottom of the frame. */
289 HOST_WIDE_INT arg_pointer_offset;
291 /* The offset of hard_frame_pointer_rtx from the bottom of the frame. */
292 HOST_WIDE_INT hard_frame_pointer_offset;
295 struct GTY(()) machine_function {
296 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
297 rtx mips16_gp_pseudo_rtx;
299 /* The number of extra stack bytes taken up by register varargs.
300 This area is allocated by the callee at the very top of the frame. */
301 int varargs_size;
303 /* The current frame information, calculated by mips_compute_frame_info. */
304 struct mips_frame_info frame;
306 /* The register to use as the function's global pointer, or INVALID_REGNUM
307 if the function doesn't need one. */
308 unsigned int global_pointer;
310 /* True if mips_adjust_insn_length should ignore an instruction's
311 hazard attribute. */
312 bool ignore_hazard_length_p;
314 /* True if the whole function is suitable for .set noreorder and
315 .set nomacro. */
316 bool all_noreorder_p;
318 /* True if the function is known to have an instruction that needs $gp. */
319 bool has_gp_insn_p;
321 /* True if we have emitted an instruction to initialize
322 mips16_gp_pseudo_rtx. */
323 bool initialized_mips16_gp_pseudo_p;
325 /* True if this is an interrupt handler. */
326 bool interrupt_handler_p;
328 /* True if this is an interrupt handler that uses shadow registers. */
329 bool use_shadow_register_set_p;
331 /* True if this is an interrupt handler that should keep interrupts
332 masked. */
333 bool keep_interrupts_masked_p;
335 /* True if this is an interrupt handler that should use DERET
336 instead of ERET. */
337 bool use_debug_exception_return_p;
340 /* Information about a single argument. */
341 struct mips_arg_info {
342 /* True if the argument is passed in a floating-point register, or
343 would have been if we hadn't run out of registers. */
344 bool fpr_p;
346 /* The number of words passed in registers, rounded up. */
347 unsigned int reg_words;
349 /* For EABI, the offset of the first register from GP_ARG_FIRST or
350 FP_ARG_FIRST. For other ABIs, the offset of the first register from
351 the start of the ABI's argument structure (see the CUMULATIVE_ARGS
352 comment for details).
354 The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
355 on the stack. */
356 unsigned int reg_offset;
358 /* The number of words that must be passed on the stack, rounded up. */
359 unsigned int stack_words;
361 /* The offset from the start of the stack overflow area of the argument's
362 first stack word. Only meaningful when STACK_WORDS is nonzero. */
363 unsigned int stack_offset;
366 /* Information about an address described by mips_address_type.
368 ADDRESS_CONST_INT
369 No fields are used.
371 ADDRESS_REG
372 REG is the base register and OFFSET is the constant offset.
374 ADDRESS_LO_SUM
375 REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE
376 is the type of symbol it references.
378 ADDRESS_SYMBOLIC
379 SYMBOL_TYPE is the type of symbol that the address references. */
380 struct mips_address_info {
381 enum mips_address_type type;
382 rtx reg;
383 rtx offset;
384 enum mips_symbol_type symbol_type;
387 /* One stage in a constant building sequence. These sequences have
388 the form:
390 A = VALUE[0]
391 A = A CODE[1] VALUE[1]
392 A = A CODE[2] VALUE[2]
395 where A is an accumulator, each CODE[i] is a binary rtl operation
396 and each VALUE[i] is a constant integer. CODE[0] is undefined. */
397 struct mips_integer_op {
398 enum rtx_code code;
399 unsigned HOST_WIDE_INT value;
402 /* The largest number of operations needed to load an integer constant.
403 The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
404 When the lowest bit is clear, we can try, but reject a sequence with
405 an extra SLL at the end. */
406 #define MIPS_MAX_INTEGER_OPS 7
408 /* Information about a MIPS16e SAVE or RESTORE instruction. */
409 struct mips16e_save_restore_info {
410 /* The number of argument registers saved by a SAVE instruction.
411 0 for RESTORE instructions. */
412 unsigned int nargs;
414 /* Bit X is set if the instruction saves or restores GPR X. */
415 unsigned int mask;
417 /* The total number of bytes to allocate. */
418 HOST_WIDE_INT size;
421 /* Global variables for machine-dependent things. */
423 /* The -G setting, or the configuration's default small-data limit if
424 no -G option is given. */
425 static unsigned int mips_small_data_threshold;
427 /* The number of file directives written by mips_output_filename. */
428 int num_source_filenames;
430 /* The name that appeared in the last .file directive written by
431 mips_output_filename, or "" if mips_output_filename hasn't
432 written anything yet. */
433 const char *current_function_file = "";
435 /* A label counter used by PUT_SDB_BLOCK_START and PUT_SDB_BLOCK_END. */
436 int sdb_label_count;
438 /* Arrays that map GCC register numbers to debugger register numbers. */
439 int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
440 int mips_dwarf_regno[FIRST_PSEUDO_REGISTER];
442 /* The nesting depth of the PRINT_OPERAND '%(', '%<' and '%[' constructs. */
443 int set_noreorder;
444 int set_nomacro;
445 static int set_noat;
447 /* True if we're writing out a branch-likely instruction rather than a
448 normal branch. */
449 static bool mips_branch_likely;
451 /* The current instruction-set architecture. */
452 enum processor_type mips_arch;
453 const struct mips_cpu_info *mips_arch_info;
455 /* The processor that we should tune the code for. */
456 enum processor_type mips_tune;
457 const struct mips_cpu_info *mips_tune_info;
459 /* The ISA level associated with mips_arch. */
460 int mips_isa;
462 /* The architecture selected by -mipsN, or null if -mipsN wasn't used. */
463 static const struct mips_cpu_info *mips_isa_option_info;
465 /* Which ABI to use. */
466 int mips_abi = MIPS_ABI_DEFAULT;
468 /* Which cost information to use. */
469 const struct mips_rtx_cost_data *mips_cost;
471 /* The ambient target flags, excluding MASK_MIPS16. */
472 static int mips_base_target_flags;
474 /* True if MIPS16 is the default mode. */
475 bool mips_base_mips16;
477 /* The ambient values of other global variables. */
478 static int mips_base_schedule_insns; /* flag_schedule_insns */
479 static int mips_base_reorder_blocks_and_partition; /* flag_reorder... */
480 static int mips_base_move_loop_invariants; /* flag_move_loop_invariants */
481 static int mips_base_align_loops; /* align_loops */
482 static int mips_base_align_jumps; /* align_jumps */
483 static int mips_base_align_functions; /* align_functions */
485 /* The -mcode-readable setting. */
486 enum mips_code_readable_setting mips_code_readable = CODE_READABLE_YES;
488 /* The -mr10k-cache-barrier setting. */
489 static enum mips_r10k_cache_barrier_setting mips_r10k_cache_barrier;
491 /* Index [M][R] is true if register R is allowed to hold a value of mode M. */
492 bool mips_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
494 /* Index C is true if character C is a valid PRINT_OPERAND punctation
495 character. */
496 bool mips_print_operand_punct[256];
498 static GTY (()) int mips_output_filename_first_time = 1;
500 /* mips_split_p[X] is true if symbols of type X can be split by
501 mips_split_symbol. */
502 bool mips_split_p[NUM_SYMBOL_TYPES];
504 /* mips_split_hi_p[X] is true if the high parts of symbols of type X
505 can be split by mips_split_symbol. */
506 bool mips_split_hi_p[NUM_SYMBOL_TYPES];
508 /* mips_lo_relocs[X] is the relocation to use when a symbol of type X
509 appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
510 if they are matched by a special .md file pattern. */
511 static const char *mips_lo_relocs[NUM_SYMBOL_TYPES];
513 /* Likewise for HIGHs. */
514 static const char *mips_hi_relocs[NUM_SYMBOL_TYPES];
516 /* Index R is the smallest register class that contains register R. */
517 const enum reg_class mips_regno_to_class[FIRST_PSEUDO_REGISTER] = {
518 LEA_REGS, LEA_REGS, M16_REGS, V1_REG,
519 M16_REGS, M16_REGS, M16_REGS, M16_REGS,
520 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
521 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
522 M16_REGS, M16_REGS, LEA_REGS, LEA_REGS,
523 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
524 T_REG, PIC_FN_ADDR_REG, LEA_REGS, LEA_REGS,
525 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
526 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
527 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
528 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
529 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
530 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
531 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
532 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
533 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
534 MD0_REG, MD1_REG, NO_REGS, ST_REGS,
535 ST_REGS, ST_REGS, ST_REGS, ST_REGS,
536 ST_REGS, ST_REGS, ST_REGS, NO_REGS,
537 NO_REGS, FRAME_REGS, FRAME_REGS, NO_REGS,
538 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
539 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
540 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
541 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
542 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
543 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
544 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
545 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
546 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
547 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
548 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
549 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
550 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
551 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
552 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
553 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
554 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
555 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
556 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
557 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
558 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
559 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
560 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
561 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
562 DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS,
563 DSP_ACC_REGS, DSP_ACC_REGS, ALL_REGS, ALL_REGS,
564 ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS
567 /* The value of TARGET_ATTRIBUTE_TABLE. */
568 static const struct attribute_spec mips_attribute_table[] = {
569 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
570 { "long_call", 0, 0, false, true, true, NULL },
571 { "far", 0, 0, false, true, true, NULL },
572 { "near", 0, 0, false, true, true, NULL },
573 /* We would really like to treat "mips16" and "nomips16" as type
574 attributes, but GCC doesn't provide the hooks we need to support
575 the right conversion rules. As declaration attributes, they affect
576 code generation but don't carry other semantics. */
577 { "mips16", 0, 0, true, false, false, NULL },
578 { "nomips16", 0, 0, true, false, false, NULL },
579 /* Allow functions to be specified as interrupt handlers */
580 { "interrupt", 0, 0, false, true, true, NULL },
581 { "use_shadow_register_set", 0, 0, false, true, true, NULL },
582 { "keep_interrupts_masked", 0, 0, false, true, true, NULL },
583 { "use_debug_exception_return", 0, 0, false, true, true, NULL },
584 { NULL, 0, 0, false, false, false, NULL }
587 /* A table describing all the processors GCC knows about. Names are
588 matched in the order listed. The first mention of an ISA level is
589 taken as the canonical name for that ISA.
591 To ease comparison, please keep this table in the same order
592 as GAS's mips_cpu_info_table. Please also make sure that
593 MIPS_ISA_LEVEL_SPEC and MIPS_ARCH_FLOAT_SPEC handle all -march
594 options correctly. */
595 static const struct mips_cpu_info mips_cpu_info_table[] = {
596 /* Entries for generic ISAs. */
597 { "mips1", PROCESSOR_R3000, 1, 0 },
598 { "mips2", PROCESSOR_R6000, 2, 0 },
599 { "mips3", PROCESSOR_R4000, 3, 0 },
600 { "mips4", PROCESSOR_R8000, 4, 0 },
601 /* Prefer not to use branch-likely instructions for generic MIPS32rX
602 and MIPS64rX code. The instructions were officially deprecated
603 in revisions 2 and earlier, but revision 3 is likely to downgrade
604 that to a recommendation to avoid the instructions in code that
605 isn't tuned to a specific processor. */
606 { "mips32", PROCESSOR_4KC, 32, PTF_AVOID_BRANCHLIKELY },
607 { "mips32r2", PROCESSOR_M4K, 33, PTF_AVOID_BRANCHLIKELY },
608 { "mips64", PROCESSOR_5KC, 64, PTF_AVOID_BRANCHLIKELY },
609 /* ??? For now just tune the generic MIPS64r2 for 5KC as well. */
610 { "mips64r2", PROCESSOR_5KC, 65, PTF_AVOID_BRANCHLIKELY },
612 /* MIPS I processors. */
613 { "r3000", PROCESSOR_R3000, 1, 0 },
614 { "r2000", PROCESSOR_R3000, 1, 0 },
615 { "r3900", PROCESSOR_R3900, 1, 0 },
617 /* MIPS II processors. */
618 { "r6000", PROCESSOR_R6000, 2, 0 },
620 /* MIPS III processors. */
621 { "r4000", PROCESSOR_R4000, 3, 0 },
622 { "vr4100", PROCESSOR_R4100, 3, 0 },
623 { "vr4111", PROCESSOR_R4111, 3, 0 },
624 { "vr4120", PROCESSOR_R4120, 3, 0 },
625 { "vr4130", PROCESSOR_R4130, 3, 0 },
626 { "vr4300", PROCESSOR_R4300, 3, 0 },
627 { "r4400", PROCESSOR_R4000, 3, 0 },
628 { "r4600", PROCESSOR_R4600, 3, 0 },
629 { "orion", PROCESSOR_R4600, 3, 0 },
630 { "r4650", PROCESSOR_R4650, 3, 0 },
631 /* ST Loongson 2E/2F processors. */
632 { "loongson2e", PROCESSOR_LOONGSON_2E, 3, PTF_AVOID_BRANCHLIKELY },
633 { "loongson2f", PROCESSOR_LOONGSON_2F, 3, PTF_AVOID_BRANCHLIKELY },
635 /* MIPS IV processors. */
636 { "r8000", PROCESSOR_R8000, 4, 0 },
637 { "r10000", PROCESSOR_R10000, 4, 0 },
638 { "r12000", PROCESSOR_R10000, 4, 0 },
639 { "r14000", PROCESSOR_R10000, 4, 0 },
640 { "r16000", PROCESSOR_R10000, 4, 0 },
641 { "vr5000", PROCESSOR_R5000, 4, 0 },
642 { "vr5400", PROCESSOR_R5400, 4, 0 },
643 { "vr5500", PROCESSOR_R5500, 4, PTF_AVOID_BRANCHLIKELY },
644 { "rm7000", PROCESSOR_R7000, 4, 0 },
645 { "rm9000", PROCESSOR_R9000, 4, 0 },
647 /* MIPS32 processors. */
648 { "4kc", PROCESSOR_4KC, 32, 0 },
649 { "4km", PROCESSOR_4KC, 32, 0 },
650 { "4kp", PROCESSOR_4KP, 32, 0 },
651 { "4ksc", PROCESSOR_4KC, 32, 0 },
653 /* MIPS32 Release 2 processors. */
654 { "m4k", PROCESSOR_M4K, 33, 0 },
655 { "4kec", PROCESSOR_4KC, 33, 0 },
656 { "4kem", PROCESSOR_4KC, 33, 0 },
657 { "4kep", PROCESSOR_4KP, 33, 0 },
658 { "4ksd", PROCESSOR_4KC, 33, 0 },
660 { "24kc", PROCESSOR_24KC, 33, 0 },
661 { "24kf2_1", PROCESSOR_24KF2_1, 33, 0 },
662 { "24kf", PROCESSOR_24KF2_1, 33, 0 },
663 { "24kf1_1", PROCESSOR_24KF1_1, 33, 0 },
664 { "24kfx", PROCESSOR_24KF1_1, 33, 0 },
665 { "24kx", PROCESSOR_24KF1_1, 33, 0 },
667 { "24kec", PROCESSOR_24KC, 33, 0 }, /* 24K with DSP. */
668 { "24kef2_1", PROCESSOR_24KF2_1, 33, 0 },
669 { "24kef", PROCESSOR_24KF2_1, 33, 0 },
670 { "24kef1_1", PROCESSOR_24KF1_1, 33, 0 },
671 { "24kefx", PROCESSOR_24KF1_1, 33, 0 },
672 { "24kex", PROCESSOR_24KF1_1, 33, 0 },
674 { "34kc", PROCESSOR_24KC, 33, 0 }, /* 34K with MT/DSP. */
675 { "34kf2_1", PROCESSOR_24KF2_1, 33, 0 },
676 { "34kf", PROCESSOR_24KF2_1, 33, 0 },
677 { "34kf1_1", PROCESSOR_24KF1_1, 33, 0 },
678 { "34kfx", PROCESSOR_24KF1_1, 33, 0 },
679 { "34kx", PROCESSOR_24KF1_1, 33, 0 },
681 { "74kc", PROCESSOR_74KC, 33, 0 }, /* 74K with DSPr2. */
682 { "74kf2_1", PROCESSOR_74KF2_1, 33, 0 },
683 { "74kf", PROCESSOR_74KF2_1, 33, 0 },
684 { "74kf1_1", PROCESSOR_74KF1_1, 33, 0 },
685 { "74kfx", PROCESSOR_74KF1_1, 33, 0 },
686 { "74kx", PROCESSOR_74KF1_1, 33, 0 },
687 { "74kf3_2", PROCESSOR_74KF3_2, 33, 0 },
689 /* MIPS64 processors. */
690 { "5kc", PROCESSOR_5KC, 64, 0 },
691 { "5kf", PROCESSOR_5KF, 64, 0 },
692 { "20kc", PROCESSOR_20KC, 64, PTF_AVOID_BRANCHLIKELY },
693 { "sb1", PROCESSOR_SB1, 64, PTF_AVOID_BRANCHLIKELY },
694 { "sb1a", PROCESSOR_SB1A, 64, PTF_AVOID_BRANCHLIKELY },
695 { "sr71000", PROCESSOR_SR71000, 64, PTF_AVOID_BRANCHLIKELY },
696 { "xlr", PROCESSOR_XLR, 64, 0 },
698 /* MIPS64 Release 2 processors. */
699 { "octeon", PROCESSOR_OCTEON, 65, PTF_AVOID_BRANCHLIKELY }
702 /* Default costs. If these are used for a processor we should look
703 up the actual costs. */
704 #define DEFAULT_COSTS COSTS_N_INSNS (6), /* fp_add */ \
705 COSTS_N_INSNS (7), /* fp_mult_sf */ \
706 COSTS_N_INSNS (8), /* fp_mult_df */ \
707 COSTS_N_INSNS (23), /* fp_div_sf */ \
708 COSTS_N_INSNS (36), /* fp_div_df */ \
709 COSTS_N_INSNS (10), /* int_mult_si */ \
710 COSTS_N_INSNS (10), /* int_mult_di */ \
711 COSTS_N_INSNS (69), /* int_div_si */ \
712 COSTS_N_INSNS (69), /* int_div_di */ \
713 2, /* branch_cost */ \
714 4 /* memory_latency */
716 /* Floating-point costs for processors without an FPU. Just assume that
717 all floating-point libcalls are very expensive. */
718 #define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */ \
719 COSTS_N_INSNS (256), /* fp_mult_sf */ \
720 COSTS_N_INSNS (256), /* fp_mult_df */ \
721 COSTS_N_INSNS (256), /* fp_div_sf */ \
722 COSTS_N_INSNS (256) /* fp_div_df */
724 /* Costs to use when optimizing for size. */
725 static const struct mips_rtx_cost_data mips_rtx_cost_optimize_size = {
726 COSTS_N_INSNS (1), /* fp_add */
727 COSTS_N_INSNS (1), /* fp_mult_sf */
728 COSTS_N_INSNS (1), /* fp_mult_df */
729 COSTS_N_INSNS (1), /* fp_div_sf */
730 COSTS_N_INSNS (1), /* fp_div_df */
731 COSTS_N_INSNS (1), /* int_mult_si */
732 COSTS_N_INSNS (1), /* int_mult_di */
733 COSTS_N_INSNS (1), /* int_div_si */
734 COSTS_N_INSNS (1), /* int_div_di */
735 2, /* branch_cost */
736 4 /* memory_latency */
739 /* Costs to use when optimizing for speed, indexed by processor. */
740 static const struct mips_rtx_cost_data mips_rtx_cost_data[PROCESSOR_MAX] = {
741 { /* R3000 */
742 COSTS_N_INSNS (2), /* fp_add */
743 COSTS_N_INSNS (4), /* fp_mult_sf */
744 COSTS_N_INSNS (5), /* fp_mult_df */
745 COSTS_N_INSNS (12), /* fp_div_sf */
746 COSTS_N_INSNS (19), /* fp_div_df */
747 COSTS_N_INSNS (12), /* int_mult_si */
748 COSTS_N_INSNS (12), /* int_mult_di */
749 COSTS_N_INSNS (35), /* int_div_si */
750 COSTS_N_INSNS (35), /* int_div_di */
751 1, /* branch_cost */
752 4 /* memory_latency */
754 { /* 4KC */
755 SOFT_FP_COSTS,
756 COSTS_N_INSNS (6), /* int_mult_si */
757 COSTS_N_INSNS (6), /* int_mult_di */
758 COSTS_N_INSNS (36), /* int_div_si */
759 COSTS_N_INSNS (36), /* int_div_di */
760 1, /* branch_cost */
761 4 /* memory_latency */
763 { /* 4KP */
764 SOFT_FP_COSTS,
765 COSTS_N_INSNS (36), /* int_mult_si */
766 COSTS_N_INSNS (36), /* int_mult_di */
767 COSTS_N_INSNS (37), /* int_div_si */
768 COSTS_N_INSNS (37), /* int_div_di */
769 1, /* branch_cost */
770 4 /* memory_latency */
772 { /* 5KC */
773 SOFT_FP_COSTS,
774 COSTS_N_INSNS (4), /* int_mult_si */
775 COSTS_N_INSNS (11), /* int_mult_di */
776 COSTS_N_INSNS (36), /* int_div_si */
777 COSTS_N_INSNS (68), /* int_div_di */
778 1, /* branch_cost */
779 4 /* memory_latency */
781 { /* 5KF */
782 COSTS_N_INSNS (4), /* fp_add */
783 COSTS_N_INSNS (4), /* fp_mult_sf */
784 COSTS_N_INSNS (5), /* fp_mult_df */
785 COSTS_N_INSNS (17), /* fp_div_sf */
786 COSTS_N_INSNS (32), /* fp_div_df */
787 COSTS_N_INSNS (4), /* int_mult_si */
788 COSTS_N_INSNS (11), /* int_mult_di */
789 COSTS_N_INSNS (36), /* int_div_si */
790 COSTS_N_INSNS (68), /* int_div_di */
791 1, /* branch_cost */
792 4 /* memory_latency */
794 { /* 20KC */
795 COSTS_N_INSNS (4), /* fp_add */
796 COSTS_N_INSNS (4), /* fp_mult_sf */
797 COSTS_N_INSNS (5), /* fp_mult_df */
798 COSTS_N_INSNS (17), /* fp_div_sf */
799 COSTS_N_INSNS (32), /* fp_div_df */
800 COSTS_N_INSNS (4), /* int_mult_si */
801 COSTS_N_INSNS (7), /* int_mult_di */
802 COSTS_N_INSNS (42), /* int_div_si */
803 COSTS_N_INSNS (72), /* int_div_di */
804 1, /* branch_cost */
805 4 /* memory_latency */
807 { /* 24KC */
808 SOFT_FP_COSTS,
809 COSTS_N_INSNS (5), /* int_mult_si */
810 COSTS_N_INSNS (5), /* int_mult_di */
811 COSTS_N_INSNS (41), /* int_div_si */
812 COSTS_N_INSNS (41), /* int_div_di */
813 1, /* branch_cost */
814 4 /* memory_latency */
816 { /* 24KF2_1 */
817 COSTS_N_INSNS (8), /* fp_add */
818 COSTS_N_INSNS (8), /* fp_mult_sf */
819 COSTS_N_INSNS (10), /* fp_mult_df */
820 COSTS_N_INSNS (34), /* fp_div_sf */
821 COSTS_N_INSNS (64), /* fp_div_df */
822 COSTS_N_INSNS (5), /* int_mult_si */
823 COSTS_N_INSNS (5), /* int_mult_di */
824 COSTS_N_INSNS (41), /* int_div_si */
825 COSTS_N_INSNS (41), /* int_div_di */
826 1, /* branch_cost */
827 4 /* memory_latency */
829 { /* 24KF1_1 */
830 COSTS_N_INSNS (4), /* fp_add */
831 COSTS_N_INSNS (4), /* fp_mult_sf */
832 COSTS_N_INSNS (5), /* fp_mult_df */
833 COSTS_N_INSNS (17), /* fp_div_sf */
834 COSTS_N_INSNS (32), /* fp_div_df */
835 COSTS_N_INSNS (5), /* int_mult_si */
836 COSTS_N_INSNS (5), /* int_mult_di */
837 COSTS_N_INSNS (41), /* int_div_si */
838 COSTS_N_INSNS (41), /* int_div_di */
839 1, /* branch_cost */
840 4 /* memory_latency */
842 { /* 74KC */
843 SOFT_FP_COSTS,
844 COSTS_N_INSNS (5), /* int_mult_si */
845 COSTS_N_INSNS (5), /* int_mult_di */
846 COSTS_N_INSNS (41), /* int_div_si */
847 COSTS_N_INSNS (41), /* int_div_di */
848 1, /* branch_cost */
849 4 /* memory_latency */
851 { /* 74KF2_1 */
852 COSTS_N_INSNS (8), /* fp_add */
853 COSTS_N_INSNS (8), /* fp_mult_sf */
854 COSTS_N_INSNS (10), /* fp_mult_df */
855 COSTS_N_INSNS (34), /* fp_div_sf */
856 COSTS_N_INSNS (64), /* fp_div_df */
857 COSTS_N_INSNS (5), /* int_mult_si */
858 COSTS_N_INSNS (5), /* int_mult_di */
859 COSTS_N_INSNS (41), /* int_div_si */
860 COSTS_N_INSNS (41), /* int_div_di */
861 1, /* branch_cost */
862 4 /* memory_latency */
864 { /* 74KF1_1 */
865 COSTS_N_INSNS (4), /* fp_add */
866 COSTS_N_INSNS (4), /* fp_mult_sf */
867 COSTS_N_INSNS (5), /* fp_mult_df */
868 COSTS_N_INSNS (17), /* fp_div_sf */
869 COSTS_N_INSNS (32), /* fp_div_df */
870 COSTS_N_INSNS (5), /* int_mult_si */
871 COSTS_N_INSNS (5), /* int_mult_di */
872 COSTS_N_INSNS (41), /* int_div_si */
873 COSTS_N_INSNS (41), /* int_div_di */
874 1, /* branch_cost */
875 4 /* memory_latency */
877 { /* 74KF3_2 */
878 COSTS_N_INSNS (6), /* fp_add */
879 COSTS_N_INSNS (6), /* fp_mult_sf */
880 COSTS_N_INSNS (7), /* fp_mult_df */
881 COSTS_N_INSNS (25), /* fp_div_sf */
882 COSTS_N_INSNS (48), /* fp_div_df */
883 COSTS_N_INSNS (5), /* int_mult_si */
884 COSTS_N_INSNS (5), /* int_mult_di */
885 COSTS_N_INSNS (41), /* int_div_si */
886 COSTS_N_INSNS (41), /* int_div_di */
887 1, /* branch_cost */
888 4 /* memory_latency */
890 { /* Loongson-2E */
891 DEFAULT_COSTS
893 { /* Loongson-2F */
894 DEFAULT_COSTS
896 { /* M4k */
897 DEFAULT_COSTS
899 /* Octeon */
901 SOFT_FP_COSTS,
902 COSTS_N_INSNS (5), /* int_mult_si */
903 COSTS_N_INSNS (5), /* int_mult_di */
904 COSTS_N_INSNS (72), /* int_div_si */
905 COSTS_N_INSNS (72), /* int_div_di */
906 1, /* branch_cost */
907 4 /* memory_latency */
909 { /* R3900 */
910 COSTS_N_INSNS (2), /* fp_add */
911 COSTS_N_INSNS (4), /* fp_mult_sf */
912 COSTS_N_INSNS (5), /* fp_mult_df */
913 COSTS_N_INSNS (12), /* fp_div_sf */
914 COSTS_N_INSNS (19), /* fp_div_df */
915 COSTS_N_INSNS (2), /* int_mult_si */
916 COSTS_N_INSNS (2), /* int_mult_di */
917 COSTS_N_INSNS (35), /* int_div_si */
918 COSTS_N_INSNS (35), /* int_div_di */
919 1, /* branch_cost */
920 4 /* memory_latency */
922 { /* R6000 */
923 COSTS_N_INSNS (3), /* fp_add */
924 COSTS_N_INSNS (5), /* fp_mult_sf */
925 COSTS_N_INSNS (6), /* fp_mult_df */
926 COSTS_N_INSNS (15), /* fp_div_sf */
927 COSTS_N_INSNS (16), /* fp_div_df */
928 COSTS_N_INSNS (17), /* int_mult_si */
929 COSTS_N_INSNS (17), /* int_mult_di */
930 COSTS_N_INSNS (38), /* int_div_si */
931 COSTS_N_INSNS (38), /* int_div_di */
932 2, /* branch_cost */
933 6 /* memory_latency */
935 { /* R4000 */
936 COSTS_N_INSNS (6), /* fp_add */
937 COSTS_N_INSNS (7), /* fp_mult_sf */
938 COSTS_N_INSNS (8), /* fp_mult_df */
939 COSTS_N_INSNS (23), /* fp_div_sf */
940 COSTS_N_INSNS (36), /* fp_div_df */
941 COSTS_N_INSNS (10), /* int_mult_si */
942 COSTS_N_INSNS (10), /* int_mult_di */
943 COSTS_N_INSNS (69), /* int_div_si */
944 COSTS_N_INSNS (69), /* int_div_di */
945 2, /* branch_cost */
946 6 /* memory_latency */
948 { /* R4100 */
949 DEFAULT_COSTS
951 { /* R4111 */
952 DEFAULT_COSTS
954 { /* R4120 */
955 DEFAULT_COSTS
957 { /* R4130 */
958 /* The only costs that appear to be updated here are
959 integer multiplication. */
960 SOFT_FP_COSTS,
961 COSTS_N_INSNS (4), /* int_mult_si */
962 COSTS_N_INSNS (6), /* int_mult_di */
963 COSTS_N_INSNS (69), /* int_div_si */
964 COSTS_N_INSNS (69), /* int_div_di */
965 1, /* branch_cost */
966 4 /* memory_latency */
968 { /* R4300 */
969 DEFAULT_COSTS
971 { /* R4600 */
972 DEFAULT_COSTS
974 { /* R4650 */
975 DEFAULT_COSTS
977 { /* R5000 */
978 COSTS_N_INSNS (6), /* fp_add */
979 COSTS_N_INSNS (4), /* fp_mult_sf */
980 COSTS_N_INSNS (5), /* fp_mult_df */
981 COSTS_N_INSNS (23), /* fp_div_sf */
982 COSTS_N_INSNS (36), /* fp_div_df */
983 COSTS_N_INSNS (5), /* int_mult_si */
984 COSTS_N_INSNS (5), /* int_mult_di */
985 COSTS_N_INSNS (36), /* int_div_si */
986 COSTS_N_INSNS (36), /* int_div_di */
987 1, /* branch_cost */
988 4 /* memory_latency */
990 { /* R5400 */
991 COSTS_N_INSNS (6), /* fp_add */
992 COSTS_N_INSNS (5), /* fp_mult_sf */
993 COSTS_N_INSNS (6), /* fp_mult_df */
994 COSTS_N_INSNS (30), /* fp_div_sf */
995 COSTS_N_INSNS (59), /* fp_div_df */
996 COSTS_N_INSNS (3), /* int_mult_si */
997 COSTS_N_INSNS (4), /* int_mult_di */
998 COSTS_N_INSNS (42), /* int_div_si */
999 COSTS_N_INSNS (74), /* int_div_di */
1000 1, /* branch_cost */
1001 4 /* memory_latency */
1003 { /* R5500 */
1004 COSTS_N_INSNS (6), /* fp_add */
1005 COSTS_N_INSNS (5), /* fp_mult_sf */
1006 COSTS_N_INSNS (6), /* fp_mult_df */
1007 COSTS_N_INSNS (30), /* fp_div_sf */
1008 COSTS_N_INSNS (59), /* fp_div_df */
1009 COSTS_N_INSNS (5), /* int_mult_si */
1010 COSTS_N_INSNS (9), /* int_mult_di */
1011 COSTS_N_INSNS (42), /* int_div_si */
1012 COSTS_N_INSNS (74), /* int_div_di */
1013 1, /* branch_cost */
1014 4 /* memory_latency */
1016 { /* R7000 */
1017 /* The only costs that are changed here are
1018 integer multiplication. */
1019 COSTS_N_INSNS (6), /* fp_add */
1020 COSTS_N_INSNS (7), /* fp_mult_sf */
1021 COSTS_N_INSNS (8), /* fp_mult_df */
1022 COSTS_N_INSNS (23), /* fp_div_sf */
1023 COSTS_N_INSNS (36), /* fp_div_df */
1024 COSTS_N_INSNS (5), /* int_mult_si */
1025 COSTS_N_INSNS (9), /* int_mult_di */
1026 COSTS_N_INSNS (69), /* int_div_si */
1027 COSTS_N_INSNS (69), /* int_div_di */
1028 1, /* branch_cost */
1029 4 /* memory_latency */
1031 { /* R8000 */
1032 DEFAULT_COSTS
1034 { /* R9000 */
1035 /* The only costs that are changed here are
1036 integer multiplication. */
1037 COSTS_N_INSNS (6), /* fp_add */
1038 COSTS_N_INSNS (7), /* fp_mult_sf */
1039 COSTS_N_INSNS (8), /* fp_mult_df */
1040 COSTS_N_INSNS (23), /* fp_div_sf */
1041 COSTS_N_INSNS (36), /* fp_div_df */
1042 COSTS_N_INSNS (3), /* int_mult_si */
1043 COSTS_N_INSNS (8), /* int_mult_di */
1044 COSTS_N_INSNS (69), /* int_div_si */
1045 COSTS_N_INSNS (69), /* int_div_di */
1046 1, /* branch_cost */
1047 4 /* memory_latency */
1049 { /* R1x000 */
1050 COSTS_N_INSNS (2), /* fp_add */
1051 COSTS_N_INSNS (2), /* fp_mult_sf */
1052 COSTS_N_INSNS (2), /* fp_mult_df */
1053 COSTS_N_INSNS (12), /* fp_div_sf */
1054 COSTS_N_INSNS (19), /* fp_div_df */
1055 COSTS_N_INSNS (5), /* int_mult_si */
1056 COSTS_N_INSNS (9), /* int_mult_di */
1057 COSTS_N_INSNS (34), /* int_div_si */
1058 COSTS_N_INSNS (66), /* int_div_di */
1059 1, /* branch_cost */
1060 4 /* memory_latency */
1062 { /* SB1 */
1063 /* These costs are the same as the SB-1A below. */
1064 COSTS_N_INSNS (4), /* fp_add */
1065 COSTS_N_INSNS (4), /* fp_mult_sf */
1066 COSTS_N_INSNS (4), /* fp_mult_df */
1067 COSTS_N_INSNS (24), /* fp_div_sf */
1068 COSTS_N_INSNS (32), /* fp_div_df */
1069 COSTS_N_INSNS (3), /* int_mult_si */
1070 COSTS_N_INSNS (4), /* int_mult_di */
1071 COSTS_N_INSNS (36), /* int_div_si */
1072 COSTS_N_INSNS (68), /* int_div_di */
1073 1, /* branch_cost */
1074 4 /* memory_latency */
1076 { /* SB1-A */
1077 /* These costs are the same as the SB-1 above. */
1078 COSTS_N_INSNS (4), /* fp_add */
1079 COSTS_N_INSNS (4), /* fp_mult_sf */
1080 COSTS_N_INSNS (4), /* fp_mult_df */
1081 COSTS_N_INSNS (24), /* fp_div_sf */
1082 COSTS_N_INSNS (32), /* fp_div_df */
1083 COSTS_N_INSNS (3), /* int_mult_si */
1084 COSTS_N_INSNS (4), /* int_mult_di */
1085 COSTS_N_INSNS (36), /* int_div_si */
1086 COSTS_N_INSNS (68), /* int_div_di */
1087 1, /* branch_cost */
1088 4 /* memory_latency */
1090 { /* SR71000 */
1091 DEFAULT_COSTS
1093 { /* XLR */
1094 SOFT_FP_COSTS,
1095 COSTS_N_INSNS (8), /* int_mult_si */
1096 COSTS_N_INSNS (8), /* int_mult_di */
1097 COSTS_N_INSNS (72), /* int_div_si */
1098 COSTS_N_INSNS (72), /* int_div_di */
1099 1, /* branch_cost */
1100 4 /* memory_latency */
1104 /* This hash table keeps track of implicit "mips16" and "nomips16" attributes
1105 for -mflip_mips16. It maps decl names onto a boolean mode setting. */
1106 struct GTY (()) mflip_mips16_entry {
1107 const char *name;
1108 bool mips16_p;
1110 static GTY ((param_is (struct mflip_mips16_entry))) htab_t mflip_mips16_htab;
1112 /* Hash table callbacks for mflip_mips16_htab. */
1114 static hashval_t
1115 mflip_mips16_htab_hash (const void *entry)
1117 return htab_hash_string (((const struct mflip_mips16_entry *) entry)->name);
1120 static int
1121 mflip_mips16_htab_eq (const void *entry, const void *name)
1123 return strcmp (((const struct mflip_mips16_entry *) entry)->name,
1124 (const char *) name) == 0;
1127 /* True if -mflip-mips16 should next add an attribute for the default MIPS16
1128 mode, false if it should next add an attribute for the opposite mode. */
1129 static GTY(()) bool mips16_flipper;
1131 /* DECL is a function that needs a default "mips16" or "nomips16" attribute
1132 for -mflip-mips16. Return true if it should use "mips16" and false if
1133 it should use "nomips16". */
1135 static bool
1136 mflip_mips16_use_mips16_p (tree decl)
1138 struct mflip_mips16_entry *entry;
1139 const char *name;
1140 hashval_t hash;
1141 void **slot;
1143 /* Use the opposite of the command-line setting for anonymous decls. */
1144 if (!DECL_NAME (decl))
1145 return !mips_base_mips16;
1147 if (!mflip_mips16_htab)
1148 mflip_mips16_htab = htab_create_ggc (37, mflip_mips16_htab_hash,
1149 mflip_mips16_htab_eq, NULL);
1151 name = IDENTIFIER_POINTER (DECL_NAME (decl));
1152 hash = htab_hash_string (name);
1153 slot = htab_find_slot_with_hash (mflip_mips16_htab, name, hash, INSERT);
1154 entry = (struct mflip_mips16_entry *) *slot;
1155 if (!entry)
1157 mips16_flipper = !mips16_flipper;
1158 entry = GGC_NEW (struct mflip_mips16_entry);
1159 entry->name = name;
1160 entry->mips16_p = mips16_flipper ? !mips_base_mips16 : mips_base_mips16;
1161 *slot = entry;
1163 return entry->mips16_p;
1166 /* Predicates to test for presence of "near" and "far"/"long_call"
1167 attributes on the given TYPE. */
1169 static bool
1170 mips_near_type_p (const_tree type)
1172 return lookup_attribute ("near", TYPE_ATTRIBUTES (type)) != NULL;
1175 static bool
1176 mips_far_type_p (const_tree type)
1178 return (lookup_attribute ("long_call", TYPE_ATTRIBUTES (type)) != NULL
1179 || lookup_attribute ("far", TYPE_ATTRIBUTES (type)) != NULL);
1182 /* Similar predicates for "mips16"/"nomips16" function attributes. */
1184 static bool
1185 mips_mips16_decl_p (const_tree decl)
1187 return lookup_attribute ("mips16", DECL_ATTRIBUTES (decl)) != NULL;
1190 static bool
1191 mips_nomips16_decl_p (const_tree decl)
1193 return lookup_attribute ("nomips16", DECL_ATTRIBUTES (decl)) != NULL;
1196 /* Check if the interrupt attribute is set for a function. */
1198 static bool
1199 mips_interrupt_type_p (tree type)
1201 return lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type)) != NULL;
1204 /* Check if the attribute to use shadow register set is set for a function. */
1206 static bool
1207 mips_use_shadow_register_set_p (tree type)
1209 return lookup_attribute ("use_shadow_register_set",
1210 TYPE_ATTRIBUTES (type)) != NULL;
1213 /* Check if the attribute to keep interrupts masked is set for a function. */
1215 static bool
1216 mips_keep_interrupts_masked_p (tree type)
1218 return lookup_attribute ("keep_interrupts_masked",
1219 TYPE_ATTRIBUTES (type)) != NULL;
1222 /* Check if the attribute to use debug exception return is set for
1223 a function. */
1225 static bool
1226 mips_use_debug_exception_return_p (tree type)
1228 return lookup_attribute ("use_debug_exception_return",
1229 TYPE_ATTRIBUTES (type)) != NULL;
1232 /* Return true if function DECL is a MIPS16 function. Return the ambient
1233 setting if DECL is null. */
1235 static bool
1236 mips_use_mips16_mode_p (tree decl)
1238 if (decl)
1240 /* Nested functions must use the same frame pointer as their
1241 parent and must therefore use the same ISA mode. */
1242 tree parent = decl_function_context (decl);
1243 if (parent)
1244 decl = parent;
1245 if (mips_mips16_decl_p (decl))
1246 return true;
1247 if (mips_nomips16_decl_p (decl))
1248 return false;
1250 return mips_base_mips16;
1253 /* Implement TARGET_COMP_TYPE_ATTRIBUTES. */
1255 static int
1256 mips_comp_type_attributes (const_tree type1, const_tree type2)
1258 /* Disallow mixed near/far attributes. */
1259 if (mips_far_type_p (type1) && mips_near_type_p (type2))
1260 return 0;
1261 if (mips_near_type_p (type1) && mips_far_type_p (type2))
1262 return 0;
1263 return 1;
1266 /* Implement TARGET_INSERT_ATTRIBUTES. */
1268 static void
1269 mips_insert_attributes (tree decl, tree *attributes)
1271 const char *name;
1272 bool mips16_p, nomips16_p;
1274 /* Check for "mips16" and "nomips16" attributes. */
1275 mips16_p = lookup_attribute ("mips16", *attributes) != NULL;
1276 nomips16_p = lookup_attribute ("nomips16", *attributes) != NULL;
1277 if (TREE_CODE (decl) != FUNCTION_DECL)
1279 if (mips16_p)
1280 error ("%qs attribute only applies to functions", "mips16");
1281 if (nomips16_p)
1282 error ("%qs attribute only applies to functions", "nomips16");
1284 else
1286 mips16_p |= mips_mips16_decl_p (decl);
1287 nomips16_p |= mips_nomips16_decl_p (decl);
1288 if (mips16_p || nomips16_p)
1290 /* DECL cannot be simultaneously "mips16" and "nomips16". */
1291 if (mips16_p && nomips16_p)
1292 error ("%qE cannot have both %<mips16%> and "
1293 "%<nomips16%> attributes",
1294 DECL_NAME (decl));
1296 else if (TARGET_FLIP_MIPS16 && !DECL_ARTIFICIAL (decl))
1298 /* Implement -mflip-mips16. If DECL has neither a "nomips16" nor a
1299 "mips16" attribute, arbitrarily pick one. We must pick the same
1300 setting for duplicate declarations of a function. */
1301 name = mflip_mips16_use_mips16_p (decl) ? "mips16" : "nomips16";
1302 *attributes = tree_cons (get_identifier (name), NULL, *attributes);
1307 /* Implement TARGET_MERGE_DECL_ATTRIBUTES. */
1309 static tree
1310 mips_merge_decl_attributes (tree olddecl, tree newdecl)
1312 /* The decls' "mips16" and "nomips16" attributes must match exactly. */
1313 if (mips_mips16_decl_p (olddecl) != mips_mips16_decl_p (newdecl))
1314 error ("%qE redeclared with conflicting %qs attributes",
1315 DECL_NAME (newdecl), "mips16");
1316 if (mips_nomips16_decl_p (olddecl) != mips_nomips16_decl_p (newdecl))
1317 error ("%qE redeclared with conflicting %qs attributes",
1318 DECL_NAME (newdecl), "nomips16");
1320 return merge_attributes (DECL_ATTRIBUTES (olddecl),
1321 DECL_ATTRIBUTES (newdecl));
1324 /* If X is a PLUS of a CONST_INT, return the two terms in *BASE_PTR
1325 and *OFFSET_PTR. Return X in *BASE_PTR and 0 in *OFFSET_PTR otherwise. */
1327 static void
1328 mips_split_plus (rtx x, rtx *base_ptr, HOST_WIDE_INT *offset_ptr)
1330 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
1332 *base_ptr = XEXP (x, 0);
1333 *offset_ptr = INTVAL (XEXP (x, 1));
1335 else
1337 *base_ptr = x;
1338 *offset_ptr = 0;
1342 static unsigned int mips_build_integer (struct mips_integer_op *,
1343 unsigned HOST_WIDE_INT);
1345 /* A subroutine of mips_build_integer, with the same interface.
1346 Assume that the final action in the sequence should be a left shift. */
1348 static unsigned int
1349 mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value)
1351 unsigned int i, shift;
1353 /* Shift VALUE right until its lowest bit is set. Shift arithmetically
1354 since signed numbers are easier to load than unsigned ones. */
1355 shift = 0;
1356 while ((value & 1) == 0)
1357 value /= 2, shift++;
1359 i = mips_build_integer (codes, value);
1360 codes[i].code = ASHIFT;
1361 codes[i].value = shift;
1362 return i + 1;
1365 /* As for mips_build_shift, but assume that the final action will be
1366 an IOR or PLUS operation. */
1368 static unsigned int
1369 mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value)
1371 unsigned HOST_WIDE_INT high;
1372 unsigned int i;
1374 high = value & ~(unsigned HOST_WIDE_INT) 0xffff;
1375 if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000)
1377 /* The constant is too complex to load with a simple LUI/ORI pair,
1378 so we want to give the recursive call as many trailing zeros as
1379 possible. In this case, we know bit 16 is set and that the
1380 low 16 bits form a negative number. If we subtract that number
1381 from VALUE, we will clear at least the lowest 17 bits, maybe more. */
1382 i = mips_build_integer (codes, CONST_HIGH_PART (value));
1383 codes[i].code = PLUS;
1384 codes[i].value = CONST_LOW_PART (value);
1386 else
1388 /* Either this is a simple LUI/ORI pair, or clearing the lowest 16
1389 bits gives a value with at least 17 trailing zeros. */
1390 i = mips_build_integer (codes, high);
1391 codes[i].code = IOR;
1392 codes[i].value = value & 0xffff;
1394 return i + 1;
1397 /* Fill CODES with a sequence of rtl operations to load VALUE.
1398 Return the number of operations needed. */
1400 static unsigned int
1401 mips_build_integer (struct mips_integer_op *codes,
1402 unsigned HOST_WIDE_INT value)
1404 if (SMALL_OPERAND (value)
1405 || SMALL_OPERAND_UNSIGNED (value)
1406 || LUI_OPERAND (value))
1408 /* The value can be loaded with a single instruction. */
1409 codes[0].code = UNKNOWN;
1410 codes[0].value = value;
1411 return 1;
1413 else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value)))
1415 /* Either the constant is a simple LUI/ORI combination or its
1416 lowest bit is set. We don't want to shift in this case. */
1417 return mips_build_lower (codes, value);
1419 else if ((value & 0xffff) == 0)
1421 /* The constant will need at least three actions. The lowest
1422 16 bits are clear, so the final action will be a shift. */
1423 return mips_build_shift (codes, value);
1425 else
1427 /* The final action could be a shift, add or inclusive OR.
1428 Rather than use a complex condition to select the best
1429 approach, try both mips_build_shift and mips_build_lower
1430 and pick the one that gives the shortest sequence.
1431 Note that this case is only used once per constant. */
1432 struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS];
1433 unsigned int cost, alt_cost;
1435 cost = mips_build_shift (codes, value);
1436 alt_cost = mips_build_lower (alt_codes, value);
1437 if (alt_cost < cost)
1439 memcpy (codes, alt_codes, alt_cost * sizeof (codes[0]));
1440 cost = alt_cost;
1442 return cost;
1446 /* Return true if symbols of type TYPE require a GOT access. */
1448 static bool
1449 mips_got_symbol_type_p (enum mips_symbol_type type)
1451 switch (type)
1453 case SYMBOL_GOT_PAGE_OFST:
1454 case SYMBOL_GOT_DISP:
1455 return true;
1457 default:
1458 return false;
1462 /* Return true if X is a thread-local symbol. */
1464 static bool
1465 mips_tls_symbol_p (rtx x)
1467 return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
1470 /* Return true if SYMBOL_REF X is associated with a global symbol
1471 (in the STB_GLOBAL sense). */
1473 static bool
1474 mips_global_symbol_p (const_rtx x)
1476 const_tree decl = SYMBOL_REF_DECL (x);
1478 if (!decl)
1479 return !SYMBOL_REF_LOCAL_P (x) || SYMBOL_REF_EXTERNAL_P (x);
1481 /* Weakref symbols are not TREE_PUBLIC, but their targets are global
1482 or weak symbols. Relocations in the object file will be against
1483 the target symbol, so it's that symbol's binding that matters here. */
1484 return DECL_P (decl) && (TREE_PUBLIC (decl) || DECL_WEAK (decl));
1487 /* Return true if function X is a libgcc MIPS16 stub function. */
1489 static bool
1490 mips16_stub_function_p (const_rtx x)
1492 return (GET_CODE (x) == SYMBOL_REF
1493 && strncmp (XSTR (x, 0), "__mips16_", 9) == 0);
1496 /* Return true if function X is a locally-defined and locally-binding
1497 MIPS16 function. */
1499 static bool
1500 mips16_local_function_p (const_rtx x)
1502 return (GET_CODE (x) == SYMBOL_REF
1503 && SYMBOL_REF_LOCAL_P (x)
1504 && !SYMBOL_REF_EXTERNAL_P (x)
1505 && mips_use_mips16_mode_p (SYMBOL_REF_DECL (x)));
1508 /* Return true if SYMBOL_REF X binds locally. */
1510 static bool
1511 mips_symbol_binds_local_p (const_rtx x)
1513 return (SYMBOL_REF_DECL (x)
1514 ? targetm.binds_local_p (SYMBOL_REF_DECL (x))
1515 : SYMBOL_REF_LOCAL_P (x));
1518 /* Return true if rtx constants of mode MODE should be put into a small
1519 data section. */
1521 static bool
1522 mips_rtx_constant_in_small_data_p (enum machine_mode mode)
1524 return (!TARGET_EMBEDDED_DATA
1525 && TARGET_LOCAL_SDATA
1526 && GET_MODE_SIZE (mode) <= mips_small_data_threshold);
1529 /* Return true if X should not be moved directly into register $25.
1530 We need this because many versions of GAS will treat "la $25,foo" as
1531 part of a call sequence and so allow a global "foo" to be lazily bound. */
1533 bool
1534 mips_dangerous_for_la25_p (rtx x)
1536 return (!TARGET_EXPLICIT_RELOCS
1537 && TARGET_USE_GOT
1538 && GET_CODE (x) == SYMBOL_REF
1539 && mips_global_symbol_p (x));
1542 /* Return true if calls to X might need $25 to be valid on entry. */
1544 bool
1545 mips_use_pic_fn_addr_reg_p (const_rtx x)
1547 if (!TARGET_USE_PIC_FN_ADDR_REG)
1548 return false;
1550 /* MIPS16 stub functions are guaranteed not to use $25. */
1551 if (mips16_stub_function_p (x))
1552 return false;
1554 if (GET_CODE (x) == SYMBOL_REF)
1556 /* If PLTs and copy relocations are available, the static linker
1557 will make sure that $25 is valid on entry to the target function. */
1558 if (TARGET_ABICALLS_PIC0)
1559 return false;
1561 /* Locally-defined functions use absolute accesses to set up
1562 the global pointer. */
1563 if (TARGET_ABSOLUTE_ABICALLS
1564 && mips_symbol_binds_local_p (x)
1565 && !SYMBOL_REF_EXTERNAL_P (x))
1566 return false;
1569 return true;
1572 /* Return the method that should be used to access SYMBOL_REF or
1573 LABEL_REF X in context CONTEXT. */
1575 static enum mips_symbol_type
1576 mips_classify_symbol (const_rtx x, enum mips_symbol_context context)
1578 if (TARGET_RTP_PIC)
1579 return SYMBOL_GOT_DISP;
1581 if (GET_CODE (x) == LABEL_REF)
1583 /* LABEL_REFs are used for jump tables as well as text labels.
1584 Only return SYMBOL_PC_RELATIVE if we know the label is in
1585 the text section. */
1586 if (TARGET_MIPS16_SHORT_JUMP_TABLES)
1587 return SYMBOL_PC_RELATIVE;
1589 if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
1590 return SYMBOL_GOT_PAGE_OFST;
1592 return SYMBOL_ABSOLUTE;
1595 gcc_assert (GET_CODE (x) == SYMBOL_REF);
1597 if (SYMBOL_REF_TLS_MODEL (x))
1598 return SYMBOL_TLS;
1600 if (CONSTANT_POOL_ADDRESS_P (x))
1602 if (TARGET_MIPS16_TEXT_LOADS)
1603 return SYMBOL_PC_RELATIVE;
1605 if (TARGET_MIPS16_PCREL_LOADS && context == SYMBOL_CONTEXT_MEM)
1606 return SYMBOL_PC_RELATIVE;
1608 if (mips_rtx_constant_in_small_data_p (get_pool_mode (x)))
1609 return SYMBOL_GP_RELATIVE;
1612 /* Do not use small-data accesses for weak symbols; they may end up
1613 being zero. */
1614 if (TARGET_GPOPT && SYMBOL_REF_SMALL_P (x) && !SYMBOL_REF_WEAK (x))
1615 return SYMBOL_GP_RELATIVE;
1617 /* Don't use GOT accesses for locally-binding symbols when -mno-shared
1618 is in effect. */
1619 if (TARGET_ABICALLS_PIC2
1620 && !(TARGET_ABSOLUTE_ABICALLS && mips_symbol_binds_local_p (x)))
1622 /* There are three cases to consider:
1624 - o32 PIC (either with or without explicit relocs)
1625 - n32/n64 PIC without explicit relocs
1626 - n32/n64 PIC with explicit relocs
1628 In the first case, both local and global accesses will use an
1629 R_MIPS_GOT16 relocation. We must correctly predict which of
1630 the two semantics (local or global) the assembler and linker
1631 will apply. The choice depends on the symbol's binding rather
1632 than its visibility.
1634 In the second case, the assembler will not use R_MIPS_GOT16
1635 relocations, but it chooses between local and global accesses
1636 in the same way as for o32 PIC.
1638 In the third case we have more freedom since both forms of
1639 access will work for any kind of symbol. However, there seems
1640 little point in doing things differently. */
1641 if (mips_global_symbol_p (x))
1642 return SYMBOL_GOT_DISP;
1644 return SYMBOL_GOT_PAGE_OFST;
1647 if (TARGET_MIPS16_PCREL_LOADS && context != SYMBOL_CONTEXT_CALL)
1648 return SYMBOL_FORCE_TO_MEM;
1650 return SYMBOL_ABSOLUTE;
1653 /* Classify the base of symbolic expression X, given that X appears in
1654 context CONTEXT. */
1656 static enum mips_symbol_type
1657 mips_classify_symbolic_expression (rtx x, enum mips_symbol_context context)
1659 rtx offset;
1661 split_const (x, &x, &offset);
1662 if (UNSPEC_ADDRESS_P (x))
1663 return UNSPEC_ADDRESS_TYPE (x);
1665 return mips_classify_symbol (x, context);
1668 /* Return true if OFFSET is within the range [0, ALIGN), where ALIGN
1669 is the alignment in bytes of SYMBOL_REF X. */
1671 static bool
1672 mips_offset_within_alignment_p (rtx x, HOST_WIDE_INT offset)
1674 HOST_WIDE_INT align;
1676 align = SYMBOL_REF_DECL (x) ? DECL_ALIGN_UNIT (SYMBOL_REF_DECL (x)) : 1;
1677 return IN_RANGE (offset, 0, align - 1);
1680 /* Return true if X is a symbolic constant that can be used in context
1681 CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */
1683 bool
1684 mips_symbolic_constant_p (rtx x, enum mips_symbol_context context,
1685 enum mips_symbol_type *symbol_type)
1687 rtx offset;
1689 split_const (x, &x, &offset);
1690 if (UNSPEC_ADDRESS_P (x))
1692 *symbol_type = UNSPEC_ADDRESS_TYPE (x);
1693 x = UNSPEC_ADDRESS (x);
1695 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
1697 *symbol_type = mips_classify_symbol (x, context);
1698 if (*symbol_type == SYMBOL_TLS)
1699 return false;
1701 else
1702 return false;
1704 if (offset == const0_rtx)
1705 return true;
1707 /* Check whether a nonzero offset is valid for the underlying
1708 relocations. */
1709 switch (*symbol_type)
1711 case SYMBOL_ABSOLUTE:
1712 case SYMBOL_FORCE_TO_MEM:
1713 case SYMBOL_32_HIGH:
1714 case SYMBOL_64_HIGH:
1715 case SYMBOL_64_MID:
1716 case SYMBOL_64_LOW:
1717 /* If the target has 64-bit pointers and the object file only
1718 supports 32-bit symbols, the values of those symbols will be
1719 sign-extended. In this case we can't allow an arbitrary offset
1720 in case the 32-bit value X + OFFSET has a different sign from X. */
1721 if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS)
1722 return offset_within_block_p (x, INTVAL (offset));
1724 /* In other cases the relocations can handle any offset. */
1725 return true;
1727 case SYMBOL_PC_RELATIVE:
1728 /* Allow constant pool references to be converted to LABEL+CONSTANT.
1729 In this case, we no longer have access to the underlying constant,
1730 but the original symbol-based access was known to be valid. */
1731 if (GET_CODE (x) == LABEL_REF)
1732 return true;
1734 /* Fall through. */
1736 case SYMBOL_GP_RELATIVE:
1737 /* Make sure that the offset refers to something within the
1738 same object block. This should guarantee that the final
1739 PC- or GP-relative offset is within the 16-bit limit. */
1740 return offset_within_block_p (x, INTVAL (offset));
1742 case SYMBOL_GOT_PAGE_OFST:
1743 case SYMBOL_GOTOFF_PAGE:
1744 /* If the symbol is global, the GOT entry will contain the symbol's
1745 address, and we will apply a 16-bit offset after loading it.
1746 If the symbol is local, the linker should provide enough local
1747 GOT entries for a 16-bit offset, but larger offsets may lead
1748 to GOT overflow. */
1749 return SMALL_INT (offset);
1751 case SYMBOL_TPREL:
1752 case SYMBOL_DTPREL:
1753 /* There is no carry between the HI and LO REL relocations, so the
1754 offset is only valid if we know it won't lead to such a carry. */
1755 return mips_offset_within_alignment_p (x, INTVAL (offset));
1757 case SYMBOL_GOT_DISP:
1758 case SYMBOL_GOTOFF_DISP:
1759 case SYMBOL_GOTOFF_CALL:
1760 case SYMBOL_GOTOFF_LOADGP:
1761 case SYMBOL_TLSGD:
1762 case SYMBOL_TLSLDM:
1763 case SYMBOL_GOTTPREL:
1764 case SYMBOL_TLS:
1765 case SYMBOL_HALF:
1766 return false;
1768 gcc_unreachable ();
1771 /* Like mips_symbol_insns, but treat extended MIPS16 instructions as a
1772 single instruction. We rely on the fact that, in the worst case,
1773 all instructions involved in a MIPS16 address calculation are usually
1774 extended ones. */
1776 static int
1777 mips_symbol_insns_1 (enum mips_symbol_type type, enum machine_mode mode)
1779 switch (type)
1781 case SYMBOL_ABSOLUTE:
1782 /* When using 64-bit symbols, we need 5 preparatory instructions,
1783 such as:
1785 lui $at,%highest(symbol)
1786 daddiu $at,$at,%higher(symbol)
1787 dsll $at,$at,16
1788 daddiu $at,$at,%hi(symbol)
1789 dsll $at,$at,16
1791 The final address is then $at + %lo(symbol). With 32-bit
1792 symbols we just need a preparatory LUI for normal mode and
1793 a preparatory LI and SLL for MIPS16. */
1794 return ABI_HAS_64BIT_SYMBOLS ? 6 : TARGET_MIPS16 ? 3 : 2;
1796 case SYMBOL_GP_RELATIVE:
1797 /* Treat GP-relative accesses as taking a single instruction on
1798 MIPS16 too; the copy of $gp can often be shared. */
1799 return 1;
1801 case SYMBOL_PC_RELATIVE:
1802 /* PC-relative constants can be only be used with ADDIUPC,
1803 DADDIUPC, LWPC and LDPC. */
1804 if (mode == MAX_MACHINE_MODE
1805 || GET_MODE_SIZE (mode) == 4
1806 || GET_MODE_SIZE (mode) == 8)
1807 return 1;
1809 /* The constant must be loaded using ADDIUPC or DADDIUPC first. */
1810 return 0;
1812 case SYMBOL_FORCE_TO_MEM:
1813 /* LEAs will be converted into constant-pool references by
1814 mips_reorg. */
1815 if (mode == MAX_MACHINE_MODE)
1816 return 1;
1818 /* The constant must be loaded and then dereferenced. */
1819 return 0;
1821 case SYMBOL_GOT_DISP:
1822 /* The constant will have to be loaded from the GOT before it
1823 is used in an address. */
1824 if (mode != MAX_MACHINE_MODE)
1825 return 0;
1827 /* Fall through. */
1829 case SYMBOL_GOT_PAGE_OFST:
1830 /* Unless -funit-at-a-time is in effect, we can't be sure whether the
1831 local/global classification is accurate. The worst cases are:
1833 (1) For local symbols when generating o32 or o64 code. The assembler
1834 will use:
1836 lw $at,%got(symbol)
1839 ...and the final address will be $at + %lo(symbol).
1841 (2) For global symbols when -mxgot. The assembler will use:
1843 lui $at,%got_hi(symbol)
1844 (d)addu $at,$at,$gp
1846 ...and the final address will be $at + %got_lo(symbol). */
1847 return 3;
1849 case SYMBOL_GOTOFF_PAGE:
1850 case SYMBOL_GOTOFF_DISP:
1851 case SYMBOL_GOTOFF_CALL:
1852 case SYMBOL_GOTOFF_LOADGP:
1853 case SYMBOL_32_HIGH:
1854 case SYMBOL_64_HIGH:
1855 case SYMBOL_64_MID:
1856 case SYMBOL_64_LOW:
1857 case SYMBOL_TLSGD:
1858 case SYMBOL_TLSLDM:
1859 case SYMBOL_DTPREL:
1860 case SYMBOL_GOTTPREL:
1861 case SYMBOL_TPREL:
1862 case SYMBOL_HALF:
1863 /* A 16-bit constant formed by a single relocation, or a 32-bit
1864 constant formed from a high 16-bit relocation and a low 16-bit
1865 relocation. Use mips_split_p to determine which. 32-bit
1866 constants need an "lui; addiu" sequence for normal mode and
1867 an "li; sll; addiu" sequence for MIPS16 mode. */
1868 return !mips_split_p[type] ? 1 : TARGET_MIPS16 ? 3 : 2;
1870 case SYMBOL_TLS:
1871 /* We don't treat a bare TLS symbol as a constant. */
1872 return 0;
1874 gcc_unreachable ();
1877 /* If MODE is MAX_MACHINE_MODE, return the number of instructions needed
1878 to load symbols of type TYPE into a register. Return 0 if the given
1879 type of symbol cannot be used as an immediate operand.
1881 Otherwise, return the number of instructions needed to load or store
1882 values of mode MODE to or from addresses of type TYPE. Return 0 if
1883 the given type of symbol is not valid in addresses.
1885 In both cases, treat extended MIPS16 instructions as two instructions. */
1887 static int
1888 mips_symbol_insns (enum mips_symbol_type type, enum machine_mode mode)
1890 return mips_symbol_insns_1 (type, mode) * (TARGET_MIPS16 ? 2 : 1);
1893 /* A for_each_rtx callback. Stop the search if *X references a
1894 thread-local symbol. */
1896 static int
1897 mips_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
1899 return mips_tls_symbol_p (*x);
1902 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1904 static bool
1905 mips_cannot_force_const_mem (rtx x)
1907 enum mips_symbol_type type;
1908 rtx base, offset;
1910 /* There is no assembler syntax for expressing an address-sized
1911 high part. */
1912 if (GET_CODE (x) == HIGH)
1913 return true;
1915 /* As an optimization, reject constants that mips_legitimize_move
1916 can expand inline.
1918 Suppose we have a multi-instruction sequence that loads constant C
1919 into register R. If R does not get allocated a hard register, and
1920 R is used in an operand that allows both registers and memory
1921 references, reload will consider forcing C into memory and using
1922 one of the instruction's memory alternatives. Returning false
1923 here will force it to use an input reload instead. */
1924 if (CONST_INT_P (x) && LEGITIMATE_CONSTANT_P (x))
1925 return true;
1927 split_const (x, &base, &offset);
1928 if (mips_symbolic_constant_p (base, SYMBOL_CONTEXT_LEA, &type)
1929 && type != SYMBOL_FORCE_TO_MEM)
1931 /* The same optimization as for CONST_INT. */
1932 if (SMALL_INT (offset) && mips_symbol_insns (type, MAX_MACHINE_MODE) > 0)
1933 return true;
1935 /* If MIPS16 constant pools live in the text section, they should
1936 not refer to anything that might need run-time relocation. */
1937 if (TARGET_MIPS16_PCREL_LOADS && mips_got_symbol_type_p (type))
1938 return true;
1941 /* TLS symbols must be computed by mips_legitimize_move. */
1942 if (for_each_rtx (&x, &mips_tls_symbol_ref_1, NULL))
1943 return true;
1945 return false;
1948 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. We can't use blocks for
1949 constants when we're using a per-function constant pool. */
1951 static bool
1952 mips_use_blocks_for_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1953 const_rtx x ATTRIBUTE_UNUSED)
1955 return !TARGET_MIPS16_PCREL_LOADS;
1958 /* Return true if register REGNO is a valid base register for mode MODE.
1959 STRICT_P is true if REG_OK_STRICT is in effect. */
1962 mips_regno_mode_ok_for_base_p (int regno, enum machine_mode mode,
1963 bool strict_p)
1965 if (!HARD_REGISTER_NUM_P (regno))
1967 if (!strict_p)
1968 return true;
1969 regno = reg_renumber[regno];
1972 /* These fake registers will be eliminated to either the stack or
1973 hard frame pointer, both of which are usually valid base registers.
1974 Reload deals with the cases where the eliminated form isn't valid. */
1975 if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
1976 return true;
1978 /* In MIPS16 mode, the stack pointer can only address word and doubleword
1979 values, nothing smaller. There are two problems here:
1981 (a) Instantiating virtual registers can introduce new uses of the
1982 stack pointer. If these virtual registers are valid addresses,
1983 the stack pointer should be too.
1985 (b) Most uses of the stack pointer are not made explicit until
1986 FRAME_POINTER_REGNUM and ARG_POINTER_REGNUM have been eliminated.
1987 We don't know until that stage whether we'll be eliminating to the
1988 stack pointer (which needs the restriction) or the hard frame
1989 pointer (which doesn't).
1991 All in all, it seems more consistent to only enforce this restriction
1992 during and after reload. */
1993 if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM)
1994 return !strict_p || GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
1996 return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
1999 /* Return true if X is a valid base register for mode MODE.
2000 STRICT_P is true if REG_OK_STRICT is in effect. */
2002 static bool
2003 mips_valid_base_register_p (rtx x, enum machine_mode mode, bool strict_p)
2005 if (!strict_p && GET_CODE (x) == SUBREG)
2006 x = SUBREG_REG (x);
2008 return (REG_P (x)
2009 && mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p));
2012 /* Return true if, for every base register BASE_REG, (plus BASE_REG X)
2013 can address a value of mode MODE. */
2015 static bool
2016 mips_valid_offset_p (rtx x, enum machine_mode mode)
2018 /* Check that X is a signed 16-bit number. */
2019 if (!const_arith_operand (x, Pmode))
2020 return false;
2022 /* We may need to split multiword moves, so make sure that every word
2023 is accessible. */
2024 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
2025 && !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode) - UNITS_PER_WORD))
2026 return false;
2028 return true;
2031 /* Return true if a LO_SUM can address a value of mode MODE when the
2032 LO_SUM symbol has type SYMBOL_TYPE. */
2034 static bool
2035 mips_valid_lo_sum_p (enum mips_symbol_type symbol_type, enum machine_mode mode)
2037 /* Check that symbols of type SYMBOL_TYPE can be used to access values
2038 of mode MODE. */
2039 if (mips_symbol_insns (symbol_type, mode) == 0)
2040 return false;
2042 /* Check that there is a known low-part relocation. */
2043 if (mips_lo_relocs[symbol_type] == NULL)
2044 return false;
2046 /* We may need to split multiword moves, so make sure that each word
2047 can be accessed without inducing a carry. This is mainly needed
2048 for o64, which has historically only guaranteed 64-bit alignment
2049 for 128-bit types. */
2050 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
2051 && GET_MODE_BITSIZE (mode) > GET_MODE_ALIGNMENT (mode))
2052 return false;
2054 return true;
2057 /* Return true if X is a valid address for machine mode MODE. If it is,
2058 fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
2059 effect. */
2061 static bool
2062 mips_classify_address (struct mips_address_info *info, rtx x,
2063 enum machine_mode mode, bool strict_p)
2065 switch (GET_CODE (x))
2067 case REG:
2068 case SUBREG:
2069 info->type = ADDRESS_REG;
2070 info->reg = x;
2071 info->offset = const0_rtx;
2072 return mips_valid_base_register_p (info->reg, mode, strict_p);
2074 case PLUS:
2075 info->type = ADDRESS_REG;
2076 info->reg = XEXP (x, 0);
2077 info->offset = XEXP (x, 1);
2078 return (mips_valid_base_register_p (info->reg, mode, strict_p)
2079 && mips_valid_offset_p (info->offset, mode));
2081 case LO_SUM:
2082 info->type = ADDRESS_LO_SUM;
2083 info->reg = XEXP (x, 0);
2084 info->offset = XEXP (x, 1);
2085 /* We have to trust the creator of the LO_SUM to do something vaguely
2086 sane. Target-independent code that creates a LO_SUM should also
2087 create and verify the matching HIGH. Target-independent code that
2088 adds an offset to a LO_SUM must prove that the offset will not
2089 induce a carry. Failure to do either of these things would be
2090 a bug, and we are not required to check for it here. The MIPS
2091 backend itself should only create LO_SUMs for valid symbolic
2092 constants, with the high part being either a HIGH or a copy
2093 of _gp. */
2094 info->symbol_type
2095 = mips_classify_symbolic_expression (info->offset, SYMBOL_CONTEXT_MEM);
2096 return (mips_valid_base_register_p (info->reg, mode, strict_p)
2097 && mips_valid_lo_sum_p (info->symbol_type, mode));
2099 case CONST_INT:
2100 /* Small-integer addresses don't occur very often, but they
2101 are legitimate if $0 is a valid base register. */
2102 info->type = ADDRESS_CONST_INT;
2103 return !TARGET_MIPS16 && SMALL_INT (x);
2105 case CONST:
2106 case LABEL_REF:
2107 case SYMBOL_REF:
2108 info->type = ADDRESS_SYMBOLIC;
2109 return (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_MEM,
2110 &info->symbol_type)
2111 && mips_symbol_insns (info->symbol_type, mode) > 0
2112 && !mips_split_p[info->symbol_type]);
2114 default:
2115 return false;
2119 /* Implement TARGET_LEGITIMATE_ADDRESS_P. */
2121 static bool
2122 mips_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
2124 struct mips_address_info addr;
2126 return mips_classify_address (&addr, x, mode, strict_p);
2129 /* Return true if X is a legitimate $sp-based address for mode MDOE. */
2131 bool
2132 mips_stack_address_p (rtx x, enum machine_mode mode)
2134 struct mips_address_info addr;
2136 return (mips_classify_address (&addr, x, mode, false)
2137 && addr.type == ADDRESS_REG
2138 && addr.reg == stack_pointer_rtx);
2141 /* Return true if ADDR matches the pattern for the LWXS load scaled indexed
2142 address instruction. Note that such addresses are not considered
2143 legitimate in the TARGET_LEGITIMATE_ADDRESS_P sense, because their use
2144 is so restricted. */
2146 static bool
2147 mips_lwxs_address_p (rtx addr)
2149 if (ISA_HAS_LWXS
2150 && GET_CODE (addr) == PLUS
2151 && REG_P (XEXP (addr, 1)))
2153 rtx offset = XEXP (addr, 0);
2154 if (GET_CODE (offset) == MULT
2155 && REG_P (XEXP (offset, 0))
2156 && CONST_INT_P (XEXP (offset, 1))
2157 && INTVAL (XEXP (offset, 1)) == 4)
2158 return true;
2160 return false;
2163 /* Return true if a value at OFFSET bytes from base register BASE can be
2164 accessed using an unextended MIPS16 instruction. MODE is the mode of
2165 the value.
2167 Usually the offset in an unextended instruction is a 5-bit field.
2168 The offset is unsigned and shifted left once for LH and SH, twice
2169 for LW and SW, and so on. An exception is LWSP and SWSP, which have
2170 an 8-bit immediate field that's shifted left twice. */
2172 static bool
2173 mips16_unextended_reference_p (enum machine_mode mode, rtx base,
2174 unsigned HOST_WIDE_INT offset)
2176 if (offset % GET_MODE_SIZE (mode) == 0)
2178 if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx)
2179 return offset < 256U * GET_MODE_SIZE (mode);
2180 return offset < 32U * GET_MODE_SIZE (mode);
2182 return false;
2185 /* Return the number of instructions needed to load or store a value
2186 of mode MODE at address X. Return 0 if X isn't valid for MODE.
2187 Assume that multiword moves may need to be split into word moves
2188 if MIGHT_SPLIT_P, otherwise assume that a single load or store is
2189 enough.
2191 For MIPS16 code, count extended instructions as two instructions. */
2194 mips_address_insns (rtx x, enum machine_mode mode, bool might_split_p)
2196 struct mips_address_info addr;
2197 int factor;
2199 /* BLKmode is used for single unaligned loads and stores and should
2200 not count as a multiword mode. (GET_MODE_SIZE (BLKmode) is pretty
2201 meaningless, so we have to single it out as a special case one way
2202 or the other.) */
2203 if (mode != BLKmode && might_split_p)
2204 factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2205 else
2206 factor = 1;
2208 if (mips_classify_address (&addr, x, mode, false))
2209 switch (addr.type)
2211 case ADDRESS_REG:
2212 if (TARGET_MIPS16
2213 && !mips16_unextended_reference_p (mode, addr.reg,
2214 UINTVAL (addr.offset)))
2215 return factor * 2;
2216 return factor;
2218 case ADDRESS_LO_SUM:
2219 return TARGET_MIPS16 ? factor * 2 : factor;
2221 case ADDRESS_CONST_INT:
2222 return factor;
2224 case ADDRESS_SYMBOLIC:
2225 return factor * mips_symbol_insns (addr.symbol_type, mode);
2227 return 0;
2230 /* Return the number of instructions needed to load constant X.
2231 Return 0 if X isn't a valid constant. */
2234 mips_const_insns (rtx x)
2236 struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
2237 enum mips_symbol_type symbol_type;
2238 rtx offset;
2240 switch (GET_CODE (x))
2242 case HIGH:
2243 if (!mips_symbolic_constant_p (XEXP (x, 0), SYMBOL_CONTEXT_LEA,
2244 &symbol_type)
2245 || !mips_split_p[symbol_type])
2246 return 0;
2248 /* This is simply an LUI for normal mode. It is an extended
2249 LI followed by an extended SLL for MIPS16. */
2250 return TARGET_MIPS16 ? 4 : 1;
2252 case CONST_INT:
2253 if (TARGET_MIPS16)
2254 /* Unsigned 8-bit constants can be loaded using an unextended
2255 LI instruction. Unsigned 16-bit constants can be loaded
2256 using an extended LI. Negative constants must be loaded
2257 using LI and then negated. */
2258 return (IN_RANGE (INTVAL (x), 0, 255) ? 1
2259 : SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2
2260 : IN_RANGE (-INTVAL (x), 0, 255) ? 2
2261 : SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3
2262 : 0);
2264 return mips_build_integer (codes, INTVAL (x));
2266 case CONST_DOUBLE:
2267 case CONST_VECTOR:
2268 /* Allow zeros for normal mode, where we can use $0. */
2269 return !TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;
2271 case CONST:
2272 if (CONST_GP_P (x))
2273 return 1;
2275 /* See if we can refer to X directly. */
2276 if (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_LEA, &symbol_type))
2277 return mips_symbol_insns (symbol_type, MAX_MACHINE_MODE);
2279 /* Otherwise try splitting the constant into a base and offset.
2280 If the offset is a 16-bit value, we can load the base address
2281 into a register and then use (D)ADDIU to add in the offset.
2282 If the offset is larger, we can load the base and offset
2283 into separate registers and add them together with (D)ADDU.
2284 However, the latter is only possible before reload; during
2285 and after reload, we must have the option of forcing the
2286 constant into the pool instead. */
2287 split_const (x, &x, &offset);
2288 if (offset != 0)
2290 int n = mips_const_insns (x);
2291 if (n != 0)
2293 if (SMALL_INT (offset))
2294 return n + 1;
2295 else if (!targetm.cannot_force_const_mem (x))
2296 return n + 1 + mips_build_integer (codes, INTVAL (offset));
2299 return 0;
2301 case SYMBOL_REF:
2302 case LABEL_REF:
2303 return mips_symbol_insns (mips_classify_symbol (x, SYMBOL_CONTEXT_LEA),
2304 MAX_MACHINE_MODE);
2306 default:
2307 return 0;
2311 /* X is a doubleword constant that can be handled by splitting it into
2312 two words and loading each word separately. Return the number of
2313 instructions required to do this. */
2316 mips_split_const_insns (rtx x)
2318 unsigned int low, high;
2320 low = mips_const_insns (mips_subword (x, false));
2321 high = mips_const_insns (mips_subword (x, true));
2322 gcc_assert (low > 0 && high > 0);
2323 return low + high;
2326 /* Return the number of instructions needed to implement INSN,
2327 given that it loads from or stores to MEM. Count extended
2328 MIPS16 instructions as two instructions. */
2331 mips_load_store_insns (rtx mem, rtx insn)
2333 enum machine_mode mode;
2334 bool might_split_p;
2335 rtx set;
2337 gcc_assert (MEM_P (mem));
2338 mode = GET_MODE (mem);
2340 /* Try to prove that INSN does not need to be split. */
2341 might_split_p = true;
2342 if (GET_MODE_BITSIZE (mode) == 64)
2344 set = single_set (insn);
2345 if (set && !mips_split_64bit_move_p (SET_DEST (set), SET_SRC (set)))
2346 might_split_p = false;
2349 return mips_address_insns (XEXP (mem, 0), mode, might_split_p);
2352 /* Return the number of instructions needed for an integer division. */
2355 mips_idiv_insns (void)
2357 int count;
2359 count = 1;
2360 if (TARGET_CHECK_ZERO_DIV)
2362 if (GENERATE_DIVIDE_TRAPS)
2363 count++;
2364 else
2365 count += 2;
2368 if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
2369 count++;
2370 return count;
2373 /* Emit a move from SRC to DEST. Assume that the move expanders can
2374 handle all moves if !can_create_pseudo_p (). The distinction is
2375 important because, unlike emit_move_insn, the move expanders know
2376 how to force Pmode objects into the constant pool even when the
2377 constant pool address is not itself legitimate. */
2380 mips_emit_move (rtx dest, rtx src)
2382 return (can_create_pseudo_p ()
2383 ? emit_move_insn (dest, src)
2384 : emit_move_insn_1 (dest, src));
2387 /* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
2389 static void
2390 mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
2392 emit_insn (gen_rtx_SET (VOIDmode, target,
2393 gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1)));
2396 /* Compute (CODE OP0 OP1) and store the result in a new register
2397 of mode MODE. Return that new register. */
2399 static rtx
2400 mips_force_binary (enum machine_mode mode, enum rtx_code code, rtx op0, rtx op1)
2402 rtx reg;
2404 reg = gen_reg_rtx (mode);
2405 mips_emit_binary (code, reg, op0, op1);
2406 return reg;
2409 /* Copy VALUE to a register and return that register. If new pseudos
2410 are allowed, copy it into a new register, otherwise use DEST. */
2412 static rtx
2413 mips_force_temporary (rtx dest, rtx value)
2415 if (can_create_pseudo_p ())
2416 return force_reg (Pmode, value);
2417 else
2419 mips_emit_move (dest, value);
2420 return dest;
2424 /* Emit a call sequence with call pattern PATTERN and return the call
2425 instruction itself (which is not necessarily the last instruction
2426 emitted). ORIG_ADDR is the original, unlegitimized address,
2427 ADDR is the legitimized form, and LAZY_P is true if the call
2428 address is lazily-bound. */
2430 static rtx
2431 mips_emit_call_insn (rtx pattern, rtx orig_addr, rtx addr, bool lazy_p)
2433 rtx insn, reg;
2435 insn = emit_call_insn (pattern);
2437 if (TARGET_MIPS16 && mips_use_pic_fn_addr_reg_p (orig_addr))
2439 /* MIPS16 JALRs only take MIPS16 registers. If the target
2440 function requires $25 to be valid on entry, we must copy it
2441 there separately. The move instruction can be put in the
2442 call's delay slot. */
2443 reg = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
2444 emit_insn_before (gen_move_insn (reg, addr), insn);
2445 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), reg);
2448 if (lazy_p)
2449 /* Lazy-binding stubs require $gp to be valid on entry. */
2450 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
2452 if (TARGET_USE_GOT)
2454 /* See the comment above load_call<mode> for details. */
2455 use_reg (&CALL_INSN_FUNCTION_USAGE (insn),
2456 gen_rtx_REG (Pmode, GOT_VERSION_REGNUM));
2457 emit_insn (gen_update_got_version ());
2459 return insn;
2462 /* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
2463 then add CONST_INT OFFSET to the result. */
2465 static rtx
2466 mips_unspec_address_offset (rtx base, rtx offset,
2467 enum mips_symbol_type symbol_type)
2469 base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
2470 UNSPEC_ADDRESS_FIRST + symbol_type);
2471 if (offset != const0_rtx)
2472 base = gen_rtx_PLUS (Pmode, base, offset);
2473 return gen_rtx_CONST (Pmode, base);
2476 /* Return an UNSPEC address with underlying address ADDRESS and symbol
2477 type SYMBOL_TYPE. */
2480 mips_unspec_address (rtx address, enum mips_symbol_type symbol_type)
2482 rtx base, offset;
2484 split_const (address, &base, &offset);
2485 return mips_unspec_address_offset (base, offset, symbol_type);
2488 /* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
2489 high part to BASE and return the result. Just return BASE otherwise.
2490 TEMP is as for mips_force_temporary.
2492 The returned expression can be used as the first operand to a LO_SUM. */
2494 static rtx
2495 mips_unspec_offset_high (rtx temp, rtx base, rtx addr,
2496 enum mips_symbol_type symbol_type)
2498 if (mips_split_p[symbol_type])
2500 addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type));
2501 addr = mips_force_temporary (temp, addr);
2502 base = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base));
2504 return base;
2507 /* Return an instruction that copies $gp into register REG. We want
2508 GCC to treat the register's value as constant, so that its value
2509 can be rematerialized on demand. */
2511 static rtx
2512 gen_load_const_gp (rtx reg)
2514 return (Pmode == SImode
2515 ? gen_load_const_gp_si (reg)
2516 : gen_load_const_gp_di (reg));
2519 /* Return a pseudo register that contains the value of $gp throughout
2520 the current function. Such registers are needed by MIPS16 functions,
2521 for which $gp itself is not a valid base register or addition operand. */
2523 static rtx
2524 mips16_gp_pseudo_reg (void)
2526 if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
2527 cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);
2529 /* Don't emit an instruction to initialize the pseudo register if
2530 we are being called from the tree optimizers' cost-calculation
2531 routines. */
2532 if (!cfun->machine->initialized_mips16_gp_pseudo_p
2533 && (current_ir_type () != IR_GIMPLE || currently_expanding_to_rtl))
2535 rtx insn, scan;
2537 push_topmost_sequence ();
2539 scan = get_insns ();
2540 while (NEXT_INSN (scan) && !INSN_P (NEXT_INSN (scan)))
2541 scan = NEXT_INSN (scan);
2543 insn = gen_load_const_gp (cfun->machine->mips16_gp_pseudo_rtx);
2544 emit_insn_after (insn, scan);
2546 pop_topmost_sequence ();
2548 cfun->machine->initialized_mips16_gp_pseudo_p = true;
2551 return cfun->machine->mips16_gp_pseudo_rtx;
2554 /* Return a base register that holds pic_offset_table_rtx.
2555 TEMP, if nonnull, is a scratch Pmode base register. */
2558 mips_pic_base_register (rtx temp)
2560 if (!TARGET_MIPS16)
2561 return pic_offset_table_rtx;
2563 if (can_create_pseudo_p ())
2564 return mips16_gp_pseudo_reg ();
2566 if (TARGET_USE_GOT)
2567 /* The first post-reload split exposes all references to $gp
2568 (both uses and definitions). All references must remain
2569 explicit after that point.
2571 It is safe to introduce uses of $gp at any time, so for
2572 simplicity, we do that before the split too. */
2573 mips_emit_move (temp, pic_offset_table_rtx);
2574 else
2575 emit_insn (gen_load_const_gp (temp));
2576 return temp;
2579 /* Create and return a GOT reference of type TYPE for address ADDR.
2580 TEMP, if nonnull, is a scratch Pmode base register. */
2583 mips_got_load (rtx temp, rtx addr, enum mips_symbol_type type)
2585 rtx base, high, lo_sum_symbol;
2587 base = mips_pic_base_register (temp);
2589 /* If we used the temporary register to load $gp, we can't use
2590 it for the high part as well. */
2591 if (temp != NULL && reg_overlap_mentioned_p (base, temp))
2592 temp = NULL;
2594 high = mips_unspec_offset_high (temp, base, addr, type);
2595 lo_sum_symbol = mips_unspec_address (addr, type);
2597 if (type == SYMBOL_GOTOFF_CALL)
2598 return (Pmode == SImode
2599 ? gen_unspec_callsi (high, lo_sum_symbol)
2600 : gen_unspec_calldi (high, lo_sum_symbol));
2601 else
2602 return (Pmode == SImode
2603 ? gen_unspec_gotsi (high, lo_sum_symbol)
2604 : gen_unspec_gotdi (high, lo_sum_symbol));
2607 /* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
2608 it appears in a MEM of that mode. Return true if ADDR is a legitimate
2609 constant in that context and can be split into high and low parts.
2610 If so, and if LOW_OUT is nonnull, emit the high part and store the
2611 low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise.
2613 TEMP is as for mips_force_temporary and is used to load the high
2614 part into a register.
2616 When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be
2617 a legitimize SET_SRC for an .md pattern, otherwise the low part
2618 is guaranteed to be a legitimate address for mode MODE. */
2620 bool
2621 mips_split_symbol (rtx temp, rtx addr, enum machine_mode mode, rtx *low_out)
2623 enum mips_symbol_context context;
2624 enum mips_symbol_type symbol_type;
2625 rtx high;
2627 context = (mode == MAX_MACHINE_MODE
2628 ? SYMBOL_CONTEXT_LEA
2629 : SYMBOL_CONTEXT_MEM);
2630 if (GET_CODE (addr) == HIGH && context == SYMBOL_CONTEXT_LEA)
2632 addr = XEXP (addr, 0);
2633 if (mips_symbolic_constant_p (addr, context, &symbol_type)
2634 && mips_symbol_insns (symbol_type, mode) > 0
2635 && mips_split_hi_p[symbol_type])
2637 if (low_out)
2638 switch (symbol_type)
2640 case SYMBOL_GOT_PAGE_OFST:
2641 /* The high part of a page/ofst pair is loaded from the GOT. */
2642 *low_out = mips_got_load (temp, addr, SYMBOL_GOTOFF_PAGE);
2643 break;
2645 default:
2646 gcc_unreachable ();
2648 return true;
2651 else
2653 if (mips_symbolic_constant_p (addr, context, &symbol_type)
2654 && mips_symbol_insns (symbol_type, mode) > 0
2655 && mips_split_p[symbol_type])
2657 if (low_out)
2658 switch (symbol_type)
2660 case SYMBOL_GOT_DISP:
2661 /* SYMBOL_GOT_DISP symbols are loaded from the GOT. */
2662 *low_out = mips_got_load (temp, addr, SYMBOL_GOTOFF_DISP);
2663 break;
2665 case SYMBOL_GP_RELATIVE:
2666 high = mips_pic_base_register (temp);
2667 *low_out = gen_rtx_LO_SUM (Pmode, high, addr);
2668 break;
2670 default:
2671 high = gen_rtx_HIGH (Pmode, copy_rtx (addr));
2672 high = mips_force_temporary (temp, high);
2673 *low_out = gen_rtx_LO_SUM (Pmode, high, addr);
2674 break;
2676 return true;
2679 return false;
2682 /* Return a legitimate address for REG + OFFSET. TEMP is as for
2683 mips_force_temporary; it is only needed when OFFSET is not a
2684 SMALL_OPERAND. */
2686 static rtx
2687 mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
2689 if (!SMALL_OPERAND (offset))
2691 rtx high;
2693 if (TARGET_MIPS16)
2695 /* Load the full offset into a register so that we can use
2696 an unextended instruction for the address itself. */
2697 high = GEN_INT (offset);
2698 offset = 0;
2700 else
2702 /* Leave OFFSET as a 16-bit offset and put the excess in HIGH.
2703 The addition inside the macro CONST_HIGH_PART may cause an
2704 overflow, so we need to force a sign-extension check. */
2705 high = gen_int_mode (CONST_HIGH_PART (offset), Pmode);
2706 offset = CONST_LOW_PART (offset);
2708 high = mips_force_temporary (temp, high);
2709 reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
2711 return plus_constant (reg, offset);
2714 /* The __tls_get_attr symbol. */
2715 static GTY(()) rtx mips_tls_symbol;
2717 /* Return an instruction sequence that calls __tls_get_addr. SYM is
2718 the TLS symbol we are referencing and TYPE is the symbol type to use
2719 (either global dynamic or local dynamic). V0 is an RTX for the
2720 return value location. */
2722 static rtx
2723 mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0)
2725 rtx insn, loc, a0;
2727 a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
2729 if (!mips_tls_symbol)
2730 mips_tls_symbol = init_one_libfunc ("__tls_get_addr");
2732 loc = mips_unspec_address (sym, type);
2734 start_sequence ();
2736 emit_insn (gen_rtx_SET (Pmode, a0,
2737 gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, loc)));
2738 insn = mips_expand_call (MIPS_CALL_NORMAL, v0, mips_tls_symbol,
2739 const0_rtx, NULL_RTX, false);
2740 RTL_CONST_CALL_P (insn) = 1;
2741 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
2742 insn = get_insns ();
2744 end_sequence ();
2746 return insn;
2749 /* Return a pseudo register that contains the current thread pointer. */
2751 static rtx
2752 mips_get_tp (void)
2754 rtx tp;
2756 tp = gen_reg_rtx (Pmode);
2757 if (Pmode == DImode)
2758 emit_insn (gen_tls_get_tp_di (tp));
2759 else
2760 emit_insn (gen_tls_get_tp_si (tp));
2761 return tp;
2764 /* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
2765 its address. The return value will be both a valid address and a valid
2766 SET_SRC (either a REG or a LO_SUM). */
2768 static rtx
2769 mips_legitimize_tls_address (rtx loc)
2771 rtx dest, insn, v0, tp, tmp1, tmp2, eqv;
2772 enum tls_model model;
2774 if (TARGET_MIPS16)
2776 sorry ("MIPS16 TLS");
2777 return gen_reg_rtx (Pmode);
2780 model = SYMBOL_REF_TLS_MODEL (loc);
2781 /* Only TARGET_ABICALLS code can have more than one module; other
2782 code must be be static and should not use a GOT. All TLS models
2783 reduce to local exec in this situation. */
2784 if (!TARGET_ABICALLS)
2785 model = TLS_MODEL_LOCAL_EXEC;
2787 switch (model)
2789 case TLS_MODEL_GLOBAL_DYNAMIC:
2790 v0 = gen_rtx_REG (Pmode, GP_RETURN);
2791 insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0);
2792 dest = gen_reg_rtx (Pmode);
2793 emit_libcall_block (insn, dest, v0, loc);
2794 break;
2796 case TLS_MODEL_LOCAL_DYNAMIC:
2797 v0 = gen_rtx_REG (Pmode, GP_RETURN);
2798 insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0);
2799 tmp1 = gen_reg_rtx (Pmode);
2801 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2802 share the LDM result with other LD model accesses. */
2803 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2804 UNSPEC_TLS_LDM);
2805 emit_libcall_block (insn, tmp1, v0, eqv);
2807 tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL);
2808 dest = gen_rtx_LO_SUM (Pmode, tmp2,
2809 mips_unspec_address (loc, SYMBOL_DTPREL));
2810 break;
2812 case TLS_MODEL_INITIAL_EXEC:
2813 tp = mips_get_tp ();
2814 tmp1 = gen_reg_rtx (Pmode);
2815 tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL);
2816 if (Pmode == DImode)
2817 emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2));
2818 else
2819 emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2));
2820 dest = gen_reg_rtx (Pmode);
2821 emit_insn (gen_add3_insn (dest, tmp1, tp));
2822 break;
2824 case TLS_MODEL_LOCAL_EXEC:
2825 tp = mips_get_tp ();
2826 tmp1 = mips_unspec_offset_high (NULL, tp, loc, SYMBOL_TPREL);
2827 dest = gen_rtx_LO_SUM (Pmode, tmp1,
2828 mips_unspec_address (loc, SYMBOL_TPREL));
2829 break;
2831 default:
2832 gcc_unreachable ();
2834 return dest;
2837 /* If X is not a valid address for mode MODE, force it into a register. */
2839 static rtx
2840 mips_force_address (rtx x, enum machine_mode mode)
2842 if (!mips_legitimate_address_p (mode, x, false))
2843 x = force_reg (Pmode, x);
2844 return x;
2847 /* This function is used to implement LEGITIMIZE_ADDRESS. If X can
2848 be legitimized in a way that the generic machinery might not expect,
2849 return a new address, otherwise return NULL. MODE is the mode of
2850 the memory being accessed. */
2852 static rtx
2853 mips_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
2854 enum machine_mode mode)
2856 rtx base, addr;
2857 HOST_WIDE_INT offset;
2859 if (mips_tls_symbol_p (x))
2860 return mips_legitimize_tls_address (x);
2862 /* See if the address can split into a high part and a LO_SUM. */
2863 if (mips_split_symbol (NULL, x, mode, &addr))
2864 return mips_force_address (addr, mode);
2866 /* Handle BASE + OFFSET using mips_add_offset. */
2867 mips_split_plus (x, &base, &offset);
2868 if (offset != 0)
2870 if (!mips_valid_base_register_p (base, mode, false))
2871 base = copy_to_mode_reg (Pmode, base);
2872 addr = mips_add_offset (NULL, base, offset);
2873 return mips_force_address (addr, mode);
2876 return x;
2879 /* Load VALUE into DEST. TEMP is as for mips_force_temporary. */
2881 void
2882 mips_move_integer (rtx temp, rtx dest, unsigned HOST_WIDE_INT value)
2884 struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
2885 enum machine_mode mode;
2886 unsigned int i, num_ops;
2887 rtx x;
2889 mode = GET_MODE (dest);
2890 num_ops = mips_build_integer (codes, value);
2892 /* Apply each binary operation to X. Invariant: X is a legitimate
2893 source operand for a SET pattern. */
2894 x = GEN_INT (codes[0].value);
2895 for (i = 1; i < num_ops; i++)
2897 if (!can_create_pseudo_p ())
2899 emit_insn (gen_rtx_SET (VOIDmode, temp, x));
2900 x = temp;
2902 else
2903 x = force_reg (mode, x);
2904 x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
2907 emit_insn (gen_rtx_SET (VOIDmode, dest, x));
2910 /* Subroutine of mips_legitimize_move. Move constant SRC into register
2911 DEST given that SRC satisfies immediate_operand but doesn't satisfy
2912 move_operand. */
2914 static void
2915 mips_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src)
2917 rtx base, offset;
2919 /* Split moves of big integers into smaller pieces. */
2920 if (splittable_const_int_operand (src, mode))
2922 mips_move_integer (dest, dest, INTVAL (src));
2923 return;
2926 /* Split moves of symbolic constants into high/low pairs. */
2927 if (mips_split_symbol (dest, src, MAX_MACHINE_MODE, &src))
2929 emit_insn (gen_rtx_SET (VOIDmode, dest, src));
2930 return;
2933 /* Generate the appropriate access sequences for TLS symbols. */
2934 if (mips_tls_symbol_p (src))
2936 mips_emit_move (dest, mips_legitimize_tls_address (src));
2937 return;
2940 /* If we have (const (plus symbol offset)), and that expression cannot
2941 be forced into memory, load the symbol first and add in the offset.
2942 In non-MIPS16 mode, prefer to do this even if the constant _can_ be
2943 forced into memory, as it usually produces better code. */
2944 split_const (src, &base, &offset);
2945 if (offset != const0_rtx
2946 && (targetm.cannot_force_const_mem (src)
2947 || (!TARGET_MIPS16 && can_create_pseudo_p ())))
2949 base = mips_force_temporary (dest, base);
2950 mips_emit_move (dest, mips_add_offset (NULL, base, INTVAL (offset)));
2951 return;
2954 src = force_const_mem (mode, src);
2956 /* When using explicit relocs, constant pool references are sometimes
2957 not legitimate addresses. */
2958 mips_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0));
2959 mips_emit_move (dest, src);
2962 /* If (set DEST SRC) is not a valid move instruction, emit an equivalent
2963 sequence that is valid. */
2965 bool
2966 mips_legitimize_move (enum machine_mode mode, rtx dest, rtx src)
2968 if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
2970 mips_emit_move (dest, force_reg (mode, src));
2971 return true;
2974 /* We need to deal with constants that would be legitimate
2975 immediate_operands but aren't legitimate move_operands. */
2976 if (CONSTANT_P (src) && !move_operand (src, mode))
2978 mips_legitimize_const_move (mode, dest, src);
2979 set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
2980 return true;
2982 return false;
2985 /* Return true if value X in context CONTEXT is a small-data address
2986 that can be rewritten as a LO_SUM. */
2988 static bool
2989 mips_rewrite_small_data_p (rtx x, enum mips_symbol_context context)
2991 enum mips_symbol_type symbol_type;
2993 return (mips_lo_relocs[SYMBOL_GP_RELATIVE]
2994 && !mips_split_p[SYMBOL_GP_RELATIVE]
2995 && mips_symbolic_constant_p (x, context, &symbol_type)
2996 && symbol_type == SYMBOL_GP_RELATIVE);
2999 /* A for_each_rtx callback for mips_small_data_pattern_p. DATA is the
3000 containing MEM, or null if none. */
3002 static int
3003 mips_small_data_pattern_1 (rtx *loc, void *data)
3005 enum mips_symbol_context context;
3007 if (GET_CODE (*loc) == LO_SUM)
3008 return -1;
3010 if (MEM_P (*loc))
3012 if (for_each_rtx (&XEXP (*loc, 0), mips_small_data_pattern_1, *loc))
3013 return 1;
3014 return -1;
3017 context = data ? SYMBOL_CONTEXT_MEM : SYMBOL_CONTEXT_LEA;
3018 return mips_rewrite_small_data_p (*loc, context);
3021 /* Return true if OP refers to small data symbols directly, not through
3022 a LO_SUM. */
3024 bool
3025 mips_small_data_pattern_p (rtx op)
3027 return for_each_rtx (&op, mips_small_data_pattern_1, NULL);
3030 /* A for_each_rtx callback, used by mips_rewrite_small_data.
3031 DATA is the containing MEM, or null if none. */
3033 static int
3034 mips_rewrite_small_data_1 (rtx *loc, void *data)
3036 enum mips_symbol_context context;
3038 if (MEM_P (*loc))
3040 for_each_rtx (&XEXP (*loc, 0), mips_rewrite_small_data_1, *loc);
3041 return -1;
3044 context = data ? SYMBOL_CONTEXT_MEM : SYMBOL_CONTEXT_LEA;
3045 if (mips_rewrite_small_data_p (*loc, context))
3046 *loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc);
3048 if (GET_CODE (*loc) == LO_SUM)
3049 return -1;
3051 return 0;
3054 /* Rewrite instruction pattern PATTERN so that it refers to small data
3055 using explicit relocations. */
3058 mips_rewrite_small_data (rtx pattern)
3060 pattern = copy_insn (pattern);
3061 for_each_rtx (&pattern, mips_rewrite_small_data_1, NULL);
3062 return pattern;
3065 /* We need a lot of little routines to check the range of MIPS16 immediate
3066 operands. */
3068 static int
3069 m16_check_op (rtx op, int low, int high, int mask)
3071 return (CONST_INT_P (op)
3072 && IN_RANGE (INTVAL (op), low, high)
3073 && (INTVAL (op) & mask) == 0);
3077 m16_uimm3_b (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3079 return m16_check_op (op, 0x1, 0x8, 0);
3083 m16_simm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3085 return m16_check_op (op, -0x8, 0x7, 0);
3089 m16_nsimm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3091 return m16_check_op (op, -0x7, 0x8, 0);
3095 m16_simm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3097 return m16_check_op (op, -0x10, 0xf, 0);
3101 m16_nsimm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3103 return m16_check_op (op, -0xf, 0x10, 0);
3107 m16_uimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3109 return m16_check_op (op, -0x10 << 2, 0xf << 2, 3);
3113 m16_nuimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3115 return m16_check_op (op, -0xf << 2, 0x10 << 2, 3);
3119 m16_simm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3121 return m16_check_op (op, -0x80, 0x7f, 0);
3125 m16_nsimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3127 return m16_check_op (op, -0x7f, 0x80, 0);
3131 m16_uimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3133 return m16_check_op (op, 0x0, 0xff, 0);
3137 m16_nuimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3139 return m16_check_op (op, -0xff, 0x0, 0);
3143 m16_uimm8_m1_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3145 return m16_check_op (op, -0x1, 0xfe, 0);
3149 m16_uimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3151 return m16_check_op (op, 0x0, 0xff << 2, 3);
3155 m16_nuimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3157 return m16_check_op (op, -0xff << 2, 0x0, 3);
3161 m16_simm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3163 return m16_check_op (op, -0x80 << 3, 0x7f << 3, 7);
3167 m16_nsimm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3169 return m16_check_op (op, -0x7f << 3, 0x80 << 3, 7);
3172 /* The cost of loading values from the constant pool. It should be
3173 larger than the cost of any constant we want to synthesize inline. */
3174 #define CONSTANT_POOL_COST COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 8)
3176 /* Return the cost of X when used as an operand to the MIPS16 instruction
3177 that implements CODE. Return -1 if there is no such instruction, or if
3178 X is not a valid immediate operand for it. */
3180 static int
3181 mips16_constant_cost (int code, HOST_WIDE_INT x)
3183 switch (code)
3185 case ASHIFT:
3186 case ASHIFTRT:
3187 case LSHIFTRT:
3188 /* Shifts by between 1 and 8 bits (inclusive) are unextended,
3189 other shifts are extended. The shift patterns truncate the shift
3190 count to the right size, so there are no out-of-range values. */
3191 if (IN_RANGE (x, 1, 8))
3192 return 0;
3193 return COSTS_N_INSNS (1);
3195 case PLUS:
3196 if (IN_RANGE (x, -128, 127))
3197 return 0;
3198 if (SMALL_OPERAND (x))
3199 return COSTS_N_INSNS (1);
3200 return -1;
3202 case LEU:
3203 /* Like LE, but reject the always-true case. */
3204 if (x == -1)
3205 return -1;
3206 case LE:
3207 /* We add 1 to the immediate and use SLT. */
3208 x += 1;
3209 case XOR:
3210 /* We can use CMPI for an xor with an unsigned 16-bit X. */
3211 case LT:
3212 case LTU:
3213 if (IN_RANGE (x, 0, 255))
3214 return 0;
3215 if (SMALL_OPERAND_UNSIGNED (x))
3216 return COSTS_N_INSNS (1);
3217 return -1;
3219 case EQ:
3220 case NE:
3221 /* Equality comparisons with 0 are cheap. */
3222 if (x == 0)
3223 return 0;
3224 return -1;
3226 default:
3227 return -1;
3231 /* Return true if there is a non-MIPS16 instruction that implements CODE
3232 and if that instruction accepts X as an immediate operand. */
3234 static int
3235 mips_immediate_operand_p (int code, HOST_WIDE_INT x)
3237 switch (code)
3239 case ASHIFT:
3240 case ASHIFTRT:
3241 case LSHIFTRT:
3242 /* All shift counts are truncated to a valid constant. */
3243 return true;
3245 case ROTATE:
3246 case ROTATERT:
3247 /* Likewise rotates, if the target supports rotates at all. */
3248 return ISA_HAS_ROR;
3250 case AND:
3251 case IOR:
3252 case XOR:
3253 /* These instructions take 16-bit unsigned immediates. */
3254 return SMALL_OPERAND_UNSIGNED (x);
3256 case PLUS:
3257 case LT:
3258 case LTU:
3259 /* These instructions take 16-bit signed immediates. */
3260 return SMALL_OPERAND (x);
3262 case EQ:
3263 case NE:
3264 case GT:
3265 case GTU:
3266 /* The "immediate" forms of these instructions are really
3267 implemented as comparisons with register 0. */
3268 return x == 0;
3270 case GE:
3271 case GEU:
3272 /* Likewise, meaning that the only valid immediate operand is 1. */
3273 return x == 1;
3275 case LE:
3276 /* We add 1 to the immediate and use SLT. */
3277 return SMALL_OPERAND (x + 1);
3279 case LEU:
3280 /* Likewise SLTU, but reject the always-true case. */
3281 return SMALL_OPERAND (x + 1) && x + 1 != 0;
3283 case SIGN_EXTRACT:
3284 case ZERO_EXTRACT:
3285 /* The bit position and size are immediate operands. */
3286 return ISA_HAS_EXT_INS;
3288 default:
3289 /* By default assume that $0 can be used for 0. */
3290 return x == 0;
3294 /* Return the cost of binary operation X, given that the instruction
3295 sequence for a word-sized or smaller operation has cost SINGLE_COST
3296 and that the sequence of a double-word operation has cost DOUBLE_COST. */
3298 static int
3299 mips_binary_cost (rtx x, int single_cost, int double_cost)
3301 int cost;
3303 if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2)
3304 cost = double_cost;
3305 else
3306 cost = single_cost;
3307 return (cost
3308 + rtx_cost (XEXP (x, 0), SET, !optimize_size)
3309 + rtx_cost (XEXP (x, 1), GET_CODE (x), !optimize_size));
3312 /* Return the cost of floating-point multiplications of mode MODE. */
3314 static int
3315 mips_fp_mult_cost (enum machine_mode mode)
3317 return mode == DFmode ? mips_cost->fp_mult_df : mips_cost->fp_mult_sf;
3320 /* Return the cost of floating-point divisions of mode MODE. */
3322 static int
3323 mips_fp_div_cost (enum machine_mode mode)
3325 return mode == DFmode ? mips_cost->fp_div_df : mips_cost->fp_div_sf;
3328 /* Return the cost of sign-extending OP to mode MODE, not including the
3329 cost of OP itself. */
3331 static int
3332 mips_sign_extend_cost (enum machine_mode mode, rtx op)
3334 if (MEM_P (op))
3335 /* Extended loads are as cheap as unextended ones. */
3336 return 0;
3338 if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
3339 /* A sign extension from SImode to DImode in 64-bit mode is free. */
3340 return 0;
3342 if (ISA_HAS_SEB_SEH || GENERATE_MIPS16E)
3343 /* We can use SEB or SEH. */
3344 return COSTS_N_INSNS (1);
3346 /* We need to use a shift left and a shift right. */
3347 return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
3350 /* Return the cost of zero-extending OP to mode MODE, not including the
3351 cost of OP itself. */
3353 static int
3354 mips_zero_extend_cost (enum machine_mode mode, rtx op)
3356 if (MEM_P (op))
3357 /* Extended loads are as cheap as unextended ones. */
3358 return 0;
3360 if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
3361 /* We need a shift left by 32 bits and a shift right by 32 bits. */
3362 return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
3364 if (GENERATE_MIPS16E)
3365 /* We can use ZEB or ZEH. */
3366 return COSTS_N_INSNS (1);
3368 if (TARGET_MIPS16)
3369 /* We need to load 0xff or 0xffff into a register and use AND. */
3370 return COSTS_N_INSNS (GET_MODE (op) == QImode ? 2 : 3);
3372 /* We can use ANDI. */
3373 return COSTS_N_INSNS (1);
3376 /* Implement TARGET_RTX_COSTS. */
3378 static bool
3379 mips_rtx_costs (rtx x, int code, int outer_code, int *total,
3380 bool speed)
3382 enum machine_mode mode = GET_MODE (x);
3383 bool float_mode_p = FLOAT_MODE_P (mode);
3384 int cost;
3385 rtx addr;
3387 /* The cost of a COMPARE is hard to define for MIPS. COMPAREs don't
3388 appear in the instruction stream, and the cost of a comparison is
3389 really the cost of the branch or scc condition. At the time of
3390 writing, GCC only uses an explicit outer COMPARE code when optabs
3391 is testing whether a constant is expensive enough to force into a
3392 register. We want optabs to pass such constants through the MIPS
3393 expanders instead, so make all constants very cheap here. */
3394 if (outer_code == COMPARE)
3396 gcc_assert (CONSTANT_P (x));
3397 *total = 0;
3398 return true;
3401 switch (code)
3403 case CONST_INT:
3404 /* Treat *clear_upper32-style ANDs as having zero cost in the
3405 second operand. The cost is entirely in the first operand.
3407 ??? This is needed because we would otherwise try to CSE
3408 the constant operand. Although that's the right thing for
3409 instructions that continue to be a register operation throughout
3410 compilation, it is disastrous for instructions that could
3411 later be converted into a memory operation. */
3412 if (TARGET_64BIT
3413 && outer_code == AND
3414 && UINTVAL (x) == 0xffffffff)
3416 *total = 0;
3417 return true;
3420 if (TARGET_MIPS16)
3422 cost = mips16_constant_cost (outer_code, INTVAL (x));
3423 if (cost >= 0)
3425 *total = cost;
3426 return true;
3429 else
3431 /* When not optimizing for size, we care more about the cost
3432 of hot code, and hot code is often in a loop. If a constant
3433 operand needs to be forced into a register, we will often be
3434 able to hoist the constant load out of the loop, so the load
3435 should not contribute to the cost. */
3436 if (!optimize_size
3437 || mips_immediate_operand_p (outer_code, INTVAL (x)))
3439 *total = 0;
3440 return true;
3443 /* Fall through. */
3445 case CONST:
3446 case SYMBOL_REF:
3447 case LABEL_REF:
3448 case CONST_DOUBLE:
3449 if (force_to_mem_operand (x, VOIDmode))
3451 *total = COSTS_N_INSNS (1);
3452 return true;
3454 cost = mips_const_insns (x);
3455 if (cost > 0)
3457 /* If the constant is likely to be stored in a GPR, SETs of
3458 single-insn constants are as cheap as register sets; we
3459 never want to CSE them.
3461 Don't reduce the cost of storing a floating-point zero in
3462 FPRs. If we have a zero in an FPR for other reasons, we
3463 can get better cfg-cleanup and delayed-branch results by
3464 using it consistently, rather than using $0 sometimes and
3465 an FPR at other times. Also, moves between floating-point
3466 registers are sometimes cheaper than (D)MTC1 $0. */
3467 if (cost == 1
3468 && outer_code == SET
3469 && !(float_mode_p && TARGET_HARD_FLOAT))
3470 cost = 0;
3471 /* When non-MIPS16 code loads a constant N>1 times, we rarely
3472 want to CSE the constant itself. It is usually better to
3473 have N copies of the last operation in the sequence and one
3474 shared copy of the other operations. (Note that this is
3475 not true for MIPS16 code, where the final operation in the
3476 sequence is often an extended instruction.)
3478 Also, if we have a CONST_INT, we don't know whether it is
3479 for a word or doubleword operation, so we cannot rely on
3480 the result of mips_build_integer. */
3481 else if (!TARGET_MIPS16
3482 && (outer_code == SET || mode == VOIDmode))
3483 cost = 1;
3484 *total = COSTS_N_INSNS (cost);
3485 return true;
3487 /* The value will need to be fetched from the constant pool. */
3488 *total = CONSTANT_POOL_COST;
3489 return true;
3491 case MEM:
3492 /* If the address is legitimate, return the number of
3493 instructions it needs. */
3494 addr = XEXP (x, 0);
3495 cost = mips_address_insns (addr, mode, true);
3496 if (cost > 0)
3498 *total = COSTS_N_INSNS (cost + 1);
3499 return true;
3501 /* Check for a scaled indexed address. */
3502 if (mips_lwxs_address_p (addr))
3504 *total = COSTS_N_INSNS (2);
3505 return true;
3507 /* Otherwise use the default handling. */
3508 return false;
3510 case FFS:
3511 *total = COSTS_N_INSNS (6);
3512 return false;
3514 case NOT:
3515 *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1);
3516 return false;
3518 case AND:
3519 /* Check for a *clear_upper32 pattern and treat it like a zero
3520 extension. See the pattern's comment for details. */
3521 if (TARGET_64BIT
3522 && mode == DImode
3523 && CONST_INT_P (XEXP (x, 1))
3524 && UINTVAL (XEXP (x, 1)) == 0xffffffff)
3526 *total = (mips_zero_extend_cost (mode, XEXP (x, 0))
3527 + rtx_cost (XEXP (x, 0), SET, speed));
3528 return true;
3530 /* Fall through. */
3532 case IOR:
3533 case XOR:
3534 /* Double-word operations use two single-word operations. */
3535 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (2));
3536 return true;
3538 case ASHIFT:
3539 case ASHIFTRT:
3540 case LSHIFTRT:
3541 case ROTATE:
3542 case ROTATERT:
3543 if (CONSTANT_P (XEXP (x, 1)))
3544 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4));
3545 else
3546 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (12));
3547 return true;
3549 case ABS:
3550 if (float_mode_p)
3551 *total = mips_cost->fp_add;
3552 else
3553 *total = COSTS_N_INSNS (4);
3554 return false;
3556 case LO_SUM:
3557 /* Low-part immediates need an extended MIPS16 instruction. */
3558 *total = (COSTS_N_INSNS (TARGET_MIPS16 ? 2 : 1)
3559 + rtx_cost (XEXP (x, 0), SET, speed));
3560 return true;
3562 case LT:
3563 case LTU:
3564 case LE:
3565 case LEU:
3566 case GT:
3567 case GTU:
3568 case GE:
3569 case GEU:
3570 case EQ:
3571 case NE:
3572 case UNORDERED:
3573 case LTGT:
3574 /* Branch comparisons have VOIDmode, so use the first operand's
3575 mode instead. */
3576 mode = GET_MODE (XEXP (x, 0));
3577 if (FLOAT_MODE_P (mode))
3579 *total = mips_cost->fp_add;
3580 return false;
3582 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4));
3583 return true;
3585 case MINUS:
3586 if (float_mode_p
3587 && (ISA_HAS_NMADD4_NMSUB4 (mode) || ISA_HAS_NMADD3_NMSUB3 (mode))
3588 && TARGET_FUSED_MADD
3589 && !HONOR_NANS (mode)
3590 && !HONOR_SIGNED_ZEROS (mode))
3592 /* See if we can use NMADD or NMSUB. See mips.md for the
3593 associated patterns. */
3594 rtx op0 = XEXP (x, 0);
3595 rtx op1 = XEXP (x, 1);
3596 if (GET_CODE (op0) == MULT && GET_CODE (XEXP (op0, 0)) == NEG)
3598 *total = (mips_fp_mult_cost (mode)
3599 + rtx_cost (XEXP (XEXP (op0, 0), 0), SET, speed)
3600 + rtx_cost (XEXP (op0, 1), SET, speed)
3601 + rtx_cost (op1, SET, speed));
3602 return true;
3604 if (GET_CODE (op1) == MULT)
3606 *total = (mips_fp_mult_cost (mode)
3607 + rtx_cost (op0, SET, speed)
3608 + rtx_cost (XEXP (op1, 0), SET, speed)
3609 + rtx_cost (XEXP (op1, 1), SET, speed));
3610 return true;
3613 /* Fall through. */
3615 case PLUS:
3616 if (float_mode_p)
3618 /* If this is part of a MADD or MSUB, treat the PLUS as
3619 being free. */
3620 if (ISA_HAS_FP4
3621 && TARGET_FUSED_MADD
3622 && GET_CODE (XEXP (x, 0)) == MULT)
3623 *total = 0;
3624 else
3625 *total = mips_cost->fp_add;
3626 return false;
3629 /* Double-word operations require three single-word operations and
3630 an SLTU. The MIPS16 version then needs to move the result of
3631 the SLTU from $24 to a MIPS16 register. */
3632 *total = mips_binary_cost (x, COSTS_N_INSNS (1),
3633 COSTS_N_INSNS (TARGET_MIPS16 ? 5 : 4));
3634 return true;
3636 case NEG:
3637 if (float_mode_p
3638 && (ISA_HAS_NMADD4_NMSUB4 (mode) || ISA_HAS_NMADD3_NMSUB3 (mode))
3639 && TARGET_FUSED_MADD
3640 && !HONOR_NANS (mode)
3641 && HONOR_SIGNED_ZEROS (mode))
3643 /* See if we can use NMADD or NMSUB. See mips.md for the
3644 associated patterns. */
3645 rtx op = XEXP (x, 0);
3646 if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
3647 && GET_CODE (XEXP (op, 0)) == MULT)
3649 *total = (mips_fp_mult_cost (mode)
3650 + rtx_cost (XEXP (XEXP (op, 0), 0), SET, speed)
3651 + rtx_cost (XEXP (XEXP (op, 0), 1), SET, speed)
3652 + rtx_cost (XEXP (op, 1), SET, speed));
3653 return true;
3657 if (float_mode_p)
3658 *total = mips_cost->fp_add;
3659 else
3660 *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1);
3661 return false;
3663 case MULT:
3664 if (float_mode_p)
3665 *total = mips_fp_mult_cost (mode);
3666 else if (mode == DImode && !TARGET_64BIT)
3667 /* Synthesized from 2 mulsi3s, 1 mulsidi3 and two additions,
3668 where the mulsidi3 always includes an MFHI and an MFLO. */
3669 *total = (optimize_size
3670 ? COSTS_N_INSNS (ISA_HAS_MUL3 ? 7 : 9)
3671 : mips_cost->int_mult_si * 3 + 6);
3672 else if (optimize_size)
3673 *total = (ISA_HAS_MUL3 ? 1 : 2);
3674 else if (mode == DImode)
3675 *total = mips_cost->int_mult_di;
3676 else
3677 *total = mips_cost->int_mult_si;
3678 return false;
3680 case DIV:
3681 /* Check for a reciprocal. */
3682 if (float_mode_p
3683 && ISA_HAS_FP4
3684 && flag_unsafe_math_optimizations
3685 && XEXP (x, 0) == CONST1_RTX (mode))
3687 if (outer_code == SQRT || GET_CODE (XEXP (x, 1)) == SQRT)
3688 /* An rsqrt<mode>a or rsqrt<mode>b pattern. Count the
3689 division as being free. */
3690 *total = rtx_cost (XEXP (x, 1), SET, speed);
3691 else
3692 *total = (mips_fp_div_cost (mode)
3693 + rtx_cost (XEXP (x, 1), SET, speed));
3694 return true;
3696 /* Fall through. */
3698 case SQRT:
3699 case MOD:
3700 if (float_mode_p)
3702 *total = mips_fp_div_cost (mode);
3703 return false;
3705 /* Fall through. */
3707 case UDIV:
3708 case UMOD:
3709 if (optimize_size)
3711 /* It is our responsibility to make division by a power of 2
3712 as cheap as 2 register additions if we want the division
3713 expanders to be used for such operations; see the setting
3714 of sdiv_pow2_cheap in optabs.c. Using (D)DIV for MIPS16
3715 should always produce shorter code than using
3716 expand_sdiv2_pow2. */
3717 if (TARGET_MIPS16
3718 && CONST_INT_P (XEXP (x, 1))
3719 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
3721 *total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), SET, speed);
3722 return true;
3724 *total = COSTS_N_INSNS (mips_idiv_insns ());
3726 else if (mode == DImode)
3727 *total = mips_cost->int_div_di;
3728 else
3729 *total = mips_cost->int_div_si;
3730 return false;
3732 case SIGN_EXTEND:
3733 *total = mips_sign_extend_cost (mode, XEXP (x, 0));
3734 return false;
3736 case ZERO_EXTEND:
3737 *total = mips_zero_extend_cost (mode, XEXP (x, 0));
3738 return false;
3740 case FLOAT:
3741 case UNSIGNED_FLOAT:
3742 case FIX:
3743 case FLOAT_EXTEND:
3744 case FLOAT_TRUNCATE:
3745 *total = mips_cost->fp_add;
3746 return false;
3748 default:
3749 return false;
3753 /* Implement TARGET_ADDRESS_COST. */
3755 static int
3756 mips_address_cost (rtx addr, bool speed ATTRIBUTE_UNUSED)
3758 return mips_address_insns (addr, SImode, false);
3761 /* Return one word of double-word value OP, taking into account the fixed
3762 endianness of certain registers. HIGH_P is true to select the high part,
3763 false to select the low part. */
3766 mips_subword (rtx op, bool high_p)
3768 unsigned int byte, offset;
3769 enum machine_mode mode;
3771 mode = GET_MODE (op);
3772 if (mode == VOIDmode)
3773 mode = TARGET_64BIT ? TImode : DImode;
3775 if (TARGET_BIG_ENDIAN ? !high_p : high_p)
3776 byte = UNITS_PER_WORD;
3777 else
3778 byte = 0;
3780 if (FP_REG_RTX_P (op))
3782 /* Paired FPRs are always ordered little-endian. */
3783 offset = (UNITS_PER_WORD < UNITS_PER_HWFPVALUE ? high_p : byte != 0);
3784 return gen_rtx_REG (word_mode, REGNO (op) + offset);
3787 if (MEM_P (op))
3788 return mips_rewrite_small_data (adjust_address (op, word_mode, byte));
3790 return simplify_gen_subreg (word_mode, op, mode, byte);
3793 /* Return true if a 64-bit move from SRC to DEST should be split into two. */
3795 bool
3796 mips_split_64bit_move_p (rtx dest, rtx src)
3798 if (TARGET_64BIT)
3799 return false;
3801 /* FPR-to-FPR moves can be done in a single instruction, if they're
3802 allowed at all. */
3803 if (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
3804 return false;
3806 /* Check for floating-point loads and stores. */
3807 if (ISA_HAS_LDC1_SDC1)
3809 if (FP_REG_RTX_P (dest) && MEM_P (src))
3810 return false;
3811 if (FP_REG_RTX_P (src) && MEM_P (dest))
3812 return false;
3814 return true;
3817 /* Split a doubleword move from SRC to DEST. On 32-bit targets,
3818 this function handles 64-bit moves for which mips_split_64bit_move_p
3819 holds. For 64-bit targets, this function handles 128-bit moves. */
3821 void
3822 mips_split_doubleword_move (rtx dest, rtx src)
3824 rtx low_dest;
3826 if (FP_REG_RTX_P (dest) || FP_REG_RTX_P (src))
3828 if (!TARGET_64BIT && GET_MODE (dest) == DImode)
3829 emit_insn (gen_move_doubleword_fprdi (dest, src));
3830 else if (!TARGET_64BIT && GET_MODE (dest) == DFmode)
3831 emit_insn (gen_move_doubleword_fprdf (dest, src));
3832 else if (!TARGET_64BIT && GET_MODE (dest) == V2SFmode)
3833 emit_insn (gen_move_doubleword_fprv2sf (dest, src));
3834 else if (!TARGET_64BIT && GET_MODE (dest) == V2SImode)
3835 emit_insn (gen_move_doubleword_fprv2si (dest, src));
3836 else if (!TARGET_64BIT && GET_MODE (dest) == V4HImode)
3837 emit_insn (gen_move_doubleword_fprv4hi (dest, src));
3838 else if (!TARGET_64BIT && GET_MODE (dest) == V8QImode)
3839 emit_insn (gen_move_doubleword_fprv8qi (dest, src));
3840 else if (TARGET_64BIT && GET_MODE (dest) == TFmode)
3841 emit_insn (gen_move_doubleword_fprtf (dest, src));
3842 else
3843 gcc_unreachable ();
3845 else if (REG_P (dest) && REGNO (dest) == MD_REG_FIRST)
3847 low_dest = mips_subword (dest, false);
3848 mips_emit_move (low_dest, mips_subword (src, false));
3849 if (TARGET_64BIT)
3850 emit_insn (gen_mthidi_ti (dest, mips_subword (src, true), low_dest));
3851 else
3852 emit_insn (gen_mthisi_di (dest, mips_subword (src, true), low_dest));
3854 else if (REG_P (src) && REGNO (src) == MD_REG_FIRST)
3856 mips_emit_move (mips_subword (dest, false), mips_subword (src, false));
3857 if (TARGET_64BIT)
3858 emit_insn (gen_mfhidi_ti (mips_subword (dest, true), src));
3859 else
3860 emit_insn (gen_mfhisi_di (mips_subword (dest, true), src));
3862 else
3864 /* The operation can be split into two normal moves. Decide in
3865 which order to do them. */
3866 low_dest = mips_subword (dest, false);
3867 if (REG_P (low_dest)
3868 && reg_overlap_mentioned_p (low_dest, src))
3870 mips_emit_move (mips_subword (dest, true), mips_subword (src, true));
3871 mips_emit_move (low_dest, mips_subword (src, false));
3873 else
3875 mips_emit_move (low_dest, mips_subword (src, false));
3876 mips_emit_move (mips_subword (dest, true), mips_subword (src, true));
3881 /* Return the appropriate instructions to move SRC into DEST. Assume
3882 that SRC is operand 1 and DEST is operand 0. */
3884 const char *
3885 mips_output_move (rtx dest, rtx src)
3887 enum rtx_code dest_code, src_code;
3888 enum machine_mode mode;
3889 enum mips_symbol_type symbol_type;
3890 bool dbl_p;
3892 dest_code = GET_CODE (dest);
3893 src_code = GET_CODE (src);
3894 mode = GET_MODE (dest);
3895 dbl_p = (GET_MODE_SIZE (mode) == 8);
3897 if (dbl_p && mips_split_64bit_move_p (dest, src))
3898 return "#";
3900 if ((src_code == REG && GP_REG_P (REGNO (src)))
3901 || (!TARGET_MIPS16 && src == CONST0_RTX (mode)))
3903 if (dest_code == REG)
3905 if (GP_REG_P (REGNO (dest)))
3906 return "move\t%0,%z1";
3908 /* Moves to HI are handled by special .md insns. */
3909 if (REGNO (dest) == LO_REGNUM)
3910 return "mtlo\t%z1";
3912 if (DSP_ACC_REG_P (REGNO (dest)))
3914 static char retval[] = "mt__\t%z1,%q0";
3916 retval[2] = reg_names[REGNO (dest)][4];
3917 retval[3] = reg_names[REGNO (dest)][5];
3918 return retval;
3921 if (FP_REG_P (REGNO (dest)))
3922 return dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0";
3924 if (ALL_COP_REG_P (REGNO (dest)))
3926 static char retval[] = "dmtc_\t%z1,%0";
3928 retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
3929 return dbl_p ? retval : retval + 1;
3932 if (dest_code == MEM)
3933 switch (GET_MODE_SIZE (mode))
3935 case 1: return "sb\t%z1,%0";
3936 case 2: return "sh\t%z1,%0";
3937 case 4: return "sw\t%z1,%0";
3938 case 8: return "sd\t%z1,%0";
3941 if (dest_code == REG && GP_REG_P (REGNO (dest)))
3943 if (src_code == REG)
3945 /* Moves from HI are handled by special .md insns. */
3946 if (REGNO (src) == LO_REGNUM)
3948 /* When generating VR4120 or VR4130 code, we use MACC and
3949 DMACC instead of MFLO. This avoids both the normal
3950 MIPS III HI/LO hazards and the errata related to
3951 -mfix-vr4130. */
3952 if (ISA_HAS_MACCHI)
3953 return dbl_p ? "dmacc\t%0,%.,%." : "macc\t%0,%.,%.";
3954 return "mflo\t%0";
3957 if (DSP_ACC_REG_P (REGNO (src)))
3959 static char retval[] = "mf__\t%0,%q1";
3961 retval[2] = reg_names[REGNO (src)][4];
3962 retval[3] = reg_names[REGNO (src)][5];
3963 return retval;
3966 if (FP_REG_P (REGNO (src)))
3967 return dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1";
3969 if (ALL_COP_REG_P (REGNO (src)))
3971 static char retval[] = "dmfc_\t%0,%1";
3973 retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
3974 return dbl_p ? retval : retval + 1;
3977 if (ST_REG_P (REGNO (src)) && ISA_HAS_8CC)
3978 return "lui\t%0,0x3f80\n\tmovf\t%0,%.,%1";
3981 if (src_code == MEM)
3982 switch (GET_MODE_SIZE (mode))
3984 case 1: return "lbu\t%0,%1";
3985 case 2: return "lhu\t%0,%1";
3986 case 4: return "lw\t%0,%1";
3987 case 8: return "ld\t%0,%1";
3990 if (src_code == CONST_INT)
3992 /* Don't use the X format for the operand itself, because that
3993 will give out-of-range numbers for 64-bit hosts and 32-bit
3994 targets. */
3995 if (!TARGET_MIPS16)
3996 return "li\t%0,%1\t\t\t# %X1";
3998 if (SMALL_OPERAND_UNSIGNED (INTVAL (src)))
3999 return "li\t%0,%1";
4001 if (SMALL_OPERAND_UNSIGNED (-INTVAL (src)))
4002 return "#";
4005 if (src_code == HIGH)
4006 return TARGET_MIPS16 ? "#" : "lui\t%0,%h1";
4008 if (CONST_GP_P (src))
4009 return "move\t%0,%1";
4011 if (mips_symbolic_constant_p (src, SYMBOL_CONTEXT_LEA, &symbol_type)
4012 && mips_lo_relocs[symbol_type] != 0)
4014 /* A signed 16-bit constant formed by applying a relocation
4015 operator to a symbolic address. */
4016 gcc_assert (!mips_split_p[symbol_type]);
4017 return "li\t%0,%R1";
4020 if (symbolic_operand (src, VOIDmode))
4022 gcc_assert (TARGET_MIPS16
4023 ? TARGET_MIPS16_TEXT_LOADS
4024 : !TARGET_EXPLICIT_RELOCS);
4025 return dbl_p ? "dla\t%0,%1" : "la\t%0,%1";
4028 if (src_code == REG && FP_REG_P (REGNO (src)))
4030 if (dest_code == REG && FP_REG_P (REGNO (dest)))
4032 if (GET_MODE (dest) == V2SFmode)
4033 return "mov.ps\t%0,%1";
4034 else
4035 return dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1";
4038 if (dest_code == MEM)
4039 return dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0";
4041 if (dest_code == REG && FP_REG_P (REGNO (dest)))
4043 if (src_code == MEM)
4044 return dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1";
4046 if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM)
4048 static char retval[] = "l_c_\t%0,%1";
4050 retval[1] = (dbl_p ? 'd' : 'w');
4051 retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
4052 return retval;
4054 if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src)))
4056 static char retval[] = "s_c_\t%1,%0";
4058 retval[1] = (dbl_p ? 'd' : 'w');
4059 retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
4060 return retval;
4062 gcc_unreachable ();
4065 /* Return true if CMP1 is a suitable second operand for integer ordering
4066 test CODE. See also the *sCC patterns in mips.md. */
4068 static bool
4069 mips_int_order_operand_ok_p (enum rtx_code code, rtx cmp1)
4071 switch (code)
4073 case GT:
4074 case GTU:
4075 return reg_or_0_operand (cmp1, VOIDmode);
4077 case GE:
4078 case GEU:
4079 return !TARGET_MIPS16 && cmp1 == const1_rtx;
4081 case LT:
4082 case LTU:
4083 return arith_operand (cmp1, VOIDmode);
4085 case LE:
4086 return sle_operand (cmp1, VOIDmode);
4088 case LEU:
4089 return sleu_operand (cmp1, VOIDmode);
4091 default:
4092 gcc_unreachable ();
4096 /* Return true if *CMP1 (of mode MODE) is a valid second operand for
4097 integer ordering test *CODE, or if an equivalent combination can
4098 be formed by adjusting *CODE and *CMP1. When returning true, update
4099 *CODE and *CMP1 with the chosen code and operand, otherwise leave
4100 them alone. */
4102 static bool
4103 mips_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1,
4104 enum machine_mode mode)
4106 HOST_WIDE_INT plus_one;
4108 if (mips_int_order_operand_ok_p (*code, *cmp1))
4109 return true;
4111 if (CONST_INT_P (*cmp1))
4112 switch (*code)
4114 case LE:
4115 plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
4116 if (INTVAL (*cmp1) < plus_one)
4118 *code = LT;
4119 *cmp1 = force_reg (mode, GEN_INT (plus_one));
4120 return true;
4122 break;
4124 case LEU:
4125 plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
4126 if (plus_one != 0)
4128 *code = LTU;
4129 *cmp1 = force_reg (mode, GEN_INT (plus_one));
4130 return true;
4132 break;
4134 default:
4135 break;
4137 return false;
4140 /* Compare CMP0 and CMP1 using ordering test CODE and store the result
4141 in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR
4142 is nonnull, it's OK to set TARGET to the inverse of the result and
4143 flip *INVERT_PTR instead. */
4145 static void
4146 mips_emit_int_order_test (enum rtx_code code, bool *invert_ptr,
4147 rtx target, rtx cmp0, rtx cmp1)
4149 enum machine_mode mode;
4151 /* First see if there is a MIPS instruction that can do this operation.
4152 If not, try doing the same for the inverse operation. If that also
4153 fails, force CMP1 into a register and try again. */
4154 mode = GET_MODE (cmp0);
4155 if (mips_canonicalize_int_order_test (&code, &cmp1, mode))
4156 mips_emit_binary (code, target, cmp0, cmp1);
4157 else
4159 enum rtx_code inv_code = reverse_condition (code);
4160 if (!mips_canonicalize_int_order_test (&inv_code, &cmp1, mode))
4162 cmp1 = force_reg (mode, cmp1);
4163 mips_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1);
4165 else if (invert_ptr == 0)
4167 rtx inv_target;
4169 inv_target = mips_force_binary (GET_MODE (target),
4170 inv_code, cmp0, cmp1);
4171 mips_emit_binary (XOR, target, inv_target, const1_rtx);
4173 else
4175 *invert_ptr = !*invert_ptr;
4176 mips_emit_binary (inv_code, target, cmp0, cmp1);
4181 /* Return a register that is zero iff CMP0 and CMP1 are equal.
4182 The register will have the same mode as CMP0. */
4184 static rtx
4185 mips_zero_if_equal (rtx cmp0, rtx cmp1)
4187 if (cmp1 == const0_rtx)
4188 return cmp0;
4190 if (uns_arith_operand (cmp1, VOIDmode))
4191 return expand_binop (GET_MODE (cmp0), xor_optab,
4192 cmp0, cmp1, 0, 0, OPTAB_DIRECT);
4194 return expand_binop (GET_MODE (cmp0), sub_optab,
4195 cmp0, cmp1, 0, 0, OPTAB_DIRECT);
4198 /* Convert *CODE into a code that can be used in a floating-point
4199 scc instruction (C.cond.fmt). Return true if the values of
4200 the condition code registers will be inverted, with 0 indicating
4201 that the condition holds. */
4203 static bool
4204 mips_reversed_fp_cond (enum rtx_code *code)
4206 switch (*code)
4208 case NE:
4209 case LTGT:
4210 case ORDERED:
4211 *code = reverse_condition_maybe_unordered (*code);
4212 return true;
4214 default:
4215 return false;
4219 /* Convert a comparison into something that can be used in a branch or
4220 conditional move. On entry, *OP0 and *OP1 are the values being
4221 compared and *CODE is the code used to compare them.
4223 Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
4224 If NEED_EQ_NE_P, then only EQ or NE comparisons against zero are possible,
4225 otherwise any standard branch condition can be used. The standard branch
4226 conditions are:
4228 - EQ or NE between two registers.
4229 - any comparison between a register and zero. */
4231 static void
4232 mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
4234 rtx cmp_op0 = *op0;
4235 rtx cmp_op1 = *op1;
4237 if (GET_MODE_CLASS (GET_MODE (*op0)) == MODE_INT)
4239 if (!need_eq_ne_p && *op1 == const0_rtx)
4241 else if (*code == EQ || *code == NE)
4243 if (need_eq_ne_p)
4245 *op0 = mips_zero_if_equal (cmp_op0, cmp_op1);
4246 *op1 = const0_rtx;
4248 else
4249 *op1 = force_reg (GET_MODE (cmp_op0), cmp_op1);
4251 else
4253 /* The comparison needs a separate scc instruction. Store the
4254 result of the scc in *OP0 and compare it against zero. */
4255 bool invert = false;
4256 *op0 = gen_reg_rtx (GET_MODE (cmp_op0));
4257 mips_emit_int_order_test (*code, &invert, *op0, cmp_op0, cmp_op1);
4258 *code = (invert ? EQ : NE);
4259 *op1 = const0_rtx;
4262 else if (ALL_FIXED_POINT_MODE_P (GET_MODE (cmp_op0)))
4264 *op0 = gen_rtx_REG (CCDSPmode, CCDSP_CC_REGNUM);
4265 mips_emit_binary (*code, *op0, cmp_op0, cmp_op1);
4266 *code = NE;
4267 *op1 = const0_rtx;
4269 else
4271 enum rtx_code cmp_code;
4273 /* Floating-point tests use a separate C.cond.fmt comparison to
4274 set a condition code register. The branch or conditional move
4275 will then compare that register against zero.
4277 Set CMP_CODE to the code of the comparison instruction and
4278 *CODE to the code that the branch or move should use. */
4279 cmp_code = *code;
4280 *code = mips_reversed_fp_cond (&cmp_code) ? EQ : NE;
4281 *op0 = (ISA_HAS_8CC
4282 ? gen_reg_rtx (CCmode)
4283 : gen_rtx_REG (CCmode, FPSW_REGNUM));
4284 *op1 = const0_rtx;
4285 mips_emit_binary (cmp_code, *op0, cmp_op0, cmp_op1);
4289 /* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2]
4290 and OPERAND[3]. Store the result in OPERANDS[0].
4292 On 64-bit targets, the mode of the comparison and target will always be
4293 SImode, thus possibly narrower than that of the comparison's operands. */
4295 void
4296 mips_expand_scc (rtx operands[])
4298 rtx target = operands[0];
4299 enum rtx_code code = GET_CODE (operands[1]);
4300 rtx op0 = operands[2];
4301 rtx op1 = operands[3];
4303 gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT);
4305 if (code == EQ || code == NE)
4307 if (ISA_HAS_SEQ_SNE
4308 && reg_imm10_operand (op1, GET_MODE (op1)))
4309 mips_emit_binary (code, target, op0, op1);
4310 else
4312 rtx zie = mips_zero_if_equal (op0, op1);
4313 mips_emit_binary (code, target, zie, const0_rtx);
4316 else
4317 mips_emit_int_order_test (code, 0, target, op0, op1);
4320 /* Compare OPERANDS[1] with OPERANDS[2] using comparison code
4321 CODE and jump to OPERANDS[3] if the condition holds. */
4323 void
4324 mips_expand_conditional_branch (rtx *operands)
4326 enum rtx_code code = GET_CODE (operands[0]);
4327 rtx op0 = operands[1];
4328 rtx op1 = operands[2];
4329 rtx condition;
4331 mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16);
4332 condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4333 emit_jump_insn (gen_condjump (condition, operands[3]));
4336 /* Implement:
4338 (set temp (COND:CCV2 CMP_OP0 CMP_OP1))
4339 (set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS)) */
4341 void
4342 mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src,
4343 enum rtx_code cond, rtx cmp_op0, rtx cmp_op1)
4345 rtx cmp_result;
4346 bool reversed_p;
4348 reversed_p = mips_reversed_fp_cond (&cond);
4349 cmp_result = gen_reg_rtx (CCV2mode);
4350 emit_insn (gen_scc_ps (cmp_result,
4351 gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1)));
4352 if (reversed_p)
4353 emit_insn (gen_mips_cond_move_tf_ps (dest, false_src, true_src,
4354 cmp_result));
4355 else
4356 emit_insn (gen_mips_cond_move_tf_ps (dest, true_src, false_src,
4357 cmp_result));
4360 /* Perform the comparison in OPERANDS[1]. Move OPERANDS[2] into OPERANDS[0]
4361 if the condition holds, otherwise move OPERANDS[3] into OPERANDS[0]. */
4363 void
4364 mips_expand_conditional_move (rtx *operands)
4366 rtx cond;
4367 enum rtx_code code = GET_CODE (operands[1]);
4368 rtx op0 = XEXP (operands[1], 0);
4369 rtx op1 = XEXP (operands[1], 1);
4371 mips_emit_compare (&code, &op0, &op1, true);
4372 cond = gen_rtx_fmt_ee (code, GET_MODE (op0), op0, op1);
4373 emit_insn (gen_rtx_SET (VOIDmode, operands[0],
4374 gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]), cond,
4375 operands[2], operands[3])));
4378 /* Perform the comparison in COMPARISON, then trap if the condition holds. */
4380 void
4381 mips_expand_conditional_trap (rtx comparison)
4383 rtx op0, op1;
4384 enum machine_mode mode;
4385 enum rtx_code code;
4387 /* MIPS conditional trap instructions don't have GT or LE flavors,
4388 so we must swap the operands and convert to LT and GE respectively. */
4389 code = GET_CODE (comparison);
4390 switch (code)
4392 case GT:
4393 case LE:
4394 case GTU:
4395 case LEU:
4396 code = swap_condition (code);
4397 op0 = XEXP (comparison, 1);
4398 op1 = XEXP (comparison, 0);
4399 break;
4401 default:
4402 op0 = XEXP (comparison, 0);
4403 op1 = XEXP (comparison, 1);
4404 break;
4407 mode = GET_MODE (XEXP (comparison, 0));
4408 op0 = force_reg (mode, op0);
4409 if (!arith_operand (op1, mode))
4410 op1 = force_reg (mode, op1);
4412 emit_insn (gen_rtx_TRAP_IF (VOIDmode,
4413 gen_rtx_fmt_ee (code, mode, op0, op1),
4414 const0_rtx));
4417 /* Initialize *CUM for a call to a function of type FNTYPE. */
4419 void
4420 mips_init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype)
4422 memset (cum, 0, sizeof (*cum));
4423 cum->prototype = (fntype && prototype_p (fntype));
4424 cum->gp_reg_found = (cum->prototype && stdarg_p (fntype));
4427 /* Fill INFO with information about a single argument. CUM is the
4428 cumulative state for earlier arguments. MODE is the mode of this
4429 argument and TYPE is its type (if known). NAMED is true if this
4430 is a named (fixed) argument rather than a variable one. */
4432 static void
4433 mips_get_arg_info (struct mips_arg_info *info, const CUMULATIVE_ARGS *cum,
4434 enum machine_mode mode, tree type, int named)
4436 bool doubleword_aligned_p;
4437 unsigned int num_bytes, num_words, max_regs;
4439 /* Work out the size of the argument. */
4440 num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
4441 num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
4443 /* Decide whether it should go in a floating-point register, assuming
4444 one is free. Later code checks for availability.
4446 The checks against UNITS_PER_FPVALUE handle the soft-float and
4447 single-float cases. */
4448 switch (mips_abi)
4450 case ABI_EABI:
4451 /* The EABI conventions have traditionally been defined in terms
4452 of TYPE_MODE, regardless of the actual type. */
4453 info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT
4454 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
4455 && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
4456 break;
4458 case ABI_32:
4459 case ABI_O64:
4460 /* Only leading floating-point scalars are passed in
4461 floating-point registers. We also handle vector floats the same
4462 say, which is OK because they are not covered by the standard ABI. */
4463 info->fpr_p = (!cum->gp_reg_found
4464 && cum->arg_number < 2
4465 && (type == 0
4466 || SCALAR_FLOAT_TYPE_P (type)
4467 || VECTOR_FLOAT_TYPE_P (type))
4468 && (GET_MODE_CLASS (mode) == MODE_FLOAT
4469 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
4470 && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
4471 break;
4473 case ABI_N32:
4474 case ABI_64:
4475 /* Scalar, complex and vector floating-point types are passed in
4476 floating-point registers, as long as this is a named rather
4477 than a variable argument. */
4478 info->fpr_p = (named
4479 && (type == 0 || FLOAT_TYPE_P (type))
4480 && (GET_MODE_CLASS (mode) == MODE_FLOAT
4481 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
4482 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
4483 && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
4485 /* ??? According to the ABI documentation, the real and imaginary
4486 parts of complex floats should be passed in individual registers.
4487 The real and imaginary parts of stack arguments are supposed
4488 to be contiguous and there should be an extra word of padding
4489 at the end.
4491 This has two problems. First, it makes it impossible to use a
4492 single "void *" va_list type, since register and stack arguments
4493 are passed differently. (At the time of writing, MIPSpro cannot
4494 handle complex float varargs correctly.) Second, it's unclear
4495 what should happen when there is only one register free.
4497 For now, we assume that named complex floats should go into FPRs
4498 if there are two FPRs free, otherwise they should be passed in the
4499 same way as a struct containing two floats. */
4500 if (info->fpr_p
4501 && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
4502 && GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
4504 if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
4505 info->fpr_p = false;
4506 else
4507 num_words = 2;
4509 break;
4511 default:
4512 gcc_unreachable ();
4515 /* See whether the argument has doubleword alignment. */
4516 doubleword_aligned_p = FUNCTION_ARG_BOUNDARY (mode, type) > BITS_PER_WORD;
4518 /* Set REG_OFFSET to the register count we're interested in.
4519 The EABI allocates the floating-point registers separately,
4520 but the other ABIs allocate them like integer registers. */
4521 info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
4522 ? cum->num_fprs
4523 : cum->num_gprs);
4525 /* Advance to an even register if the argument is doubleword-aligned. */
4526 if (doubleword_aligned_p)
4527 info->reg_offset += info->reg_offset & 1;
4529 /* Work out the offset of a stack argument. */
4530 info->stack_offset = cum->stack_words;
4531 if (doubleword_aligned_p)
4532 info->stack_offset += info->stack_offset & 1;
4534 max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
4536 /* Partition the argument between registers and stack. */
4537 info->reg_words = MIN (num_words, max_regs);
4538 info->stack_words = num_words - info->reg_words;
4541 /* INFO describes a register argument that has the normal format for the
4542 argument's mode. Return the register it uses, assuming that FPRs are
4543 available if HARD_FLOAT_P. */
4545 static unsigned int
4546 mips_arg_regno (const struct mips_arg_info *info, bool hard_float_p)
4548 if (!info->fpr_p || !hard_float_p)
4549 return GP_ARG_FIRST + info->reg_offset;
4550 else if (mips_abi == ABI_32 && TARGET_DOUBLE_FLOAT && info->reg_offset > 0)
4551 /* In o32, the second argument is always passed in $f14
4552 for TARGET_DOUBLE_FLOAT, regardless of whether the
4553 first argument was a word or doubleword. */
4554 return FP_ARG_FIRST + 2;
4555 else
4556 return FP_ARG_FIRST + info->reg_offset;
4559 /* Implement TARGET_STRICT_ARGUMENT_NAMING. */
4561 static bool
4562 mips_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED)
4564 return !TARGET_OLDABI;
4567 /* Implement FUNCTION_ARG. */
4570 mips_function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
4571 tree type, int named)
4573 struct mips_arg_info info;
4575 /* We will be called with a mode of VOIDmode after the last argument
4576 has been seen. Whatever we return will be passed to the call expander.
4577 If we need a MIPS16 fp_code, return a REG with the code stored as
4578 the mode. */
4579 if (mode == VOIDmode)
4581 if (TARGET_MIPS16 && cum->fp_code != 0)
4582 return gen_rtx_REG ((enum machine_mode) cum->fp_code, 0);
4583 else
4584 return NULL;
4587 mips_get_arg_info (&info, cum, mode, type, named);
4589 /* Return straight away if the whole argument is passed on the stack. */
4590 if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
4591 return NULL;
4593 /* The n32 and n64 ABIs say that if any 64-bit chunk of the structure
4594 contains a double in its entirety, then that 64-bit chunk is passed
4595 in a floating-point register. */
4596 if (TARGET_NEWABI
4597 && TARGET_HARD_FLOAT
4598 && named
4599 && type != 0
4600 && TREE_CODE (type) == RECORD_TYPE
4601 && TYPE_SIZE_UNIT (type)
4602 && host_integerp (TYPE_SIZE_UNIT (type), 1))
4604 tree field;
4606 /* First check to see if there is any such field. */
4607 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4608 if (TREE_CODE (field) == FIELD_DECL
4609 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
4610 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
4611 && host_integerp (bit_position (field), 0)
4612 && int_bit_position (field) % BITS_PER_WORD == 0)
4613 break;
4615 if (field != 0)
4617 /* Now handle the special case by returning a PARALLEL
4618 indicating where each 64-bit chunk goes. INFO.REG_WORDS
4619 chunks are passed in registers. */
4620 unsigned int i;
4621 HOST_WIDE_INT bitpos;
4622 rtx ret;
4624 /* assign_parms checks the mode of ENTRY_PARM, so we must
4625 use the actual mode here. */
4626 ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
4628 bitpos = 0;
4629 field = TYPE_FIELDS (type);
4630 for (i = 0; i < info.reg_words; i++)
4632 rtx reg;
4634 for (; field; field = TREE_CHAIN (field))
4635 if (TREE_CODE (field) == FIELD_DECL
4636 && int_bit_position (field) >= bitpos)
4637 break;
4639 if (field
4640 && int_bit_position (field) == bitpos
4641 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
4642 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
4643 reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
4644 else
4645 reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
4647 XVECEXP (ret, 0, i)
4648 = gen_rtx_EXPR_LIST (VOIDmode, reg,
4649 GEN_INT (bitpos / BITS_PER_UNIT));
4651 bitpos += BITS_PER_WORD;
4653 return ret;
4657 /* Handle the n32/n64 conventions for passing complex floating-point
4658 arguments in FPR pairs. The real part goes in the lower register
4659 and the imaginary part goes in the upper register. */
4660 if (TARGET_NEWABI
4661 && info.fpr_p
4662 && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
4664 rtx real, imag;
4665 enum machine_mode inner;
4666 unsigned int regno;
4668 inner = GET_MODE_INNER (mode);
4669 regno = FP_ARG_FIRST + info.reg_offset;
4670 if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
4672 /* Real part in registers, imaginary part on stack. */
4673 gcc_assert (info.stack_words == info.reg_words);
4674 return gen_rtx_REG (inner, regno);
4676 else
4678 gcc_assert (info.stack_words == 0);
4679 real = gen_rtx_EXPR_LIST (VOIDmode,
4680 gen_rtx_REG (inner, regno),
4681 const0_rtx);
4682 imag = gen_rtx_EXPR_LIST (VOIDmode,
4683 gen_rtx_REG (inner,
4684 regno + info.reg_words / 2),
4685 GEN_INT (GET_MODE_SIZE (inner)));
4686 return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
4690 return gen_rtx_REG (mode, mips_arg_regno (&info, TARGET_HARD_FLOAT));
4693 /* Implement FUNCTION_ARG_ADVANCE. */
4695 void
4696 mips_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
4697 tree type, int named)
4699 struct mips_arg_info info;
4701 mips_get_arg_info (&info, cum, mode, type, named);
4703 if (!info.fpr_p)
4704 cum->gp_reg_found = true;
4706 /* See the comment above the CUMULATIVE_ARGS structure in mips.h for
4707 an explanation of what this code does. It assumes that we're using
4708 either the o32 or the o64 ABI, both of which pass at most 2 arguments
4709 in FPRs. */
4710 if (cum->arg_number < 2 && info.fpr_p)
4711 cum->fp_code += (mode == SFmode ? 1 : 2) << (cum->arg_number * 2);
4713 /* Advance the register count. This has the effect of setting
4714 num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
4715 argument required us to skip the final GPR and pass the whole
4716 argument on the stack. */
4717 if (mips_abi != ABI_EABI || !info.fpr_p)
4718 cum->num_gprs = info.reg_offset + info.reg_words;
4719 else if (info.reg_words > 0)
4720 cum->num_fprs += MAX_FPRS_PER_FMT;
4722 /* Advance the stack word count. */
4723 if (info.stack_words > 0)
4724 cum->stack_words = info.stack_offset + info.stack_words;
4726 cum->arg_number++;
4729 /* Implement TARGET_ARG_PARTIAL_BYTES. */
4731 static int
4732 mips_arg_partial_bytes (CUMULATIVE_ARGS *cum,
4733 enum machine_mode mode, tree type, bool named)
4735 struct mips_arg_info info;
4737 mips_get_arg_info (&info, cum, mode, type, named);
4738 return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
4741 /* Implement FUNCTION_ARG_BOUNDARY. Every parameter gets at least
4742 PARM_BOUNDARY bits of alignment, but will be given anything up
4743 to STACK_BOUNDARY bits if the type requires it. */
4746 mips_function_arg_boundary (enum machine_mode mode, tree type)
4748 unsigned int alignment;
4750 alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
4751 if (alignment < PARM_BOUNDARY)
4752 alignment = PARM_BOUNDARY;
4753 if (alignment > STACK_BOUNDARY)
4754 alignment = STACK_BOUNDARY;
4755 return alignment;
4758 /* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
4759 upward rather than downward. In other words, return true if the
4760 first byte of the stack slot has useful data, false if the last
4761 byte does. */
4763 bool
4764 mips_pad_arg_upward (enum machine_mode mode, const_tree type)
4766 /* On little-endian targets, the first byte of every stack argument
4767 is passed in the first byte of the stack slot. */
4768 if (!BYTES_BIG_ENDIAN)
4769 return true;
4771 /* Otherwise, integral types are padded downward: the last byte of a
4772 stack argument is passed in the last byte of the stack slot. */
4773 if (type != 0
4774 ? (INTEGRAL_TYPE_P (type)
4775 || POINTER_TYPE_P (type)
4776 || FIXED_POINT_TYPE_P (type))
4777 : (SCALAR_INT_MODE_P (mode)
4778 || ALL_SCALAR_FIXED_POINT_MODE_P (mode)))
4779 return false;
4781 /* Big-endian o64 pads floating-point arguments downward. */
4782 if (mips_abi == ABI_O64)
4783 if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
4784 return false;
4786 /* Other types are padded upward for o32, o64, n32 and n64. */
4787 if (mips_abi != ABI_EABI)
4788 return true;
4790 /* Arguments smaller than a stack slot are padded downward. */
4791 if (mode != BLKmode)
4792 return GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY;
4793 else
4794 return int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT);
4797 /* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...). Return !BYTES_BIG_ENDIAN
4798 if the least significant byte of the register has useful data. Return
4799 the opposite if the most significant byte does. */
4801 bool
4802 mips_pad_reg_upward (enum machine_mode mode, tree type)
4804 /* No shifting is required for floating-point arguments. */
4805 if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
4806 return !BYTES_BIG_ENDIAN;
4808 /* Otherwise, apply the same padding to register arguments as we do
4809 to stack arguments. */
4810 return mips_pad_arg_upward (mode, type);
4813 /* Return nonzero when an argument must be passed by reference. */
4815 static bool
4816 mips_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
4817 enum machine_mode mode, const_tree type,
4818 bool named ATTRIBUTE_UNUSED)
4820 if (mips_abi == ABI_EABI)
4822 int size;
4824 /* ??? How should SCmode be handled? */
4825 if (mode == DImode || mode == DFmode
4826 || mode == DQmode || mode == UDQmode
4827 || mode == DAmode || mode == UDAmode)
4828 return 0;
4830 size = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
4831 return size == -1 || size > UNITS_PER_WORD;
4833 else
4835 /* If we have a variable-sized parameter, we have no choice. */
4836 return targetm.calls.must_pass_in_stack (mode, type);
4840 /* Implement TARGET_CALLEE_COPIES. */
4842 static bool
4843 mips_callee_copies (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
4844 enum machine_mode mode ATTRIBUTE_UNUSED,
4845 const_tree type ATTRIBUTE_UNUSED, bool named)
4847 return mips_abi == ABI_EABI && named;
4850 /* See whether VALTYPE is a record whose fields should be returned in
4851 floating-point registers. If so, return the number of fields and
4852 list them in FIELDS (which should have two elements). Return 0
4853 otherwise.
4855 For n32 & n64, a structure with one or two fields is returned in
4856 floating-point registers as long as every field has a floating-point
4857 type. */
4859 static int
4860 mips_fpr_return_fields (const_tree valtype, tree *fields)
4862 tree field;
4863 int i;
4865 if (!TARGET_NEWABI)
4866 return 0;
4868 if (TREE_CODE (valtype) != RECORD_TYPE)
4869 return 0;
4871 i = 0;
4872 for (field = TYPE_FIELDS (valtype); field != 0; field = TREE_CHAIN (field))
4874 if (TREE_CODE (field) != FIELD_DECL)
4875 continue;
4877 if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)))
4878 return 0;
4880 if (i == 2)
4881 return 0;
4883 fields[i++] = field;
4885 return i;
4888 /* Implement TARGET_RETURN_IN_MSB. For n32 & n64, we should return
4889 a value in the most significant part of $2/$3 if:
4891 - the target is big-endian;
4893 - the value has a structure or union type (we generalize this to
4894 cover aggregates from other languages too); and
4896 - the structure is not returned in floating-point registers. */
4898 static bool
4899 mips_return_in_msb (const_tree valtype)
4901 tree fields[2];
4903 return (TARGET_NEWABI
4904 && TARGET_BIG_ENDIAN
4905 && AGGREGATE_TYPE_P (valtype)
4906 && mips_fpr_return_fields (valtype, fields) == 0);
4909 /* Return true if the function return value MODE will get returned in a
4910 floating-point register. */
4912 static bool
4913 mips_return_mode_in_fpr_p (enum machine_mode mode)
4915 return ((GET_MODE_CLASS (mode) == MODE_FLOAT
4916 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
4917 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
4918 && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_HWFPVALUE);
4921 /* Return the representation of an FPR return register when the
4922 value being returned in FP_RETURN has mode VALUE_MODE and the
4923 return type itself has mode TYPE_MODE. On NewABI targets,
4924 the two modes may be different for structures like:
4926 struct __attribute__((packed)) foo { float f; }
4928 where we return the SFmode value of "f" in FP_RETURN, but where
4929 the structure itself has mode BLKmode. */
4931 static rtx
4932 mips_return_fpr_single (enum machine_mode type_mode,
4933 enum machine_mode value_mode)
4935 rtx x;
4937 x = gen_rtx_REG (value_mode, FP_RETURN);
4938 if (type_mode != value_mode)
4940 x = gen_rtx_EXPR_LIST (VOIDmode, x, const0_rtx);
4941 x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x));
4943 return x;
4946 /* Return a composite value in a pair of floating-point registers.
4947 MODE1 and OFFSET1 are the mode and byte offset for the first value,
4948 likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
4949 complete value.
4951 For n32 & n64, $f0 always holds the first value and $f2 the second.
4952 Otherwise the values are packed together as closely as possible. */
4954 static rtx
4955 mips_return_fpr_pair (enum machine_mode mode,
4956 enum machine_mode mode1, HOST_WIDE_INT offset1,
4957 enum machine_mode mode2, HOST_WIDE_INT offset2)
4959 int inc;
4961 inc = (TARGET_NEWABI ? 2 : MAX_FPRS_PER_FMT);
4962 return gen_rtx_PARALLEL
4963 (mode,
4964 gen_rtvec (2,
4965 gen_rtx_EXPR_LIST (VOIDmode,
4966 gen_rtx_REG (mode1, FP_RETURN),
4967 GEN_INT (offset1)),
4968 gen_rtx_EXPR_LIST (VOIDmode,
4969 gen_rtx_REG (mode2, FP_RETURN + inc),
4970 GEN_INT (offset2))));
4974 /* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
4975 VALTYPE is the return type and MODE is VOIDmode. For libcalls,
4976 VALTYPE is null and MODE is the mode of the return value. */
4979 mips_function_value (const_tree valtype, enum machine_mode mode)
4981 if (valtype)
4983 tree fields[2];
4984 int unsigned_p;
4986 mode = TYPE_MODE (valtype);
4987 unsigned_p = TYPE_UNSIGNED (valtype);
4989 /* Since TARGET_PROMOTE_FUNCTION_RETURN unconditionally returns true,
4990 we must promote the mode just as PROMOTE_MODE does. */
4991 mode = promote_mode (valtype, mode, &unsigned_p, 1);
4993 /* Handle structures whose fields are returned in $f0/$f2. */
4994 switch (mips_fpr_return_fields (valtype, fields))
4996 case 1:
4997 return mips_return_fpr_single (mode,
4998 TYPE_MODE (TREE_TYPE (fields[0])));
5000 case 2:
5001 return mips_return_fpr_pair (mode,
5002 TYPE_MODE (TREE_TYPE (fields[0])),
5003 int_byte_position (fields[0]),
5004 TYPE_MODE (TREE_TYPE (fields[1])),
5005 int_byte_position (fields[1]));
5008 /* If a value is passed in the most significant part of a register, see
5009 whether we have to round the mode up to a whole number of words. */
5010 if (mips_return_in_msb (valtype))
5012 HOST_WIDE_INT size = int_size_in_bytes (valtype);
5013 if (size % UNITS_PER_WORD != 0)
5015 size += UNITS_PER_WORD - size % UNITS_PER_WORD;
5016 mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
5020 /* For EABI, the class of return register depends entirely on MODE.
5021 For example, "struct { some_type x; }" and "union { some_type x; }"
5022 are returned in the same way as a bare "some_type" would be.
5023 Other ABIs only use FPRs for scalar, complex or vector types. */
5024 if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype))
5025 return gen_rtx_REG (mode, GP_RETURN);
5028 if (!TARGET_MIPS16)
5030 /* Handle long doubles for n32 & n64. */
5031 if (mode == TFmode)
5032 return mips_return_fpr_pair (mode,
5033 DImode, 0,
5034 DImode, GET_MODE_SIZE (mode) / 2);
5036 if (mips_return_mode_in_fpr_p (mode))
5038 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5039 return mips_return_fpr_pair (mode,
5040 GET_MODE_INNER (mode), 0,
5041 GET_MODE_INNER (mode),
5042 GET_MODE_SIZE (mode) / 2);
5043 else
5044 return gen_rtx_REG (mode, FP_RETURN);
5048 return gen_rtx_REG (mode, GP_RETURN);
5051 /* Implement TARGET_RETURN_IN_MEMORY. Under the o32 and o64 ABIs,
5052 all BLKmode objects are returned in memory. Under the n32, n64
5053 and embedded ABIs, small structures are returned in a register.
5054 Objects with varying size must still be returned in memory, of
5055 course. */
5057 static bool
5058 mips_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
5060 return (TARGET_OLDABI
5061 ? TYPE_MODE (type) == BLKmode
5062 : !IN_RANGE (int_size_in_bytes (type), 0, 2 * UNITS_PER_WORD));
5065 /* Implement TARGET_SETUP_INCOMING_VARARGS. */
5067 static void
5068 mips_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
5069 tree type, int *pretend_size ATTRIBUTE_UNUSED,
5070 int no_rtl)
5072 CUMULATIVE_ARGS local_cum;
5073 int gp_saved, fp_saved;
5075 /* The caller has advanced CUM up to, but not beyond, the last named
5076 argument. Advance a local copy of CUM past the last "real" named
5077 argument, to find out how many registers are left over. */
5078 local_cum = *cum;
5079 FUNCTION_ARG_ADVANCE (local_cum, mode, type, true);
5081 /* Found out how many registers we need to save. */
5082 gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
5083 fp_saved = (EABI_FLOAT_VARARGS_P
5084 ? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
5085 : 0);
5087 if (!no_rtl)
5089 if (gp_saved > 0)
5091 rtx ptr, mem;
5093 ptr = plus_constant (virtual_incoming_args_rtx,
5094 REG_PARM_STACK_SPACE (cfun->decl)
5095 - gp_saved * UNITS_PER_WORD);
5096 mem = gen_frame_mem (BLKmode, ptr);
5097 set_mem_alias_set (mem, get_varargs_alias_set ());
5099 move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
5100 mem, gp_saved);
5102 if (fp_saved > 0)
5104 /* We can't use move_block_from_reg, because it will use
5105 the wrong mode. */
5106 enum machine_mode mode;
5107 int off, i;
5109 /* Set OFF to the offset from virtual_incoming_args_rtx of
5110 the first float register. The FP save area lies below
5111 the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */
5112 off = (-gp_saved * UNITS_PER_WORD) & -UNITS_PER_FPVALUE;
5113 off -= fp_saved * UNITS_PER_FPREG;
5115 mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
5117 for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS;
5118 i += MAX_FPRS_PER_FMT)
5120 rtx ptr, mem;
5122 ptr = plus_constant (virtual_incoming_args_rtx, off);
5123 mem = gen_frame_mem (mode, ptr);
5124 set_mem_alias_set (mem, get_varargs_alias_set ());
5125 mips_emit_move (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i));
5126 off += UNITS_PER_HWFPVALUE;
5130 if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
5131 cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD
5132 + fp_saved * UNITS_PER_FPREG);
5135 /* Implement TARGET_BUILTIN_VA_LIST. */
5137 static tree
5138 mips_build_builtin_va_list (void)
5140 if (EABI_FLOAT_VARARGS_P)
5142 /* We keep 3 pointers, and two offsets.
5144 Two pointers are to the overflow area, which starts at the CFA.
5145 One of these is constant, for addressing into the GPR save area
5146 below it. The other is advanced up the stack through the
5147 overflow region.
5149 The third pointer is to the bottom of the GPR save area.
5150 Since the FPR save area is just below it, we can address
5151 FPR slots off this pointer.
5153 We also keep two one-byte offsets, which are to be subtracted
5154 from the constant pointers to yield addresses in the GPR and
5155 FPR save areas. These are downcounted as float or non-float
5156 arguments are used, and when they get to zero, the argument
5157 must be obtained from the overflow region. */
5158 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record;
5159 tree array, index;
5161 record = lang_hooks.types.make_type (RECORD_TYPE);
5163 f_ovfl = build_decl (BUILTINS_LOCATION,
5164 FIELD_DECL, get_identifier ("__overflow_argptr"),
5165 ptr_type_node);
5166 f_gtop = build_decl (BUILTINS_LOCATION,
5167 FIELD_DECL, get_identifier ("__gpr_top"),
5168 ptr_type_node);
5169 f_ftop = build_decl (BUILTINS_LOCATION,
5170 FIELD_DECL, get_identifier ("__fpr_top"),
5171 ptr_type_node);
5172 f_goff = build_decl (BUILTINS_LOCATION,
5173 FIELD_DECL, get_identifier ("__gpr_offset"),
5174 unsigned_char_type_node);
5175 f_foff = build_decl (BUILTINS_LOCATION,
5176 FIELD_DECL, get_identifier ("__fpr_offset"),
5177 unsigned_char_type_node);
5178 /* Explicitly pad to the size of a pointer, so that -Wpadded won't
5179 warn on every user file. */
5180 index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1);
5181 array = build_array_type (unsigned_char_type_node,
5182 build_index_type (index));
5183 f_res = build_decl (BUILTINS_LOCATION,
5184 FIELD_DECL, get_identifier ("__reserved"), array);
5186 DECL_FIELD_CONTEXT (f_ovfl) = record;
5187 DECL_FIELD_CONTEXT (f_gtop) = record;
5188 DECL_FIELD_CONTEXT (f_ftop) = record;
5189 DECL_FIELD_CONTEXT (f_goff) = record;
5190 DECL_FIELD_CONTEXT (f_foff) = record;
5191 DECL_FIELD_CONTEXT (f_res) = record;
5193 TYPE_FIELDS (record) = f_ovfl;
5194 TREE_CHAIN (f_ovfl) = f_gtop;
5195 TREE_CHAIN (f_gtop) = f_ftop;
5196 TREE_CHAIN (f_ftop) = f_goff;
5197 TREE_CHAIN (f_goff) = f_foff;
5198 TREE_CHAIN (f_foff) = f_res;
5200 layout_type (record);
5201 return record;
5203 else if (TARGET_IRIX && TARGET_IRIX6)
5204 /* On IRIX 6, this type is 'char *'. */
5205 return build_pointer_type (char_type_node);
5206 else
5207 /* Otherwise, we use 'void *'. */
5208 return ptr_type_node;
5211 /* Implement TARGET_EXPAND_BUILTIN_VA_START. */
5213 static void
5214 mips_va_start (tree valist, rtx nextarg)
5216 if (EABI_FLOAT_VARARGS_P)
5218 const CUMULATIVE_ARGS *cum;
5219 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
5220 tree ovfl, gtop, ftop, goff, foff;
5221 tree t;
5222 int gpr_save_area_size;
5223 int fpr_save_area_size;
5224 int fpr_offset;
5226 cum = &crtl->args.info;
5227 gpr_save_area_size
5228 = (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
5229 fpr_save_area_size
5230 = (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;
5232 f_ovfl = TYPE_FIELDS (va_list_type_node);
5233 f_gtop = TREE_CHAIN (f_ovfl);
5234 f_ftop = TREE_CHAIN (f_gtop);
5235 f_goff = TREE_CHAIN (f_ftop);
5236 f_foff = TREE_CHAIN (f_goff);
5238 ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
5239 NULL_TREE);
5240 gtop = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
5241 NULL_TREE);
5242 ftop = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
5243 NULL_TREE);
5244 goff = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
5245 NULL_TREE);
5246 foff = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
5247 NULL_TREE);
5249 /* Emit code to initialize OVFL, which points to the next varargs
5250 stack argument. CUM->STACK_WORDS gives the number of stack
5251 words used by named arguments. */
5252 t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
5253 if (cum->stack_words > 0)
5254 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovfl), t,
5255 size_int (cum->stack_words * UNITS_PER_WORD));
5256 t = build2 (MODIFY_EXPR, TREE_TYPE (ovfl), ovfl, t);
5257 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
5259 /* Emit code to initialize GTOP, the top of the GPR save area. */
5260 t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
5261 t = build2 (MODIFY_EXPR, TREE_TYPE (gtop), gtop, t);
5262 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
5264 /* Emit code to initialize FTOP, the top of the FPR save area.
5265 This address is gpr_save_area_bytes below GTOP, rounded
5266 down to the next fp-aligned boundary. */
5267 t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
5268 fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
5269 fpr_offset &= -UNITS_PER_FPVALUE;
5270 if (fpr_offset)
5271 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ftop), t,
5272 size_int (-fpr_offset));
5273 t = build2 (MODIFY_EXPR, TREE_TYPE (ftop), ftop, t);
5274 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
5276 /* Emit code to initialize GOFF, the offset from GTOP of the
5277 next GPR argument. */
5278 t = build2 (MODIFY_EXPR, TREE_TYPE (goff), goff,
5279 build_int_cst (TREE_TYPE (goff), gpr_save_area_size));
5280 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
5282 /* Likewise emit code to initialize FOFF, the offset from FTOP
5283 of the next FPR argument. */
5284 t = build2 (MODIFY_EXPR, TREE_TYPE (foff), foff,
5285 build_int_cst (TREE_TYPE (foff), fpr_save_area_size));
5286 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
5288 else
5290 nextarg = plus_constant (nextarg, -cfun->machine->varargs_size);
5291 std_expand_builtin_va_start (valist, nextarg);
5295 /* Implement TARGET_GIMPLIFY_VA_ARG_EXPR. */
5297 static tree
5298 mips_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
5299 gimple_seq *post_p)
5301 tree addr;
5302 bool indirect_p;
5304 indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
5305 if (indirect_p)
5306 type = build_pointer_type (type);
5308 if (!EABI_FLOAT_VARARGS_P)
5309 addr = std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
5310 else
5312 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
5313 tree ovfl, top, off, align;
5314 HOST_WIDE_INT size, rsize, osize;
5315 tree t, u;
5317 f_ovfl = TYPE_FIELDS (va_list_type_node);
5318 f_gtop = TREE_CHAIN (f_ovfl);
5319 f_ftop = TREE_CHAIN (f_gtop);
5320 f_goff = TREE_CHAIN (f_ftop);
5321 f_foff = TREE_CHAIN (f_goff);
5323 /* Let:
5325 TOP be the top of the GPR or FPR save area;
5326 OFF be the offset from TOP of the next register;
5327 ADDR_RTX be the address of the argument;
5328 SIZE be the number of bytes in the argument type;
5329 RSIZE be the number of bytes used to store the argument
5330 when it's in the register save area; and
5331 OSIZE be the number of bytes used to store it when it's
5332 in the stack overflow area.
5334 The code we want is:
5336 1: off &= -rsize; // round down
5337 2: if (off != 0)
5338 3: {
5339 4: addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0);
5340 5: off -= rsize;
5341 6: }
5342 7: else
5343 8: {
5344 9: ovfl = ((intptr_t) ovfl + osize - 1) & -osize;
5345 10: addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0);
5346 11: ovfl += osize;
5347 14: }
5349 [1] and [9] can sometimes be optimized away. */
5351 ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
5352 NULL_TREE);
5353 size = int_size_in_bytes (type);
5355 if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT
5356 && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE)
5358 top = build3 (COMPONENT_REF, TREE_TYPE (f_ftop),
5359 unshare_expr (valist), f_ftop, NULL_TREE);
5360 off = build3 (COMPONENT_REF, TREE_TYPE (f_foff),
5361 unshare_expr (valist), f_foff, NULL_TREE);
5363 /* When va_start saves FPR arguments to the stack, each slot
5364 takes up UNITS_PER_HWFPVALUE bytes, regardless of the
5365 argument's precision. */
5366 rsize = UNITS_PER_HWFPVALUE;
5368 /* Overflow arguments are padded to UNITS_PER_WORD bytes
5369 (= PARM_BOUNDARY bits). This can be different from RSIZE
5370 in two cases:
5372 (1) On 32-bit targets when TYPE is a structure such as:
5374 struct s { float f; };
5376 Such structures are passed in paired FPRs, so RSIZE
5377 will be 8 bytes. However, the structure only takes
5378 up 4 bytes of memory, so OSIZE will only be 4.
5380 (2) In combinations such as -mgp64 -msingle-float
5381 -fshort-double. Doubles passed in registers will then take
5382 up 4 (UNITS_PER_HWFPVALUE) bytes, but those passed on the
5383 stack take up UNITS_PER_WORD bytes. */
5384 osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD);
5386 else
5388 top = build3 (COMPONENT_REF, TREE_TYPE (f_gtop),
5389 unshare_expr (valist), f_gtop, NULL_TREE);
5390 off = build3 (COMPONENT_REF, TREE_TYPE (f_goff),
5391 unshare_expr (valist), f_goff, NULL_TREE);
5392 rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
5393 if (rsize > UNITS_PER_WORD)
5395 /* [1] Emit code for: off &= -rsize. */
5396 t = build2 (BIT_AND_EXPR, TREE_TYPE (off), unshare_expr (off),
5397 build_int_cst (TREE_TYPE (off), -rsize));
5398 gimplify_assign (unshare_expr (off), t, pre_p);
5400 osize = rsize;
5403 /* [2] Emit code to branch if off == 0. */
5404 t = build2 (NE_EXPR, boolean_type_node, off,
5405 build_int_cst (TREE_TYPE (off), 0));
5406 addr = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);
5408 /* [5] Emit code for: off -= rsize. We do this as a form of
5409 post-decrement not available to C. */
5410 t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize));
5411 t = build2 (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t);
5413 /* [4] Emit code for:
5414 addr_rtx = top - off + (BYTES_BIG_ENDIAN ? RSIZE - SIZE : 0). */
5415 t = fold_convert (sizetype, t);
5416 t = fold_build1 (NEGATE_EXPR, sizetype, t);
5417 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (top), top, t);
5418 if (BYTES_BIG_ENDIAN && rsize > size)
5420 u = size_int (rsize - size);
5421 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, u);
5423 COND_EXPR_THEN (addr) = t;
5425 if (osize > UNITS_PER_WORD)
5427 /* [9] Emit: ovfl = ((intptr_t) ovfl + osize - 1) & -osize. */
5428 u = size_int (osize - 1);
5429 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovfl),
5430 unshare_expr (ovfl), u);
5431 t = fold_convert (sizetype, t);
5432 u = size_int (-osize);
5433 t = build2 (BIT_AND_EXPR, sizetype, t, u);
5434 t = fold_convert (TREE_TYPE (ovfl), t);
5435 align = build2 (MODIFY_EXPR, TREE_TYPE (ovfl),
5436 unshare_expr (ovfl), t);
5438 else
5439 align = NULL;
5441 /* [10, 11] Emit code for:
5442 addr_rtx = ovfl + (BYTES_BIG_ENDIAN ? OSIZE - SIZE : 0)
5443 ovfl += osize. */
5444 u = fold_convert (TREE_TYPE (ovfl), build_int_cst (NULL_TREE, osize));
5445 t = build2 (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u);
5446 if (BYTES_BIG_ENDIAN && osize > size)
5448 u = size_int (osize - size);
5449 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, u);
5452 /* String [9] and [10, 11] together. */
5453 if (align)
5454 t = build2 (COMPOUND_EXPR, TREE_TYPE (t), align, t);
5455 COND_EXPR_ELSE (addr) = t;
5457 addr = fold_convert (build_pointer_type (type), addr);
5458 addr = build_va_arg_indirect_ref (addr);
5461 if (indirect_p)
5462 addr = build_va_arg_indirect_ref (addr);
5464 return addr;
5467 /* Start a definition of function NAME. MIPS16_P indicates whether the
5468 function contains MIPS16 code. */
5470 static void
5471 mips_start_function_definition (const char *name, bool mips16_p)
5473 if (mips16_p)
5474 fprintf (asm_out_file, "\t.set\tmips16\n");
5475 else
5476 fprintf (asm_out_file, "\t.set\tnomips16\n");
5478 if (!flag_inhibit_size_directive)
5480 fputs ("\t.ent\t", asm_out_file);
5481 assemble_name (asm_out_file, name);
5482 fputs ("\n", asm_out_file);
5485 ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file, name, "function");
5487 /* Start the definition proper. */
5488 assemble_name (asm_out_file, name);
5489 fputs (":\n", asm_out_file);
5492 /* End a function definition started by mips_start_function_definition. */
5494 static void
5495 mips_end_function_definition (const char *name)
5497 if (!flag_inhibit_size_directive)
5499 fputs ("\t.end\t", asm_out_file);
5500 assemble_name (asm_out_file, name);
5501 fputs ("\n", asm_out_file);
5505 /* Return true if calls to X can use R_MIPS_CALL* relocations. */
5507 static bool
5508 mips_ok_for_lazy_binding_p (rtx x)
5510 return (TARGET_USE_GOT
5511 && GET_CODE (x) == SYMBOL_REF
5512 && !SYMBOL_REF_BIND_NOW_P (x)
5513 && !mips_symbol_binds_local_p (x));
5516 /* Load function address ADDR into register DEST. TYPE is as for
5517 mips_expand_call. Return true if we used an explicit lazy-binding
5518 sequence. */
5520 static bool
5521 mips_load_call_address (enum mips_call_type type, rtx dest, rtx addr)
5523 /* If we're generating PIC, and this call is to a global function,
5524 try to allow its address to be resolved lazily. This isn't
5525 possible for sibcalls when $gp is call-saved because the value
5526 of $gp on entry to the stub would be our caller's gp, not ours. */
5527 if (TARGET_EXPLICIT_RELOCS
5528 && !(type == MIPS_CALL_SIBCALL && TARGET_CALL_SAVED_GP)
5529 && mips_ok_for_lazy_binding_p (addr))
5531 addr = mips_got_load (dest, addr, SYMBOL_GOTOFF_CALL);
5532 emit_insn (gen_rtx_SET (VOIDmode, dest, addr));
5533 return true;
5535 else
5537 mips_emit_move (dest, addr);
5538 return false;
5542 /* Each locally-defined hard-float MIPS16 function has a local symbol
5543 associated with it. This hash table maps the function symbol (FUNC)
5544 to the local symbol (LOCAL). */
5545 struct GTY(()) mips16_local_alias {
5546 rtx func;
5547 rtx local;
5549 static GTY ((param_is (struct mips16_local_alias))) htab_t mips16_local_aliases;
5551 /* Hash table callbacks for mips16_local_aliases. */
5553 static hashval_t
5554 mips16_local_aliases_hash (const void *entry)
5556 const struct mips16_local_alias *alias;
5558 alias = (const struct mips16_local_alias *) entry;
5559 return htab_hash_string (XSTR (alias->func, 0));
5562 static int
5563 mips16_local_aliases_eq (const void *entry1, const void *entry2)
5565 const struct mips16_local_alias *alias1, *alias2;
5567 alias1 = (const struct mips16_local_alias *) entry1;
5568 alias2 = (const struct mips16_local_alias *) entry2;
5569 return rtx_equal_p (alias1->func, alias2->func);
5572 /* FUNC is the symbol for a locally-defined hard-float MIPS16 function.
5573 Return a local alias for it, creating a new one if necessary. */
5575 static rtx
5576 mips16_local_alias (rtx func)
5578 struct mips16_local_alias *alias, tmp_alias;
5579 void **slot;
5581 /* Create the hash table if this is the first call. */
5582 if (mips16_local_aliases == NULL)
5583 mips16_local_aliases = htab_create_ggc (37, mips16_local_aliases_hash,
5584 mips16_local_aliases_eq, NULL);
5586 /* Look up the function symbol, creating a new entry if need be. */
5587 tmp_alias.func = func;
5588 slot = htab_find_slot (mips16_local_aliases, &tmp_alias, INSERT);
5589 gcc_assert (slot != NULL);
5591 alias = (struct mips16_local_alias *) *slot;
5592 if (alias == NULL)
5594 const char *func_name, *local_name;
5595 rtx local;
5597 /* Create a new SYMBOL_REF for the local symbol. The choice of
5598 __fn_local_* is based on the __fn_stub_* names that we've
5599 traditionally used for the non-MIPS16 stub. */
5600 func_name = targetm.strip_name_encoding (XSTR (func, 0));
5601 local_name = ACONCAT (("__fn_local_", func_name, NULL));
5602 local = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (local_name));
5603 SYMBOL_REF_FLAGS (local) = SYMBOL_REF_FLAGS (func) | SYMBOL_FLAG_LOCAL;
5605 /* Create a new structure to represent the mapping. */
5606 alias = GGC_NEW (struct mips16_local_alias);
5607 alias->func = func;
5608 alias->local = local;
5609 *slot = alias;
5611 return alias->local;
5614 /* A chained list of functions for which mips16_build_call_stub has already
5615 generated a stub. NAME is the name of the function and FP_RET_P is true
5616 if the function returns a value in floating-point registers. */
5617 struct mips16_stub {
5618 struct mips16_stub *next;
5619 char *name;
5620 bool fp_ret_p;
5622 static struct mips16_stub *mips16_stubs;
5624 /* Return a SYMBOL_REF for a MIPS16 function called NAME. */
5626 static rtx
5627 mips16_stub_function (const char *name)
5629 rtx x;
5631 x = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name));
5632 SYMBOL_REF_FLAGS (x) |= (SYMBOL_FLAG_EXTERNAL | SYMBOL_FLAG_FUNCTION);
5633 return x;
5636 /* Return the two-character string that identifies floating-point
5637 return mode MODE in the name of a MIPS16 function stub. */
5639 static const char *
5640 mips16_call_stub_mode_suffix (enum machine_mode mode)
5642 if (mode == SFmode)
5643 return "sf";
5644 else if (mode == DFmode)
5645 return "df";
5646 else if (mode == SCmode)
5647 return "sc";
5648 else if (mode == DCmode)
5649 return "dc";
5650 else if (mode == V2SFmode)
5651 return "df";
5652 else
5653 gcc_unreachable ();
5656 /* Write instructions to move a 32-bit value between general register
5657 GPREG and floating-point register FPREG. DIRECTION is 't' to move
5658 from GPREG to FPREG and 'f' to move in the opposite direction. */
5660 static void
5661 mips_output_32bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg)
5663 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
5664 reg_names[gpreg], reg_names[fpreg]);
5667 /* Likewise for 64-bit values. */
5669 static void
5670 mips_output_64bit_xfer (char direction, unsigned int gpreg, unsigned int fpreg)
5672 if (TARGET_64BIT)
5673 fprintf (asm_out_file, "\tdm%cc1\t%s,%s\n", direction,
5674 reg_names[gpreg], reg_names[fpreg]);
5675 else if (TARGET_FLOAT64)
5677 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
5678 reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]);
5679 fprintf (asm_out_file, "\tm%chc1\t%s,%s\n", direction,
5680 reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg]);
5682 else
5684 /* Move the least-significant word. */
5685 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
5686 reg_names[gpreg + TARGET_BIG_ENDIAN], reg_names[fpreg]);
5687 /* ...then the most significant word. */
5688 fprintf (asm_out_file, "\tm%cc1\t%s,%s\n", direction,
5689 reg_names[gpreg + TARGET_LITTLE_ENDIAN], reg_names[fpreg + 1]);
5693 /* Write out code to move floating-point arguments into or out of
5694 general registers. FP_CODE is the code describing which arguments
5695 are present (see the comment above the definition of CUMULATIVE_ARGS
5696 in mips.h). DIRECTION is as for mips_output_32bit_xfer. */
5698 static void
5699 mips_output_args_xfer (int fp_code, char direction)
5701 unsigned int gparg, fparg, f;
5702 CUMULATIVE_ARGS cum;
5704 /* This code only works for o32 and o64. */
5705 gcc_assert (TARGET_OLDABI);
5707 mips_init_cumulative_args (&cum, NULL);
5709 for (f = (unsigned int) fp_code; f != 0; f >>= 2)
5711 enum machine_mode mode;
5712 struct mips_arg_info info;
5714 if ((f & 3) == 1)
5715 mode = SFmode;
5716 else if ((f & 3) == 2)
5717 mode = DFmode;
5718 else
5719 gcc_unreachable ();
5721 mips_get_arg_info (&info, &cum, mode, NULL, true);
5722 gparg = mips_arg_regno (&info, false);
5723 fparg = mips_arg_regno (&info, true);
5725 if (mode == SFmode)
5726 mips_output_32bit_xfer (direction, gparg, fparg);
5727 else
5728 mips_output_64bit_xfer (direction, gparg, fparg);
5730 mips_function_arg_advance (&cum, mode, NULL, true);
5734 /* Write a MIPS16 stub for the current function. This stub is used
5735 for functions which take arguments in the floating-point registers.
5736 It is normal-mode code that moves the floating-point arguments
5737 into the general registers and then jumps to the MIPS16 code. */
5739 static void
5740 mips16_build_function_stub (void)
5742 const char *fnname, *alias_name, *separator;
5743 char *secname, *stubname;
5744 tree stubdecl;
5745 unsigned int f;
5746 rtx symbol, alias;
5748 /* Create the name of the stub, and its unique section. */
5749 symbol = XEXP (DECL_RTL (current_function_decl), 0);
5750 alias = mips16_local_alias (symbol);
5752 fnname = targetm.strip_name_encoding (XSTR (symbol, 0));
5753 alias_name = targetm.strip_name_encoding (XSTR (alias, 0));
5754 secname = ACONCAT ((".mips16.fn.", fnname, NULL));
5755 stubname = ACONCAT (("__fn_stub_", fnname, NULL));
5757 /* Build a decl for the stub. */
5758 stubdecl = build_decl (BUILTINS_LOCATION,
5759 FUNCTION_DECL, get_identifier (stubname),
5760 build_function_type (void_type_node, NULL_TREE));
5761 DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
5762 DECL_RESULT (stubdecl) = build_decl (BUILTINS_LOCATION,
5763 RESULT_DECL, NULL_TREE, void_type_node);
5765 /* Output a comment. */
5766 fprintf (asm_out_file, "\t# Stub function for %s (",
5767 current_function_name ());
5768 separator = "";
5769 for (f = (unsigned int) crtl->args.info.fp_code; f != 0; f >>= 2)
5771 fprintf (asm_out_file, "%s%s", separator,
5772 (f & 3) == 1 ? "float" : "double");
5773 separator = ", ";
5775 fprintf (asm_out_file, ")\n");
5777 /* Start the function definition. */
5778 assemble_start_function (stubdecl, stubname);
5779 mips_start_function_definition (stubname, false);
5781 /* If generating pic2 code, either set up the global pointer or
5782 switch to pic0. */
5783 if (TARGET_ABICALLS_PIC2)
5785 if (TARGET_ABSOLUTE_ABICALLS)
5786 fprintf (asm_out_file, "\t.option\tpic0\n");
5787 else
5789 output_asm_insn ("%(.cpload\t%^%)", NULL);
5790 /* Emit an R_MIPS_NONE relocation to tell the linker what the
5791 target function is. Use a local GOT access when loading the
5792 symbol, to cut down on the number of unnecessary GOT entries
5793 for stubs that aren't needed. */
5794 output_asm_insn (".reloc\t0,R_MIPS_NONE,%0", &symbol);
5795 symbol = alias;
5799 /* Load the address of the MIPS16 function into $25. Do this first so
5800 that targets with coprocessor interlocks can use an MFC1 to fill the
5801 delay slot. */
5802 output_asm_insn ("la\t%^,%0", &symbol);
5804 /* Move the arguments from floating-point registers to general registers. */
5805 mips_output_args_xfer (crtl->args.info.fp_code, 'f');
5807 /* Jump to the MIPS16 function. */
5808 output_asm_insn ("jr\t%^", NULL);
5810 if (TARGET_ABICALLS_PIC2 && TARGET_ABSOLUTE_ABICALLS)
5811 fprintf (asm_out_file, "\t.option\tpic2\n");
5813 mips_end_function_definition (stubname);
5815 /* If the linker needs to create a dynamic symbol for the target
5816 function, it will associate the symbol with the stub (which,
5817 unlike the target function, follows the proper calling conventions).
5818 It is therefore useful to have a local alias for the target function,
5819 so that it can still be identified as MIPS16 code. As an optimization,
5820 this symbol can also be used for indirect MIPS16 references from
5821 within this file. */
5822 ASM_OUTPUT_DEF (asm_out_file, alias_name, fnname);
5824 switch_to_section (function_section (current_function_decl));
5827 /* The current function is a MIPS16 function that returns a value in an FPR.
5828 Copy the return value from its soft-float to its hard-float location.
5829 libgcc2 has special non-MIPS16 helper functions for each case. */
5831 static void
5832 mips16_copy_fpr_return_value (void)
5834 rtx fn, insn, retval;
5835 tree return_type;
5836 enum machine_mode return_mode;
5837 const char *name;
5839 return_type = DECL_RESULT (current_function_decl);
5840 return_mode = DECL_MODE (return_type);
5842 name = ACONCAT (("__mips16_ret_",
5843 mips16_call_stub_mode_suffix (return_mode),
5844 NULL));
5845 fn = mips16_stub_function (name);
5847 /* The function takes arguments in $2 (and possibly $3), so calls
5848 to it cannot be lazily bound. */
5849 SYMBOL_REF_FLAGS (fn) |= SYMBOL_FLAG_BIND_NOW;
5851 /* Model the call as something that takes the GPR return value as
5852 argument and returns an "updated" value. */
5853 retval = gen_rtx_REG (return_mode, GP_RETURN);
5854 insn = mips_expand_call (MIPS_CALL_EPILOGUE, retval, fn,
5855 const0_rtx, NULL_RTX, false);
5856 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), retval);
5859 /* Consider building a stub for a MIPS16 call to function *FN_PTR.
5860 RETVAL is the location of the return value, or null if this is
5861 a "call" rather than a "call_value". ARGS_SIZE is the size of the
5862 arguments and FP_CODE is the code built by mips_function_arg;
5863 see the comment above CUMULATIVE_ARGS for details.
5865 There are three alternatives:
5867 - If a stub was needed, emit the call and return the call insn itself.
5869 - If we can avoid using a stub by redirecting the call, set *FN_PTR
5870 to the new target and return null.
5872 - If *FN_PTR doesn't need a stub, return null and leave *FN_PTR
5873 unmodified.
5875 A stub is needed for calls to functions that, in normal mode,
5876 receive arguments in FPRs or return values in FPRs. The stub
5877 copies the arguments from their soft-float positions to their
5878 hard-float positions, calls the real function, then copies the
5879 return value from its hard-float position to its soft-float
5880 position.
5882 We can emit a JAL to *FN_PTR even when *FN_PTR might need a stub.
5883 If *FN_PTR turns out to be to a non-MIPS16 function, the linker
5884 automatically redirects the JAL to the stub, otherwise the JAL
5885 continues to call FN directly. */
5887 static rtx
5888 mips16_build_call_stub (rtx retval, rtx *fn_ptr, rtx args_size, int fp_code)
5890 const char *fnname;
5891 bool fp_ret_p;
5892 struct mips16_stub *l;
5893 rtx insn, fn;
5895 /* We don't need to do anything if we aren't in MIPS16 mode, or if
5896 we were invoked with the -msoft-float option. */
5897 if (!TARGET_MIPS16 || TARGET_SOFT_FLOAT_ABI)
5898 return NULL_RTX;
5900 /* Figure out whether the value might come back in a floating-point
5901 register. */
5902 fp_ret_p = retval && mips_return_mode_in_fpr_p (GET_MODE (retval));
5904 /* We don't need to do anything if there were no floating-point
5905 arguments and the value will not be returned in a floating-point
5906 register. */
5907 if (fp_code == 0 && !fp_ret_p)
5908 return NULL_RTX;
5910 /* We don't need to do anything if this is a call to a special
5911 MIPS16 support function. */
5912 fn = *fn_ptr;
5913 if (mips16_stub_function_p (fn))
5914 return NULL_RTX;
5916 /* This code will only work for o32 and o64 abis. The other ABI's
5917 require more sophisticated support. */
5918 gcc_assert (TARGET_OLDABI);
5920 /* If we're calling via a function pointer, use one of the magic
5921 libgcc.a stubs provided for each (FP_CODE, FP_RET_P) combination.
5922 Each stub expects the function address to arrive in register $2. */
5923 if (GET_CODE (fn) != SYMBOL_REF
5924 || !call_insn_operand (fn, VOIDmode))
5926 char buf[30];
5927 rtx stub_fn, insn, addr;
5928 bool lazy_p;
5930 /* If this is a locally-defined and locally-binding function,
5931 avoid the stub by calling the local alias directly. */
5932 if (mips16_local_function_p (fn))
5934 *fn_ptr = mips16_local_alias (fn);
5935 return NULL_RTX;
5938 /* Create a SYMBOL_REF for the libgcc.a function. */
5939 if (fp_ret_p)
5940 sprintf (buf, "__mips16_call_stub_%s_%d",
5941 mips16_call_stub_mode_suffix (GET_MODE (retval)),
5942 fp_code);
5943 else
5944 sprintf (buf, "__mips16_call_stub_%d", fp_code);
5945 stub_fn = mips16_stub_function (buf);
5947 /* The function uses $2 as an argument, so calls to it
5948 cannot be lazily bound. */
5949 SYMBOL_REF_FLAGS (stub_fn) |= SYMBOL_FLAG_BIND_NOW;
5951 /* Load the target function into $2. */
5952 addr = gen_rtx_REG (Pmode, GP_REG_FIRST + 2);
5953 lazy_p = mips_load_call_address (MIPS_CALL_NORMAL, addr, fn);
5955 /* Emit the call. */
5956 insn = mips_expand_call (MIPS_CALL_NORMAL, retval, stub_fn,
5957 args_size, NULL_RTX, lazy_p);
5959 /* Tell GCC that this call does indeed use the value of $2. */
5960 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), addr);
5962 /* If we are handling a floating-point return value, we need to
5963 save $18 in the function prologue. Putting a note on the
5964 call will mean that df_regs_ever_live_p ($18) will be true if the
5965 call is not eliminated, and we can check that in the prologue
5966 code. */
5967 if (fp_ret_p)
5968 CALL_INSN_FUNCTION_USAGE (insn) =
5969 gen_rtx_EXPR_LIST (VOIDmode,
5970 gen_rtx_CLOBBER (VOIDmode,
5971 gen_rtx_REG (word_mode, 18)),
5972 CALL_INSN_FUNCTION_USAGE (insn));
5974 return insn;
5977 /* We know the function we are going to call. If we have already
5978 built a stub, we don't need to do anything further. */
5979 fnname = targetm.strip_name_encoding (XSTR (fn, 0));
5980 for (l = mips16_stubs; l != NULL; l = l->next)
5981 if (strcmp (l->name, fnname) == 0)
5982 break;
5984 if (l == NULL)
5986 const char *separator;
5987 char *secname, *stubname;
5988 tree stubid, stubdecl;
5989 unsigned int f;
5991 /* If the function does not return in FPRs, the special stub
5992 section is named
5993 .mips16.call.FNNAME
5995 If the function does return in FPRs, the stub section is named
5996 .mips16.call.fp.FNNAME
5998 Build a decl for the stub. */
5999 secname = ACONCAT ((".mips16.call.", fp_ret_p ? "fp." : "",
6000 fnname, NULL));
6001 stubname = ACONCAT (("__call_stub_", fp_ret_p ? "fp_" : "",
6002 fnname, NULL));
6003 stubid = get_identifier (stubname);
6004 stubdecl = build_decl (BUILTINS_LOCATION,
6005 FUNCTION_DECL, stubid,
6006 build_function_type (void_type_node, NULL_TREE));
6007 DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
6008 DECL_RESULT (stubdecl) = build_decl (BUILTINS_LOCATION,
6009 RESULT_DECL, NULL_TREE,
6010 void_type_node);
6012 /* Output a comment. */
6013 fprintf (asm_out_file, "\t# Stub function to call %s%s (",
6014 (fp_ret_p
6015 ? (GET_MODE (retval) == SFmode ? "float " : "double ")
6016 : ""),
6017 fnname);
6018 separator = "";
6019 for (f = (unsigned int) fp_code; f != 0; f >>= 2)
6021 fprintf (asm_out_file, "%s%s", separator,
6022 (f & 3) == 1 ? "float" : "double");
6023 separator = ", ";
6025 fprintf (asm_out_file, ")\n");
6027 /* Start the function definition. */
6028 assemble_start_function (stubdecl, stubname);
6029 mips_start_function_definition (stubname, false);
6031 if (!fp_ret_p)
6033 /* Load the address of the MIPS16 function into $25. Do this
6034 first so that targets with coprocessor interlocks can use
6035 an MFC1 to fill the delay slot. */
6036 if (TARGET_EXPLICIT_RELOCS)
6038 output_asm_insn ("lui\t%^,%%hi(%0)", &fn);
6039 output_asm_insn ("addiu\t%^,%^,%%lo(%0)", &fn);
6041 else
6042 output_asm_insn ("la\t%^,%0", &fn);
6045 /* Move the arguments from general registers to floating-point
6046 registers. */
6047 mips_output_args_xfer (fp_code, 't');
6049 if (!fp_ret_p)
6051 /* Jump to the previously-loaded address. */
6052 output_asm_insn ("jr\t%^", NULL);
6054 else
6056 /* Save the return address in $18 and call the non-MIPS16 function.
6057 The stub's caller knows that $18 might be clobbered, even though
6058 $18 is usually a call-saved register. */
6059 fprintf (asm_out_file, "\tmove\t%s,%s\n",
6060 reg_names[GP_REG_FIRST + 18], reg_names[GP_REG_FIRST + 31]);
6061 output_asm_insn (MIPS_CALL ("jal", &fn, 0), &fn);
6063 /* Move the result from floating-point registers to
6064 general registers. */
6065 switch (GET_MODE (retval))
6067 case SCmode:
6068 mips_output_32bit_xfer ('f', GP_RETURN + 1,
6069 FP_REG_FIRST + MAX_FPRS_PER_FMT);
6070 /* Fall though. */
6071 case SFmode:
6072 mips_output_32bit_xfer ('f', GP_RETURN, FP_REG_FIRST);
6073 if (GET_MODE (retval) == SCmode && TARGET_64BIT)
6075 /* On 64-bit targets, complex floats are returned in
6076 a single GPR, such that "sd" on a suitably-aligned
6077 target would store the value correctly. */
6078 fprintf (asm_out_file, "\tdsll\t%s,%s,32\n",
6079 reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN],
6080 reg_names[GP_RETURN + TARGET_LITTLE_ENDIAN]);
6081 fprintf (asm_out_file, "\tor\t%s,%s,%s\n",
6082 reg_names[GP_RETURN],
6083 reg_names[GP_RETURN],
6084 reg_names[GP_RETURN + 1]);
6086 break;
6088 case DCmode:
6089 mips_output_64bit_xfer ('f', GP_RETURN + (8 / UNITS_PER_WORD),
6090 FP_REG_FIRST + MAX_FPRS_PER_FMT);
6091 /* Fall though. */
6092 case DFmode:
6093 case V2SFmode:
6094 mips_output_64bit_xfer ('f', GP_RETURN, FP_REG_FIRST);
6095 break;
6097 default:
6098 gcc_unreachable ();
6100 fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 18]);
6103 #ifdef ASM_DECLARE_FUNCTION_SIZE
6104 ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
6105 #endif
6107 mips_end_function_definition (stubname);
6109 /* Record this stub. */
6110 l = XNEW (struct mips16_stub);
6111 l->name = xstrdup (fnname);
6112 l->fp_ret_p = fp_ret_p;
6113 l->next = mips16_stubs;
6114 mips16_stubs = l;
6117 /* If we expect a floating-point return value, but we've built a
6118 stub which does not expect one, then we're in trouble. We can't
6119 use the existing stub, because it won't handle the floating-point
6120 value. We can't build a new stub, because the linker won't know
6121 which stub to use for the various calls in this object file.
6122 Fortunately, this case is illegal, since it means that a function
6123 was declared in two different ways in a single compilation. */
6124 if (fp_ret_p && !l->fp_ret_p)
6125 error ("cannot handle inconsistent calls to %qs", fnname);
6127 if (retval == NULL_RTX)
6128 insn = gen_call_internal_direct (fn, args_size);
6129 else
6130 insn = gen_call_value_internal_direct (retval, fn, args_size);
6131 insn = mips_emit_call_insn (insn, fn, fn, false);
6133 /* If we are calling a stub which handles a floating-point return
6134 value, we need to arrange to save $18 in the prologue. We do this
6135 by marking the function call as using the register. The prologue
6136 will later see that it is used, and emit code to save it. */
6137 if (fp_ret_p)
6138 CALL_INSN_FUNCTION_USAGE (insn) =
6139 gen_rtx_EXPR_LIST (VOIDmode,
6140 gen_rtx_CLOBBER (VOIDmode,
6141 gen_rtx_REG (word_mode, 18)),
6142 CALL_INSN_FUNCTION_USAGE (insn));
6144 return insn;
6147 /* Expand a call of type TYPE. RESULT is where the result will go (null
6148 for "call"s and "sibcall"s), ADDR is the address of the function,
6149 ARGS_SIZE is the size of the arguments and AUX is the value passed
6150 to us by mips_function_arg. LAZY_P is true if this call already
6151 involves a lazily-bound function address (such as when calling
6152 functions through a MIPS16 hard-float stub).
6154 Return the call itself. */
6157 mips_expand_call (enum mips_call_type type, rtx result, rtx addr,
6158 rtx args_size, rtx aux, bool lazy_p)
6160 rtx orig_addr, pattern, insn;
6161 int fp_code;
6163 fp_code = aux == 0 ? 0 : (int) GET_MODE (aux);
6164 insn = mips16_build_call_stub (result, &addr, args_size, fp_code);
6165 if (insn)
6167 gcc_assert (!lazy_p && type == MIPS_CALL_NORMAL);
6168 return insn;
6171 orig_addr = addr;
6172 if (!call_insn_operand (addr, VOIDmode))
6174 if (type == MIPS_CALL_EPILOGUE)
6175 addr = MIPS_EPILOGUE_TEMP (Pmode);
6176 else
6177 addr = gen_reg_rtx (Pmode);
6178 lazy_p |= mips_load_call_address (type, addr, orig_addr);
6181 if (result == 0)
6183 rtx (*fn) (rtx, rtx);
6185 if (type == MIPS_CALL_EPILOGUE && TARGET_SPLIT_CALLS)
6186 fn = gen_call_split;
6187 else if (type == MIPS_CALL_SIBCALL)
6188 fn = gen_sibcall_internal;
6189 else
6190 fn = gen_call_internal;
6192 pattern = fn (addr, args_size);
6194 else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
6196 /* Handle return values created by mips_return_fpr_pair. */
6197 rtx (*fn) (rtx, rtx, rtx, rtx);
6198 rtx reg1, reg2;
6200 if (type == MIPS_CALL_EPILOGUE && TARGET_SPLIT_CALLS)
6201 fn = gen_call_value_multiple_split;
6202 else if (type == MIPS_CALL_SIBCALL)
6203 fn = gen_sibcall_value_multiple_internal;
6204 else
6205 fn = gen_call_value_multiple_internal;
6207 reg1 = XEXP (XVECEXP (result, 0, 0), 0);
6208 reg2 = XEXP (XVECEXP (result, 0, 1), 0);
6209 pattern = fn (reg1, addr, args_size, reg2);
6211 else
6213 rtx (*fn) (rtx, rtx, rtx);
6215 if (type == MIPS_CALL_EPILOGUE && TARGET_SPLIT_CALLS)
6216 fn = gen_call_value_split;
6217 else if (type == MIPS_CALL_SIBCALL)
6218 fn = gen_sibcall_value_internal;
6219 else
6220 fn = gen_call_value_internal;
6222 /* Handle return values created by mips_return_fpr_single. */
6223 if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 1)
6224 result = XEXP (XVECEXP (result, 0, 0), 0);
6225 pattern = fn (result, addr, args_size);
6228 return mips_emit_call_insn (pattern, orig_addr, addr, lazy_p);
6231 /* Split call instruction INSN into a $gp-clobbering call and
6232 (where necessary) an instruction to restore $gp from its save slot.
6233 CALL_PATTERN is the pattern of the new call. */
6235 void
6236 mips_split_call (rtx insn, rtx call_pattern)
6238 rtx new_insn;
6240 new_insn = emit_call_insn (call_pattern);
6241 CALL_INSN_FUNCTION_USAGE (new_insn)
6242 = copy_rtx (CALL_INSN_FUNCTION_USAGE (insn));
6243 if (!find_reg_note (insn, REG_NORETURN, 0))
6244 /* Pick a temporary register that is suitable for both MIPS16 and
6245 non-MIPS16 code. $4 and $5 are used for returning complex double
6246 values in soft-float code, so $6 is the first suitable candidate. */
6247 mips_restore_gp (gen_rtx_REG (Pmode, GP_ARG_FIRST + 2));
6250 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
6252 static bool
6253 mips_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
6255 if (!TARGET_SIBCALLS)
6256 return false;
6258 /* Interrupt handlers need special epilogue code and therefore can't
6259 use sibcalls. */
6260 if (mips_interrupt_type_p (TREE_TYPE (current_function_decl)))
6261 return false;
6263 /* We can't do a sibcall if the called function is a MIPS16 function
6264 because there is no direct "jx" instruction equivalent to "jalx" to
6265 switch the ISA mode. We only care about cases where the sibling
6266 and normal calls would both be direct. */
6267 if (decl
6268 && mips_use_mips16_mode_p (decl)
6269 && const_call_insn_operand (XEXP (DECL_RTL (decl), 0), VOIDmode))
6270 return false;
6272 /* When -minterlink-mips16 is in effect, assume that non-locally-binding
6273 functions could be MIPS16 ones unless an attribute explicitly tells
6274 us otherwise. */
6275 if (TARGET_INTERLINK_MIPS16
6276 && decl
6277 && (DECL_EXTERNAL (decl) || !targetm.binds_local_p (decl))
6278 && !mips_nomips16_decl_p (decl)
6279 && const_call_insn_operand (XEXP (DECL_RTL (decl), 0), VOIDmode))
6280 return false;
6282 /* Otherwise OK. */
6283 return true;
6286 /* Emit code to move general operand SRC into condition-code
6287 register DEST given that SCRATCH is a scratch TFmode FPR.
6288 The sequence is:
6290 FP1 = SRC
6291 FP2 = 0.0f
6292 DEST = FP2 < FP1
6294 where FP1 and FP2 are single-precision FPRs taken from SCRATCH. */
6296 void
6297 mips_expand_fcc_reload (rtx dest, rtx src, rtx scratch)
6299 rtx fp1, fp2;
6301 /* Change the source to SFmode. */
6302 if (MEM_P (src))
6303 src = adjust_address (src, SFmode, 0);
6304 else if (REG_P (src) || GET_CODE (src) == SUBREG)
6305 src = gen_rtx_REG (SFmode, true_regnum (src));
6307 fp1 = gen_rtx_REG (SFmode, REGNO (scratch));
6308 fp2 = gen_rtx_REG (SFmode, REGNO (scratch) + MAX_FPRS_PER_FMT);
6310 mips_emit_move (copy_rtx (fp1), src);
6311 mips_emit_move (copy_rtx (fp2), CONST0_RTX (SFmode));
6312 emit_insn (gen_slt_sf (dest, fp2, fp1));
6315 /* Emit straight-line code to move LENGTH bytes from SRC to DEST.
6316 Assume that the areas do not overlap. */
6318 static void
6319 mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
6321 HOST_WIDE_INT offset, delta;
6322 unsigned HOST_WIDE_INT bits;
6323 int i;
6324 enum machine_mode mode;
6325 rtx *regs;
6327 /* Work out how many bits to move at a time. If both operands have
6328 half-word alignment, it is usually better to move in half words.
6329 For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
6330 and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
6331 Otherwise move word-sized chunks. */
6332 if (MEM_ALIGN (src) == BITS_PER_WORD / 2
6333 && MEM_ALIGN (dest) == BITS_PER_WORD / 2)
6334 bits = BITS_PER_WORD / 2;
6335 else
6336 bits = BITS_PER_WORD;
6338 mode = mode_for_size (bits, MODE_INT, 0);
6339 delta = bits / BITS_PER_UNIT;
6341 /* Allocate a buffer for the temporary registers. */
6342 regs = XALLOCAVEC (rtx, length / delta);
6344 /* Load as many BITS-sized chunks as possible. Use a normal load if
6345 the source has enough alignment, otherwise use left/right pairs. */
6346 for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
6348 regs[i] = gen_reg_rtx (mode);
6349 if (MEM_ALIGN (src) >= bits)
6350 mips_emit_move (regs[i], adjust_address (src, mode, offset));
6351 else
6353 rtx part = adjust_address (src, BLKmode, offset);
6354 if (!mips_expand_ext_as_unaligned_load (regs[i], part, bits, 0))
6355 gcc_unreachable ();
6359 /* Copy the chunks to the destination. */
6360 for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
6361 if (MEM_ALIGN (dest) >= bits)
6362 mips_emit_move (adjust_address (dest, mode, offset), regs[i]);
6363 else
6365 rtx part = adjust_address (dest, BLKmode, offset);
6366 if (!mips_expand_ins_as_unaligned_store (part, regs[i], bits, 0))
6367 gcc_unreachable ();
6370 /* Mop up any left-over bytes. */
6371 if (offset < length)
6373 src = adjust_address (src, BLKmode, offset);
6374 dest = adjust_address (dest, BLKmode, offset);
6375 move_by_pieces (dest, src, length - offset,
6376 MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
6380 /* Helper function for doing a loop-based block operation on memory
6381 reference MEM. Each iteration of the loop will operate on LENGTH
6382 bytes of MEM.
6384 Create a new base register for use within the loop and point it to
6385 the start of MEM. Create a new memory reference that uses this
6386 register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
6388 static void
6389 mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
6390 rtx *loop_reg, rtx *loop_mem)
6392 *loop_reg = copy_addr_to_reg (XEXP (mem, 0));
6394 /* Although the new mem does not refer to a known location,
6395 it does keep up to LENGTH bytes of alignment. */
6396 *loop_mem = change_address (mem, BLKmode, *loop_reg);
6397 set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
6400 /* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
6401 bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that
6402 the memory regions do not overlap. */
6404 static void
6405 mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length,
6406 HOST_WIDE_INT bytes_per_iter)
6408 rtx label, src_reg, dest_reg, final_src, test;
6409 HOST_WIDE_INT leftover;
6411 leftover = length % bytes_per_iter;
6412 length -= leftover;
6414 /* Create registers and memory references for use within the loop. */
6415 mips_adjust_block_mem (src, bytes_per_iter, &src_reg, &src);
6416 mips_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest);
6418 /* Calculate the value that SRC_REG should have after the last iteration
6419 of the loop. */
6420 final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
6421 0, 0, OPTAB_WIDEN);
6423 /* Emit the start of the loop. */
6424 label = gen_label_rtx ();
6425 emit_label (label);
6427 /* Emit the loop body. */
6428 mips_block_move_straight (dest, src, bytes_per_iter);
6430 /* Move on to the next block. */
6431 mips_emit_move (src_reg, plus_constant (src_reg, bytes_per_iter));
6432 mips_emit_move (dest_reg, plus_constant (dest_reg, bytes_per_iter));
6434 /* Emit the loop condition. */
6435 test = gen_rtx_NE (VOIDmode, src_reg, final_src);
6436 if (Pmode == DImode)
6437 emit_jump_insn (gen_cbranchdi4 (test, src_reg, final_src, label));
6438 else
6439 emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label));
6441 /* Mop up any left-over bytes. */
6442 if (leftover)
6443 mips_block_move_straight (dest, src, leftover);
6446 /* Expand a movmemsi instruction, which copies LENGTH bytes from
6447 memory reference SRC to memory reference DEST. */
6449 bool
6450 mips_expand_block_move (rtx dest, rtx src, rtx length)
6452 if (CONST_INT_P (length))
6454 if (INTVAL (length) <= MIPS_MAX_MOVE_BYTES_STRAIGHT)
6456 mips_block_move_straight (dest, src, INTVAL (length));
6457 return true;
6459 else if (optimize)
6461 mips_block_move_loop (dest, src, INTVAL (length),
6462 MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER);
6463 return true;
6466 return false;
6469 /* Expand a loop of synci insns for the address range [BEGIN, END). */
6471 void
6472 mips_expand_synci_loop (rtx begin, rtx end)
6474 rtx inc, label, cmp, cmp_result;
6476 /* Load INC with the cache line size (rdhwr INC,$1). */
6477 inc = gen_reg_rtx (Pmode);
6478 emit_insn (Pmode == SImode
6479 ? gen_rdhwr_synci_step_si (inc)
6480 : gen_rdhwr_synci_step_di (inc));
6482 /* Loop back to here. */
6483 label = gen_label_rtx ();
6484 emit_label (label);
6486 emit_insn (gen_synci (begin));
6488 cmp = mips_force_binary (Pmode, GTU, begin, end);
6490 mips_emit_binary (PLUS, begin, begin, inc);
6492 cmp_result = gen_rtx_EQ (VOIDmode, cmp, const0_rtx);
6493 emit_jump_insn (gen_condjump (cmp_result, label));
6496 /* Expand a QI or HI mode atomic memory operation.
6498 GENERATOR contains a pointer to the gen_* function that generates
6499 the SI mode underlying atomic operation using masks that we
6500 calculate.
6502 RESULT is the return register for the operation. Its value is NULL
6503 if unused.
6505 MEM is the location of the atomic access.
6507 OLDVAL is the first operand for the operation.
6509 NEWVAL is the optional second operand for the operation. Its value
6510 is NULL if unused. */
6512 void
6513 mips_expand_atomic_qihi (union mips_gen_fn_ptrs generator,
6514 rtx result, rtx mem, rtx oldval, rtx newval)
6516 rtx orig_addr, memsi_addr, memsi, shift, shiftsi, unshifted_mask;
6517 rtx unshifted_mask_reg, mask, inverted_mask, si_op;
6518 rtx res = NULL;
6519 enum machine_mode mode;
6521 mode = GET_MODE (mem);
6523 /* Compute the address of the containing SImode value. */
6524 orig_addr = force_reg (Pmode, XEXP (mem, 0));
6525 memsi_addr = mips_force_binary (Pmode, AND, orig_addr,
6526 force_reg (Pmode, GEN_INT (-4)));
6528 /* Create a memory reference for it. */
6529 memsi = gen_rtx_MEM (SImode, memsi_addr);
6530 set_mem_alias_set (memsi, ALIAS_SET_MEMORY_BARRIER);
6531 MEM_VOLATILE_P (memsi) = MEM_VOLATILE_P (mem);
6533 /* Work out the byte offset of the QImode or HImode value,
6534 counting from the least significant byte. */
6535 shift = mips_force_binary (Pmode, AND, orig_addr, GEN_INT (3));
6536 if (TARGET_BIG_ENDIAN)
6537 mips_emit_binary (XOR, shift, shift, GEN_INT (mode == QImode ? 3 : 2));
6539 /* Multiply by eight to convert the shift value from bytes to bits. */
6540 mips_emit_binary (ASHIFT, shift, shift, GEN_INT (3));
6542 /* Make the final shift an SImode value, so that it can be used in
6543 SImode operations. */
6544 shiftsi = force_reg (SImode, gen_lowpart (SImode, shift));
6546 /* Set MASK to an inclusive mask of the QImode or HImode value. */
6547 unshifted_mask = GEN_INT (GET_MODE_MASK (mode));
6548 unshifted_mask_reg = force_reg (SImode, unshifted_mask);
6549 mask = mips_force_binary (SImode, ASHIFT, unshifted_mask_reg, shiftsi);
6551 /* Compute the equivalent exclusive mask. */
6552 inverted_mask = gen_reg_rtx (SImode);
6553 emit_insn (gen_rtx_SET (VOIDmode, inverted_mask,
6554 gen_rtx_NOT (SImode, mask)));
6556 /* Shift the old value into place. */
6557 if (oldval != const0_rtx)
6559 oldval = convert_modes (SImode, mode, oldval, true);
6560 oldval = force_reg (SImode, oldval);
6561 oldval = mips_force_binary (SImode, ASHIFT, oldval, shiftsi);
6564 /* Do the same for the new value. */
6565 if (newval && newval != const0_rtx)
6567 newval = convert_modes (SImode, mode, newval, true);
6568 newval = force_reg (SImode, newval);
6569 newval = mips_force_binary (SImode, ASHIFT, newval, shiftsi);
6572 /* Do the SImode atomic access. */
6573 if (result)
6574 res = gen_reg_rtx (SImode);
6575 if (newval)
6576 si_op = generator.fn_6 (res, memsi, mask, inverted_mask, oldval, newval);
6577 else if (result)
6578 si_op = generator.fn_5 (res, memsi, mask, inverted_mask, oldval);
6579 else
6580 si_op = generator.fn_4 (memsi, mask, inverted_mask, oldval);
6582 emit_insn (si_op);
6584 if (result)
6586 /* Shift and convert the result. */
6587 mips_emit_binary (AND, res, res, mask);
6588 mips_emit_binary (LSHIFTRT, res, res, shiftsi);
6589 mips_emit_move (result, gen_lowpart (GET_MODE (result), res));
6593 /* Return true if it is possible to use left/right accesses for a
6594 bitfield of WIDTH bits starting BITPOS bits into *OP. When
6595 returning true, update *OP, *LEFT and *RIGHT as follows:
6597 *OP is a BLKmode reference to the whole field.
6599 *LEFT is a QImode reference to the first byte if big endian or
6600 the last byte if little endian. This address can be used in the
6601 left-side instructions (LWL, SWL, LDL, SDL).
6603 *RIGHT is a QImode reference to the opposite end of the field and
6604 can be used in the patterning right-side instruction. */
6606 static bool
6607 mips_get_unaligned_mem (rtx *op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos,
6608 rtx *left, rtx *right)
6610 rtx first, last;
6612 /* Check that the operand really is a MEM. Not all the extv and
6613 extzv predicates are checked. */
6614 if (!MEM_P (*op))
6615 return false;
6617 /* Check that the size is valid. */
6618 if (width != 32 && (!TARGET_64BIT || width != 64))
6619 return false;
6621 /* We can only access byte-aligned values. Since we are always passed
6622 a reference to the first byte of the field, it is not necessary to
6623 do anything with BITPOS after this check. */
6624 if (bitpos % BITS_PER_UNIT != 0)
6625 return false;
6627 /* Reject aligned bitfields: we want to use a normal load or store
6628 instead of a left/right pair. */
6629 if (MEM_ALIGN (*op) >= width)
6630 return false;
6632 /* Adjust *OP to refer to the whole field. This also has the effect
6633 of legitimizing *OP's address for BLKmode, possibly simplifying it. */
6634 *op = adjust_address (*op, BLKmode, 0);
6635 set_mem_size (*op, GEN_INT (width / BITS_PER_UNIT));
6637 /* Get references to both ends of the field. We deliberately don't
6638 use the original QImode *OP for FIRST since the new BLKmode one
6639 might have a simpler address. */
6640 first = adjust_address (*op, QImode, 0);
6641 last = adjust_address (*op, QImode, width / BITS_PER_UNIT - 1);
6643 /* Allocate to LEFT and RIGHT according to endianness. LEFT should
6644 correspond to the MSB and RIGHT to the LSB. */
6645 if (TARGET_BIG_ENDIAN)
6646 *left = first, *right = last;
6647 else
6648 *left = last, *right = first;
6650 return true;
6653 /* Try to use left/right loads to expand an "extv" or "extzv" pattern.
6654 DEST, SRC, WIDTH and BITPOS are the operands passed to the expander;
6655 the operation is the equivalent of:
6657 (set DEST (*_extract SRC WIDTH BITPOS))
6659 Return true on success. */
6661 bool
6662 mips_expand_ext_as_unaligned_load (rtx dest, rtx src, HOST_WIDE_INT width,
6663 HOST_WIDE_INT bitpos)
6665 rtx left, right, temp;
6667 /* If TARGET_64BIT, the destination of a 32-bit "extz" or "extzv" will
6668 be a paradoxical word_mode subreg. This is the only case in which
6669 we allow the destination to be larger than the source. */
6670 if (GET_CODE (dest) == SUBREG
6671 && GET_MODE (dest) == DImode
6672 && GET_MODE (SUBREG_REG (dest)) == SImode)
6673 dest = SUBREG_REG (dest);
6675 /* After the above adjustment, the destination must be the same
6676 width as the source. */
6677 if (GET_MODE_BITSIZE (GET_MODE (dest)) != width)
6678 return false;
6680 if (!mips_get_unaligned_mem (&src, width, bitpos, &left, &right))
6681 return false;
6683 temp = gen_reg_rtx (GET_MODE (dest));
6684 if (GET_MODE (dest) == DImode)
6686 emit_insn (gen_mov_ldl (temp, src, left));
6687 emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp));
6689 else
6691 emit_insn (gen_mov_lwl (temp, src, left));
6692 emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp));
6694 return true;
6697 /* Try to use left/right stores to expand an "ins" pattern. DEST, WIDTH,
6698 BITPOS and SRC are the operands passed to the expander; the operation
6699 is the equivalent of:
6701 (set (zero_extract DEST WIDTH BITPOS) SRC)
6703 Return true on success. */
6705 bool
6706 mips_expand_ins_as_unaligned_store (rtx dest, rtx src, HOST_WIDE_INT width,
6707 HOST_WIDE_INT bitpos)
6709 rtx left, right;
6710 enum machine_mode mode;
6712 if (!mips_get_unaligned_mem (&dest, width, bitpos, &left, &right))
6713 return false;
6715 mode = mode_for_size (width, MODE_INT, 0);
6716 src = gen_lowpart (mode, src);
6717 if (mode == DImode)
6719 emit_insn (gen_mov_sdl (dest, src, left));
6720 emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right));
6722 else
6724 emit_insn (gen_mov_swl (dest, src, left));
6725 emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right));
6727 return true;
6730 /* Return true if X is a MEM with the same size as MODE. */
6732 bool
6733 mips_mem_fits_mode_p (enum machine_mode mode, rtx x)
6735 rtx size;
6737 if (!MEM_P (x))
6738 return false;
6740 size = MEM_SIZE (x);
6741 return size && INTVAL (size) == GET_MODE_SIZE (mode);
6744 /* Return true if (zero_extract OP WIDTH BITPOS) can be used as the
6745 source of an "ext" instruction or the destination of an "ins"
6746 instruction. OP must be a register operand and the following
6747 conditions must hold:
6749 0 <= BITPOS < GET_MODE_BITSIZE (GET_MODE (op))
6750 0 < WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
6751 0 < BITPOS + WIDTH <= GET_MODE_BITSIZE (GET_MODE (op))
6753 Also reject lengths equal to a word as they are better handled
6754 by the move patterns. */
6756 bool
6757 mips_use_ins_ext_p (rtx op, HOST_WIDE_INT width, HOST_WIDE_INT bitpos)
6759 if (!ISA_HAS_EXT_INS
6760 || !register_operand (op, VOIDmode)
6761 || GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
6762 return false;
6764 if (!IN_RANGE (width, 1, GET_MODE_BITSIZE (GET_MODE (op)) - 1))
6765 return false;
6767 if (bitpos < 0 || bitpos + width > GET_MODE_BITSIZE (GET_MODE (op)))
6768 return false;
6770 return true;
6773 /* Check if MASK and SHIFT are valid in mask-low-and-shift-left
6774 operation if MAXLEN is the maxium length of consecutive bits that
6775 can make up MASK. MODE is the mode of the operation. See
6776 mask_low_and_shift_len for the actual definition. */
6778 bool
6779 mask_low_and_shift_p (enum machine_mode mode, rtx mask, rtx shift, int maxlen)
6781 return IN_RANGE (mask_low_and_shift_len (mode, mask, shift), 1, maxlen);
6784 /* The canonical form of a mask-low-and-shift-left operation is
6785 (and (ashift X SHIFT) MASK) where MASK has the lower SHIFT number of bits
6786 cleared. Thus we need to shift MASK to the right before checking if it
6787 is a valid mask value. MODE is the mode of the operation. If true
6788 return the length of the mask, otherwise return -1. */
6791 mask_low_and_shift_len (enum machine_mode mode, rtx mask, rtx shift)
6793 HOST_WIDE_INT shval;
6795 shval = INTVAL (shift) & (GET_MODE_BITSIZE (mode) - 1);
6796 return exact_log2 ((UINTVAL (mask) >> shval) + 1);
6799 /* Return true if -msplit-addresses is selected and should be honored.
6801 -msplit-addresses is a half-way house between explicit relocations
6802 and the traditional assembler macros. It can split absolute 32-bit
6803 symbolic constants into a high/lo_sum pair but uses macros for other
6804 sorts of access.
6806 Like explicit relocation support for REL targets, it relies
6807 on GNU extensions in the assembler and the linker.
6809 Although this code should work for -O0, it has traditionally
6810 been treated as an optimization. */
6812 static bool
6813 mips_split_addresses_p (void)
6815 return (TARGET_SPLIT_ADDRESSES
6816 && optimize
6817 && !TARGET_MIPS16
6818 && !flag_pic
6819 && !ABI_HAS_64BIT_SYMBOLS);
6822 /* (Re-)Initialize mips_split_p, mips_lo_relocs and mips_hi_relocs. */
6824 static void
6825 mips_init_relocs (void)
6827 memset (mips_split_p, '\0', sizeof (mips_split_p));
6828 memset (mips_split_hi_p, '\0', sizeof (mips_split_hi_p));
6829 memset (mips_hi_relocs, '\0', sizeof (mips_hi_relocs));
6830 memset (mips_lo_relocs, '\0', sizeof (mips_lo_relocs));
6832 if (ABI_HAS_64BIT_SYMBOLS)
6834 if (TARGET_EXPLICIT_RELOCS)
6836 mips_split_p[SYMBOL_64_HIGH] = true;
6837 mips_hi_relocs[SYMBOL_64_HIGH] = "%highest(";
6838 mips_lo_relocs[SYMBOL_64_HIGH] = "%higher(";
6840 mips_split_p[SYMBOL_64_MID] = true;
6841 mips_hi_relocs[SYMBOL_64_MID] = "%higher(";
6842 mips_lo_relocs[SYMBOL_64_MID] = "%hi(";
6844 mips_split_p[SYMBOL_64_LOW] = true;
6845 mips_hi_relocs[SYMBOL_64_LOW] = "%hi(";
6846 mips_lo_relocs[SYMBOL_64_LOW] = "%lo(";
6848 mips_split_p[SYMBOL_ABSOLUTE] = true;
6849 mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
6852 else
6854 if (TARGET_EXPLICIT_RELOCS || mips_split_addresses_p () || TARGET_MIPS16)
6856 mips_split_p[SYMBOL_ABSOLUTE] = true;
6857 mips_hi_relocs[SYMBOL_ABSOLUTE] = "%hi(";
6858 mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
6860 mips_lo_relocs[SYMBOL_32_HIGH] = "%hi(";
6864 if (TARGET_MIPS16)
6866 /* The high part is provided by a pseudo copy of $gp. */
6867 mips_split_p[SYMBOL_GP_RELATIVE] = true;
6868 mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gprel(";
6870 else if (TARGET_EXPLICIT_RELOCS)
6871 /* Small data constants are kept whole until after reload,
6872 then lowered by mips_rewrite_small_data. */
6873 mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gp_rel(";
6875 if (TARGET_EXPLICIT_RELOCS)
6877 mips_split_p[SYMBOL_GOT_PAGE_OFST] = true;
6878 if (TARGET_NEWABI)
6880 mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page(";
6881 mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%got_ofst(";
6883 else
6885 mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got(";
6886 mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%lo(";
6888 if (TARGET_MIPS16)
6889 /* Expose the use of $28 as soon as possible. */
6890 mips_split_hi_p[SYMBOL_GOT_PAGE_OFST] = true;
6892 if (TARGET_XGOT)
6894 /* The HIGH and LO_SUM are matched by special .md patterns. */
6895 mips_split_p[SYMBOL_GOT_DISP] = true;
6897 mips_split_p[SYMBOL_GOTOFF_DISP] = true;
6898 mips_hi_relocs[SYMBOL_GOTOFF_DISP] = "%got_hi(";
6899 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_lo(";
6901 mips_split_p[SYMBOL_GOTOFF_CALL] = true;
6902 mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi(";
6903 mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo(";
6905 else
6907 if (TARGET_NEWABI)
6908 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_disp(";
6909 else
6910 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got(";
6911 mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16(";
6912 if (TARGET_MIPS16)
6913 /* Expose the use of $28 as soon as possible. */
6914 mips_split_p[SYMBOL_GOT_DISP] = true;
6918 if (TARGET_NEWABI)
6920 mips_split_p[SYMBOL_GOTOFF_LOADGP] = true;
6921 mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel(";
6922 mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel(";
6925 mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd(";
6926 mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm(";
6928 mips_split_p[SYMBOL_DTPREL] = true;
6929 mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi(";
6930 mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo(";
6932 mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel(";
6934 mips_split_p[SYMBOL_TPREL] = true;
6935 mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi(";
6936 mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo(";
6938 mips_lo_relocs[SYMBOL_HALF] = "%half(";
6941 /* If OP is an UNSPEC address, return the address to which it refers,
6942 otherwise return OP itself. */
6944 static rtx
6945 mips_strip_unspec_address (rtx op)
6947 rtx base, offset;
6949 split_const (op, &base, &offset);
6950 if (UNSPEC_ADDRESS_P (base))
6951 op = plus_constant (UNSPEC_ADDRESS (base), INTVAL (offset));
6952 return op;
6955 /* Print symbolic operand OP, which is part of a HIGH or LO_SUM
6956 in context CONTEXT. RELOCS is the array of relocations to use. */
6958 static void
6959 mips_print_operand_reloc (FILE *file, rtx op, enum mips_symbol_context context,
6960 const char **relocs)
6962 enum mips_symbol_type symbol_type;
6963 const char *p;
6965 symbol_type = mips_classify_symbolic_expression (op, context);
6966 gcc_assert (relocs[symbol_type]);
6968 fputs (relocs[symbol_type], file);
6969 output_addr_const (file, mips_strip_unspec_address (op));
6970 for (p = relocs[symbol_type]; *p != 0; p++)
6971 if (*p == '(')
6972 fputc (')', file);
6975 /* Print the text for PRINT_OPERAND punctation character CH to FILE.
6976 The punctuation characters are:
6978 '(' Start a nested ".set noreorder" block.
6979 ')' End a nested ".set noreorder" block.
6980 '[' Start a nested ".set noat" block.
6981 ']' End a nested ".set noat" block.
6982 '<' Start a nested ".set nomacro" block.
6983 '>' End a nested ".set nomacro" block.
6984 '*' Behave like %(%< if generating a delayed-branch sequence.
6985 '#' Print a nop if in a ".set noreorder" block.
6986 '/' Like '#', but do nothing within a delayed-branch sequence.
6987 '?' Print "l" if mips_branch_likely is true
6988 '~' Print a nop if mips_branch_likely is true
6989 '.' Print the name of the register with a hard-wired zero (zero or $0).
6990 '@' Print the name of the assembler temporary register (at or $1).
6991 '^' Print the name of the pic call-through register (t9 or $25).
6992 '+' Print the name of the gp register (usually gp or $28).
6993 '$' Print the name of the stack pointer register (sp or $29).
6994 '|' Print ".set push; .set mips2" if !ISA_HAS_LL_SC.
6995 '-' Print ".set pop" under the same conditions for '|'.
6997 See also mips_init_print_operand_pucnt. */
6999 static void
7000 mips_print_operand_punctuation (FILE *file, int ch)
7002 switch (ch)
7004 case '(':
7005 if (set_noreorder++ == 0)
7006 fputs (".set\tnoreorder\n\t", file);
7007 break;
7009 case ')':
7010 gcc_assert (set_noreorder > 0);
7011 if (--set_noreorder == 0)
7012 fputs ("\n\t.set\treorder", file);
7013 break;
7015 case '[':
7016 if (set_noat++ == 0)
7017 fputs (".set\tnoat\n\t", file);
7018 break;
7020 case ']':
7021 gcc_assert (set_noat > 0);
7022 if (--set_noat == 0)
7023 fputs ("\n\t.set\tat", file);
7024 break;
7026 case '<':
7027 if (set_nomacro++ == 0)
7028 fputs (".set\tnomacro\n\t", file);
7029 break;
7031 case '>':
7032 gcc_assert (set_nomacro > 0);
7033 if (--set_nomacro == 0)
7034 fputs ("\n\t.set\tmacro", file);
7035 break;
7037 case '*':
7038 if (final_sequence != 0)
7040 mips_print_operand_punctuation (file, '(');
7041 mips_print_operand_punctuation (file, '<');
7043 break;
7045 case '#':
7046 if (set_noreorder != 0)
7047 fputs ("\n\tnop", file);
7048 break;
7050 case '/':
7051 /* Print an extra newline so that the delayed insn is separated
7052 from the following ones. This looks neater and is consistent
7053 with non-nop delayed sequences. */
7054 if (set_noreorder != 0 && final_sequence == 0)
7055 fputs ("\n\tnop\n", file);
7056 break;
7058 case '?':
7059 if (mips_branch_likely)
7060 putc ('l', file);
7061 break;
7063 case '~':
7064 if (mips_branch_likely)
7065 fputs ("\n\tnop", file);
7066 break;
7068 case '.':
7069 fputs (reg_names[GP_REG_FIRST + 0], file);
7070 break;
7072 case '@':
7073 fputs (reg_names[GP_REG_FIRST + 1], file);
7074 break;
7076 case '^':
7077 fputs (reg_names[PIC_FUNCTION_ADDR_REGNUM], file);
7078 break;
7080 case '+':
7081 fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file);
7082 break;
7084 case '$':
7085 fputs (reg_names[STACK_POINTER_REGNUM], file);
7086 break;
7088 case '|':
7089 if (!ISA_HAS_LL_SC)
7090 fputs (".set\tpush\n\t.set\tmips2\n\t", file);
7091 break;
7093 case '-':
7094 if (!ISA_HAS_LL_SC)
7095 fputs ("\n\t.set\tpop", file);
7096 break;
7098 default:
7099 gcc_unreachable ();
7100 break;
7104 /* Initialize mips_print_operand_punct. */
7106 static void
7107 mips_init_print_operand_punct (void)
7109 const char *p;
7111 for (p = "()[]<>*#/?~.@^+$|-"; *p; p++)
7112 mips_print_operand_punct[(unsigned char) *p] = true;
7115 /* PRINT_OPERAND prefix LETTER refers to the integer branch instruction
7116 associated with condition CODE. Print the condition part of the
7117 opcode to FILE. */
7119 static void
7120 mips_print_int_branch_condition (FILE *file, enum rtx_code code, int letter)
7122 switch (code)
7124 case EQ:
7125 case NE:
7126 case GT:
7127 case GE:
7128 case LT:
7129 case LE:
7130 case GTU:
7131 case GEU:
7132 case LTU:
7133 case LEU:
7134 /* Conveniently, the MIPS names for these conditions are the same
7135 as their RTL equivalents. */
7136 fputs (GET_RTX_NAME (code), file);
7137 break;
7139 default:
7140 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
7141 break;
7145 /* Likewise floating-point branches. */
7147 static void
7148 mips_print_float_branch_condition (FILE *file, enum rtx_code code, int letter)
7150 switch (code)
7152 case EQ:
7153 fputs ("c1f", file);
7154 break;
7156 case NE:
7157 fputs ("c1t", file);
7158 break;
7160 default:
7161 output_operand_lossage ("'%%%c' is not a valid operand prefix", letter);
7162 break;
7166 /* Implement the PRINT_OPERAND macro. The MIPS-specific operand codes are:
7168 'X' Print CONST_INT OP in hexadecimal format.
7169 'x' Print the low 16 bits of CONST_INT OP in hexadecimal format.
7170 'd' Print CONST_INT OP in decimal.
7171 'm' Print one less than CONST_INT OP in decimal.
7172 'h' Print the high-part relocation associated with OP, after stripping
7173 any outermost HIGH.
7174 'R' Print the low-part relocation associated with OP.
7175 'C' Print the integer branch condition for comparison OP.
7176 'N' Print the inverse of the integer branch condition for comparison OP.
7177 'F' Print the FPU branch condition for comparison OP.
7178 'W' Print the inverse of the FPU branch condition for comparison OP.
7179 'T' Print 'f' for (eq:CC ...), 't' for (ne:CC ...),
7180 'z' for (eq:?I ...), 'n' for (ne:?I ...).
7181 't' Like 'T', but with the EQ/NE cases reversed
7182 'Y' Print mips_fp_conditions[INTVAL (OP)]
7183 'Z' Print OP and a comma for ISA_HAS_8CC, otherwise print nothing.
7184 'q' Print a DSP accumulator register.
7185 'D' Print the second part of a double-word register or memory operand.
7186 'L' Print the low-order register in a double-word register operand.
7187 'M' Print high-order register in a double-word register operand.
7188 'z' Print $0 if OP is zero, otherwise print OP normally. */
7190 void
7191 mips_print_operand (FILE *file, rtx op, int letter)
7193 enum rtx_code code;
7195 if (PRINT_OPERAND_PUNCT_VALID_P (letter))
7197 mips_print_operand_punctuation (file, letter);
7198 return;
7201 gcc_assert (op);
7202 code = GET_CODE (op);
7204 switch (letter)
7206 case 'X':
7207 if (CONST_INT_P (op))
7208 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
7209 else
7210 output_operand_lossage ("invalid use of '%%%c'", letter);
7211 break;
7213 case 'x':
7214 if (CONST_INT_P (op))
7215 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op) & 0xffff);
7216 else
7217 output_operand_lossage ("invalid use of '%%%c'", letter);
7218 break;
7220 case 'd':
7221 if (CONST_INT_P (op))
7222 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op));
7223 else
7224 output_operand_lossage ("invalid use of '%%%c'", letter);
7225 break;
7227 case 'm':
7228 if (CONST_INT_P (op))
7229 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (op) - 1);
7230 else
7231 output_operand_lossage ("invalid use of '%%%c'", letter);
7232 break;
7234 case 'h':
7235 if (code == HIGH)
7236 op = XEXP (op, 0);
7237 mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_hi_relocs);
7238 break;
7240 case 'R':
7241 mips_print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_lo_relocs);
7242 break;
7244 case 'C':
7245 mips_print_int_branch_condition (file, code, letter);
7246 break;
7248 case 'N':
7249 mips_print_int_branch_condition (file, reverse_condition (code), letter);
7250 break;
7252 case 'F':
7253 mips_print_float_branch_condition (file, code, letter);
7254 break;
7256 case 'W':
7257 mips_print_float_branch_condition (file, reverse_condition (code),
7258 letter);
7259 break;
7261 case 'T':
7262 case 't':
7264 int truth = (code == NE) == (letter == 'T');
7265 fputc ("zfnt"[truth * 2 + (GET_MODE (op) == CCmode)], file);
7267 break;
7269 case 'Y':
7270 if (code == CONST_INT && UINTVAL (op) < ARRAY_SIZE (mips_fp_conditions))
7271 fputs (mips_fp_conditions[UINTVAL (op)], file);
7272 else
7273 output_operand_lossage ("'%%%c' is not a valid operand prefix",
7274 letter);
7275 break;
7277 case 'Z':
7278 if (ISA_HAS_8CC)
7280 mips_print_operand (file, op, 0);
7281 fputc (',', file);
7283 break;
7285 case 'q':
7286 if (code == REG && MD_REG_P (REGNO (op)))
7287 fprintf (file, "$ac0");
7288 else if (code == REG && DSP_ACC_REG_P (REGNO (op)))
7289 fprintf (file, "$ac%c", reg_names[REGNO (op)][3]);
7290 else
7291 output_operand_lossage ("invalid use of '%%%c'", letter);
7292 break;
7294 default:
7295 switch (code)
7297 case REG:
7299 unsigned int regno = REGNO (op);
7300 if ((letter == 'M' && TARGET_LITTLE_ENDIAN)
7301 || (letter == 'L' && TARGET_BIG_ENDIAN)
7302 || letter == 'D')
7303 regno++;
7304 else if (letter && letter != 'z' && letter != 'M' && letter != 'L')
7305 output_operand_lossage ("invalid use of '%%%c'", letter);
7306 /* We need to print $0 .. $31 for COP0 registers. */
7307 if (COP0_REG_P (regno))
7308 fprintf (file, "$%s", &reg_names[regno][4]);
7309 else
7310 fprintf (file, "%s", reg_names[regno]);
7312 break;
7314 case MEM:
7315 if (letter == 'D')
7316 output_address (plus_constant (XEXP (op, 0), 4));
7317 else if (letter && letter != 'z')
7318 output_operand_lossage ("invalid use of '%%%c'", letter);
7319 else
7320 output_address (XEXP (op, 0));
7321 break;
7323 default:
7324 if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
7325 fputs (reg_names[GP_REG_FIRST], file);
7326 else if (letter && letter != 'z')
7327 output_operand_lossage ("invalid use of '%%%c'", letter);
7328 else if (CONST_GP_P (op))
7329 fputs (reg_names[GLOBAL_POINTER_REGNUM], file);
7330 else
7331 output_addr_const (file, mips_strip_unspec_address (op));
7332 break;
7337 /* Output address operand X to FILE. */
7339 void
7340 mips_print_operand_address (FILE *file, rtx x)
7342 struct mips_address_info addr;
7344 if (mips_classify_address (&addr, x, word_mode, true))
7345 switch (addr.type)
7347 case ADDRESS_REG:
7348 mips_print_operand (file, addr.offset, 0);
7349 fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
7350 return;
7352 case ADDRESS_LO_SUM:
7353 mips_print_operand_reloc (file, addr.offset, SYMBOL_CONTEXT_MEM,
7354 mips_lo_relocs);
7355 fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
7356 return;
7358 case ADDRESS_CONST_INT:
7359 output_addr_const (file, x);
7360 fprintf (file, "(%s)", reg_names[GP_REG_FIRST]);
7361 return;
7363 case ADDRESS_SYMBOLIC:
7364 output_addr_const (file, mips_strip_unspec_address (x));
7365 return;
7367 gcc_unreachable ();
7370 /* Implement TARGET_ENCODE_SECTION_INFO. */
7372 static void
7373 mips_encode_section_info (tree decl, rtx rtl, int first)
7375 default_encode_section_info (decl, rtl, first);
7377 if (TREE_CODE (decl) == FUNCTION_DECL)
7379 rtx symbol = XEXP (rtl, 0);
7380 tree type = TREE_TYPE (decl);
7382 /* Encode whether the symbol is short or long. */
7383 if ((TARGET_LONG_CALLS && !mips_near_type_p (type))
7384 || mips_far_type_p (type))
7385 SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL;
7389 /* Implement TARGET_SELECT_RTX_SECTION. */
7391 static section *
7392 mips_select_rtx_section (enum machine_mode mode, rtx x,
7393 unsigned HOST_WIDE_INT align)
7395 /* ??? Consider using mergeable small data sections. */
7396 if (mips_rtx_constant_in_small_data_p (mode))
7397 return get_named_section (NULL, ".sdata", 0);
7399 return default_elf_select_rtx_section (mode, x, align);
7402 /* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
7404 The complication here is that, with the combination TARGET_ABICALLS
7405 && !TARGET_ABSOLUTE_ABICALLS && !TARGET_GPWORD, jump tables will use
7406 absolute addresses, and should therefore not be included in the
7407 read-only part of a DSO. Handle such cases by selecting a normal
7408 data section instead of a read-only one. The logic apes that in
7409 default_function_rodata_section. */
7411 static section *
7412 mips_function_rodata_section (tree decl)
7414 if (!TARGET_ABICALLS || TARGET_ABSOLUTE_ABICALLS || TARGET_GPWORD)
7415 return default_function_rodata_section (decl);
7417 if (decl && DECL_SECTION_NAME (decl))
7419 const char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
7420 if (DECL_ONE_ONLY (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0)
7422 char *rname = ASTRDUP (name);
7423 rname[14] = 'd';
7424 return get_section (rname, SECTION_LINKONCE | SECTION_WRITE, decl);
7426 else if (flag_function_sections
7427 && flag_data_sections
7428 && strncmp (name, ".text.", 6) == 0)
7430 char *rname = ASTRDUP (name);
7431 memcpy (rname + 1, "data", 4);
7432 return get_section (rname, SECTION_WRITE, decl);
7435 return data_section;
7438 /* Implement TARGET_IN_SMALL_DATA_P. */
7440 static bool
7441 mips_in_small_data_p (const_tree decl)
7443 unsigned HOST_WIDE_INT size;
7445 if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
7446 return false;
7448 /* We don't yet generate small-data references for -mabicalls
7449 or VxWorks RTP code. See the related -G handling in
7450 mips_override_options. */
7451 if (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
7452 return false;
7454 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
7456 const char *name;
7458 /* Reject anything that isn't in a known small-data section. */
7459 name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
7460 if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
7461 return false;
7463 /* If a symbol is defined externally, the assembler will use the
7464 usual -G rules when deciding how to implement macros. */
7465 if (mips_lo_relocs[SYMBOL_GP_RELATIVE] || !DECL_EXTERNAL (decl))
7466 return true;
7468 else if (TARGET_EMBEDDED_DATA)
7470 /* Don't put constants into the small data section: we want them
7471 to be in ROM rather than RAM. */
7472 if (TREE_CODE (decl) != VAR_DECL)
7473 return false;
7475 if (TREE_READONLY (decl)
7476 && !TREE_SIDE_EFFECTS (decl)
7477 && (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
7478 return false;
7481 /* Enforce -mlocal-sdata. */
7482 if (!TARGET_LOCAL_SDATA && !TREE_PUBLIC (decl))
7483 return false;
7485 /* Enforce -mextern-sdata. */
7486 if (!TARGET_EXTERN_SDATA && DECL_P (decl))
7488 if (DECL_EXTERNAL (decl))
7489 return false;
7490 if (DECL_COMMON (decl) && DECL_INITIAL (decl) == NULL)
7491 return false;
7494 /* We have traditionally not treated zero-sized objects as small data,
7495 so this is now effectively part of the ABI. */
7496 size = int_size_in_bytes (TREE_TYPE (decl));
7497 return size > 0 && size <= mips_small_data_threshold;
7500 /* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use
7501 anchors for small data: the GP register acts as an anchor in that
7502 case. We also don't want to use them for PC-relative accesses,
7503 where the PC acts as an anchor. */
7505 static bool
7506 mips_use_anchors_for_symbol_p (const_rtx symbol)
7508 switch (mips_classify_symbol (symbol, SYMBOL_CONTEXT_MEM))
7510 case SYMBOL_PC_RELATIVE:
7511 case SYMBOL_GP_RELATIVE:
7512 return false;
7514 default:
7515 return default_use_anchors_for_symbol_p (symbol);
7519 /* The MIPS debug format wants all automatic variables and arguments
7520 to be in terms of the virtual frame pointer (stack pointer before
7521 any adjustment in the function), while the MIPS 3.0 linker wants
7522 the frame pointer to be the stack pointer after the initial
7523 adjustment. So, we do the adjustment here. The arg pointer (which
7524 is eliminated) points to the virtual frame pointer, while the frame
7525 pointer (which may be eliminated) points to the stack pointer after
7526 the initial adjustments. */
7528 HOST_WIDE_INT
7529 mips_debugger_offset (rtx addr, HOST_WIDE_INT offset)
7531 rtx offset2 = const0_rtx;
7532 rtx reg = eliminate_constant_term (addr, &offset2);
7534 if (offset == 0)
7535 offset = INTVAL (offset2);
7537 if (reg == stack_pointer_rtx
7538 || reg == frame_pointer_rtx
7539 || reg == hard_frame_pointer_rtx)
7541 offset -= cfun->machine->frame.total_size;
7542 if (reg == hard_frame_pointer_rtx)
7543 offset += cfun->machine->frame.hard_frame_pointer_offset;
7546 /* sdbout_parms does not want this to crash for unrecognized cases. */
7547 #if 0
7548 else if (reg != arg_pointer_rtx)
7549 fatal_insn ("mips_debugger_offset called with non stack/frame/arg pointer",
7550 addr);
7551 #endif
7553 return offset;
7556 /* Implement ASM_OUTPUT_EXTERNAL. */
7558 void
7559 mips_output_external (FILE *file, tree decl, const char *name)
7561 default_elf_asm_output_external (file, decl, name);
7563 /* We output the name if and only if TREE_SYMBOL_REFERENCED is
7564 set in order to avoid putting out names that are never really
7565 used. */
7566 if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
7568 if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl))
7570 /* When using assembler macros, emit .extern directives for
7571 all small-data externs so that the assembler knows how
7572 big they are.
7574 In most cases it would be safe (though pointless) to emit
7575 .externs for other symbols too. One exception is when an
7576 object is within the -G limit but declared by the user to
7577 be in a section other than .sbss or .sdata. */
7578 fputs ("\t.extern\t", file);
7579 assemble_name (file, name);
7580 fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC "\n",
7581 int_size_in_bytes (TREE_TYPE (decl)));
7583 else if (TARGET_IRIX
7584 && mips_abi == ABI_32
7585 && TREE_CODE (decl) == FUNCTION_DECL)
7587 /* In IRIX 5 or IRIX 6 for the O32 ABI, we must output a
7588 `.global name .text' directive for every used but
7589 undefined function. If we don't, the linker may perform
7590 an optimization (skipping over the insns that set $gp)
7591 when it is unsafe. */
7592 fputs ("\t.globl ", file);
7593 assemble_name (file, name);
7594 fputs (" .text\n", file);
7599 /* Implement ASM_OUTPUT_SOURCE_FILENAME. */
7601 void
7602 mips_output_filename (FILE *stream, const char *name)
7604 /* If we are emitting DWARF-2, let dwarf2out handle the ".file"
7605 directives. */
7606 if (write_symbols == DWARF2_DEBUG)
7607 return;
7608 else if (mips_output_filename_first_time)
7610 mips_output_filename_first_time = 0;
7611 num_source_filenames += 1;
7612 current_function_file = name;
7613 fprintf (stream, "\t.file\t%d ", num_source_filenames);
7614 output_quoted_string (stream, name);
7615 putc ('\n', stream);
7617 /* If we are emitting stabs, let dbxout.c handle this (except for
7618 the mips_output_filename_first_time case). */
7619 else if (write_symbols == DBX_DEBUG)
7620 return;
7621 else if (name != current_function_file
7622 && strcmp (name, current_function_file) != 0)
7624 num_source_filenames += 1;
7625 current_function_file = name;
7626 fprintf (stream, "\t.file\t%d ", num_source_filenames);
7627 output_quoted_string (stream, name);
7628 putc ('\n', stream);
7632 /* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */
7634 static void ATTRIBUTE_UNUSED
7635 mips_output_dwarf_dtprel (FILE *file, int size, rtx x)
7637 switch (size)
7639 case 4:
7640 fputs ("\t.dtprelword\t", file);
7641 break;
7643 case 8:
7644 fputs ("\t.dtpreldword\t", file);
7645 break;
7647 default:
7648 gcc_unreachable ();
7650 output_addr_const (file, x);
7651 fputs ("+0x8000", file);
7654 /* Implement TARGET_DWARF_REGISTER_SPAN. */
7656 static rtx
7657 mips_dwarf_register_span (rtx reg)
7659 rtx high, low;
7660 enum machine_mode mode;
7662 /* By default, GCC maps increasing register numbers to increasing
7663 memory locations, but paired FPRs are always little-endian,
7664 regardless of the prevailing endianness. */
7665 mode = GET_MODE (reg);
7666 if (FP_REG_P (REGNO (reg))
7667 && TARGET_BIG_ENDIAN
7668 && MAX_FPRS_PER_FMT > 1
7669 && GET_MODE_SIZE (mode) > UNITS_PER_FPREG)
7671 gcc_assert (GET_MODE_SIZE (mode) == UNITS_PER_HWFPVALUE);
7672 high = mips_subword (reg, true);
7673 low = mips_subword (reg, false);
7674 return gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, high, low));
7677 return NULL_RTX;
7680 /* Implement ASM_OUTPUT_ASCII. */
7682 void
7683 mips_output_ascii (FILE *stream, const char *string, size_t len)
7685 size_t i;
7686 int cur_pos;
7688 cur_pos = 17;
7689 fprintf (stream, "\t.ascii\t\"");
7690 for (i = 0; i < len; i++)
7692 int c;
7694 c = (unsigned char) string[i];
7695 if (ISPRINT (c))
7697 if (c == '\\' || c == '\"')
7699 putc ('\\', stream);
7700 cur_pos++;
7702 putc (c, stream);
7703 cur_pos++;
7705 else
7707 fprintf (stream, "\\%03o", c);
7708 cur_pos += 4;
7711 if (cur_pos > 72 && i+1 < len)
7713 cur_pos = 17;
7714 fprintf (stream, "\"\n\t.ascii\t\"");
7717 fprintf (stream, "\"\n");
7720 /* Emit either a label, .comm, or .lcomm directive. When using assembler
7721 macros, mark the symbol as written so that mips_asm_output_external
7722 won't emit an .extern for it. STREAM is the output file, NAME is the
7723 name of the symbol, INIT_STRING is the string that should be written
7724 before the symbol and FINAL_STRING is the string that should be
7725 written after it. FINAL_STRING is a printf format that consumes the
7726 remaining arguments. */
7728 void
7729 mips_declare_object (FILE *stream, const char *name, const char *init_string,
7730 const char *final_string, ...)
7732 va_list ap;
7734 fputs (init_string, stream);
7735 assemble_name (stream, name);
7736 va_start (ap, final_string);
7737 vfprintf (stream, final_string, ap);
7738 va_end (ap);
7740 if (!TARGET_EXPLICIT_RELOCS)
7742 tree name_tree = get_identifier (name);
7743 TREE_ASM_WRITTEN (name_tree) = 1;
7747 /* Declare a common object of SIZE bytes using asm directive INIT_STRING.
7748 NAME is the name of the object and ALIGN is the required alignment
7749 in bytes. TAKES_ALIGNMENT_P is true if the directive takes a third
7750 alignment argument. */
7752 void
7753 mips_declare_common_object (FILE *stream, const char *name,
7754 const char *init_string,
7755 unsigned HOST_WIDE_INT size,
7756 unsigned int align, bool takes_alignment_p)
7758 if (!takes_alignment_p)
7760 size += (align / BITS_PER_UNIT) - 1;
7761 size -= size % (align / BITS_PER_UNIT);
7762 mips_declare_object (stream, name, init_string,
7763 "," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size);
7765 else
7766 mips_declare_object (stream, name, init_string,
7767 "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
7768 size, align / BITS_PER_UNIT);
7771 /* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON. This is usually the same as the
7772 elfos.h version, but we also need to handle -muninit-const-in-rodata. */
7774 void
7775 mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name,
7776 unsigned HOST_WIDE_INT size,
7777 unsigned int align)
7779 /* If the target wants uninitialized const declarations in
7780 .rdata then don't put them in .comm. */
7781 if (TARGET_EMBEDDED_DATA
7782 && TARGET_UNINIT_CONST_IN_RODATA
7783 && TREE_CODE (decl) == VAR_DECL
7784 && TREE_READONLY (decl)
7785 && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node))
7787 if (TREE_PUBLIC (decl) && DECL_NAME (decl))
7788 targetm.asm_out.globalize_label (stream, name);
7790 switch_to_section (readonly_data_section);
7791 ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
7792 mips_declare_object (stream, name, "",
7793 ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
7794 size);
7796 else
7797 mips_declare_common_object (stream, name, "\n\t.comm\t",
7798 size, align, true);
7801 #ifdef ASM_OUTPUT_SIZE_DIRECTIVE
7802 extern int size_directive_output;
7804 /* Implement ASM_DECLARE_OBJECT_NAME. This is like most of the standard ELF
7805 definitions except that it uses mips_declare_object to emit the label. */
7807 void
7808 mips_declare_object_name (FILE *stream, const char *name,
7809 tree decl ATTRIBUTE_UNUSED)
7811 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
7812 ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
7813 #endif
7815 size_directive_output = 0;
7816 if (!flag_inhibit_size_directive && DECL_SIZE (decl))
7818 HOST_WIDE_INT size;
7820 size_directive_output = 1;
7821 size = int_size_in_bytes (TREE_TYPE (decl));
7822 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
7825 mips_declare_object (stream, name, "", ":\n");
7828 /* Implement ASM_FINISH_DECLARE_OBJECT. This is generic ELF stuff. */
7830 void
7831 mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end)
7833 const char *name;
7835 name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
7836 if (!flag_inhibit_size_directive
7837 && DECL_SIZE (decl) != 0
7838 && !at_end
7839 && top_level
7840 && DECL_INITIAL (decl) == error_mark_node
7841 && !size_directive_output)
7843 HOST_WIDE_INT size;
7845 size_directive_output = 1;
7846 size = int_size_in_bytes (TREE_TYPE (decl));
7847 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
7850 #endif
7852 /* Return the FOO in the name of the ".mdebug.FOO" section associated
7853 with the current ABI. */
7855 static const char *
7856 mips_mdebug_abi_name (void)
7858 switch (mips_abi)
7860 case ABI_32:
7861 return "abi32";
7862 case ABI_O64:
7863 return "abiO64";
7864 case ABI_N32:
7865 return "abiN32";
7866 case ABI_64:
7867 return "abi64";
7868 case ABI_EABI:
7869 return TARGET_64BIT ? "eabi64" : "eabi32";
7870 default:
7871 gcc_unreachable ();
7875 /* Implement TARGET_ASM_FILE_START. */
7877 static void
7878 mips_file_start (void)
7880 default_file_start ();
7882 /* Generate a special section to describe the ABI switches used to
7883 produce the resultant binary. This is unnecessary on IRIX and
7884 causes unwanted warnings from the native linker. */
7885 if (!TARGET_IRIX)
7887 /* Record the ABI itself. Modern versions of binutils encode
7888 this information in the ELF header flags, but GDB needs the
7889 information in order to correctly debug binaries produced by
7890 older binutils. See the function mips_gdbarch_init in
7891 gdb/mips-tdep.c. */
7892 fprintf (asm_out_file, "\t.section .mdebug.%s\n\t.previous\n",
7893 mips_mdebug_abi_name ());
7895 /* There is no ELF header flag to distinguish long32 forms of the
7896 EABI from long64 forms. Emit a special section to help tools
7897 such as GDB. Do the same for o64, which is sometimes used with
7898 -mlong64. */
7899 if (mips_abi == ABI_EABI || mips_abi == ABI_O64)
7900 fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n"
7901 "\t.previous\n", TARGET_LONG64 ? 64 : 32);
7903 #ifdef HAVE_AS_GNU_ATTRIBUTE
7904 fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n",
7905 (TARGET_HARD_FLOAT_ABI
7906 ? (TARGET_DOUBLE_FLOAT
7907 ? ((!TARGET_64BIT && TARGET_FLOAT64) ? 4 : 1) : 2) : 3));
7908 #endif
7911 /* If TARGET_ABICALLS, tell GAS to generate -KPIC code. */
7912 if (TARGET_ABICALLS)
7914 fprintf (asm_out_file, "\t.abicalls\n");
7915 if (TARGET_ABICALLS_PIC0)
7916 fprintf (asm_out_file, "\t.option\tpic0\n");
7919 if (flag_verbose_asm)
7920 fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
7921 ASM_COMMENT_START,
7922 mips_small_data_threshold, mips_arch_info->name, mips_isa);
7925 /* Make the last instruction frame-related and note that it performs
7926 the operation described by FRAME_PATTERN. */
7928 static void
7929 mips_set_frame_expr (rtx frame_pattern)
7931 rtx insn;
7933 insn = get_last_insn ();
7934 RTX_FRAME_RELATED_P (insn) = 1;
7935 REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
7936 frame_pattern,
7937 REG_NOTES (insn));
7940 /* Return a frame-related rtx that stores REG at MEM.
7941 REG must be a single register. */
7943 static rtx
7944 mips_frame_set (rtx mem, rtx reg)
7946 rtx set;
7948 /* If we're saving the return address register and the DWARF return
7949 address column differs from the hard register number, adjust the
7950 note reg to refer to the former. */
7951 if (REGNO (reg) == GP_REG_FIRST + 31
7952 && DWARF_FRAME_RETURN_COLUMN != GP_REG_FIRST + 31)
7953 reg = gen_rtx_REG (GET_MODE (reg), DWARF_FRAME_RETURN_COLUMN);
7955 set = gen_rtx_SET (VOIDmode, mem, reg);
7956 RTX_FRAME_RELATED_P (set) = 1;
7958 return set;
7961 /* If a MIPS16e SAVE or RESTORE instruction saves or restores register
7962 mips16e_s2_s8_regs[X], it must also save the registers in indexes
7963 X + 1 onwards. Likewise mips16e_a0_a3_regs. */
7964 static const unsigned char mips16e_s2_s8_regs[] = {
7965 30, 23, 22, 21, 20, 19, 18
7967 static const unsigned char mips16e_a0_a3_regs[] = {
7968 4, 5, 6, 7
7971 /* A list of the registers that can be saved by the MIPS16e SAVE instruction,
7972 ordered from the uppermost in memory to the lowest in memory. */
7973 static const unsigned char mips16e_save_restore_regs[] = {
7974 31, 30, 23, 22, 21, 20, 19, 18, 17, 16, 7, 6, 5, 4
7977 /* Return the index of the lowest X in the range [0, SIZE) for which
7978 bit REGS[X] is set in MASK. Return SIZE if there is no such X. */
7980 static unsigned int
7981 mips16e_find_first_register (unsigned int mask, const unsigned char *regs,
7982 unsigned int size)
7984 unsigned int i;
7986 for (i = 0; i < size; i++)
7987 if (BITSET_P (mask, regs[i]))
7988 break;
7990 return i;
7993 /* *MASK_PTR is a mask of general-purpose registers and *NUM_REGS_PTR
7994 is the number of set bits. If *MASK_PTR contains REGS[X] for some X
7995 in [0, SIZE), adjust *MASK_PTR and *NUM_REGS_PTR so that the same
7996 is true for all indexes (X, SIZE). */
7998 static void
7999 mips16e_mask_registers (unsigned int *mask_ptr, const unsigned char *regs,
8000 unsigned int size, unsigned int *num_regs_ptr)
8002 unsigned int i;
8004 i = mips16e_find_first_register (*mask_ptr, regs, size);
8005 for (i++; i < size; i++)
8006 if (!BITSET_P (*mask_ptr, regs[i]))
8008 *num_regs_ptr += 1;
8009 *mask_ptr |= 1 << regs[i];
8013 /* Return a simplified form of X using the register values in REG_VALUES.
8014 REG_VALUES[R] is the last value assigned to hard register R, or null
8015 if R has not been modified.
8017 This function is rather limited, but is good enough for our purposes. */
8019 static rtx
8020 mips16e_collect_propagate_value (rtx x, rtx *reg_values)
8022 x = avoid_constant_pool_reference (x);
8024 if (UNARY_P (x))
8026 rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
8027 return simplify_gen_unary (GET_CODE (x), GET_MODE (x),
8028 x0, GET_MODE (XEXP (x, 0)));
8031 if (ARITHMETIC_P (x))
8033 rtx x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
8034 rtx x1 = mips16e_collect_propagate_value (XEXP (x, 1), reg_values);
8035 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), x0, x1);
8038 if (REG_P (x)
8039 && reg_values[REGNO (x)]
8040 && !rtx_unstable_p (reg_values[REGNO (x)]))
8041 return reg_values[REGNO (x)];
8043 return x;
8046 /* Return true if (set DEST SRC) stores an argument register into its
8047 caller-allocated save slot, storing the number of that argument
8048 register in *REGNO_PTR if so. REG_VALUES is as for
8049 mips16e_collect_propagate_value. */
8051 static bool
8052 mips16e_collect_argument_save_p (rtx dest, rtx src, rtx *reg_values,
8053 unsigned int *regno_ptr)
8055 unsigned int argno, regno;
8056 HOST_WIDE_INT offset, required_offset;
8057 rtx addr, base;
8059 /* Check that this is a word-mode store. */
8060 if (!MEM_P (dest) || !REG_P (src) || GET_MODE (dest) != word_mode)
8061 return false;
8063 /* Check that the register being saved is an unmodified argument
8064 register. */
8065 regno = REGNO (src);
8066 if (!IN_RANGE (regno, GP_ARG_FIRST, GP_ARG_LAST) || reg_values[regno])
8067 return false;
8068 argno = regno - GP_ARG_FIRST;
8070 /* Check whether the address is an appropriate stack-pointer or
8071 frame-pointer access. */
8072 addr = mips16e_collect_propagate_value (XEXP (dest, 0), reg_values);
8073 mips_split_plus (addr, &base, &offset);
8074 required_offset = cfun->machine->frame.total_size + argno * UNITS_PER_WORD;
8075 if (base == hard_frame_pointer_rtx)
8076 required_offset -= cfun->machine->frame.hard_frame_pointer_offset;
8077 else if (base != stack_pointer_rtx)
8078 return false;
8079 if (offset != required_offset)
8080 return false;
8082 *regno_ptr = regno;
8083 return true;
8086 /* A subroutine of mips_expand_prologue, called only when generating
8087 MIPS16e SAVE instructions. Search the start of the function for any
8088 instructions that save argument registers into their caller-allocated
8089 save slots. Delete such instructions and return a value N such that
8090 saving [GP_ARG_FIRST, GP_ARG_FIRST + N) would make all the deleted
8091 instructions redundant. */
8093 static unsigned int
8094 mips16e_collect_argument_saves (void)
8096 rtx reg_values[FIRST_PSEUDO_REGISTER];
8097 rtx insn, next, set, dest, src;
8098 unsigned int nargs, regno;
8100 push_topmost_sequence ();
8101 nargs = 0;
8102 memset (reg_values, 0, sizeof (reg_values));
8103 for (insn = get_insns (); insn; insn = next)
8105 next = NEXT_INSN (insn);
8106 if (NOTE_P (insn))
8107 continue;
8109 if (!INSN_P (insn))
8110 break;
8112 set = PATTERN (insn);
8113 if (GET_CODE (set) != SET)
8114 break;
8116 dest = SET_DEST (set);
8117 src = SET_SRC (set);
8118 if (mips16e_collect_argument_save_p (dest, src, reg_values, &regno))
8120 if (!BITSET_P (cfun->machine->frame.mask, regno))
8122 delete_insn (insn);
8123 nargs = MAX (nargs, (regno - GP_ARG_FIRST) + 1);
8126 else if (REG_P (dest) && GET_MODE (dest) == word_mode)
8127 reg_values[REGNO (dest)]
8128 = mips16e_collect_propagate_value (src, reg_values);
8129 else
8130 break;
8132 pop_topmost_sequence ();
8134 return nargs;
8137 /* Return a move between register REGNO and memory location SP + OFFSET.
8138 Make the move a load if RESTORE_P, otherwise make it a frame-related
8139 store. */
8141 static rtx
8142 mips16e_save_restore_reg (bool restore_p, HOST_WIDE_INT offset,
8143 unsigned int regno)
8145 rtx reg, mem;
8147 mem = gen_frame_mem (SImode, plus_constant (stack_pointer_rtx, offset));
8148 reg = gen_rtx_REG (SImode, regno);
8149 return (restore_p
8150 ? gen_rtx_SET (VOIDmode, reg, mem)
8151 : mips_frame_set (mem, reg));
8154 /* Return RTL for a MIPS16e SAVE or RESTORE instruction; RESTORE_P says which.
8155 The instruction must:
8157 - Allocate or deallocate SIZE bytes in total; SIZE is known
8158 to be nonzero.
8160 - Save or restore as many registers in *MASK_PTR as possible.
8161 The instruction saves the first registers at the top of the
8162 allocated area, with the other registers below it.
8164 - Save NARGS argument registers above the allocated area.
8166 (NARGS is always zero if RESTORE_P.)
8168 The SAVE and RESTORE instructions cannot save and restore all general
8169 registers, so there may be some registers left over for the caller to
8170 handle. Destructively modify *MASK_PTR so that it contains the registers
8171 that still need to be saved or restored. The caller can save these
8172 registers in the memory immediately below *OFFSET_PTR, which is a
8173 byte offset from the bottom of the allocated stack area. */
8175 static rtx
8176 mips16e_build_save_restore (bool restore_p, unsigned int *mask_ptr,
8177 HOST_WIDE_INT *offset_ptr, unsigned int nargs,
8178 HOST_WIDE_INT size)
8180 rtx pattern, set;
8181 HOST_WIDE_INT offset, top_offset;
8182 unsigned int i, regno;
8183 int n;
8185 gcc_assert (cfun->machine->frame.num_fp == 0);
8187 /* Calculate the number of elements in the PARALLEL. We need one element
8188 for the stack adjustment, one for each argument register save, and one
8189 for each additional register move. */
8190 n = 1 + nargs;
8191 for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
8192 if (BITSET_P (*mask_ptr, mips16e_save_restore_regs[i]))
8193 n++;
8195 /* Create the final PARALLEL. */
8196 pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (n));
8197 n = 0;
8199 /* Add the stack pointer adjustment. */
8200 set = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
8201 plus_constant (stack_pointer_rtx,
8202 restore_p ? size : -size));
8203 RTX_FRAME_RELATED_P (set) = 1;
8204 XVECEXP (pattern, 0, n++) = set;
8206 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
8207 top_offset = restore_p ? size : 0;
8209 /* Save the arguments. */
8210 for (i = 0; i < nargs; i++)
8212 offset = top_offset + i * UNITS_PER_WORD;
8213 set = mips16e_save_restore_reg (restore_p, offset, GP_ARG_FIRST + i);
8214 XVECEXP (pattern, 0, n++) = set;
8217 /* Then fill in the other register moves. */
8218 offset = top_offset;
8219 for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
8221 regno = mips16e_save_restore_regs[i];
8222 if (BITSET_P (*mask_ptr, regno))
8224 offset -= UNITS_PER_WORD;
8225 set = mips16e_save_restore_reg (restore_p, offset, regno);
8226 XVECEXP (pattern, 0, n++) = set;
8227 *mask_ptr &= ~(1 << regno);
8231 /* Tell the caller what offset it should use for the remaining registers. */
8232 *offset_ptr = size + (offset - top_offset);
8234 gcc_assert (n == XVECLEN (pattern, 0));
8236 return pattern;
8239 /* PATTERN is a PARALLEL whose first element adds ADJUST to the stack
8240 pointer. Return true if PATTERN matches the kind of instruction
8241 generated by mips16e_build_save_restore. If INFO is nonnull,
8242 initialize it when returning true. */
8244 bool
8245 mips16e_save_restore_pattern_p (rtx pattern, HOST_WIDE_INT adjust,
8246 struct mips16e_save_restore_info *info)
8248 unsigned int i, nargs, mask, extra;
8249 HOST_WIDE_INT top_offset, save_offset, offset;
8250 rtx set, reg, mem, base;
8251 int n;
8253 if (!GENERATE_MIPS16E_SAVE_RESTORE)
8254 return false;
8256 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
8257 top_offset = adjust > 0 ? adjust : 0;
8259 /* Interpret all other members of the PARALLEL. */
8260 save_offset = top_offset - UNITS_PER_WORD;
8261 mask = 0;
8262 nargs = 0;
8263 i = 0;
8264 for (n = 1; n < XVECLEN (pattern, 0); n++)
8266 /* Check that we have a SET. */
8267 set = XVECEXP (pattern, 0, n);
8268 if (GET_CODE (set) != SET)
8269 return false;
8271 /* Check that the SET is a load (if restoring) or a store
8272 (if saving). */
8273 mem = adjust > 0 ? SET_SRC (set) : SET_DEST (set);
8274 if (!MEM_P (mem))
8275 return false;
8277 /* Check that the address is the sum of the stack pointer and a
8278 possibly-zero constant offset. */
8279 mips_split_plus (XEXP (mem, 0), &base, &offset);
8280 if (base != stack_pointer_rtx)
8281 return false;
8283 /* Check that SET's other operand is a register. */
8284 reg = adjust > 0 ? SET_DEST (set) : SET_SRC (set);
8285 if (!REG_P (reg))
8286 return false;
8288 /* Check for argument saves. */
8289 if (offset == top_offset + nargs * UNITS_PER_WORD
8290 && REGNO (reg) == GP_ARG_FIRST + nargs)
8291 nargs++;
8292 else if (offset == save_offset)
8294 while (mips16e_save_restore_regs[i++] != REGNO (reg))
8295 if (i == ARRAY_SIZE (mips16e_save_restore_regs))
8296 return false;
8298 mask |= 1 << REGNO (reg);
8299 save_offset -= UNITS_PER_WORD;
8301 else
8302 return false;
8305 /* Check that the restrictions on register ranges are met. */
8306 extra = 0;
8307 mips16e_mask_registers (&mask, mips16e_s2_s8_regs,
8308 ARRAY_SIZE (mips16e_s2_s8_regs), &extra);
8309 mips16e_mask_registers (&mask, mips16e_a0_a3_regs,
8310 ARRAY_SIZE (mips16e_a0_a3_regs), &extra);
8311 if (extra != 0)
8312 return false;
8314 /* Make sure that the topmost argument register is not saved twice.
8315 The checks above ensure that the same is then true for the other
8316 argument registers. */
8317 if (nargs > 0 && BITSET_P (mask, GP_ARG_FIRST + nargs - 1))
8318 return false;
8320 /* Pass back information, if requested. */
8321 if (info)
8323 info->nargs = nargs;
8324 info->mask = mask;
8325 info->size = (adjust > 0 ? adjust : -adjust);
8328 return true;
8331 /* Add a MIPS16e SAVE or RESTORE register-range argument to string S
8332 for the register range [MIN_REG, MAX_REG]. Return a pointer to
8333 the null terminator. */
8335 static char *
8336 mips16e_add_register_range (char *s, unsigned int min_reg,
8337 unsigned int max_reg)
8339 if (min_reg != max_reg)
8340 s += sprintf (s, ",%s-%s", reg_names[min_reg], reg_names[max_reg]);
8341 else
8342 s += sprintf (s, ",%s", reg_names[min_reg]);
8343 return s;
8346 /* Return the assembly instruction for a MIPS16e SAVE or RESTORE instruction.
8347 PATTERN and ADJUST are as for mips16e_save_restore_pattern_p. */
8349 const char *
8350 mips16e_output_save_restore (rtx pattern, HOST_WIDE_INT adjust)
8352 static char buffer[300];
8354 struct mips16e_save_restore_info info;
8355 unsigned int i, end;
8356 char *s;
8358 /* Parse the pattern. */
8359 if (!mips16e_save_restore_pattern_p (pattern, adjust, &info))
8360 gcc_unreachable ();
8362 /* Add the mnemonic. */
8363 s = strcpy (buffer, adjust > 0 ? "restore\t" : "save\t");
8364 s += strlen (s);
8366 /* Save the arguments. */
8367 if (info.nargs > 1)
8368 s += sprintf (s, "%s-%s,", reg_names[GP_ARG_FIRST],
8369 reg_names[GP_ARG_FIRST + info.nargs - 1]);
8370 else if (info.nargs == 1)
8371 s += sprintf (s, "%s,", reg_names[GP_ARG_FIRST]);
8373 /* Emit the amount of stack space to allocate or deallocate. */
8374 s += sprintf (s, "%d", (int) info.size);
8376 /* Save or restore $16. */
8377 if (BITSET_P (info.mask, 16))
8378 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 16]);
8380 /* Save or restore $17. */
8381 if (BITSET_P (info.mask, 17))
8382 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 17]);
8384 /* Save or restore registers in the range $s2...$s8, which
8385 mips16e_s2_s8_regs lists in decreasing order. Note that this
8386 is a software register range; the hardware registers are not
8387 numbered consecutively. */
8388 end = ARRAY_SIZE (mips16e_s2_s8_regs);
8389 i = mips16e_find_first_register (info.mask, mips16e_s2_s8_regs, end);
8390 if (i < end)
8391 s = mips16e_add_register_range (s, mips16e_s2_s8_regs[end - 1],
8392 mips16e_s2_s8_regs[i]);
8394 /* Save or restore registers in the range $a0...$a3. */
8395 end = ARRAY_SIZE (mips16e_a0_a3_regs);
8396 i = mips16e_find_first_register (info.mask, mips16e_a0_a3_regs, end);
8397 if (i < end)
8398 s = mips16e_add_register_range (s, mips16e_a0_a3_regs[i],
8399 mips16e_a0_a3_regs[end - 1]);
8401 /* Save or restore $31. */
8402 if (BITSET_P (info.mask, 31))
8403 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 31]);
8405 return buffer;
8408 /* Return true if the current function has an insn that implicitly
8409 refers to $gp. */
8411 static bool
8412 mips_function_has_gp_insn (void)
8414 /* Don't bother rechecking if we found one last time. */
8415 if (!cfun->machine->has_gp_insn_p)
8417 rtx insn;
8419 push_topmost_sequence ();
8420 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
8421 if (USEFUL_INSN_P (insn)
8422 && (get_attr_got (insn) != GOT_UNSET
8423 || mips_small_data_pattern_p (PATTERN (insn))))
8425 cfun->machine->has_gp_insn_p = true;
8426 break;
8428 pop_topmost_sequence ();
8430 return cfun->machine->has_gp_insn_p;
8433 /* Return true if the current function returns its value in a floating-point
8434 register in MIPS16 mode. */
8436 static bool
8437 mips16_cfun_returns_in_fpr_p (void)
8439 tree return_type = DECL_RESULT (current_function_decl);
8440 return (TARGET_MIPS16
8441 && TARGET_HARD_FLOAT_ABI
8442 && !aggregate_value_p (return_type, current_function_decl)
8443 && mips_return_mode_in_fpr_p (DECL_MODE (return_type)));
8446 /* Return the register that should be used as the global pointer
8447 within this function. Return INVALID_REGNUM if the function
8448 doesn't need a global pointer. */
8450 static unsigned int
8451 mips_global_pointer (void)
8453 unsigned int regno;
8455 /* $gp is always available unless we're using a GOT. */
8456 if (!TARGET_USE_GOT)
8457 return GLOBAL_POINTER_REGNUM;
8459 /* We must always provide $gp when it is used implicitly. */
8460 if (!TARGET_EXPLICIT_RELOCS)
8461 return GLOBAL_POINTER_REGNUM;
8463 /* FUNCTION_PROFILER includes a jal macro, so we need to give it
8464 a valid gp. */
8465 if (crtl->profile)
8466 return GLOBAL_POINTER_REGNUM;
8468 /* If the function has a nonlocal goto, $gp must hold the correct
8469 global pointer for the target function. */
8470 if (crtl->has_nonlocal_goto)
8471 return GLOBAL_POINTER_REGNUM;
8473 /* There's no need to initialize $gp if it isn't referenced now,
8474 and if we can be sure that no new references will be added during
8475 or after reload. */
8476 if (!df_regs_ever_live_p (GLOBAL_POINTER_REGNUM)
8477 && !mips_function_has_gp_insn ())
8479 /* The function doesn't use $gp at the moment. If we're generating
8480 -call_nonpic code, no new uses will be introduced during or after
8481 reload. */
8482 if (TARGET_ABICALLS_PIC0)
8483 return INVALID_REGNUM;
8485 /* We need to handle the following implicit gp references:
8487 - Reload can sometimes introduce constant pool references
8488 into a function that otherwise didn't need them. For example,
8489 suppose we have an instruction like:
8491 (set (reg:DF R1) (float:DF (reg:SI R2)))
8493 If R2 turns out to be constant such as 1, the instruction may
8494 have a REG_EQUAL note saying that R1 == 1.0. Reload then has
8495 the option of using this constant if R2 doesn't get allocated
8496 to a register.
8498 In cases like these, reload will have added the constant to the
8499 pool but no instruction will yet refer to it.
8501 - MIPS16 functions that return in FPRs need to call an
8502 external libgcc routine. */
8503 if (!crtl->uses_const_pool
8504 && !mips16_cfun_returns_in_fpr_p ())
8505 return INVALID_REGNUM;
8508 /* We need a global pointer, but perhaps we can use a call-clobbered
8509 register instead of $gp. */
8510 if (TARGET_CALL_SAVED_GP && current_function_is_leaf)
8511 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
8512 if (!df_regs_ever_live_p (regno)
8513 && call_really_used_regs[regno]
8514 && !fixed_regs[regno]
8515 && regno != PIC_FUNCTION_ADDR_REGNUM)
8516 return regno;
8518 return GLOBAL_POINTER_REGNUM;
8521 /* Return true if REGNO is a register that is ordinarily call-clobbered
8522 but must nevertheless be preserved by an interrupt handler. */
8524 static bool
8525 mips_interrupt_extra_call_saved_reg_p (unsigned int regno)
8527 if (MD_REG_P (regno))
8528 return true;
8530 if (TARGET_DSP && DSP_ACC_REG_P (regno))
8531 return true;
8533 if (GP_REG_P (regno) && !cfun->machine->use_shadow_register_set_p)
8535 /* $0 is hard-wired. */
8536 if (regno == GP_REG_FIRST)
8537 return false;
8539 /* The interrupt handler can treat kernel registers as
8540 scratch registers. */
8541 if (KERNEL_REG_P (regno))
8542 return false;
8544 /* The function will return the stack pointer to its original value
8545 anyway. */
8546 if (regno == STACK_POINTER_REGNUM)
8547 return false;
8549 /* Otherwise, return true for registers that aren't ordinarily
8550 call-clobbered. */
8551 return call_really_used_regs[regno];
8554 return false;
8557 /* Return true if the current function should treat register REGNO
8558 as call-saved. */
8560 static bool
8561 mips_cfun_call_saved_reg_p (unsigned int regno)
8563 /* Interrupt handlers need to save extra registers. */
8564 if (cfun->machine->interrupt_handler_p
8565 && mips_interrupt_extra_call_saved_reg_p (regno))
8566 return true;
8568 /* call_insns preserve $28 unless they explicitly say otherwise,
8569 so call_really_used_regs[] treats $28 as call-saved. However,
8570 we want the ABI property rather than the default call_insn
8571 property here. */
8572 return (regno == GLOBAL_POINTER_REGNUM
8573 ? TARGET_CALL_SAVED_GP
8574 : !call_really_used_regs[regno]);
8577 /* Return true if the function body might clobber register REGNO.
8578 We know that REGNO is call-saved. */
8580 static bool
8581 mips_cfun_might_clobber_call_saved_reg_p (unsigned int regno)
8583 /* Some functions should be treated as clobbering all call-saved
8584 registers. */
8585 if (crtl->saves_all_registers)
8586 return true;
8588 /* DF handles cases where a register is explicitly referenced in
8589 the rtl. Incoming values are passed in call-clobbered registers,
8590 so we can assume that any live call-saved register is set within
8591 the function. */
8592 if (df_regs_ever_live_p (regno))
8593 return true;
8595 /* Check for registers that are clobbered by FUNCTION_PROFILER.
8596 These clobbers are not explicit in the rtl. */
8597 if (crtl->profile && MIPS_SAVE_REG_FOR_PROFILING_P (regno))
8598 return true;
8600 /* If we're using a call-saved global pointer, the function's
8601 prologue will need to set it up. */
8602 if (cfun->machine->global_pointer == regno)
8603 return true;
8605 /* The function's prologue will need to set the frame pointer if
8606 frame_pointer_needed. */
8607 if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
8608 return true;
8610 /* If a MIPS16 function returns a value in FPRs, its epilogue
8611 will need to call an external libgcc routine. This yet-to-be
8612 generated call_insn will clobber $31. */
8613 if (regno == GP_REG_FIRST + 31 && mips16_cfun_returns_in_fpr_p ())
8614 return true;
8616 /* If REGNO is ordinarily call-clobbered, we must assume that any
8617 called function could modify it. */
8618 if (cfun->machine->interrupt_handler_p
8619 && !current_function_is_leaf
8620 && mips_interrupt_extra_call_saved_reg_p (regno))
8621 return true;
8623 return false;
8626 /* Return true if the current function must save register REGNO. */
8628 static bool
8629 mips_save_reg_p (unsigned int regno)
8631 if (mips_cfun_call_saved_reg_p (regno))
8633 if (mips_cfun_might_clobber_call_saved_reg_p (regno))
8634 return true;
8636 /* Save both registers in an FPR pair if either one is used. This is
8637 needed for the case when MIN_FPRS_PER_FMT == 1, which allows the odd
8638 register to be used without the even register. */
8639 if (FP_REG_P (regno)
8640 && MAX_FPRS_PER_FMT == 2
8641 && mips_cfun_might_clobber_call_saved_reg_p (regno + 1))
8642 return true;
8645 /* We need to save the incoming return address if __builtin_eh_return
8646 is being used to set a different return address. */
8647 if (regno == GP_REG_FIRST + 31 && crtl->calls_eh_return)
8648 return true;
8650 return false;
8653 /* Populate the current function's mips_frame_info structure.
8655 MIPS stack frames look like:
8657 +-------------------------------+
8659 | incoming stack arguments |
8661 +-------------------------------+
8663 | caller-allocated save area |
8664 A | for register arguments |
8666 +-------------------------------+ <-- incoming stack pointer
8668 | callee-allocated save area |
8669 B | for arguments that are |
8670 | split between registers and |
8671 | the stack |
8673 +-------------------------------+ <-- arg_pointer_rtx
8675 C | callee-allocated save area |
8676 | for register varargs |
8678 +-------------------------------+ <-- frame_pointer_rtx
8679 | | + cop0_sp_offset
8680 | COP0 reg save area | + UNITS_PER_WORD
8682 +-------------------------------+ <-- frame_pointer_rtx + acc_sp_offset
8683 | | + UNITS_PER_WORD
8684 | accumulator save area |
8686 +-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset
8687 | | + UNITS_PER_HWFPVALUE
8688 | FPR save area |
8690 +-------------------------------+ <-- stack_pointer_rtx + gp_sp_offset
8691 | | + UNITS_PER_WORD
8692 | GPR save area |
8694 +-------------------------------+ <-- frame_pointer_rtx with
8695 | | \ -fstack-protector
8696 | local variables | | var_size
8697 | | /
8698 +-------------------------------+
8699 | | \
8700 | $gp save area | | cprestore_size
8701 | | /
8702 P +-------------------------------+ <-- hard_frame_pointer_rtx for
8703 | | \ MIPS16 code
8704 | outgoing stack arguments | |
8705 | | |
8706 +-------------------------------+ | args_size
8707 | | |
8708 | caller-allocated save area | |
8709 | for register arguments | |
8710 | | /
8711 +-------------------------------+ <-- stack_pointer_rtx
8712 frame_pointer_rtx without
8713 -fstack-protector
8714 hard_frame_pointer_rtx for
8715 non-MIPS16 code.
8717 At least two of A, B and C will be empty.
8719 Dynamic stack allocations such as alloca insert data at point P.
8720 They decrease stack_pointer_rtx but leave frame_pointer_rtx and
8721 hard_frame_pointer_rtx unchanged. */
8723 static void
8724 mips_compute_frame_info (void)
8726 struct mips_frame_info *frame;
8727 HOST_WIDE_INT offset, size;
8728 unsigned int regno, i;
8730 /* Set this function's interrupt properties. */
8731 if (mips_interrupt_type_p (TREE_TYPE (current_function_decl)))
8733 if (!ISA_MIPS32R2)
8734 error ("the %<interrupt%> attribute requires a MIPS32r2 processor");
8735 else if (TARGET_HARD_FLOAT)
8736 error ("the %<interrupt%> attribute requires %<-msoft-float%>");
8737 else if (TARGET_MIPS16)
8738 error ("interrupt handlers cannot be MIPS16 functions");
8739 else
8741 cfun->machine->interrupt_handler_p = true;
8742 cfun->machine->use_shadow_register_set_p =
8743 mips_use_shadow_register_set_p (TREE_TYPE (current_function_decl));
8744 cfun->machine->keep_interrupts_masked_p =
8745 mips_keep_interrupts_masked_p (TREE_TYPE (current_function_decl));
8746 cfun->machine->use_debug_exception_return_p =
8747 mips_use_debug_exception_return_p (TREE_TYPE
8748 (current_function_decl));
8752 frame = &cfun->machine->frame;
8753 memset (frame, 0, sizeof (*frame));
8754 size = get_frame_size ();
8756 cfun->machine->global_pointer = mips_global_pointer ();
8758 /* The first two blocks contain the outgoing argument area and the $gp save
8759 slot. This area isn't needed in leaf functions, but if the
8760 target-independent frame size is nonzero, we have already committed to
8761 allocating these in STARTING_FRAME_OFFSET for !FRAME_GROWS_DOWNWARD. */
8762 if ((size == 0 || FRAME_GROWS_DOWNWARD) && current_function_is_leaf)
8764 /* The MIPS 3.0 linker does not like functions that dynamically
8765 allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
8766 looks like we are trying to create a second frame pointer to the
8767 function, so allocate some stack space to make it happy. */
8768 if (cfun->calls_alloca)
8769 frame->args_size = REG_PARM_STACK_SPACE (cfun->decl);
8770 else
8771 frame->args_size = 0;
8772 frame->cprestore_size = 0;
8774 else
8776 frame->args_size = crtl->outgoing_args_size;
8777 frame->cprestore_size = MIPS_GP_SAVE_AREA_SIZE;
8779 offset = frame->args_size + frame->cprestore_size;
8781 /* Move above the local variables. */
8782 frame->var_size = MIPS_STACK_ALIGN (size);
8783 offset += frame->var_size;
8785 /* Find out which GPRs we need to save. */
8786 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
8787 if (mips_save_reg_p (regno))
8789 frame->num_gp++;
8790 frame->mask |= 1 << (regno - GP_REG_FIRST);
8793 /* If this function calls eh_return, we must also save and restore the
8794 EH data registers. */
8795 if (crtl->calls_eh_return)
8796 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; i++)
8798 frame->num_gp++;
8799 frame->mask |= 1 << (EH_RETURN_DATA_REGNO (i) - GP_REG_FIRST);
8802 /* The MIPS16e SAVE and RESTORE instructions have two ranges of registers:
8803 $a3-$a0 and $s2-$s8. If we save one register in the range, we must
8804 save all later registers too. */
8805 if (GENERATE_MIPS16E_SAVE_RESTORE)
8807 mips16e_mask_registers (&frame->mask, mips16e_s2_s8_regs,
8808 ARRAY_SIZE (mips16e_s2_s8_regs), &frame->num_gp);
8809 mips16e_mask_registers (&frame->mask, mips16e_a0_a3_regs,
8810 ARRAY_SIZE (mips16e_a0_a3_regs), &frame->num_gp);
8813 /* Move above the GPR save area. */
8814 if (frame->num_gp > 0)
8816 offset += MIPS_STACK_ALIGN (frame->num_gp * UNITS_PER_WORD);
8817 frame->gp_sp_offset = offset - UNITS_PER_WORD;
8820 /* Find out which FPRs we need to save. This loop must iterate over
8821 the same space as its companion in mips_for_each_saved_gpr_and_fpr. */
8822 if (TARGET_HARD_FLOAT)
8823 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno += MAX_FPRS_PER_FMT)
8824 if (mips_save_reg_p (regno))
8826 frame->num_fp += MAX_FPRS_PER_FMT;
8827 frame->fmask |= ~(~0 << MAX_FPRS_PER_FMT) << (regno - FP_REG_FIRST);
8830 /* Move above the FPR save area. */
8831 if (frame->num_fp > 0)
8833 offset += MIPS_STACK_ALIGN (frame->num_fp * UNITS_PER_FPREG);
8834 frame->fp_sp_offset = offset - UNITS_PER_HWFPVALUE;
8837 /* Add in space for the interrupt context information. */
8838 if (cfun->machine->interrupt_handler_p)
8840 /* Check HI/LO. */
8841 if (mips_save_reg_p (LO_REGNUM) || mips_save_reg_p (HI_REGNUM))
8843 frame->num_acc++;
8844 frame->acc_mask |= (1 << 0);
8847 /* Check accumulators 1, 2, 3. */
8848 for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2)
8849 if (mips_save_reg_p (i) || mips_save_reg_p (i + 1))
8851 frame->num_acc++;
8852 frame->acc_mask |= 1 << (((i - DSP_ACC_REG_FIRST) / 2) + 1);
8855 /* All interrupt context functions need space to preserve STATUS. */
8856 frame->num_cop0_regs++;
8858 /* If we don't keep interrupts masked, we need to save EPC. */
8859 if (!cfun->machine->keep_interrupts_masked_p)
8860 frame->num_cop0_regs++;
8863 /* Move above the accumulator save area. */
8864 if (frame->num_acc > 0)
8866 /* Each accumulator needs 2 words. */
8867 offset += frame->num_acc * 2 * UNITS_PER_WORD;
8868 frame->acc_sp_offset = offset - UNITS_PER_WORD;
8871 /* Move above the COP0 register save area. */
8872 if (frame->num_cop0_regs > 0)
8874 offset += frame->num_cop0_regs * UNITS_PER_WORD;
8875 frame->cop0_sp_offset = offset - UNITS_PER_WORD;
8878 /* Move above the callee-allocated varargs save area. */
8879 offset += MIPS_STACK_ALIGN (cfun->machine->varargs_size);
8880 frame->arg_pointer_offset = offset;
8882 /* Move above the callee-allocated area for pretend stack arguments. */
8883 offset += crtl->args.pretend_args_size;
8884 frame->total_size = offset;
8886 /* Work out the offsets of the save areas from the top of the frame. */
8887 if (frame->gp_sp_offset > 0)
8888 frame->gp_save_offset = frame->gp_sp_offset - offset;
8889 if (frame->fp_sp_offset > 0)
8890 frame->fp_save_offset = frame->fp_sp_offset - offset;
8891 if (frame->acc_sp_offset > 0)
8892 frame->acc_save_offset = frame->acc_sp_offset - offset;
8893 if (frame->num_cop0_regs > 0)
8894 frame->cop0_save_offset = frame->cop0_sp_offset - offset;
8896 /* MIPS16 code offsets the frame pointer by the size of the outgoing
8897 arguments. This tends to increase the chances of using unextended
8898 instructions for local variables and incoming arguments. */
8899 if (TARGET_MIPS16)
8900 frame->hard_frame_pointer_offset = frame->args_size;
8903 /* Return the style of GP load sequence that is being used for the
8904 current function. */
8906 enum mips_loadgp_style
8907 mips_current_loadgp_style (void)
8909 if (!TARGET_USE_GOT || cfun->machine->global_pointer == INVALID_REGNUM)
8910 return LOADGP_NONE;
8912 if (TARGET_RTP_PIC)
8913 return LOADGP_RTP;
8915 if (TARGET_ABSOLUTE_ABICALLS)
8916 return LOADGP_ABSOLUTE;
8918 return TARGET_NEWABI ? LOADGP_NEWABI : LOADGP_OLDABI;
8921 /* Implement FRAME_POINTER_REQUIRED. */
8923 bool
8924 mips_frame_pointer_required (void)
8926 /* If the function contains dynamic stack allocations, we need to
8927 use the frame pointer to access the static parts of the frame. */
8928 if (cfun->calls_alloca)
8929 return true;
8931 /* In MIPS16 mode, we need a frame pointer for a large frame; otherwise,
8932 reload may be unable to compute the address of a local variable,
8933 since there is no way to add a large constant to the stack pointer
8934 without using a second temporary register. */
8935 if (TARGET_MIPS16)
8937 mips_compute_frame_info ();
8938 if (!SMALL_OPERAND (cfun->machine->frame.total_size))
8939 return true;
8942 return false;
8945 /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
8946 or argument pointer. TO is either the stack pointer or hard frame
8947 pointer. */
8949 HOST_WIDE_INT
8950 mips_initial_elimination_offset (int from, int to)
8952 HOST_WIDE_INT offset;
8954 mips_compute_frame_info ();
8956 /* Set OFFSET to the offset from the end-of-prologue stack pointer. */
8957 switch (from)
8959 case FRAME_POINTER_REGNUM:
8960 if (FRAME_GROWS_DOWNWARD)
8961 offset = (cfun->machine->frame.args_size
8962 + cfun->machine->frame.cprestore_size
8963 + cfun->machine->frame.var_size);
8964 else
8965 offset = 0;
8966 break;
8968 case ARG_POINTER_REGNUM:
8969 offset = cfun->machine->frame.arg_pointer_offset;
8970 break;
8972 default:
8973 gcc_unreachable ();
8976 if (to == HARD_FRAME_POINTER_REGNUM)
8977 offset -= cfun->machine->frame.hard_frame_pointer_offset;
8979 return offset;
8982 /* Implement TARGET_EXTRA_LIVE_ON_ENTRY. */
8984 static void
8985 mips_extra_live_on_entry (bitmap regs)
8987 if (TARGET_USE_GOT)
8989 /* PIC_FUNCTION_ADDR_REGNUM is live if we need it to set up
8990 the global pointer. */
8991 if (!TARGET_ABSOLUTE_ABICALLS)
8992 bitmap_set_bit (regs, PIC_FUNCTION_ADDR_REGNUM);
8994 /* The prologue may set MIPS16_PIC_TEMP_REGNUM to the value of
8995 the global pointer. */
8996 if (TARGET_MIPS16)
8997 bitmap_set_bit (regs, MIPS16_PIC_TEMP_REGNUM);
8999 /* See the comment above load_call<mode> for details. */
9000 bitmap_set_bit (regs, GOT_VERSION_REGNUM);
9004 /* Implement RETURN_ADDR_RTX. We do not support moving back to a
9005 previous frame. */
9008 mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
9010 if (count != 0)
9011 return const0_rtx;
9013 return get_hard_reg_initial_val (Pmode, GP_REG_FIRST + 31);
9016 /* Emit code to change the current function's return address to
9017 ADDRESS. SCRATCH is available as a scratch register, if needed.
9018 ADDRESS and SCRATCH are both word-mode GPRs. */
9020 void
9021 mips_set_return_address (rtx address, rtx scratch)
9023 rtx slot_address;
9025 gcc_assert (BITSET_P (cfun->machine->frame.mask, 31));
9026 slot_address = mips_add_offset (scratch, stack_pointer_rtx,
9027 cfun->machine->frame.gp_sp_offset);
9028 mips_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address);
9031 /* Return a MEM rtx for the cprestore slot, using TEMP as a temporary base
9032 register if need be. */
9034 static rtx
9035 mips_cprestore_slot (rtx temp)
9037 const struct mips_frame_info *frame;
9038 rtx base;
9039 HOST_WIDE_INT offset;
9041 frame = &cfun->machine->frame;
9042 if (frame_pointer_needed)
9044 base = hard_frame_pointer_rtx;
9045 offset = frame->args_size - frame->hard_frame_pointer_offset;
9047 else
9049 base = stack_pointer_rtx;
9050 offset = frame->args_size;
9052 return gen_frame_mem (Pmode, mips_add_offset (temp, base, offset));
9055 /* Restore $gp from its save slot, using TEMP as a temporary base register
9056 if need be. This function is for o32 and o64 abicalls only. */
9058 void
9059 mips_restore_gp (rtx temp)
9061 gcc_assert (TARGET_ABICALLS && TARGET_OLDABI);
9063 if (cfun->machine->global_pointer == INVALID_REGNUM)
9064 return;
9066 if (TARGET_MIPS16)
9068 mips_emit_move (temp, mips_cprestore_slot (temp));
9069 mips_emit_move (pic_offset_table_rtx, temp);
9071 else
9072 mips_emit_move (pic_offset_table_rtx, mips_cprestore_slot (temp));
9073 if (!TARGET_EXPLICIT_RELOCS)
9074 emit_insn (gen_blockage ());
9077 /* A function to save or store a register. The first argument is the
9078 register and the second is the stack slot. */
9079 typedef void (*mips_save_restore_fn) (rtx, rtx);
9081 /* Use FN to save or restore register REGNO. MODE is the register's
9082 mode and OFFSET is the offset of its save slot from the current
9083 stack pointer. */
9085 static void
9086 mips_save_restore_reg (enum machine_mode mode, int regno,
9087 HOST_WIDE_INT offset, mips_save_restore_fn fn)
9089 rtx mem;
9091 mem = gen_frame_mem (mode, plus_constant (stack_pointer_rtx, offset));
9092 fn (gen_rtx_REG (mode, regno), mem);
9095 /* Call FN for each accumlator that is saved by the current function.
9096 SP_OFFSET is the offset of the current stack pointer from the start
9097 of the frame. */
9099 static void
9100 mips_for_each_saved_acc (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn)
9102 HOST_WIDE_INT offset;
9103 int regno;
9105 offset = cfun->machine->frame.acc_sp_offset - sp_offset;
9106 if (BITSET_P (cfun->machine->frame.acc_mask, 0))
9108 mips_save_restore_reg (word_mode, LO_REGNUM, offset, fn);
9109 offset -= UNITS_PER_WORD;
9110 mips_save_restore_reg (word_mode, HI_REGNUM, offset, fn);
9111 offset -= UNITS_PER_WORD;
9114 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
9115 if (BITSET_P (cfun->machine->frame.acc_mask,
9116 ((regno - DSP_ACC_REG_FIRST) / 2) + 1))
9118 mips_save_restore_reg (word_mode, regno, offset, fn);
9119 offset -= UNITS_PER_WORD;
9123 /* Call FN for each register that is saved by the current function.
9124 SP_OFFSET is the offset of the current stack pointer from the start
9125 of the frame. */
9127 static void
9128 mips_for_each_saved_gpr_and_fpr (HOST_WIDE_INT sp_offset,
9129 mips_save_restore_fn fn)
9131 enum machine_mode fpr_mode;
9132 HOST_WIDE_INT offset;
9133 int regno;
9135 /* Save registers starting from high to low. The debuggers prefer at least
9136 the return register be stored at func+4, and also it allows us not to
9137 need a nop in the epilogue if at least one register is reloaded in
9138 addition to return address. */
9139 offset = cfun->machine->frame.gp_sp_offset - sp_offset;
9140 for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
9141 if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
9143 mips_save_restore_reg (word_mode, regno, offset, fn);
9144 offset -= UNITS_PER_WORD;
9147 /* This loop must iterate over the same space as its companion in
9148 mips_compute_frame_info. */
9149 offset = cfun->machine->frame.fp_sp_offset - sp_offset;
9150 fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode);
9151 for (regno = FP_REG_LAST - MAX_FPRS_PER_FMT + 1;
9152 regno >= FP_REG_FIRST;
9153 regno -= MAX_FPRS_PER_FMT)
9154 if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
9156 mips_save_restore_reg (fpr_mode, regno, offset, fn);
9157 offset -= GET_MODE_SIZE (fpr_mode);
9161 /* If we're generating n32 or n64 abicalls, and the current function
9162 does not use $28 as its global pointer, emit a cplocal directive.
9163 Use pic_offset_table_rtx as the argument to the directive. */
9165 static void
9166 mips_output_cplocal (void)
9168 if (!TARGET_EXPLICIT_RELOCS
9169 && cfun->machine->global_pointer != INVALID_REGNUM
9170 && cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM)
9171 output_asm_insn (".cplocal %+", 0);
9174 /* Implement TARGET_OUTPUT_FUNCTION_PROLOGUE. */
9176 static void
9177 mips_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
9179 const char *fnname;
9181 #ifdef SDB_DEBUGGING_INFO
9182 if (debug_info_level != DINFO_LEVEL_TERSE && write_symbols == SDB_DEBUG)
9183 SDB_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl));
9184 #endif
9186 /* In MIPS16 mode, we may need to generate a non-MIPS16 stub to handle
9187 floating-point arguments. */
9188 if (TARGET_MIPS16
9189 && TARGET_HARD_FLOAT_ABI
9190 && crtl->args.info.fp_code != 0)
9191 mips16_build_function_stub ();
9193 /* Get the function name the same way that toplev.c does before calling
9194 assemble_start_function. This is needed so that the name used here
9195 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
9196 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
9197 mips_start_function_definition (fnname, TARGET_MIPS16);
9199 /* Stop mips_file_end from treating this function as external. */
9200 if (TARGET_IRIX && mips_abi == ABI_32)
9201 TREE_ASM_WRITTEN (DECL_NAME (cfun->decl)) = 1;
9203 /* Output MIPS-specific frame information. */
9204 if (!flag_inhibit_size_directive)
9206 const struct mips_frame_info *frame;
9208 frame = &cfun->machine->frame;
9210 /* .frame FRAMEREG, FRAMESIZE, RETREG. */
9211 fprintf (file,
9212 "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t"
9213 "# vars= " HOST_WIDE_INT_PRINT_DEC
9214 ", regs= %d/%d"
9215 ", args= " HOST_WIDE_INT_PRINT_DEC
9216 ", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
9217 reg_names[frame_pointer_needed
9218 ? HARD_FRAME_POINTER_REGNUM
9219 : STACK_POINTER_REGNUM],
9220 (frame_pointer_needed
9221 ? frame->total_size - frame->hard_frame_pointer_offset
9222 : frame->total_size),
9223 reg_names[GP_REG_FIRST + 31],
9224 frame->var_size,
9225 frame->num_gp, frame->num_fp,
9226 frame->args_size,
9227 frame->cprestore_size);
9229 /* .mask MASK, OFFSET. */
9230 fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
9231 frame->mask, frame->gp_save_offset);
9233 /* .fmask MASK, OFFSET. */
9234 fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
9235 frame->fmask, frame->fp_save_offset);
9238 /* Handle the initialization of $gp for SVR4 PIC, if applicable.
9239 Also emit the ".set noreorder; .set nomacro" sequence for functions
9240 that need it. */
9241 if (mips_current_loadgp_style () == LOADGP_OLDABI)
9243 if (TARGET_MIPS16)
9245 /* This is a fixed-form sequence. The position of the
9246 first two instructions is important because of the
9247 way _gp_disp is defined. */
9248 output_asm_insn ("li\t$2,%%hi(_gp_disp)", 0);
9249 output_asm_insn ("addiu\t$3,$pc,%%lo(_gp_disp)", 0);
9250 output_asm_insn ("sll\t$2,16", 0);
9251 output_asm_insn ("addu\t$2,$3", 0);
9253 /* .cpload must be in a .set noreorder but not a .set nomacro block. */
9254 else if (!cfun->machine->all_noreorder_p)
9255 output_asm_insn ("%(.cpload\t%^%)", 0);
9256 else
9257 output_asm_insn ("%(.cpload\t%^\n\t%<", 0);
9259 else if (cfun->machine->all_noreorder_p)
9260 output_asm_insn ("%(%<", 0);
9262 /* Tell the assembler which register we're using as the global
9263 pointer. This is needed for thunks, since they can use either
9264 explicit relocs or assembler macros. */
9265 mips_output_cplocal ();
9268 /* Implement TARGET_OUTPUT_FUNCTION_EPILOGUE. */
9270 static void
9271 mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
9272 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
9274 const char *fnname;
9276 /* Reinstate the normal $gp. */
9277 SET_REGNO (pic_offset_table_rtx, GLOBAL_POINTER_REGNUM);
9278 mips_output_cplocal ();
9280 if (cfun->machine->all_noreorder_p)
9282 /* Avoid using %>%) since it adds excess whitespace. */
9283 output_asm_insn (".set\tmacro", 0);
9284 output_asm_insn (".set\treorder", 0);
9285 set_noreorder = set_nomacro = 0;
9288 /* Get the function name the same way that toplev.c does before calling
9289 assemble_start_function. This is needed so that the name used here
9290 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
9291 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
9292 mips_end_function_definition (fnname);
9295 /* Save register REG to MEM. Make the instruction frame-related. */
9297 static void
9298 mips_save_reg (rtx reg, rtx mem)
9300 if (GET_MODE (reg) == DFmode && !TARGET_FLOAT64)
9302 rtx x1, x2;
9304 if (mips_split_64bit_move_p (mem, reg))
9305 mips_split_doubleword_move (mem, reg);
9306 else
9307 mips_emit_move (mem, reg);
9309 x1 = mips_frame_set (mips_subword (mem, false),
9310 mips_subword (reg, false));
9311 x2 = mips_frame_set (mips_subword (mem, true),
9312 mips_subword (reg, true));
9313 mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2)));
9315 else
9317 if (REGNO (reg) == HI_REGNUM)
9319 if (TARGET_64BIT)
9320 emit_insn (gen_mfhidi_ti (MIPS_PROLOGUE_TEMP (DImode),
9321 gen_rtx_REG (TImode, MD_REG_FIRST)));
9322 else
9323 emit_insn (gen_mfhisi_di (MIPS_PROLOGUE_TEMP (SImode),
9324 gen_rtx_REG (DImode, MD_REG_FIRST)));
9325 mips_emit_move (mem, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
9327 else if ((TARGET_MIPS16
9328 && REGNO (reg) != GP_REG_FIRST + 31
9329 && !M16_REG_P (REGNO (reg)))
9330 || ACC_REG_P (REGNO (reg)))
9332 /* If the register has no direct store instruction, move it
9333 through a temporary. Note that there's a special MIPS16
9334 instruction to save $31. */
9335 mips_emit_move (MIPS_PROLOGUE_TEMP (GET_MODE (reg)), reg);
9336 mips_emit_move (mem, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
9338 else
9339 mips_emit_move (mem, reg);
9341 mips_set_frame_expr (mips_frame_set (mem, reg));
9345 /* The __gnu_local_gp symbol. */
9347 static GTY(()) rtx mips_gnu_local_gp;
9349 /* If we're generating n32 or n64 abicalls, emit instructions
9350 to set up the global pointer. */
9352 static void
9353 mips_emit_loadgp (void)
9355 rtx addr, offset, incoming_address, base, index, pic_reg;
9357 pic_reg = TARGET_MIPS16 ? MIPS16_PIC_TEMP : pic_offset_table_rtx;
9358 switch (mips_current_loadgp_style ())
9360 case LOADGP_ABSOLUTE:
9361 if (mips_gnu_local_gp == NULL)
9363 mips_gnu_local_gp = gen_rtx_SYMBOL_REF (Pmode, "__gnu_local_gp");
9364 SYMBOL_REF_FLAGS (mips_gnu_local_gp) |= SYMBOL_FLAG_LOCAL;
9366 emit_insn (Pmode == SImode
9367 ? gen_loadgp_absolute_si (pic_reg, mips_gnu_local_gp)
9368 : gen_loadgp_absolute_di (pic_reg, mips_gnu_local_gp));
9369 break;
9371 case LOADGP_OLDABI:
9372 /* Added by mips_output_function_prologue. */
9373 break;
9375 case LOADGP_NEWABI:
9376 addr = XEXP (DECL_RTL (current_function_decl), 0);
9377 offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP);
9378 incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
9379 emit_insn (Pmode == SImode
9380 ? gen_loadgp_newabi_si (pic_reg, offset, incoming_address)
9381 : gen_loadgp_newabi_di (pic_reg, offset, incoming_address));
9382 break;
9384 case LOADGP_RTP:
9385 base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_BASE));
9386 index = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_INDEX));
9387 emit_insn (Pmode == SImode
9388 ? gen_loadgp_rtp_si (pic_reg, base, index)
9389 : gen_loadgp_rtp_di (pic_reg, base, index));
9390 break;
9392 default:
9393 return;
9396 if (TARGET_MIPS16)
9397 emit_insn (gen_copygp_mips16 (pic_offset_table_rtx, pic_reg));
9399 /* Emit a blockage if there are implicit uses of the GP register.
9400 This includes profiled functions, because FUNCTION_PROFILE uses
9401 a jal macro. */
9402 if (!TARGET_EXPLICIT_RELOCS || crtl->profile)
9403 emit_insn (gen_loadgp_blockage ());
9406 /* A for_each_rtx callback. Stop the search if *X is a kernel register. */
9408 static int
9409 mips_kernel_reg_p (rtx *x, void *data ATTRIBUTE_UNUSED)
9411 return REG_P (*x) && KERNEL_REG_P (REGNO (*x));
9414 /* Expand the "prologue" pattern. */
9416 void
9417 mips_expand_prologue (void)
9419 const struct mips_frame_info *frame;
9420 HOST_WIDE_INT size;
9421 unsigned int nargs;
9422 rtx insn;
9424 if (cfun->machine->global_pointer != INVALID_REGNUM)
9425 SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
9427 frame = &cfun->machine->frame;
9428 size = frame->total_size;
9430 /* Save the registers. Allocate up to MIPS_MAX_FIRST_STACK_STEP
9431 bytes beforehand; this is enough to cover the register save area
9432 without going out of range. */
9433 if (((frame->mask | frame->fmask | frame->acc_mask) != 0)
9434 || frame->num_cop0_regs > 0)
9436 HOST_WIDE_INT step1;
9438 step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP);
9439 if (GENERATE_MIPS16E_SAVE_RESTORE)
9441 HOST_WIDE_INT offset;
9442 unsigned int mask, regno;
9444 /* Try to merge argument stores into the save instruction. */
9445 nargs = mips16e_collect_argument_saves ();
9447 /* Build the save instruction. */
9448 mask = frame->mask;
9449 insn = mips16e_build_save_restore (false, &mask, &offset,
9450 nargs, step1);
9451 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
9452 size -= step1;
9454 /* Check if we need to save other registers. */
9455 for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
9456 if (BITSET_P (mask, regno - GP_REG_FIRST))
9458 offset -= UNITS_PER_WORD;
9459 mips_save_restore_reg (word_mode, regno,
9460 offset, mips_save_reg);
9463 else
9465 if (cfun->machine->interrupt_handler_p)
9467 HOST_WIDE_INT offset;
9468 rtx mem;
9470 /* If this interrupt is using a shadow register set, we need to
9471 get the stack pointer from the previous register set. */
9472 if (cfun->machine->use_shadow_register_set_p)
9473 emit_insn (gen_mips_rdpgpr (stack_pointer_rtx,
9474 stack_pointer_rtx));
9476 if (!cfun->machine->keep_interrupts_masked_p)
9478 /* Move from COP0 Cause to K0. */
9479 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K0_REG_NUM),
9480 gen_rtx_REG (SImode,
9481 COP0_CAUSE_REG_NUM)));
9482 /* Move from COP0 EPC to K1. */
9483 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K1_REG_NUM),
9484 gen_rtx_REG (SImode,
9485 COP0_EPC_REG_NUM)));
9488 /* Allocate the first part of the frame. */
9489 insn = gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
9490 GEN_INT (-step1));
9491 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
9492 size -= step1;
9494 /* Start at the uppermost location for saving. */
9495 offset = frame->cop0_sp_offset - size;
9496 if (!cfun->machine->keep_interrupts_masked_p)
9498 /* Push EPC into its stack slot. */
9499 mem = gen_frame_mem (word_mode,
9500 plus_constant (stack_pointer_rtx,
9501 offset));
9502 mips_emit_move (mem, gen_rtx_REG (word_mode, K1_REG_NUM));
9503 offset -= UNITS_PER_WORD;
9506 /* Move from COP0 Status to K1. */
9507 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, K1_REG_NUM),
9508 gen_rtx_REG (SImode,
9509 COP0_STATUS_REG_NUM)));
9511 /* Right justify the RIPL in k0. */
9512 if (!cfun->machine->keep_interrupts_masked_p)
9513 emit_insn (gen_lshrsi3 (gen_rtx_REG (SImode, K0_REG_NUM),
9514 gen_rtx_REG (SImode, K0_REG_NUM),
9515 GEN_INT (CAUSE_IPL)));
9517 /* Push Status into its stack slot. */
9518 mem = gen_frame_mem (word_mode,
9519 plus_constant (stack_pointer_rtx, offset));
9520 mips_emit_move (mem, gen_rtx_REG (word_mode, K1_REG_NUM));
9521 offset -= UNITS_PER_WORD;
9523 /* Insert the RIPL into our copy of SR (k1) as the new IPL. */
9524 if (!cfun->machine->keep_interrupts_masked_p)
9525 emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
9526 GEN_INT (6),
9527 GEN_INT (SR_IPL),
9528 gen_rtx_REG (SImode, K0_REG_NUM)));
9530 if (!cfun->machine->keep_interrupts_masked_p)
9531 /* Enable interrupts by clearing the KSU ERL and EXL bits.
9532 IE is already the correct value, so we don't have to do
9533 anything explicit. */
9534 emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
9535 GEN_INT (4),
9536 GEN_INT (SR_EXL),
9537 gen_rtx_REG (SImode, GP_REG_FIRST)));
9538 else
9539 /* Disable interrupts by clearing the KSU, ERL, EXL,
9540 and IE bits. */
9541 emit_insn (gen_insvsi (gen_rtx_REG (SImode, K1_REG_NUM),
9542 GEN_INT (5),
9543 GEN_INT (SR_IE),
9544 gen_rtx_REG (SImode, GP_REG_FIRST)));
9546 else
9548 insn = gen_add3_insn (stack_pointer_rtx,
9549 stack_pointer_rtx,
9550 GEN_INT (-step1));
9551 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
9552 size -= step1;
9554 mips_for_each_saved_acc (size, mips_save_reg);
9555 mips_for_each_saved_gpr_and_fpr (size, mips_save_reg);
9559 /* Allocate the rest of the frame. */
9560 if (size > 0)
9562 if (SMALL_OPERAND (-size))
9563 RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
9564 stack_pointer_rtx,
9565 GEN_INT (-size)))) = 1;
9566 else
9568 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size));
9569 if (TARGET_MIPS16)
9571 /* There are no instructions to add or subtract registers
9572 from the stack pointer, so use the frame pointer as a
9573 temporary. We should always be using a frame pointer
9574 in this case anyway. */
9575 gcc_assert (frame_pointer_needed);
9576 mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
9577 emit_insn (gen_sub3_insn (hard_frame_pointer_rtx,
9578 hard_frame_pointer_rtx,
9579 MIPS_PROLOGUE_TEMP (Pmode)));
9580 mips_emit_move (stack_pointer_rtx, hard_frame_pointer_rtx);
9582 else
9583 emit_insn (gen_sub3_insn (stack_pointer_rtx,
9584 stack_pointer_rtx,
9585 MIPS_PROLOGUE_TEMP (Pmode)));
9587 /* Describe the combined effect of the previous instructions. */
9588 mips_set_frame_expr
9589 (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
9590 plus_constant (stack_pointer_rtx, -size)));
9594 /* Set up the frame pointer, if we're using one. */
9595 if (frame_pointer_needed)
9597 HOST_WIDE_INT offset;
9599 offset = frame->hard_frame_pointer_offset;
9600 if (offset == 0)
9602 insn = mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
9603 RTX_FRAME_RELATED_P (insn) = 1;
9605 else if (SMALL_OPERAND (offset))
9607 insn = gen_add3_insn (hard_frame_pointer_rtx,
9608 stack_pointer_rtx, GEN_INT (offset));
9609 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
9611 else
9613 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (offset));
9614 mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
9615 emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
9616 hard_frame_pointer_rtx,
9617 MIPS_PROLOGUE_TEMP (Pmode)));
9618 mips_set_frame_expr
9619 (gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
9620 plus_constant (stack_pointer_rtx, offset)));
9624 mips_emit_loadgp ();
9626 /* Initialize the $gp save slot. */
9627 if (frame->cprestore_size > 0
9628 && cfun->machine->global_pointer != INVALID_REGNUM)
9630 if (TARGET_MIPS16)
9631 mips_emit_move (mips_cprestore_slot (MIPS_PROLOGUE_TEMP (Pmode)),
9632 MIPS16_PIC_TEMP);
9633 else if (TARGET_ABICALLS_PIC2)
9634 emit_insn (gen_cprestore (GEN_INT (frame->args_size)));
9635 else
9636 emit_move_insn (mips_cprestore_slot (MIPS_PROLOGUE_TEMP (Pmode)),
9637 pic_offset_table_rtx);
9640 /* We need to search back to the last use of K0 or K1. */
9641 if (cfun->machine->interrupt_handler_p)
9643 for (insn = get_last_insn (); insn != NULL_RTX; insn = PREV_INSN (insn))
9644 if (INSN_P (insn)
9645 && for_each_rtx (&PATTERN (insn), mips_kernel_reg_p, NULL))
9646 break;
9647 /* Emit a move from K1 to COP0 Status after insn. */
9648 gcc_assert (insn != NULL_RTX);
9649 emit_insn_after (gen_cop0_move (gen_rtx_REG (SImode, COP0_STATUS_REG_NUM),
9650 gen_rtx_REG (SImode, K1_REG_NUM)),
9651 insn);
9654 /* If we are profiling, make sure no instructions are scheduled before
9655 the call to mcount. */
9656 if (crtl->profile)
9657 emit_insn (gen_blockage ());
9660 /* Emit instructions to restore register REG from slot MEM. */
9662 static void
9663 mips_restore_reg (rtx reg, rtx mem)
9665 /* There's no MIPS16 instruction to load $31 directly. Load into
9666 $7 instead and adjust the return insn appropriately. */
9667 if (TARGET_MIPS16 && REGNO (reg) == GP_REG_FIRST + 31)
9668 reg = gen_rtx_REG (GET_MODE (reg), GP_REG_FIRST + 7);
9670 if (REGNO (reg) == HI_REGNUM)
9672 mips_emit_move (MIPS_EPILOGUE_TEMP (GET_MODE (reg)), mem);
9673 if (TARGET_64BIT)
9674 emit_insn (gen_mthisi_di (gen_rtx_REG (TImode, MD_REG_FIRST),
9675 MIPS_EPILOGUE_TEMP (DImode),
9676 gen_rtx_REG (DImode, LO_REGNUM)));
9677 else
9678 emit_insn (gen_mthisi_di (gen_rtx_REG (DImode, MD_REG_FIRST),
9679 MIPS_EPILOGUE_TEMP (SImode),
9680 gen_rtx_REG (SImode, LO_REGNUM)));
9682 else if ((TARGET_MIPS16 && !M16_REG_P (REGNO (reg)))
9683 || ACC_REG_P (REGNO (reg)))
9685 /* Can't restore directly; move through a temporary. */
9686 mips_emit_move (MIPS_EPILOGUE_TEMP (GET_MODE (reg)), mem);
9687 mips_emit_move (reg, MIPS_EPILOGUE_TEMP (GET_MODE (reg)));
9689 else
9690 mips_emit_move (reg, mem);
9693 /* Emit any instructions needed before a return. */
9695 void
9696 mips_expand_before_return (void)
9698 /* When using a call-clobbered gp, we start out with unified call
9699 insns that include instructions to restore the gp. We then split
9700 these unified calls after reload. These split calls explicitly
9701 clobber gp, so there is no need to define
9702 PIC_OFFSET_TABLE_REG_CALL_CLOBBERED.
9704 For consistency, we should also insert an explicit clobber of $28
9705 before return insns, so that the post-reload optimizers know that
9706 the register is not live on exit. */
9707 if (TARGET_CALL_CLOBBERED_GP)
9708 emit_clobber (pic_offset_table_rtx);
9711 /* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
9712 says which. */
9714 void
9715 mips_expand_epilogue (bool sibcall_p)
9717 const struct mips_frame_info *frame;
9718 HOST_WIDE_INT step1, step2;
9719 rtx base, target, insn;
9721 if (!sibcall_p && mips_can_use_return_insn ())
9723 emit_jump_insn (gen_return ());
9724 return;
9727 /* In MIPS16 mode, if the return value should go into a floating-point
9728 register, we need to call a helper routine to copy it over. */
9729 if (mips16_cfun_returns_in_fpr_p ())
9730 mips16_copy_fpr_return_value ();
9732 /* Split the frame into two. STEP1 is the amount of stack we should
9733 deallocate before restoring the registers. STEP2 is the amount we
9734 should deallocate afterwards.
9736 Start off by assuming that no registers need to be restored. */
9737 frame = &cfun->machine->frame;
9738 step1 = frame->total_size;
9739 step2 = 0;
9741 /* Work out which register holds the frame address. */
9742 if (!frame_pointer_needed)
9743 base = stack_pointer_rtx;
9744 else
9746 base = hard_frame_pointer_rtx;
9747 step1 -= frame->hard_frame_pointer_offset;
9750 /* If we need to restore registers, deallocate as much stack as
9751 possible in the second step without going out of range. */
9752 if ((frame->mask | frame->fmask | frame->acc_mask) != 0
9753 || frame->num_cop0_regs > 0)
9755 step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP);
9756 step1 -= step2;
9759 /* Set TARGET to BASE + STEP1. */
9760 target = base;
9761 if (step1 > 0)
9763 rtx adjust;
9765 /* Get an rtx for STEP1 that we can add to BASE. */
9766 adjust = GEN_INT (step1);
9767 if (!SMALL_OPERAND (step1))
9769 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), adjust);
9770 adjust = MIPS_EPILOGUE_TEMP (Pmode);
9773 /* Normal mode code can copy the result straight into $sp. */
9774 if (!TARGET_MIPS16)
9775 target = stack_pointer_rtx;
9777 emit_insn (gen_add3_insn (target, base, adjust));
9780 /* Copy TARGET into the stack pointer. */
9781 if (target != stack_pointer_rtx)
9782 mips_emit_move (stack_pointer_rtx, target);
9784 /* If we're using addressing macros, $gp is implicitly used by all
9785 SYMBOL_REFs. We must emit a blockage insn before restoring $gp
9786 from the stack. */
9787 if (TARGET_CALL_SAVED_GP && !TARGET_EXPLICIT_RELOCS)
9788 emit_insn (gen_blockage ());
9790 if (GENERATE_MIPS16E_SAVE_RESTORE && frame->mask != 0)
9792 unsigned int regno, mask;
9793 HOST_WIDE_INT offset;
9794 rtx restore;
9796 /* Generate the restore instruction. */
9797 mask = frame->mask;
9798 restore = mips16e_build_save_restore (true, &mask, &offset, 0, step2);
9800 /* Restore any other registers manually. */
9801 for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
9802 if (BITSET_P (mask, regno - GP_REG_FIRST))
9804 offset -= UNITS_PER_WORD;
9805 mips_save_restore_reg (word_mode, regno, offset, mips_restore_reg);
9808 /* Restore the remaining registers and deallocate the final bit
9809 of the frame. */
9810 emit_insn (restore);
9812 else
9814 /* Restore the registers. */
9815 mips_for_each_saved_acc (frame->total_size - step2, mips_restore_reg);
9816 mips_for_each_saved_gpr_and_fpr (frame->total_size - step2,
9817 mips_restore_reg);
9819 if (cfun->machine->interrupt_handler_p)
9821 HOST_WIDE_INT offset;
9822 rtx mem;
9824 offset = frame->cop0_sp_offset - (frame->total_size - step2);
9825 if (!cfun->machine->keep_interrupts_masked_p)
9827 /* Restore the original EPC. */
9828 mem = gen_frame_mem (word_mode,
9829 plus_constant (stack_pointer_rtx, offset));
9830 mips_emit_move (gen_rtx_REG (word_mode, K0_REG_NUM), mem);
9831 offset -= UNITS_PER_WORD;
9833 /* Move to COP0 EPC. */
9834 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, COP0_EPC_REG_NUM),
9835 gen_rtx_REG (SImode, K0_REG_NUM)));
9838 /* Restore the original Status. */
9839 mem = gen_frame_mem (word_mode,
9840 plus_constant (stack_pointer_rtx, offset));
9841 mips_emit_move (gen_rtx_REG (word_mode, K0_REG_NUM), mem);
9842 offset -= UNITS_PER_WORD;
9844 /* If we don't use shoadow register set, we need to update SP. */
9845 if (!cfun->machine->use_shadow_register_set_p && step2 > 0)
9846 emit_insn (gen_add3_insn (stack_pointer_rtx,
9847 stack_pointer_rtx,
9848 GEN_INT (step2)));
9850 /* Move to COP0 Status. */
9851 emit_insn (gen_cop0_move (gen_rtx_REG (SImode, COP0_STATUS_REG_NUM),
9852 gen_rtx_REG (SImode, K0_REG_NUM)));
9854 else
9856 /* Deallocate the final bit of the frame. */
9857 if (step2 > 0)
9858 emit_insn (gen_add3_insn (stack_pointer_rtx,
9859 stack_pointer_rtx,
9860 GEN_INT (step2)));
9864 /* Add in the __builtin_eh_return stack adjustment. We need to
9865 use a temporary in MIPS16 code. */
9866 if (crtl->calls_eh_return)
9868 if (TARGET_MIPS16)
9870 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx);
9871 emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode),
9872 MIPS_EPILOGUE_TEMP (Pmode),
9873 EH_RETURN_STACKADJ_RTX));
9874 mips_emit_move (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode));
9876 else
9877 emit_insn (gen_add3_insn (stack_pointer_rtx,
9878 stack_pointer_rtx,
9879 EH_RETURN_STACKADJ_RTX));
9882 if (!sibcall_p)
9884 mips_expand_before_return ();
9885 if (cfun->machine->interrupt_handler_p)
9887 /* Interrupt handlers generate eret or deret. */
9888 if (cfun->machine->use_debug_exception_return_p)
9889 emit_jump_insn (gen_mips_deret ());
9890 else
9891 emit_jump_insn (gen_mips_eret ());
9893 else
9895 unsigned int regno;
9897 /* When generating MIPS16 code, the normal
9898 mips_for_each_saved_gpr_and_fpr path will restore the return
9899 address into $7 rather than $31. */
9900 if (TARGET_MIPS16
9901 && !GENERATE_MIPS16E_SAVE_RESTORE
9902 && BITSET_P (frame->mask, 31))
9903 regno = GP_REG_FIRST + 7;
9904 else
9905 regno = GP_REG_FIRST + 31;
9906 emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode, regno)));
9910 /* Search from the beginning to the first use of K0 or K1. */
9911 if (cfun->machine->interrupt_handler_p
9912 && !cfun->machine->keep_interrupts_masked_p)
9914 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
9915 if (INSN_P (insn)
9916 && for_each_rtx (&PATTERN(insn), mips_kernel_reg_p, NULL))
9917 break;
9918 gcc_assert (insn != NULL_RTX);
9919 /* Insert disable interrupts before the first use of K0 or K1. */
9920 emit_insn_before (gen_mips_di (), insn);
9921 emit_insn_before (gen_mips_ehb (), insn);
9925 /* Return nonzero if this function is known to have a null epilogue.
9926 This allows the optimizer to omit jumps to jumps if no stack
9927 was created. */
9929 bool
9930 mips_can_use_return_insn (void)
9932 /* Interrupt handlers need to go through the epilogue. */
9933 if (cfun->machine->interrupt_handler_p)
9934 return false;
9936 if (!reload_completed)
9937 return false;
9939 if (crtl->profile)
9940 return false;
9942 /* In MIPS16 mode, a function that returns a floating-point value
9943 needs to arrange to copy the return value into the floating-point
9944 registers. */
9945 if (mips16_cfun_returns_in_fpr_p ())
9946 return false;
9948 return cfun->machine->frame.total_size == 0;
9951 /* Return true if register REGNO can store a value of mode MODE.
9952 The result of this function is cached in mips_hard_regno_mode_ok. */
9954 static bool
9955 mips_hard_regno_mode_ok_p (unsigned int regno, enum machine_mode mode)
9957 unsigned int size;
9958 enum mode_class mclass;
9960 if (mode == CCV2mode)
9961 return (ISA_HAS_8CC
9962 && ST_REG_P (regno)
9963 && (regno - ST_REG_FIRST) % 2 == 0);
9965 if (mode == CCV4mode)
9966 return (ISA_HAS_8CC
9967 && ST_REG_P (regno)
9968 && (regno - ST_REG_FIRST) % 4 == 0);
9970 if (mode == CCmode)
9972 if (!ISA_HAS_8CC)
9973 return regno == FPSW_REGNUM;
9975 return (ST_REG_P (regno)
9976 || GP_REG_P (regno)
9977 || FP_REG_P (regno));
9980 size = GET_MODE_SIZE (mode);
9981 mclass = GET_MODE_CLASS (mode);
9983 if (GP_REG_P (regno))
9984 return ((regno - GP_REG_FIRST) & 1) == 0 || size <= UNITS_PER_WORD;
9986 if (FP_REG_P (regno)
9987 && (((regno - FP_REG_FIRST) % MAX_FPRS_PER_FMT) == 0
9988 || (MIN_FPRS_PER_FMT == 1 && size <= UNITS_PER_FPREG)))
9990 /* Allow TFmode for CCmode reloads. */
9991 if (mode == TFmode && ISA_HAS_8CC)
9992 return true;
9994 /* Allow 64-bit vector modes for Loongson-2E/2F. */
9995 if (TARGET_LOONGSON_VECTORS
9996 && (mode == V2SImode
9997 || mode == V4HImode
9998 || mode == V8QImode
9999 || mode == DImode))
10000 return true;
10002 if (mclass == MODE_FLOAT
10003 || mclass == MODE_COMPLEX_FLOAT
10004 || mclass == MODE_VECTOR_FLOAT)
10005 return size <= UNITS_PER_FPVALUE;
10007 /* Allow integer modes that fit into a single register. We need
10008 to put integers into FPRs when using instructions like CVT
10009 and TRUNC. There's no point allowing sizes smaller than a word,
10010 because the FPU has no appropriate load/store instructions. */
10011 if (mclass == MODE_INT)
10012 return size >= MIN_UNITS_PER_WORD && size <= UNITS_PER_FPREG;
10015 if (ACC_REG_P (regno)
10016 && (INTEGRAL_MODE_P (mode) || ALL_FIXED_POINT_MODE_P (mode)))
10018 if (MD_REG_P (regno))
10020 /* After a multiplication or division, clobbering HI makes
10021 the value of LO unpredictable, and vice versa. This means
10022 that, for all interesting cases, HI and LO are effectively
10023 a single register.
10025 We model this by requiring that any value that uses HI
10026 also uses LO. */
10027 if (size <= UNITS_PER_WORD * 2)
10028 return regno == (size <= UNITS_PER_WORD ? LO_REGNUM : MD_REG_FIRST);
10030 else
10032 /* DSP accumulators do not have the same restrictions as
10033 HI and LO, so we can treat them as normal doubleword
10034 registers. */
10035 if (size <= UNITS_PER_WORD)
10036 return true;
10038 if (size <= UNITS_PER_WORD * 2
10039 && ((regno - DSP_ACC_REG_FIRST) & 1) == 0)
10040 return true;
10044 if (ALL_COP_REG_P (regno))
10045 return mclass == MODE_INT && size <= UNITS_PER_WORD;
10047 if (regno == GOT_VERSION_REGNUM)
10048 return mode == SImode;
10050 return false;
10053 /* Implement HARD_REGNO_NREGS. */
10055 unsigned int
10056 mips_hard_regno_nregs (int regno, enum machine_mode mode)
10058 if (ST_REG_P (regno))
10059 /* The size of FP status registers is always 4, because they only hold
10060 CCmode values, and CCmode is always considered to be 4 bytes wide. */
10061 return (GET_MODE_SIZE (mode) + 3) / 4;
10063 if (FP_REG_P (regno))
10064 return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG;
10066 /* All other registers are word-sized. */
10067 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
10070 /* Implement CLASS_MAX_NREGS, taking the maximum of the cases
10071 in mips_hard_regno_nregs. */
10074 mips_class_max_nregs (enum reg_class rclass, enum machine_mode mode)
10076 int size;
10077 HARD_REG_SET left;
10079 size = 0x8000;
10080 COPY_HARD_REG_SET (left, reg_class_contents[(int) rclass]);
10081 if (hard_reg_set_intersect_p (left, reg_class_contents[(int) ST_REGS]))
10083 size = MIN (size, 4);
10084 AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) ST_REGS]);
10086 if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FP_REGS]))
10088 size = MIN (size, UNITS_PER_FPREG);
10089 AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) FP_REGS]);
10091 if (!hard_reg_set_empty_p (left))
10092 size = MIN (size, UNITS_PER_WORD);
10093 return (GET_MODE_SIZE (mode) + size - 1) / size;
10096 /* Implement CANNOT_CHANGE_MODE_CLASS. */
10098 bool
10099 mips_cannot_change_mode_class (enum machine_mode from ATTRIBUTE_UNUSED,
10100 enum machine_mode to ATTRIBUTE_UNUSED,
10101 enum reg_class rclass)
10103 /* There are several problems with changing the modes of values
10104 in floating-point registers:
10106 - When a multi-word value is stored in paired floating-point
10107 registers, the first register always holds the low word.
10108 We therefore can't allow FPRs to change between single-word
10109 and multi-word modes on big-endian targets.
10111 - GCC assumes that each word of a multiword register can be accessed
10112 individually using SUBREGs. This is not true for floating-point
10113 registers if they are bigger than a word.
10115 - Loading a 32-bit value into a 64-bit floating-point register
10116 will not sign-extend the value, despite what LOAD_EXTEND_OP says.
10117 We can't allow FPRs to change from SImode to to a wider mode on
10118 64-bit targets.
10120 - If the FPU has already interpreted a value in one format, we must
10121 not ask it to treat the value as having a different format.
10123 We therefore disallow all mode changes involving FPRs. */
10124 return reg_classes_intersect_p (FP_REGS, rclass);
10127 /* Return true if moves in mode MODE can use the FPU's mov.fmt instruction. */
10129 static bool
10130 mips_mode_ok_for_mov_fmt_p (enum machine_mode mode)
10132 switch (mode)
10134 case SFmode:
10135 return TARGET_HARD_FLOAT;
10137 case DFmode:
10138 return TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT;
10140 case V2SFmode:
10141 return TARGET_HARD_FLOAT && TARGET_PAIRED_SINGLE_FLOAT;
10143 default:
10144 return false;
10148 /* Implement MODES_TIEABLE_P. */
10150 bool
10151 mips_modes_tieable_p (enum machine_mode mode1, enum machine_mode mode2)
10153 /* FPRs allow no mode punning, so it's not worth tying modes if we'd
10154 prefer to put one of them in FPRs. */
10155 return (mode1 == mode2
10156 || (!mips_mode_ok_for_mov_fmt_p (mode1)
10157 && !mips_mode_ok_for_mov_fmt_p (mode2)));
10160 /* Implement PREFERRED_RELOAD_CLASS. */
10162 enum reg_class
10163 mips_preferred_reload_class (rtx x, enum reg_class rclass)
10165 if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, rclass))
10166 return LEA_REGS;
10168 if (reg_class_subset_p (FP_REGS, rclass)
10169 && mips_mode_ok_for_mov_fmt_p (GET_MODE (x)))
10170 return FP_REGS;
10172 if (reg_class_subset_p (GR_REGS, rclass))
10173 rclass = GR_REGS;
10175 if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, rclass))
10176 rclass = M16_REGS;
10178 return rclass;
10181 /* RCLASS is a class involved in a REGISTER_MOVE_COST calculation.
10182 Return a "canonical" class to represent it in later calculations. */
10184 static enum reg_class
10185 mips_canonicalize_move_class (enum reg_class rclass)
10187 /* All moves involving accumulator registers have the same cost. */
10188 if (reg_class_subset_p (rclass, ACC_REGS))
10189 rclass = ACC_REGS;
10191 /* Likewise promote subclasses of general registers to the most
10192 interesting containing class. */
10193 if (TARGET_MIPS16 && reg_class_subset_p (rclass, M16_REGS))
10194 rclass = M16_REGS;
10195 else if (reg_class_subset_p (rclass, GENERAL_REGS))
10196 rclass = GENERAL_REGS;
10198 return rclass;
10201 /* Return the cost of moving a value of mode MODE from a register of
10202 class FROM to a GPR. Return 0 for classes that are unions of other
10203 classes handled by this function. */
10205 static int
10206 mips_move_to_gpr_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
10207 enum reg_class from)
10209 switch (from)
10211 case GENERAL_REGS:
10212 /* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */
10213 return 2;
10215 case ACC_REGS:
10216 /* MFLO and MFHI. */
10217 return 6;
10219 case FP_REGS:
10220 /* MFC1, etc. */
10221 return 4;
10223 case ST_REGS:
10224 /* LUI followed by MOVF. */
10225 return 4;
10227 case COP0_REGS:
10228 case COP2_REGS:
10229 case COP3_REGS:
10230 /* This choice of value is historical. */
10231 return 5;
10233 default:
10234 return 0;
10238 /* Return the cost of moving a value of mode MODE from a GPR to a
10239 register of class TO. Return 0 for classes that are unions of
10240 other classes handled by this function. */
10242 static int
10243 mips_move_from_gpr_cost (enum machine_mode mode, enum reg_class to)
10245 switch (to)
10247 case GENERAL_REGS:
10248 /* A MIPS16 MOVE instruction, or a non-MIPS16 MOVE macro. */
10249 return 2;
10251 case ACC_REGS:
10252 /* MTLO and MTHI. */
10253 return 6;
10255 case FP_REGS:
10256 /* MTC1, etc. */
10257 return 4;
10259 case ST_REGS:
10260 /* A secondary reload through an FPR scratch. */
10261 return (mips_register_move_cost (mode, GENERAL_REGS, FP_REGS)
10262 + mips_register_move_cost (mode, FP_REGS, ST_REGS));
10264 case COP0_REGS:
10265 case COP2_REGS:
10266 case COP3_REGS:
10267 /* This choice of value is historical. */
10268 return 5;
10270 default:
10271 return 0;
10275 /* Implement REGISTER_MOVE_COST. Return 0 for classes that are the
10276 maximum of the move costs for subclasses; regclass will work out
10277 the maximum for us. */
10280 mips_register_move_cost (enum machine_mode mode,
10281 enum reg_class from, enum reg_class to)
10283 enum reg_class dregs;
10284 int cost1, cost2;
10286 from = mips_canonicalize_move_class (from);
10287 to = mips_canonicalize_move_class (to);
10289 /* Handle moves that can be done without using general-purpose registers. */
10290 if (from == FP_REGS)
10292 if (to == FP_REGS && mips_mode_ok_for_mov_fmt_p (mode))
10293 /* MOV.FMT. */
10294 return 4;
10295 if (to == ST_REGS)
10296 /* The sequence generated by mips_expand_fcc_reload. */
10297 return 8;
10300 /* Handle cases in which only one class deviates from the ideal. */
10301 dregs = TARGET_MIPS16 ? M16_REGS : GENERAL_REGS;
10302 if (from == dregs)
10303 return mips_move_from_gpr_cost (mode, to);
10304 if (to == dregs)
10305 return mips_move_to_gpr_cost (mode, from);
10307 /* Handles cases that require a GPR temporary. */
10308 cost1 = mips_move_to_gpr_cost (mode, from);
10309 if (cost1 != 0)
10311 cost2 = mips_move_from_gpr_cost (mode, to);
10312 if (cost2 != 0)
10313 return cost1 + cost2;
10316 return 0;
10319 /* Implement TARGET_IRA_COVER_CLASSES. */
10321 static const enum reg_class *
10322 mips_ira_cover_classes (void)
10324 static const enum reg_class acc_classes[] = {
10325 GR_AND_ACC_REGS, FP_REGS, COP0_REGS, COP2_REGS, COP3_REGS,
10326 ST_REGS, LIM_REG_CLASSES
10328 static const enum reg_class no_acc_classes[] = {
10329 GR_REGS, FP_REGS, COP0_REGS, COP2_REGS, COP3_REGS,
10330 ST_REGS, LIM_REG_CLASSES
10333 /* Don't allow the register allocators to use LO and HI in MIPS16 mode,
10334 which has no MTLO or MTHI instructions. Also, using GR_AND_ACC_REGS
10335 as a cover class only works well when we keep per-register costs.
10336 Using it when not optimizing can cause us to think accumulators
10337 have the same cost as GPRs in cases where GPRs are actually much
10338 cheaper. */
10339 return TARGET_MIPS16 || !optimize ? no_acc_classes : acc_classes;
10342 /* Return the register class required for a secondary register when
10343 copying between one of the registers in RCLASS and value X, which
10344 has mode MODE. X is the source of the move if IN_P, otherwise it
10345 is the destination. Return NO_REGS if no secondary register is
10346 needed. */
10348 enum reg_class
10349 mips_secondary_reload_class (enum reg_class rclass,
10350 enum machine_mode mode, rtx x, bool in_p)
10352 int regno;
10354 /* If X is a constant that cannot be loaded into $25, it must be loaded
10355 into some other GPR. No other register class allows a direct move. */
10356 if (mips_dangerous_for_la25_p (x))
10357 return reg_class_subset_p (rclass, LEA_REGS) ? NO_REGS : LEA_REGS;
10359 regno = true_regnum (x);
10360 if (TARGET_MIPS16)
10362 /* In MIPS16 mode, every move must involve a member of M16_REGS. */
10363 if (!reg_class_subset_p (rclass, M16_REGS) && !M16_REG_P (regno))
10364 return M16_REGS;
10366 return NO_REGS;
10369 /* Copying from accumulator registers to anywhere other than a general
10370 register requires a temporary general register. */
10371 if (reg_class_subset_p (rclass, ACC_REGS))
10372 return GP_REG_P (regno) ? NO_REGS : GR_REGS;
10373 if (ACC_REG_P (regno))
10374 return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
10376 /* We can only copy a value to a condition code register from a
10377 floating-point register, and even then we require a scratch
10378 floating-point register. We can only copy a value out of a
10379 condition-code register into a general register. */
10380 if (reg_class_subset_p (rclass, ST_REGS))
10382 if (in_p)
10383 return FP_REGS;
10384 return GP_REG_P (regno) ? NO_REGS : GR_REGS;
10386 if (ST_REG_P (regno))
10388 if (!in_p)
10389 return FP_REGS;
10390 return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
10393 if (reg_class_subset_p (rclass, FP_REGS))
10395 if (MEM_P (x)
10396 && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8))
10397 /* In this case we can use lwc1, swc1, ldc1 or sdc1. We'll use
10398 pairs of lwc1s and swc1s if ldc1 and sdc1 are not supported. */
10399 return NO_REGS;
10401 if (GP_REG_P (regno) || x == CONST0_RTX (mode))
10402 /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */
10403 return NO_REGS;
10405 if (CONSTANT_P (x) && !targetm.cannot_force_const_mem (x))
10406 /* We can force the constant to memory and use lwc1
10407 and ldc1. As above, we will use pairs of lwc1s if
10408 ldc1 is not supported. */
10409 return NO_REGS;
10411 if (FP_REG_P (regno) && mips_mode_ok_for_mov_fmt_p (mode))
10412 /* In this case we can use mov.fmt. */
10413 return NO_REGS;
10415 /* Otherwise, we need to reload through an integer register. */
10416 return GR_REGS;
10418 if (FP_REG_P (regno))
10419 return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
10421 return NO_REGS;
10424 /* Implement TARGET_MODE_REP_EXTENDED. */
10426 static int
10427 mips_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep)
10429 /* On 64-bit targets, SImode register values are sign-extended to DImode. */
10430 if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
10431 return SIGN_EXTEND;
10433 return UNKNOWN;
10436 /* Implement TARGET_VALID_POINTER_MODE. */
10438 static bool
10439 mips_valid_pointer_mode (enum machine_mode mode)
10441 return mode == SImode || (TARGET_64BIT && mode == DImode);
10444 /* Implement TARGET_VECTOR_MODE_SUPPORTED_P. */
10446 static bool
10447 mips_vector_mode_supported_p (enum machine_mode mode)
10449 switch (mode)
10451 case V2SFmode:
10452 return TARGET_PAIRED_SINGLE_FLOAT;
10454 case V2HImode:
10455 case V4QImode:
10456 case V2HQmode:
10457 case V2UHQmode:
10458 case V2HAmode:
10459 case V2UHAmode:
10460 case V4QQmode:
10461 case V4UQQmode:
10462 return TARGET_DSP;
10464 case V2SImode:
10465 case V4HImode:
10466 case V8QImode:
10467 return TARGET_LOONGSON_VECTORS;
10469 default:
10470 return false;
10474 /* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
10476 static bool
10477 mips_scalar_mode_supported_p (enum machine_mode mode)
10479 if (ALL_FIXED_POINT_MODE_P (mode)
10480 && GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
10481 return true;
10483 return default_scalar_mode_supported_p (mode);
10486 /* Implement TARGET_INIT_LIBFUNCS. */
10488 #include "config/gofast.h"
10490 static void
10491 mips_init_libfuncs (void)
10493 if (TARGET_FIX_VR4120)
10495 /* Register the special divsi3 and modsi3 functions needed to work
10496 around VR4120 division errata. */
10497 set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3");
10498 set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3");
10501 if (TARGET_MIPS16 && TARGET_HARD_FLOAT_ABI)
10503 /* Register the MIPS16 -mhard-float stubs. */
10504 set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3");
10505 set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3");
10506 set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3");
10507 set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3");
10509 set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2");
10510 set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2");
10511 set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2");
10512 set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2");
10513 set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2");
10514 set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2");
10515 set_optab_libfunc (unord_optab, SFmode, "__mips16_unordsf2");
10517 set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi");
10518 set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf");
10519 set_conv_libfunc (ufloat_optab, SFmode, SImode, "__mips16_floatunsisf");
10521 if (TARGET_DOUBLE_FLOAT)
10523 set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3");
10524 set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3");
10525 set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3");
10526 set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3");
10528 set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2");
10529 set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2");
10530 set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2");
10531 set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2");
10532 set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2");
10533 set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2");
10534 set_optab_libfunc (unord_optab, DFmode, "__mips16_unorddf2");
10536 set_conv_libfunc (sext_optab, DFmode, SFmode,
10537 "__mips16_extendsfdf2");
10538 set_conv_libfunc (trunc_optab, SFmode, DFmode,
10539 "__mips16_truncdfsf2");
10540 set_conv_libfunc (sfix_optab, SImode, DFmode,
10541 "__mips16_fix_truncdfsi");
10542 set_conv_libfunc (sfloat_optab, DFmode, SImode,
10543 "__mips16_floatsidf");
10544 set_conv_libfunc (ufloat_optab, DFmode, SImode,
10545 "__mips16_floatunsidf");
10548 else
10549 /* Register the gofast functions if selected using --enable-gofast. */
10550 gofast_maybe_init_libfuncs ();
10552 /* The MIPS16 ISA does not have an encoding for "sync", so we rely
10553 on an external non-MIPS16 routine to implement __sync_synchronize. */
10554 if (TARGET_MIPS16)
10555 synchronize_libfunc = init_one_libfunc ("__sync_synchronize");
10558 /* Return the length of INSN. LENGTH is the initial length computed by
10559 attributes in the machine-description file. */
10562 mips_adjust_insn_length (rtx insn, int length)
10564 /* A unconditional jump has an unfilled delay slot if it is not part
10565 of a sequence. A conditional jump normally has a delay slot, but
10566 does not on MIPS16. */
10567 if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn)))
10568 length += 4;
10570 /* See how many nops might be needed to avoid hardware hazards. */
10571 if (!cfun->machine->ignore_hazard_length_p && INSN_CODE (insn) >= 0)
10572 switch (get_attr_hazard (insn))
10574 case HAZARD_NONE:
10575 break;
10577 case HAZARD_DELAY:
10578 length += 4;
10579 break;
10581 case HAZARD_HILO:
10582 length += 8;
10583 break;
10586 /* In order to make it easier to share MIPS16 and non-MIPS16 patterns,
10587 the .md file length attributes are 4-based for both modes.
10588 Adjust the MIPS16 ones here. */
10589 if (TARGET_MIPS16)
10590 length /= 2;
10592 return length;
10595 /* Return an asm sequence to start a noat block and load the address
10596 of a label into $1. */
10598 const char *
10599 mips_output_load_label (void)
10601 if (TARGET_EXPLICIT_RELOCS)
10602 switch (mips_abi)
10604 case ABI_N32:
10605 return "%[lw\t%@,%%got_page(%0)(%+)\n\taddiu\t%@,%@,%%got_ofst(%0)";
10607 case ABI_64:
10608 return "%[ld\t%@,%%got_page(%0)(%+)\n\tdaddiu\t%@,%@,%%got_ofst(%0)";
10610 default:
10611 if (ISA_HAS_LOAD_DELAY)
10612 return "%[lw\t%@,%%got(%0)(%+)%#\n\taddiu\t%@,%@,%%lo(%0)";
10613 return "%[lw\t%@,%%got(%0)(%+)\n\taddiu\t%@,%@,%%lo(%0)";
10615 else
10617 if (Pmode == DImode)
10618 return "%[dla\t%@,%0";
10619 else
10620 return "%[la\t%@,%0";
10624 /* Return the assembly code for INSN, which has the operands given by
10625 OPERANDS, and which branches to OPERANDS[1] if some condition is true.
10626 BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[1]
10627 is in range of a direct branch. BRANCH_IF_FALSE is an inverted
10628 version of BRANCH_IF_TRUE. */
10630 const char *
10631 mips_output_conditional_branch (rtx insn, rtx *operands,
10632 const char *branch_if_true,
10633 const char *branch_if_false)
10635 unsigned int length;
10636 rtx taken, not_taken;
10638 gcc_assert (LABEL_P (operands[1]));
10640 length = get_attr_length (insn);
10641 if (length <= 8)
10643 /* Just a simple conditional branch. */
10644 mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
10645 return branch_if_true;
10648 /* Generate a reversed branch around a direct jump. This fallback does
10649 not use branch-likely instructions. */
10650 mips_branch_likely = false;
10651 not_taken = gen_label_rtx ();
10652 taken = operands[1];
10654 /* Generate the reversed branch to NOT_TAKEN. */
10655 operands[1] = not_taken;
10656 output_asm_insn (branch_if_false, operands);
10658 /* If INSN has a delay slot, we must provide delay slots for both the
10659 branch to NOT_TAKEN and the conditional jump. We must also ensure
10660 that INSN's delay slot is executed in the appropriate cases. */
10661 if (final_sequence)
10663 /* This first delay slot will always be executed, so use INSN's
10664 delay slot if is not annulled. */
10665 if (!INSN_ANNULLED_BRANCH_P (insn))
10667 final_scan_insn (XVECEXP (final_sequence, 0, 1),
10668 asm_out_file, optimize, 1, NULL);
10669 INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
10671 else
10672 output_asm_insn ("nop", 0);
10673 fprintf (asm_out_file, "\n");
10676 /* Output the unconditional branch to TAKEN. */
10677 if (length <= 16)
10678 output_asm_insn ("j\t%0%/", &taken);
10679 else
10681 output_asm_insn (mips_output_load_label (), &taken);
10682 output_asm_insn ("jr\t%@%]%/", 0);
10685 /* Now deal with its delay slot; see above. */
10686 if (final_sequence)
10688 /* This delay slot will only be executed if the branch is taken.
10689 Use INSN's delay slot if is annulled. */
10690 if (INSN_ANNULLED_BRANCH_P (insn))
10692 final_scan_insn (XVECEXP (final_sequence, 0, 1),
10693 asm_out_file, optimize, 1, NULL);
10694 INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
10696 else
10697 output_asm_insn ("nop", 0);
10698 fprintf (asm_out_file, "\n");
10701 /* Output NOT_TAKEN. */
10702 targetm.asm_out.internal_label (asm_out_file, "L",
10703 CODE_LABEL_NUMBER (not_taken));
10704 return "";
10707 /* Return the assembly code for INSN, which branches to OPERANDS[1]
10708 if some ordering condition is true. The condition is given by
10709 OPERANDS[0] if !INVERTED_P, otherwise it is the inverse of
10710 OPERANDS[0]. OPERANDS[2] is the comparison's first operand;
10711 its second is always zero. */
10713 const char *
10714 mips_output_order_conditional_branch (rtx insn, rtx *operands, bool inverted_p)
10716 const char *branch[2];
10718 /* Make BRANCH[1] branch to OPERANDS[1] when the condition is true.
10719 Make BRANCH[0] branch on the inverse condition. */
10720 switch (GET_CODE (operands[0]))
10722 /* These cases are equivalent to comparisons against zero. */
10723 case LEU:
10724 inverted_p = !inverted_p;
10725 /* Fall through. */
10726 case GTU:
10727 branch[!inverted_p] = MIPS_BRANCH ("bne", "%2,%.,%1");
10728 branch[inverted_p] = MIPS_BRANCH ("beq", "%2,%.,%1");
10729 break;
10731 /* These cases are always true or always false. */
10732 case LTU:
10733 inverted_p = !inverted_p;
10734 /* Fall through. */
10735 case GEU:
10736 branch[!inverted_p] = MIPS_BRANCH ("beq", "%.,%.,%1");
10737 branch[inverted_p] = MIPS_BRANCH ("bne", "%.,%.,%1");
10738 break;
10740 default:
10741 branch[!inverted_p] = MIPS_BRANCH ("b%C0z", "%2,%1");
10742 branch[inverted_p] = MIPS_BRANCH ("b%N0z", "%2,%1");
10743 break;
10745 return mips_output_conditional_branch (insn, operands, branch[1], branch[0]);
10748 /* Return the assembly code for __sync_*() loop LOOP. The loop should support
10749 both normal and likely branches, using %? and %~ where appropriate. */
10751 const char *
10752 mips_output_sync_loop (const char *loop)
10754 /* Use branch-likely instructions to work around the LL/SC R10000 errata. */
10755 mips_branch_likely = TARGET_FIX_R10000;
10756 return loop;
10759 /* Return the assembly code for DIV or DDIV instruction DIVISION, which has
10760 the operands given by OPERANDS. Add in a divide-by-zero check if needed.
10762 When working around R4000 and R4400 errata, we need to make sure that
10763 the division is not immediately followed by a shift[1][2]. We also
10764 need to stop the division from being put into a branch delay slot[3].
10765 The easiest way to avoid both problems is to add a nop after the
10766 division. When a divide-by-zero check is needed, this nop can be
10767 used to fill the branch delay slot.
10769 [1] If a double-word or a variable shift executes immediately
10770 after starting an integer division, the shift may give an
10771 incorrect result. See quotations of errata #16 and #28 from
10772 "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
10773 in mips.md for details.
10775 [2] A similar bug to [1] exists for all revisions of the
10776 R4000 and the R4400 when run in an MC configuration.
10777 From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
10779 "19. In this following sequence:
10781 ddiv (or ddivu or div or divu)
10782 dsll32 (or dsrl32, dsra32)
10784 if an MPT stall occurs, while the divide is slipping the cpu
10785 pipeline, then the following double shift would end up with an
10786 incorrect result.
10788 Workaround: The compiler needs to avoid generating any
10789 sequence with divide followed by extended double shift."
10791 This erratum is also present in "MIPS R4400MC Errata, Processor
10792 Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
10793 & 3.0" as errata #10 and #4, respectively.
10795 [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
10796 (also valid for MIPS R4000MC processors):
10798 "52. R4000SC: This bug does not apply for the R4000PC.
10800 There are two flavors of this bug:
10802 1) If the instruction just after divide takes an RF exception
10803 (tlb-refill, tlb-invalid) and gets an instruction cache
10804 miss (both primary and secondary) and the line which is
10805 currently in secondary cache at this index had the first
10806 data word, where the bits 5..2 are set, then R4000 would
10807 get a wrong result for the div.
10811 div r8, r9
10812 ------------------- # end-of page. -tlb-refill
10816 div r8, r9
10817 ------------------- # end-of page. -tlb-invalid
10820 2) If the divide is in the taken branch delay slot, where the
10821 target takes RF exception and gets an I-cache miss for the
10822 exception vector or where I-cache miss occurs for the
10823 target address, under the above mentioned scenarios, the
10824 div would get wrong results.
10827 j r2 # to next page mapped or unmapped
10828 div r8,r9 # this bug would be there as long
10829 # as there is an ICache miss and
10830 nop # the "data pattern" is present
10833 beq r0, r0, NextPage # to Next page
10834 div r8,r9
10837 This bug is present for div, divu, ddiv, and ddivu
10838 instructions.
10840 Workaround: For item 1), OS could make sure that the next page
10841 after the divide instruction is also mapped. For item 2), the
10842 compiler could make sure that the divide instruction is not in
10843 the branch delay slot."
10845 These processors have PRId values of 0x00004220 and 0x00004300 for
10846 the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400. */
10848 const char *
10849 mips_output_division (const char *division, rtx *operands)
10851 const char *s;
10853 s = division;
10854 if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
10856 output_asm_insn (s, operands);
10857 s = "nop";
10859 if (TARGET_CHECK_ZERO_DIV)
10861 if (TARGET_MIPS16)
10863 output_asm_insn (s, operands);
10864 s = "bnez\t%2,1f\n\tbreak\t7\n1:";
10866 else if (GENERATE_DIVIDE_TRAPS)
10868 output_asm_insn (s, operands);
10869 s = "teq\t%2,%.,7";
10871 else
10873 output_asm_insn ("%(bne\t%2,%.,1f", operands);
10874 output_asm_insn (s, operands);
10875 s = "break\t7%)\n1:";
10878 return s;
10881 /* Return true if IN_INSN is a multiply-add or multiply-subtract
10882 instruction and if OUT_INSN assigns to the accumulator operand. */
10884 bool
10885 mips_linked_madd_p (rtx out_insn, rtx in_insn)
10887 rtx x;
10889 x = single_set (in_insn);
10890 if (x == 0)
10891 return false;
10893 x = SET_SRC (x);
10895 if (GET_CODE (x) == PLUS
10896 && GET_CODE (XEXP (x, 0)) == MULT
10897 && reg_set_p (XEXP (x, 1), out_insn))
10898 return true;
10900 if (GET_CODE (x) == MINUS
10901 && GET_CODE (XEXP (x, 1)) == MULT
10902 && reg_set_p (XEXP (x, 0), out_insn))
10903 return true;
10905 return false;
10908 /* True if the dependency between OUT_INSN and IN_INSN is on the store
10909 data rather than the address. We need this because the cprestore
10910 pattern is type "store", but is defined using an UNSPEC_VOLATILE,
10911 which causes the default routine to abort. We just return false
10912 for that case. */
10914 bool
10915 mips_store_data_bypass_p (rtx out_insn, rtx in_insn)
10917 if (GET_CODE (PATTERN (in_insn)) == UNSPEC_VOLATILE)
10918 return false;
10920 return !store_data_bypass_p (out_insn, in_insn);
10924 /* Variables and flags used in scheduler hooks when tuning for
10925 Loongson 2E/2F. */
10926 static struct
10928 /* Variables to support Loongson 2E/2F round-robin [F]ALU1/2 dispatch
10929 strategy. */
10931 /* If true, then next ALU1/2 instruction will go to ALU1. */
10932 bool alu1_turn_p;
10934 /* If true, then next FALU1/2 unstruction will go to FALU1. */
10935 bool falu1_turn_p;
10937 /* Codes to query if [f]alu{1,2}_core units are subscribed or not. */
10938 int alu1_core_unit_code;
10939 int alu2_core_unit_code;
10940 int falu1_core_unit_code;
10941 int falu2_core_unit_code;
10943 /* True if current cycle has a multi instruction.
10944 This flag is used in mips_ls2_dfa_post_advance_cycle. */
10945 bool cycle_has_multi_p;
10947 /* Instructions to subscribe ls2_[f]alu{1,2}_turn_enabled units.
10948 These are used in mips_ls2_dfa_post_advance_cycle to initialize
10949 DFA state.
10950 E.g., when alu1_turn_enabled_insn is issued it makes next ALU1/2
10951 instruction to go ALU1. */
10952 rtx alu1_turn_enabled_insn;
10953 rtx alu2_turn_enabled_insn;
10954 rtx falu1_turn_enabled_insn;
10955 rtx falu2_turn_enabled_insn;
10956 } mips_ls2;
10958 /* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output
10959 dependencies have no cost, except on the 20Kc where output-dependence
10960 is treated like input-dependence. */
10962 static int
10963 mips_adjust_cost (rtx insn ATTRIBUTE_UNUSED, rtx link,
10964 rtx dep ATTRIBUTE_UNUSED, int cost)
10966 if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT
10967 && TUNE_20KC)
10968 return cost;
10969 if (REG_NOTE_KIND (link) != 0)
10970 return 0;
10971 return cost;
10974 /* Return the number of instructions that can be issued per cycle. */
10976 static int
10977 mips_issue_rate (void)
10979 switch (mips_tune)
10981 case PROCESSOR_74KC:
10982 case PROCESSOR_74KF2_1:
10983 case PROCESSOR_74KF1_1:
10984 case PROCESSOR_74KF3_2:
10985 /* The 74k is not strictly quad-issue cpu, but can be seen as one
10986 by the scheduler. It can issue 1 ALU, 1 AGEN and 2 FPU insns,
10987 but in reality only a maximum of 3 insns can be issued as
10988 floating-point loads and stores also require a slot in the
10989 AGEN pipe. */
10990 case PROCESSOR_R10000:
10991 /* All R10K Processors are quad-issue (being the first MIPS
10992 processors to support this feature). */
10993 return 4;
10995 case PROCESSOR_20KC:
10996 case PROCESSOR_R4130:
10997 case PROCESSOR_R5400:
10998 case PROCESSOR_R5500:
10999 case PROCESSOR_R7000:
11000 case PROCESSOR_R9000:
11001 case PROCESSOR_OCTEON:
11002 return 2;
11004 case PROCESSOR_SB1:
11005 case PROCESSOR_SB1A:
11006 /* This is actually 4, but we get better performance if we claim 3.
11007 This is partly because of unwanted speculative code motion with the
11008 larger number, and partly because in most common cases we can't
11009 reach the theoretical max of 4. */
11010 return 3;
11012 case PROCESSOR_LOONGSON_2E:
11013 case PROCESSOR_LOONGSON_2F:
11014 return 4;
11016 default:
11017 return 1;
11021 /* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook for Loongson2. */
11023 static void
11024 mips_ls2_init_dfa_post_cycle_insn (void)
11026 start_sequence ();
11027 emit_insn (gen_ls2_alu1_turn_enabled_insn ());
11028 mips_ls2.alu1_turn_enabled_insn = get_insns ();
11029 end_sequence ();
11031 start_sequence ();
11032 emit_insn (gen_ls2_alu2_turn_enabled_insn ());
11033 mips_ls2.alu2_turn_enabled_insn = get_insns ();
11034 end_sequence ();
11036 start_sequence ();
11037 emit_insn (gen_ls2_falu1_turn_enabled_insn ());
11038 mips_ls2.falu1_turn_enabled_insn = get_insns ();
11039 end_sequence ();
11041 start_sequence ();
11042 emit_insn (gen_ls2_falu2_turn_enabled_insn ());
11043 mips_ls2.falu2_turn_enabled_insn = get_insns ();
11044 end_sequence ();
11046 mips_ls2.alu1_core_unit_code = get_cpu_unit_code ("ls2_alu1_core");
11047 mips_ls2.alu2_core_unit_code = get_cpu_unit_code ("ls2_alu2_core");
11048 mips_ls2.falu1_core_unit_code = get_cpu_unit_code ("ls2_falu1_core");
11049 mips_ls2.falu2_core_unit_code = get_cpu_unit_code ("ls2_falu2_core");
11052 /* Implement TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN hook.
11053 Init data used in mips_dfa_post_advance_cycle. */
11055 static void
11056 mips_init_dfa_post_cycle_insn (void)
11058 if (TUNE_LOONGSON_2EF)
11059 mips_ls2_init_dfa_post_cycle_insn ();
11062 /* Initialize STATE when scheduling for Loongson 2E/2F.
11063 Support round-robin dispatch scheme by enabling only one of
11064 ALU1/ALU2 and one of FALU1/FALU2 units for ALU1/2 and FALU1/2 instructions
11065 respectively. */
11067 static void
11068 mips_ls2_dfa_post_advance_cycle (state_t state)
11070 if (cpu_unit_reservation_p (state, mips_ls2.alu1_core_unit_code))
11072 /* Though there are no non-pipelined ALU1 insns,
11073 we can get an instruction of type 'multi' before reload. */
11074 gcc_assert (mips_ls2.cycle_has_multi_p);
11075 mips_ls2.alu1_turn_p = false;
11078 mips_ls2.cycle_has_multi_p = false;
11080 if (cpu_unit_reservation_p (state, mips_ls2.alu2_core_unit_code))
11081 /* We have a non-pipelined alu instruction in the core,
11082 adjust round-robin counter. */
11083 mips_ls2.alu1_turn_p = true;
11085 if (mips_ls2.alu1_turn_p)
11087 if (state_transition (state, mips_ls2.alu1_turn_enabled_insn) >= 0)
11088 gcc_unreachable ();
11090 else
11092 if (state_transition (state, mips_ls2.alu2_turn_enabled_insn) >= 0)
11093 gcc_unreachable ();
11096 if (cpu_unit_reservation_p (state, mips_ls2.falu1_core_unit_code))
11098 /* There are no non-pipelined FALU1 insns. */
11099 gcc_unreachable ();
11100 mips_ls2.falu1_turn_p = false;
11103 if (cpu_unit_reservation_p (state, mips_ls2.falu2_core_unit_code))
11104 /* We have a non-pipelined falu instruction in the core,
11105 adjust round-robin counter. */
11106 mips_ls2.falu1_turn_p = true;
11108 if (mips_ls2.falu1_turn_p)
11110 if (state_transition (state, mips_ls2.falu1_turn_enabled_insn) >= 0)
11111 gcc_unreachable ();
11113 else
11115 if (state_transition (state, mips_ls2.falu2_turn_enabled_insn) >= 0)
11116 gcc_unreachable ();
11120 /* Implement TARGET_SCHED_DFA_POST_ADVANCE_CYCLE.
11121 This hook is being called at the start of each cycle. */
11123 static void
11124 mips_dfa_post_advance_cycle (void)
11126 if (TUNE_LOONGSON_2EF)
11127 mips_ls2_dfa_post_advance_cycle (curr_state);
11130 /* Implement TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD. This should
11131 be as wide as the scheduling freedom in the DFA. */
11133 static int
11134 mips_multipass_dfa_lookahead (void)
11136 /* Can schedule up to 4 of the 6 function units in any one cycle. */
11137 if (TUNE_SB1)
11138 return 4;
11140 if (TUNE_LOONGSON_2EF)
11141 return 4;
11143 if (TUNE_OCTEON)
11144 return 2;
11146 return 0;
11149 /* Remove the instruction at index LOWER from ready queue READY and
11150 reinsert it in front of the instruction at index HIGHER. LOWER must
11151 be <= HIGHER. */
11153 static void
11154 mips_promote_ready (rtx *ready, int lower, int higher)
11156 rtx new_head;
11157 int i;
11159 new_head = ready[lower];
11160 for (i = lower; i < higher; i++)
11161 ready[i] = ready[i + 1];
11162 ready[i] = new_head;
11165 /* If the priority of the instruction at POS2 in the ready queue READY
11166 is within LIMIT units of that of the instruction at POS1, swap the
11167 instructions if POS2 is not already less than POS1. */
11169 static void
11170 mips_maybe_swap_ready (rtx *ready, int pos1, int pos2, int limit)
11172 if (pos1 < pos2
11173 && INSN_PRIORITY (ready[pos1]) + limit >= INSN_PRIORITY (ready[pos2]))
11175 rtx temp;
11177 temp = ready[pos1];
11178 ready[pos1] = ready[pos2];
11179 ready[pos2] = temp;
11183 /* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
11184 that may clobber hi or lo. */
11185 static rtx mips_macc_chains_last_hilo;
11187 /* A TUNE_MACC_CHAINS helper function. Record that instruction INSN has
11188 been scheduled, updating mips_macc_chains_last_hilo appropriately. */
11190 static void
11191 mips_macc_chains_record (rtx insn)
11193 if (get_attr_may_clobber_hilo (insn))
11194 mips_macc_chains_last_hilo = insn;
11197 /* A TUNE_MACC_CHAINS helper function. Search ready queue READY, which
11198 has NREADY elements, looking for a multiply-add or multiply-subtract
11199 instruction that is cumulative with mips_macc_chains_last_hilo.
11200 If there is one, promote it ahead of anything else that might
11201 clobber hi or lo. */
11203 static void
11204 mips_macc_chains_reorder (rtx *ready, int nready)
11206 int i, j;
11208 if (mips_macc_chains_last_hilo != 0)
11209 for (i = nready - 1; i >= 0; i--)
11210 if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i]))
11212 for (j = nready - 1; j > i; j--)
11213 if (recog_memoized (ready[j]) >= 0
11214 && get_attr_may_clobber_hilo (ready[j]))
11216 mips_promote_ready (ready, i, j);
11217 break;
11219 break;
11223 /* The last instruction to be scheduled. */
11224 static rtx vr4130_last_insn;
11226 /* A note_stores callback used by vr4130_true_reg_dependence_p. DATA
11227 points to an rtx that is initially an instruction. Nullify the rtx
11228 if the instruction uses the value of register X. */
11230 static void
11231 vr4130_true_reg_dependence_p_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED,
11232 void *data)
11234 rtx *insn_ptr;
11236 insn_ptr = (rtx *) data;
11237 if (REG_P (x)
11238 && *insn_ptr != 0
11239 && reg_referenced_p (x, PATTERN (*insn_ptr)))
11240 *insn_ptr = 0;
11243 /* Return true if there is true register dependence between vr4130_last_insn
11244 and INSN. */
11246 static bool
11247 vr4130_true_reg_dependence_p (rtx insn)
11249 note_stores (PATTERN (vr4130_last_insn),
11250 vr4130_true_reg_dependence_p_1, &insn);
11251 return insn == 0;
11254 /* A TUNE_MIPS4130 helper function. Given that INSN1 is at the head of
11255 the ready queue and that INSN2 is the instruction after it, return
11256 true if it is worth promoting INSN2 ahead of INSN1. Look for cases
11257 in which INSN1 and INSN2 can probably issue in parallel, but for
11258 which (INSN2, INSN1) should be less sensitive to instruction
11259 alignment than (INSN1, INSN2). See 4130.md for more details. */
11261 static bool
11262 vr4130_swap_insns_p (rtx insn1, rtx insn2)
11264 sd_iterator_def sd_it;
11265 dep_t dep;
11267 /* Check for the following case:
11269 1) there is some other instruction X with an anti dependence on INSN1;
11270 2) X has a higher priority than INSN2; and
11271 3) X is an arithmetic instruction (and thus has no unit restrictions).
11273 If INSN1 is the last instruction blocking X, it would better to
11274 choose (INSN1, X) over (INSN2, INSN1). */
11275 FOR_EACH_DEP (insn1, SD_LIST_FORW, sd_it, dep)
11276 if (DEP_TYPE (dep) == REG_DEP_ANTI
11277 && INSN_PRIORITY (DEP_CON (dep)) > INSN_PRIORITY (insn2)
11278 && recog_memoized (DEP_CON (dep)) >= 0
11279 && get_attr_vr4130_class (DEP_CON (dep)) == VR4130_CLASS_ALU)
11280 return false;
11282 if (vr4130_last_insn != 0
11283 && recog_memoized (insn1) >= 0
11284 && recog_memoized (insn2) >= 0)
11286 /* See whether INSN1 and INSN2 use different execution units,
11287 or if they are both ALU-type instructions. If so, they can
11288 probably execute in parallel. */
11289 enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1);
11290 enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2);
11291 if (class1 != class2 || class1 == VR4130_CLASS_ALU)
11293 /* If only one of the instructions has a dependence on
11294 vr4130_last_insn, prefer to schedule the other one first. */
11295 bool dep1_p = vr4130_true_reg_dependence_p (insn1);
11296 bool dep2_p = vr4130_true_reg_dependence_p (insn2);
11297 if (dep1_p != dep2_p)
11298 return dep1_p;
11300 /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
11301 is not an ALU-type instruction and if INSN1 uses the same
11302 execution unit. (Note that if this condition holds, we already
11303 know that INSN2 uses a different execution unit.) */
11304 if (class1 != VR4130_CLASS_ALU
11305 && recog_memoized (vr4130_last_insn) >= 0
11306 && class1 == get_attr_vr4130_class (vr4130_last_insn))
11307 return true;
11310 return false;
11313 /* A TUNE_MIPS4130 helper function. (READY, NREADY) describes a ready
11314 queue with at least two instructions. Swap the first two if
11315 vr4130_swap_insns_p says that it could be worthwhile. */
11317 static void
11318 vr4130_reorder (rtx *ready, int nready)
11320 if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2]))
11321 mips_promote_ready (ready, nready - 2, nready - 1);
11324 /* Record whether last 74k AGEN instruction was a load or store. */
11325 static enum attr_type mips_last_74k_agen_insn = TYPE_UNKNOWN;
11327 /* Initialize mips_last_74k_agen_insn from INSN. A null argument
11328 resets to TYPE_UNKNOWN state. */
11330 static void
11331 mips_74k_agen_init (rtx insn)
11333 if (!insn || !NONJUMP_INSN_P (insn))
11334 mips_last_74k_agen_insn = TYPE_UNKNOWN;
11335 else
11337 enum attr_type type = get_attr_type (insn);
11338 if (type == TYPE_LOAD || type == TYPE_STORE)
11339 mips_last_74k_agen_insn = type;
11343 /* A TUNE_74K helper function. The 74K AGEN pipeline likes multiple
11344 loads to be grouped together, and multiple stores to be grouped
11345 together. Swap things around in the ready queue to make this happen. */
11347 static void
11348 mips_74k_agen_reorder (rtx *ready, int nready)
11350 int i;
11351 int store_pos, load_pos;
11353 store_pos = -1;
11354 load_pos = -1;
11356 for (i = nready - 1; i >= 0; i--)
11358 rtx insn = ready[i];
11359 if (USEFUL_INSN_P (insn))
11360 switch (get_attr_type (insn))
11362 case TYPE_STORE:
11363 if (store_pos == -1)
11364 store_pos = i;
11365 break;
11367 case TYPE_LOAD:
11368 if (load_pos == -1)
11369 load_pos = i;
11370 break;
11372 default:
11373 break;
11377 if (load_pos == -1 || store_pos == -1)
11378 return;
11380 switch (mips_last_74k_agen_insn)
11382 case TYPE_UNKNOWN:
11383 /* Prefer to schedule loads since they have a higher latency. */
11384 case TYPE_LOAD:
11385 /* Swap loads to the front of the queue. */
11386 mips_maybe_swap_ready (ready, load_pos, store_pos, 4);
11387 break;
11388 case TYPE_STORE:
11389 /* Swap stores to the front of the queue. */
11390 mips_maybe_swap_ready (ready, store_pos, load_pos, 4);
11391 break;
11392 default:
11393 break;
11397 /* Implement TARGET_SCHED_INIT. */
11399 static void
11400 mips_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
11401 int max_ready ATTRIBUTE_UNUSED)
11403 mips_macc_chains_last_hilo = 0;
11404 vr4130_last_insn = 0;
11405 mips_74k_agen_init (NULL_RTX);
11407 /* When scheduling for Loongson2, branch instructions go to ALU1,
11408 therefore basic block is most likely to start with round-robin counter
11409 pointed to ALU2. */
11410 mips_ls2.alu1_turn_p = false;
11411 mips_ls2.falu1_turn_p = true;
11414 /* Implement TARGET_SCHED_REORDER and TARGET_SCHED_REORDER2. */
11416 static int
11417 mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
11418 rtx *ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
11420 if (!reload_completed
11421 && TUNE_MACC_CHAINS
11422 && *nreadyp > 0)
11423 mips_macc_chains_reorder (ready, *nreadyp);
11425 if (reload_completed
11426 && TUNE_MIPS4130
11427 && !TARGET_VR4130_ALIGN
11428 && *nreadyp > 1)
11429 vr4130_reorder (ready, *nreadyp);
11431 if (TUNE_74K)
11432 mips_74k_agen_reorder (ready, *nreadyp);
11434 return mips_issue_rate ();
11437 /* Update round-robin counters for ALU1/2 and FALU1/2. */
11439 static void
11440 mips_ls2_variable_issue (rtx insn)
11442 if (mips_ls2.alu1_turn_p)
11444 if (cpu_unit_reservation_p (curr_state, mips_ls2.alu1_core_unit_code))
11445 mips_ls2.alu1_turn_p = false;
11447 else
11449 if (cpu_unit_reservation_p (curr_state, mips_ls2.alu2_core_unit_code))
11450 mips_ls2.alu1_turn_p = true;
11453 if (mips_ls2.falu1_turn_p)
11455 if (cpu_unit_reservation_p (curr_state, mips_ls2.falu1_core_unit_code))
11456 mips_ls2.falu1_turn_p = false;
11458 else
11460 if (cpu_unit_reservation_p (curr_state, mips_ls2.falu2_core_unit_code))
11461 mips_ls2.falu1_turn_p = true;
11464 if (recog_memoized (insn) >= 0)
11465 mips_ls2.cycle_has_multi_p |= (get_attr_type (insn) == TYPE_MULTI);
11468 /* Implement TARGET_SCHED_VARIABLE_ISSUE. */
11470 static int
11471 mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
11472 rtx insn, int more)
11474 /* Ignore USEs and CLOBBERs; don't count them against the issue rate. */
11475 if (USEFUL_INSN_P (insn))
11477 more--;
11478 if (!reload_completed && TUNE_MACC_CHAINS)
11479 mips_macc_chains_record (insn);
11480 vr4130_last_insn = insn;
11481 if (TUNE_74K)
11482 mips_74k_agen_init (insn);
11483 else if (TUNE_LOONGSON_2EF)
11484 mips_ls2_variable_issue (insn);
11487 /* Instructions of type 'multi' should all be split before
11488 the second scheduling pass. */
11489 gcc_assert (!reload_completed
11490 || recog_memoized (insn) < 0
11491 || get_attr_type (insn) != TYPE_MULTI);
11493 return more;
11496 /* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
11497 return the first operand of the associated PREF or PREFX insn. */
11500 mips_prefetch_cookie (rtx write, rtx locality)
11502 /* store_streamed / load_streamed. */
11503 if (INTVAL (locality) <= 0)
11504 return GEN_INT (INTVAL (write) + 4);
11506 /* store / load. */
11507 if (INTVAL (locality) <= 2)
11508 return write;
11510 /* store_retained / load_retained. */
11511 return GEN_INT (INTVAL (write) + 6);
11514 /* Flags that indicate when a built-in function is available.
11516 BUILTIN_AVAIL_NON_MIPS16
11517 The function is available on the current target, but only
11518 in non-MIPS16 mode. */
11519 #define BUILTIN_AVAIL_NON_MIPS16 1
11521 /* Declare an availability predicate for built-in functions that
11522 require non-MIPS16 mode and also require COND to be true.
11523 NAME is the main part of the predicate's name. */
11524 #define AVAIL_NON_MIPS16(NAME, COND) \
11525 static unsigned int \
11526 mips_builtin_avail_##NAME (void) \
11528 return (COND) ? BUILTIN_AVAIL_NON_MIPS16 : 0; \
11531 /* This structure describes a single built-in function. */
11532 struct mips_builtin_description {
11533 /* The code of the main .md file instruction. See mips_builtin_type
11534 for more information. */
11535 enum insn_code icode;
11537 /* The floating-point comparison code to use with ICODE, if any. */
11538 enum mips_fp_condition cond;
11540 /* The name of the built-in function. */
11541 const char *name;
11543 /* Specifies how the function should be expanded. */
11544 enum mips_builtin_type builtin_type;
11546 /* The function's prototype. */
11547 enum mips_function_type function_type;
11549 /* Whether the function is available. */
11550 unsigned int (*avail) (void);
11553 AVAIL_NON_MIPS16 (paired_single, TARGET_PAIRED_SINGLE_FLOAT)
11554 AVAIL_NON_MIPS16 (sb1_paired_single, TARGET_SB1 && TARGET_PAIRED_SINGLE_FLOAT)
11555 AVAIL_NON_MIPS16 (mips3d, TARGET_MIPS3D)
11556 AVAIL_NON_MIPS16 (dsp, TARGET_DSP)
11557 AVAIL_NON_MIPS16 (dspr2, TARGET_DSPR2)
11558 AVAIL_NON_MIPS16 (dsp_32, !TARGET_64BIT && TARGET_DSP)
11559 AVAIL_NON_MIPS16 (dspr2_32, !TARGET_64BIT && TARGET_DSPR2)
11560 AVAIL_NON_MIPS16 (loongson, TARGET_LOONGSON_VECTORS)
11561 AVAIL_NON_MIPS16 (cache, TARGET_CACHE_BUILTIN)
11563 /* Construct a mips_builtin_description from the given arguments.
11565 INSN is the name of the associated instruction pattern, without the
11566 leading CODE_FOR_mips_.
11568 CODE is the floating-point condition code associated with the
11569 function. It can be 'f' if the field is not applicable.
11571 NAME is the name of the function itself, without the leading
11572 "__builtin_mips_".
11574 BUILTIN_TYPE and FUNCTION_TYPE are mips_builtin_description fields.
11576 AVAIL is the name of the availability predicate, without the leading
11577 mips_builtin_avail_. */
11578 #define MIPS_BUILTIN(INSN, COND, NAME, BUILTIN_TYPE, \
11579 FUNCTION_TYPE, AVAIL) \
11580 { CODE_FOR_mips_ ## INSN, MIPS_FP_COND_ ## COND, \
11581 "__builtin_mips_" NAME, BUILTIN_TYPE, FUNCTION_TYPE, \
11582 mips_builtin_avail_ ## AVAIL }
11584 /* Define __builtin_mips_<INSN>, which is a MIPS_BUILTIN_DIRECT function
11585 mapped to instruction CODE_FOR_mips_<INSN>, FUNCTION_TYPE and AVAIL
11586 are as for MIPS_BUILTIN. */
11587 #define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
11588 MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, AVAIL)
11590 /* Define __builtin_mips_<INSN>_<COND>_{s,d} functions, both of which
11591 are subject to mips_builtin_avail_<AVAIL>. */
11592 #define CMP_SCALAR_BUILTINS(INSN, COND, AVAIL) \
11593 MIPS_BUILTIN (INSN ## _cond_s, COND, #INSN "_" #COND "_s", \
11594 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, AVAIL), \
11595 MIPS_BUILTIN (INSN ## _cond_d, COND, #INSN "_" #COND "_d", \
11596 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, AVAIL)
11598 /* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
11599 The lower and upper forms are subject to mips_builtin_avail_<AVAIL>
11600 while the any and all forms are subject to mips_builtin_avail_mips3d. */
11601 #define CMP_PS_BUILTINS(INSN, COND, AVAIL) \
11602 MIPS_BUILTIN (INSN ## _cond_ps, COND, "any_" #INSN "_" #COND "_ps", \
11603 MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, \
11604 mips3d), \
11605 MIPS_BUILTIN (INSN ## _cond_ps, COND, "all_" #INSN "_" #COND "_ps", \
11606 MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, \
11607 mips3d), \
11608 MIPS_BUILTIN (INSN ## _cond_ps, COND, "lower_" #INSN "_" #COND "_ps", \
11609 MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, \
11610 AVAIL), \
11611 MIPS_BUILTIN (INSN ## _cond_ps, COND, "upper_" #INSN "_" #COND "_ps", \
11612 MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, \
11613 AVAIL)
11615 /* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s. The functions
11616 are subject to mips_builtin_avail_mips3d. */
11617 #define CMP_4S_BUILTINS(INSN, COND) \
11618 MIPS_BUILTIN (INSN ## _cond_4s, COND, "any_" #INSN "_" #COND "_4s", \
11619 MIPS_BUILTIN_CMP_ANY, \
11620 MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d), \
11621 MIPS_BUILTIN (INSN ## _cond_4s, COND, "all_" #INSN "_" #COND "_4s", \
11622 MIPS_BUILTIN_CMP_ALL, \
11623 MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, mips3d)
11625 /* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps. The comparison
11626 instruction requires mips_builtin_avail_<AVAIL>. */
11627 #define MOVTF_BUILTINS(INSN, COND, AVAIL) \
11628 MIPS_BUILTIN (INSN ## _cond_ps, COND, "movt_" #INSN "_" #COND "_ps", \
11629 MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
11630 AVAIL), \
11631 MIPS_BUILTIN (INSN ## _cond_ps, COND, "movf_" #INSN "_" #COND "_ps", \
11632 MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
11633 AVAIL)
11635 /* Define all the built-in functions related to C.cond.fmt condition COND. */
11636 #define CMP_BUILTINS(COND) \
11637 MOVTF_BUILTINS (c, COND, paired_single), \
11638 MOVTF_BUILTINS (cabs, COND, mips3d), \
11639 CMP_SCALAR_BUILTINS (cabs, COND, mips3d), \
11640 CMP_PS_BUILTINS (c, COND, paired_single), \
11641 CMP_PS_BUILTINS (cabs, COND, mips3d), \
11642 CMP_4S_BUILTINS (c, COND), \
11643 CMP_4S_BUILTINS (cabs, COND)
11645 /* Define __builtin_mips_<INSN>, which is a MIPS_BUILTIN_DIRECT_NO_TARGET
11646 function mapped to instruction CODE_FOR_mips_<INSN>, FUNCTION_TYPE
11647 and AVAIL are as for MIPS_BUILTIN. */
11648 #define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
11649 MIPS_BUILTIN (INSN, f, #INSN, MIPS_BUILTIN_DIRECT_NO_TARGET, \
11650 FUNCTION_TYPE, AVAIL)
11652 /* Define __builtin_mips_bposge<VALUE>. <VALUE> is 32 for the MIPS32 DSP
11653 branch instruction. AVAIL is as for MIPS_BUILTIN. */
11654 #define BPOSGE_BUILTIN(VALUE, AVAIL) \
11655 MIPS_BUILTIN (bposge, f, "bposge" #VALUE, \
11656 MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, AVAIL)
11658 /* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_<FN_NAME>
11659 for instruction CODE_FOR_loongson_<INSN>. FUNCTION_TYPE is a
11660 builtin_description field. */
11661 #define LOONGSON_BUILTIN_ALIAS(INSN, FN_NAME, FUNCTION_TYPE) \
11662 { CODE_FOR_loongson_ ## INSN, MIPS_FP_COND_f, \
11663 "__builtin_loongson_" #FN_NAME, MIPS_BUILTIN_DIRECT, \
11664 FUNCTION_TYPE, mips_builtin_avail_loongson }
11666 /* Define a Loongson MIPS_BUILTIN_DIRECT function __builtin_loongson_<INSN>
11667 for instruction CODE_FOR_loongson_<INSN>. FUNCTION_TYPE is a
11668 builtin_description field. */
11669 #define LOONGSON_BUILTIN(INSN, FUNCTION_TYPE) \
11670 LOONGSON_BUILTIN_ALIAS (INSN, INSN, FUNCTION_TYPE)
11672 /* Like LOONGSON_BUILTIN, but add _<SUFFIX> to the end of the function name.
11673 We use functions of this form when the same insn can be usefully applied
11674 to more than one datatype. */
11675 #define LOONGSON_BUILTIN_SUFFIX(INSN, SUFFIX, FUNCTION_TYPE) \
11676 LOONGSON_BUILTIN_ALIAS (INSN, INSN ## _ ## SUFFIX, FUNCTION_TYPE)
11678 #define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
11679 #define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
11680 #define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
11681 #define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
11682 #define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
11683 #define CODE_FOR_mips_mul_ph CODE_FOR_mulv2hi3
11685 #define CODE_FOR_loongson_packsswh CODE_FOR_vec_pack_ssat_v2si
11686 #define CODE_FOR_loongson_packsshb CODE_FOR_vec_pack_ssat_v4hi
11687 #define CODE_FOR_loongson_packushb CODE_FOR_vec_pack_usat_v4hi
11688 #define CODE_FOR_loongson_paddw CODE_FOR_addv2si3
11689 #define CODE_FOR_loongson_paddh CODE_FOR_addv4hi3
11690 #define CODE_FOR_loongson_paddb CODE_FOR_addv8qi3
11691 #define CODE_FOR_loongson_paddsh CODE_FOR_ssaddv4hi3
11692 #define CODE_FOR_loongson_paddsb CODE_FOR_ssaddv8qi3
11693 #define CODE_FOR_loongson_paddush CODE_FOR_usaddv4hi3
11694 #define CODE_FOR_loongson_paddusb CODE_FOR_usaddv8qi3
11695 #define CODE_FOR_loongson_pmaxsh CODE_FOR_smaxv4hi3
11696 #define CODE_FOR_loongson_pmaxub CODE_FOR_umaxv8qi3
11697 #define CODE_FOR_loongson_pminsh CODE_FOR_sminv4hi3
11698 #define CODE_FOR_loongson_pminub CODE_FOR_uminv8qi3
11699 #define CODE_FOR_loongson_pmulhuh CODE_FOR_umulv4hi3_highpart
11700 #define CODE_FOR_loongson_pmulhh CODE_FOR_smulv4hi3_highpart
11701 #define CODE_FOR_loongson_psubw CODE_FOR_subv2si3
11702 #define CODE_FOR_loongson_psubh CODE_FOR_subv4hi3
11703 #define CODE_FOR_loongson_psubb CODE_FOR_subv8qi3
11704 #define CODE_FOR_loongson_psubsh CODE_FOR_sssubv4hi3
11705 #define CODE_FOR_loongson_psubsb CODE_FOR_sssubv8qi3
11706 #define CODE_FOR_loongson_psubush CODE_FOR_ussubv4hi3
11707 #define CODE_FOR_loongson_psubusb CODE_FOR_ussubv8qi3
11708 #define CODE_FOR_loongson_punpckhbh CODE_FOR_vec_interleave_highv8qi
11709 #define CODE_FOR_loongson_punpckhhw CODE_FOR_vec_interleave_highv4hi
11710 #define CODE_FOR_loongson_punpckhwd CODE_FOR_vec_interleave_highv2si
11711 #define CODE_FOR_loongson_punpcklbh CODE_FOR_vec_interleave_lowv8qi
11712 #define CODE_FOR_loongson_punpcklhw CODE_FOR_vec_interleave_lowv4hi
11713 #define CODE_FOR_loongson_punpcklwd CODE_FOR_vec_interleave_lowv2si
11715 static const struct mips_builtin_description mips_builtins[] = {
11716 DIRECT_BUILTIN (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
11717 DIRECT_BUILTIN (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
11718 DIRECT_BUILTIN (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
11719 DIRECT_BUILTIN (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, paired_single),
11720 DIRECT_BUILTIN (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, paired_single),
11721 DIRECT_BUILTIN (cvt_s_pl, MIPS_SF_FTYPE_V2SF, paired_single),
11722 DIRECT_BUILTIN (cvt_s_pu, MIPS_SF_FTYPE_V2SF, paired_single),
11723 DIRECT_BUILTIN (abs_ps, MIPS_V2SF_FTYPE_V2SF, paired_single),
11725 DIRECT_BUILTIN (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT, paired_single),
11726 DIRECT_BUILTIN (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
11727 DIRECT_BUILTIN (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
11728 DIRECT_BUILTIN (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
11729 DIRECT_BUILTIN (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, mips3d),
11731 DIRECT_BUILTIN (recip1_s, MIPS_SF_FTYPE_SF, mips3d),
11732 DIRECT_BUILTIN (recip1_d, MIPS_DF_FTYPE_DF, mips3d),
11733 DIRECT_BUILTIN (recip1_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
11734 DIRECT_BUILTIN (recip2_s, MIPS_SF_FTYPE_SF_SF, mips3d),
11735 DIRECT_BUILTIN (recip2_d, MIPS_DF_FTYPE_DF_DF, mips3d),
11736 DIRECT_BUILTIN (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
11738 DIRECT_BUILTIN (rsqrt1_s, MIPS_SF_FTYPE_SF, mips3d),
11739 DIRECT_BUILTIN (rsqrt1_d, MIPS_DF_FTYPE_DF, mips3d),
11740 DIRECT_BUILTIN (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, mips3d),
11741 DIRECT_BUILTIN (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, mips3d),
11742 DIRECT_BUILTIN (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, mips3d),
11743 DIRECT_BUILTIN (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, mips3d),
11745 MIPS_FP_CONDITIONS (CMP_BUILTINS),
11747 /* Built-in functions for the SB-1 processor. */
11748 DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, sb1_paired_single),
11750 /* Built-in functions for the DSP ASE (32-bit and 64-bit). */
11751 DIRECT_BUILTIN (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
11752 DIRECT_BUILTIN (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
11753 DIRECT_BUILTIN (addq_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
11754 DIRECT_BUILTIN (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
11755 DIRECT_BUILTIN (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
11756 DIRECT_BUILTIN (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
11757 DIRECT_BUILTIN (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
11758 DIRECT_BUILTIN (subq_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
11759 DIRECT_BUILTIN (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
11760 DIRECT_BUILTIN (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
11761 DIRECT_BUILTIN (addsc, MIPS_SI_FTYPE_SI_SI, dsp),
11762 DIRECT_BUILTIN (addwc, MIPS_SI_FTYPE_SI_SI, dsp),
11763 DIRECT_BUILTIN (modsub, MIPS_SI_FTYPE_SI_SI, dsp),
11764 DIRECT_BUILTIN (raddu_w_qb, MIPS_SI_FTYPE_V4QI, dsp),
11765 DIRECT_BUILTIN (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, dsp),
11766 DIRECT_BUILTIN (absq_s_w, MIPS_SI_FTYPE_SI, dsp),
11767 DIRECT_BUILTIN (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dsp),
11768 DIRECT_BUILTIN (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, dsp),
11769 DIRECT_BUILTIN (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, dsp),
11770 DIRECT_BUILTIN (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dsp),
11771 DIRECT_BUILTIN (preceq_w_phl, MIPS_SI_FTYPE_V2HI, dsp),
11772 DIRECT_BUILTIN (preceq_w_phr, MIPS_SI_FTYPE_V2HI, dsp),
11773 DIRECT_BUILTIN (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, dsp),
11774 DIRECT_BUILTIN (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, dsp),
11775 DIRECT_BUILTIN (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, dsp),
11776 DIRECT_BUILTIN (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, dsp),
11777 DIRECT_BUILTIN (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, dsp),
11778 DIRECT_BUILTIN (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, dsp),
11779 DIRECT_BUILTIN (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, dsp),
11780 DIRECT_BUILTIN (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, dsp),
11781 DIRECT_BUILTIN (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, dsp),
11782 DIRECT_BUILTIN (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
11783 DIRECT_BUILTIN (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
11784 DIRECT_BUILTIN (shll_s_w, MIPS_SI_FTYPE_SI_SI, dsp),
11785 DIRECT_BUILTIN (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, dsp),
11786 DIRECT_BUILTIN (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
11787 DIRECT_BUILTIN (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, dsp),
11788 DIRECT_BUILTIN (shra_r_w, MIPS_SI_FTYPE_SI_SI, dsp),
11789 DIRECT_BUILTIN (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, dsp),
11790 DIRECT_BUILTIN (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, dsp),
11791 DIRECT_BUILTIN (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
11792 DIRECT_BUILTIN (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, dsp),
11793 DIRECT_BUILTIN (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, dsp),
11794 DIRECT_BUILTIN (bitrev, MIPS_SI_FTYPE_SI, dsp),
11795 DIRECT_BUILTIN (insv, MIPS_SI_FTYPE_SI_SI, dsp),
11796 DIRECT_BUILTIN (repl_qb, MIPS_V4QI_FTYPE_SI, dsp),
11797 DIRECT_BUILTIN (repl_ph, MIPS_V2HI_FTYPE_SI, dsp),
11798 DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
11799 DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
11800 DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, dsp),
11801 DIRECT_BUILTIN (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
11802 DIRECT_BUILTIN (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
11803 DIRECT_BUILTIN (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, dsp),
11804 DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
11805 DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
11806 DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, dsp),
11807 DIRECT_BUILTIN (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dsp),
11808 DIRECT_BUILTIN (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
11809 DIRECT_BUILTIN (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dsp),
11810 DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, dsp),
11811 DIRECT_BUILTIN (rddsp, MIPS_SI_FTYPE_SI, dsp),
11812 DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_POINTER_SI, dsp),
11813 DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_POINTER_SI, dsp),
11814 DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_POINTER_SI, dsp),
11815 BPOSGE_BUILTIN (32, dsp),
11817 /* The following are for the MIPS DSP ASE REV 2 (32-bit and 64-bit). */
11818 DIRECT_BUILTIN (absq_s_qb, MIPS_V4QI_FTYPE_V4QI, dspr2),
11819 DIRECT_BUILTIN (addu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11820 DIRECT_BUILTIN (addu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11821 DIRECT_BUILTIN (adduh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
11822 DIRECT_BUILTIN (adduh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
11823 DIRECT_BUILTIN (append, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
11824 DIRECT_BUILTIN (balign, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
11825 DIRECT_BUILTIN (cmpgdu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
11826 DIRECT_BUILTIN (cmpgdu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
11827 DIRECT_BUILTIN (cmpgdu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, dspr2),
11828 DIRECT_BUILTIN (mul_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11829 DIRECT_BUILTIN (mul_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11830 DIRECT_BUILTIN (mulq_rs_w, MIPS_SI_FTYPE_SI_SI, dspr2),
11831 DIRECT_BUILTIN (mulq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11832 DIRECT_BUILTIN (mulq_s_w, MIPS_SI_FTYPE_SI_SI, dspr2),
11833 DIRECT_BUILTIN (precr_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, dspr2),
11834 DIRECT_BUILTIN (precr_sra_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, dspr2),
11835 DIRECT_BUILTIN (precr_sra_r_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, dspr2),
11836 DIRECT_BUILTIN (prepend, MIPS_SI_FTYPE_SI_SI_SI, dspr2),
11837 DIRECT_BUILTIN (shra_qb, MIPS_V4QI_FTYPE_V4QI_SI, dspr2),
11838 DIRECT_BUILTIN (shra_r_qb, MIPS_V4QI_FTYPE_V4QI_SI, dspr2),
11839 DIRECT_BUILTIN (shrl_ph, MIPS_V2HI_FTYPE_V2HI_SI, dspr2),
11840 DIRECT_BUILTIN (subu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11841 DIRECT_BUILTIN (subu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11842 DIRECT_BUILTIN (subuh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
11843 DIRECT_BUILTIN (subuh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, dspr2),
11844 DIRECT_BUILTIN (addqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11845 DIRECT_BUILTIN (addqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11846 DIRECT_BUILTIN (addqh_w, MIPS_SI_FTYPE_SI_SI, dspr2),
11847 DIRECT_BUILTIN (addqh_r_w, MIPS_SI_FTYPE_SI_SI, dspr2),
11848 DIRECT_BUILTIN (subqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11849 DIRECT_BUILTIN (subqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, dspr2),
11850 DIRECT_BUILTIN (subqh_w, MIPS_SI_FTYPE_SI_SI, dspr2),
11851 DIRECT_BUILTIN (subqh_r_w, MIPS_SI_FTYPE_SI_SI, dspr2),
11853 /* Built-in functions for the DSP ASE (32-bit only). */
11854 DIRECT_BUILTIN (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
11855 DIRECT_BUILTIN (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
11856 DIRECT_BUILTIN (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
11857 DIRECT_BUILTIN (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, dsp_32),
11858 DIRECT_BUILTIN (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
11859 DIRECT_BUILTIN (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
11860 DIRECT_BUILTIN (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
11861 DIRECT_BUILTIN (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
11862 DIRECT_BUILTIN (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, dsp_32),
11863 DIRECT_BUILTIN (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
11864 DIRECT_BUILTIN (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
11865 DIRECT_BUILTIN (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
11866 DIRECT_BUILTIN (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, dsp_32),
11867 DIRECT_BUILTIN (extr_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
11868 DIRECT_BUILTIN (extr_r_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
11869 DIRECT_BUILTIN (extr_rs_w, MIPS_SI_FTYPE_DI_SI, dsp_32),
11870 DIRECT_BUILTIN (extr_s_h, MIPS_SI_FTYPE_DI_SI, dsp_32),
11871 DIRECT_BUILTIN (extp, MIPS_SI_FTYPE_DI_SI, dsp_32),
11872 DIRECT_BUILTIN (extpdp, MIPS_SI_FTYPE_DI_SI, dsp_32),
11873 DIRECT_BUILTIN (shilo, MIPS_DI_FTYPE_DI_SI, dsp_32),
11874 DIRECT_BUILTIN (mthlip, MIPS_DI_FTYPE_DI_SI, dsp_32),
11876 /* The following are for the MIPS DSP ASE REV 2 (32-bit only). */
11877 DIRECT_BUILTIN (dpa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
11878 DIRECT_BUILTIN (dps_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
11879 DIRECT_BUILTIN (madd, MIPS_DI_FTYPE_DI_SI_SI, dspr2_32),
11880 DIRECT_BUILTIN (maddu, MIPS_DI_FTYPE_DI_USI_USI, dspr2_32),
11881 DIRECT_BUILTIN (msub, MIPS_DI_FTYPE_DI_SI_SI, dspr2_32),
11882 DIRECT_BUILTIN (msubu, MIPS_DI_FTYPE_DI_USI_USI, dspr2_32),
11883 DIRECT_BUILTIN (mulsa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
11884 DIRECT_BUILTIN (mult, MIPS_DI_FTYPE_SI_SI, dspr2_32),
11885 DIRECT_BUILTIN (multu, MIPS_DI_FTYPE_USI_USI, dspr2_32),
11886 DIRECT_BUILTIN (dpax_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
11887 DIRECT_BUILTIN (dpsx_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
11888 DIRECT_BUILTIN (dpaqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
11889 DIRECT_BUILTIN (dpaqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
11890 DIRECT_BUILTIN (dpsqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
11891 DIRECT_BUILTIN (dpsqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, dspr2_32),
11893 /* Builtin functions for ST Microelectronics Loongson-2E/2F cores. */
11894 LOONGSON_BUILTIN (packsswh, MIPS_V4HI_FTYPE_V2SI_V2SI),
11895 LOONGSON_BUILTIN (packsshb, MIPS_V8QI_FTYPE_V4HI_V4HI),
11896 LOONGSON_BUILTIN (packushb, MIPS_UV8QI_FTYPE_UV4HI_UV4HI),
11897 LOONGSON_BUILTIN_SUFFIX (paddw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
11898 LOONGSON_BUILTIN_SUFFIX (paddh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11899 LOONGSON_BUILTIN_SUFFIX (paddb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11900 LOONGSON_BUILTIN_SUFFIX (paddw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
11901 LOONGSON_BUILTIN_SUFFIX (paddh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
11902 LOONGSON_BUILTIN_SUFFIX (paddb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
11903 LOONGSON_BUILTIN_SUFFIX (paddd, u, MIPS_UDI_FTYPE_UDI_UDI),
11904 LOONGSON_BUILTIN_SUFFIX (paddd, s, MIPS_DI_FTYPE_DI_DI),
11905 LOONGSON_BUILTIN (paddsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
11906 LOONGSON_BUILTIN (paddsb, MIPS_V8QI_FTYPE_V8QI_V8QI),
11907 LOONGSON_BUILTIN (paddush, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11908 LOONGSON_BUILTIN (paddusb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11909 LOONGSON_BUILTIN_ALIAS (pandn_d, pandn_ud, MIPS_UDI_FTYPE_UDI_UDI),
11910 LOONGSON_BUILTIN_ALIAS (pandn_w, pandn_uw, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
11911 LOONGSON_BUILTIN_ALIAS (pandn_h, pandn_uh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11912 LOONGSON_BUILTIN_ALIAS (pandn_b, pandn_ub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11913 LOONGSON_BUILTIN_ALIAS (pandn_d, pandn_sd, MIPS_DI_FTYPE_DI_DI),
11914 LOONGSON_BUILTIN_ALIAS (pandn_w, pandn_sw, MIPS_V2SI_FTYPE_V2SI_V2SI),
11915 LOONGSON_BUILTIN_ALIAS (pandn_h, pandn_sh, MIPS_V4HI_FTYPE_V4HI_V4HI),
11916 LOONGSON_BUILTIN_ALIAS (pandn_b, pandn_sb, MIPS_V8QI_FTYPE_V8QI_V8QI),
11917 LOONGSON_BUILTIN (pavgh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11918 LOONGSON_BUILTIN (pavgb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11919 LOONGSON_BUILTIN_SUFFIX (pcmpeqw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
11920 LOONGSON_BUILTIN_SUFFIX (pcmpeqh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11921 LOONGSON_BUILTIN_SUFFIX (pcmpeqb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11922 LOONGSON_BUILTIN_SUFFIX (pcmpeqw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
11923 LOONGSON_BUILTIN_SUFFIX (pcmpeqh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
11924 LOONGSON_BUILTIN_SUFFIX (pcmpeqb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
11925 LOONGSON_BUILTIN_SUFFIX (pcmpgtw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
11926 LOONGSON_BUILTIN_SUFFIX (pcmpgth, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11927 LOONGSON_BUILTIN_SUFFIX (pcmpgtb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11928 LOONGSON_BUILTIN_SUFFIX (pcmpgtw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
11929 LOONGSON_BUILTIN_SUFFIX (pcmpgth, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
11930 LOONGSON_BUILTIN_SUFFIX (pcmpgtb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
11931 LOONGSON_BUILTIN_SUFFIX (pextrh, u, MIPS_UV4HI_FTYPE_UV4HI_USI),
11932 LOONGSON_BUILTIN_SUFFIX (pextrh, s, MIPS_V4HI_FTYPE_V4HI_USI),
11933 LOONGSON_BUILTIN_SUFFIX (pinsrh_0, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11934 LOONGSON_BUILTIN_SUFFIX (pinsrh_1, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11935 LOONGSON_BUILTIN_SUFFIX (pinsrh_2, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11936 LOONGSON_BUILTIN_SUFFIX (pinsrh_3, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11937 LOONGSON_BUILTIN_SUFFIX (pinsrh_0, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
11938 LOONGSON_BUILTIN_SUFFIX (pinsrh_1, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
11939 LOONGSON_BUILTIN_SUFFIX (pinsrh_2, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
11940 LOONGSON_BUILTIN_SUFFIX (pinsrh_3, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
11941 LOONGSON_BUILTIN (pmaddhw, MIPS_V2SI_FTYPE_V4HI_V4HI),
11942 LOONGSON_BUILTIN (pmaxsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
11943 LOONGSON_BUILTIN (pmaxub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11944 LOONGSON_BUILTIN (pminsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
11945 LOONGSON_BUILTIN (pminub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11946 LOONGSON_BUILTIN_SUFFIX (pmovmskb, u, MIPS_UV8QI_FTYPE_UV8QI),
11947 LOONGSON_BUILTIN_SUFFIX (pmovmskb, s, MIPS_V8QI_FTYPE_V8QI),
11948 LOONGSON_BUILTIN (pmulhuh, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11949 LOONGSON_BUILTIN (pmulhh, MIPS_V4HI_FTYPE_V4HI_V4HI),
11950 LOONGSON_BUILTIN (pmullh, MIPS_V4HI_FTYPE_V4HI_V4HI),
11951 LOONGSON_BUILTIN (pmuluw, MIPS_UDI_FTYPE_UV2SI_UV2SI),
11952 LOONGSON_BUILTIN (pasubub, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11953 LOONGSON_BUILTIN (biadd, MIPS_UV4HI_FTYPE_UV8QI),
11954 LOONGSON_BUILTIN (psadbh, MIPS_UV4HI_FTYPE_UV8QI_UV8QI),
11955 LOONGSON_BUILTIN_SUFFIX (pshufh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI_UQI),
11956 LOONGSON_BUILTIN_SUFFIX (pshufh, s, MIPS_V4HI_FTYPE_V4HI_V4HI_UQI),
11957 LOONGSON_BUILTIN_SUFFIX (psllh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
11958 LOONGSON_BUILTIN_SUFFIX (psllh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
11959 LOONGSON_BUILTIN_SUFFIX (psllw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
11960 LOONGSON_BUILTIN_SUFFIX (psllw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
11961 LOONGSON_BUILTIN_SUFFIX (psrah, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
11962 LOONGSON_BUILTIN_SUFFIX (psrah, s, MIPS_V4HI_FTYPE_V4HI_UQI),
11963 LOONGSON_BUILTIN_SUFFIX (psraw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
11964 LOONGSON_BUILTIN_SUFFIX (psraw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
11965 LOONGSON_BUILTIN_SUFFIX (psrlh, u, MIPS_UV4HI_FTYPE_UV4HI_UQI),
11966 LOONGSON_BUILTIN_SUFFIX (psrlh, s, MIPS_V4HI_FTYPE_V4HI_UQI),
11967 LOONGSON_BUILTIN_SUFFIX (psrlw, u, MIPS_UV2SI_FTYPE_UV2SI_UQI),
11968 LOONGSON_BUILTIN_SUFFIX (psrlw, s, MIPS_V2SI_FTYPE_V2SI_UQI),
11969 LOONGSON_BUILTIN_SUFFIX (psubw, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
11970 LOONGSON_BUILTIN_SUFFIX (psubh, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11971 LOONGSON_BUILTIN_SUFFIX (psubb, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11972 LOONGSON_BUILTIN_SUFFIX (psubw, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
11973 LOONGSON_BUILTIN_SUFFIX (psubh, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
11974 LOONGSON_BUILTIN_SUFFIX (psubb, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
11975 LOONGSON_BUILTIN_SUFFIX (psubd, u, MIPS_UDI_FTYPE_UDI_UDI),
11976 LOONGSON_BUILTIN_SUFFIX (psubd, s, MIPS_DI_FTYPE_DI_DI),
11977 LOONGSON_BUILTIN (psubsh, MIPS_V4HI_FTYPE_V4HI_V4HI),
11978 LOONGSON_BUILTIN (psubsb, MIPS_V8QI_FTYPE_V8QI_V8QI),
11979 LOONGSON_BUILTIN (psubush, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11980 LOONGSON_BUILTIN (psubusb, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11981 LOONGSON_BUILTIN_SUFFIX (punpckhbh, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11982 LOONGSON_BUILTIN_SUFFIX (punpckhhw, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11983 LOONGSON_BUILTIN_SUFFIX (punpckhwd, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
11984 LOONGSON_BUILTIN_SUFFIX (punpckhbh, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
11985 LOONGSON_BUILTIN_SUFFIX (punpckhhw, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
11986 LOONGSON_BUILTIN_SUFFIX (punpckhwd, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
11987 LOONGSON_BUILTIN_SUFFIX (punpcklbh, u, MIPS_UV8QI_FTYPE_UV8QI_UV8QI),
11988 LOONGSON_BUILTIN_SUFFIX (punpcklhw, u, MIPS_UV4HI_FTYPE_UV4HI_UV4HI),
11989 LOONGSON_BUILTIN_SUFFIX (punpcklwd, u, MIPS_UV2SI_FTYPE_UV2SI_UV2SI),
11990 LOONGSON_BUILTIN_SUFFIX (punpcklbh, s, MIPS_V8QI_FTYPE_V8QI_V8QI),
11991 LOONGSON_BUILTIN_SUFFIX (punpcklhw, s, MIPS_V4HI_FTYPE_V4HI_V4HI),
11992 LOONGSON_BUILTIN_SUFFIX (punpcklwd, s, MIPS_V2SI_FTYPE_V2SI_V2SI),
11994 /* Sundry other built-in functions. */
11995 DIRECT_NO_TARGET_BUILTIN (cache, MIPS_VOID_FTYPE_SI_CVPOINTER, cache)
11998 /* MODE is a vector mode whose elements have type TYPE. Return the type
11999 of the vector itself. */
12001 static tree
12002 mips_builtin_vector_type (tree type, enum machine_mode mode)
12004 static tree types[2 * (int) MAX_MACHINE_MODE];
12005 int mode_index;
12007 mode_index = (int) mode;
12009 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type))
12010 mode_index += MAX_MACHINE_MODE;
12012 if (types[mode_index] == NULL_TREE)
12013 types[mode_index] = build_vector_type_for_mode (type, mode);
12014 return types[mode_index];
12017 /* Return a type for 'const volatile void *'. */
12019 static tree
12020 mips_build_cvpointer_type (void)
12022 static tree cache;
12024 if (cache == NULL_TREE)
12025 cache = build_pointer_type (build_qualified_type
12026 (void_type_node,
12027 TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE));
12028 return cache;
12031 /* Source-level argument types. */
12032 #define MIPS_ATYPE_VOID void_type_node
12033 #define MIPS_ATYPE_INT integer_type_node
12034 #define MIPS_ATYPE_POINTER ptr_type_node
12035 #define MIPS_ATYPE_CVPOINTER mips_build_cvpointer_type ()
12037 /* Standard mode-based argument types. */
12038 #define MIPS_ATYPE_UQI unsigned_intQI_type_node
12039 #define MIPS_ATYPE_SI intSI_type_node
12040 #define MIPS_ATYPE_USI unsigned_intSI_type_node
12041 #define MIPS_ATYPE_DI intDI_type_node
12042 #define MIPS_ATYPE_UDI unsigned_intDI_type_node
12043 #define MIPS_ATYPE_SF float_type_node
12044 #define MIPS_ATYPE_DF double_type_node
12046 /* Vector argument types. */
12047 #define MIPS_ATYPE_V2SF mips_builtin_vector_type (float_type_node, V2SFmode)
12048 #define MIPS_ATYPE_V2HI mips_builtin_vector_type (intHI_type_node, V2HImode)
12049 #define MIPS_ATYPE_V2SI mips_builtin_vector_type (intSI_type_node, V2SImode)
12050 #define MIPS_ATYPE_V4QI mips_builtin_vector_type (intQI_type_node, V4QImode)
12051 #define MIPS_ATYPE_V4HI mips_builtin_vector_type (intHI_type_node, V4HImode)
12052 #define MIPS_ATYPE_V8QI mips_builtin_vector_type (intQI_type_node, V8QImode)
12053 #define MIPS_ATYPE_UV2SI \
12054 mips_builtin_vector_type (unsigned_intSI_type_node, V2SImode)
12055 #define MIPS_ATYPE_UV4HI \
12056 mips_builtin_vector_type (unsigned_intHI_type_node, V4HImode)
12057 #define MIPS_ATYPE_UV8QI \
12058 mips_builtin_vector_type (unsigned_intQI_type_node, V8QImode)
12060 /* MIPS_FTYPE_ATYPESN takes N MIPS_FTYPES-like type codes and lists
12061 their associated MIPS_ATYPEs. */
12062 #define MIPS_FTYPE_ATYPES1(A, B) \
12063 MIPS_ATYPE_##A, MIPS_ATYPE_##B
12065 #define MIPS_FTYPE_ATYPES2(A, B, C) \
12066 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C
12068 #define MIPS_FTYPE_ATYPES3(A, B, C, D) \
12069 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D
12071 #define MIPS_FTYPE_ATYPES4(A, B, C, D, E) \
12072 MIPS_ATYPE_##A, MIPS_ATYPE_##B, MIPS_ATYPE_##C, MIPS_ATYPE_##D, \
12073 MIPS_ATYPE_##E
12075 /* Return the function type associated with function prototype TYPE. */
12077 static tree
12078 mips_build_function_type (enum mips_function_type type)
12080 static tree types[(int) MIPS_MAX_FTYPE_MAX];
12082 if (types[(int) type] == NULL_TREE)
12083 switch (type)
12085 #define DEF_MIPS_FTYPE(NUM, ARGS) \
12086 case MIPS_FTYPE_NAME##NUM ARGS: \
12087 types[(int) type] \
12088 = build_function_type_list (MIPS_FTYPE_ATYPES##NUM ARGS, \
12089 NULL_TREE); \
12090 break;
12091 #include "config/mips/mips-ftypes.def"
12092 #undef DEF_MIPS_FTYPE
12093 default:
12094 gcc_unreachable ();
12097 return types[(int) type];
12100 /* Implement TARGET_INIT_BUILTINS. */
12102 static void
12103 mips_init_builtins (void)
12105 const struct mips_builtin_description *d;
12106 unsigned int i;
12108 /* Iterate through all of the bdesc arrays, initializing all of the
12109 builtin functions. */
12110 for (i = 0; i < ARRAY_SIZE (mips_builtins); i++)
12112 d = &mips_builtins[i];
12113 if (d->avail ())
12114 add_builtin_function (d->name,
12115 mips_build_function_type (d->function_type),
12116 i, BUILT_IN_MD, NULL, NULL);
12120 /* Take argument ARGNO from EXP's argument list and convert it into a
12121 form suitable for input operand OPNO of instruction ICODE. Return the
12122 value. */
12124 static rtx
12125 mips_prepare_builtin_arg (enum insn_code icode,
12126 unsigned int opno, tree exp, unsigned int argno)
12128 tree arg;
12129 rtx value;
12130 enum machine_mode mode;
12132 arg = CALL_EXPR_ARG (exp, argno);
12133 value = expand_normal (arg);
12134 mode = insn_data[icode].operand[opno].mode;
12135 if (!insn_data[icode].operand[opno].predicate (value, mode))
12137 /* We need to get the mode from ARG for two reasons:
12139 - to cope with address operands, where MODE is the mode of the
12140 memory, rather than of VALUE itself.
12142 - to cope with special predicates like pmode_register_operand,
12143 where MODE is VOIDmode. */
12144 value = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (arg)), value);
12146 /* Check the predicate again. */
12147 if (!insn_data[icode].operand[opno].predicate (value, mode))
12149 error ("invalid argument to built-in function");
12150 return const0_rtx;
12154 return value;
12157 /* Return an rtx suitable for output operand OP of instruction ICODE.
12158 If TARGET is non-null, try to use it where possible. */
12160 static rtx
12161 mips_prepare_builtin_target (enum insn_code icode, unsigned int op, rtx target)
12163 enum machine_mode mode;
12165 mode = insn_data[icode].operand[op].mode;
12166 if (target == 0 || !insn_data[icode].operand[op].predicate (target, mode))
12167 target = gen_reg_rtx (mode);
12169 return target;
12172 /* Expand a MIPS_BUILTIN_DIRECT or MIPS_BUILTIN_DIRECT_NO_TARGET function;
12173 HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function
12174 and ICODE is the code of the associated .md pattern. TARGET, if nonnull,
12175 suggests a good place to put the result. */
12177 static rtx
12178 mips_expand_builtin_direct (enum insn_code icode, rtx target, tree exp,
12179 bool has_target_p)
12181 rtx ops[MAX_RECOG_OPERANDS];
12182 int opno, argno;
12184 /* Map any target to operand 0. */
12185 opno = 0;
12186 if (has_target_p)
12188 target = mips_prepare_builtin_target (icode, opno, target);
12189 ops[opno] = target;
12190 opno++;
12193 /* Map the arguments to the other operands. The n_operands value
12194 for an expander includes match_dups and match_scratches as well as
12195 match_operands, so n_operands is only an upper bound on the number
12196 of arguments to the expander function. */
12197 gcc_assert (opno + call_expr_nargs (exp) <= insn_data[icode].n_operands);
12198 for (argno = 0; argno < call_expr_nargs (exp); argno++, opno++)
12199 ops[opno] = mips_prepare_builtin_arg (icode, opno, exp, argno);
12201 switch (opno)
12203 case 2:
12204 emit_insn (GEN_FCN (icode) (ops[0], ops[1]));
12205 break;
12207 case 3:
12208 emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2]));
12209 break;
12211 case 4:
12212 emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]));
12213 break;
12215 default:
12216 gcc_unreachable ();
12218 return target;
12221 /* Expand a __builtin_mips_movt_*_ps or __builtin_mips_movf_*_ps
12222 function; TYPE says which. EXP is the CALL_EXPR that calls the
12223 function, ICODE is the instruction that should be used to compare
12224 the first two arguments, and COND is the condition it should test.
12225 TARGET, if nonnull, suggests a good place to put the result. */
12227 static rtx
12228 mips_expand_builtin_movtf (enum mips_builtin_type type,
12229 enum insn_code icode, enum mips_fp_condition cond,
12230 rtx target, tree exp)
12232 rtx cmp_result, op0, op1;
12234 cmp_result = mips_prepare_builtin_target (icode, 0, 0);
12235 op0 = mips_prepare_builtin_arg (icode, 1, exp, 0);
12236 op1 = mips_prepare_builtin_arg (icode, 2, exp, 1);
12237 emit_insn (GEN_FCN (icode) (cmp_result, op0, op1, GEN_INT (cond)));
12239 icode = CODE_FOR_mips_cond_move_tf_ps;
12240 target = mips_prepare_builtin_target (icode, 0, target);
12241 if (type == MIPS_BUILTIN_MOVT)
12243 op1 = mips_prepare_builtin_arg (icode, 2, exp, 2);
12244 op0 = mips_prepare_builtin_arg (icode, 1, exp, 3);
12246 else
12248 op0 = mips_prepare_builtin_arg (icode, 1, exp, 2);
12249 op1 = mips_prepare_builtin_arg (icode, 2, exp, 3);
12251 emit_insn (gen_mips_cond_move_tf_ps (target, op0, op1, cmp_result));
12252 return target;
12255 /* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
12256 into TARGET otherwise. Return TARGET. */
12258 static rtx
12259 mips_builtin_branch_and_move (rtx condition, rtx target,
12260 rtx value_if_true, rtx value_if_false)
12262 rtx true_label, done_label;
12264 true_label = gen_label_rtx ();
12265 done_label = gen_label_rtx ();
12267 /* First assume that CONDITION is false. */
12268 mips_emit_move (target, value_if_false);
12270 /* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise. */
12271 emit_jump_insn (gen_condjump (condition, true_label));
12272 emit_jump_insn (gen_jump (done_label));
12273 emit_barrier ();
12275 /* Fix TARGET if CONDITION is true. */
12276 emit_label (true_label);
12277 mips_emit_move (target, value_if_true);
12279 emit_label (done_label);
12280 return target;
12283 /* Expand a comparison built-in function of type BUILTIN_TYPE. EXP is
12284 the CALL_EXPR that calls the function, ICODE is the code of the
12285 comparison instruction, and COND is the condition it should test.
12286 TARGET, if nonnull, suggests a good place to put the boolean result. */
12288 static rtx
12289 mips_expand_builtin_compare (enum mips_builtin_type builtin_type,
12290 enum insn_code icode, enum mips_fp_condition cond,
12291 rtx target, tree exp)
12293 rtx offset, condition, cmp_result, args[MAX_RECOG_OPERANDS];
12294 int argno;
12296 if (target == 0 || GET_MODE (target) != SImode)
12297 target = gen_reg_rtx (SImode);
12299 /* The instruction should have a target operand, an operand for each
12300 argument, and an operand for COND. */
12301 gcc_assert (call_expr_nargs (exp) + 2 == insn_data[icode].n_operands);
12303 /* Prepare the operands to the comparison. */
12304 cmp_result = mips_prepare_builtin_target (icode, 0, 0);
12305 for (argno = 0; argno < call_expr_nargs (exp); argno++)
12306 args[argno] = mips_prepare_builtin_arg (icode, argno + 1, exp, argno);
12308 switch (insn_data[icode].n_operands)
12310 case 4:
12311 emit_insn (GEN_FCN (icode) (cmp_result, args[0], args[1],
12312 GEN_INT (cond)));
12313 break;
12315 case 6:
12316 emit_insn (GEN_FCN (icode) (cmp_result, args[0], args[1],
12317 args[2], args[3], GEN_INT (cond)));
12318 break;
12320 default:
12321 gcc_unreachable ();
12324 /* If the comparison sets more than one register, we define the result
12325 to be 0 if all registers are false and -1 if all registers are true.
12326 The value of the complete result is indeterminate otherwise. */
12327 switch (builtin_type)
12329 case MIPS_BUILTIN_CMP_ALL:
12330 condition = gen_rtx_NE (VOIDmode, cmp_result, constm1_rtx);
12331 return mips_builtin_branch_and_move (condition, target,
12332 const0_rtx, const1_rtx);
12334 case MIPS_BUILTIN_CMP_UPPER:
12335 case MIPS_BUILTIN_CMP_LOWER:
12336 offset = GEN_INT (builtin_type == MIPS_BUILTIN_CMP_UPPER);
12337 condition = gen_single_cc (cmp_result, offset);
12338 return mips_builtin_branch_and_move (condition, target,
12339 const1_rtx, const0_rtx);
12341 default:
12342 condition = gen_rtx_NE (VOIDmode, cmp_result, const0_rtx);
12343 return mips_builtin_branch_and_move (condition, target,
12344 const1_rtx, const0_rtx);
12348 /* Expand a bposge built-in function of type BUILTIN_TYPE. TARGET,
12349 if nonnull, suggests a good place to put the boolean result. */
12351 static rtx
12352 mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target)
12354 rtx condition, cmp_result;
12355 int cmp_value;
12357 if (target == 0 || GET_MODE (target) != SImode)
12358 target = gen_reg_rtx (SImode);
12360 cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM);
12362 if (builtin_type == MIPS_BUILTIN_BPOSGE32)
12363 cmp_value = 32;
12364 else
12365 gcc_assert (0);
12367 condition = gen_rtx_GE (VOIDmode, cmp_result, GEN_INT (cmp_value));
12368 return mips_builtin_branch_and_move (condition, target,
12369 const1_rtx, const0_rtx);
12372 /* Implement TARGET_EXPAND_BUILTIN. */
12374 static rtx
12375 mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
12376 enum machine_mode mode, int ignore)
12378 tree fndecl;
12379 unsigned int fcode, avail;
12380 const struct mips_builtin_description *d;
12382 fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
12383 fcode = DECL_FUNCTION_CODE (fndecl);
12384 gcc_assert (fcode < ARRAY_SIZE (mips_builtins));
12385 d = &mips_builtins[fcode];
12386 avail = d->avail ();
12387 gcc_assert (avail != 0);
12388 if (TARGET_MIPS16)
12390 error ("built-in function %qE not supported for MIPS16",
12391 DECL_NAME (fndecl));
12392 return ignore ? const0_rtx : CONST0_RTX (mode);
12394 switch (d->builtin_type)
12396 case MIPS_BUILTIN_DIRECT:
12397 return mips_expand_builtin_direct (d->icode, target, exp, true);
12399 case MIPS_BUILTIN_DIRECT_NO_TARGET:
12400 return mips_expand_builtin_direct (d->icode, target, exp, false);
12402 case MIPS_BUILTIN_MOVT:
12403 case MIPS_BUILTIN_MOVF:
12404 return mips_expand_builtin_movtf (d->builtin_type, d->icode,
12405 d->cond, target, exp);
12407 case MIPS_BUILTIN_CMP_ANY:
12408 case MIPS_BUILTIN_CMP_ALL:
12409 case MIPS_BUILTIN_CMP_UPPER:
12410 case MIPS_BUILTIN_CMP_LOWER:
12411 case MIPS_BUILTIN_CMP_SINGLE:
12412 return mips_expand_builtin_compare (d->builtin_type, d->icode,
12413 d->cond, target, exp);
12415 case MIPS_BUILTIN_BPOSGE32:
12416 return mips_expand_builtin_bposge (d->builtin_type, target);
12418 gcc_unreachable ();
12421 /* An entry in the MIPS16 constant pool. VALUE is the pool constant,
12422 MODE is its mode, and LABEL is the CODE_LABEL associated with it. */
12423 struct mips16_constant {
12424 struct mips16_constant *next;
12425 rtx value;
12426 rtx label;
12427 enum machine_mode mode;
12430 /* Information about an incomplete MIPS16 constant pool. FIRST is the
12431 first constant, HIGHEST_ADDRESS is the highest address that the first
12432 byte of the pool can have, and INSN_ADDRESS is the current instruction
12433 address. */
12434 struct mips16_constant_pool {
12435 struct mips16_constant *first;
12436 int highest_address;
12437 int insn_address;
12440 /* Add constant VALUE to POOL and return its label. MODE is the
12441 value's mode (used for CONST_INTs, etc.). */
12443 static rtx
12444 mips16_add_constant (struct mips16_constant_pool *pool,
12445 rtx value, enum machine_mode mode)
12447 struct mips16_constant **p, *c;
12448 bool first_of_size_p;
12450 /* See whether the constant is already in the pool. If so, return the
12451 existing label, otherwise leave P pointing to the place where the
12452 constant should be added.
12454 Keep the pool sorted in increasing order of mode size so that we can
12455 reduce the number of alignments needed. */
12456 first_of_size_p = true;
12457 for (p = &pool->first; *p != 0; p = &(*p)->next)
12459 if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value))
12460 return (*p)->label;
12461 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode))
12462 break;
12463 if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode))
12464 first_of_size_p = false;
12467 /* In the worst case, the constant needed by the earliest instruction
12468 will end up at the end of the pool. The entire pool must then be
12469 accessible from that instruction.
12471 When adding the first constant, set the pool's highest address to
12472 the address of the first out-of-range byte. Adjust this address
12473 downwards each time a new constant is added. */
12474 if (pool->first == 0)
12475 /* For LWPC, ADDIUPC and DADDIUPC, the base PC value is the address
12476 of the instruction with the lowest two bits clear. The base PC
12477 value for LDPC has the lowest three bits clear. Assume the worst
12478 case here; namely that the PC-relative instruction occupies the
12479 last 2 bytes in an aligned word. */
12480 pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000;
12481 pool->highest_address -= GET_MODE_SIZE (mode);
12482 if (first_of_size_p)
12483 /* Take into account the worst possible padding due to alignment. */
12484 pool->highest_address -= GET_MODE_SIZE (mode) - 1;
12486 /* Create a new entry. */
12487 c = XNEW (struct mips16_constant);
12488 c->value = value;
12489 c->mode = mode;
12490 c->label = gen_label_rtx ();
12491 c->next = *p;
12492 *p = c;
12494 return c->label;
12497 /* Output constant VALUE after instruction INSN and return the last
12498 instruction emitted. MODE is the mode of the constant. */
12500 static rtx
12501 mips16_emit_constants_1 (enum machine_mode mode, rtx value, rtx insn)
12503 if (SCALAR_INT_MODE_P (mode) || ALL_SCALAR_FIXED_POINT_MODE_P (mode))
12505 rtx size = GEN_INT (GET_MODE_SIZE (mode));
12506 return emit_insn_after (gen_consttable_int (value, size), insn);
12509 if (SCALAR_FLOAT_MODE_P (mode))
12510 return emit_insn_after (gen_consttable_float (value), insn);
12512 if (VECTOR_MODE_P (mode))
12514 int i;
12516 for (i = 0; i < CONST_VECTOR_NUNITS (value); i++)
12517 insn = mips16_emit_constants_1 (GET_MODE_INNER (mode),
12518 CONST_VECTOR_ELT (value, i), insn);
12519 return insn;
12522 gcc_unreachable ();
12525 /* Dump out the constants in CONSTANTS after INSN. */
12527 static void
12528 mips16_emit_constants (struct mips16_constant *constants, rtx insn)
12530 struct mips16_constant *c, *next;
12531 int align;
12533 align = 0;
12534 for (c = constants; c != NULL; c = next)
12536 /* If necessary, increase the alignment of PC. */
12537 if (align < GET_MODE_SIZE (c->mode))
12539 int align_log = floor_log2 (GET_MODE_SIZE (c->mode));
12540 insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn);
12542 align = GET_MODE_SIZE (c->mode);
12544 insn = emit_label_after (c->label, insn);
12545 insn = mips16_emit_constants_1 (c->mode, c->value, insn);
12547 next = c->next;
12548 free (c);
12551 emit_barrier_after (insn);
12554 /* Return the length of instruction INSN. */
12556 static int
12557 mips16_insn_length (rtx insn)
12559 if (JUMP_P (insn))
12561 rtx body = PATTERN (insn);
12562 if (GET_CODE (body) == ADDR_VEC)
12563 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0);
12564 if (GET_CODE (body) == ADDR_DIFF_VEC)
12565 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1);
12567 return get_attr_length (insn);
12570 /* If *X is a symbolic constant that refers to the constant pool, add
12571 the constant to POOL and rewrite *X to use the constant's label. */
12573 static void
12574 mips16_rewrite_pool_constant (struct mips16_constant_pool *pool, rtx *x)
12576 rtx base, offset, label;
12578 split_const (*x, &base, &offset);
12579 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
12581 label = mips16_add_constant (pool, get_pool_constant (base),
12582 get_pool_mode (base));
12583 base = gen_rtx_LABEL_REF (Pmode, label);
12584 *x = mips_unspec_address_offset (base, offset, SYMBOL_PC_RELATIVE);
12588 /* This structure is used to communicate with mips16_rewrite_pool_refs.
12589 INSN is the instruction we're rewriting and POOL points to the current
12590 constant pool. */
12591 struct mips16_rewrite_pool_refs_info {
12592 rtx insn;
12593 struct mips16_constant_pool *pool;
12596 /* Rewrite *X so that constant pool references refer to the constant's
12597 label instead. DATA points to a mips16_rewrite_pool_refs_info
12598 structure. */
12600 static int
12601 mips16_rewrite_pool_refs (rtx *x, void *data)
12603 struct mips16_rewrite_pool_refs_info *info =
12604 (struct mips16_rewrite_pool_refs_info *) data;
12606 if (force_to_mem_operand (*x, Pmode))
12608 rtx mem = force_const_mem (GET_MODE (*x), *x);
12609 validate_change (info->insn, x, mem, false);
12612 if (MEM_P (*x))
12614 mips16_rewrite_pool_constant (info->pool, &XEXP (*x, 0));
12615 return -1;
12618 if (TARGET_MIPS16_TEXT_LOADS)
12619 mips16_rewrite_pool_constant (info->pool, x);
12621 return GET_CODE (*x) == CONST ? -1 : 0;
12624 /* Build MIPS16 constant pools. */
12626 static void
12627 mips16_lay_out_constants (void)
12629 struct mips16_constant_pool pool;
12630 struct mips16_rewrite_pool_refs_info info;
12631 rtx insn, barrier;
12633 if (!TARGET_MIPS16_PCREL_LOADS)
12634 return;
12636 split_all_insns_noflow ();
12637 barrier = 0;
12638 memset (&pool, 0, sizeof (pool));
12639 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
12641 /* Rewrite constant pool references in INSN. */
12642 if (INSN_P (insn))
12644 info.insn = insn;
12645 info.pool = &pool;
12646 for_each_rtx (&PATTERN (insn), mips16_rewrite_pool_refs, &info);
12649 pool.insn_address += mips16_insn_length (insn);
12651 if (pool.first != NULL)
12653 /* If there are no natural barriers between the first user of
12654 the pool and the highest acceptable address, we'll need to
12655 create a new instruction to jump around the constant pool.
12656 In the worst case, this instruction will be 4 bytes long.
12658 If it's too late to do this transformation after INSN,
12659 do it immediately before INSN. */
12660 if (barrier == 0 && pool.insn_address + 4 > pool.highest_address)
12662 rtx label, jump;
12664 label = gen_label_rtx ();
12666 jump = emit_jump_insn_before (gen_jump (label), insn);
12667 JUMP_LABEL (jump) = label;
12668 LABEL_NUSES (label) = 1;
12669 barrier = emit_barrier_after (jump);
12671 emit_label_after (label, barrier);
12672 pool.insn_address += 4;
12675 /* See whether the constant pool is now out of range of the first
12676 user. If so, output the constants after the previous barrier.
12677 Note that any instructions between BARRIER and INSN (inclusive)
12678 will use negative offsets to refer to the pool. */
12679 if (pool.insn_address > pool.highest_address)
12681 mips16_emit_constants (pool.first, barrier);
12682 pool.first = NULL;
12683 barrier = 0;
12685 else if (BARRIER_P (insn))
12686 barrier = insn;
12689 mips16_emit_constants (pool.first, get_last_insn ());
12692 /* Return true if it is worth r10k_simplify_address's while replacing
12693 an address with X. We are looking for constants, and for addresses
12694 at a known offset from the incoming stack pointer. */
12696 static bool
12697 r10k_simplified_address_p (rtx x)
12699 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
12700 x = XEXP (x, 0);
12701 return x == virtual_incoming_args_rtx || CONSTANT_P (x);
12704 /* X is an expression that appears in INSN. Try to use the UD chains
12705 to simplify it, returning the simplified form on success and the
12706 original form otherwise. Replace the incoming value of $sp with
12707 virtual_incoming_args_rtx (which should never occur in X otherwise). */
12709 static rtx
12710 r10k_simplify_address (rtx x, rtx insn)
12712 rtx newx, op0, op1, set, def_insn, note;
12713 df_ref use, def;
12714 struct df_link *defs;
12716 newx = NULL_RTX;
12717 if (UNARY_P (x))
12719 op0 = r10k_simplify_address (XEXP (x, 0), insn);
12720 if (op0 != XEXP (x, 0))
12721 newx = simplify_gen_unary (GET_CODE (x), GET_MODE (x),
12722 op0, GET_MODE (XEXP (x, 0)));
12724 else if (BINARY_P (x))
12726 op0 = r10k_simplify_address (XEXP (x, 0), insn);
12727 op1 = r10k_simplify_address (XEXP (x, 1), insn);
12728 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
12729 newx = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
12731 else if (GET_CODE (x) == LO_SUM)
12733 /* LO_SUMs can be offset from HIGHs, if we know they won't
12734 overflow. See mips_classify_address for the rationale behind
12735 the lax check. */
12736 op0 = r10k_simplify_address (XEXP (x, 0), insn);
12737 if (GET_CODE (op0) == HIGH)
12738 newx = XEXP (x, 1);
12740 else if (REG_P (x))
12742 /* Uses are recorded by regno_reg_rtx, not X itself. */
12743 use = df_find_use (insn, regno_reg_rtx[REGNO (x)]);
12744 gcc_assert (use);
12745 defs = DF_REF_CHAIN (use);
12747 /* Require a single definition. */
12748 if (defs && defs->next == NULL)
12750 def = defs->ref;
12751 if (DF_REF_IS_ARTIFICIAL (def))
12753 /* Replace the incoming value of $sp with
12754 virtual_incoming_args_rtx. */
12755 if (x == stack_pointer_rtx
12756 && DF_REF_BB (def) == ENTRY_BLOCK_PTR)
12757 newx = virtual_incoming_args_rtx;
12759 else if (dominated_by_p (CDI_DOMINATORS, DF_REF_BB (use),
12760 DF_REF_BB (def)))
12762 /* Make sure that DEF_INSN is a single set of REG. */
12763 def_insn = DF_REF_INSN (def);
12764 if (NONJUMP_INSN_P (def_insn))
12766 set = single_set (def_insn);
12767 if (set && rtx_equal_p (SET_DEST (set), x))
12769 /* Prefer to use notes, since the def-use chains
12770 are often shorter. */
12771 note = find_reg_equal_equiv_note (def_insn);
12772 if (note)
12773 newx = XEXP (note, 0);
12774 else
12775 newx = SET_SRC (set);
12776 newx = r10k_simplify_address (newx, def_insn);
12782 if (newx && r10k_simplified_address_p (newx))
12783 return newx;
12784 return x;
12787 /* Return true if ADDRESS is known to be an uncached address
12788 on R10K systems. */
12790 static bool
12791 r10k_uncached_address_p (unsigned HOST_WIDE_INT address)
12793 unsigned HOST_WIDE_INT upper;
12795 /* Check for KSEG1. */
12796 if (address + 0x60000000 < 0x20000000)
12797 return true;
12799 /* Check for uncached XKPHYS addresses. */
12800 if (Pmode == DImode)
12802 upper = (address >> 40) & 0xf9ffff;
12803 if (upper == 0x900000 || upper == 0xb80000)
12804 return true;
12806 return false;
12809 /* Return true if we can prove that an access to address X in instruction
12810 INSN would be safe from R10K speculation. This X is a general
12811 expression; it might not be a legitimate address. */
12813 static bool
12814 r10k_safe_address_p (rtx x, rtx insn)
12816 rtx base, offset;
12817 HOST_WIDE_INT offset_val;
12819 x = r10k_simplify_address (x, insn);
12821 /* Check for references to the stack frame. It doesn't really matter
12822 how much of the frame has been allocated at INSN; -mr10k-cache-barrier
12823 allows us to assume that accesses to any part of the eventual frame
12824 is safe from speculation at any point in the function. */
12825 mips_split_plus (x, &base, &offset_val);
12826 if (base == virtual_incoming_args_rtx
12827 && offset_val >= -cfun->machine->frame.total_size
12828 && offset_val < cfun->machine->frame.args_size)
12829 return true;
12831 /* Check for uncached addresses. */
12832 if (CONST_INT_P (x))
12833 return r10k_uncached_address_p (INTVAL (x));
12835 /* Check for accesses to a static object. */
12836 split_const (x, &base, &offset);
12837 return offset_within_block_p (base, INTVAL (offset));
12840 /* Return true if a MEM with MEM_EXPR EXPR and MEM_OFFSET OFFSET is
12841 an in-range access to an automatic variable, or to an object with
12842 a link-time-constant address. */
12844 static bool
12845 r10k_safe_mem_expr_p (tree expr, rtx offset)
12847 if (expr == NULL_TREE
12848 || offset == NULL_RTX
12849 || !CONST_INT_P (offset)
12850 || INTVAL (offset) < 0
12851 || INTVAL (offset) >= int_size_in_bytes (TREE_TYPE (expr)))
12852 return false;
12854 while (TREE_CODE (expr) == COMPONENT_REF)
12856 expr = TREE_OPERAND (expr, 0);
12857 if (expr == NULL_TREE)
12858 return false;
12861 return DECL_P (expr);
12864 /* A for_each_rtx callback for which DATA points to the instruction
12865 containing *X. Stop the search if we find a MEM that is not safe
12866 from R10K speculation. */
12868 static int
12869 r10k_needs_protection_p_1 (rtx *loc, void *data)
12871 rtx mem;
12873 mem = *loc;
12874 if (!MEM_P (mem))
12875 return 0;
12877 if (r10k_safe_mem_expr_p (MEM_EXPR (mem), MEM_OFFSET (mem)))
12878 return -1;
12880 if (r10k_safe_address_p (XEXP (mem, 0), (rtx) data))
12881 return -1;
12883 return 1;
12886 /* A note_stores callback for which DATA points to an instruction pointer.
12887 If *DATA is nonnull, make it null if it X contains a MEM that is not
12888 safe from R10K speculation. */
12890 static void
12891 r10k_needs_protection_p_store (rtx x, const_rtx pat ATTRIBUTE_UNUSED,
12892 void *data)
12894 rtx *insn_ptr;
12896 insn_ptr = (rtx *) data;
12897 if (*insn_ptr && for_each_rtx (&x, r10k_needs_protection_p_1, *insn_ptr))
12898 *insn_ptr = NULL_RTX;
12901 /* A for_each_rtx callback that iterates over the pattern of a CALL_INSN.
12902 Return nonzero if the call is not to a declared function. */
12904 static int
12905 r10k_needs_protection_p_call (rtx *loc, void *data ATTRIBUTE_UNUSED)
12907 rtx x;
12909 x = *loc;
12910 if (!MEM_P (x))
12911 return 0;
12913 x = XEXP (x, 0);
12914 if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_DECL (x))
12915 return -1;
12917 return 1;
12920 /* Return true if instruction INSN needs to be protected by an R10K
12921 cache barrier. */
12923 static bool
12924 r10k_needs_protection_p (rtx insn)
12926 if (CALL_P (insn))
12927 return for_each_rtx (&PATTERN (insn), r10k_needs_protection_p_call, NULL);
12929 if (mips_r10k_cache_barrier == R10K_CACHE_BARRIER_STORE)
12931 note_stores (PATTERN (insn), r10k_needs_protection_p_store, &insn);
12932 return insn == NULL_RTX;
12935 return for_each_rtx (&PATTERN (insn), r10k_needs_protection_p_1, insn);
12938 /* Return true if BB is only reached by blocks in PROTECTED_BBS and if every
12939 edge is unconditional. */
12941 static bool
12942 r10k_protected_bb_p (basic_block bb, sbitmap protected_bbs)
12944 edge_iterator ei;
12945 edge e;
12947 FOR_EACH_EDGE (e, ei, bb->preds)
12948 if (!single_succ_p (e->src)
12949 || !TEST_BIT (protected_bbs, e->src->index)
12950 || (e->flags & EDGE_COMPLEX) != 0)
12951 return false;
12952 return true;
12955 /* Implement -mr10k-cache-barrier= for the current function. */
12957 static void
12958 r10k_insert_cache_barriers (void)
12960 int *rev_post_order;
12961 unsigned int i, n;
12962 basic_block bb;
12963 sbitmap protected_bbs;
12964 rtx insn, end, unprotected_region;
12966 if (TARGET_MIPS16)
12968 sorry ("%qs does not support MIPS16 code", "-mr10k-cache-barrier");
12969 return;
12972 /* Restore the BLOCK_FOR_INSN pointers, which are needed by DF. */
12973 compute_bb_for_insn ();
12975 /* Create def-use chains. */
12976 df_set_flags (DF_EQ_NOTES);
12977 df_chain_add_problem (DF_UD_CHAIN);
12978 df_analyze ();
12980 /* Calculate dominators. */
12981 calculate_dominance_info (CDI_DOMINATORS);
12983 /* Bit X of PROTECTED_BBS is set if the last operation in basic block
12984 X is protected by a cache barrier. */
12985 protected_bbs = sbitmap_alloc (last_basic_block);
12986 sbitmap_zero (protected_bbs);
12988 /* Iterate over the basic blocks in reverse post-order. */
12989 rev_post_order = XNEWVEC (int, last_basic_block);
12990 n = pre_and_rev_post_order_compute (NULL, rev_post_order, false);
12991 for (i = 0; i < n; i++)
12993 bb = BASIC_BLOCK (rev_post_order[i]);
12995 /* If this block is only reached by unconditional edges, and if the
12996 source of every edge is protected, the beginning of the block is
12997 also protected. */
12998 if (r10k_protected_bb_p (bb, protected_bbs))
12999 unprotected_region = NULL_RTX;
13000 else
13001 unprotected_region = pc_rtx;
13002 end = NEXT_INSN (BB_END (bb));
13004 /* UNPROTECTED_REGION is:
13006 - null if we are processing a protected region,
13007 - pc_rtx if we are processing an unprotected region but have
13008 not yet found the first instruction in it
13009 - the first instruction in an unprotected region otherwise. */
13010 for (insn = BB_HEAD (bb); insn != end; insn = NEXT_INSN (insn))
13012 if (unprotected_region && INSN_P (insn))
13014 if (recog_memoized (insn) == CODE_FOR_mips_cache)
13015 /* This CACHE instruction protects the following code. */
13016 unprotected_region = NULL_RTX;
13017 else
13019 /* See if INSN is the first instruction in this
13020 unprotected region. */
13021 if (unprotected_region == pc_rtx)
13022 unprotected_region = insn;
13024 /* See if INSN needs to be protected. If so,
13025 we must insert a cache barrier somewhere between
13026 PREV_INSN (UNPROTECTED_REGION) and INSN. It isn't
13027 clear which position is better performance-wise,
13028 but as a tie-breaker, we assume that it is better
13029 to allow delay slots to be back-filled where
13030 possible, and that it is better not to insert
13031 barriers in the middle of already-scheduled code.
13032 We therefore insert the barrier at the beginning
13033 of the region. */
13034 if (r10k_needs_protection_p (insn))
13036 emit_insn_before (gen_r10k_cache_barrier (),
13037 unprotected_region);
13038 unprotected_region = NULL_RTX;
13043 if (CALL_P (insn))
13044 /* The called function is not required to protect the exit path.
13045 The code that follows a call is therefore unprotected. */
13046 unprotected_region = pc_rtx;
13049 /* Record whether the end of this block is protected. */
13050 if (unprotected_region == NULL_RTX)
13051 SET_BIT (protected_bbs, bb->index);
13053 XDELETEVEC (rev_post_order);
13055 sbitmap_free (protected_bbs);
13057 free_dominance_info (CDI_DOMINATORS);
13059 df_finish_pass (false);
13061 free_bb_for_insn ();
13064 /* A temporary variable used by for_each_rtx callbacks, etc. */
13065 static rtx mips_sim_insn;
13067 /* A structure representing the state of the processor pipeline.
13068 Used by the mips_sim_* family of functions. */
13069 struct mips_sim {
13070 /* The maximum number of instructions that can be issued in a cycle.
13071 (Caches mips_issue_rate.) */
13072 unsigned int issue_rate;
13074 /* The current simulation time. */
13075 unsigned int time;
13077 /* How many more instructions can be issued in the current cycle. */
13078 unsigned int insns_left;
13080 /* LAST_SET[X].INSN is the last instruction to set register X.
13081 LAST_SET[X].TIME is the time at which that instruction was issued.
13082 INSN is null if no instruction has yet set register X. */
13083 struct {
13084 rtx insn;
13085 unsigned int time;
13086 } last_set[FIRST_PSEUDO_REGISTER];
13088 /* The pipeline's current DFA state. */
13089 state_t dfa_state;
13092 /* Reset STATE to the initial simulation state. */
13094 static void
13095 mips_sim_reset (struct mips_sim *state)
13097 state->time = 0;
13098 state->insns_left = state->issue_rate;
13099 memset (&state->last_set, 0, sizeof (state->last_set));
13100 state_reset (state->dfa_state);
13103 /* Initialize STATE before its first use. DFA_STATE points to an
13104 allocated but uninitialized DFA state. */
13106 static void
13107 mips_sim_init (struct mips_sim *state, state_t dfa_state)
13109 state->issue_rate = mips_issue_rate ();
13110 state->dfa_state = dfa_state;
13111 mips_sim_reset (state);
13114 /* Advance STATE by one clock cycle. */
13116 static void
13117 mips_sim_next_cycle (struct mips_sim *state)
13119 state->time++;
13120 state->insns_left = state->issue_rate;
13121 state_transition (state->dfa_state, 0);
13124 /* Advance simulation state STATE until instruction INSN can read
13125 register REG. */
13127 static void
13128 mips_sim_wait_reg (struct mips_sim *state, rtx insn, rtx reg)
13130 unsigned int regno, end_regno;
13132 end_regno = END_REGNO (reg);
13133 for (regno = REGNO (reg); regno < end_regno; regno++)
13134 if (state->last_set[regno].insn != 0)
13136 unsigned int t;
13138 t = (state->last_set[regno].time
13139 + insn_latency (state->last_set[regno].insn, insn));
13140 while (state->time < t)
13141 mips_sim_next_cycle (state);
13145 /* A for_each_rtx callback. If *X is a register, advance simulation state
13146 DATA until mips_sim_insn can read the register's value. */
13148 static int
13149 mips_sim_wait_regs_2 (rtx *x, void *data)
13151 if (REG_P (*x))
13152 mips_sim_wait_reg ((struct mips_sim *) data, mips_sim_insn, *x);
13153 return 0;
13156 /* Call mips_sim_wait_regs_2 (R, DATA) for each register R mentioned in *X. */
13158 static void
13159 mips_sim_wait_regs_1 (rtx *x, void *data)
13161 for_each_rtx (x, mips_sim_wait_regs_2, data);
13164 /* Advance simulation state STATE until all of INSN's register
13165 dependencies are satisfied. */
13167 static void
13168 mips_sim_wait_regs (struct mips_sim *state, rtx insn)
13170 mips_sim_insn = insn;
13171 note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state);
13174 /* Advance simulation state STATE until the units required by
13175 instruction INSN are available. */
13177 static void
13178 mips_sim_wait_units (struct mips_sim *state, rtx insn)
13180 state_t tmp_state;
13182 tmp_state = alloca (state_size ());
13183 while (state->insns_left == 0
13184 || (memcpy (tmp_state, state->dfa_state, state_size ()),
13185 state_transition (tmp_state, insn) >= 0))
13186 mips_sim_next_cycle (state);
13189 /* Advance simulation state STATE until INSN is ready to issue. */
13191 static void
13192 mips_sim_wait_insn (struct mips_sim *state, rtx insn)
13194 mips_sim_wait_regs (state, insn);
13195 mips_sim_wait_units (state, insn);
13198 /* mips_sim_insn has just set X. Update the LAST_SET array
13199 in simulation state DATA. */
13201 static void
13202 mips_sim_record_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
13204 struct mips_sim *state;
13206 state = (struct mips_sim *) data;
13207 if (REG_P (x))
13209 unsigned int regno, end_regno;
13211 end_regno = END_REGNO (x);
13212 for (regno = REGNO (x); regno < end_regno; regno++)
13214 state->last_set[regno].insn = mips_sim_insn;
13215 state->last_set[regno].time = state->time;
13220 /* Issue instruction INSN in scheduler state STATE. Assume that INSN
13221 can issue immediately (i.e., that mips_sim_wait_insn has already
13222 been called). */
13224 static void
13225 mips_sim_issue_insn (struct mips_sim *state, rtx insn)
13227 state_transition (state->dfa_state, insn);
13228 state->insns_left--;
13230 mips_sim_insn = insn;
13231 note_stores (PATTERN (insn), mips_sim_record_set, state);
13234 /* Simulate issuing a NOP in state STATE. */
13236 static void
13237 mips_sim_issue_nop (struct mips_sim *state)
13239 if (state->insns_left == 0)
13240 mips_sim_next_cycle (state);
13241 state->insns_left--;
13244 /* Update simulation state STATE so that it's ready to accept the instruction
13245 after INSN. INSN should be part of the main rtl chain, not a member of a
13246 SEQUENCE. */
13248 static void
13249 mips_sim_finish_insn (struct mips_sim *state, rtx insn)
13251 /* If INSN is a jump with an implicit delay slot, simulate a nop. */
13252 if (JUMP_P (insn))
13253 mips_sim_issue_nop (state);
13255 switch (GET_CODE (SEQ_BEGIN (insn)))
13257 case CODE_LABEL:
13258 case CALL_INSN:
13259 /* We can't predict the processor state after a call or label. */
13260 mips_sim_reset (state);
13261 break;
13263 case JUMP_INSN:
13264 /* The delay slots of branch likely instructions are only executed
13265 when the branch is taken. Therefore, if the caller has simulated
13266 the delay slot instruction, STATE does not really reflect the state
13267 of the pipeline for the instruction after the delay slot. Also,
13268 branch likely instructions tend to incur a penalty when not taken,
13269 so there will probably be an extra delay between the branch and
13270 the instruction after the delay slot. */
13271 if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn)))
13272 mips_sim_reset (state);
13273 break;
13275 default:
13276 break;
13280 /* The VR4130 pipeline issues aligned pairs of instructions together,
13281 but it stalls the second instruction if it depends on the first.
13282 In order to cut down the amount of logic required, this dependence
13283 check is not based on a full instruction decode. Instead, any non-SPECIAL
13284 instruction is assumed to modify the register specified by bits 20-16
13285 (which is usually the "rt" field).
13287 In BEQ, BEQL, BNE and BNEL instructions, the rt field is actually an
13288 input, so we can end up with a false dependence between the branch
13289 and its delay slot. If this situation occurs in instruction INSN,
13290 try to avoid it by swapping rs and rt. */
13292 static void
13293 vr4130_avoid_branch_rt_conflict (rtx insn)
13295 rtx first, second;
13297 first = SEQ_BEGIN (insn);
13298 second = SEQ_END (insn);
13299 if (JUMP_P (first)
13300 && NONJUMP_INSN_P (second)
13301 && GET_CODE (PATTERN (first)) == SET
13302 && GET_CODE (SET_DEST (PATTERN (first))) == PC
13303 && GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE)
13305 /* Check for the right kind of condition. */
13306 rtx cond = XEXP (SET_SRC (PATTERN (first)), 0);
13307 if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
13308 && REG_P (XEXP (cond, 0))
13309 && REG_P (XEXP (cond, 1))
13310 && reg_referenced_p (XEXP (cond, 1), PATTERN (second))
13311 && !reg_referenced_p (XEXP (cond, 0), PATTERN (second)))
13313 /* SECOND mentions the rt register but not the rs register. */
13314 rtx tmp = XEXP (cond, 0);
13315 XEXP (cond, 0) = XEXP (cond, 1);
13316 XEXP (cond, 1) = tmp;
13321 /* Implement -mvr4130-align. Go through each basic block and simulate the
13322 processor pipeline. If we find that a pair of instructions could execute
13323 in parallel, and the first of those instructions is not 8-byte aligned,
13324 insert a nop to make it aligned. */
13326 static void
13327 vr4130_align_insns (void)
13329 struct mips_sim state;
13330 rtx insn, subinsn, last, last2, next;
13331 bool aligned_p;
13333 dfa_start ();
13335 /* LAST is the last instruction before INSN to have a nonzero length.
13336 LAST2 is the last such instruction before LAST. */
13337 last = 0;
13338 last2 = 0;
13340 /* ALIGNED_P is true if INSN is known to be at an aligned address. */
13341 aligned_p = true;
13343 mips_sim_init (&state, alloca (state_size ()));
13344 for (insn = get_insns (); insn != 0; insn = next)
13346 unsigned int length;
13348 next = NEXT_INSN (insn);
13350 /* See the comment above vr4130_avoid_branch_rt_conflict for details.
13351 This isn't really related to the alignment pass, but we do it on
13352 the fly to avoid a separate instruction walk. */
13353 vr4130_avoid_branch_rt_conflict (insn);
13355 if (USEFUL_INSN_P (insn))
13356 FOR_EACH_SUBINSN (subinsn, insn)
13358 mips_sim_wait_insn (&state, subinsn);
13360 /* If we want this instruction to issue in parallel with the
13361 previous one, make sure that the previous instruction is
13362 aligned. There are several reasons why this isn't worthwhile
13363 when the second instruction is a call:
13365 - Calls are less likely to be performance critical,
13366 - There's a good chance that the delay slot can execute
13367 in parallel with the call.
13368 - The return address would then be unaligned.
13370 In general, if we're going to insert a nop between instructions
13371 X and Y, it's better to insert it immediately after X. That
13372 way, if the nop makes Y aligned, it will also align any labels
13373 between X and Y. */
13374 if (state.insns_left != state.issue_rate
13375 && !CALL_P (subinsn))
13377 if (subinsn == SEQ_BEGIN (insn) && aligned_p)
13379 /* SUBINSN is the first instruction in INSN and INSN is
13380 aligned. We want to align the previous instruction
13381 instead, so insert a nop between LAST2 and LAST.
13383 Note that LAST could be either a single instruction
13384 or a branch with a delay slot. In the latter case,
13385 LAST, like INSN, is already aligned, but the delay
13386 slot must have some extra delay that stops it from
13387 issuing at the same time as the branch. We therefore
13388 insert a nop before the branch in order to align its
13389 delay slot. */
13390 emit_insn_after (gen_nop (), last2);
13391 aligned_p = false;
13393 else if (subinsn != SEQ_BEGIN (insn) && !aligned_p)
13395 /* SUBINSN is the delay slot of INSN, but INSN is
13396 currently unaligned. Insert a nop between
13397 LAST and INSN to align it. */
13398 emit_insn_after (gen_nop (), last);
13399 aligned_p = true;
13402 mips_sim_issue_insn (&state, subinsn);
13404 mips_sim_finish_insn (&state, insn);
13406 /* Update LAST, LAST2 and ALIGNED_P for the next instruction. */
13407 length = get_attr_length (insn);
13408 if (length > 0)
13410 /* If the instruction is an asm statement or multi-instruction
13411 mips.md patern, the length is only an estimate. Insert an
13412 8 byte alignment after it so that the following instructions
13413 can be handled correctly. */
13414 if (NONJUMP_INSN_P (SEQ_BEGIN (insn))
13415 && (recog_memoized (insn) < 0 || length >= 8))
13417 next = emit_insn_after (gen_align (GEN_INT (3)), insn);
13418 next = NEXT_INSN (next);
13419 mips_sim_next_cycle (&state);
13420 aligned_p = true;
13422 else if (length & 4)
13423 aligned_p = !aligned_p;
13424 last2 = last;
13425 last = insn;
13428 /* See whether INSN is an aligned label. */
13429 if (LABEL_P (insn) && label_to_alignment (insn) >= 3)
13430 aligned_p = true;
13432 dfa_finish ();
13435 /* This structure records that the current function has a LO_SUM
13436 involving SYMBOL_REF or LABEL_REF BASE and that MAX_OFFSET is
13437 the largest offset applied to BASE by all such LO_SUMs. */
13438 struct mips_lo_sum_offset {
13439 rtx base;
13440 HOST_WIDE_INT offset;
13443 /* Return a hash value for SYMBOL_REF or LABEL_REF BASE. */
13445 static hashval_t
13446 mips_hash_base (rtx base)
13448 int do_not_record_p;
13450 return hash_rtx (base, GET_MODE (base), &do_not_record_p, NULL, false);
13453 /* Hash-table callbacks for mips_lo_sum_offsets. */
13455 static hashval_t
13456 mips_lo_sum_offset_hash (const void *entry)
13458 return mips_hash_base (((const struct mips_lo_sum_offset *) entry)->base);
13461 static int
13462 mips_lo_sum_offset_eq (const void *entry, const void *value)
13464 return rtx_equal_p (((const struct mips_lo_sum_offset *) entry)->base,
13465 (const_rtx) value);
13468 /* Look up symbolic constant X in HTAB, which is a hash table of
13469 mips_lo_sum_offsets. If OPTION is NO_INSERT, return true if X can be
13470 paired with a recorded LO_SUM, otherwise record X in the table. */
13472 static bool
13473 mips_lo_sum_offset_lookup (htab_t htab, rtx x, enum insert_option option)
13475 rtx base, offset;
13476 void **slot;
13477 struct mips_lo_sum_offset *entry;
13479 /* Split X into a base and offset. */
13480 split_const (x, &base, &offset);
13481 if (UNSPEC_ADDRESS_P (base))
13482 base = UNSPEC_ADDRESS (base);
13484 /* Look up the base in the hash table. */
13485 slot = htab_find_slot_with_hash (htab, base, mips_hash_base (base), option);
13486 if (slot == NULL)
13487 return false;
13489 entry = (struct mips_lo_sum_offset *) *slot;
13490 if (option == INSERT)
13492 if (entry == NULL)
13494 entry = XNEW (struct mips_lo_sum_offset);
13495 entry->base = base;
13496 entry->offset = INTVAL (offset);
13497 *slot = entry;
13499 else
13501 if (INTVAL (offset) > entry->offset)
13502 entry->offset = INTVAL (offset);
13505 return INTVAL (offset) <= entry->offset;
13508 /* A for_each_rtx callback for which DATA is a mips_lo_sum_offset hash table.
13509 Record every LO_SUM in *LOC. */
13511 static int
13512 mips_record_lo_sum (rtx *loc, void *data)
13514 if (GET_CODE (*loc) == LO_SUM)
13515 mips_lo_sum_offset_lookup ((htab_t) data, XEXP (*loc, 1), INSERT);
13516 return 0;
13519 /* Return true if INSN is a SET of an orphaned high-part relocation.
13520 HTAB is a hash table of mips_lo_sum_offsets that describes all the
13521 LO_SUMs in the current function. */
13523 static bool
13524 mips_orphaned_high_part_p (htab_t htab, rtx insn)
13526 enum mips_symbol_type type;
13527 rtx x, set;
13529 set = single_set (insn);
13530 if (set)
13532 /* Check for %his. */
13533 x = SET_SRC (set);
13534 if (GET_CODE (x) == HIGH
13535 && absolute_symbolic_operand (XEXP (x, 0), VOIDmode))
13536 return !mips_lo_sum_offset_lookup (htab, XEXP (x, 0), NO_INSERT);
13538 /* Check for local %gots (and %got_pages, which is redundant but OK). */
13539 if (GET_CODE (x) == UNSPEC
13540 && XINT (x, 1) == UNSPEC_LOAD_GOT
13541 && mips_symbolic_constant_p (XVECEXP (x, 0, 1),
13542 SYMBOL_CONTEXT_LEA, &type)
13543 && type == SYMBOL_GOTOFF_PAGE)
13544 return !mips_lo_sum_offset_lookup (htab, XVECEXP (x, 0, 1), NO_INSERT);
13546 return false;
13549 /* Subroutine of mips_reorg_process_insns. If there is a hazard between
13550 INSN and a previous instruction, avoid it by inserting nops after
13551 instruction AFTER.
13553 *DELAYED_REG and *HILO_DELAY describe the hazards that apply at
13554 this point. If *DELAYED_REG is non-null, INSN must wait a cycle
13555 before using the value of that register. *HILO_DELAY counts the
13556 number of instructions since the last hilo hazard (that is,
13557 the number of instructions since the last MFLO or MFHI).
13559 After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
13560 for the next instruction.
13562 LO_REG is an rtx for the LO register, used in dependence checking. */
13564 static void
13565 mips_avoid_hazard (rtx after, rtx insn, int *hilo_delay,
13566 rtx *delayed_reg, rtx lo_reg)
13568 rtx pattern, set;
13569 int nops, ninsns;
13571 pattern = PATTERN (insn);
13573 /* Do not put the whole function in .set noreorder if it contains
13574 an asm statement. We don't know whether there will be hazards
13575 between the asm statement and the gcc-generated code. */
13576 if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0)
13577 cfun->machine->all_noreorder_p = false;
13579 /* Ignore zero-length instructions (barriers and the like). */
13580 ninsns = get_attr_length (insn) / 4;
13581 if (ninsns == 0)
13582 return;
13584 /* Work out how many nops are needed. Note that we only care about
13585 registers that are explicitly mentioned in the instruction's pattern.
13586 It doesn't matter that calls use the argument registers or that they
13587 clobber hi and lo. */
13588 if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern))
13589 nops = 2 - *hilo_delay;
13590 else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern))
13591 nops = 1;
13592 else
13593 nops = 0;
13595 /* Insert the nops between this instruction and the previous one.
13596 Each new nop takes us further from the last hilo hazard. */
13597 *hilo_delay += nops;
13598 while (nops-- > 0)
13599 emit_insn_after (gen_hazard_nop (), after);
13601 /* Set up the state for the next instruction. */
13602 *hilo_delay += ninsns;
13603 *delayed_reg = 0;
13604 if (INSN_CODE (insn) >= 0)
13605 switch (get_attr_hazard (insn))
13607 case HAZARD_NONE:
13608 break;
13610 case HAZARD_HILO:
13611 *hilo_delay = 0;
13612 break;
13614 case HAZARD_DELAY:
13615 set = single_set (insn);
13616 gcc_assert (set);
13617 *delayed_reg = SET_DEST (set);
13618 break;
13622 /* Go through the instruction stream and insert nops where necessary.
13623 Also delete any high-part relocations whose partnering low parts
13624 are now all dead. See if the whole function can then be put into
13625 .set noreorder and .set nomacro. */
13627 static void
13628 mips_reorg_process_insns (void)
13630 rtx insn, last_insn, subinsn, next_insn, lo_reg, delayed_reg;
13631 int hilo_delay;
13632 htab_t htab;
13634 /* Force all instructions to be split into their final form. */
13635 split_all_insns_noflow ();
13637 /* Recalculate instruction lengths without taking nops into account. */
13638 cfun->machine->ignore_hazard_length_p = true;
13639 shorten_branches (get_insns ());
13641 cfun->machine->all_noreorder_p = true;
13643 /* We don't track MIPS16 PC-relative offsets closely enough to make
13644 a good job of "set .noreorder" code in MIPS16 mode. */
13645 if (TARGET_MIPS16)
13646 cfun->machine->all_noreorder_p = false;
13648 /* Code that doesn't use explicit relocs can't be ".set nomacro". */
13649 if (!TARGET_EXPLICIT_RELOCS)
13650 cfun->machine->all_noreorder_p = false;
13652 /* Profiled functions can't be all noreorder because the profiler
13653 support uses assembler macros. */
13654 if (crtl->profile)
13655 cfun->machine->all_noreorder_p = false;
13657 /* Code compiled with -mfix-vr4120 can't be all noreorder because
13658 we rely on the assembler to work around some errata. */
13659 if (TARGET_FIX_VR4120)
13660 cfun->machine->all_noreorder_p = false;
13662 /* The same is true for -mfix-vr4130 if we might generate MFLO or
13663 MFHI instructions. Note that we avoid using MFLO and MFHI if
13664 the VR4130 MACC and DMACC instructions are available instead;
13665 see the *mfhilo_{si,di}_macc patterns. */
13666 if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI)
13667 cfun->machine->all_noreorder_p = false;
13669 htab = htab_create (37, mips_lo_sum_offset_hash,
13670 mips_lo_sum_offset_eq, free);
13672 /* Make a first pass over the instructions, recording all the LO_SUMs. */
13673 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
13674 FOR_EACH_SUBINSN (subinsn, insn)
13675 if (INSN_P (subinsn))
13676 for_each_rtx (&PATTERN (subinsn), mips_record_lo_sum, htab);
13678 last_insn = 0;
13679 hilo_delay = 2;
13680 delayed_reg = 0;
13681 lo_reg = gen_rtx_REG (SImode, LO_REGNUM);
13683 /* Make a second pass over the instructions. Delete orphaned
13684 high-part relocations or turn them into NOPs. Avoid hazards
13685 by inserting NOPs. */
13686 for (insn = get_insns (); insn != 0; insn = next_insn)
13688 next_insn = NEXT_INSN (insn);
13689 if (INSN_P (insn))
13691 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
13693 /* If we find an orphaned high-part relocation in a delay
13694 slot, it's easier to turn that instruction into a NOP than
13695 to delete it. The delay slot will be a NOP either way. */
13696 FOR_EACH_SUBINSN (subinsn, insn)
13697 if (INSN_P (subinsn))
13699 if (mips_orphaned_high_part_p (htab, subinsn))
13701 PATTERN (subinsn) = gen_nop ();
13702 INSN_CODE (subinsn) = CODE_FOR_nop;
13704 mips_avoid_hazard (last_insn, subinsn, &hilo_delay,
13705 &delayed_reg, lo_reg);
13707 last_insn = insn;
13709 else
13711 /* INSN is a single instruction. Delete it if it's an
13712 orphaned high-part relocation. */
13713 if (mips_orphaned_high_part_p (htab, insn))
13714 delete_insn (insn);
13715 /* Also delete cache barriers if the last instruction
13716 was an annulled branch. INSN will not be speculatively
13717 executed. */
13718 else if (recog_memoized (insn) == CODE_FOR_r10k_cache_barrier
13719 && last_insn
13720 && INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (last_insn)))
13721 delete_insn (insn);
13722 else
13724 mips_avoid_hazard (last_insn, insn, &hilo_delay,
13725 &delayed_reg, lo_reg);
13726 last_insn = insn;
13732 htab_delete (htab);
13735 /* Implement TARGET_MACHINE_DEPENDENT_REORG. */
13737 static void
13738 mips_reorg (void)
13740 mips16_lay_out_constants ();
13741 if (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE)
13742 r10k_insert_cache_barriers ();
13743 if (optimize > 0 && flag_delayed_branch)
13744 dbr_schedule (get_insns ());
13745 mips_reorg_process_insns ();
13746 if (!TARGET_MIPS16
13747 && TARGET_EXPLICIT_RELOCS
13748 && TUNE_MIPS4130
13749 && TARGET_VR4130_ALIGN)
13750 vr4130_align_insns ();
13753 /* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
13754 in order to avoid duplicating too much logic from elsewhere. */
13756 static void
13757 mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
13758 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
13759 tree function)
13761 rtx this_rtx, temp1, temp2, insn, fnaddr;
13762 bool use_sibcall_p;
13764 /* Pretend to be a post-reload pass while generating rtl. */
13765 reload_completed = 1;
13767 /* Mark the end of the (empty) prologue. */
13768 emit_note (NOTE_INSN_PROLOGUE_END);
13770 /* Determine if we can use a sibcall to call FUNCTION directly. */
13771 fnaddr = XEXP (DECL_RTL (function), 0);
13772 use_sibcall_p = (mips_function_ok_for_sibcall (function, NULL)
13773 && const_call_insn_operand (fnaddr, Pmode));
13775 /* Determine if we need to load FNADDR from the GOT. */
13776 if (!use_sibcall_p
13777 && (mips_got_symbol_type_p
13778 (mips_classify_symbol (fnaddr, SYMBOL_CONTEXT_LEA))))
13780 /* Pick a global pointer. Use a call-clobbered register if
13781 TARGET_CALL_SAVED_GP. */
13782 cfun->machine->global_pointer
13783 = TARGET_CALL_SAVED_GP ? 15 : GLOBAL_POINTER_REGNUM;
13784 SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
13786 /* Set up the global pointer for n32 or n64 abicalls. */
13787 mips_emit_loadgp ();
13790 /* We need two temporary registers in some cases. */
13791 temp1 = gen_rtx_REG (Pmode, 2);
13792 temp2 = gen_rtx_REG (Pmode, 3);
13794 /* Find out which register contains the "this" pointer. */
13795 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
13796 this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
13797 else
13798 this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST);
13800 /* Add DELTA to THIS_RTX. */
13801 if (delta != 0)
13803 rtx offset = GEN_INT (delta);
13804 if (!SMALL_OPERAND (delta))
13806 mips_emit_move (temp1, offset);
13807 offset = temp1;
13809 emit_insn (gen_add3_insn (this_rtx, this_rtx, offset));
13812 /* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */
13813 if (vcall_offset != 0)
13815 rtx addr;
13817 /* Set TEMP1 to *THIS_RTX. */
13818 mips_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx));
13820 /* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */
13821 addr = mips_add_offset (temp2, temp1, vcall_offset);
13823 /* Load the offset and add it to THIS_RTX. */
13824 mips_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
13825 emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1));
13828 /* Jump to the target function. Use a sibcall if direct jumps are
13829 allowed, otherwise load the address into a register first. */
13830 if (use_sibcall_p)
13832 insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
13833 SIBLING_CALL_P (insn) = 1;
13835 else
13837 /* This is messy. GAS treats "la $25,foo" as part of a call
13838 sequence and may allow a global "foo" to be lazily bound.
13839 The general move patterns therefore reject this combination.
13841 In this context, lazy binding would actually be OK
13842 for TARGET_CALL_CLOBBERED_GP, but it's still wrong for
13843 TARGET_CALL_SAVED_GP; see mips_load_call_address.
13844 We must therefore load the address via a temporary
13845 register if mips_dangerous_for_la25_p.
13847 If we jump to the temporary register rather than $25,
13848 the assembler can use the move insn to fill the jump's
13849 delay slot.
13851 We can use the same technique for MIPS16 code, where $25
13852 is not a valid JR register. */
13853 if (TARGET_USE_PIC_FN_ADDR_REG
13854 && !TARGET_MIPS16
13855 && !mips_dangerous_for_la25_p (fnaddr))
13856 temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
13857 mips_load_call_address (MIPS_CALL_SIBCALL, temp1, fnaddr);
13859 if (TARGET_USE_PIC_FN_ADDR_REG
13860 && REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM)
13861 mips_emit_move (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1);
13862 emit_jump_insn (gen_indirect_jump (temp1));
13865 /* Run just enough of rest_of_compilation. This sequence was
13866 "borrowed" from alpha.c. */
13867 insn = get_insns ();
13868 insn_locators_alloc ();
13869 split_all_insns_noflow ();
13870 mips16_lay_out_constants ();
13871 shorten_branches (insn);
13872 final_start_function (insn, file, 1);
13873 final (insn, file, 1);
13874 final_end_function ();
13875 free_after_compilation (cfun);
13877 /* Clean up the vars set above. Note that final_end_function resets
13878 the global pointer for us. */
13879 reload_completed = 0;
13882 /* The last argument passed to mips_set_mips16_mode, or negative if the
13883 function hasn't been called yet.
13885 There are two copies of this information. One is saved and restored
13886 by the PCH process while the other is specific to this compiler
13887 invocation. The information calculated by mips_set_mips16_mode
13888 is invalid unless the two variables are the same. */
13889 static int was_mips16_p = -1;
13890 static GTY(()) int was_mips16_pch_p = -1;
13892 /* Set up the target-dependent global state so that it matches the
13893 current function's ISA mode. */
13895 static void
13896 mips_set_mips16_mode (int mips16_p)
13898 if (mips16_p == was_mips16_p
13899 && mips16_p == was_mips16_pch_p)
13900 return;
13902 /* Restore base settings of various flags. */
13903 target_flags = mips_base_target_flags;
13904 flag_schedule_insns = mips_base_schedule_insns;
13905 flag_reorder_blocks_and_partition = mips_base_reorder_blocks_and_partition;
13906 flag_move_loop_invariants = mips_base_move_loop_invariants;
13907 align_loops = mips_base_align_loops;
13908 align_jumps = mips_base_align_jumps;
13909 align_functions = mips_base_align_functions;
13911 if (mips16_p)
13913 /* Switch to MIPS16 mode. */
13914 target_flags |= MASK_MIPS16;
13916 /* Don't run the scheduler before reload, since it tends to
13917 increase register pressure. */
13918 flag_schedule_insns = 0;
13920 /* Don't do hot/cold partitioning. mips16_lay_out_constants expects
13921 the whole function to be in a single section. */
13922 flag_reorder_blocks_and_partition = 0;
13924 /* Don't move loop invariants, because it tends to increase
13925 register pressure. It also introduces an extra move in cases
13926 where the constant is the first operand in a two-operand binary
13927 instruction, or when it forms a register argument to a functon
13928 call. */
13929 flag_move_loop_invariants = 0;
13931 target_flags |= MASK_EXPLICIT_RELOCS;
13933 /* Experiments suggest we get the best overall section-anchor
13934 results from using the range of an unextended LW or SW. Code
13935 that makes heavy use of byte or short accesses can do better
13936 with ranges of 0...31 and 0...63 respectively, but most code is
13937 sensitive to the range of LW and SW instead. */
13938 targetm.min_anchor_offset = 0;
13939 targetm.max_anchor_offset = 127;
13941 targetm.const_anchor = 0;
13943 if (flag_pic && !TARGET_OLDABI)
13944 sorry ("MIPS16 PIC for ABIs other than o32 and o64");
13946 if (TARGET_XGOT)
13947 sorry ("MIPS16 -mxgot code");
13949 if (TARGET_HARD_FLOAT_ABI && !TARGET_OLDABI)
13950 sorry ("hard-float MIPS16 code for ABIs other than o32 and o64");
13952 else
13954 /* Switch to normal (non-MIPS16) mode. */
13955 target_flags &= ~MASK_MIPS16;
13957 /* Provide default values for align_* for 64-bit targets. */
13958 if (TARGET_64BIT)
13960 if (align_loops == 0)
13961 align_loops = 8;
13962 if (align_jumps == 0)
13963 align_jumps = 8;
13964 if (align_functions == 0)
13965 align_functions = 8;
13968 targetm.min_anchor_offset = -32768;
13969 targetm.max_anchor_offset = 32767;
13971 targetm.const_anchor = 0x8000;
13974 /* (Re)initialize MIPS target internals for new ISA. */
13975 mips_init_relocs ();
13977 if (was_mips16_p >= 0 || was_mips16_pch_p >= 0)
13978 /* Reinitialize target-dependent state. */
13979 target_reinit ();
13981 was_mips16_p = mips16_p;
13982 was_mips16_pch_p = mips16_p;
13985 /* Implement TARGET_SET_CURRENT_FUNCTION. Decide whether the current
13986 function should use the MIPS16 ISA and switch modes accordingly. */
13988 static void
13989 mips_set_current_function (tree fndecl)
13991 mips_set_mips16_mode (mips_use_mips16_mode_p (fndecl));
13994 /* Allocate a chunk of memory for per-function machine-dependent data. */
13996 static struct machine_function *
13997 mips_init_machine_status (void)
13999 return ((struct machine_function *)
14000 ggc_alloc_cleared (sizeof (struct machine_function)));
14003 /* Return the processor associated with the given ISA level, or null
14004 if the ISA isn't valid. */
14006 static const struct mips_cpu_info *
14007 mips_cpu_info_from_isa (int isa)
14009 unsigned int i;
14011 for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++)
14012 if (mips_cpu_info_table[i].isa == isa)
14013 return mips_cpu_info_table + i;
14015 return NULL;
14018 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
14019 with a final "000" replaced by "k". Ignore case.
14021 Note: this function is shared between GCC and GAS. */
14023 static bool
14024 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
14026 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
14027 given++, canonical++;
14029 return ((*given == 0 && *canonical == 0)
14030 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
14033 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
14034 CPU name. We've traditionally allowed a lot of variation here.
14036 Note: this function is shared between GCC and GAS. */
14038 static bool
14039 mips_matching_cpu_name_p (const char *canonical, const char *given)
14041 /* First see if the name matches exactly, or with a final "000"
14042 turned into "k". */
14043 if (mips_strict_matching_cpu_name_p (canonical, given))
14044 return true;
14046 /* If not, try comparing based on numerical designation alone.
14047 See if GIVEN is an unadorned number, or 'r' followed by a number. */
14048 if (TOLOWER (*given) == 'r')
14049 given++;
14050 if (!ISDIGIT (*given))
14051 return false;
14053 /* Skip over some well-known prefixes in the canonical name,
14054 hoping to find a number there too. */
14055 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
14056 canonical += 2;
14057 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
14058 canonical += 2;
14059 else if (TOLOWER (canonical[0]) == 'r')
14060 canonical += 1;
14062 return mips_strict_matching_cpu_name_p (canonical, given);
14065 /* Return the mips_cpu_info entry for the processor or ISA given
14066 by CPU_STRING. Return null if the string isn't recognized.
14068 A similar function exists in GAS. */
14070 static const struct mips_cpu_info *
14071 mips_parse_cpu (const char *cpu_string)
14073 unsigned int i;
14074 const char *s;
14076 /* In the past, we allowed upper-case CPU names, but it doesn't
14077 work well with the multilib machinery. */
14078 for (s = cpu_string; *s != 0; s++)
14079 if (ISUPPER (*s))
14081 warning (0, "CPU names must be lower case");
14082 break;
14085 /* 'from-abi' selects the most compatible architecture for the given
14086 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
14087 EABIs, we have to decide whether we're using the 32-bit or 64-bit
14088 version. */
14089 if (strcasecmp (cpu_string, "from-abi") == 0)
14090 return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
14091 : ABI_NEEDS_64BIT_REGS ? 3
14092 : (TARGET_64BIT ? 3 : 1));
14094 /* 'default' has traditionally been a no-op. Probably not very useful. */
14095 if (strcasecmp (cpu_string, "default") == 0)
14096 return NULL;
14098 for (i = 0; i < ARRAY_SIZE (mips_cpu_info_table); i++)
14099 if (mips_matching_cpu_name_p (mips_cpu_info_table[i].name, cpu_string))
14100 return mips_cpu_info_table + i;
14102 return NULL;
14105 /* Set up globals to generate code for the ISA or processor
14106 described by INFO. */
14108 static void
14109 mips_set_architecture (const struct mips_cpu_info *info)
14111 if (info != 0)
14113 mips_arch_info = info;
14114 mips_arch = info->cpu;
14115 mips_isa = info->isa;
14119 /* Likewise for tuning. */
14121 static void
14122 mips_set_tune (const struct mips_cpu_info *info)
14124 if (info != 0)
14126 mips_tune_info = info;
14127 mips_tune = info->cpu;
14131 /* Implement TARGET_HANDLE_OPTION. */
14133 static bool
14134 mips_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
14136 switch (code)
14138 case OPT_mabi_:
14139 if (strcmp (arg, "32") == 0)
14140 mips_abi = ABI_32;
14141 else if (strcmp (arg, "o64") == 0)
14142 mips_abi = ABI_O64;
14143 else if (strcmp (arg, "n32") == 0)
14144 mips_abi = ABI_N32;
14145 else if (strcmp (arg, "64") == 0)
14146 mips_abi = ABI_64;
14147 else if (strcmp (arg, "eabi") == 0)
14148 mips_abi = ABI_EABI;
14149 else
14150 return false;
14151 return true;
14153 case OPT_march_:
14154 case OPT_mtune_:
14155 return mips_parse_cpu (arg) != 0;
14157 case OPT_mips:
14158 mips_isa_option_info = mips_parse_cpu (ACONCAT (("mips", arg, NULL)));
14159 return mips_isa_option_info != 0;
14161 case OPT_mno_flush_func:
14162 mips_cache_flush_func = NULL;
14163 return true;
14165 case OPT_mcode_readable_:
14166 if (strcmp (arg, "yes") == 0)
14167 mips_code_readable = CODE_READABLE_YES;
14168 else if (strcmp (arg, "pcrel") == 0)
14169 mips_code_readable = CODE_READABLE_PCREL;
14170 else if (strcmp (arg, "no") == 0)
14171 mips_code_readable = CODE_READABLE_NO;
14172 else
14173 return false;
14174 return true;
14176 case OPT_mr10k_cache_barrier_:
14177 if (strcmp (arg, "load-store") == 0)
14178 mips_r10k_cache_barrier = R10K_CACHE_BARRIER_LOAD_STORE;
14179 else if (strcmp (arg, "store") == 0)
14180 mips_r10k_cache_barrier = R10K_CACHE_BARRIER_STORE;
14181 else if (strcmp (arg, "none") == 0)
14182 mips_r10k_cache_barrier = R10K_CACHE_BARRIER_NONE;
14183 else
14184 return false;
14185 return true;
14187 default:
14188 return true;
14192 /* Implement OVERRIDE_OPTIONS. */
14194 void
14195 mips_override_options (void)
14197 int i, start, regno, mode;
14199 /* Process flags as though we were generating non-MIPS16 code. */
14200 mips_base_mips16 = TARGET_MIPS16;
14201 target_flags &= ~MASK_MIPS16;
14203 #ifdef SUBTARGET_OVERRIDE_OPTIONS
14204 SUBTARGET_OVERRIDE_OPTIONS;
14205 #endif
14207 /* Set the small data limit. */
14208 mips_small_data_threshold = (g_switch_set
14209 ? g_switch_value
14210 : MIPS_DEFAULT_GVALUE);
14212 /* The following code determines the architecture and register size.
14213 Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
14214 The GAS and GCC code should be kept in sync as much as possible. */
14216 if (mips_arch_string != 0)
14217 mips_set_architecture (mips_parse_cpu (mips_arch_string));
14219 if (mips_isa_option_info != 0)
14221 if (mips_arch_info == 0)
14222 mips_set_architecture (mips_isa_option_info);
14223 else if (mips_arch_info->isa != mips_isa_option_info->isa)
14224 error ("%<-%s%> conflicts with the other architecture options, "
14225 "which specify a %s processor",
14226 mips_isa_option_info->name,
14227 mips_cpu_info_from_isa (mips_arch_info->isa)->name);
14230 if (mips_arch_info == 0)
14232 #ifdef MIPS_CPU_STRING_DEFAULT
14233 mips_set_architecture (mips_parse_cpu (MIPS_CPU_STRING_DEFAULT));
14234 #else
14235 mips_set_architecture (mips_cpu_info_from_isa (MIPS_ISA_DEFAULT));
14236 #endif
14239 if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
14240 error ("%<-march=%s%> is not compatible with the selected ABI",
14241 mips_arch_info->name);
14243 /* Optimize for mips_arch, unless -mtune selects a different processor. */
14244 if (mips_tune_string != 0)
14245 mips_set_tune (mips_parse_cpu (mips_tune_string));
14247 if (mips_tune_info == 0)
14248 mips_set_tune (mips_arch_info);
14250 if ((target_flags_explicit & MASK_64BIT) != 0)
14252 /* The user specified the size of the integer registers. Make sure
14253 it agrees with the ABI and ISA. */
14254 if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
14255 error ("%<-mgp64%> used with a 32-bit processor");
14256 else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
14257 error ("%<-mgp32%> used with a 64-bit ABI");
14258 else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
14259 error ("%<-mgp64%> used with a 32-bit ABI");
14261 else
14263 /* Infer the integer register size from the ABI and processor.
14264 Restrict ourselves to 32-bit registers if that's all the
14265 processor has, or if the ABI cannot handle 64-bit registers. */
14266 if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
14267 target_flags &= ~MASK_64BIT;
14268 else
14269 target_flags |= MASK_64BIT;
14272 if ((target_flags_explicit & MASK_FLOAT64) != 0)
14274 if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
14275 error ("unsupported combination: %s", "-mfp64 -msingle-float");
14276 else if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
14277 error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
14278 else if (!TARGET_64BIT && TARGET_FLOAT64)
14280 if (!ISA_HAS_MXHC1)
14281 error ("%<-mgp32%> and %<-mfp64%> can only be combined if"
14282 " the target supports the mfhc1 and mthc1 instructions");
14283 else if (mips_abi != ABI_32)
14284 error ("%<-mgp32%> and %<-mfp64%> can only be combined when using"
14285 " the o32 ABI");
14288 else
14290 /* -msingle-float selects 32-bit float registers. Otherwise the
14291 float registers should be the same size as the integer ones. */
14292 if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
14293 target_flags |= MASK_FLOAT64;
14294 else
14295 target_flags &= ~MASK_FLOAT64;
14298 /* End of code shared with GAS. */
14300 /* If no -mlong* option was given, infer it from the other options. */
14301 if ((target_flags_explicit & MASK_LONG64) == 0)
14303 if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
14304 target_flags |= MASK_LONG64;
14305 else
14306 target_flags &= ~MASK_LONG64;
14309 if (!TARGET_OLDABI)
14310 flag_pcc_struct_return = 0;
14312 /* Decide which rtx_costs structure to use. */
14313 if (optimize_size)
14314 mips_cost = &mips_rtx_cost_optimize_size;
14315 else
14316 mips_cost = &mips_rtx_cost_data[mips_tune];
14318 /* If the user hasn't specified a branch cost, use the processor's
14319 default. */
14320 if (mips_branch_cost == 0)
14321 mips_branch_cost = mips_cost->branch_cost;
14323 /* If neither -mbranch-likely nor -mno-branch-likely was given
14324 on the command line, set MASK_BRANCHLIKELY based on the target
14325 architecture and tuning flags. Annulled delay slots are a
14326 size win, so we only consider the processor-specific tuning
14327 for !optimize_size. */
14328 if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
14330 if (ISA_HAS_BRANCHLIKELY
14331 && (optimize_size
14332 || (mips_tune_info->tune_flags & PTF_AVOID_BRANCHLIKELY) == 0))
14333 target_flags |= MASK_BRANCHLIKELY;
14334 else
14335 target_flags &= ~MASK_BRANCHLIKELY;
14337 else if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
14338 warning (0, "the %qs architecture does not support branch-likely"
14339 " instructions", mips_arch_info->name);
14341 /* The effect of -mabicalls isn't defined for the EABI. */
14342 if (mips_abi == ABI_EABI && TARGET_ABICALLS)
14344 error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
14345 target_flags &= ~MASK_ABICALLS;
14348 if (TARGET_ABICALLS_PIC2)
14349 /* We need to set flag_pic for executables as well as DSOs
14350 because we may reference symbols that are not defined in
14351 the final executable. (MIPS does not use things like
14352 copy relocs, for example.)
14354 There is a body of code that uses __PIC__ to distinguish
14355 between -mabicalls and -mno-abicalls code. The non-__PIC__
14356 variant is usually appropriate for TARGET_ABICALLS_PIC0, as
14357 long as any indirect jumps use $25. */
14358 flag_pic = 1;
14360 /* -mvr4130-align is a "speed over size" optimization: it usually produces
14361 faster code, but at the expense of more nops. Enable it at -O3 and
14362 above. */
14363 if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0)
14364 target_flags |= MASK_VR4130_ALIGN;
14366 /* Prefer a call to memcpy over inline code when optimizing for size,
14367 though see MOVE_RATIO in mips.h. */
14368 if (optimize_size && (target_flags_explicit & MASK_MEMCPY) == 0)
14369 target_flags |= MASK_MEMCPY;
14371 /* If we have a nonzero small-data limit, check that the -mgpopt
14372 setting is consistent with the other target flags. */
14373 if (mips_small_data_threshold > 0)
14375 if (!TARGET_GPOPT)
14377 if (!TARGET_EXPLICIT_RELOCS)
14378 error ("%<-mno-gpopt%> needs %<-mexplicit-relocs%>");
14380 TARGET_LOCAL_SDATA = false;
14381 TARGET_EXTERN_SDATA = false;
14383 else
14385 if (TARGET_VXWORKS_RTP)
14386 warning (0, "cannot use small-data accesses for %qs", "-mrtp");
14388 if (TARGET_ABICALLS)
14389 warning (0, "cannot use small-data accesses for %qs",
14390 "-mabicalls");
14394 #ifdef MIPS_TFMODE_FORMAT
14395 REAL_MODE_FORMAT (TFmode) = &MIPS_TFMODE_FORMAT;
14396 #endif
14398 /* Make sure that the user didn't turn off paired single support when
14399 MIPS-3D support is requested. */
14400 if (TARGET_MIPS3D
14401 && (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT)
14402 && !TARGET_PAIRED_SINGLE_FLOAT)
14403 error ("%<-mips3d%> requires %<-mpaired-single%>");
14405 /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT. */
14406 if (TARGET_MIPS3D)
14407 target_flags |= MASK_PAIRED_SINGLE_FLOAT;
14409 /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
14410 and TARGET_HARD_FLOAT_ABI are both true. */
14411 if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT_ABI))
14412 error ("%qs must be used with %qs",
14413 TARGET_MIPS3D ? "-mips3d" : "-mpaired-single",
14414 TARGET_HARD_FLOAT_ABI ? "-mfp64" : "-mhard-float");
14416 /* Make sure that the ISA supports TARGET_PAIRED_SINGLE_FLOAT when it is
14417 enabled. */
14418 if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_HAS_PAIRED_SINGLE)
14419 warning (0, "the %qs architecture does not support paired-single"
14420 " instructions", mips_arch_info->name);
14422 if (mips_r10k_cache_barrier != R10K_CACHE_BARRIER_NONE
14423 && !TARGET_CACHE_BUILTIN)
14425 error ("%qs requires a target that provides the %qs instruction",
14426 "-mr10k-cache-barrier", "cache");
14427 mips_r10k_cache_barrier = R10K_CACHE_BARRIER_NONE;
14430 /* If TARGET_DSPR2, enable MASK_DSP. */
14431 if (TARGET_DSPR2)
14432 target_flags |= MASK_DSP;
14434 /* .eh_frame addresses should be the same width as a C pointer.
14435 Most MIPS ABIs support only one pointer size, so the assembler
14436 will usually know exactly how big an .eh_frame address is.
14438 Unfortunately, this is not true of the 64-bit EABI. The ABI was
14439 originally defined to use 64-bit pointers (i.e. it is LP64), and
14440 this is still the default mode. However, we also support an n32-like
14441 ILP32 mode, which is selected by -mlong32. The problem is that the
14442 assembler has traditionally not had an -mlong option, so it has
14443 traditionally not known whether we're using the ILP32 or LP64 form.
14445 As it happens, gas versions up to and including 2.19 use _32-bit_
14446 addresses for EABI64 .cfi_* directives. This is wrong for the
14447 default LP64 mode, so we can't use the directives by default.
14448 Moreover, since gas's current behavior is at odds with gcc's
14449 default behavior, it seems unwise to rely on future versions
14450 of gas behaving the same way. We therefore avoid using .cfi
14451 directives for -mlong32 as well. */
14452 if (mips_abi == ABI_EABI && TARGET_64BIT)
14453 flag_dwarf2_cfi_asm = 0;
14455 mips_init_print_operand_punct ();
14457 /* Set up array to map GCC register number to debug register number.
14458 Ignore the special purpose register numbers. */
14460 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
14462 mips_dbx_regno[i] = INVALID_REGNUM;
14463 if (GP_REG_P (i) || FP_REG_P (i) || ALL_COP_REG_P (i))
14464 mips_dwarf_regno[i] = i;
14465 else
14466 mips_dwarf_regno[i] = INVALID_REGNUM;
14469 start = GP_DBX_FIRST - GP_REG_FIRST;
14470 for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
14471 mips_dbx_regno[i] = i + start;
14473 start = FP_DBX_FIRST - FP_REG_FIRST;
14474 for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
14475 mips_dbx_regno[i] = i + start;
14477 /* Accumulator debug registers use big-endian ordering. */
14478 mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0;
14479 mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1;
14480 mips_dwarf_regno[HI_REGNUM] = MD_REG_FIRST + 0;
14481 mips_dwarf_regno[LO_REGNUM] = MD_REG_FIRST + 1;
14482 for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2)
14484 mips_dwarf_regno[i + TARGET_LITTLE_ENDIAN] = i;
14485 mips_dwarf_regno[i + TARGET_BIG_ENDIAN] = i + 1;
14488 /* Set up mips_hard_regno_mode_ok. */
14489 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
14490 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
14491 mips_hard_regno_mode_ok[mode][regno]
14492 = mips_hard_regno_mode_ok_p (regno, (enum machine_mode) mode);
14494 /* Function to allocate machine-dependent function status. */
14495 init_machine_status = &mips_init_machine_status;
14497 /* Default to working around R4000 errata only if the processor
14498 was selected explicitly. */
14499 if ((target_flags_explicit & MASK_FIX_R4000) == 0
14500 && mips_matching_cpu_name_p (mips_arch_info->name, "r4000"))
14501 target_flags |= MASK_FIX_R4000;
14503 /* Default to working around R4400 errata only if the processor
14504 was selected explicitly. */
14505 if ((target_flags_explicit & MASK_FIX_R4400) == 0
14506 && mips_matching_cpu_name_p (mips_arch_info->name, "r4400"))
14507 target_flags |= MASK_FIX_R4400;
14509 /* Default to working around R10000 errata only if the processor
14510 was selected explicitly. */
14511 if ((target_flags_explicit & MASK_FIX_R10000) == 0
14512 && mips_matching_cpu_name_p (mips_arch_info->name, "r10000"))
14513 target_flags |= MASK_FIX_R10000;
14515 /* Make sure that branch-likely instructions available when using
14516 -mfix-r10000. The instructions are not available if either:
14518 1. -mno-branch-likely was passed.
14519 2. The selected ISA does not support branch-likely and
14520 the command line does not include -mbranch-likely. */
14521 if (TARGET_FIX_R10000
14522 && ((target_flags_explicit & MASK_BRANCHLIKELY) == 0
14523 ? !ISA_HAS_BRANCHLIKELY
14524 : !TARGET_BRANCHLIKELY))
14525 sorry ("%qs requires branch-likely instructions", "-mfix-r10000");
14527 /* Save base state of options. */
14528 mips_base_target_flags = target_flags;
14529 mips_base_schedule_insns = flag_schedule_insns;
14530 mips_base_reorder_blocks_and_partition = flag_reorder_blocks_and_partition;
14531 mips_base_move_loop_invariants = flag_move_loop_invariants;
14532 mips_base_align_loops = align_loops;
14533 mips_base_align_jumps = align_jumps;
14534 mips_base_align_functions = align_functions;
14536 /* Now select the ISA mode.
14538 Do all CPP-sensitive stuff in non-MIPS16 mode; we'll switch to
14539 MIPS16 mode afterwards if need be. */
14540 mips_set_mips16_mode (false);
14543 /* Swap the register information for registers I and I + 1, which
14544 currently have the wrong endianness. Note that the registers'
14545 fixedness and call-clobberedness might have been set on the
14546 command line. */
14548 static void
14549 mips_swap_registers (unsigned int i)
14551 int tmpi;
14552 const char *tmps;
14554 #define SWAP_INT(X, Y) (tmpi = (X), (X) = (Y), (Y) = tmpi)
14555 #define SWAP_STRING(X, Y) (tmps = (X), (X) = (Y), (Y) = tmps)
14557 SWAP_INT (fixed_regs[i], fixed_regs[i + 1]);
14558 SWAP_INT (call_used_regs[i], call_used_regs[i + 1]);
14559 SWAP_INT (call_really_used_regs[i], call_really_used_regs[i + 1]);
14560 SWAP_STRING (reg_names[i], reg_names[i + 1]);
14562 #undef SWAP_STRING
14563 #undef SWAP_INT
14566 /* Implement CONDITIONAL_REGISTER_USAGE. */
14568 void
14569 mips_conditional_register_usage (void)
14572 if (ISA_HAS_DSP)
14574 /* These DSP control register fields are global. */
14575 global_regs[CCDSP_PO_REGNUM] = 1;
14576 global_regs[CCDSP_SC_REGNUM] = 1;
14578 else
14580 int regno;
14582 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
14583 fixed_regs[regno] = call_used_regs[regno] = 1;
14585 if (!TARGET_HARD_FLOAT)
14587 int regno;
14589 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
14590 fixed_regs[regno] = call_used_regs[regno] = 1;
14591 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
14592 fixed_regs[regno] = call_used_regs[regno] = 1;
14594 else if (! ISA_HAS_8CC)
14596 int regno;
14598 /* We only have a single condition-code register. We implement
14599 this by fixing all the condition-code registers and generating
14600 RTL that refers directly to ST_REG_FIRST. */
14601 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
14602 fixed_regs[regno] = call_used_regs[regno] = 1;
14604 /* In MIPS16 mode, we permit the $t temporary registers to be used
14605 for reload. We prohibit the unused $s registers, since they
14606 are call-saved, and saving them via a MIPS16 register would
14607 probably waste more time than just reloading the value. */
14608 if (TARGET_MIPS16)
14610 fixed_regs[18] = call_used_regs[18] = 1;
14611 fixed_regs[19] = call_used_regs[19] = 1;
14612 fixed_regs[20] = call_used_regs[20] = 1;
14613 fixed_regs[21] = call_used_regs[21] = 1;
14614 fixed_regs[22] = call_used_regs[22] = 1;
14615 fixed_regs[23] = call_used_regs[23] = 1;
14616 fixed_regs[26] = call_used_regs[26] = 1;
14617 fixed_regs[27] = call_used_regs[27] = 1;
14618 fixed_regs[30] = call_used_regs[30] = 1;
14620 /* $f20-$f23 are call-clobbered for n64. */
14621 if (mips_abi == ABI_64)
14623 int regno;
14624 for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
14625 call_really_used_regs[regno] = call_used_regs[regno] = 1;
14627 /* Odd registers in the range $f21-$f31 (inclusive) are call-clobbered
14628 for n32. */
14629 if (mips_abi == ABI_N32)
14631 int regno;
14632 for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
14633 call_really_used_regs[regno] = call_used_regs[regno] = 1;
14635 /* Make sure that double-register accumulator values are correctly
14636 ordered for the current endianness. */
14637 if (TARGET_LITTLE_ENDIAN)
14639 unsigned int regno;
14641 mips_swap_registers (MD_REG_FIRST);
14642 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno += 2)
14643 mips_swap_registers (regno);
14647 /* Initialize vector TARGET to VALS. */
14649 void
14650 mips_expand_vector_init (rtx target, rtx vals)
14652 enum machine_mode mode;
14653 enum machine_mode inner;
14654 unsigned int i, n_elts;
14655 rtx mem;
14657 mode = GET_MODE (target);
14658 inner = GET_MODE_INNER (mode);
14659 n_elts = GET_MODE_NUNITS (mode);
14661 gcc_assert (VECTOR_MODE_P (mode));
14663 mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), 0);
14664 for (i = 0; i < n_elts; i++)
14665 emit_move_insn (adjust_address_nv (mem, inner, i * GET_MODE_SIZE (inner)),
14666 XVECEXP (vals, 0, i));
14668 emit_move_insn (target, mem);
14671 /* When generating MIPS16 code, we want to allocate $24 (T_REG) before
14672 other registers for instructions for which it is possible. This
14673 encourages the compiler to use CMP in cases where an XOR would
14674 require some register shuffling. */
14676 void
14677 mips_order_regs_for_local_alloc (void)
14679 int i;
14681 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
14682 reg_alloc_order[i] = i;
14684 if (TARGET_MIPS16)
14686 /* It really doesn't matter where we put register 0, since it is
14687 a fixed register anyhow. */
14688 reg_alloc_order[0] = 24;
14689 reg_alloc_order[24] = 0;
14693 /* Implement EPILOGUE_USES. */
14695 bool
14696 mips_epilogue_uses (unsigned int regno)
14698 /* Say that the epilogue uses the return address register. Note that
14699 in the case of sibcalls, the values "used by the epilogue" are
14700 considered live at the start of the called function. */
14701 if (regno == 31)
14702 return true;
14704 /* If using a GOT, say that the epilogue also uses GOT_VERSION_REGNUM.
14705 See the comment above load_call<mode> for details. */
14706 if (TARGET_USE_GOT && (regno) == GOT_VERSION_REGNUM)
14707 return true;
14709 /* An interrupt handler must preserve some registers that are
14710 ordinarily call-clobbered. */
14711 if (cfun->machine->interrupt_handler_p
14712 && mips_interrupt_extra_call_saved_reg_p (regno))
14713 return true;
14715 return false;
14718 /* A for_each_rtx callback. Stop the search if *X is an AT register. */
14720 static int
14721 mips_at_reg_p (rtx *x, void *data ATTRIBUTE_UNUSED)
14723 return REG_P (*x) && REGNO (*x) == AT_REGNUM;
14727 /* Implement FINAL_PRESCAN_INSN. */
14729 void
14730 mips_final_prescan_insn (rtx insn, rtx *opvec, int noperands)
14732 int i;
14734 /* We need to emit ".set noat" before an instruction that accesses
14735 $1 (AT). */
14736 if (recog_memoized (insn) >= 0)
14737 for (i = 0; i < noperands; i++)
14738 if (for_each_rtx (&opvec[i], mips_at_reg_p, NULL))
14739 if (set_noat++ == 0)
14740 fprintf (asm_out_file, "\t.set\tnoat\n");
14743 /* Implement TARGET_ASM_FINAL_POSTSCAN_INSN. */
14745 static void
14746 mips_final_postscan_insn (FILE *file, rtx insn, rtx *opvec, int noperands)
14748 int i;
14750 /* Close any ".set noat" block opened by mips_final_prescan_insn. */
14751 if (recog_memoized (insn) >= 0)
14752 for (i = 0; i < noperands; i++)
14753 if (for_each_rtx (&opvec[i], mips_at_reg_p, NULL))
14754 if (--set_noat == 0)
14755 fprintf (file, "\t.set\tat\n");
14758 /* Initialize the GCC target structure. */
14759 #undef TARGET_ASM_ALIGNED_HI_OP
14760 #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
14761 #undef TARGET_ASM_ALIGNED_SI_OP
14762 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
14763 #undef TARGET_ASM_ALIGNED_DI_OP
14764 #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
14766 #undef TARGET_LEGITIMIZE_ADDRESS
14767 #define TARGET_LEGITIMIZE_ADDRESS mips_legitimize_address
14769 #undef TARGET_ASM_FUNCTION_PROLOGUE
14770 #define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
14771 #undef TARGET_ASM_FUNCTION_EPILOGUE
14772 #define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
14773 #undef TARGET_ASM_SELECT_RTX_SECTION
14774 #define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
14775 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
14776 #define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
14778 #undef TARGET_SCHED_INIT
14779 #define TARGET_SCHED_INIT mips_sched_init
14780 #undef TARGET_SCHED_REORDER
14781 #define TARGET_SCHED_REORDER mips_sched_reorder
14782 #undef TARGET_SCHED_REORDER2
14783 #define TARGET_SCHED_REORDER2 mips_sched_reorder
14784 #undef TARGET_SCHED_VARIABLE_ISSUE
14785 #define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
14786 #undef TARGET_SCHED_ADJUST_COST
14787 #define TARGET_SCHED_ADJUST_COST mips_adjust_cost
14788 #undef TARGET_SCHED_ISSUE_RATE
14789 #define TARGET_SCHED_ISSUE_RATE mips_issue_rate
14790 #undef TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN
14791 #define TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN mips_init_dfa_post_cycle_insn
14792 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
14793 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE mips_dfa_post_advance_cycle
14794 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
14795 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
14796 mips_multipass_dfa_lookahead
14798 #undef TARGET_DEFAULT_TARGET_FLAGS
14799 #define TARGET_DEFAULT_TARGET_FLAGS \
14800 (TARGET_DEFAULT \
14801 | TARGET_CPU_DEFAULT \
14802 | TARGET_ENDIAN_DEFAULT \
14803 | TARGET_FP_EXCEPTIONS_DEFAULT \
14804 | MASK_CHECK_ZERO_DIV \
14805 | MASK_FUSED_MADD)
14806 #undef TARGET_HANDLE_OPTION
14807 #define TARGET_HANDLE_OPTION mips_handle_option
14809 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
14810 #define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
14812 #undef TARGET_INSERT_ATTRIBUTES
14813 #define TARGET_INSERT_ATTRIBUTES mips_insert_attributes
14814 #undef TARGET_MERGE_DECL_ATTRIBUTES
14815 #define TARGET_MERGE_DECL_ATTRIBUTES mips_merge_decl_attributes
14816 #undef TARGET_SET_CURRENT_FUNCTION
14817 #define TARGET_SET_CURRENT_FUNCTION mips_set_current_function
14819 #undef TARGET_VALID_POINTER_MODE
14820 #define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
14821 #undef TARGET_RTX_COSTS
14822 #define TARGET_RTX_COSTS mips_rtx_costs
14823 #undef TARGET_ADDRESS_COST
14824 #define TARGET_ADDRESS_COST mips_address_cost
14826 #undef TARGET_IN_SMALL_DATA_P
14827 #define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
14829 #undef TARGET_MACHINE_DEPENDENT_REORG
14830 #define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
14832 #undef TARGET_ASM_FILE_START
14833 #define TARGET_ASM_FILE_START mips_file_start
14834 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
14835 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
14837 #undef TARGET_INIT_LIBFUNCS
14838 #define TARGET_INIT_LIBFUNCS mips_init_libfuncs
14840 #undef TARGET_BUILD_BUILTIN_VA_LIST
14841 #define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
14842 #undef TARGET_EXPAND_BUILTIN_VA_START
14843 #define TARGET_EXPAND_BUILTIN_VA_START mips_va_start
14844 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
14845 #define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
14847 #undef TARGET_PROMOTE_FUNCTION_ARGS
14848 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
14849 #undef TARGET_PROMOTE_FUNCTION_RETURN
14850 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
14851 #undef TARGET_PROMOTE_PROTOTYPES
14852 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
14854 #undef TARGET_RETURN_IN_MEMORY
14855 #define TARGET_RETURN_IN_MEMORY mips_return_in_memory
14856 #undef TARGET_RETURN_IN_MSB
14857 #define TARGET_RETURN_IN_MSB mips_return_in_msb
14859 #undef TARGET_ASM_OUTPUT_MI_THUNK
14860 #define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
14861 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
14862 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
14864 #undef TARGET_SETUP_INCOMING_VARARGS
14865 #define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
14866 #undef TARGET_STRICT_ARGUMENT_NAMING
14867 #define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
14868 #undef TARGET_MUST_PASS_IN_STACK
14869 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
14870 #undef TARGET_PASS_BY_REFERENCE
14871 #define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
14872 #undef TARGET_CALLEE_COPIES
14873 #define TARGET_CALLEE_COPIES mips_callee_copies
14874 #undef TARGET_ARG_PARTIAL_BYTES
14875 #define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
14877 #undef TARGET_MODE_REP_EXTENDED
14878 #define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
14880 #undef TARGET_VECTOR_MODE_SUPPORTED_P
14881 #define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
14883 #undef TARGET_SCALAR_MODE_SUPPORTED_P
14884 #define TARGET_SCALAR_MODE_SUPPORTED_P mips_scalar_mode_supported_p
14886 #undef TARGET_INIT_BUILTINS
14887 #define TARGET_INIT_BUILTINS mips_init_builtins
14888 #undef TARGET_EXPAND_BUILTIN
14889 #define TARGET_EXPAND_BUILTIN mips_expand_builtin
14891 #undef TARGET_HAVE_TLS
14892 #define TARGET_HAVE_TLS HAVE_AS_TLS
14894 #undef TARGET_CANNOT_FORCE_CONST_MEM
14895 #define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
14897 #undef TARGET_ENCODE_SECTION_INFO
14898 #define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
14900 #undef TARGET_ATTRIBUTE_TABLE
14901 #define TARGET_ATTRIBUTE_TABLE mips_attribute_table
14902 /* All our function attributes are related to how out-of-line copies should
14903 be compiled or called. They don't in themselves prevent inlining. */
14904 #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
14905 #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
14907 #undef TARGET_EXTRA_LIVE_ON_ENTRY
14908 #define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
14910 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
14911 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
14912 #undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
14913 #define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
14915 #undef TARGET_COMP_TYPE_ATTRIBUTES
14916 #define TARGET_COMP_TYPE_ATTRIBUTES mips_comp_type_attributes
14918 #ifdef HAVE_AS_DTPRELWORD
14919 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
14920 #define TARGET_ASM_OUTPUT_DWARF_DTPREL mips_output_dwarf_dtprel
14921 #endif
14922 #undef TARGET_DWARF_REGISTER_SPAN
14923 #define TARGET_DWARF_REGISTER_SPAN mips_dwarf_register_span
14925 #undef TARGET_IRA_COVER_CLASSES
14926 #define TARGET_IRA_COVER_CLASSES mips_ira_cover_classes
14928 #undef TARGET_ASM_FINAL_POSTSCAN_INSN
14929 #define TARGET_ASM_FINAL_POSTSCAN_INSN mips_final_postscan_insn
14931 #undef TARGET_LEGITIMATE_ADDRESS_P
14932 #define TARGET_LEGITIMATE_ADDRESS_P mips_legitimate_address_p
14934 struct gcc_target targetm = TARGET_INITIALIZER;
14936 #include "gt-mips.h"