Import final gcc2 snapshot (990109)
[official-gcc.git] / gcc / tree.c
blob7c7aa226f502cebe68435708f77b59a8c7eb69bb
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92-97, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #include "system.h"
38 #include <setjmp.h>
39 #include "flags.h"
40 #include "tree.h"
41 #include "except.h"
42 #include "function.h"
43 #include "obstack.h"
45 #define obstack_chunk_alloc xmalloc
46 #define obstack_chunk_free free
48 /* Tree nodes of permanent duration are allocated in this obstack.
49 They are the identifier nodes, and everything outside of
50 the bodies and parameters of function definitions. */
52 struct obstack permanent_obstack;
54 /* The initial RTL, and all ..._TYPE nodes, in a function
55 are allocated in this obstack. Usually they are freed at the
56 end of the function, but if the function is inline they are saved.
57 For top-level functions, this is maybepermanent_obstack.
58 Separate obstacks are made for nested functions. */
60 struct obstack *function_maybepermanent_obstack;
62 /* This is the function_maybepermanent_obstack for top-level functions. */
64 struct obstack maybepermanent_obstack;
66 /* This is a list of function_maybepermanent_obstacks for top-level inline
67 functions that are compiled in the middle of compiling other functions. */
69 struct simple_obstack_stack *toplev_inline_obstacks;
71 /* Former elements of toplev_inline_obstacks that have been recycled. */
73 struct simple_obstack_stack *extra_inline_obstacks;
75 /* This is a list of function_maybepermanent_obstacks for inline functions
76 nested in the current function that were compiled in the middle of
77 compiling other functions. */
79 struct simple_obstack_stack *inline_obstacks;
81 /* The contents of the current function definition are allocated
82 in this obstack, and all are freed at the end of the function.
83 For top-level functions, this is temporary_obstack.
84 Separate obstacks are made for nested functions. */
86 struct obstack *function_obstack;
88 /* This is used for reading initializers of global variables. */
90 struct obstack temporary_obstack;
92 /* The tree nodes of an expression are allocated
93 in this obstack, and all are freed at the end of the expression. */
95 struct obstack momentary_obstack;
97 /* The tree nodes of a declarator are allocated
98 in this obstack, and all are freed when the declarator
99 has been parsed. */
101 static struct obstack temp_decl_obstack;
103 /* This points at either permanent_obstack
104 or the current function_maybepermanent_obstack. */
106 struct obstack *saveable_obstack;
108 /* This is same as saveable_obstack during parse and expansion phase;
109 it points to the current function's obstack during optimization.
110 This is the obstack to be used for creating rtl objects. */
112 struct obstack *rtl_obstack;
114 /* This points at either permanent_obstack or the current function_obstack. */
116 struct obstack *current_obstack;
118 /* This points at either permanent_obstack or the current function_obstack
119 or momentary_obstack. */
121 struct obstack *expression_obstack;
123 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
125 struct obstack_stack
127 struct obstack_stack *next;
128 struct obstack *current;
129 struct obstack *saveable;
130 struct obstack *expression;
131 struct obstack *rtl;
134 struct obstack_stack *obstack_stack;
136 /* Obstack for allocating struct obstack_stack entries. */
138 static struct obstack obstack_stack_obstack;
140 /* Addresses of first objects in some obstacks.
141 This is for freeing their entire contents. */
142 char *maybepermanent_firstobj;
143 char *temporary_firstobj;
144 char *momentary_firstobj;
145 char *temp_decl_firstobj;
147 /* This is used to preserve objects (mainly array initializers) that need to
148 live until the end of the current function, but no further. */
149 char *momentary_function_firstobj;
151 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
153 int all_types_permanent;
155 /* Stack of places to restore the momentary obstack back to. */
157 struct momentary_level
159 /* Pointer back to previous such level. */
160 struct momentary_level *prev;
161 /* First object allocated within this level. */
162 char *base;
163 /* Value of expression_obstack saved at entry to this level. */
164 struct obstack *obstack;
167 struct momentary_level *momentary_stack;
169 /* Table indexed by tree code giving a string containing a character
170 classifying the tree code. Possibilities are
171 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
173 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
175 char *standard_tree_code_type[] = {
176 #include "tree.def"
178 #undef DEFTREECODE
180 /* Table indexed by tree code giving number of expression
181 operands beyond the fixed part of the node structure.
182 Not used for types or decls. */
184 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
186 int standard_tree_code_length[] = {
187 #include "tree.def"
189 #undef DEFTREECODE
191 /* Names of tree components.
192 Used for printing out the tree and error messages. */
193 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
195 char *standard_tree_code_name[] = {
196 #include "tree.def"
198 #undef DEFTREECODE
200 /* Table indexed by tree code giving a string containing a character
201 classifying the tree code. Possibilities are
202 t, d, s, c, r, e, <, 1 and 2. See tree.def for details. */
204 char **tree_code_type;
206 /* Table indexed by tree code giving number of expression
207 operands beyond the fixed part of the node structure.
208 Not used for types or decls. */
210 int *tree_code_length;
212 /* Table indexed by tree code giving name of tree code, as a string. */
214 char **tree_code_name;
216 /* Statistics-gathering stuff. */
217 typedef enum
219 d_kind,
220 t_kind,
221 b_kind,
222 s_kind,
223 r_kind,
224 e_kind,
225 c_kind,
226 id_kind,
227 op_id_kind,
228 perm_list_kind,
229 temp_list_kind,
230 vec_kind,
231 x_kind,
232 lang_decl,
233 lang_type,
234 all_kinds
235 } tree_node_kind;
237 int tree_node_counts[(int)all_kinds];
238 int tree_node_sizes[(int)all_kinds];
239 int id_string_size = 0;
241 char *tree_node_kind_names[] = {
242 "decls",
243 "types",
244 "blocks",
245 "stmts",
246 "refs",
247 "exprs",
248 "constants",
249 "identifiers",
250 "op_identifiers",
251 "perm_tree_lists",
252 "temp_tree_lists",
253 "vecs",
254 "random kinds",
255 "lang_decl kinds",
256 "lang_type kinds"
259 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
261 #define MAX_HASH_TABLE 1009
262 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
264 /* 0 while creating built-in identifiers. */
265 static int do_identifier_warnings;
267 /* Unique id for next decl created. */
268 static int next_decl_uid;
269 /* Unique id for next type created. */
270 static int next_type_uid = 1;
272 /* Here is how primitive or already-canonicalized types' hash
273 codes are made. */
274 #define TYPE_HASH(TYPE) ((HOST_WIDE_INT) (TYPE) & 0777777)
276 extern char *mode_name[];
278 void gcc_obstack_init ();
280 /* Init the principal obstacks. */
282 void
283 init_obstacks ()
285 gcc_obstack_init (&obstack_stack_obstack);
286 gcc_obstack_init (&permanent_obstack);
288 gcc_obstack_init (&temporary_obstack);
289 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
290 gcc_obstack_init (&momentary_obstack);
291 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
292 momentary_function_firstobj = momentary_firstobj;
293 gcc_obstack_init (&maybepermanent_obstack);
294 maybepermanent_firstobj
295 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
296 gcc_obstack_init (&temp_decl_obstack);
297 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
299 function_obstack = &temporary_obstack;
300 function_maybepermanent_obstack = &maybepermanent_obstack;
301 current_obstack = &permanent_obstack;
302 expression_obstack = &permanent_obstack;
303 rtl_obstack = saveable_obstack = &permanent_obstack;
305 /* Init the hash table of identifiers. */
306 bzero ((char *) hash_table, sizeof hash_table);
309 void
310 gcc_obstack_init (obstack)
311 struct obstack *obstack;
313 /* Let particular systems override the size of a chunk. */
314 #ifndef OBSTACK_CHUNK_SIZE
315 #define OBSTACK_CHUNK_SIZE 0
316 #endif
317 /* Let them override the alloc and free routines too. */
318 #ifndef OBSTACK_CHUNK_ALLOC
319 #define OBSTACK_CHUNK_ALLOC xmalloc
320 #endif
321 #ifndef OBSTACK_CHUNK_FREE
322 #define OBSTACK_CHUNK_FREE free
323 #endif
324 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
325 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
326 (void (*) ()) OBSTACK_CHUNK_FREE);
329 /* Save all variables describing the current status into the structure *P.
330 This is used before starting a nested function.
332 CONTEXT is the decl_function_context for the function we're about to
333 compile; if it isn't current_function_decl, we have to play some games. */
335 void
336 save_tree_status (p, context)
337 struct function *p;
338 tree context;
340 p->all_types_permanent = all_types_permanent;
341 p->momentary_stack = momentary_stack;
342 p->maybepermanent_firstobj = maybepermanent_firstobj;
343 p->temporary_firstobj = temporary_firstobj;
344 p->momentary_firstobj = momentary_firstobj;
345 p->momentary_function_firstobj = momentary_function_firstobj;
346 p->function_obstack = function_obstack;
347 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
348 p->current_obstack = current_obstack;
349 p->expression_obstack = expression_obstack;
350 p->saveable_obstack = saveable_obstack;
351 p->rtl_obstack = rtl_obstack;
352 p->inline_obstacks = inline_obstacks;
354 if (context == current_function_decl)
355 /* Objects that need to be saved in this function can be in the nonsaved
356 obstack of the enclosing function since they can't possibly be needed
357 once it has returned. */
358 function_maybepermanent_obstack = function_obstack;
359 else
361 /* We're compiling a function which isn't nested in the current
362 function. We need to create a new maybepermanent_obstack for this
363 function, since it can't go onto any of the existing obstacks. */
364 struct simple_obstack_stack **head;
365 struct simple_obstack_stack *current;
367 if (context == NULL_TREE)
368 head = &toplev_inline_obstacks;
369 else
371 struct function *f = find_function_data (context);
372 head = &f->inline_obstacks;
375 if (context == NULL_TREE && extra_inline_obstacks)
377 current = extra_inline_obstacks;
378 extra_inline_obstacks = current->next;
380 else
382 current = ((struct simple_obstack_stack *)
383 xmalloc (sizeof (struct simple_obstack_stack)));
385 current->obstack
386 = (struct obstack *) xmalloc (sizeof (struct obstack));
387 gcc_obstack_init (current->obstack);
390 function_maybepermanent_obstack = current->obstack;
392 current->next = *head;
393 *head = current;
396 maybepermanent_firstobj
397 = (char *) obstack_finish (function_maybepermanent_obstack);
399 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
400 gcc_obstack_init (function_obstack);
402 current_obstack = &permanent_obstack;
403 expression_obstack = &permanent_obstack;
404 rtl_obstack = saveable_obstack = &permanent_obstack;
406 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
407 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
408 momentary_function_firstobj = momentary_firstobj;
411 /* Restore all variables describing the current status from the structure *P.
412 This is used after a nested function. */
414 void
415 restore_tree_status (p, context)
416 struct function *p;
417 tree context;
419 all_types_permanent = p->all_types_permanent;
420 momentary_stack = p->momentary_stack;
422 obstack_free (&momentary_obstack, momentary_function_firstobj);
424 /* Free saveable storage used by the function just compiled and not
425 saved.
427 CAUTION: This is in function_obstack of the containing function.
428 So we must be sure that we never allocate from that obstack during
429 the compilation of a nested function if we expect it to survive
430 past the nested function's end. */
431 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
433 /* If we were compiling a toplevel function, we can free this space now. */
434 if (context == NULL_TREE)
436 obstack_free (&temporary_obstack, temporary_firstobj);
437 obstack_free (&momentary_obstack, momentary_function_firstobj);
440 /* If we were compiling a toplevel function that we don't actually want
441 to save anything from, return the obstack to the pool. */
442 if (context == NULL_TREE
443 && obstack_empty_p (function_maybepermanent_obstack))
445 struct simple_obstack_stack *current, **p = &toplev_inline_obstacks;
447 while ((*p)->obstack != function_maybepermanent_obstack)
448 p = &((*p)->next);
449 current = *p;
450 *p = current->next;
452 current->next = extra_inline_obstacks;
453 extra_inline_obstacks = current;
456 obstack_free (function_obstack, 0);
457 free (function_obstack);
459 temporary_firstobj = p->temporary_firstobj;
460 momentary_firstobj = p->momentary_firstobj;
461 momentary_function_firstobj = p->momentary_function_firstobj;
462 maybepermanent_firstobj = p->maybepermanent_firstobj;
463 function_obstack = p->function_obstack;
464 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
465 current_obstack = p->current_obstack;
466 expression_obstack = p->expression_obstack;
467 saveable_obstack = p->saveable_obstack;
468 rtl_obstack = p->rtl_obstack;
469 inline_obstacks = p->inline_obstacks;
472 /* Start allocating on the temporary (per function) obstack.
473 This is done in start_function before parsing the function body,
474 and before each initialization at top level, and to go back
475 to temporary allocation after doing permanent_allocation. */
477 void
478 temporary_allocation ()
480 /* Note that function_obstack at top level points to temporary_obstack.
481 But within a nested function context, it is a separate obstack. */
482 current_obstack = function_obstack;
483 expression_obstack = function_obstack;
484 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
485 momentary_stack = 0;
486 inline_obstacks = 0;
489 /* Start allocating on the permanent obstack but don't
490 free the temporary data. After calling this, call
491 `permanent_allocation' to fully resume permanent allocation status. */
493 void
494 end_temporary_allocation ()
496 current_obstack = &permanent_obstack;
497 expression_obstack = &permanent_obstack;
498 rtl_obstack = saveable_obstack = &permanent_obstack;
501 /* Resume allocating on the temporary obstack, undoing
502 effects of `end_temporary_allocation'. */
504 void
505 resume_temporary_allocation ()
507 current_obstack = function_obstack;
508 expression_obstack = function_obstack;
509 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
512 /* While doing temporary allocation, switch to allocating in such a
513 way as to save all nodes if the function is inlined. Call
514 resume_temporary_allocation to go back to ordinary temporary
515 allocation. */
517 void
518 saveable_allocation ()
520 /* Note that function_obstack at top level points to temporary_obstack.
521 But within a nested function context, it is a separate obstack. */
522 expression_obstack = current_obstack = saveable_obstack;
525 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
526 recording the previously current obstacks on a stack.
527 This does not free any storage in any obstack. */
529 void
530 push_obstacks (current, saveable)
531 struct obstack *current, *saveable;
533 struct obstack_stack *p
534 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
535 (sizeof (struct obstack_stack)));
537 p->current = current_obstack;
538 p->saveable = saveable_obstack;
539 p->expression = expression_obstack;
540 p->rtl = rtl_obstack;
541 p->next = obstack_stack;
542 obstack_stack = p;
544 current_obstack = current;
545 expression_obstack = current;
546 rtl_obstack = saveable_obstack = saveable;
549 /* Save the current set of obstacks, but don't change them. */
551 void
552 push_obstacks_nochange ()
554 struct obstack_stack *p
555 = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
556 (sizeof (struct obstack_stack)));
558 p->current = current_obstack;
559 p->saveable = saveable_obstack;
560 p->expression = expression_obstack;
561 p->rtl = rtl_obstack;
562 p->next = obstack_stack;
563 obstack_stack = p;
566 /* Pop the obstack selection stack. */
568 void
569 pop_obstacks ()
571 struct obstack_stack *p = obstack_stack;
572 obstack_stack = p->next;
574 current_obstack = p->current;
575 saveable_obstack = p->saveable;
576 expression_obstack = p->expression;
577 rtl_obstack = p->rtl;
579 obstack_free (&obstack_stack_obstack, p);
582 /* Nonzero if temporary allocation is currently in effect.
583 Zero if currently doing permanent allocation. */
586 allocation_temporary_p ()
588 return current_obstack != &permanent_obstack;
591 /* Go back to allocating on the permanent obstack
592 and free everything in the temporary obstack.
594 FUNCTION_END is true only if we have just finished compiling a function.
595 In that case, we also free preserved initial values on the momentary
596 obstack. */
598 void
599 permanent_allocation (function_end)
600 int function_end;
602 /* Free up previous temporary obstack data */
603 obstack_free (&temporary_obstack, temporary_firstobj);
604 if (function_end)
606 obstack_free (&momentary_obstack, momentary_function_firstobj);
607 momentary_firstobj = momentary_function_firstobj;
609 else
610 obstack_free (&momentary_obstack, momentary_firstobj);
611 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
612 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
614 /* Free up the maybepermanent_obstacks for any of our nested functions
615 which were compiled at a lower level. */
616 while (inline_obstacks)
618 struct simple_obstack_stack *current = inline_obstacks;
619 inline_obstacks = current->next;
620 obstack_free (current->obstack, 0);
621 free (current->obstack);
622 free (current);
625 current_obstack = &permanent_obstack;
626 expression_obstack = &permanent_obstack;
627 rtl_obstack = saveable_obstack = &permanent_obstack;
630 /* Save permanently everything on the maybepermanent_obstack. */
632 void
633 preserve_data ()
635 maybepermanent_firstobj
636 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
639 void
640 preserve_initializer ()
642 struct momentary_level *tem;
643 char *old_momentary;
645 temporary_firstobj
646 = (char *) obstack_alloc (&temporary_obstack, 0);
647 maybepermanent_firstobj
648 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
650 old_momentary = momentary_firstobj;
651 momentary_firstobj
652 = (char *) obstack_alloc (&momentary_obstack, 0);
653 if (momentary_firstobj != old_momentary)
654 for (tem = momentary_stack; tem; tem = tem->prev)
655 tem->base = momentary_firstobj;
658 /* Start allocating new rtl in current_obstack.
659 Use resume_temporary_allocation
660 to go back to allocating rtl in saveable_obstack. */
662 void
663 rtl_in_current_obstack ()
665 rtl_obstack = current_obstack;
668 /* Start allocating rtl from saveable_obstack. Intended to be used after
669 a call to push_obstacks_nochange. */
671 void
672 rtl_in_saveable_obstack ()
674 rtl_obstack = saveable_obstack;
677 /* Allocate SIZE bytes in the current obstack
678 and return a pointer to them.
679 In practice the current obstack is always the temporary one. */
681 char *
682 oballoc (size)
683 int size;
685 return (char *) obstack_alloc (current_obstack, size);
688 /* Free the object PTR in the current obstack
689 as well as everything allocated since PTR.
690 In practice the current obstack is always the temporary one. */
692 void
693 obfree (ptr)
694 char *ptr;
696 obstack_free (current_obstack, ptr);
699 /* Allocate SIZE bytes in the permanent obstack
700 and return a pointer to them. */
702 char *
703 permalloc (size)
704 int size;
706 return (char *) obstack_alloc (&permanent_obstack, size);
709 /* Allocate NELEM items of SIZE bytes in the permanent obstack
710 and return a pointer to them. The storage is cleared before
711 returning the value. */
713 char *
714 perm_calloc (nelem, size)
715 int nelem;
716 long size;
718 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
719 bzero (rval, nelem * size);
720 return rval;
723 /* Allocate SIZE bytes in the saveable obstack
724 and return a pointer to them. */
726 char *
727 savealloc (size)
728 int size;
730 return (char *) obstack_alloc (saveable_obstack, size);
733 /* Allocate SIZE bytes in the expression obstack
734 and return a pointer to them. */
736 char *
737 expralloc (size)
738 int size;
740 return (char *) obstack_alloc (expression_obstack, size);
743 /* Print out which obstack an object is in. */
745 void
746 print_obstack_name (object, file, prefix)
747 char *object;
748 FILE *file;
749 char *prefix;
751 struct obstack *obstack = NULL;
752 char *obstack_name = NULL;
753 struct function *p;
755 for (p = outer_function_chain; p; p = p->next)
757 if (_obstack_allocated_p (p->function_obstack, object))
759 obstack = p->function_obstack;
760 obstack_name = "containing function obstack";
762 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
764 obstack = p->function_maybepermanent_obstack;
765 obstack_name = "containing function maybepermanent obstack";
769 if (_obstack_allocated_p (&obstack_stack_obstack, object))
771 obstack = &obstack_stack_obstack;
772 obstack_name = "obstack_stack_obstack";
774 else if (_obstack_allocated_p (function_obstack, object))
776 obstack = function_obstack;
777 obstack_name = "function obstack";
779 else if (_obstack_allocated_p (&permanent_obstack, object))
781 obstack = &permanent_obstack;
782 obstack_name = "permanent_obstack";
784 else if (_obstack_allocated_p (&momentary_obstack, object))
786 obstack = &momentary_obstack;
787 obstack_name = "momentary_obstack";
789 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
791 obstack = function_maybepermanent_obstack;
792 obstack_name = "function maybepermanent obstack";
794 else if (_obstack_allocated_p (&temp_decl_obstack, object))
796 obstack = &temp_decl_obstack;
797 obstack_name = "temp_decl_obstack";
800 /* Check to see if the object is in the free area of the obstack. */
801 if (obstack != NULL)
803 if (object >= obstack->next_free
804 && object < obstack->chunk_limit)
805 fprintf (file, "%s in free portion of obstack %s",
806 prefix, obstack_name);
807 else
808 fprintf (file, "%s allocated from %s", prefix, obstack_name);
810 else
811 fprintf (file, "%s not allocated from any obstack", prefix);
814 void
815 debug_obstack (object)
816 char *object;
818 print_obstack_name (object, stderr, "object");
819 fprintf (stderr, ".\n");
822 /* Return 1 if OBJ is in the permanent obstack.
823 This is slow, and should be used only for debugging.
824 Use TREE_PERMANENT for other purposes. */
827 object_permanent_p (obj)
828 tree obj;
830 return _obstack_allocated_p (&permanent_obstack, obj);
833 /* Start a level of momentary allocation.
834 In C, each compound statement has its own level
835 and that level is freed at the end of each statement.
836 All expression nodes are allocated in the momentary allocation level. */
838 void
839 push_momentary ()
841 struct momentary_level *tem
842 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
843 sizeof (struct momentary_level));
844 tem->prev = momentary_stack;
845 tem->base = (char *) obstack_base (&momentary_obstack);
846 tem->obstack = expression_obstack;
847 momentary_stack = tem;
848 expression_obstack = &momentary_obstack;
851 /* Set things up so the next clear_momentary will only clear memory
852 past our present position in momentary_obstack. */
854 void
855 preserve_momentary ()
857 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
860 /* Free all the storage in the current momentary-allocation level.
861 In C, this happens at the end of each statement. */
863 void
864 clear_momentary ()
866 obstack_free (&momentary_obstack, momentary_stack->base);
869 /* Discard a level of momentary allocation.
870 In C, this happens at the end of each compound statement.
871 Restore the status of expression node allocation
872 that was in effect before this level was created. */
874 void
875 pop_momentary ()
877 struct momentary_level *tem = momentary_stack;
878 momentary_stack = tem->prev;
879 expression_obstack = tem->obstack;
880 /* We can't free TEM from the momentary_obstack, because there might
881 be objects above it which have been saved. We can free back to the
882 stack of the level we are popping off though. */
883 obstack_free (&momentary_obstack, tem->base);
886 /* Pop back to the previous level of momentary allocation,
887 but don't free any momentary data just yet. */
889 void
890 pop_momentary_nofree ()
892 struct momentary_level *tem = momentary_stack;
893 momentary_stack = tem->prev;
894 expression_obstack = tem->obstack;
897 /* Call when starting to parse a declaration:
898 make expressions in the declaration last the length of the function.
899 Returns an argument that should be passed to resume_momentary later. */
902 suspend_momentary ()
904 register int tem = expression_obstack == &momentary_obstack;
905 expression_obstack = saveable_obstack;
906 return tem;
909 /* Call when finished parsing a declaration:
910 restore the treatment of node-allocation that was
911 in effect before the suspension.
912 YES should be the value previously returned by suspend_momentary. */
914 void
915 resume_momentary (yes)
916 int yes;
918 if (yes)
919 expression_obstack = &momentary_obstack;
922 /* Init the tables indexed by tree code.
923 Note that languages can add to these tables to define their own codes. */
925 void
926 init_tree_codes ()
928 tree_code_type = (char **) xmalloc (sizeof (standard_tree_code_type));
929 tree_code_length = (int *) xmalloc (sizeof (standard_tree_code_length));
930 tree_code_name = (char **) xmalloc (sizeof (standard_tree_code_name));
931 bcopy ((char *) standard_tree_code_type, (char *) tree_code_type,
932 sizeof (standard_tree_code_type));
933 bcopy ((char *) standard_tree_code_length, (char *) tree_code_length,
934 sizeof (standard_tree_code_length));
935 bcopy ((char *) standard_tree_code_name, (char *) tree_code_name,
936 sizeof (standard_tree_code_name));
939 /* Return a newly allocated node of code CODE.
940 Initialize the node's unique id and its TREE_PERMANENT flag.
941 For decl and type nodes, some other fields are initialized.
942 The rest of the node is initialized to zero.
944 Achoo! I got a code in the node. */
946 tree
947 make_node (code)
948 enum tree_code code;
950 register tree t;
951 register int type = TREE_CODE_CLASS (code);
952 register int length;
953 register struct obstack *obstack = current_obstack;
954 register int i;
955 register tree_node_kind kind;
957 switch (type)
959 case 'd': /* A decl node */
960 #ifdef GATHER_STATISTICS
961 kind = d_kind;
962 #endif
963 length = sizeof (struct tree_decl);
964 /* All decls in an inline function need to be saved. */
965 if (obstack != &permanent_obstack)
966 obstack = saveable_obstack;
968 /* PARM_DECLs go on the context of the parent. If this is a nested
969 function, then we must allocate the PARM_DECL on the parent's
970 obstack, so that they will live to the end of the parent's
971 closing brace. This is necessary in case we try to inline the
972 function into its parent.
974 PARM_DECLs of top-level functions do not have this problem. However,
975 we allocate them where we put the FUNCTION_DECL for languages such as
976 Ada that need to consult some flags in the PARM_DECLs of the function
977 when calling it.
979 See comment in restore_tree_status for why we can't put this
980 in function_obstack. */
981 if (code == PARM_DECL && obstack != &permanent_obstack)
983 tree context = 0;
984 if (current_function_decl)
985 context = decl_function_context (current_function_decl);
987 if (context)
988 obstack
989 = find_function_data (context)->function_maybepermanent_obstack;
991 break;
993 case 't': /* a type node */
994 #ifdef GATHER_STATISTICS
995 kind = t_kind;
996 #endif
997 length = sizeof (struct tree_type);
998 /* All data types are put where we can preserve them if nec. */
999 if (obstack != &permanent_obstack)
1000 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
1001 break;
1003 case 'b': /* a lexical block */
1004 #ifdef GATHER_STATISTICS
1005 kind = b_kind;
1006 #endif
1007 length = sizeof (struct tree_block);
1008 /* All BLOCK nodes are put where we can preserve them if nec. */
1009 if (obstack != &permanent_obstack)
1010 obstack = saveable_obstack;
1011 break;
1013 case 's': /* an expression with side effects */
1014 #ifdef GATHER_STATISTICS
1015 kind = s_kind;
1016 goto usual_kind;
1017 #endif
1018 case 'r': /* a reference */
1019 #ifdef GATHER_STATISTICS
1020 kind = r_kind;
1021 goto usual_kind;
1022 #endif
1023 case 'e': /* an expression */
1024 case '<': /* a comparison expression */
1025 case '1': /* a unary arithmetic expression */
1026 case '2': /* a binary arithmetic expression */
1027 #ifdef GATHER_STATISTICS
1028 kind = e_kind;
1029 usual_kind:
1030 #endif
1031 obstack = expression_obstack;
1032 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
1033 if (code == BIND_EXPR && obstack != &permanent_obstack)
1034 obstack = saveable_obstack;
1035 length = sizeof (struct tree_exp)
1036 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1037 break;
1039 case 'c': /* a constant */
1040 #ifdef GATHER_STATISTICS
1041 kind = c_kind;
1042 #endif
1043 obstack = expression_obstack;
1045 /* We can't use tree_code_length for INTEGER_CST, since the number of
1046 words is machine-dependent due to varying length of HOST_WIDE_INT,
1047 which might be wider than a pointer (e.g., long long). Similarly
1048 for REAL_CST, since the number of words is machine-dependent due
1049 to varying size and alignment of `double'. */
1051 if (code == INTEGER_CST)
1052 length = sizeof (struct tree_int_cst);
1053 else if (code == REAL_CST)
1054 length = sizeof (struct tree_real_cst);
1055 else
1056 length = sizeof (struct tree_common)
1057 + tree_code_length[(int) code] * sizeof (char *);
1058 break;
1060 case 'x': /* something random, like an identifier. */
1061 #ifdef GATHER_STATISTICS
1062 if (code == IDENTIFIER_NODE)
1063 kind = id_kind;
1064 else if (code == OP_IDENTIFIER)
1065 kind = op_id_kind;
1066 else if (code == TREE_VEC)
1067 kind = vec_kind;
1068 else
1069 kind = x_kind;
1070 #endif
1071 length = sizeof (struct tree_common)
1072 + tree_code_length[(int) code] * sizeof (char *);
1073 /* Identifier nodes are always permanent since they are
1074 unique in a compiler run. */
1075 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1076 break;
1078 default:
1079 abort ();
1082 t = (tree) obstack_alloc (obstack, length);
1084 #ifdef GATHER_STATISTICS
1085 tree_node_counts[(int)kind]++;
1086 tree_node_sizes[(int)kind] += length;
1087 #endif
1089 /* Clear a word at a time. */
1090 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1091 ((int *) t)[i] = 0;
1092 /* Clear any extra bytes. */
1093 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1094 ((char *) t)[i] = 0;
1096 TREE_SET_CODE (t, code);
1097 if (obstack == &permanent_obstack)
1098 TREE_PERMANENT (t) = 1;
1100 switch (type)
1102 case 's':
1103 TREE_SIDE_EFFECTS (t) = 1;
1104 TREE_TYPE (t) = void_type_node;
1105 break;
1107 case 'd':
1108 if (code != FUNCTION_DECL)
1109 DECL_ALIGN (t) = 1;
1110 DECL_IN_SYSTEM_HEADER (t)
1111 = in_system_header && (obstack == &permanent_obstack);
1112 DECL_SOURCE_LINE (t) = lineno;
1113 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
1114 DECL_UID (t) = next_decl_uid++;
1115 break;
1117 case 't':
1118 TYPE_UID (t) = next_type_uid++;
1119 TYPE_ALIGN (t) = 1;
1120 TYPE_MAIN_VARIANT (t) = t;
1121 TYPE_OBSTACK (t) = obstack;
1122 TYPE_ATTRIBUTES (t) = NULL_TREE;
1123 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1124 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1125 #endif
1126 break;
1128 case 'c':
1129 TREE_CONSTANT (t) = 1;
1130 break;
1133 return t;
1136 /* Return a new node with the same contents as NODE
1137 except that its TREE_CHAIN is zero and it has a fresh uid. */
1139 tree
1140 copy_node (node)
1141 tree node;
1143 register tree t;
1144 register enum tree_code code = TREE_CODE (node);
1145 register int length;
1146 register int i;
1148 switch (TREE_CODE_CLASS (code))
1150 case 'd': /* A decl node */
1151 length = sizeof (struct tree_decl);
1152 break;
1154 case 't': /* a type node */
1155 length = sizeof (struct tree_type);
1156 break;
1158 case 'b': /* a lexical block node */
1159 length = sizeof (struct tree_block);
1160 break;
1162 case 'r': /* a reference */
1163 case 'e': /* an expression */
1164 case 's': /* an expression with side effects */
1165 case '<': /* a comparison expression */
1166 case '1': /* a unary arithmetic expression */
1167 case '2': /* a binary arithmetic expression */
1168 length = sizeof (struct tree_exp)
1169 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1170 break;
1172 case 'c': /* a constant */
1173 /* We can't use tree_code_length for INTEGER_CST, since the number of
1174 words is machine-dependent due to varying length of HOST_WIDE_INT,
1175 which might be wider than a pointer (e.g., long long). Similarly
1176 for REAL_CST, since the number of words is machine-dependent due
1177 to varying size and alignment of `double'. */
1178 if (code == INTEGER_CST)
1179 length = sizeof (struct tree_int_cst);
1180 else if (code == REAL_CST)
1181 length = sizeof (struct tree_real_cst);
1182 else
1183 length = (sizeof (struct tree_common)
1184 + tree_code_length[(int) code] * sizeof (char *));
1185 break;
1187 case 'x': /* something random, like an identifier. */
1188 length = sizeof (struct tree_common)
1189 + tree_code_length[(int) code] * sizeof (char *);
1190 if (code == TREE_VEC)
1191 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1194 t = (tree) obstack_alloc (current_obstack, length);
1196 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1197 ((int *) t)[i] = ((int *) node)[i];
1198 /* Clear any extra bytes. */
1199 for (i = length / sizeof (int) * sizeof (int); i < length; i++)
1200 ((char *) t)[i] = ((char *) node)[i];
1202 TREE_CHAIN (t) = 0;
1203 TREE_ASM_WRITTEN (t) = 0;
1205 if (TREE_CODE_CLASS (code) == 'd')
1206 DECL_UID (t) = next_decl_uid++;
1207 else if (TREE_CODE_CLASS (code) == 't')
1209 TYPE_UID (t) = next_type_uid++;
1210 TYPE_OBSTACK (t) = current_obstack;
1212 /* The following is so that the debug code for
1213 the copy is different from the original type.
1214 The two statements usually duplicate each other
1215 (because they clear fields of the same union),
1216 but the optimizer should catch that. */
1217 TYPE_SYMTAB_POINTER (t) = 0;
1218 TYPE_SYMTAB_ADDRESS (t) = 0;
1221 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1223 return t;
1226 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1227 For example, this can copy a list made of TREE_LIST nodes. */
1229 tree
1230 copy_list (list)
1231 tree list;
1233 tree head;
1234 register tree prev, next;
1236 if (list == 0)
1237 return 0;
1239 head = prev = copy_node (list);
1240 next = TREE_CHAIN (list);
1241 while (next)
1243 TREE_CHAIN (prev) = copy_node (next);
1244 prev = TREE_CHAIN (prev);
1245 next = TREE_CHAIN (next);
1247 return head;
1250 #define HASHBITS 30
1252 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1253 If an identifier with that name has previously been referred to,
1254 the same node is returned this time. */
1256 tree
1257 get_identifier (text)
1258 register char *text;
1260 register int hi;
1261 register int i;
1262 register tree idp;
1263 register int len, hash_len;
1265 /* Compute length of text in len. */
1266 for (len = 0; text[len]; len++);
1268 /* Decide how much of that length to hash on */
1269 hash_len = len;
1270 if (warn_id_clash && len > id_clash_len)
1271 hash_len = id_clash_len;
1273 /* Compute hash code */
1274 hi = hash_len * 613 + (unsigned) text[0];
1275 for (i = 1; i < hash_len; i += 2)
1276 hi = ((hi * 613) + (unsigned) (text[i]));
1278 hi &= (1 << HASHBITS) - 1;
1279 hi %= MAX_HASH_TABLE;
1281 /* Search table for identifier */
1282 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1283 if (IDENTIFIER_LENGTH (idp) == len
1284 && IDENTIFIER_POINTER (idp)[0] == text[0]
1285 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1286 return idp; /* <-- return if found */
1288 /* Not found; optionally warn about a similar identifier */
1289 if (warn_id_clash && do_identifier_warnings && len >= id_clash_len)
1290 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1291 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1293 warning ("`%s' and `%s' identical in first %d characters",
1294 IDENTIFIER_POINTER (idp), text, id_clash_len);
1295 break;
1298 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1299 abort (); /* set_identifier_size hasn't been called. */
1301 /* Not found, create one, add to chain */
1302 idp = make_node (IDENTIFIER_NODE);
1303 IDENTIFIER_LENGTH (idp) = len;
1304 #ifdef GATHER_STATISTICS
1305 id_string_size += len;
1306 #endif
1308 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1310 TREE_CHAIN (idp) = hash_table[hi];
1311 hash_table[hi] = idp;
1312 return idp; /* <-- return if created */
1315 /* If an identifier with the name TEXT (a null-terminated string) has
1316 previously been referred to, return that node; otherwise return
1317 NULL_TREE. */
1319 tree
1320 maybe_get_identifier (text)
1321 register char *text;
1323 register int hi;
1324 register int i;
1325 register tree idp;
1326 register int len, hash_len;
1328 /* Compute length of text in len. */
1329 for (len = 0; text[len]; len++);
1331 /* Decide how much of that length to hash on */
1332 hash_len = len;
1333 if (warn_id_clash && len > id_clash_len)
1334 hash_len = id_clash_len;
1336 /* Compute hash code */
1337 hi = hash_len * 613 + (unsigned) text[0];
1338 for (i = 1; i < hash_len; i += 2)
1339 hi = ((hi * 613) + (unsigned) (text[i]));
1341 hi &= (1 << HASHBITS) - 1;
1342 hi %= MAX_HASH_TABLE;
1344 /* Search table for identifier */
1345 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1346 if (IDENTIFIER_LENGTH (idp) == len
1347 && IDENTIFIER_POINTER (idp)[0] == text[0]
1348 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1349 return idp; /* <-- return if found */
1351 return NULL_TREE;
1354 /* Enable warnings on similar identifiers (if requested).
1355 Done after the built-in identifiers are created. */
1357 void
1358 start_identifier_warnings ()
1360 do_identifier_warnings = 1;
1363 /* Record the size of an identifier node for the language in use.
1364 SIZE is the total size in bytes.
1365 This is called by the language-specific files. This must be
1366 called before allocating any identifiers. */
1368 void
1369 set_identifier_size (size)
1370 int size;
1372 tree_code_length[(int) IDENTIFIER_NODE]
1373 = (size - sizeof (struct tree_common)) / sizeof (tree);
1376 /* Return a newly constructed INTEGER_CST node whose constant value
1377 is specified by the two ints LOW and HI.
1378 The TREE_TYPE is set to `int'.
1380 This function should be used via the `build_int_2' macro. */
1382 tree
1383 build_int_2_wide (low, hi)
1384 HOST_WIDE_INT low, hi;
1386 register tree t = make_node (INTEGER_CST);
1387 TREE_INT_CST_LOW (t) = low;
1388 TREE_INT_CST_HIGH (t) = hi;
1389 TREE_TYPE (t) = integer_type_node;
1390 return t;
1393 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1395 tree
1396 build_real (type, d)
1397 tree type;
1398 REAL_VALUE_TYPE d;
1400 tree v;
1401 int overflow = 0;
1403 /* Check for valid float value for this type on this target machine;
1404 if not, can print error message and store a valid value in D. */
1405 #ifdef CHECK_FLOAT_VALUE
1406 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1407 #endif
1409 v = make_node (REAL_CST);
1410 TREE_TYPE (v) = type;
1411 TREE_REAL_CST (v) = d;
1412 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1413 return v;
1416 /* Return a new REAL_CST node whose type is TYPE
1417 and whose value is the integer value of the INTEGER_CST node I. */
1419 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1421 REAL_VALUE_TYPE
1422 real_value_from_int_cst (type, i)
1423 tree type, i;
1425 REAL_VALUE_TYPE d;
1426 REAL_VALUE_TYPE e;
1427 /* Some 386 compilers mishandle unsigned int to float conversions,
1428 so introduce a temporary variable E to avoid those bugs. */
1430 #ifdef REAL_ARITHMETIC
1431 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1432 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1433 TYPE_MODE (type));
1434 else
1435 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1436 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1437 #else /* not REAL_ARITHMETIC */
1438 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1440 d = (double) (~ TREE_INT_CST_HIGH (i));
1441 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1442 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1443 d *= e;
1444 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1445 d += e;
1446 d = (- d - 1.0);
1448 else
1450 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1451 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1452 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1453 d *= e;
1454 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1455 d += e;
1457 #endif /* not REAL_ARITHMETIC */
1458 return d;
1461 /* This function can't be implemented if we can't do arithmetic
1462 on the float representation. */
1464 tree
1465 build_real_from_int_cst (type, i)
1466 tree type;
1467 tree i;
1469 tree v;
1470 int overflow = TREE_OVERFLOW (i);
1471 REAL_VALUE_TYPE d;
1472 jmp_buf float_error;
1474 v = make_node (REAL_CST);
1475 TREE_TYPE (v) = type;
1477 if (setjmp (float_error))
1479 d = dconst0;
1480 overflow = 1;
1481 goto got_it;
1484 set_float_handler (float_error);
1486 #ifdef REAL_ARITHMETIC
1487 d = real_value_from_int_cst (type, i);
1488 #else
1489 d = REAL_VALUE_TRUNCATE (TYPE_MODE (type),
1490 real_value_from_int_cst (type, i));
1491 #endif
1493 /* Check for valid float value for this type on this target machine. */
1495 got_it:
1496 set_float_handler (NULL_PTR);
1498 #ifdef CHECK_FLOAT_VALUE
1499 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1500 #endif
1502 TREE_REAL_CST (v) = d;
1503 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1504 return v;
1507 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1509 /* Return a newly constructed STRING_CST node whose value is
1510 the LEN characters at STR.
1511 The TREE_TYPE is not initialized. */
1513 tree
1514 build_string (len, str)
1515 int len;
1516 char *str;
1518 /* Put the string in saveable_obstack since it will be placed in the RTL
1519 for an "asm" statement and will also be kept around a while if
1520 deferring constant output in varasm.c. */
1522 register tree s = make_node (STRING_CST);
1523 TREE_STRING_LENGTH (s) = len;
1524 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1525 return s;
1528 /* Return a newly constructed COMPLEX_CST node whose value is
1529 specified by the real and imaginary parts REAL and IMAG.
1530 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1531 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1533 tree
1534 build_complex (type, real, imag)
1535 tree type;
1536 tree real, imag;
1538 register tree t = make_node (COMPLEX_CST);
1540 TREE_REALPART (t) = real;
1541 TREE_IMAGPART (t) = imag;
1542 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1543 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1544 TREE_CONSTANT_OVERFLOW (t)
1545 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1546 return t;
1549 /* Build a newly constructed TREE_VEC node of length LEN. */
1551 tree
1552 make_tree_vec (len)
1553 int len;
1555 register tree t;
1556 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1557 register struct obstack *obstack = current_obstack;
1558 register int i;
1560 #ifdef GATHER_STATISTICS
1561 tree_node_counts[(int)vec_kind]++;
1562 tree_node_sizes[(int)vec_kind] += length;
1563 #endif
1565 t = (tree) obstack_alloc (obstack, length);
1567 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
1568 ((int *) t)[i] = 0;
1570 TREE_SET_CODE (t, TREE_VEC);
1571 TREE_VEC_LENGTH (t) = len;
1572 if (obstack == &permanent_obstack)
1573 TREE_PERMANENT (t) = 1;
1575 return t;
1578 /* Return 1 if EXPR is the integer constant zero or a complex constant
1579 of zero. */
1582 integer_zerop (expr)
1583 tree expr;
1585 STRIP_NOPS (expr);
1587 return ((TREE_CODE (expr) == INTEGER_CST
1588 && ! TREE_CONSTANT_OVERFLOW (expr)
1589 && TREE_INT_CST_LOW (expr) == 0
1590 && TREE_INT_CST_HIGH (expr) == 0)
1591 || (TREE_CODE (expr) == COMPLEX_CST
1592 && integer_zerop (TREE_REALPART (expr))
1593 && integer_zerop (TREE_IMAGPART (expr))));
1596 /* Return 1 if EXPR is the integer constant one or the corresponding
1597 complex constant. */
1600 integer_onep (expr)
1601 tree expr;
1603 STRIP_NOPS (expr);
1605 return ((TREE_CODE (expr) == INTEGER_CST
1606 && ! TREE_CONSTANT_OVERFLOW (expr)
1607 && TREE_INT_CST_LOW (expr) == 1
1608 && TREE_INT_CST_HIGH (expr) == 0)
1609 || (TREE_CODE (expr) == COMPLEX_CST
1610 && integer_onep (TREE_REALPART (expr))
1611 && integer_zerop (TREE_IMAGPART (expr))));
1614 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1615 it contains. Likewise for the corresponding complex constant. */
1618 integer_all_onesp (expr)
1619 tree expr;
1621 register int prec;
1622 register int uns;
1624 STRIP_NOPS (expr);
1626 if (TREE_CODE (expr) == COMPLEX_CST
1627 && integer_all_onesp (TREE_REALPART (expr))
1628 && integer_zerop (TREE_IMAGPART (expr)))
1629 return 1;
1631 else if (TREE_CODE (expr) != INTEGER_CST
1632 || TREE_CONSTANT_OVERFLOW (expr))
1633 return 0;
1635 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1636 if (!uns)
1637 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1639 /* Note that using TYPE_PRECISION here is wrong. We care about the
1640 actual bits, not the (arbitrary) range of the type. */
1641 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1642 if (prec >= HOST_BITS_PER_WIDE_INT)
1644 int high_value, shift_amount;
1646 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1648 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1649 /* Can not handle precisions greater than twice the host int size. */
1650 abort ();
1651 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1652 /* Shifting by the host word size is undefined according to the ANSI
1653 standard, so we must handle this as a special case. */
1654 high_value = -1;
1655 else
1656 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1658 return TREE_INT_CST_LOW (expr) == -1
1659 && TREE_INT_CST_HIGH (expr) == high_value;
1661 else
1662 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1665 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1666 one bit on). */
1669 integer_pow2p (expr)
1670 tree expr;
1672 int prec;
1673 HOST_WIDE_INT high, low;
1675 STRIP_NOPS (expr);
1677 if (TREE_CODE (expr) == COMPLEX_CST
1678 && integer_pow2p (TREE_REALPART (expr))
1679 && integer_zerop (TREE_IMAGPART (expr)))
1680 return 1;
1682 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1683 return 0;
1685 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1686 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1687 high = TREE_INT_CST_HIGH (expr);
1688 low = TREE_INT_CST_LOW (expr);
1690 /* First clear all bits that are beyond the type's precision in case
1691 we've been sign extended. */
1693 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1695 else if (prec > HOST_BITS_PER_WIDE_INT)
1696 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1697 else
1699 high = 0;
1700 if (prec < HOST_BITS_PER_WIDE_INT)
1701 low &= ~((HOST_WIDE_INT) (-1) << prec);
1704 if (high == 0 && low == 0)
1705 return 0;
1707 return ((high == 0 && (low & (low - 1)) == 0)
1708 || (low == 0 && (high & (high - 1)) == 0));
1711 /* Return the power of two represented by a tree node known to be a
1712 power of two. */
1715 tree_log2 (expr)
1716 tree expr;
1718 int prec;
1719 HOST_WIDE_INT high, low;
1721 STRIP_NOPS (expr);
1723 if (TREE_CODE (expr) == COMPLEX_CST)
1724 return tree_log2 (TREE_REALPART (expr));
1726 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1727 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1729 high = TREE_INT_CST_HIGH (expr);
1730 low = TREE_INT_CST_LOW (expr);
1732 /* First clear all bits that are beyond the type's precision in case
1733 we've been sign extended. */
1735 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1737 else if (prec > HOST_BITS_PER_WIDE_INT)
1738 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1739 else
1741 high = 0;
1742 if (prec < HOST_BITS_PER_WIDE_INT)
1743 low &= ~((HOST_WIDE_INT) (-1) << prec);
1746 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1747 : exact_log2 (low));
1750 /* Return 1 if EXPR is the real constant zero. */
1753 real_zerop (expr)
1754 tree expr;
1756 STRIP_NOPS (expr);
1758 return ((TREE_CODE (expr) == REAL_CST
1759 && ! TREE_CONSTANT_OVERFLOW (expr)
1760 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1761 || (TREE_CODE (expr) == COMPLEX_CST
1762 && real_zerop (TREE_REALPART (expr))
1763 && real_zerop (TREE_IMAGPART (expr))));
1766 /* Return 1 if EXPR is the real constant one in real or complex form. */
1769 real_onep (expr)
1770 tree expr;
1772 STRIP_NOPS (expr);
1774 return ((TREE_CODE (expr) == REAL_CST
1775 && ! TREE_CONSTANT_OVERFLOW (expr)
1776 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1777 || (TREE_CODE (expr) == COMPLEX_CST
1778 && real_onep (TREE_REALPART (expr))
1779 && real_zerop (TREE_IMAGPART (expr))));
1782 /* Return 1 if EXPR is the real constant two. */
1785 real_twop (expr)
1786 tree expr;
1788 STRIP_NOPS (expr);
1790 return ((TREE_CODE (expr) == REAL_CST
1791 && ! TREE_CONSTANT_OVERFLOW (expr)
1792 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1793 || (TREE_CODE (expr) == COMPLEX_CST
1794 && real_twop (TREE_REALPART (expr))
1795 && real_zerop (TREE_IMAGPART (expr))));
1798 /* Nonzero if EXP is a constant or a cast of a constant. */
1801 really_constant_p (exp)
1802 tree exp;
1804 /* This is not quite the same as STRIP_NOPS. It does more. */
1805 while (TREE_CODE (exp) == NOP_EXPR
1806 || TREE_CODE (exp) == CONVERT_EXPR
1807 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1808 exp = TREE_OPERAND (exp, 0);
1809 return TREE_CONSTANT (exp);
1812 /* Return first list element whose TREE_VALUE is ELEM.
1813 Return 0 if ELEM is not in LIST. */
1815 tree
1816 value_member (elem, list)
1817 tree elem, list;
1819 while (list)
1821 if (elem == TREE_VALUE (list))
1822 return list;
1823 list = TREE_CHAIN (list);
1825 return NULL_TREE;
1828 /* Return first list element whose TREE_PURPOSE is ELEM.
1829 Return 0 if ELEM is not in LIST. */
1831 tree
1832 purpose_member (elem, list)
1833 tree elem, list;
1835 while (list)
1837 if (elem == TREE_PURPOSE (list))
1838 return list;
1839 list = TREE_CHAIN (list);
1841 return NULL_TREE;
1844 /* Return first list element whose BINFO_TYPE is ELEM.
1845 Return 0 if ELEM is not in LIST. */
1847 tree
1848 binfo_member (elem, list)
1849 tree elem, list;
1851 while (list)
1853 if (elem == BINFO_TYPE (list))
1854 return list;
1855 list = TREE_CHAIN (list);
1857 return NULL_TREE;
1860 /* Return nonzero if ELEM is part of the chain CHAIN. */
1863 chain_member (elem, chain)
1864 tree elem, chain;
1866 while (chain)
1868 if (elem == chain)
1869 return 1;
1870 chain = TREE_CHAIN (chain);
1873 return 0;
1876 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1877 chain CHAIN. */
1878 /* ??? This function was added for machine specific attributes but is no
1879 longer used. It could be deleted if we could confirm all front ends
1880 don't use it. */
1883 chain_member_value (elem, chain)
1884 tree elem, chain;
1886 while (chain)
1888 if (elem == TREE_VALUE (chain))
1889 return 1;
1890 chain = TREE_CHAIN (chain);
1893 return 0;
1896 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1897 for any piece of chain CHAIN. */
1898 /* ??? This function was added for machine specific attributes but is no
1899 longer used. It could be deleted if we could confirm all front ends
1900 don't use it. */
1903 chain_member_purpose (elem, chain)
1904 tree elem, chain;
1906 while (chain)
1908 if (elem == TREE_PURPOSE (chain))
1909 return 1;
1910 chain = TREE_CHAIN (chain);
1913 return 0;
1916 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1917 We expect a null pointer to mark the end of the chain.
1918 This is the Lisp primitive `length'. */
1921 list_length (t)
1922 tree t;
1924 register tree tail;
1925 register int len = 0;
1927 for (tail = t; tail; tail = TREE_CHAIN (tail))
1928 len++;
1930 return len;
1933 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1934 by modifying the last node in chain 1 to point to chain 2.
1935 This is the Lisp primitive `nconc'. */
1937 tree
1938 chainon (op1, op2)
1939 tree op1, op2;
1942 if (op1)
1944 register tree t1;
1945 register tree t2;
1947 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1949 TREE_CHAIN (t1) = op2;
1950 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1951 if (t2 == t1)
1952 abort (); /* Circularity created. */
1953 return op1;
1955 else return op2;
1958 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1960 tree
1961 tree_last (chain)
1962 register tree chain;
1964 register tree next;
1965 if (chain)
1966 while (next = TREE_CHAIN (chain))
1967 chain = next;
1968 return chain;
1971 /* Reverse the order of elements in the chain T,
1972 and return the new head of the chain (old last element). */
1974 tree
1975 nreverse (t)
1976 tree t;
1978 register tree prev = 0, decl, next;
1979 for (decl = t; decl; decl = next)
1981 next = TREE_CHAIN (decl);
1982 TREE_CHAIN (decl) = prev;
1983 prev = decl;
1985 return prev;
1988 /* Given a chain CHAIN of tree nodes,
1989 construct and return a list of those nodes. */
1991 tree
1992 listify (chain)
1993 tree chain;
1995 tree result = NULL_TREE;
1996 tree in_tail = chain;
1997 tree out_tail = NULL_TREE;
1999 while (in_tail)
2001 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
2002 if (out_tail)
2003 TREE_CHAIN (out_tail) = next;
2004 else
2005 result = next;
2006 out_tail = next;
2007 in_tail = TREE_CHAIN (in_tail);
2010 return result;
2013 /* Return a newly created TREE_LIST node whose
2014 purpose and value fields are PARM and VALUE. */
2016 tree
2017 build_tree_list (parm, value)
2018 tree parm, value;
2020 register tree t = make_node (TREE_LIST);
2021 TREE_PURPOSE (t) = parm;
2022 TREE_VALUE (t) = value;
2023 return t;
2026 /* Similar, but build on the temp_decl_obstack. */
2028 tree
2029 build_decl_list (parm, value)
2030 tree parm, value;
2032 register tree node;
2033 register struct obstack *ambient_obstack = current_obstack;
2034 current_obstack = &temp_decl_obstack;
2035 node = build_tree_list (parm, value);
2036 current_obstack = ambient_obstack;
2037 return node;
2040 /* Similar, but build on the expression_obstack. */
2042 tree
2043 build_expr_list (parm, value)
2044 tree parm, value;
2046 register tree node;
2047 register struct obstack *ambient_obstack = current_obstack;
2048 current_obstack = expression_obstack;
2049 node = build_tree_list (parm, value);
2050 current_obstack = ambient_obstack;
2051 return node;
2054 /* Return a newly created TREE_LIST node whose
2055 purpose and value fields are PARM and VALUE
2056 and whose TREE_CHAIN is CHAIN. */
2058 tree
2059 tree_cons (purpose, value, chain)
2060 tree purpose, value, chain;
2062 #if 0
2063 register tree node = make_node (TREE_LIST);
2064 #else
2065 register int i;
2066 register tree node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2067 #ifdef GATHER_STATISTICS
2068 tree_node_counts[(int)x_kind]++;
2069 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2070 #endif
2072 for (i = (sizeof (struct tree_common) / sizeof (int)) - 1; i >= 0; i--)
2073 ((int *) node)[i] = 0;
2075 TREE_SET_CODE (node, TREE_LIST);
2076 if (current_obstack == &permanent_obstack)
2077 TREE_PERMANENT (node) = 1;
2078 #endif
2080 TREE_CHAIN (node) = chain;
2081 TREE_PURPOSE (node) = purpose;
2082 TREE_VALUE (node) = value;
2083 return node;
2086 /* Similar, but build on the temp_decl_obstack. */
2088 tree
2089 decl_tree_cons (purpose, value, chain)
2090 tree purpose, value, chain;
2092 register tree node;
2093 register struct obstack *ambient_obstack = current_obstack;
2094 current_obstack = &temp_decl_obstack;
2095 node = tree_cons (purpose, value, chain);
2096 current_obstack = ambient_obstack;
2097 return node;
2100 /* Similar, but build on the expression_obstack. */
2102 tree
2103 expr_tree_cons (purpose, value, chain)
2104 tree purpose, value, chain;
2106 register tree node;
2107 register struct obstack *ambient_obstack = current_obstack;
2108 current_obstack = expression_obstack;
2109 node = tree_cons (purpose, value, chain);
2110 current_obstack = ambient_obstack;
2111 return node;
2114 /* Same as `tree_cons' but make a permanent object. */
2116 tree
2117 perm_tree_cons (purpose, value, chain)
2118 tree purpose, value, chain;
2120 register tree node;
2121 register struct obstack *ambient_obstack = current_obstack;
2122 current_obstack = &permanent_obstack;
2124 node = tree_cons (purpose, value, chain);
2125 current_obstack = ambient_obstack;
2126 return node;
2129 /* Same as `tree_cons', but make this node temporary, regardless. */
2131 tree
2132 temp_tree_cons (purpose, value, chain)
2133 tree purpose, value, chain;
2135 register tree node;
2136 register struct obstack *ambient_obstack = current_obstack;
2137 current_obstack = &temporary_obstack;
2139 node = tree_cons (purpose, value, chain);
2140 current_obstack = ambient_obstack;
2141 return node;
2144 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2146 tree
2147 saveable_tree_cons (purpose, value, chain)
2148 tree purpose, value, chain;
2150 register tree node;
2151 register struct obstack *ambient_obstack = current_obstack;
2152 current_obstack = saveable_obstack;
2154 node = tree_cons (purpose, value, chain);
2155 current_obstack = ambient_obstack;
2156 return node;
2159 /* Return the size nominally occupied by an object of type TYPE
2160 when it resides in memory. The value is measured in units of bytes,
2161 and its data type is that normally used for type sizes
2162 (which is the first type created by make_signed_type or
2163 make_unsigned_type). */
2165 tree
2166 size_in_bytes (type)
2167 tree type;
2169 tree t;
2171 if (type == error_mark_node)
2172 return integer_zero_node;
2173 type = TYPE_MAIN_VARIANT (type);
2174 if (TYPE_SIZE (type) == 0)
2176 incomplete_type_error (NULL_TREE, type);
2177 return integer_zero_node;
2179 t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
2180 size_int (BITS_PER_UNIT));
2181 if (TREE_CODE (t) == INTEGER_CST)
2182 force_fit_type (t, 0);
2183 return t;
2186 /* Return the size of TYPE (in bytes) as a wide integer
2187 or return -1 if the size can vary or is larger than an integer. */
2189 HOST_WIDE_INT
2190 int_size_in_bytes (type)
2191 tree type;
2193 tree t;
2195 if (type == error_mark_node)
2196 return 0;
2198 type = TYPE_MAIN_VARIANT (type);
2199 if (TYPE_SIZE (type) == 0
2200 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2201 return -1;
2203 if (TREE_INT_CST_HIGH (TYPE_SIZE (type)) == 0)
2204 return ((TREE_INT_CST_LOW (TYPE_SIZE (type)) + BITS_PER_UNIT - 1)
2205 / BITS_PER_UNIT);
2207 t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type), size_int (BITS_PER_UNIT));
2208 if (TREE_CODE (t) != INTEGER_CST || TREE_INT_CST_HIGH (t) != 0)
2209 return -1;
2211 return TREE_INT_CST_LOW (t);
2214 /* Return, as a tree node, the number of elements for TYPE (which is an
2215 ARRAY_TYPE) minus one. This counts only elements of the top array.
2217 Don't let any SAVE_EXPRs escape; if we are called as part of a cleanup
2218 action, they would get unsaved. */
2220 tree
2221 array_type_nelts (type)
2222 tree type;
2224 tree index_type, min, max;
2226 /* If they did it with unspecified bounds, then we should have already
2227 given an error about it before we got here. */
2228 if (! TYPE_DOMAIN (type))
2229 return error_mark_node;
2231 index_type = TYPE_DOMAIN (type);
2232 min = TYPE_MIN_VALUE (index_type);
2233 max = TYPE_MAX_VALUE (index_type);
2235 if (! TREE_CONSTANT (min))
2237 STRIP_NOPS (min);
2238 if (TREE_CODE (min) == SAVE_EXPR)
2239 min = build (RTL_EXPR, TREE_TYPE (TYPE_MIN_VALUE (index_type)), 0,
2240 SAVE_EXPR_RTL (min));
2241 else
2242 min = TYPE_MIN_VALUE (index_type);
2245 if (! TREE_CONSTANT (max))
2247 STRIP_NOPS (max);
2248 if (TREE_CODE (max) == SAVE_EXPR)
2249 max = build (RTL_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)), 0,
2250 SAVE_EXPR_RTL (max));
2251 else
2252 max = TYPE_MAX_VALUE (index_type);
2255 return (integer_zerop (min)
2256 ? max
2257 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2260 /* Return nonzero if arg is static -- a reference to an object in
2261 static storage. This is not the same as the C meaning of `static'. */
2264 staticp (arg)
2265 tree arg;
2267 switch (TREE_CODE (arg))
2269 case FUNCTION_DECL:
2270 /* Nested functions aren't static, since taking their address
2271 involves a trampoline. */
2272 return decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg);
2273 case VAR_DECL:
2274 return TREE_STATIC (arg) || DECL_EXTERNAL (arg);
2276 case CONSTRUCTOR:
2277 return TREE_STATIC (arg);
2279 case STRING_CST:
2280 return 1;
2282 /* If we are referencing a bitfield, we can't evaluate an
2283 ADDR_EXPR at compile time and so it isn't a constant. */
2284 case COMPONENT_REF:
2285 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2286 && staticp (TREE_OPERAND (arg, 0)));
2288 case BIT_FIELD_REF:
2289 return 0;
2291 #if 0
2292 /* This case is technically correct, but results in setting
2293 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2294 compile time. */
2295 case INDIRECT_REF:
2296 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2297 #endif
2299 case ARRAY_REF:
2300 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2301 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2302 return staticp (TREE_OPERAND (arg, 0));
2304 default:
2305 return 0;
2309 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2310 Do this to any expression which may be used in more than one place,
2311 but must be evaluated only once.
2313 Normally, expand_expr would reevaluate the expression each time.
2314 Calling save_expr produces something that is evaluated and recorded
2315 the first time expand_expr is called on it. Subsequent calls to
2316 expand_expr just reuse the recorded value.
2318 The call to expand_expr that generates code that actually computes
2319 the value is the first call *at compile time*. Subsequent calls
2320 *at compile time* generate code to use the saved value.
2321 This produces correct result provided that *at run time* control
2322 always flows through the insns made by the first expand_expr
2323 before reaching the other places where the save_expr was evaluated.
2324 You, the caller of save_expr, must make sure this is so.
2326 Constants, and certain read-only nodes, are returned with no
2327 SAVE_EXPR because that is safe. Expressions containing placeholders
2328 are not touched; see tree.def for an explanation of what these
2329 are used for. */
2331 tree
2332 save_expr (expr)
2333 tree expr;
2335 register tree t = fold (expr);
2337 /* We don't care about whether this can be used as an lvalue in this
2338 context. */
2339 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2340 t = TREE_OPERAND (t, 0);
2342 /* If the tree evaluates to a constant, then we don't want to hide that
2343 fact (i.e. this allows further folding, and direct checks for constants).
2344 However, a read-only object that has side effects cannot be bypassed.
2345 Since it is no problem to reevaluate literals, we just return the
2346 literal node. */
2348 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2349 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2350 return t;
2352 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2353 it means that the size or offset of some field of an object depends on
2354 the value within another field.
2356 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2357 and some variable since it would then need to be both evaluated once and
2358 evaluated more than once. Front-ends must assure this case cannot
2359 happen by surrounding any such subexpressions in their own SAVE_EXPR
2360 and forcing evaluation at the proper time. */
2361 if (contains_placeholder_p (t))
2362 return t;
2364 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2366 /* This expression might be placed ahead of a jump to ensure that the
2367 value was computed on both sides of the jump. So make sure it isn't
2368 eliminated as dead. */
2369 TREE_SIDE_EFFECTS (t) = 1;
2370 return t;
2373 /* Arrange for an expression to be expanded multiple independent
2374 times. This is useful for cleanup actions, as the backend can
2375 expand them multiple times in different places. */
2377 tree
2378 unsave_expr (expr)
2379 tree expr;
2381 tree t;
2383 /* If this is already protected, no sense in protecting it again. */
2384 if (TREE_CODE (expr) == UNSAVE_EXPR)
2385 return expr;
2387 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2388 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2389 return t;
2392 /* Modify a tree in place so that all the evaluate only once things
2393 are cleared out. Return the EXPR given. */
2395 tree
2396 unsave_expr_now (expr)
2397 tree expr;
2399 enum tree_code code;
2400 register int i;
2401 int first_rtl;
2403 if (expr == NULL_TREE)
2404 return expr;
2406 code = TREE_CODE (expr);
2407 first_rtl = tree_code_length [(int) code];
2408 switch (code)
2410 case SAVE_EXPR:
2411 SAVE_EXPR_RTL (expr) = 0;
2412 first_rtl = 2;
2413 break;
2415 case TARGET_EXPR:
2416 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2417 TREE_OPERAND (expr, 3) = NULL_TREE;
2418 break;
2420 case RTL_EXPR:
2421 /* I don't yet know how to emit a sequence multiple times. */
2422 if (RTL_EXPR_SEQUENCE (expr) != 0)
2423 abort ();
2424 first_rtl = 0;
2425 break;
2427 case CALL_EXPR:
2428 CALL_EXPR_RTL (expr) = 0;
2429 if (TREE_OPERAND (expr, 1)
2430 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2432 tree exp = TREE_OPERAND (expr, 1);
2433 while (exp)
2435 unsave_expr_now (TREE_VALUE (exp));
2436 exp = TREE_CHAIN (exp);
2439 first_rtl = 2;
2440 break;
2442 case WITH_CLEANUP_EXPR:
2443 /* Should be defined to be 2. */
2444 first_rtl = 1;
2445 break;
2447 case METHOD_CALL_EXPR:
2448 first_rtl = 3;
2449 break;
2451 default:
2452 break;
2455 switch (TREE_CODE_CLASS (code))
2457 case 'c': /* a constant */
2458 case 't': /* a type node */
2459 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2460 case 'd': /* A decl node */
2461 case 'b': /* A block node */
2462 return expr;
2464 case 'e': /* an expression */
2465 case 'r': /* a reference */
2466 case 's': /* an expression with side effects */
2467 case '<': /* a comparison expression */
2468 case '2': /* a binary arithmetic expression */
2469 case '1': /* a unary arithmetic expression */
2470 for (i = first_rtl - 1; i >= 0; i--)
2471 unsave_expr_now (TREE_OPERAND (expr, i));
2472 return expr;
2474 default:
2475 abort ();
2479 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2480 or offset that depends on a field within a record. */
2483 contains_placeholder_p (exp)
2484 tree exp;
2486 register enum tree_code code = TREE_CODE (exp);
2487 int result;
2489 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2490 in it since it is supplying a value for it. */
2491 if (code == WITH_RECORD_EXPR)
2492 return 0;
2493 else if (code == PLACEHOLDER_EXPR)
2494 return 1;
2496 switch (TREE_CODE_CLASS (code))
2498 case 'r':
2499 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2500 position computations since they will be converted into a
2501 WITH_RECORD_EXPR involving the reference, which will assume
2502 here will be valid. */
2503 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2505 case 'x':
2506 if (code == TREE_LIST)
2507 return (contains_placeholder_p (TREE_VALUE (exp))
2508 || (TREE_CHAIN (exp) != 0
2509 && contains_placeholder_p (TREE_CHAIN (exp))));
2510 break;
2512 case '1':
2513 case '2': case '<':
2514 case 'e':
2515 switch (code)
2517 case COMPOUND_EXPR:
2518 /* Ignoring the first operand isn't quite right, but works best. */
2519 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2521 case RTL_EXPR:
2522 case CONSTRUCTOR:
2523 return 0;
2525 case COND_EXPR:
2526 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2527 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2528 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2530 case SAVE_EXPR:
2531 /* If we already know this doesn't have a placeholder, don't
2532 check again. */
2533 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2534 return 0;
2536 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2537 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2538 if (result)
2539 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2541 return result;
2543 case CALL_EXPR:
2544 return (TREE_OPERAND (exp, 1) != 0
2545 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2547 default:
2548 break;
2551 switch (tree_code_length[(int) code])
2553 case 1:
2554 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2555 case 2:
2556 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2557 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2558 default:
2559 return 0;
2562 default:
2563 return 0;
2567 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2568 return a tree with all occurrences of references to F in a
2569 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2570 contains only arithmetic expressions or a CALL_EXPR with a
2571 PLACEHOLDER_EXPR occurring only in its arglist. */
2573 tree
2574 substitute_in_expr (exp, f, r)
2575 tree exp;
2576 tree f;
2577 tree r;
2579 enum tree_code code = TREE_CODE (exp);
2580 tree op0, op1, op2;
2581 tree new;
2582 tree inner;
2584 switch (TREE_CODE_CLASS (code))
2586 case 'c':
2587 case 'd':
2588 return exp;
2590 case 'x':
2591 if (code == PLACEHOLDER_EXPR)
2592 return exp;
2593 else if (code == TREE_LIST)
2595 op0 = (TREE_CHAIN (exp) == 0
2596 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2597 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2598 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2599 return exp;
2601 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2604 abort ();
2606 case '1':
2607 case '2':
2608 case '<':
2609 case 'e':
2610 switch (tree_code_length[(int) code])
2612 case 1:
2613 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2614 if (op0 == TREE_OPERAND (exp, 0))
2615 return exp;
2617 new = fold (build1 (code, TREE_TYPE (exp), op0));
2618 break;
2620 case 2:
2621 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2622 could, but we don't support it. */
2623 if (code == RTL_EXPR)
2624 return exp;
2625 else if (code == CONSTRUCTOR)
2626 abort ();
2628 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2629 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2630 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2631 return exp;
2633 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2634 break;
2636 case 3:
2637 /* It cannot be that anything inside a SAVE_EXPR contains a
2638 PLACEHOLDER_EXPR. */
2639 if (code == SAVE_EXPR)
2640 return exp;
2642 else if (code == CALL_EXPR)
2644 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2645 if (op1 == TREE_OPERAND (exp, 1))
2646 return exp;
2648 return build (code, TREE_TYPE (exp),
2649 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2652 else if (code != COND_EXPR)
2653 abort ();
2655 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2656 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2657 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2658 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2659 && op2 == TREE_OPERAND (exp, 2))
2660 return exp;
2662 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2663 break;
2665 default:
2666 abort ();
2669 break;
2671 case 'r':
2672 switch (code)
2674 case COMPONENT_REF:
2675 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2676 and it is the right field, replace it with R. */
2677 for (inner = TREE_OPERAND (exp, 0);
2678 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2679 inner = TREE_OPERAND (inner, 0))
2681 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2682 && TREE_OPERAND (exp, 1) == f)
2683 return r;
2685 /* If this expression hasn't been completed let, leave it
2686 alone. */
2687 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2688 && TREE_TYPE (inner) == 0)
2689 return exp;
2691 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2692 if (op0 == TREE_OPERAND (exp, 0))
2693 return exp;
2695 new = fold (build (code, TREE_TYPE (exp), op0,
2696 TREE_OPERAND (exp, 1)));
2697 break;
2699 case BIT_FIELD_REF:
2700 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2701 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2702 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2703 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2704 && op2 == TREE_OPERAND (exp, 2))
2705 return exp;
2707 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2708 break;
2710 case INDIRECT_REF:
2711 case BUFFER_REF:
2712 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2713 if (op0 == TREE_OPERAND (exp, 0))
2714 return exp;
2716 new = fold (build1 (code, TREE_TYPE (exp), op0));
2717 break;
2719 default:
2720 abort ();
2722 break;
2724 default:
2725 abort ();
2728 TREE_READONLY (new) = TREE_READONLY (exp);
2729 return new;
2732 /* Stabilize a reference so that we can use it any number of times
2733 without causing its operands to be evaluated more than once.
2734 Returns the stabilized reference. This works by means of save_expr,
2735 so see the caveats in the comments about save_expr.
2737 Also allows conversion expressions whose operands are references.
2738 Any other kind of expression is returned unchanged. */
2740 tree
2741 stabilize_reference (ref)
2742 tree ref;
2744 register tree result;
2745 register enum tree_code code = TREE_CODE (ref);
2747 switch (code)
2749 case VAR_DECL:
2750 case PARM_DECL:
2751 case RESULT_DECL:
2752 /* No action is needed in this case. */
2753 return ref;
2755 case NOP_EXPR:
2756 case CONVERT_EXPR:
2757 case FLOAT_EXPR:
2758 case FIX_TRUNC_EXPR:
2759 case FIX_FLOOR_EXPR:
2760 case FIX_ROUND_EXPR:
2761 case FIX_CEIL_EXPR:
2762 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2763 break;
2765 case INDIRECT_REF:
2766 result = build_nt (INDIRECT_REF,
2767 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2768 break;
2770 case COMPONENT_REF:
2771 result = build_nt (COMPONENT_REF,
2772 stabilize_reference (TREE_OPERAND (ref, 0)),
2773 TREE_OPERAND (ref, 1));
2774 break;
2776 case BIT_FIELD_REF:
2777 result = build_nt (BIT_FIELD_REF,
2778 stabilize_reference (TREE_OPERAND (ref, 0)),
2779 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2780 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2781 break;
2783 case ARRAY_REF:
2784 result = build_nt (ARRAY_REF,
2785 stabilize_reference (TREE_OPERAND (ref, 0)),
2786 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2787 break;
2789 case COMPOUND_EXPR:
2790 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2791 it wouldn't be ignored. This matters when dealing with
2792 volatiles. */
2793 return stabilize_reference_1 (ref);
2795 case RTL_EXPR:
2796 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2797 save_expr (build1 (ADDR_EXPR,
2798 build_pointer_type (TREE_TYPE (ref)),
2799 ref)));
2800 break;
2803 /* If arg isn't a kind of lvalue we recognize, make no change.
2804 Caller should recognize the error for an invalid lvalue. */
2805 default:
2806 return ref;
2808 case ERROR_MARK:
2809 return error_mark_node;
2812 TREE_TYPE (result) = TREE_TYPE (ref);
2813 TREE_READONLY (result) = TREE_READONLY (ref);
2814 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2815 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2816 TREE_RAISES (result) = TREE_RAISES (ref);
2818 return result;
2821 /* Subroutine of stabilize_reference; this is called for subtrees of
2822 references. Any expression with side-effects must be put in a SAVE_EXPR
2823 to ensure that it is only evaluated once.
2825 We don't put SAVE_EXPR nodes around everything, because assigning very
2826 simple expressions to temporaries causes us to miss good opportunities
2827 for optimizations. Among other things, the opportunity to fold in the
2828 addition of a constant into an addressing mode often gets lost, e.g.
2829 "y[i+1] += x;". In general, we take the approach that we should not make
2830 an assignment unless we are forced into it - i.e., that any non-side effect
2831 operator should be allowed, and that cse should take care of coalescing
2832 multiple utterances of the same expression should that prove fruitful. */
2834 tree
2835 stabilize_reference_1 (e)
2836 tree e;
2838 register tree result;
2839 register enum tree_code code = TREE_CODE (e);
2841 /* We cannot ignore const expressions because it might be a reference
2842 to a const array but whose index contains side-effects. But we can
2843 ignore things that are actual constant or that already have been
2844 handled by this function. */
2846 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2847 return e;
2849 switch (TREE_CODE_CLASS (code))
2851 case 'x':
2852 case 't':
2853 case 'd':
2854 case 'b':
2855 case '<':
2856 case 's':
2857 case 'e':
2858 case 'r':
2859 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2860 so that it will only be evaluated once. */
2861 /* The reference (r) and comparison (<) classes could be handled as
2862 below, but it is generally faster to only evaluate them once. */
2863 if (TREE_SIDE_EFFECTS (e))
2864 return save_expr (e);
2865 return e;
2867 case 'c':
2868 /* Constants need no processing. In fact, we should never reach
2869 here. */
2870 return e;
2872 case '2':
2873 /* Division is slow and tends to be compiled with jumps,
2874 especially the division by powers of 2 that is often
2875 found inside of an array reference. So do it just once. */
2876 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2877 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2878 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2879 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2880 return save_expr (e);
2881 /* Recursively stabilize each operand. */
2882 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2883 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2884 break;
2886 case '1':
2887 /* Recursively stabilize each operand. */
2888 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2889 break;
2891 default:
2892 abort ();
2895 TREE_TYPE (result) = TREE_TYPE (e);
2896 TREE_READONLY (result) = TREE_READONLY (e);
2897 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2898 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2899 TREE_RAISES (result) = TREE_RAISES (e);
2901 return result;
2904 /* Low-level constructors for expressions. */
2906 /* Build an expression of code CODE, data type TYPE,
2907 and operands as specified by the arguments ARG1 and following arguments.
2908 Expressions and reference nodes can be created this way.
2909 Constants, decls, types and misc nodes cannot be. */
2911 tree
2912 build VPROTO((enum tree_code code, tree tt, ...))
2914 #ifndef ANSI_PROTOTYPES
2915 enum tree_code code;
2916 tree tt;
2917 #endif
2918 va_list p;
2919 register tree t;
2920 register int length;
2921 register int i;
2923 VA_START (p, tt);
2925 #ifndef ANSI_PROTOTYPES
2926 code = va_arg (p, enum tree_code);
2927 tt = va_arg (p, tree);
2928 #endif
2930 t = make_node (code);
2931 length = tree_code_length[(int) code];
2932 TREE_TYPE (t) = tt;
2934 if (length == 2)
2936 /* This is equivalent to the loop below, but faster. */
2937 register tree arg0 = va_arg (p, tree);
2938 register tree arg1 = va_arg (p, tree);
2939 TREE_OPERAND (t, 0) = arg0;
2940 TREE_OPERAND (t, 1) = arg1;
2941 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
2942 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
2943 TREE_SIDE_EFFECTS (t) = 1;
2944 TREE_RAISES (t)
2945 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
2947 else if (length == 1)
2949 register tree arg0 = va_arg (p, tree);
2951 /* Call build1 for this! */
2952 if (TREE_CODE_CLASS (code) != 's')
2953 abort ();
2954 TREE_OPERAND (t, 0) = arg0;
2955 if (arg0 && TREE_SIDE_EFFECTS (arg0))
2956 TREE_SIDE_EFFECTS (t) = 1;
2957 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
2959 else
2961 for (i = 0; i < length; i++)
2963 register tree operand = va_arg (p, tree);
2964 TREE_OPERAND (t, i) = operand;
2965 if (operand)
2967 if (TREE_SIDE_EFFECTS (operand))
2968 TREE_SIDE_EFFECTS (t) = 1;
2969 if (TREE_RAISES (operand))
2970 TREE_RAISES (t) = 1;
2974 va_end (p);
2975 return t;
2978 /* Same as above, but only builds for unary operators.
2979 Saves lions share of calls to `build'; cuts down use
2980 of varargs, which is expensive for RISC machines. */
2982 tree
2983 build1 (code, type, node)
2984 enum tree_code code;
2985 tree type;
2986 tree node;
2988 register struct obstack *obstack = expression_obstack;
2989 register int i, length;
2990 register tree_node_kind kind;
2991 register tree t;
2993 #ifdef GATHER_STATISTICS
2994 if (TREE_CODE_CLASS (code) == 'r')
2995 kind = r_kind;
2996 else
2997 kind = e_kind;
2998 #endif
3000 length = sizeof (struct tree_exp);
3002 t = (tree) obstack_alloc (obstack, length);
3004 #ifdef GATHER_STATISTICS
3005 tree_node_counts[(int)kind]++;
3006 tree_node_sizes[(int)kind] += length;
3007 #endif
3009 for (i = (length / sizeof (int)) - 1; i >= 0; i--)
3010 ((int *) t)[i] = 0;
3012 TREE_TYPE (t) = type;
3013 TREE_SET_CODE (t, code);
3015 if (obstack == &permanent_obstack)
3016 TREE_PERMANENT (t) = 1;
3018 TREE_OPERAND (t, 0) = node;
3019 if (node)
3021 if (TREE_SIDE_EFFECTS (node))
3022 TREE_SIDE_EFFECTS (t) = 1;
3023 if (TREE_RAISES (node))
3024 TREE_RAISES (t) = 1;
3027 return t;
3030 /* Similar except don't specify the TREE_TYPE
3031 and leave the TREE_SIDE_EFFECTS as 0.
3032 It is permissible for arguments to be null,
3033 or even garbage if their values do not matter. */
3035 tree
3036 build_nt VPROTO((enum tree_code code, ...))
3038 #ifndef ANSI_PROTOTYPES
3039 enum tree_code code;
3040 #endif
3041 va_list p;
3042 register tree t;
3043 register int length;
3044 register int i;
3046 VA_START (p, code);
3048 #ifndef ANSI_PROTOTYPES
3049 code = va_arg (p, enum tree_code);
3050 #endif
3052 t = make_node (code);
3053 length = tree_code_length[(int) code];
3055 for (i = 0; i < length; i++)
3056 TREE_OPERAND (t, i) = va_arg (p, tree);
3058 va_end (p);
3059 return t;
3062 /* Similar to `build_nt', except we build
3063 on the temp_decl_obstack, regardless. */
3065 tree
3066 build_parse_node VPROTO((enum tree_code code, ...))
3068 #ifndef ANSI_PROTOTYPES
3069 enum tree_code code;
3070 #endif
3071 register struct obstack *ambient_obstack = expression_obstack;
3072 va_list p;
3073 register tree t;
3074 register int length;
3075 register int i;
3077 VA_START (p, code);
3079 #ifndef ANSI_PROTOTYPES
3080 code = va_arg (p, enum tree_code);
3081 #endif
3083 expression_obstack = &temp_decl_obstack;
3085 t = make_node (code);
3086 length = tree_code_length[(int) code];
3088 for (i = 0; i < length; i++)
3089 TREE_OPERAND (t, i) = va_arg (p, tree);
3091 va_end (p);
3092 expression_obstack = ambient_obstack;
3093 return t;
3096 #if 0
3097 /* Commented out because this wants to be done very
3098 differently. See cp-lex.c. */
3099 tree
3100 build_op_identifier (op1, op2)
3101 tree op1, op2;
3103 register tree t = make_node (OP_IDENTIFIER);
3104 TREE_PURPOSE (t) = op1;
3105 TREE_VALUE (t) = op2;
3106 return t;
3108 #endif
3110 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3111 We do NOT enter this node in any sort of symbol table.
3113 layout_decl is used to set up the decl's storage layout.
3114 Other slots are initialized to 0 or null pointers. */
3116 tree
3117 build_decl (code, name, type)
3118 enum tree_code code;
3119 tree name, type;
3121 register tree t;
3123 t = make_node (code);
3125 /* if (type == error_mark_node)
3126 type = integer_type_node; */
3127 /* That is not done, deliberately, so that having error_mark_node
3128 as the type can suppress useless errors in the use of this variable. */
3130 DECL_NAME (t) = name;
3131 DECL_ASSEMBLER_NAME (t) = name;
3132 TREE_TYPE (t) = type;
3134 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3135 layout_decl (t, 0);
3136 else if (code == FUNCTION_DECL)
3137 DECL_MODE (t) = FUNCTION_MODE;
3139 return t;
3142 /* BLOCK nodes are used to represent the structure of binding contours
3143 and declarations, once those contours have been exited and their contents
3144 compiled. This information is used for outputting debugging info. */
3146 tree
3147 build_block (vars, tags, subblocks, supercontext, chain)
3148 tree vars, tags, subblocks, supercontext, chain;
3150 register tree block = make_node (BLOCK);
3151 BLOCK_VARS (block) = vars;
3152 BLOCK_TYPE_TAGS (block) = tags;
3153 BLOCK_SUBBLOCKS (block) = subblocks;
3154 BLOCK_SUPERCONTEXT (block) = supercontext;
3155 BLOCK_CHAIN (block) = chain;
3156 return block;
3159 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3160 is ATTRIBUTE. */
3162 tree
3163 build_decl_attribute_variant (ddecl, attribute)
3164 tree ddecl, attribute;
3166 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3167 return ddecl;
3170 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3171 is ATTRIBUTE.
3173 Record such modified types already made so we don't make duplicates. */
3175 tree
3176 build_type_attribute_variant (ttype, attribute)
3177 tree ttype, attribute;
3179 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3181 register int hashcode;
3182 register struct obstack *ambient_obstack = current_obstack;
3183 tree ntype;
3185 if (ambient_obstack != &permanent_obstack)
3186 current_obstack = TYPE_OBSTACK (ttype);
3188 ntype = copy_node (ttype);
3189 current_obstack = ambient_obstack;
3191 TYPE_POINTER_TO (ntype) = 0;
3192 TYPE_REFERENCE_TO (ntype) = 0;
3193 TYPE_ATTRIBUTES (ntype) = attribute;
3195 /* Create a new main variant of TYPE. */
3196 TYPE_MAIN_VARIANT (ntype) = ntype;
3197 TYPE_NEXT_VARIANT (ntype) = 0;
3198 TYPE_READONLY (ntype) = TYPE_VOLATILE (ntype) = 0;
3200 hashcode = TYPE_HASH (TREE_CODE (ntype))
3201 + TYPE_HASH (TREE_TYPE (ntype))
3202 + attribute_hash_list (attribute);
3204 switch (TREE_CODE (ntype))
3206 case FUNCTION_TYPE:
3207 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3208 break;
3209 case ARRAY_TYPE:
3210 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3211 break;
3212 case INTEGER_TYPE:
3213 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3214 break;
3215 case REAL_TYPE:
3216 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3217 break;
3218 default:
3219 break;
3222 ntype = type_hash_canon (hashcode, ntype);
3223 ttype = build_type_variant (ntype, TYPE_READONLY (ttype),
3224 TYPE_VOLATILE (ttype));
3227 return ttype;
3230 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3231 or type TYPE and 0 otherwise. Validity is determined the configuration
3232 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3235 valid_machine_attribute (attr_name, attr_args, decl, type)
3236 tree attr_name, attr_args;
3237 tree decl;
3238 tree type;
3240 int validated = 0;
3241 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3242 tree type_attr_list = TYPE_ATTRIBUTES (type);
3244 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3245 abort ();
3247 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3248 if (decl != 0
3249 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
3251 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3252 decl_attr_list);
3254 if (attr != NULL_TREE)
3256 /* Override existing arguments. Declarations are unique so we can
3257 modify this in place. */
3258 TREE_VALUE (attr) = attr_args;
3260 else
3262 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3263 decl = build_decl_attribute_variant (decl, decl_attr_list);
3266 validated = 1;
3268 #endif
3270 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3271 if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name, attr_args))
3273 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3274 type_attr_list);
3276 if (attr != NULL_TREE)
3278 /* Override existing arguments.
3279 ??? This currently works since attribute arguments are not
3280 included in `attribute_hash_list'. Something more complicated
3281 may be needed in the future. */
3282 TREE_VALUE (attr) = attr_args;
3284 else
3286 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3287 type = build_type_attribute_variant (type, type_attr_list);
3289 if (decl != 0)
3290 TREE_TYPE (decl) = type;
3291 validated = 1;
3294 /* Handle putting a type attribute on pointer-to-function-type by putting
3295 the attribute on the function type. */
3296 else if (POINTER_TYPE_P (type)
3297 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3298 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3299 attr_name, attr_args))
3301 tree inner_type = TREE_TYPE (type);
3302 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3303 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3304 type_attr_list);
3306 if (attr != NULL_TREE)
3307 TREE_VALUE (attr) = attr_args;
3308 else
3310 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3311 inner_type = build_type_attribute_variant (inner_type,
3312 inner_attr_list);
3315 if (decl != 0)
3316 TREE_TYPE (decl) = build_pointer_type (inner_type);
3318 validated = 1;
3320 #endif
3322 return validated;
3325 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3326 or zero if not.
3328 We try both `text' and `__text__', ATTR may be either one. */
3329 /* ??? It might be a reasonable simplification to require ATTR to be only
3330 `text'. One might then also require attribute lists to be stored in
3331 their canonicalized form. */
3334 is_attribute_p (attr, ident)
3335 char *attr;
3336 tree ident;
3338 int ident_len, attr_len;
3339 char *p;
3341 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3342 return 0;
3344 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3345 return 1;
3347 p = IDENTIFIER_POINTER (ident);
3348 ident_len = strlen (p);
3349 attr_len = strlen (attr);
3351 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3352 if (attr[0] == '_')
3354 if (attr[1] != '_'
3355 || attr[attr_len - 2] != '_'
3356 || attr[attr_len - 1] != '_')
3357 abort ();
3358 if (ident_len == attr_len - 4
3359 && strncmp (attr + 2, p, attr_len - 4) == 0)
3360 return 1;
3362 else
3364 if (ident_len == attr_len + 4
3365 && p[0] == '_' && p[1] == '_'
3366 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3367 && strncmp (attr, p + 2, attr_len) == 0)
3368 return 1;
3371 return 0;
3374 /* Given an attribute name and a list of attributes, return a pointer to the
3375 attribute's list element if the attribute is part of the list, or NULL_TREE
3376 if not found. */
3378 tree
3379 lookup_attribute (attr_name, list)
3380 char *attr_name;
3381 tree list;
3383 tree l;
3385 for (l = list; l; l = TREE_CHAIN (l))
3387 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3388 abort ();
3389 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3390 return l;
3393 return NULL_TREE;
3396 /* Return an attribute list that is the union of a1 and a2. */
3398 tree
3399 merge_attributes (a1, a2)
3400 register tree a1, a2;
3402 tree attributes;
3404 /* Either one unset? Take the set one. */
3406 if (! (attributes = a1))
3407 attributes = a2;
3409 /* One that completely contains the other? Take it. */
3411 else if (a2 && ! attribute_list_contained (a1, a2))
3412 if (attribute_list_contained (a2, a1))
3413 attributes = a2;
3414 else
3416 /* Pick the longest list, and hang on the other list. */
3417 /* ??? For the moment we punt on the issue of attrs with args. */
3419 if (list_length (a1) < list_length (a2))
3420 attributes = a2, a2 = a1;
3422 for (; a2; a2 = TREE_CHAIN (a2))
3423 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3424 attributes) == NULL_TREE)
3426 a1 = copy_node (a2);
3427 TREE_CHAIN (a1) = attributes;
3428 attributes = a1;
3431 return attributes;
3434 /* Return a type like TYPE except that its TYPE_READONLY is CONSTP
3435 and its TYPE_VOLATILE is VOLATILEP.
3437 Such variant types already made are recorded so that duplicates
3438 are not made.
3440 A variant types should never be used as the type of an expression.
3441 Always copy the variant information into the TREE_READONLY
3442 and TREE_THIS_VOLATILE of the expression, and then give the expression
3443 as its type the "main variant", the variant whose TYPE_READONLY
3444 and TYPE_VOLATILE are zero. Use TYPE_MAIN_VARIANT to find the
3445 main variant. */
3447 tree
3448 build_type_variant (type, constp, volatilep)
3449 tree type;
3450 int constp, volatilep;
3452 register tree t;
3454 /* Treat any nonzero argument as 1. */
3455 constp = !!constp;
3456 volatilep = !!volatilep;
3458 /* Search the chain of variants to see if there is already one there just
3459 like the one we need to have. If so, use that existing one. We must
3460 preserve the TYPE_NAME, since there is code that depends on this. */
3462 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3463 if (constp == TYPE_READONLY (t) && volatilep == TYPE_VOLATILE (t)
3464 && TYPE_NAME (t) == TYPE_NAME (type))
3465 return t;
3467 /* We need a new one. */
3469 t = build_type_copy (type);
3470 TYPE_READONLY (t) = constp;
3471 TYPE_VOLATILE (t) = volatilep;
3473 return t;
3476 /* Create a new variant of TYPE, equivalent but distinct.
3477 This is so the caller can modify it. */
3479 tree
3480 build_type_copy (type)
3481 tree type;
3483 register tree t, m = TYPE_MAIN_VARIANT (type);
3484 register struct obstack *ambient_obstack = current_obstack;
3486 current_obstack = TYPE_OBSTACK (type);
3487 t = copy_node (type);
3488 current_obstack = ambient_obstack;
3490 TYPE_POINTER_TO (t) = 0;
3491 TYPE_REFERENCE_TO (t) = 0;
3493 /* Add this type to the chain of variants of TYPE. */
3494 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3495 TYPE_NEXT_VARIANT (m) = t;
3497 return t;
3500 /* Hashing of types so that we don't make duplicates.
3501 The entry point is `type_hash_canon'. */
3503 /* Each hash table slot is a bucket containing a chain
3504 of these structures. */
3506 struct type_hash
3508 struct type_hash *next; /* Next structure in the bucket. */
3509 int hashcode; /* Hash code of this type. */
3510 tree type; /* The type recorded here. */
3513 /* Now here is the hash table. When recording a type, it is added
3514 to the slot whose index is the hash code mod the table size.
3515 Note that the hash table is used for several kinds of types
3516 (function types, array types and array index range types, for now).
3517 While all these live in the same table, they are completely independent,
3518 and the hash code is computed differently for each of these. */
3520 #define TYPE_HASH_SIZE 59
3521 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
3523 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3524 with types in the TREE_VALUE slots), by adding the hash codes
3525 of the individual types. */
3528 type_hash_list (list)
3529 tree list;
3531 register int hashcode;
3532 register tree tail;
3533 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3534 hashcode += TYPE_HASH (TREE_VALUE (tail));
3535 return hashcode;
3538 /* Look in the type hash table for a type isomorphic to TYPE.
3539 If one is found, return it. Otherwise return 0. */
3541 tree
3542 type_hash_lookup (hashcode, type)
3543 int hashcode;
3544 tree type;
3546 register struct type_hash *h;
3547 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3548 if (h->hashcode == hashcode
3549 && TREE_CODE (h->type) == TREE_CODE (type)
3550 && TREE_TYPE (h->type) == TREE_TYPE (type)
3551 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3552 TYPE_ATTRIBUTES (type))
3553 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3554 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3555 TYPE_MAX_VALUE (type)))
3556 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3557 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3558 TYPE_MIN_VALUE (type)))
3559 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3560 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3561 || (TYPE_DOMAIN (h->type)
3562 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3563 && TYPE_DOMAIN (type)
3564 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3565 && type_list_equal (TYPE_DOMAIN (h->type),
3566 TYPE_DOMAIN (type)))))
3567 return h->type;
3568 return 0;
3571 /* Add an entry to the type-hash-table
3572 for a type TYPE whose hash code is HASHCODE. */
3574 void
3575 type_hash_add (hashcode, type)
3576 int hashcode;
3577 tree type;
3579 register struct type_hash *h;
3581 h = (struct type_hash *) oballoc (sizeof (struct type_hash));
3582 h->hashcode = hashcode;
3583 h->type = type;
3584 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3585 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3588 /* Given TYPE, and HASHCODE its hash code, return the canonical
3589 object for an identical type if one already exists.
3590 Otherwise, return TYPE, and record it as the canonical object
3591 if it is a permanent object.
3593 To use this function, first create a type of the sort you want.
3594 Then compute its hash code from the fields of the type that
3595 make it different from other similar types.
3596 Then call this function and use the value.
3597 This function frees the type you pass in if it is a duplicate. */
3599 /* Set to 1 to debug without canonicalization. Never set by program. */
3600 int debug_no_type_hash = 0;
3602 tree
3603 type_hash_canon (hashcode, type)
3604 int hashcode;
3605 tree type;
3607 tree t1;
3609 if (debug_no_type_hash)
3610 return type;
3612 t1 = type_hash_lookup (hashcode, type);
3613 if (t1 != 0)
3615 obstack_free (TYPE_OBSTACK (type), type);
3616 #ifdef GATHER_STATISTICS
3617 tree_node_counts[(int)t_kind]--;
3618 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3619 #endif
3620 return t1;
3623 /* If this is a permanent type, record it for later reuse. */
3624 if (TREE_PERMANENT (type))
3625 type_hash_add (hashcode, type);
3627 return type;
3630 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3631 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3632 by adding the hash codes of the individual attributes. */
3635 attribute_hash_list (list)
3636 tree list;
3638 register int hashcode;
3639 register tree tail;
3640 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3641 /* ??? Do we want to add in TREE_VALUE too? */
3642 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3643 return hashcode;
3646 /* Given two lists of attributes, return true if list l2 is
3647 equivalent to l1. */
3650 attribute_list_equal (l1, l2)
3651 tree l1, l2;
3653 return attribute_list_contained (l1, l2)
3654 && attribute_list_contained (l2, l1);
3657 /* Given two lists of attributes, return true if list L2 is
3658 completely contained within L1. */
3659 /* ??? This would be faster if attribute names were stored in a canonicalized
3660 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3661 must be used to show these elements are equivalent (which they are). */
3662 /* ??? It's not clear that attributes with arguments will always be handled
3663 correctly. */
3666 attribute_list_contained (l1, l2)
3667 tree l1, l2;
3669 register tree t1, t2;
3671 /* First check the obvious, maybe the lists are identical. */
3672 if (l1 == l2)
3673 return 1;
3675 /* Maybe the lists are similar. */
3676 for (t1 = l1, t2 = l2;
3677 t1 && t2
3678 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3679 && TREE_VALUE (t1) == TREE_VALUE (t2);
3680 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3682 /* Maybe the lists are equal. */
3683 if (t1 == 0 && t2 == 0)
3684 return 1;
3686 for (; t2; t2 = TREE_CHAIN (t2))
3688 tree attr
3689 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3691 if (attr == NULL_TREE)
3692 return 0;
3693 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3694 return 0;
3697 return 1;
3700 /* Given two lists of types
3701 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3702 return 1 if the lists contain the same types in the same order.
3703 Also, the TREE_PURPOSEs must match. */
3706 type_list_equal (l1, l2)
3707 tree l1, l2;
3709 register tree t1, t2;
3711 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3712 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3713 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3714 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3715 && (TREE_TYPE (TREE_PURPOSE (t1))
3716 == TREE_TYPE (TREE_PURPOSE (t2))))))
3717 return 0;
3719 return t1 == t2;
3722 /* Nonzero if integer constants T1 and T2
3723 represent the same constant value. */
3726 tree_int_cst_equal (t1, t2)
3727 tree t1, t2;
3729 if (t1 == t2)
3730 return 1;
3731 if (t1 == 0 || t2 == 0)
3732 return 0;
3733 if (TREE_CODE (t1) == INTEGER_CST
3734 && TREE_CODE (t2) == INTEGER_CST
3735 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3736 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3737 return 1;
3738 return 0;
3741 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3742 The precise way of comparison depends on their data type. */
3745 tree_int_cst_lt (t1, t2)
3746 tree t1, t2;
3748 if (t1 == t2)
3749 return 0;
3751 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3752 return INT_CST_LT (t1, t2);
3753 return INT_CST_LT_UNSIGNED (t1, t2);
3756 /* Return an indication of the sign of the integer constant T.
3757 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3758 Note that -1 will never be returned it T's type is unsigned. */
3761 tree_int_cst_sgn (t)
3762 tree t;
3764 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3765 return 0;
3766 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3767 return 1;
3768 else if (TREE_INT_CST_HIGH (t) < 0)
3769 return -1;
3770 else
3771 return 1;
3774 /* Compare two constructor-element-type constants. Return 1 if the lists
3775 are known to be equal; otherwise return 0. */
3778 simple_cst_list_equal (l1, l2)
3779 tree l1, l2;
3781 while (l1 != NULL_TREE && l2 != NULL_TREE)
3783 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3784 return 0;
3786 l1 = TREE_CHAIN (l1);
3787 l2 = TREE_CHAIN (l2);
3790 return (l1 == l2);
3793 /* Return truthvalue of whether T1 is the same tree structure as T2.
3794 Return 1 if they are the same.
3795 Return 0 if they are understandably different.
3796 Return -1 if either contains tree structure not understood by
3797 this function. */
3800 simple_cst_equal (t1, t2)
3801 tree t1, t2;
3803 register enum tree_code code1, code2;
3804 int cmp;
3806 if (t1 == t2)
3807 return 1;
3808 if (t1 == 0 || t2 == 0)
3809 return 0;
3811 code1 = TREE_CODE (t1);
3812 code2 = TREE_CODE (t2);
3814 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3815 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR || code2 == NON_LVALUE_EXPR)
3816 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3817 else
3818 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3819 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3820 || code2 == NON_LVALUE_EXPR)
3821 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3823 if (code1 != code2)
3824 return 0;
3826 switch (code1)
3828 case INTEGER_CST:
3829 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3830 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
3832 case REAL_CST:
3833 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3835 case STRING_CST:
3836 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3837 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3838 TREE_STRING_LENGTH (t1));
3840 case CONSTRUCTOR:
3841 abort ();
3843 case SAVE_EXPR:
3844 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3846 case CALL_EXPR:
3847 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3848 if (cmp <= 0)
3849 return cmp;
3850 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3852 case TARGET_EXPR:
3853 /* Special case: if either target is an unallocated VAR_DECL,
3854 it means that it's going to be unified with whatever the
3855 TARGET_EXPR is really supposed to initialize, so treat it
3856 as being equivalent to anything. */
3857 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3858 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3859 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
3860 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3861 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3862 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
3863 cmp = 1;
3864 else
3865 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3866 if (cmp <= 0)
3867 return cmp;
3868 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3870 case WITH_CLEANUP_EXPR:
3871 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3872 if (cmp <= 0)
3873 return cmp;
3874 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
3876 case COMPONENT_REF:
3877 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3878 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3879 return 0;
3881 case VAR_DECL:
3882 case PARM_DECL:
3883 case CONST_DECL:
3884 case FUNCTION_DECL:
3885 return 0;
3887 default:
3888 break;
3891 /* This general rule works for most tree codes. All exceptions should be
3892 handled above. If this is a language-specific tree code, we can't
3893 trust what might be in the operand, so say we don't know
3894 the situation. */
3895 if ((int) code1
3896 >= sizeof standard_tree_code_type / sizeof standard_tree_code_type[0])
3897 return -1;
3899 switch (TREE_CODE_CLASS (code1))
3901 int i;
3902 case '1':
3903 case '2':
3904 case '<':
3905 case 'e':
3906 case 'r':
3907 case 's':
3908 cmp = 1;
3909 for (i=0; i<tree_code_length[(int) code1]; ++i)
3911 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3912 if (cmp <= 0)
3913 return cmp;
3915 return cmp;
3917 default:
3918 return -1;
3922 /* Constructors for pointer, array and function types.
3923 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3924 constructed by language-dependent code, not here.) */
3926 /* Construct, lay out and return the type of pointers to TO_TYPE.
3927 If such a type has already been constructed, reuse it. */
3929 tree
3930 build_pointer_type (to_type)
3931 tree to_type;
3933 register tree t = TYPE_POINTER_TO (to_type);
3935 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3937 if (t)
3938 return t;
3940 /* We need a new one. Put this in the same obstack as TO_TYPE. */
3941 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
3942 t = make_node (POINTER_TYPE);
3943 pop_obstacks ();
3945 TREE_TYPE (t) = to_type;
3947 /* Record this type as the pointer to TO_TYPE. */
3948 TYPE_POINTER_TO (to_type) = t;
3950 /* Lay out the type. This function has many callers that are concerned
3951 with expression-construction, and this simplifies them all.
3952 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3953 layout_type (t);
3955 return t;
3958 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3959 MAXVAL should be the maximum value in the domain
3960 (one less than the length of the array).
3962 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3963 We don't enforce this limit, that is up to caller (e.g. language front end).
3964 The limit exists because the result is a signed type and we don't handle
3965 sizes that use more than one HOST_WIDE_INT. */
3967 tree
3968 build_index_type (maxval)
3969 tree maxval;
3971 register tree itype = make_node (INTEGER_TYPE);
3973 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3974 TYPE_MIN_VALUE (itype) = size_zero_node;
3976 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
3977 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3978 pop_obstacks ();
3980 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3981 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3982 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3983 if (TREE_CODE (maxval) == INTEGER_CST)
3985 int maxint = (int) TREE_INT_CST_LOW (maxval);
3986 /* If the domain should be empty, make sure the maxval
3987 remains -1 and is not spoiled by truncation. */
3988 if (INT_CST_LT (maxval, integer_zero_node))
3990 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
3991 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
3993 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
3995 else
3996 return itype;
3999 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4000 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4001 low bound LOWVAL and high bound HIGHVAL.
4002 if TYPE==NULL_TREE, sizetype is used. */
4004 tree
4005 build_range_type (type, lowval, highval)
4006 tree type, lowval, highval;
4008 register tree itype = make_node (INTEGER_TYPE);
4010 TREE_TYPE (itype) = type;
4011 if (type == NULL_TREE)
4012 type = sizetype;
4014 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4015 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4016 TYPE_MAX_VALUE (itype) = convert (type, highval);
4017 pop_obstacks ();
4019 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4020 TYPE_MODE (itype) = TYPE_MODE (type);
4021 TYPE_SIZE (itype) = TYPE_SIZE (type);
4022 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4023 if ((TREE_CODE (lowval) == INTEGER_CST)
4024 && (TREE_CODE (highval) == INTEGER_CST))
4026 HOST_WIDE_INT highint = TREE_INT_CST_LOW (highval);
4027 HOST_WIDE_INT lowint = TREE_INT_CST_LOW (lowval);
4028 int maxint = (int) (highint - lowint);
4029 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4031 else
4032 return itype;
4035 /* Just like build_index_type, but takes lowval and highval instead
4036 of just highval (maxval). */
4038 tree
4039 build_index_2_type (lowval,highval)
4040 tree lowval, highval;
4042 return build_range_type (NULL_TREE, lowval, highval);
4045 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4046 Needed because when index types are not hashed, equal index types
4047 built at different times appear distinct, even though structurally,
4048 they are not. */
4051 index_type_equal (itype1, itype2)
4052 tree itype1, itype2;
4054 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4055 return 0;
4056 if (TREE_CODE (itype1) == INTEGER_TYPE)
4058 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4059 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4060 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4061 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4062 return 0;
4063 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4064 TYPE_MIN_VALUE (itype2))
4065 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4066 TYPE_MAX_VALUE (itype2)))
4067 return 1;
4070 return 0;
4073 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4074 and number of elements specified by the range of values of INDEX_TYPE.
4075 If such a type has already been constructed, reuse it. */
4077 tree
4078 build_array_type (elt_type, index_type)
4079 tree elt_type, index_type;
4081 register tree t;
4082 int hashcode;
4084 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4086 error ("arrays of functions are not meaningful");
4087 elt_type = integer_type_node;
4090 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4091 build_pointer_type (elt_type);
4093 /* Allocate the array after the pointer type,
4094 in case we free it in type_hash_canon. */
4095 t = make_node (ARRAY_TYPE);
4096 TREE_TYPE (t) = elt_type;
4097 TYPE_DOMAIN (t) = index_type;
4099 if (index_type == 0)
4101 return t;
4104 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4105 t = type_hash_canon (hashcode, t);
4107 if (TYPE_SIZE (t) == 0)
4108 layout_type (t);
4109 return t;
4112 /* Return the TYPE of the elements comprising
4113 the innermost dimension of ARRAY. */
4115 tree
4116 get_inner_array_type (array)
4117 tree array;
4119 tree type = TREE_TYPE (array);
4121 while (TREE_CODE (type) == ARRAY_TYPE)
4122 type = TREE_TYPE (type);
4124 return type;
4127 /* Construct, lay out and return
4128 the type of functions returning type VALUE_TYPE
4129 given arguments of types ARG_TYPES.
4130 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4131 are data type nodes for the arguments of the function.
4132 If such a type has already been constructed, reuse it. */
4134 tree
4135 build_function_type (value_type, arg_types)
4136 tree value_type, arg_types;
4138 register tree t;
4139 int hashcode;
4141 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4143 error ("function return type cannot be function");
4144 value_type = integer_type_node;
4147 /* Make a node of the sort we want. */
4148 t = make_node (FUNCTION_TYPE);
4149 TREE_TYPE (t) = value_type;
4150 TYPE_ARG_TYPES (t) = arg_types;
4152 /* If we already have such a type, use the old one and free this one. */
4153 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4154 t = type_hash_canon (hashcode, t);
4156 if (TYPE_SIZE (t) == 0)
4157 layout_type (t);
4158 return t;
4161 /* Build the node for the type of references-to-TO_TYPE. */
4163 tree
4164 build_reference_type (to_type)
4165 tree to_type;
4167 register tree t = TYPE_REFERENCE_TO (to_type);
4169 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4171 if (t)
4172 return t;
4174 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4175 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4176 t = make_node (REFERENCE_TYPE);
4177 pop_obstacks ();
4179 TREE_TYPE (t) = to_type;
4181 /* Record this type as the pointer to TO_TYPE. */
4182 TYPE_REFERENCE_TO (to_type) = t;
4184 layout_type (t);
4186 return t;
4189 /* Construct, lay out and return the type of methods belonging to class
4190 BASETYPE and whose arguments and values are described by TYPE.
4191 If that type exists already, reuse it.
4192 TYPE must be a FUNCTION_TYPE node. */
4194 tree
4195 build_method_type (basetype, type)
4196 tree basetype, type;
4198 register tree t;
4199 int hashcode;
4201 /* Make a node of the sort we want. */
4202 t = make_node (METHOD_TYPE);
4204 if (TREE_CODE (type) != FUNCTION_TYPE)
4205 abort ();
4207 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4208 TREE_TYPE (t) = TREE_TYPE (type);
4210 /* The actual arglist for this function includes a "hidden" argument
4211 which is "this". Put it into the list of argument types. */
4213 TYPE_ARG_TYPES (t)
4214 = tree_cons (NULL_TREE,
4215 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4217 /* If we already have such a type, use the old one and free this one. */
4218 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4219 t = type_hash_canon (hashcode, t);
4221 if (TYPE_SIZE (t) == 0)
4222 layout_type (t);
4224 return t;
4227 /* Construct, lay out and return the type of offsets to a value
4228 of type TYPE, within an object of type BASETYPE.
4229 If a suitable offset type exists already, reuse it. */
4231 tree
4232 build_offset_type (basetype, type)
4233 tree basetype, type;
4235 register tree t;
4236 int hashcode;
4238 /* Make a node of the sort we want. */
4239 t = make_node (OFFSET_TYPE);
4241 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4242 TREE_TYPE (t) = type;
4244 /* If we already have such a type, use the old one and free this one. */
4245 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4246 t = type_hash_canon (hashcode, t);
4248 if (TYPE_SIZE (t) == 0)
4249 layout_type (t);
4251 return t;
4254 /* Create a complex type whose components are COMPONENT_TYPE. */
4256 tree
4257 build_complex_type (component_type)
4258 tree component_type;
4260 register tree t;
4261 int hashcode;
4263 /* Make a node of the sort we want. */
4264 t = make_node (COMPLEX_TYPE);
4266 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4267 TYPE_VOLATILE (t) = TYPE_VOLATILE (component_type);
4268 TYPE_READONLY (t) = TYPE_READONLY (component_type);
4270 /* If we already have such a type, use the old one and free this one. */
4271 hashcode = TYPE_HASH (component_type);
4272 t = type_hash_canon (hashcode, t);
4274 if (TYPE_SIZE (t) == 0)
4275 layout_type (t);
4277 return t;
4280 /* Return OP, stripped of any conversions to wider types as much as is safe.
4281 Converting the value back to OP's type makes a value equivalent to OP.
4283 If FOR_TYPE is nonzero, we return a value which, if converted to
4284 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4286 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4287 narrowest type that can hold the value, even if they don't exactly fit.
4288 Otherwise, bit-field references are changed to a narrower type
4289 only if they can be fetched directly from memory in that type.
4291 OP must have integer, real or enumeral type. Pointers are not allowed!
4293 There are some cases where the obvious value we could return
4294 would regenerate to OP if converted to OP's type,
4295 but would not extend like OP to wider types.
4296 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4297 For example, if OP is (unsigned short)(signed char)-1,
4298 we avoid returning (signed char)-1 if FOR_TYPE is int,
4299 even though extending that to an unsigned short would regenerate OP,
4300 since the result of extending (signed char)-1 to (int)
4301 is different from (int) OP. */
4303 tree
4304 get_unwidened (op, for_type)
4305 register tree op;
4306 tree for_type;
4308 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4309 register tree type = TREE_TYPE (op);
4310 register unsigned final_prec
4311 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4312 register int uns
4313 = (for_type != 0 && for_type != type
4314 && final_prec > TYPE_PRECISION (type)
4315 && TREE_UNSIGNED (type));
4316 register tree win = op;
4318 while (TREE_CODE (op) == NOP_EXPR)
4320 register int bitschange
4321 = TYPE_PRECISION (TREE_TYPE (op))
4322 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4324 /* Truncations are many-one so cannot be removed.
4325 Unless we are later going to truncate down even farther. */
4326 if (bitschange < 0
4327 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4328 break;
4330 /* See what's inside this conversion. If we decide to strip it,
4331 we will set WIN. */
4332 op = TREE_OPERAND (op, 0);
4334 /* If we have not stripped any zero-extensions (uns is 0),
4335 we can strip any kind of extension.
4336 If we have previously stripped a zero-extension,
4337 only zero-extensions can safely be stripped.
4338 Any extension can be stripped if the bits it would produce
4339 are all going to be discarded later by truncating to FOR_TYPE. */
4341 if (bitschange > 0)
4343 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4344 win = op;
4345 /* TREE_UNSIGNED says whether this is a zero-extension.
4346 Let's avoid computing it if it does not affect WIN
4347 and if UNS will not be needed again. */
4348 if ((uns || TREE_CODE (op) == NOP_EXPR)
4349 && TREE_UNSIGNED (TREE_TYPE (op)))
4351 uns = 1;
4352 win = op;
4357 if (TREE_CODE (op) == COMPONENT_REF
4358 /* Since type_for_size always gives an integer type. */
4359 && TREE_CODE (type) != REAL_TYPE
4360 /* Don't crash if field not laid out yet. */
4361 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4363 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4364 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4366 /* We can get this structure field in the narrowest type it fits in.
4367 If FOR_TYPE is 0, do this only for a field that matches the
4368 narrower type exactly and is aligned for it
4369 The resulting extension to its nominal type (a fullword type)
4370 must fit the same conditions as for other extensions. */
4372 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4373 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4374 && (! uns || final_prec <= innerprec
4375 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4376 && type != 0)
4378 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4379 TREE_OPERAND (op, 1));
4380 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4381 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4382 TREE_RAISES (win) = TREE_RAISES (op);
4385 return win;
4388 /* Return OP or a simpler expression for a narrower value
4389 which can be sign-extended or zero-extended to give back OP.
4390 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4391 or 0 if the value should be sign-extended. */
4393 tree
4394 get_narrower (op, unsignedp_ptr)
4395 register tree op;
4396 int *unsignedp_ptr;
4398 register int uns = 0;
4399 int first = 1;
4400 register tree win = op;
4402 while (TREE_CODE (op) == NOP_EXPR)
4404 register int bitschange
4405 = TYPE_PRECISION (TREE_TYPE (op))
4406 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4408 /* Truncations are many-one so cannot be removed. */
4409 if (bitschange < 0)
4410 break;
4412 /* See what's inside this conversion. If we decide to strip it,
4413 we will set WIN. */
4414 op = TREE_OPERAND (op, 0);
4416 if (bitschange > 0)
4418 /* An extension: the outermost one can be stripped,
4419 but remember whether it is zero or sign extension. */
4420 if (first)
4421 uns = TREE_UNSIGNED (TREE_TYPE (op));
4422 /* Otherwise, if a sign extension has been stripped,
4423 only sign extensions can now be stripped;
4424 if a zero extension has been stripped, only zero-extensions. */
4425 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4426 break;
4427 first = 0;
4429 else /* bitschange == 0 */
4431 /* A change in nominal type can always be stripped, but we must
4432 preserve the unsignedness. */
4433 if (first)
4434 uns = TREE_UNSIGNED (TREE_TYPE (op));
4435 first = 0;
4438 win = op;
4441 if (TREE_CODE (op) == COMPONENT_REF
4442 /* Since type_for_size always gives an integer type. */
4443 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4445 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4446 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4448 /* We can get this structure field in a narrower type that fits it,
4449 but the resulting extension to its nominal type (a fullword type)
4450 must satisfy the same conditions as for other extensions.
4452 Do this only for fields that are aligned (not bit-fields),
4453 because when bit-field insns will be used there is no
4454 advantage in doing this. */
4456 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4457 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4458 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4459 && type != 0)
4461 if (first)
4462 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4463 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4464 TREE_OPERAND (op, 1));
4465 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4466 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4467 TREE_RAISES (win) = TREE_RAISES (op);
4470 *unsignedp_ptr = uns;
4471 return win;
4474 /* Nonzero if integer constant C has a value that is permissible
4475 for type TYPE (an INTEGER_TYPE). */
4478 int_fits_type_p (c, type)
4479 tree c, type;
4481 if (TREE_UNSIGNED (type))
4482 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4483 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4484 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4485 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4486 /* Negative ints never fit unsigned types. */
4487 && ! (TREE_INT_CST_HIGH (c) < 0
4488 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4489 else
4490 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4491 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4492 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4493 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
4494 /* Unsigned ints with top bit set never fit signed types. */
4495 && ! (TREE_INT_CST_HIGH (c) < 0
4496 && TREE_UNSIGNED (TREE_TYPE (c))));
4499 /* Return the innermost context enclosing DECL that is
4500 a FUNCTION_DECL, or zero if none. */
4502 tree
4503 decl_function_context (decl)
4504 tree decl;
4506 tree context;
4508 if (TREE_CODE (decl) == ERROR_MARK)
4509 return 0;
4511 if (TREE_CODE (decl) == SAVE_EXPR)
4512 context = SAVE_EXPR_CONTEXT (decl);
4513 else
4514 context = DECL_CONTEXT (decl);
4516 while (context && TREE_CODE (context) != FUNCTION_DECL)
4518 if (TREE_CODE (context) == RECORD_TYPE
4519 || TREE_CODE (context) == UNION_TYPE
4520 || TREE_CODE (context) == QUAL_UNION_TYPE)
4521 context = TYPE_CONTEXT (context);
4522 else if (TREE_CODE (context) == TYPE_DECL)
4523 context = DECL_CONTEXT (context);
4524 else if (TREE_CODE (context) == BLOCK)
4525 context = BLOCK_SUPERCONTEXT (context);
4526 else
4527 /* Unhandled CONTEXT !? */
4528 abort ();
4531 return context;
4534 /* Return the innermost context enclosing DECL that is
4535 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4536 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4538 tree
4539 decl_type_context (decl)
4540 tree decl;
4542 tree context = DECL_CONTEXT (decl);
4544 while (context)
4546 if (TREE_CODE (context) == RECORD_TYPE
4547 || TREE_CODE (context) == UNION_TYPE
4548 || TREE_CODE (context) == QUAL_UNION_TYPE)
4549 return context;
4550 if (TREE_CODE (context) == TYPE_DECL
4551 || TREE_CODE (context) == FUNCTION_DECL)
4552 context = DECL_CONTEXT (context);
4553 else if (TREE_CODE (context) == BLOCK)
4554 context = BLOCK_SUPERCONTEXT (context);
4555 else
4556 /* Unhandled CONTEXT!? */
4557 abort ();
4559 return NULL_TREE;
4562 /* Print debugging information about the size of the
4563 toplev_inline_obstacks. */
4565 void
4566 print_inline_obstack_statistics ()
4568 struct simple_obstack_stack *current = toplev_inline_obstacks;
4569 int n_obstacks = 0;
4570 int n_alloc = 0;
4571 int n_chunks = 0;
4573 for (; current; current = current->next, ++n_obstacks)
4575 struct obstack *o = current->obstack;
4576 struct _obstack_chunk *chunk = o->chunk;
4578 n_alloc += o->next_free - chunk->contents;
4579 chunk = chunk->prev;
4580 ++n_chunks;
4581 for (; chunk; chunk = chunk->prev, ++n_chunks)
4582 n_alloc += chunk->limit - &chunk->contents[0];
4584 fprintf (stderr, "inline obstacks: %d obstacks, %d bytes, %d chunks\n",
4585 n_obstacks, n_alloc, n_chunks);
4588 /* Print debugging information about the obstack O, named STR. */
4590 void
4591 print_obstack_statistics (str, o)
4592 char *str;
4593 struct obstack *o;
4595 struct _obstack_chunk *chunk = o->chunk;
4596 int n_chunks = 1;
4597 int n_alloc = 0;
4599 n_alloc += o->next_free - chunk->contents;
4600 chunk = chunk->prev;
4601 while (chunk)
4603 n_chunks += 1;
4604 n_alloc += chunk->limit - &chunk->contents[0];
4605 chunk = chunk->prev;
4607 fprintf (stderr, "obstack %s: %d bytes, %d chunks\n",
4608 str, n_alloc, n_chunks);
4611 /* Print debugging information about tree nodes generated during the compile,
4612 and any language-specific information. */
4614 void
4615 dump_tree_statistics ()
4617 int i;
4618 int total_nodes, total_bytes;
4620 fprintf (stderr, "\n??? tree nodes created\n\n");
4621 #ifdef GATHER_STATISTICS
4622 fprintf (stderr, "Kind Nodes Bytes\n");
4623 fprintf (stderr, "-------------------------------------\n");
4624 total_nodes = total_bytes = 0;
4625 for (i = 0; i < (int) all_kinds; i++)
4627 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4628 tree_node_counts[i], tree_node_sizes[i]);
4629 total_nodes += tree_node_counts[i];
4630 total_bytes += tree_node_sizes[i];
4632 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4633 fprintf (stderr, "-------------------------------------\n");
4634 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4635 fprintf (stderr, "-------------------------------------\n");
4636 #else
4637 fprintf (stderr, "(No per-node statistics)\n");
4638 #endif
4639 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4640 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
4641 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
4642 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
4643 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
4644 print_inline_obstack_statistics ();
4645 print_lang_statistics ();
4648 #define FILE_FUNCTION_PREFIX_LEN 9
4650 #ifndef NO_DOLLAR_IN_LABEL
4651 #define FILE_FUNCTION_FORMAT "_GLOBAL_$D$%s"
4652 #else /* NO_DOLLAR_IN_LABEL */
4653 #ifndef NO_DOT_IN_LABEL
4654 #define FILE_FUNCTION_FORMAT "_GLOBAL_.D.%s"
4655 #else /* NO_DOT_IN_LABEL */
4656 #define FILE_FUNCTION_FORMAT "_GLOBAL__D_%s"
4657 #endif /* NO_DOT_IN_LABEL */
4658 #endif /* NO_DOLLAR_IN_LABEL */
4660 extern char * first_global_object_name;
4662 /* If KIND=='I', return a suitable global initializer (constructor) name.
4663 If KIND=='D', return a suitable global clean-up (destructor) name. */
4665 tree
4666 get_file_function_name (kind)
4667 int kind;
4669 char *buf;
4670 register char *p;
4672 if (first_global_object_name)
4673 p = first_global_object_name;
4674 else if (main_input_filename)
4675 p = main_input_filename;
4676 else
4677 p = input_filename;
4679 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p));
4681 /* Set up the name of the file-level functions we may need. */
4682 /* Use a global object (which is already required to be unique over
4683 the program) rather than the file name (which imposes extra
4684 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
4685 sprintf (buf, FILE_FUNCTION_FORMAT, p);
4687 /* Don't need to pull weird characters out of global names. */
4688 if (p != first_global_object_name)
4690 for (p = buf+11; *p; p++)
4691 if (! ((*p >= '0' && *p <= '9')
4692 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
4693 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
4694 || *p == '.'
4695 #endif
4696 #endif
4697 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4698 || *p == '$'
4699 #endif
4700 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4701 || *p == '.'
4702 #endif
4703 || (*p >= 'A' && *p <= 'Z')
4704 || (*p >= 'a' && *p <= 'z')))
4705 *p = '_';
4708 buf[FILE_FUNCTION_PREFIX_LEN] = kind;
4710 return get_identifier (buf);
4713 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4714 The result is placed in BUFFER (which has length BIT_SIZE),
4715 with one bit in each char ('\000' or '\001').
4717 If the constructor is constant, NULL_TREE is returned.
4718 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4720 tree
4721 get_set_constructor_bits (init, buffer, bit_size)
4722 tree init;
4723 char *buffer;
4724 int bit_size;
4726 int i;
4727 tree vals;
4728 HOST_WIDE_INT domain_min
4729 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
4730 tree non_const_bits = NULL_TREE;
4731 for (i = 0; i < bit_size; i++)
4732 buffer[i] = 0;
4734 for (vals = TREE_OPERAND (init, 1);
4735 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4737 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
4738 || (TREE_PURPOSE (vals) != NULL_TREE
4739 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
4740 non_const_bits
4741 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4742 else if (TREE_PURPOSE (vals) != NULL_TREE)
4744 /* Set a range of bits to ones. */
4745 HOST_WIDE_INT lo_index
4746 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
4747 HOST_WIDE_INT hi_index
4748 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4749 if (lo_index < 0 || lo_index >= bit_size
4750 || hi_index < 0 || hi_index >= bit_size)
4751 abort ();
4752 for ( ; lo_index <= hi_index; lo_index++)
4753 buffer[lo_index] = 1;
4755 else
4757 /* Set a single bit to one. */
4758 HOST_WIDE_INT index
4759 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4760 if (index < 0 || index >= bit_size)
4762 error ("invalid initializer for bit string");
4763 return NULL_TREE;
4765 buffer[index] = 1;
4768 return non_const_bits;
4771 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4772 The result is placed in BUFFER (which is an array of bytes).
4773 If the constructor is constant, NULL_TREE is returned.
4774 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4776 tree
4777 get_set_constructor_bytes (init, buffer, wd_size)
4778 tree init;
4779 unsigned char *buffer;
4780 int wd_size;
4782 int i;
4783 tree vals = TREE_OPERAND (init, 1);
4784 int set_word_size = BITS_PER_UNIT;
4785 int bit_size = wd_size * set_word_size;
4786 int bit_pos = 0;
4787 unsigned char *bytep = buffer;
4788 char *bit_buffer = (char *) alloca(bit_size);
4789 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4791 for (i = 0; i < wd_size; i++)
4792 buffer[i] = 0;
4794 for (i = 0; i < bit_size; i++)
4796 if (bit_buffer[i])
4798 if (BYTES_BIG_ENDIAN)
4799 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4800 else
4801 *bytep |= 1 << bit_pos;
4803 bit_pos++;
4804 if (bit_pos >= set_word_size)
4805 bit_pos = 0, bytep++;
4807 return non_const_bits;
4810 #ifdef ENABLE_CHECKING
4812 /* Complain if the tree code does not match the expected one.
4813 NODE is the tree node in question, CODE is the expected tree code,
4814 and FILE and LINE are the filename and line number, respectively,
4815 of the line on which the check was done. If NONFATAL is nonzero,
4816 don't abort if the reference is invalid; instead, return 0.
4817 If the reference is valid, return NODE. */
4819 tree
4820 tree_check (node, code, file, line, nofatal)
4821 tree node;
4822 enum tree_code code;
4823 char *file;
4824 int line;
4825 int nofatal;
4827 if (TREE_CODE (node) == code)
4828 return node;
4829 else if (nofatal)
4830 return 0;
4831 else
4832 fatal ("%s:%d: Expect %s, have %s\n", file, line,
4833 tree_code_name[code], tree_code_name[TREE_CODE (node)]);
4836 /* Similar to above, except that we check for a class of tree
4837 code, given in CL. */
4839 tree
4840 tree_class_check (node, cl, file, line, nofatal)
4841 tree node;
4842 char cl;
4843 char *file;
4844 int line;
4845 int nofatal;
4847 if (TREE_CODE_CLASS (TREE_CODE (node)) == cl)
4848 return node;
4849 else if (nofatal)
4850 return 0;
4851 else
4852 fatal ("%s:%d: Expect '%c', have '%s'\n", file, line,
4853 cl, tree_code_name[TREE_CODE (node)]);
4856 /* Likewise, but complain if the tree node is not an expression. */
4858 tree
4859 expr_check (node, ignored, file, line, nofatal)
4860 tree node;
4861 int ignored;
4862 char *file;
4863 int line;
4864 int nofatal;
4866 switch (TREE_CODE_CLASS (TREE_CODE (node)))
4868 case 'r':
4869 case 's':
4870 case 'e':
4871 case '<':
4872 case '1':
4873 case '2':
4874 break;
4876 default:
4877 if (nofatal)
4878 return 0;
4879 else
4880 fatal ("%s:%d: Expect expression, have '%s'\n", file, line,
4881 tree_code_name[TREE_CODE (node)]);
4884 return node;
4886 #endif