Generate PADDI to add large constants if -mcpu=future.
[official-gcc.git] / gcc / alias.c
blob800b71902d5584f4ff5e3121c0bef8e4448354ea
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
42 #include "ipa-utils.h"
44 /* The aliasing API provided here solves related but different problems:
46 Say there exists (in c)
48 struct X {
49 struct Y y1;
50 struct Z z2;
51 } x1, *px1, *px2;
53 struct Y y2, *py;
54 struct Z z2, *pz;
57 py = &x1.y1;
58 px2 = &x1;
60 Consider the four questions:
62 Can a store to x1 interfere with px2->y1?
63 Can a store to x1 interfere with px2->z2?
64 Can a store to x1 change the value pointed to by with py?
65 Can a store to x1 change the value pointed to by with pz?
67 The answer to these questions can be yes, yes, yes, and maybe.
69 The first two questions can be answered with a simple examination
70 of the type system. If structure X contains a field of type Y then
71 a store through a pointer to an X can overwrite any field that is
72 contained (recursively) in an X (unless we know that px1 != px2).
74 The last two questions can be solved in the same way as the first
75 two questions but this is too conservative. The observation is
76 that in some cases we can know which (if any) fields are addressed
77 and if those addresses are used in bad ways. This analysis may be
78 language specific. In C, arbitrary operations may be applied to
79 pointers. However, there is some indication that this may be too
80 conservative for some C++ types.
82 The pass ipa-type-escape does this analysis for the types whose
83 instances do not escape across the compilation boundary.
85 Historically in GCC, these two problems were combined and a single
86 data structure that was used to represent the solution to these
87 problems. We now have two similar but different data structures,
88 The data structure to solve the last two questions is similar to
89 the first, but does not contain the fields whose address are never
90 taken. For types that do escape the compilation unit, the data
91 structures will have identical information.
94 /* The alias sets assigned to MEMs assist the back-end in determining
95 which MEMs can alias which other MEMs. In general, two MEMs in
96 different alias sets cannot alias each other, with one important
97 exception. Consider something like:
99 struct S { int i; double d; };
101 a store to an `S' can alias something of either type `int' or type
102 `double'. (However, a store to an `int' cannot alias a `double'
103 and vice versa.) We indicate this via a tree structure that looks
104 like:
105 struct S
108 |/_ _\|
109 int double
111 (The arrows are directed and point downwards.)
112 In this situation we say the alias set for `struct S' is the
113 `superset' and that those for `int' and `double' are `subsets'.
115 To see whether two alias sets can point to the same memory, we must
116 see if either alias set is a subset of the other. We need not trace
117 past immediate descendants, however, since we propagate all
118 grandchildren up one level.
120 Alias set zero is implicitly a superset of all other alias sets.
121 However, this is no actual entry for alias set zero. It is an
122 error to attempt to explicitly construct a subset of zero. */
124 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
126 struct GTY(()) alias_set_entry {
127 /* The alias set number, as stored in MEM_ALIAS_SET. */
128 alias_set_type alias_set;
130 /* Nonzero if would have a child of zero: this effectively makes this
131 alias set the same as alias set zero. */
132 bool has_zero_child;
133 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
134 aggregate contaiing pointer.
135 This is used for a special case where we need an universal pointer type
136 compatible with all other pointer types. */
137 bool is_pointer;
138 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
139 bool has_pointer;
141 /* The children of the alias set. These are not just the immediate
142 children, but, in fact, all descendants. So, if we have:
144 struct T { struct S s; float f; }
146 continuing our example above, the children here will be all of
147 `int', `double', `float', and `struct S'. */
148 hash_map<alias_set_hash, int> *children;
151 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
152 static void record_set (rtx, const_rtx, void *);
153 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
154 machine_mode);
155 static rtx find_base_value (rtx);
156 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
157 static alias_set_entry *get_alias_set_entry (alias_set_type);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx,
160 const_rtx, machine_mode, rtx,
161 bool, bool, bool);
162 static int compare_base_symbol_refs (const_rtx, const_rtx);
164 static void memory_modified_1 (rtx, const_rtx, void *);
166 /* Query statistics for the different low-level disambiguators.
167 A high-level query may trigger multiple of them. */
169 static struct {
170 unsigned long long num_alias_zero;
171 unsigned long long num_same_alias_set;
172 unsigned long long num_same_objects;
173 unsigned long long num_volatile;
174 unsigned long long num_dag;
175 unsigned long long num_universal;
176 unsigned long long num_disambiguated;
177 } alias_stats;
180 /* Set up all info needed to perform alias analysis on memory references. */
182 /* Returns the size in bytes of the mode of X. */
183 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
185 /* Cap the number of passes we make over the insns propagating alias
186 information through set chains.
187 ??? 10 is a completely arbitrary choice. This should be based on the
188 maximum loop depth in the CFG, but we do not have this information
189 available (even if current_loops _is_ available). */
190 #define MAX_ALIAS_LOOP_PASSES 10
192 /* reg_base_value[N] gives an address to which register N is related.
193 If all sets after the first add or subtract to the current value
194 or otherwise modify it so it does not point to a different top level
195 object, reg_base_value[N] is equal to the address part of the source
196 of the first set.
198 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
199 expressions represent three types of base:
201 1. incoming arguments. There is just one ADDRESS to represent all
202 arguments, since we do not know at this level whether accesses
203 based on different arguments can alias. The ADDRESS has id 0.
205 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
206 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
207 Each of these rtxes has a separate ADDRESS associated with it,
208 each with a negative id.
210 GCC is (and is required to be) precise in which register it
211 chooses to access a particular region of stack. We can therefore
212 assume that accesses based on one of these rtxes do not alias
213 accesses based on another of these rtxes.
215 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
216 Each such piece of memory has a separate ADDRESS associated
217 with it, each with an id greater than 0.
219 Accesses based on one ADDRESS do not alias accesses based on other
220 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
221 alias globals either; the ADDRESSes have Pmode to indicate this.
222 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
223 indicate this. */
225 static GTY(()) vec<rtx, va_gc> *reg_base_value;
226 static rtx *new_reg_base_value;
228 /* The single VOIDmode ADDRESS that represents all argument bases.
229 It has id 0. */
230 static GTY(()) rtx arg_base_value;
232 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
233 static int unique_id;
235 /* We preserve the copy of old array around to avoid amount of garbage
236 produced. About 8% of garbage produced were attributed to this
237 array. */
238 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
240 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
241 registers. */
242 #define UNIQUE_BASE_VALUE_SP -1
243 #define UNIQUE_BASE_VALUE_ARGP -2
244 #define UNIQUE_BASE_VALUE_FP -3
245 #define UNIQUE_BASE_VALUE_HFP -4
247 #define static_reg_base_value \
248 (this_target_rtl->x_static_reg_base_value)
250 #define REG_BASE_VALUE(X) \
251 (REGNO (X) < vec_safe_length (reg_base_value) \
252 ? (*reg_base_value)[REGNO (X)] : 0)
254 /* Vector indexed by N giving the initial (unchanging) value known for
255 pseudo-register N. This vector is initialized in init_alias_analysis,
256 and does not change until end_alias_analysis is called. */
257 static GTY(()) vec<rtx, va_gc> *reg_known_value;
259 /* Vector recording for each reg_known_value whether it is due to a
260 REG_EQUIV note. Future passes (viz., reload) may replace the
261 pseudo with the equivalent expression and so we account for the
262 dependences that would be introduced if that happens.
264 The REG_EQUIV notes created in assign_parms may mention the arg
265 pointer, and there are explicit insns in the RTL that modify the
266 arg pointer. Thus we must ensure that such insns don't get
267 scheduled across each other because that would invalidate the
268 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
269 wrong, but solving the problem in the scheduler will likely give
270 better code, so we do it here. */
271 static sbitmap reg_known_equiv_p;
273 /* True when scanning insns from the start of the rtl to the
274 NOTE_INSN_FUNCTION_BEG note. */
275 static bool copying_arguments;
278 /* The splay-tree used to store the various alias set entries. */
279 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
281 /* Build a decomposed reference object for querying the alias-oracle
282 from the MEM rtx and store it in *REF.
283 Returns false if MEM is not suitable for the alias-oracle. */
285 static bool
286 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
288 tree expr = MEM_EXPR (mem);
289 tree base;
291 if (!expr)
292 return false;
294 ao_ref_init (ref, expr);
296 /* Get the base of the reference and see if we have to reject or
297 adjust it. */
298 base = ao_ref_base (ref);
299 if (base == NULL_TREE)
300 return false;
302 /* The tree oracle doesn't like bases that are neither decls
303 nor indirect references of SSA names. */
304 if (!(DECL_P (base)
305 || (TREE_CODE (base) == MEM_REF
306 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
307 || (TREE_CODE (base) == TARGET_MEM_REF
308 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
309 return false;
311 ref->ref_alias_set = MEM_ALIAS_SET (mem);
313 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
314 is conservative, so trust it. */
315 if (!MEM_OFFSET_KNOWN_P (mem)
316 || !MEM_SIZE_KNOWN_P (mem))
317 return true;
319 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
320 drop ref->ref. */
321 if (maybe_lt (MEM_OFFSET (mem), 0)
322 || (ref->max_size_known_p ()
323 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
324 ref->max_size)))
325 ref->ref = NULL_TREE;
327 /* Refine size and offset we got from analyzing MEM_EXPR by using
328 MEM_SIZE and MEM_OFFSET. */
330 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
331 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
333 /* The MEM may extend into adjacent fields, so adjust max_size if
334 necessary. */
335 if (ref->max_size_known_p ())
336 ref->max_size = upper_bound (ref->max_size, ref->size);
338 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
339 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
340 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
341 && (maybe_lt (ref->offset, 0)
342 || (DECL_P (ref->base)
343 && (DECL_SIZE (ref->base) == NULL_TREE
344 || !poly_int_tree_p (DECL_SIZE (ref->base))
345 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
346 ref->offset + ref->size)))))
347 return false;
349 return true;
352 /* Query the alias-oracle on whether the two memory rtx X and MEM may
353 alias. If TBAA_P is set also apply TBAA. Returns true if the
354 two rtxen may alias, false otherwise. */
356 static bool
357 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
359 ao_ref ref1, ref2;
361 if (!ao_ref_from_mem (&ref1, x)
362 || !ao_ref_from_mem (&ref2, mem))
363 return true;
365 return refs_may_alias_p_1 (&ref1, &ref2,
366 tbaa_p
367 && MEM_ALIAS_SET (x) != 0
368 && MEM_ALIAS_SET (mem) != 0);
371 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
372 such an entry, or NULL otherwise. */
374 static inline alias_set_entry *
375 get_alias_set_entry (alias_set_type alias_set)
377 return (*alias_sets)[alias_set];
380 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
381 the two MEMs cannot alias each other. */
383 static inline int
384 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
386 return (flag_strict_aliasing
387 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
388 MEM_ALIAS_SET (mem2)));
391 /* Return true if the first alias set is a subset of the second. */
393 bool
394 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
396 alias_set_entry *ase2;
398 /* Disable TBAA oracle with !flag_strict_aliasing. */
399 if (!flag_strict_aliasing)
400 return true;
402 /* Everything is a subset of the "aliases everything" set. */
403 if (set2 == 0)
404 return true;
406 /* Check if set1 is a subset of set2. */
407 ase2 = get_alias_set_entry (set2);
408 if (ase2 != 0
409 && (ase2->has_zero_child
410 || (ase2->children && ase2->children->get (set1))))
411 return true;
413 /* As a special case we consider alias set of "void *" to be both subset
414 and superset of every alias set of a pointer. This extra symmetry does
415 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
416 to return true on the following testcase:
418 void *ptr;
419 char **ptr2=(char **)&ptr;
420 *ptr2 = ...
422 Additionally if a set contains universal pointer, we consider every pointer
423 to be a subset of it, but we do not represent this explicitely - doing so
424 would require us to update transitive closure each time we introduce new
425 pointer type. This makes aliasing_component_refs_p to return true
426 on the following testcase:
428 struct a {void *ptr;}
429 char **ptr = (char **)&a.ptr;
430 ptr = ...
432 This makes void * truly universal pointer type. See pointer handling in
433 get_alias_set for more details. */
434 if (ase2 && ase2->has_pointer)
436 alias_set_entry *ase1 = get_alias_set_entry (set1);
438 if (ase1 && ase1->is_pointer)
440 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
441 /* If one is ptr_type_node and other is pointer, then we consider
442 them subset of each other. */
443 if (set1 == voidptr_set || set2 == voidptr_set)
444 return true;
445 /* If SET2 contains universal pointer's alias set, then we consdier
446 every (non-universal) pointer. */
447 if (ase2->children && set1 != voidptr_set
448 && ase2->children->get (voidptr_set))
449 return true;
452 return false;
455 /* Return 1 if the two specified alias sets may conflict. */
458 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
460 alias_set_entry *ase1;
461 alias_set_entry *ase2;
463 /* The easy case. */
464 if (alias_sets_must_conflict_p (set1, set2))
465 return 1;
467 /* See if the first alias set is a subset of the second. */
468 ase1 = get_alias_set_entry (set1);
469 if (ase1 != 0
470 && ase1->children && ase1->children->get (set2))
472 ++alias_stats.num_dag;
473 return 1;
476 /* Now do the same, but with the alias sets reversed. */
477 ase2 = get_alias_set_entry (set2);
478 if (ase2 != 0
479 && ase2->children && ase2->children->get (set1))
481 ++alias_stats.num_dag;
482 return 1;
485 /* We want void * to be compatible with any other pointer without
486 really dropping it to alias set 0. Doing so would make it
487 compatible with all non-pointer types too.
489 This is not strictly necessary by the C/C++ language
490 standards, but avoids common type punning mistakes. In
491 addition to that, we need the existence of such universal
492 pointer to implement Fortran's C_PTR type (which is defined as
493 type compatible with all C pointers). */
494 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
496 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
498 /* If one of the sets corresponds to universal pointer,
499 we consider it to conflict with anything that is
500 or contains pointer. */
501 if (set1 == voidptr_set || set2 == voidptr_set)
503 ++alias_stats.num_universal;
504 return true;
506 /* If one of sets is (non-universal) pointer and the other
507 contains universal pointer, we also get conflict. */
508 if (ase1->is_pointer && set2 != voidptr_set
509 && ase2->children && ase2->children->get (voidptr_set))
511 ++alias_stats.num_universal;
512 return true;
514 if (ase2->is_pointer && set1 != voidptr_set
515 && ase1->children && ase1->children->get (voidptr_set))
517 ++alias_stats.num_universal;
518 return true;
522 ++alias_stats.num_disambiguated;
524 /* The two alias sets are distinct and neither one is the
525 child of the other. Therefore, they cannot conflict. */
526 return 0;
529 /* Return 1 if the two specified alias sets will always conflict. */
532 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
534 /* Disable TBAA oracle with !flag_strict_aliasing. */
535 if (!flag_strict_aliasing)
536 return 1;
537 if (set1 == 0 || set2 == 0)
539 ++alias_stats.num_alias_zero;
540 return 1;
542 if (set1 == set2)
544 ++alias_stats.num_same_alias_set;
545 return 1;
548 return 0;
551 /* Return 1 if any MEM object of type T1 will always conflict (using the
552 dependency routines in this file) with any MEM object of type T2.
553 This is used when allocating temporary storage. If T1 and/or T2 are
554 NULL_TREE, it means we know nothing about the storage. */
557 objects_must_conflict_p (tree t1, tree t2)
559 alias_set_type set1, set2;
561 /* If neither has a type specified, we don't know if they'll conflict
562 because we may be using them to store objects of various types, for
563 example the argument and local variables areas of inlined functions. */
564 if (t1 == 0 && t2 == 0)
565 return 0;
567 /* If they are the same type, they must conflict. */
568 if (t1 == t2)
570 ++alias_stats.num_same_objects;
571 return 1;
573 /* Likewise if both are volatile. */
574 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
576 ++alias_stats.num_volatile;
577 return 1;
580 set1 = t1 ? get_alias_set (t1) : 0;
581 set2 = t2 ? get_alias_set (t2) : 0;
583 /* We can't use alias_sets_conflict_p because we must make sure
584 that every subtype of t1 will conflict with every subtype of
585 t2 for which a pair of subobjects of these respective subtypes
586 overlaps on the stack. */
587 return alias_sets_must_conflict_p (set1, set2);
590 /* Return the outermost parent of component present in the chain of
591 component references handled by get_inner_reference in T with the
592 following property:
593 - the component is non-addressable
594 or NULL_TREE if no such parent exists. In the former cases, the alias
595 set of this parent is the alias set that must be used for T itself. */
597 tree
598 component_uses_parent_alias_set_from (const_tree t)
600 const_tree found = NULL_TREE;
602 while (handled_component_p (t))
604 switch (TREE_CODE (t))
606 case COMPONENT_REF:
607 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
608 found = t;
609 /* Permit type-punning when accessing a union, provided the access
610 is directly through the union. For example, this code does not
611 permit taking the address of a union member and then storing
612 through it. Even the type-punning allowed here is a GCC
613 extension, albeit a common and useful one; the C standard says
614 that such accesses have implementation-defined behavior. */
615 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
616 found = t;
617 break;
619 case ARRAY_REF:
620 case ARRAY_RANGE_REF:
621 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
622 found = t;
623 break;
625 case REALPART_EXPR:
626 case IMAGPART_EXPR:
627 break;
629 case BIT_FIELD_REF:
630 case VIEW_CONVERT_EXPR:
631 /* Bitfields and casts are never addressable. */
632 found = t;
633 break;
635 default:
636 gcc_unreachable ();
639 t = TREE_OPERAND (t, 0);
642 if (found)
643 return TREE_OPERAND (found, 0);
645 return NULL_TREE;
649 /* Return whether the pointer-type T effective for aliasing may
650 access everything and thus the reference has to be assigned
651 alias-set zero. */
653 static bool
654 ref_all_alias_ptr_type_p (const_tree t)
656 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
657 || TYPE_REF_CAN_ALIAS_ALL (t));
660 /* Return the alias set for the memory pointed to by T, which may be
661 either a type or an expression. Return -1 if there is nothing
662 special about dereferencing T. */
664 static alias_set_type
665 get_deref_alias_set_1 (tree t)
667 /* All we care about is the type. */
668 if (! TYPE_P (t))
669 t = TREE_TYPE (t);
671 /* If we have an INDIRECT_REF via a void pointer, we don't
672 know anything about what that might alias. Likewise if the
673 pointer is marked that way. */
674 if (ref_all_alias_ptr_type_p (t))
675 return 0;
677 return -1;
680 /* Return the alias set for the memory pointed to by T, which may be
681 either a type or an expression. */
683 alias_set_type
684 get_deref_alias_set (tree t)
686 /* If we're not doing any alias analysis, just assume everything
687 aliases everything else. */
688 if (!flag_strict_aliasing)
689 return 0;
691 alias_set_type set = get_deref_alias_set_1 (t);
693 /* Fall back to the alias-set of the pointed-to type. */
694 if (set == -1)
696 if (! TYPE_P (t))
697 t = TREE_TYPE (t);
698 set = get_alias_set (TREE_TYPE (t));
701 return set;
704 /* Return the pointer-type relevant for TBAA purposes from the
705 memory reference tree *T or NULL_TREE in which case *T is
706 adjusted to point to the outermost component reference that
707 can be used for assigning an alias set. */
709 static tree
710 reference_alias_ptr_type_1 (tree *t)
712 tree inner;
714 /* Get the base object of the reference. */
715 inner = *t;
716 while (handled_component_p (inner))
718 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
719 the type of any component references that wrap it to
720 determine the alias-set. */
721 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
722 *t = TREE_OPERAND (inner, 0);
723 inner = TREE_OPERAND (inner, 0);
726 /* Handle pointer dereferences here, they can override the
727 alias-set. */
728 if (INDIRECT_REF_P (inner)
729 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
730 return TREE_TYPE (TREE_OPERAND (inner, 0));
731 else if (TREE_CODE (inner) == TARGET_MEM_REF)
732 return TREE_TYPE (TMR_OFFSET (inner));
733 else if (TREE_CODE (inner) == MEM_REF
734 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
735 return TREE_TYPE (TREE_OPERAND (inner, 1));
737 /* If the innermost reference is a MEM_REF that has a
738 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
739 using the memory access type for determining the alias-set. */
740 if (TREE_CODE (inner) == MEM_REF
741 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
742 != TYPE_MAIN_VARIANT
743 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
744 return TREE_TYPE (TREE_OPERAND (inner, 1));
746 /* Otherwise, pick up the outermost object that we could have
747 a pointer to. */
748 tree tem = component_uses_parent_alias_set_from (*t);
749 if (tem)
750 *t = tem;
752 return NULL_TREE;
755 /* Return the pointer-type relevant for TBAA purposes from the
756 gimple memory reference tree T. This is the type to be used for
757 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
758 and guarantees that get_alias_set will return the same alias
759 set for T and the replacement. */
761 tree
762 reference_alias_ptr_type (tree t)
764 /* If the frontend assigns this alias-set zero, preserve that. */
765 if (lang_hooks.get_alias_set (t) == 0)
766 return ptr_type_node;
768 tree ptype = reference_alias_ptr_type_1 (&t);
769 /* If there is a given pointer type for aliasing purposes, return it. */
770 if (ptype != NULL_TREE)
771 return ptype;
773 /* Otherwise build one from the outermost component reference we
774 may use. */
775 if (TREE_CODE (t) == MEM_REF
776 || TREE_CODE (t) == TARGET_MEM_REF)
777 return TREE_TYPE (TREE_OPERAND (t, 1));
778 else
779 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
782 /* Return whether the pointer-types T1 and T2 used to determine
783 two alias sets of two references will yield the same answer
784 from get_deref_alias_set. */
786 bool
787 alias_ptr_types_compatible_p (tree t1, tree t2)
789 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
790 return true;
792 if (ref_all_alias_ptr_type_p (t1)
793 || ref_all_alias_ptr_type_p (t2))
794 return false;
796 /* This function originally abstracts from simply comparing
797 get_deref_alias_set so that we are sure this still computes
798 the same result after LTO type merging is applied.
799 When in LTO type merging is done we can actually do this compare.
801 if (in_lto_p)
802 return get_deref_alias_set (t1) == get_deref_alias_set (t2);
803 else
804 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
805 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
808 /* Create emptry alias set entry. */
810 alias_set_entry *
811 init_alias_set_entry (alias_set_type set)
813 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
814 ase->alias_set = set;
815 ase->children = NULL;
816 ase->has_zero_child = false;
817 ase->is_pointer = false;
818 ase->has_pointer = false;
819 gcc_checking_assert (!get_alias_set_entry (set));
820 (*alias_sets)[set] = ase;
821 return ase;
824 /* Return the alias set for T, which may be either a type or an
825 expression. Call language-specific routine for help, if needed. */
827 alias_set_type
828 get_alias_set (tree t)
830 alias_set_type set;
832 /* We cannot give up with -fno-strict-aliasing because we need to build
833 proper type representation for possible functions which are build with
834 -fstrict-aliasing. */
836 /* return 0 if this or its type is an error. */
837 if (t == error_mark_node
838 || (! TYPE_P (t)
839 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
840 return 0;
842 /* We can be passed either an expression or a type. This and the
843 language-specific routine may make mutually-recursive calls to each other
844 to figure out what to do. At each juncture, we see if this is a tree
845 that the language may need to handle specially. First handle things that
846 aren't types. */
847 if (! TYPE_P (t))
849 /* Give the language a chance to do something with this tree
850 before we look at it. */
851 STRIP_NOPS (t);
852 set = lang_hooks.get_alias_set (t);
853 if (set != -1)
854 return set;
856 /* Get the alias pointer-type to use or the outermost object
857 that we could have a pointer to. */
858 tree ptype = reference_alias_ptr_type_1 (&t);
859 if (ptype != NULL)
860 return get_deref_alias_set (ptype);
862 /* If we've already determined the alias set for a decl, just return
863 it. This is necessary for C++ anonymous unions, whose component
864 variables don't look like union members (boo!). */
865 if (VAR_P (t)
866 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
867 return MEM_ALIAS_SET (DECL_RTL (t));
869 /* Now all we care about is the type. */
870 t = TREE_TYPE (t);
873 /* Variant qualifiers don't affect the alias set, so get the main
874 variant. */
875 t = TYPE_MAIN_VARIANT (t);
877 if (AGGREGATE_TYPE_P (t)
878 && TYPE_TYPELESS_STORAGE (t))
879 return 0;
881 /* Always use the canonical type as well. If this is a type that
882 requires structural comparisons to identify compatible types
883 use alias set zero. */
884 if (TYPE_STRUCTURAL_EQUALITY_P (t))
886 /* Allow the language to specify another alias set for this
887 type. */
888 set = lang_hooks.get_alias_set (t);
889 if (set != -1)
890 return set;
891 /* Handle structure type equality for pointer types, arrays and vectors.
892 This is easy to do, because the code bellow ignore canonical types on
893 these anyway. This is important for LTO, where TYPE_CANONICAL for
894 pointers cannot be meaningfuly computed by the frotnend. */
895 if (canonical_type_used_p (t))
897 /* In LTO we set canonical types for all types where it makes
898 sense to do so. Double check we did not miss some type. */
899 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
900 return 0;
903 else
905 t = TYPE_CANONICAL (t);
906 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
909 /* If this is a type with a known alias set, return it. */
910 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
911 if (TYPE_ALIAS_SET_KNOWN_P (t))
912 return TYPE_ALIAS_SET (t);
914 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
915 if (!COMPLETE_TYPE_P (t))
917 /* For arrays with unknown size the conservative answer is the
918 alias set of the element type. */
919 if (TREE_CODE (t) == ARRAY_TYPE)
920 return get_alias_set (TREE_TYPE (t));
922 /* But return zero as a conservative answer for incomplete types. */
923 return 0;
926 /* See if the language has special handling for this type. */
927 set = lang_hooks.get_alias_set (t);
928 if (set != -1)
929 return set;
931 /* There are no objects of FUNCTION_TYPE, so there's no point in
932 using up an alias set for them. (There are, of course, pointers
933 and references to functions, but that's different.) */
934 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
935 set = 0;
937 /* Unless the language specifies otherwise, let vector types alias
938 their components. This avoids some nasty type punning issues in
939 normal usage. And indeed lets vectors be treated more like an
940 array slice. */
941 else if (TREE_CODE (t) == VECTOR_TYPE)
942 set = get_alias_set (TREE_TYPE (t));
944 /* Unless the language specifies otherwise, treat array types the
945 same as their components. This avoids the asymmetry we get
946 through recording the components. Consider accessing a
947 character(kind=1) through a reference to a character(kind=1)[1:1].
948 Or consider if we want to assign integer(kind=4)[0:D.1387] and
949 integer(kind=4)[4] the same alias set or not.
950 Just be pragmatic here and make sure the array and its element
951 type get the same alias set assigned. */
952 else if (TREE_CODE (t) == ARRAY_TYPE
953 && (!TYPE_NONALIASED_COMPONENT (t)
954 || TYPE_STRUCTURAL_EQUALITY_P (t)))
955 set = get_alias_set (TREE_TYPE (t));
957 /* From the former common C and C++ langhook implementation:
959 Unfortunately, there is no canonical form of a pointer type.
960 In particular, if we have `typedef int I', then `int *', and
961 `I *' are different types. So, we have to pick a canonical
962 representative. We do this below.
964 Technically, this approach is actually more conservative that
965 it needs to be. In particular, `const int *' and `int *'
966 should be in different alias sets, according to the C and C++
967 standard, since their types are not the same, and so,
968 technically, an `int **' and `const int **' cannot point at
969 the same thing.
971 But, the standard is wrong. In particular, this code is
972 legal C++:
974 int *ip;
975 int **ipp = &ip;
976 const int* const* cipp = ipp;
977 And, it doesn't make sense for that to be legal unless you
978 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
979 the pointed-to types. This issue has been reported to the
980 C++ committee.
982 For this reason go to canonical type of the unqalified pointer type.
983 Until GCC 6 this code set all pointers sets to have alias set of
984 ptr_type_node but that is a bad idea, because it prevents disabiguations
985 in between pointers. For Firefox this accounts about 20% of all
986 disambiguations in the program. */
987 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
989 tree p;
990 auto_vec <bool, 8> reference;
992 /* Unnest all pointers and references.
993 We also want to make pointer to array/vector equivalent to pointer to
994 its element (see the reasoning above). Skip all those types, too. */
995 for (p = t; POINTER_TYPE_P (p)
996 || (TREE_CODE (p) == ARRAY_TYPE
997 && (!TYPE_NONALIASED_COMPONENT (p)
998 || !COMPLETE_TYPE_P (p)
999 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1000 || TREE_CODE (p) == VECTOR_TYPE;
1001 p = TREE_TYPE (p))
1003 /* Ada supports recusive pointers. Instead of doing recrusion check
1004 just give up once the preallocated space of 8 elements is up.
1005 In this case just punt to void * alias set. */
1006 if (reference.length () == 8)
1008 p = ptr_type_node;
1009 break;
1011 if (TREE_CODE (p) == REFERENCE_TYPE)
1012 /* In LTO we want languages that use references to be compatible
1013 with languages that use pointers. */
1014 reference.safe_push (true && !in_lto_p);
1015 if (TREE_CODE (p) == POINTER_TYPE)
1016 reference.safe_push (false);
1018 p = TYPE_MAIN_VARIANT (p);
1020 /* In LTO for C++ programs we can turn in complete types to complete
1021 using ODR name lookup. */
1022 if (in_lto_p && TYPE_STRUCTURAL_EQUALITY_P (p) && odr_type_p (p))
1024 p = prevailing_odr_type (p);
1025 gcc_checking_assert (TYPE_MAIN_VARIANT (p) == p);
1028 /* Make void * compatible with char * and also void **.
1029 Programs are commonly violating TBAA by this.
1031 We also make void * to conflict with every pointer
1032 (see record_component_aliases) and thus it is safe it to use it for
1033 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1034 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1035 set = get_alias_set (ptr_type_node);
1036 else
1038 /* Rebuild pointer type starting from canonical types using
1039 unqualified pointers and references only. This way all such
1040 pointers will have the same alias set and will conflict with
1041 each other.
1043 Most of time we already have pointers or references of a given type.
1044 If not we build new one just to be sure that if someone later
1045 (probably only middle-end can, as we should assign all alias
1046 classes only after finishing translation unit) builds the pointer
1047 type, the canonical type will match. */
1048 p = TYPE_CANONICAL (p);
1049 while (!reference.is_empty ())
1051 if (reference.pop ())
1052 p = build_reference_type (p);
1053 else
1054 p = build_pointer_type (p);
1055 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1056 /* build_pointer_type should always return the canonical type.
1057 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1058 them. Be sure that frontends do not glob canonical types of
1059 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1060 in all other cases. */
1061 gcc_checking_assert (!TYPE_CANONICAL (p)
1062 || p == TYPE_CANONICAL (p));
1065 /* Assign the alias set to both p and t.
1066 We cannot call get_alias_set (p) here as that would trigger
1067 infinite recursion when p == t. In other cases it would just
1068 trigger unnecesary legwork of rebuilding the pointer again. */
1069 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1070 if (TYPE_ALIAS_SET_KNOWN_P (p))
1071 set = TYPE_ALIAS_SET (p);
1072 else
1074 set = new_alias_set ();
1075 TYPE_ALIAS_SET (p) = set;
1079 /* Alias set of ptr_type_node is special and serve as universal pointer which
1080 is TBAA compatible with every other pointer type. Be sure we have the
1081 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1082 of pointer types NULL. */
1083 else if (t == ptr_type_node)
1084 set = new_alias_set ();
1086 /* Otherwise make a new alias set for this type. */
1087 else
1089 /* Each canonical type gets its own alias set, so canonical types
1090 shouldn't form a tree. It doesn't really matter for types
1091 we handle specially above, so only check it where it possibly
1092 would result in a bogus alias set. */
1093 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1095 set = new_alias_set ();
1098 TYPE_ALIAS_SET (t) = set;
1100 /* If this is an aggregate type or a complex type, we must record any
1101 component aliasing information. */
1102 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1103 record_component_aliases (t);
1105 /* We treat pointer types specially in alias_set_subset_of. */
1106 if (POINTER_TYPE_P (t) && set)
1108 alias_set_entry *ase = get_alias_set_entry (set);
1109 if (!ase)
1110 ase = init_alias_set_entry (set);
1111 ase->is_pointer = true;
1112 ase->has_pointer = true;
1115 return set;
1118 /* Return a brand-new alias set. */
1120 alias_set_type
1121 new_alias_set (void)
1123 if (alias_sets == 0)
1124 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1125 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1126 return alias_sets->length () - 1;
1129 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1130 not everything that aliases SUPERSET also aliases SUBSET. For example,
1131 in C, a store to an `int' can alias a load of a structure containing an
1132 `int', and vice versa. But it can't alias a load of a 'double' member
1133 of the same structure. Here, the structure would be the SUPERSET and
1134 `int' the SUBSET. This relationship is also described in the comment at
1135 the beginning of this file.
1137 This function should be called only once per SUPERSET/SUBSET pair.
1139 It is illegal for SUPERSET to be zero; everything is implicitly a
1140 subset of alias set zero. */
1142 void
1143 record_alias_subset (alias_set_type superset, alias_set_type subset)
1145 alias_set_entry *superset_entry;
1146 alias_set_entry *subset_entry;
1148 /* It is possible in complex type situations for both sets to be the same,
1149 in which case we can ignore this operation. */
1150 if (superset == subset)
1151 return;
1153 gcc_assert (superset);
1155 superset_entry = get_alias_set_entry (superset);
1156 if (superset_entry == 0)
1158 /* Create an entry for the SUPERSET, so that we have a place to
1159 attach the SUBSET. */
1160 superset_entry = init_alias_set_entry (superset);
1163 if (subset == 0)
1164 superset_entry->has_zero_child = 1;
1165 else
1167 subset_entry = get_alias_set_entry (subset);
1168 if (!superset_entry->children)
1169 superset_entry->children
1170 = hash_map<alias_set_hash, int>::create_ggc (64);
1171 /* If there is an entry for the subset, enter all of its children
1172 (if they are not already present) as children of the SUPERSET. */
1173 if (subset_entry)
1175 if (subset_entry->has_zero_child)
1176 superset_entry->has_zero_child = true;
1177 if (subset_entry->has_pointer)
1178 superset_entry->has_pointer = true;
1180 if (subset_entry->children)
1182 hash_map<alias_set_hash, int>::iterator iter
1183 = subset_entry->children->begin ();
1184 for (; iter != subset_entry->children->end (); ++iter)
1185 superset_entry->children->put ((*iter).first, (*iter).second);
1189 /* Enter the SUBSET itself as a child of the SUPERSET. */
1190 superset_entry->children->put (subset, 0);
1194 /* Record that component types of TYPE, if any, are part of that type for
1195 aliasing purposes. For record types, we only record component types
1196 for fields that are not marked non-addressable. For array types, we
1197 only record the component type if it is not marked non-aliased. */
1199 void
1200 record_component_aliases (tree type)
1202 alias_set_type superset = get_alias_set (type);
1203 tree field;
1205 if (superset == 0)
1206 return;
1208 switch (TREE_CODE (type))
1210 case RECORD_TYPE:
1211 case UNION_TYPE:
1212 case QUAL_UNION_TYPE:
1214 /* LTO non-ODR type merging does not make any difference between
1215 component pointer types. We may have
1217 struct foo {int *a;};
1219 as TYPE_CANONICAL of
1221 struct bar {float *a;};
1223 Because accesses to int * and float * do not alias, we would get
1224 false negative when accessing the same memory location by
1225 float ** and bar *. We thus record the canonical type as:
1227 struct {void *a;};
1229 void * is special cased and works as a universal pointer type.
1230 Accesses to it conflicts with accesses to any other pointer
1231 type. */
1232 bool void_pointers = in_lto_p
1233 && (!odr_type_p (type)
1234 || !odr_based_tbaa_p (type));
1235 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1236 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1238 tree t = TREE_TYPE (field);
1239 if (void_pointers)
1241 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1242 element type and that type has to be normalized to void *,
1243 too, in the case it is a pointer. */
1244 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1246 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1247 t = TREE_TYPE (t);
1249 if (POINTER_TYPE_P (t))
1250 t = ptr_type_node;
1251 else if (flag_checking)
1252 gcc_checking_assert (get_alias_set (t)
1253 == get_alias_set (TREE_TYPE (field)));
1256 record_alias_subset (superset, get_alias_set (t));
1259 break;
1261 case COMPLEX_TYPE:
1262 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1263 break;
1265 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1266 element type. */
1268 default:
1269 break;
1273 /* Allocate an alias set for use in storing and reading from the varargs
1274 spill area. */
1276 static GTY(()) alias_set_type varargs_set = -1;
1278 alias_set_type
1279 get_varargs_alias_set (void)
1281 #if 1
1282 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1283 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1284 consistently use the varargs alias set for loads from the varargs
1285 area. So don't use it anywhere. */
1286 return 0;
1287 #else
1288 if (varargs_set == -1)
1289 varargs_set = new_alias_set ();
1291 return varargs_set;
1292 #endif
1295 /* Likewise, but used for the fixed portions of the frame, e.g., register
1296 save areas. */
1298 static GTY(()) alias_set_type frame_set = -1;
1300 alias_set_type
1301 get_frame_alias_set (void)
1303 if (frame_set == -1)
1304 frame_set = new_alias_set ();
1306 return frame_set;
1309 /* Create a new, unique base with id ID. */
1311 static rtx
1312 unique_base_value (HOST_WIDE_INT id)
1314 return gen_rtx_ADDRESS (Pmode, id);
1317 /* Return true if accesses based on any other base value cannot alias
1318 those based on X. */
1320 static bool
1321 unique_base_value_p (rtx x)
1323 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1326 /* Return true if X is known to be a base value. */
1328 static bool
1329 known_base_value_p (rtx x)
1331 switch (GET_CODE (x))
1333 case LABEL_REF:
1334 case SYMBOL_REF:
1335 return true;
1337 case ADDRESS:
1338 /* Arguments may or may not be bases; we don't know for sure. */
1339 return GET_MODE (x) != VOIDmode;
1341 default:
1342 return false;
1346 /* Inside SRC, the source of a SET, find a base address. */
1348 static rtx
1349 find_base_value (rtx src)
1351 unsigned int regno;
1352 scalar_int_mode int_mode;
1354 #if defined (FIND_BASE_TERM)
1355 /* Try machine-dependent ways to find the base term. */
1356 src = FIND_BASE_TERM (src);
1357 #endif
1359 switch (GET_CODE (src))
1361 case SYMBOL_REF:
1362 case LABEL_REF:
1363 return src;
1365 case REG:
1366 regno = REGNO (src);
1367 /* At the start of a function, argument registers have known base
1368 values which may be lost later. Returning an ADDRESS
1369 expression here allows optimization based on argument values
1370 even when the argument registers are used for other purposes. */
1371 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1372 return new_reg_base_value[regno];
1374 /* If a pseudo has a known base value, return it. Do not do this
1375 for non-fixed hard regs since it can result in a circular
1376 dependency chain for registers which have values at function entry.
1378 The test above is not sufficient because the scheduler may move
1379 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1380 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1381 && regno < vec_safe_length (reg_base_value))
1383 /* If we're inside init_alias_analysis, use new_reg_base_value
1384 to reduce the number of relaxation iterations. */
1385 if (new_reg_base_value && new_reg_base_value[regno]
1386 && DF_REG_DEF_COUNT (regno) == 1)
1387 return new_reg_base_value[regno];
1389 if ((*reg_base_value)[regno])
1390 return (*reg_base_value)[regno];
1393 return 0;
1395 case MEM:
1396 /* Check for an argument passed in memory. Only record in the
1397 copying-arguments block; it is too hard to track changes
1398 otherwise. */
1399 if (copying_arguments
1400 && (XEXP (src, 0) == arg_pointer_rtx
1401 || (GET_CODE (XEXP (src, 0)) == PLUS
1402 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1403 return arg_base_value;
1404 return 0;
1406 case CONST:
1407 src = XEXP (src, 0);
1408 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1409 break;
1411 /* fall through */
1413 case PLUS:
1414 case MINUS:
1416 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1418 /* If either operand is a REG that is a known pointer, then it
1419 is the base. */
1420 if (REG_P (src_0) && REG_POINTER (src_0))
1421 return find_base_value (src_0);
1422 if (REG_P (src_1) && REG_POINTER (src_1))
1423 return find_base_value (src_1);
1425 /* If either operand is a REG, then see if we already have
1426 a known value for it. */
1427 if (REG_P (src_0))
1429 temp = find_base_value (src_0);
1430 if (temp != 0)
1431 src_0 = temp;
1434 if (REG_P (src_1))
1436 temp = find_base_value (src_1);
1437 if (temp!= 0)
1438 src_1 = temp;
1441 /* If either base is named object or a special address
1442 (like an argument or stack reference), then use it for the
1443 base term. */
1444 if (src_0 != 0 && known_base_value_p (src_0))
1445 return src_0;
1447 if (src_1 != 0 && known_base_value_p (src_1))
1448 return src_1;
1450 /* Guess which operand is the base address:
1451 If either operand is a symbol, then it is the base. If
1452 either operand is a CONST_INT, then the other is the base. */
1453 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1454 return find_base_value (src_0);
1455 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1456 return find_base_value (src_1);
1458 return 0;
1461 case LO_SUM:
1462 /* The standard form is (lo_sum reg sym) so look only at the
1463 second operand. */
1464 return find_base_value (XEXP (src, 1));
1466 case AND:
1467 /* Look through aligning ANDs. And AND with zero or one with
1468 the LSB set isn't one (see for example PR92462). */
1469 if (CONST_INT_P (XEXP (src, 1))
1470 && INTVAL (XEXP (src, 1)) != 0
1471 && (INTVAL (XEXP (src, 1)) & 1) == 0)
1472 return find_base_value (XEXP (src, 0));
1473 return 0;
1475 case TRUNCATE:
1476 /* As we do not know which address space the pointer is referring to, we can
1477 handle this only if the target does not support different pointer or
1478 address modes depending on the address space. */
1479 if (!target_default_pointer_address_modes_p ())
1480 break;
1481 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1482 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1483 break;
1484 /* Fall through. */
1485 case HIGH:
1486 case PRE_INC:
1487 case PRE_DEC:
1488 case POST_INC:
1489 case POST_DEC:
1490 case PRE_MODIFY:
1491 case POST_MODIFY:
1492 return find_base_value (XEXP (src, 0));
1494 case ZERO_EXTEND:
1495 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1496 /* As we do not know which address space the pointer is referring to, we can
1497 handle this only if the target does not support different pointer or
1498 address modes depending on the address space. */
1499 if (!target_default_pointer_address_modes_p ())
1500 break;
1503 rtx temp = find_base_value (XEXP (src, 0));
1505 if (temp != 0 && CONSTANT_P (temp))
1506 temp = convert_memory_address (Pmode, temp);
1508 return temp;
1511 default:
1512 break;
1515 return 0;
1518 /* Called from init_alias_analysis indirectly through note_stores,
1519 or directly if DEST is a register with a REG_NOALIAS note attached.
1520 SET is null in the latter case. */
1522 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1523 register N has been set in this function. */
1524 static sbitmap reg_seen;
1526 static void
1527 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1529 unsigned regno;
1530 rtx src;
1531 int n;
1533 if (!REG_P (dest))
1534 return;
1536 regno = REGNO (dest);
1538 gcc_checking_assert (regno < reg_base_value->length ());
1540 n = REG_NREGS (dest);
1541 if (n != 1)
1543 while (--n >= 0)
1545 bitmap_set_bit (reg_seen, regno + n);
1546 new_reg_base_value[regno + n] = 0;
1548 return;
1551 if (set)
1553 /* A CLOBBER wipes out any old value but does not prevent a previously
1554 unset register from acquiring a base address (i.e. reg_seen is not
1555 set). */
1556 if (GET_CODE (set) == CLOBBER)
1558 new_reg_base_value[regno] = 0;
1559 return;
1562 src = SET_SRC (set);
1564 else
1566 /* There's a REG_NOALIAS note against DEST. */
1567 if (bitmap_bit_p (reg_seen, regno))
1569 new_reg_base_value[regno] = 0;
1570 return;
1572 bitmap_set_bit (reg_seen, regno);
1573 new_reg_base_value[regno] = unique_base_value (unique_id++);
1574 return;
1577 /* If this is not the first set of REGNO, see whether the new value
1578 is related to the old one. There are two cases of interest:
1580 (1) The register might be assigned an entirely new value
1581 that has the same base term as the original set.
1583 (2) The set might be a simple self-modification that
1584 cannot change REGNO's base value.
1586 If neither case holds, reject the original base value as invalid.
1587 Note that the following situation is not detected:
1589 extern int x, y; int *p = &x; p += (&y-&x);
1591 ANSI C does not allow computing the difference of addresses
1592 of distinct top level objects. */
1593 if (new_reg_base_value[regno] != 0
1594 && find_base_value (src) != new_reg_base_value[regno])
1595 switch (GET_CODE (src))
1597 case LO_SUM:
1598 case MINUS:
1599 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1600 new_reg_base_value[regno] = 0;
1601 break;
1602 case PLUS:
1603 /* If the value we add in the PLUS is also a valid base value,
1604 this might be the actual base value, and the original value
1605 an index. */
1607 rtx other = NULL_RTX;
1609 if (XEXP (src, 0) == dest)
1610 other = XEXP (src, 1);
1611 else if (XEXP (src, 1) == dest)
1612 other = XEXP (src, 0);
1614 if (! other || find_base_value (other))
1615 new_reg_base_value[regno] = 0;
1616 break;
1618 case AND:
1619 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1620 new_reg_base_value[regno] = 0;
1621 break;
1622 default:
1623 new_reg_base_value[regno] = 0;
1624 break;
1626 /* If this is the first set of a register, record the value. */
1627 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1628 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1629 new_reg_base_value[regno] = find_base_value (src);
1631 bitmap_set_bit (reg_seen, regno);
1634 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1635 using hard registers with non-null REG_BASE_VALUE for renaming. */
1637 get_reg_base_value (unsigned int regno)
1639 return (*reg_base_value)[regno];
1642 /* If a value is known for REGNO, return it. */
1645 get_reg_known_value (unsigned int regno)
1647 if (regno >= FIRST_PSEUDO_REGISTER)
1649 regno -= FIRST_PSEUDO_REGISTER;
1650 if (regno < vec_safe_length (reg_known_value))
1651 return (*reg_known_value)[regno];
1653 return NULL;
1656 /* Set it. */
1658 static void
1659 set_reg_known_value (unsigned int regno, rtx val)
1661 if (regno >= FIRST_PSEUDO_REGISTER)
1663 regno -= FIRST_PSEUDO_REGISTER;
1664 if (regno < vec_safe_length (reg_known_value))
1665 (*reg_known_value)[regno] = val;
1669 /* Similarly for reg_known_equiv_p. */
1671 bool
1672 get_reg_known_equiv_p (unsigned int regno)
1674 if (regno >= FIRST_PSEUDO_REGISTER)
1676 regno -= FIRST_PSEUDO_REGISTER;
1677 if (regno < vec_safe_length (reg_known_value))
1678 return bitmap_bit_p (reg_known_equiv_p, regno);
1680 return false;
1683 static void
1684 set_reg_known_equiv_p (unsigned int regno, bool val)
1686 if (regno >= FIRST_PSEUDO_REGISTER)
1688 regno -= FIRST_PSEUDO_REGISTER;
1689 if (regno < vec_safe_length (reg_known_value))
1691 if (val)
1692 bitmap_set_bit (reg_known_equiv_p, regno);
1693 else
1694 bitmap_clear_bit (reg_known_equiv_p, regno);
1700 /* Returns a canonical version of X, from the point of view alias
1701 analysis. (For example, if X is a MEM whose address is a register,
1702 and the register has a known value (say a SYMBOL_REF), then a MEM
1703 whose address is the SYMBOL_REF is returned.) */
1706 canon_rtx (rtx x)
1708 /* Recursively look for equivalences. */
1709 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1711 rtx t = get_reg_known_value (REGNO (x));
1712 if (t == x)
1713 return x;
1714 if (t)
1715 return canon_rtx (t);
1718 if (GET_CODE (x) == PLUS)
1720 rtx x0 = canon_rtx (XEXP (x, 0));
1721 rtx x1 = canon_rtx (XEXP (x, 1));
1723 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1724 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1727 /* This gives us much better alias analysis when called from
1728 the loop optimizer. Note we want to leave the original
1729 MEM alone, but need to return the canonicalized MEM with
1730 all the flags with their original values. */
1731 else if (MEM_P (x))
1732 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1734 return x;
1737 /* Return 1 if X and Y are identical-looking rtx's.
1738 Expect that X and Y has been already canonicalized.
1740 We use the data in reg_known_value above to see if two registers with
1741 different numbers are, in fact, equivalent. */
1743 static int
1744 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1746 int i;
1747 int j;
1748 enum rtx_code code;
1749 const char *fmt;
1751 if (x == 0 && y == 0)
1752 return 1;
1753 if (x == 0 || y == 0)
1754 return 0;
1756 if (x == y)
1757 return 1;
1759 code = GET_CODE (x);
1760 /* Rtx's of different codes cannot be equal. */
1761 if (code != GET_CODE (y))
1762 return 0;
1764 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1765 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1767 if (GET_MODE (x) != GET_MODE (y))
1768 return 0;
1770 /* Some RTL can be compared without a recursive examination. */
1771 switch (code)
1773 case REG:
1774 return REGNO (x) == REGNO (y);
1776 case LABEL_REF:
1777 return label_ref_label (x) == label_ref_label (y);
1779 case SYMBOL_REF:
1780 return compare_base_symbol_refs (x, y) == 1;
1782 case ENTRY_VALUE:
1783 /* This is magic, don't go through canonicalization et al. */
1784 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1786 case VALUE:
1787 CASE_CONST_UNIQUE:
1788 /* Pointer equality guarantees equality for these nodes. */
1789 return 0;
1791 default:
1792 break;
1795 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1796 if (code == PLUS)
1797 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1798 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1799 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1800 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1801 /* For commutative operations, the RTX match if the operand match in any
1802 order. Also handle the simple binary and unary cases without a loop. */
1803 if (COMMUTATIVE_P (x))
1805 rtx xop0 = canon_rtx (XEXP (x, 0));
1806 rtx yop0 = canon_rtx (XEXP (y, 0));
1807 rtx yop1 = canon_rtx (XEXP (y, 1));
1809 return ((rtx_equal_for_memref_p (xop0, yop0)
1810 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1811 || (rtx_equal_for_memref_p (xop0, yop1)
1812 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1814 else if (NON_COMMUTATIVE_P (x))
1816 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1817 canon_rtx (XEXP (y, 0)))
1818 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1819 canon_rtx (XEXP (y, 1))));
1821 else if (UNARY_P (x))
1822 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1823 canon_rtx (XEXP (y, 0)));
1825 /* Compare the elements. If any pair of corresponding elements
1826 fail to match, return 0 for the whole things.
1828 Limit cases to types which actually appear in addresses. */
1830 fmt = GET_RTX_FORMAT (code);
1831 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1833 switch (fmt[i])
1835 case 'i':
1836 if (XINT (x, i) != XINT (y, i))
1837 return 0;
1838 break;
1840 case 'p':
1841 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1842 return 0;
1843 break;
1845 case 'E':
1846 /* Two vectors must have the same length. */
1847 if (XVECLEN (x, i) != XVECLEN (y, i))
1848 return 0;
1850 /* And the corresponding elements must match. */
1851 for (j = 0; j < XVECLEN (x, i); j++)
1852 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1853 canon_rtx (XVECEXP (y, i, j))) == 0)
1854 return 0;
1855 break;
1857 case 'e':
1858 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1859 canon_rtx (XEXP (y, i))) == 0)
1860 return 0;
1861 break;
1863 /* This can happen for asm operands. */
1864 case 's':
1865 if (strcmp (XSTR (x, i), XSTR (y, i)))
1866 return 0;
1867 break;
1869 /* This can happen for an asm which clobbers memory. */
1870 case '0':
1871 break;
1873 /* It is believed that rtx's at this level will never
1874 contain anything but integers and other rtx's,
1875 except for within LABEL_REFs and SYMBOL_REFs. */
1876 default:
1877 gcc_unreachable ();
1880 return 1;
1883 static rtx
1884 find_base_term (rtx x, vec<std::pair<cselib_val *,
1885 struct elt_loc_list *> > &visited_vals)
1887 cselib_val *val;
1888 struct elt_loc_list *l, *f;
1889 rtx ret;
1890 scalar_int_mode int_mode;
1892 #if defined (FIND_BASE_TERM)
1893 /* Try machine-dependent ways to find the base term. */
1894 x = FIND_BASE_TERM (x);
1895 #endif
1897 switch (GET_CODE (x))
1899 case REG:
1900 return REG_BASE_VALUE (x);
1902 case TRUNCATE:
1903 /* As we do not know which address space the pointer is referring to, we can
1904 handle this only if the target does not support different pointer or
1905 address modes depending on the address space. */
1906 if (!target_default_pointer_address_modes_p ())
1907 return 0;
1908 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1909 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1910 return 0;
1911 /* Fall through. */
1912 case HIGH:
1913 case PRE_INC:
1914 case PRE_DEC:
1915 case POST_INC:
1916 case POST_DEC:
1917 case PRE_MODIFY:
1918 case POST_MODIFY:
1919 return find_base_term (XEXP (x, 0), visited_vals);
1921 case ZERO_EXTEND:
1922 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1923 /* As we do not know which address space the pointer is referring to, we can
1924 handle this only if the target does not support different pointer or
1925 address modes depending on the address space. */
1926 if (!target_default_pointer_address_modes_p ())
1927 return 0;
1930 rtx temp = find_base_term (XEXP (x, 0), visited_vals);
1932 if (temp != 0 && CONSTANT_P (temp))
1933 temp = convert_memory_address (Pmode, temp);
1935 return temp;
1938 case VALUE:
1939 val = CSELIB_VAL_PTR (x);
1940 ret = NULL_RTX;
1942 if (!val)
1943 return ret;
1945 if (cselib_sp_based_value_p (val))
1946 return static_reg_base_value[STACK_POINTER_REGNUM];
1948 f = val->locs;
1949 /* Reset val->locs to avoid infinite recursion. */
1950 if (f)
1951 visited_vals.safe_push (std::make_pair (val, f));
1952 val->locs = NULL;
1954 for (l = f; l; l = l->next)
1955 if (GET_CODE (l->loc) == VALUE
1956 && CSELIB_VAL_PTR (l->loc)->locs
1957 && !CSELIB_VAL_PTR (l->loc)->locs->next
1958 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1959 continue;
1960 else if ((ret = find_base_term (l->loc, visited_vals)) != 0)
1961 break;
1963 return ret;
1965 case LO_SUM:
1966 /* The standard form is (lo_sum reg sym) so look only at the
1967 second operand. */
1968 return find_base_term (XEXP (x, 1), visited_vals);
1970 case CONST:
1971 x = XEXP (x, 0);
1972 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1973 return 0;
1974 /* Fall through. */
1975 case PLUS:
1976 case MINUS:
1978 rtx tmp1 = XEXP (x, 0);
1979 rtx tmp2 = XEXP (x, 1);
1981 /* This is a little bit tricky since we have to determine which of
1982 the two operands represents the real base address. Otherwise this
1983 routine may return the index register instead of the base register.
1985 That may cause us to believe no aliasing was possible, when in
1986 fact aliasing is possible.
1988 We use a few simple tests to guess the base register. Additional
1989 tests can certainly be added. For example, if one of the operands
1990 is a shift or multiply, then it must be the index register and the
1991 other operand is the base register. */
1993 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1994 return find_base_term (tmp2, visited_vals);
1996 /* If either operand is known to be a pointer, then prefer it
1997 to determine the base term. */
1998 if (REG_P (tmp1) && REG_POINTER (tmp1))
2000 else if (REG_P (tmp2) && REG_POINTER (tmp2))
2001 std::swap (tmp1, tmp2);
2002 /* If second argument is constant which has base term, prefer it
2003 over variable tmp1. See PR64025. */
2004 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
2005 std::swap (tmp1, tmp2);
2007 /* Go ahead and find the base term for both operands. If either base
2008 term is from a pointer or is a named object or a special address
2009 (like an argument or stack reference), then use it for the
2010 base term. */
2011 rtx base = find_base_term (tmp1, visited_vals);
2012 if (base != NULL_RTX
2013 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2014 || known_base_value_p (base)))
2015 return base;
2016 base = find_base_term (tmp2, visited_vals);
2017 if (base != NULL_RTX
2018 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2019 || known_base_value_p (base)))
2020 return base;
2022 /* We could not determine which of the two operands was the
2023 base register and which was the index. So we can determine
2024 nothing from the base alias check. */
2025 return 0;
2028 case AND:
2029 /* Look through aligning ANDs. And AND with zero or one with
2030 the LSB set isn't one (see for example PR92462). */
2031 if (CONST_INT_P (XEXP (x, 1))
2032 && INTVAL (XEXP (x, 1)) != 0
2033 && (INTVAL (XEXP (x, 1)) & 1) == 0)
2034 return find_base_term (XEXP (x, 0), visited_vals);
2035 return 0;
2037 case SYMBOL_REF:
2038 case LABEL_REF:
2039 return x;
2041 default:
2042 return 0;
2046 /* Wrapper around the worker above which removes locs from visited VALUEs
2047 to avoid visiting them multiple times. We unwind that changes here. */
2049 static rtx
2050 find_base_term (rtx x)
2052 auto_vec<std::pair<cselib_val *, struct elt_loc_list *>, 32> visited_vals;
2053 rtx res = find_base_term (x, visited_vals);
2054 for (unsigned i = 0; i < visited_vals.length (); ++i)
2055 visited_vals[i].first->locs = visited_vals[i].second;
2056 return res;
2059 /* Return true if accesses to address X may alias accesses based
2060 on the stack pointer. */
2062 bool
2063 may_be_sp_based_p (rtx x)
2065 rtx base = find_base_term (x);
2066 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2069 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2070 if they refer to different objects and -1 if we cannot decide. */
2073 compare_base_decls (tree base1, tree base2)
2075 int ret;
2076 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2077 if (base1 == base2)
2078 return 1;
2080 /* If we have two register decls with register specification we
2081 cannot decide unless their assembler names are the same. */
2082 if (DECL_REGISTER (base1)
2083 && DECL_REGISTER (base2)
2084 && HAS_DECL_ASSEMBLER_NAME_P (base1)
2085 && HAS_DECL_ASSEMBLER_NAME_P (base2)
2086 && DECL_ASSEMBLER_NAME_SET_P (base1)
2087 && DECL_ASSEMBLER_NAME_SET_P (base2))
2089 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2090 return 1;
2091 return -1;
2094 /* Declarations of non-automatic variables may have aliases. All other
2095 decls are unique. */
2096 if (!decl_in_symtab_p (base1)
2097 || !decl_in_symtab_p (base2))
2098 return 0;
2100 /* Don't cause symbols to be inserted by the act of checking. */
2101 symtab_node *node1 = symtab_node::get (base1);
2102 if (!node1)
2103 return 0;
2104 symtab_node *node2 = symtab_node::get (base2);
2105 if (!node2)
2106 return 0;
2108 ret = node1->equal_address_to (node2, true);
2109 return ret;
2112 /* Same as compare_base_decls but for SYMBOL_REF. */
2114 static int
2115 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2117 tree x_decl = SYMBOL_REF_DECL (x_base);
2118 tree y_decl = SYMBOL_REF_DECL (y_base);
2119 bool binds_def = true;
2121 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2122 return 1;
2123 if (x_decl && y_decl)
2124 return compare_base_decls (x_decl, y_decl);
2125 if (x_decl || y_decl)
2127 if (!x_decl)
2129 std::swap (x_decl, y_decl);
2130 std::swap (x_base, y_base);
2132 /* We handle specially only section anchors and assume that other
2133 labels may overlap with user variables in an arbitrary way. */
2134 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2135 return -1;
2136 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2137 to ignore CONST_DECLs because they are readonly. */
2138 if (!VAR_P (x_decl)
2139 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2140 return 0;
2142 symtab_node *x_node = symtab_node::get_create (x_decl)
2143 ->ultimate_alias_target ();
2144 /* External variable cannot be in section anchor. */
2145 if (!x_node->definition)
2146 return 0;
2147 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2148 /* If not in anchor, we can disambiguate. */
2149 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2150 return 0;
2152 /* We have an alias of anchored variable. If it can be interposed;
2153 we must assume it may or may not alias its anchor. */
2154 binds_def = decl_binds_to_current_def_p (x_decl);
2156 /* If we have variable in section anchor, we can compare by offset. */
2157 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2158 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2160 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2161 return 0;
2162 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2163 return binds_def ? 1 : -1;
2164 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2165 return -1;
2166 return 0;
2168 /* In general we assume that memory locations pointed to by different labels
2169 may overlap in undefined ways. */
2170 return -1;
2173 /* Return 0 if the addresses X and Y are known to point to different
2174 objects, 1 if they might be pointers to the same object. */
2176 static int
2177 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2178 machine_mode x_mode, machine_mode y_mode)
2180 /* If the address itself has no known base see if a known equivalent
2181 value has one. If either address still has no known base, nothing
2182 is known about aliasing. */
2183 if (x_base == 0)
2185 rtx x_c;
2187 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2188 return 1;
2190 x_base = find_base_term (x_c);
2191 if (x_base == 0)
2192 return 1;
2195 if (y_base == 0)
2197 rtx y_c;
2198 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2199 return 1;
2201 y_base = find_base_term (y_c);
2202 if (y_base == 0)
2203 return 1;
2206 /* If the base addresses are equal nothing is known about aliasing. */
2207 if (rtx_equal_p (x_base, y_base))
2208 return 1;
2210 /* The base addresses are different expressions. If they are not accessed
2211 via AND, there is no conflict. We can bring knowledge of object
2212 alignment into play here. For example, on alpha, "char a, b;" can
2213 alias one another, though "char a; long b;" cannot. AND addresses may
2214 implicitly alias surrounding objects; i.e. unaligned access in DImode
2215 via AND address can alias all surrounding object types except those
2216 with aligment 8 or higher. */
2217 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2218 return 1;
2219 if (GET_CODE (x) == AND
2220 && (!CONST_INT_P (XEXP (x, 1))
2221 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2222 return 1;
2223 if (GET_CODE (y) == AND
2224 && (!CONST_INT_P (XEXP (y, 1))
2225 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2226 return 1;
2228 /* Differing symbols not accessed via AND never alias. */
2229 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2230 return compare_base_symbol_refs (x_base, y_base) != 0;
2232 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2233 return 0;
2235 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2236 return 0;
2238 return 1;
2241 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2242 (or equal to) that of V. */
2244 static bool
2245 refs_newer_value_p (const_rtx expr, rtx v)
2247 int minuid = CSELIB_VAL_PTR (v)->uid;
2248 subrtx_iterator::array_type array;
2249 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2250 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2251 return true;
2252 return false;
2255 /* Convert the address X into something we can use. This is done by returning
2256 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2257 we call cselib to get a more useful rtx. */
2260 get_addr (rtx x)
2262 cselib_val *v;
2263 struct elt_loc_list *l;
2265 if (GET_CODE (x) != VALUE)
2267 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2268 && GET_CODE (XEXP (x, 0)) == VALUE
2269 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2271 rtx op0 = get_addr (XEXP (x, 0));
2272 if (op0 != XEXP (x, 0))
2274 poly_int64 c;
2275 if (GET_CODE (x) == PLUS
2276 && poly_int_rtx_p (XEXP (x, 1), &c))
2277 return plus_constant (GET_MODE (x), op0, c);
2278 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2279 op0, XEXP (x, 1));
2282 return x;
2284 v = CSELIB_VAL_PTR (x);
2285 if (v)
2287 bool have_equivs = cselib_have_permanent_equivalences ();
2288 if (have_equivs)
2289 v = canonical_cselib_val (v);
2290 for (l = v->locs; l; l = l->next)
2291 if (CONSTANT_P (l->loc))
2292 return l->loc;
2293 for (l = v->locs; l; l = l->next)
2294 if (!REG_P (l->loc) && !MEM_P (l->loc)
2295 /* Avoid infinite recursion when potentially dealing with
2296 var-tracking artificial equivalences, by skipping the
2297 equivalences themselves, and not choosing expressions
2298 that refer to newer VALUEs. */
2299 && (!have_equivs
2300 || (GET_CODE (l->loc) != VALUE
2301 && !refs_newer_value_p (l->loc, x))))
2302 return l->loc;
2303 if (have_equivs)
2305 for (l = v->locs; l; l = l->next)
2306 if (REG_P (l->loc)
2307 || (GET_CODE (l->loc) != VALUE
2308 && !refs_newer_value_p (l->loc, x)))
2309 return l->loc;
2310 /* Return the canonical value. */
2311 return v->val_rtx;
2313 if (v->locs)
2314 return v->locs->loc;
2316 return x;
2319 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2320 where SIZE is the size in bytes of the memory reference. If ADDR
2321 is not modified by the memory reference then ADDR is returned. */
2323 static rtx
2324 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2326 poly_int64 offset = 0;
2328 switch (GET_CODE (addr))
2330 case PRE_INC:
2331 offset = (n_refs + 1) * size;
2332 break;
2333 case PRE_DEC:
2334 offset = -(n_refs + 1) * size;
2335 break;
2336 case POST_INC:
2337 offset = n_refs * size;
2338 break;
2339 case POST_DEC:
2340 offset = -n_refs * size;
2341 break;
2343 default:
2344 return addr;
2347 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2348 addr = canon_rtx (addr);
2350 return addr;
2353 /* Return TRUE if an object X sized at XSIZE bytes and another object
2354 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2355 any of the sizes is zero, assume an overlap, otherwise use the
2356 absolute value of the sizes as the actual sizes. */
2358 static inline bool
2359 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2361 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2362 return true;
2364 if (maybe_ge (c, 0))
2365 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2366 else
2367 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2370 /* Return one if X and Y (memory addresses) reference the
2371 same location in memory or if the references overlap.
2372 Return zero if they do not overlap, else return
2373 minus one in which case they still might reference the same location.
2375 C is an offset accumulator. When
2376 C is nonzero, we are testing aliases between X and Y + C.
2377 XSIZE is the size in bytes of the X reference,
2378 similarly YSIZE is the size in bytes for Y.
2379 Expect that canon_rtx has been already called for X and Y.
2381 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2382 referenced (the reference was BLKmode), so make the most pessimistic
2383 assumptions.
2385 If XSIZE or YSIZE is negative, we may access memory outside the object
2386 being referenced as a side effect. This can happen when using AND to
2387 align memory references, as is done on the Alpha.
2389 Nice to notice that varying addresses cannot conflict with fp if no
2390 local variables had their addresses taken, but that's too hard now.
2392 ??? Contrary to the tree alias oracle this does not return
2393 one for X + non-constant and Y + non-constant when X and Y are equal.
2394 If that is fixed the TBAA hack for union type-punning can be removed. */
2396 static int
2397 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2398 poly_int64 c)
2400 if (GET_CODE (x) == VALUE)
2402 if (REG_P (y))
2404 struct elt_loc_list *l = NULL;
2405 if (CSELIB_VAL_PTR (x))
2406 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2407 l; l = l->next)
2408 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2409 break;
2410 if (l)
2411 x = y;
2412 else
2413 x = get_addr (x);
2415 /* Don't call get_addr if y is the same VALUE. */
2416 else if (x != y)
2417 x = get_addr (x);
2419 if (GET_CODE (y) == VALUE)
2421 if (REG_P (x))
2423 struct elt_loc_list *l = NULL;
2424 if (CSELIB_VAL_PTR (y))
2425 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2426 l; l = l->next)
2427 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2428 break;
2429 if (l)
2430 y = x;
2431 else
2432 y = get_addr (y);
2434 /* Don't call get_addr if x is the same VALUE. */
2435 else if (y != x)
2436 y = get_addr (y);
2438 if (GET_CODE (x) == HIGH)
2439 x = XEXP (x, 0);
2440 else if (GET_CODE (x) == LO_SUM)
2441 x = XEXP (x, 1);
2442 else
2443 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2444 if (GET_CODE (y) == HIGH)
2445 y = XEXP (y, 0);
2446 else if (GET_CODE (y) == LO_SUM)
2447 y = XEXP (y, 1);
2448 else
2449 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2451 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2453 int cmp = compare_base_symbol_refs (x,y);
2455 /* If both decls are the same, decide by offsets. */
2456 if (cmp == 1)
2457 return offset_overlap_p (c, xsize, ysize);
2458 /* Assume a potential overlap for symbolic addresses that went
2459 through alignment adjustments (i.e., that have negative
2460 sizes), because we can't know how far they are from each
2461 other. */
2462 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2463 return -1;
2464 /* If decls are different or we know by offsets that there is no overlap,
2465 we win. */
2466 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2467 return 0;
2468 /* Decls may or may not be different and offsets overlap....*/
2469 return -1;
2471 else if (rtx_equal_for_memref_p (x, y))
2473 return offset_overlap_p (c, xsize, ysize);
2476 /* This code used to check for conflicts involving stack references and
2477 globals but the base address alias code now handles these cases. */
2479 if (GET_CODE (x) == PLUS)
2481 /* The fact that X is canonicalized means that this
2482 PLUS rtx is canonicalized. */
2483 rtx x0 = XEXP (x, 0);
2484 rtx x1 = XEXP (x, 1);
2486 /* However, VALUEs might end up in different positions even in
2487 canonical PLUSes. Comparing their addresses is enough. */
2488 if (x0 == y)
2489 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2490 else if (x1 == y)
2491 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2493 poly_int64 cx1, cy1;
2494 if (GET_CODE (y) == PLUS)
2496 /* The fact that Y is canonicalized means that this
2497 PLUS rtx is canonicalized. */
2498 rtx y0 = XEXP (y, 0);
2499 rtx y1 = XEXP (y, 1);
2501 if (x0 == y1)
2502 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2503 if (x1 == y0)
2504 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2506 if (rtx_equal_for_memref_p (x1, y1))
2507 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2508 if (rtx_equal_for_memref_p (x0, y0))
2509 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2510 if (poly_int_rtx_p (x1, &cx1))
2512 if (poly_int_rtx_p (y1, &cy1))
2513 return memrefs_conflict_p (xsize, x0, ysize, y0,
2514 c - cx1 + cy1);
2515 else
2516 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2518 else if (poly_int_rtx_p (y1, &cy1))
2519 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2521 return -1;
2523 else if (poly_int_rtx_p (x1, &cx1))
2524 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2526 else if (GET_CODE (y) == PLUS)
2528 /* The fact that Y is canonicalized means that this
2529 PLUS rtx is canonicalized. */
2530 rtx y0 = XEXP (y, 0);
2531 rtx y1 = XEXP (y, 1);
2533 if (x == y0)
2534 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2535 if (x == y1)
2536 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2538 poly_int64 cy1;
2539 if (poly_int_rtx_p (y1, &cy1))
2540 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2541 else
2542 return -1;
2545 if (GET_CODE (x) == GET_CODE (y))
2546 switch (GET_CODE (x))
2548 case MULT:
2550 /* Handle cases where we expect the second operands to be the
2551 same, and check only whether the first operand would conflict
2552 or not. */
2553 rtx x0, y0;
2554 rtx x1 = canon_rtx (XEXP (x, 1));
2555 rtx y1 = canon_rtx (XEXP (y, 1));
2556 if (! rtx_equal_for_memref_p (x1, y1))
2557 return -1;
2558 x0 = canon_rtx (XEXP (x, 0));
2559 y0 = canon_rtx (XEXP (y, 0));
2560 if (rtx_equal_for_memref_p (x0, y0))
2561 return offset_overlap_p (c, xsize, ysize);
2563 /* Can't properly adjust our sizes. */
2564 poly_int64 c1;
2565 if (!poly_int_rtx_p (x1, &c1)
2566 || !can_div_trunc_p (xsize, c1, &xsize)
2567 || !can_div_trunc_p (ysize, c1, &ysize)
2568 || !can_div_trunc_p (c, c1, &c))
2569 return -1;
2570 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2573 default:
2574 break;
2577 /* Deal with alignment ANDs by adjusting offset and size so as to
2578 cover the maximum range, without taking any previously known
2579 alignment into account. Make a size negative after such an
2580 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2581 assume a potential overlap, because they may end up in contiguous
2582 memory locations and the stricter-alignment access may span over
2583 part of both. */
2584 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2586 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2587 unsigned HOST_WIDE_INT uc = sc;
2588 if (sc < 0 && pow2_or_zerop (-uc))
2590 if (maybe_gt (xsize, 0))
2591 xsize = -xsize;
2592 if (maybe_ne (xsize, 0))
2593 xsize += sc + 1;
2594 c -= sc + 1;
2595 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2596 ysize, y, c);
2599 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2601 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2602 unsigned HOST_WIDE_INT uc = sc;
2603 if (sc < 0 && pow2_or_zerop (-uc))
2605 if (maybe_gt (ysize, 0))
2606 ysize = -ysize;
2607 if (maybe_ne (ysize, 0))
2608 ysize += sc + 1;
2609 c += sc + 1;
2610 return memrefs_conflict_p (xsize, x,
2611 ysize, canon_rtx (XEXP (y, 0)), c);
2615 if (CONSTANT_P (x))
2617 poly_int64 cx, cy;
2618 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2620 c += cy - cx;
2621 return offset_overlap_p (c, xsize, ysize);
2624 if (GET_CODE (x) == CONST)
2626 if (GET_CODE (y) == CONST)
2627 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2628 ysize, canon_rtx (XEXP (y, 0)), c);
2629 else
2630 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2631 ysize, y, c);
2633 if (GET_CODE (y) == CONST)
2634 return memrefs_conflict_p (xsize, x, ysize,
2635 canon_rtx (XEXP (y, 0)), c);
2637 /* Assume a potential overlap for symbolic addresses that went
2638 through alignment adjustments (i.e., that have negative
2639 sizes), because we can't know how far they are from each
2640 other. */
2641 if (CONSTANT_P (y))
2642 return (maybe_lt (xsize, 0)
2643 || maybe_lt (ysize, 0)
2644 || offset_overlap_p (c, xsize, ysize));
2646 return -1;
2649 return -1;
2652 /* Functions to compute memory dependencies.
2654 Since we process the insns in execution order, we can build tables
2655 to keep track of what registers are fixed (and not aliased), what registers
2656 are varying in known ways, and what registers are varying in unknown
2657 ways.
2659 If both memory references are volatile, then there must always be a
2660 dependence between the two references, since their order cannot be
2661 changed. A volatile and non-volatile reference can be interchanged
2662 though.
2664 We also must allow AND addresses, because they may generate accesses
2665 outside the object being referenced. This is used to generate aligned
2666 addresses from unaligned addresses, for instance, the alpha
2667 storeqi_unaligned pattern. */
2669 /* Read dependence: X is read after read in MEM takes place. There can
2670 only be a dependence here if both reads are volatile, or if either is
2671 an explicit barrier. */
2674 read_dependence (const_rtx mem, const_rtx x)
2676 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2677 return true;
2678 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2679 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2680 return true;
2681 return false;
2684 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2686 static tree
2687 decl_for_component_ref (tree x)
2691 x = TREE_OPERAND (x, 0);
2693 while (x && TREE_CODE (x) == COMPONENT_REF);
2695 return x && DECL_P (x) ? x : NULL_TREE;
2698 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2699 for the offset of the field reference. *KNOWN_P says whether the
2700 offset is known. */
2702 static void
2703 adjust_offset_for_component_ref (tree x, bool *known_p,
2704 poly_int64 *offset)
2706 if (!*known_p)
2707 return;
2710 tree xoffset = component_ref_field_offset (x);
2711 tree field = TREE_OPERAND (x, 1);
2712 if (!poly_int_tree_p (xoffset))
2714 *known_p = false;
2715 return;
2718 poly_offset_int woffset
2719 = (wi::to_poly_offset (xoffset)
2720 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2721 >> LOG2_BITS_PER_UNIT)
2722 + *offset);
2723 if (!woffset.to_shwi (offset))
2725 *known_p = false;
2726 return;
2729 x = TREE_OPERAND (x, 0);
2731 while (x && TREE_CODE (x) == COMPONENT_REF);
2734 /* Return nonzero if we can determine the exprs corresponding to memrefs
2735 X and Y and they do not overlap.
2736 If LOOP_VARIANT is set, skip offset-based disambiguation */
2739 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2741 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2742 rtx rtlx, rtly;
2743 rtx basex, basey;
2744 bool moffsetx_known_p, moffsety_known_p;
2745 poly_int64 moffsetx = 0, moffsety = 0;
2746 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2748 /* Unless both have exprs, we can't tell anything. */
2749 if (exprx == 0 || expry == 0)
2750 return 0;
2752 /* For spill-slot accesses make sure we have valid offsets. */
2753 if ((exprx == get_spill_slot_decl (false)
2754 && ! MEM_OFFSET_KNOWN_P (x))
2755 || (expry == get_spill_slot_decl (false)
2756 && ! MEM_OFFSET_KNOWN_P (y)))
2757 return 0;
2759 /* If the field reference test failed, look at the DECLs involved. */
2760 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2761 if (moffsetx_known_p)
2762 moffsetx = MEM_OFFSET (x);
2763 if (TREE_CODE (exprx) == COMPONENT_REF)
2765 tree t = decl_for_component_ref (exprx);
2766 if (! t)
2767 return 0;
2768 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2769 exprx = t;
2772 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2773 if (moffsety_known_p)
2774 moffsety = MEM_OFFSET (y);
2775 if (TREE_CODE (expry) == COMPONENT_REF)
2777 tree t = decl_for_component_ref (expry);
2778 if (! t)
2779 return 0;
2780 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2781 expry = t;
2784 if (! DECL_P (exprx) || ! DECL_P (expry))
2785 return 0;
2787 /* If we refer to different gimple registers, or one gimple register
2788 and one non-gimple-register, we know they can't overlap. First,
2789 gimple registers don't have their addresses taken. Now, there
2790 could be more than one stack slot for (different versions of) the
2791 same gimple register, but we can presumably tell they don't
2792 overlap based on offsets from stack base addresses elsewhere.
2793 It's important that we don't proceed to DECL_RTL, because gimple
2794 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2795 able to do anything about them since no SSA information will have
2796 remained to guide it. */
2797 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2798 return exprx != expry
2799 || (moffsetx_known_p && moffsety_known_p
2800 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2801 && !offset_overlap_p (moffsety - moffsetx,
2802 MEM_SIZE (x), MEM_SIZE (y)));
2804 /* With invalid code we can end up storing into the constant pool.
2805 Bail out to avoid ICEing when creating RTL for this.
2806 See gfortran.dg/lto/20091028-2_0.f90. */
2807 if (TREE_CODE (exprx) == CONST_DECL
2808 || TREE_CODE (expry) == CONST_DECL)
2809 return 1;
2811 /* If one decl is known to be a function or label in a function and
2812 the other is some kind of data, they can't overlap. */
2813 if ((TREE_CODE (exprx) == FUNCTION_DECL
2814 || TREE_CODE (exprx) == LABEL_DECL)
2815 != (TREE_CODE (expry) == FUNCTION_DECL
2816 || TREE_CODE (expry) == LABEL_DECL))
2817 return 1;
2819 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2820 living in multiple places), we can't tell anything. Exception
2821 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2822 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2823 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2824 return 0;
2826 rtlx = DECL_RTL (exprx);
2827 rtly = DECL_RTL (expry);
2829 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2830 can't overlap unless they are the same because we never reuse that part
2831 of the stack frame used for locals for spilled pseudos. */
2832 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2833 && ! rtx_equal_p (rtlx, rtly))
2834 return 1;
2836 /* If we have MEMs referring to different address spaces (which can
2837 potentially overlap), we cannot easily tell from the addresses
2838 whether the references overlap. */
2839 if (MEM_P (rtlx) && MEM_P (rtly)
2840 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2841 return 0;
2843 /* Get the base and offsets of both decls. If either is a register, we
2844 know both are and are the same, so use that as the base. The only
2845 we can avoid overlap is if we can deduce that they are nonoverlapping
2846 pieces of that decl, which is very rare. */
2847 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2848 basex = strip_offset_and_add (basex, &offsetx);
2850 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2851 basey = strip_offset_and_add (basey, &offsety);
2853 /* If the bases are different, we know they do not overlap if both
2854 are constants or if one is a constant and the other a pointer into the
2855 stack frame. Otherwise a different base means we can't tell if they
2856 overlap or not. */
2857 if (compare_base_decls (exprx, expry) == 0)
2858 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2859 || (CONSTANT_P (basex) && REG_P (basey)
2860 && REGNO_PTR_FRAME_P (REGNO (basey)))
2861 || (CONSTANT_P (basey) && REG_P (basex)
2862 && REGNO_PTR_FRAME_P (REGNO (basex))));
2864 /* Offset based disambiguation not appropriate for loop invariant */
2865 if (loop_invariant)
2866 return 0;
2868 /* Offset based disambiguation is OK even if we do not know that the
2869 declarations are necessarily different
2870 (i.e. compare_base_decls (exprx, expry) == -1) */
2872 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2873 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2874 : -1);
2875 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2876 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2877 : -1);
2879 /* If we have an offset for either memref, it can update the values computed
2880 above. */
2881 if (moffsetx_known_p)
2882 offsetx += moffsetx, sizex -= moffsetx;
2883 if (moffsety_known_p)
2884 offsety += moffsety, sizey -= moffsety;
2886 /* If a memref has both a size and an offset, we can use the smaller size.
2887 We can't do this if the offset isn't known because we must view this
2888 memref as being anywhere inside the DECL's MEM. */
2889 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2890 sizex = MEM_SIZE (x);
2891 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2892 sizey = MEM_SIZE (y);
2894 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2897 /* Helper for true_dependence and canon_true_dependence.
2898 Checks for true dependence: X is read after store in MEM takes place.
2900 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2901 NULL_RTX, and the canonical addresses of MEM and X are both computed
2902 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2904 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2906 Returns 1 if there is a true dependence, 0 otherwise. */
2908 static int
2909 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2910 const_rtx x, rtx x_addr, bool mem_canonicalized)
2912 rtx true_mem_addr;
2913 rtx base;
2914 int ret;
2916 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2917 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2919 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2920 return 1;
2922 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2923 This is used in epilogue deallocation functions, and in cselib. */
2924 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2925 return 1;
2926 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2927 return 1;
2928 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2929 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2930 return 1;
2932 if (! x_addr)
2933 x_addr = XEXP (x, 0);
2934 x_addr = get_addr (x_addr);
2936 if (! mem_addr)
2938 mem_addr = XEXP (mem, 0);
2939 if (mem_mode == VOIDmode)
2940 mem_mode = GET_MODE (mem);
2942 true_mem_addr = get_addr (mem_addr);
2944 /* Read-only memory is by definition never modified, and therefore can't
2945 conflict with anything. However, don't assume anything when AND
2946 addresses are involved and leave to the code below to determine
2947 dependence. We don't expect to find read-only set on MEM, but
2948 stupid user tricks can produce them, so don't die. */
2949 if (MEM_READONLY_P (x)
2950 && GET_CODE (x_addr) != AND
2951 && GET_CODE (true_mem_addr) != AND)
2952 return 0;
2954 /* If we have MEMs referring to different address spaces (which can
2955 potentially overlap), we cannot easily tell from the addresses
2956 whether the references overlap. */
2957 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2958 return 1;
2960 base = find_base_term (x_addr);
2961 if (base && (GET_CODE (base) == LABEL_REF
2962 || (GET_CODE (base) == SYMBOL_REF
2963 && CONSTANT_POOL_ADDRESS_P (base))))
2964 return 0;
2966 rtx mem_base = find_base_term (true_mem_addr);
2967 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2968 GET_MODE (x), mem_mode))
2969 return 0;
2971 x_addr = canon_rtx (x_addr);
2972 if (!mem_canonicalized)
2973 mem_addr = canon_rtx (true_mem_addr);
2975 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2976 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2977 return ret;
2979 if (mems_in_disjoint_alias_sets_p (x, mem))
2980 return 0;
2982 if (nonoverlapping_memrefs_p (mem, x, false))
2983 return 0;
2985 return rtx_refs_may_alias_p (x, mem, true);
2988 /* True dependence: X is read after store in MEM takes place. */
2991 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2993 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2994 x, NULL_RTX, /*mem_canonicalized=*/false);
2997 /* Canonical true dependence: X is read after store in MEM takes place.
2998 Variant of true_dependence which assumes MEM has already been
2999 canonicalized (hence we no longer do that here).
3000 The mem_addr argument has been added, since true_dependence_1 computed
3001 this value prior to canonicalizing. */
3004 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
3005 const_rtx x, rtx x_addr)
3007 return true_dependence_1 (mem, mem_mode, mem_addr,
3008 x, x_addr, /*mem_canonicalized=*/true);
3011 /* Returns nonzero if a write to X might alias a previous read from
3012 (or, if WRITEP is true, a write to) MEM.
3013 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
3014 and X_MODE the mode for that access.
3015 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3017 static int
3018 write_dependence_p (const_rtx mem,
3019 const_rtx x, machine_mode x_mode, rtx x_addr,
3020 bool mem_canonicalized, bool x_canonicalized, bool writep)
3022 rtx mem_addr;
3023 rtx true_mem_addr, true_x_addr;
3024 rtx base;
3025 int ret;
3027 gcc_checking_assert (x_canonicalized
3028 ? (x_addr != NULL_RTX
3029 && (x_mode != VOIDmode || GET_MODE (x) == VOIDmode))
3030 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3032 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3033 return 1;
3035 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3036 This is used in epilogue deallocation functions. */
3037 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3038 return 1;
3039 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3040 return 1;
3041 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3042 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3043 return 1;
3045 if (!x_addr)
3046 x_addr = XEXP (x, 0);
3047 true_x_addr = get_addr (x_addr);
3049 mem_addr = XEXP (mem, 0);
3050 true_mem_addr = get_addr (mem_addr);
3052 /* A read from read-only memory can't conflict with read-write memory.
3053 Don't assume anything when AND addresses are involved and leave to
3054 the code below to determine dependence. */
3055 if (!writep
3056 && MEM_READONLY_P (mem)
3057 && GET_CODE (true_x_addr) != AND
3058 && GET_CODE (true_mem_addr) != AND)
3059 return 0;
3061 /* If we have MEMs referring to different address spaces (which can
3062 potentially overlap), we cannot easily tell from the addresses
3063 whether the references overlap. */
3064 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3065 return 1;
3067 base = find_base_term (true_mem_addr);
3068 if (! writep
3069 && base
3070 && (GET_CODE (base) == LABEL_REF
3071 || (GET_CODE (base) == SYMBOL_REF
3072 && CONSTANT_POOL_ADDRESS_P (base))))
3073 return 0;
3075 rtx x_base = find_base_term (true_x_addr);
3076 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3077 GET_MODE (x), GET_MODE (mem)))
3078 return 0;
3080 if (!x_canonicalized)
3082 x_addr = canon_rtx (true_x_addr);
3083 x_mode = GET_MODE (x);
3085 if (!mem_canonicalized)
3086 mem_addr = canon_rtx (true_mem_addr);
3088 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3089 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3090 return ret;
3092 if (nonoverlapping_memrefs_p (x, mem, false))
3093 return 0;
3095 return rtx_refs_may_alias_p (x, mem, false);
3098 /* Anti dependence: X is written after read in MEM takes place. */
3101 anti_dependence (const_rtx mem, const_rtx x)
3103 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3104 /*mem_canonicalized=*/false,
3105 /*x_canonicalized*/false, /*writep=*/false);
3108 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3109 Also, consider X in X_MODE (which might be from an enclosing
3110 STRICT_LOW_PART / ZERO_EXTRACT).
3111 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3114 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3115 const_rtx x, machine_mode x_mode, rtx x_addr)
3117 return write_dependence_p (mem, x, x_mode, x_addr,
3118 mem_canonicalized, /*x_canonicalized=*/true,
3119 /*writep=*/false);
3122 /* Output dependence: X is written after store in MEM takes place. */
3125 output_dependence (const_rtx mem, const_rtx x)
3127 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3128 /*mem_canonicalized=*/false,
3129 /*x_canonicalized*/false, /*writep=*/true);
3132 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3133 Also, consider X in X_MODE (which might be from an enclosing
3134 STRICT_LOW_PART / ZERO_EXTRACT).
3135 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3138 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3139 const_rtx x, machine_mode x_mode, rtx x_addr)
3141 return write_dependence_p (mem, x, x_mode, x_addr,
3142 mem_canonicalized, /*x_canonicalized=*/true,
3143 /*writep=*/true);
3148 /* Check whether X may be aliased with MEM. Don't do offset-based
3149 memory disambiguation & TBAA. */
3151 may_alias_p (const_rtx mem, const_rtx x)
3153 rtx x_addr, mem_addr;
3155 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3156 return 1;
3158 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3159 This is used in epilogue deallocation functions. */
3160 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3161 return 1;
3162 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3163 return 1;
3164 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3165 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3166 return 1;
3168 x_addr = XEXP (x, 0);
3169 x_addr = get_addr (x_addr);
3171 mem_addr = XEXP (mem, 0);
3172 mem_addr = get_addr (mem_addr);
3174 /* Read-only memory is by definition never modified, and therefore can't
3175 conflict with anything. However, don't assume anything when AND
3176 addresses are involved and leave to the code below to determine
3177 dependence. We don't expect to find read-only set on MEM, but
3178 stupid user tricks can produce them, so don't die. */
3179 if (MEM_READONLY_P (x)
3180 && GET_CODE (x_addr) != AND
3181 && GET_CODE (mem_addr) != AND)
3182 return 0;
3184 /* If we have MEMs referring to different address spaces (which can
3185 potentially overlap), we cannot easily tell from the addresses
3186 whether the references overlap. */
3187 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3188 return 1;
3190 rtx x_base = find_base_term (x_addr);
3191 rtx mem_base = find_base_term (mem_addr);
3192 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3193 GET_MODE (x), GET_MODE (mem_addr)))
3194 return 0;
3196 if (nonoverlapping_memrefs_p (mem, x, true))
3197 return 0;
3199 /* TBAA not valid for loop_invarint */
3200 return rtx_refs_may_alias_p (x, mem, false);
3203 void
3204 init_alias_target (void)
3206 int i;
3208 if (!arg_base_value)
3209 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3211 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3213 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3214 /* Check whether this register can hold an incoming pointer
3215 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3216 numbers, so translate if necessary due to register windows. */
3217 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3218 && targetm.hard_regno_mode_ok (i, Pmode))
3219 static_reg_base_value[i] = arg_base_value;
3221 /* RTL code is required to be consistent about whether it uses the
3222 stack pointer, the frame pointer or the argument pointer to
3223 access a given area of the frame. We can therefore use the
3224 base address to distinguish between the different areas. */
3225 static_reg_base_value[STACK_POINTER_REGNUM]
3226 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3227 static_reg_base_value[ARG_POINTER_REGNUM]
3228 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3229 static_reg_base_value[FRAME_POINTER_REGNUM]
3230 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3232 /* The above rules extend post-reload, with eliminations applying
3233 consistently to each of the three pointers. Cope with cases in
3234 which the frame pointer is eliminated to the hard frame pointer
3235 rather than the stack pointer. */
3236 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3237 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3238 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3241 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3242 to be memory reference. */
3243 static bool memory_modified;
3244 static void
3245 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3247 if (MEM_P (x))
3249 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3250 memory_modified = true;
3255 /* Return true when INSN possibly modify memory contents of MEM
3256 (i.e. address can be modified). */
3257 bool
3258 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3260 if (!INSN_P (insn))
3261 return false;
3262 /* Conservatively assume all non-readonly MEMs might be modified in
3263 calls. */
3264 if (CALL_P (insn))
3265 return true;
3266 memory_modified = false;
3267 note_stores (as_a<const rtx_insn *> (insn), memory_modified_1,
3268 CONST_CAST_RTX(mem));
3269 return memory_modified;
3272 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3273 array. */
3275 void
3276 init_alias_analysis (void)
3278 unsigned int maxreg = max_reg_num ();
3279 int changed, pass;
3280 int i;
3281 unsigned int ui;
3282 rtx_insn *insn;
3283 rtx val;
3284 int rpo_cnt;
3285 int *rpo;
3287 timevar_push (TV_ALIAS_ANALYSIS);
3289 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3290 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3291 bitmap_clear (reg_known_equiv_p);
3293 /* If we have memory allocated from the previous run, use it. */
3294 if (old_reg_base_value)
3295 reg_base_value = old_reg_base_value;
3297 if (reg_base_value)
3298 reg_base_value->truncate (0);
3300 vec_safe_grow_cleared (reg_base_value, maxreg);
3302 new_reg_base_value = XNEWVEC (rtx, maxreg);
3303 reg_seen = sbitmap_alloc (maxreg);
3305 /* The basic idea is that each pass through this loop will use the
3306 "constant" information from the previous pass to propagate alias
3307 information through another level of assignments.
3309 The propagation is done on the CFG in reverse post-order, to propagate
3310 things forward as far as possible in each iteration.
3312 This could get expensive if the assignment chains are long. Maybe
3313 we should throttle the number of iterations, possibly based on
3314 the optimization level or flag_expensive_optimizations.
3316 We could propagate more information in the first pass by making use
3317 of DF_REG_DEF_COUNT to determine immediately that the alias information
3318 for a pseudo is "constant".
3320 A program with an uninitialized variable can cause an infinite loop
3321 here. Instead of doing a full dataflow analysis to detect such problems
3322 we just cap the number of iterations for the loop.
3324 The state of the arrays for the set chain in question does not matter
3325 since the program has undefined behavior. */
3327 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3328 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3330 /* The prologue/epilogue insns are not threaded onto the
3331 insn chain until after reload has completed. Thus,
3332 there is no sense wasting time checking if INSN is in
3333 the prologue/epilogue until after reload has completed. */
3334 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3335 || targetm.have_epilogue ())
3336 && reload_completed);
3338 pass = 0;
3341 /* Assume nothing will change this iteration of the loop. */
3342 changed = 0;
3344 /* We want to assign the same IDs each iteration of this loop, so
3345 start counting from one each iteration of the loop. */
3346 unique_id = 1;
3348 /* We're at the start of the function each iteration through the
3349 loop, so we're copying arguments. */
3350 copying_arguments = true;
3352 /* Wipe the potential alias information clean for this pass. */
3353 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3355 /* Wipe the reg_seen array clean. */
3356 bitmap_clear (reg_seen);
3358 /* Initialize the alias information for this pass. */
3359 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3360 if (static_reg_base_value[i]
3361 /* Don't treat the hard frame pointer as special if we
3362 eliminated the frame pointer to the stack pointer instead. */
3363 && !(i == HARD_FRAME_POINTER_REGNUM
3364 && reload_completed
3365 && !frame_pointer_needed
3366 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3367 STACK_POINTER_REGNUM)))
3369 new_reg_base_value[i] = static_reg_base_value[i];
3370 bitmap_set_bit (reg_seen, i);
3373 /* Walk the insns adding values to the new_reg_base_value array. */
3374 for (i = 0; i < rpo_cnt; i++)
3376 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3377 FOR_BB_INSNS (bb, insn)
3379 if (NONDEBUG_INSN_P (insn))
3381 rtx note, set;
3383 if (could_be_prologue_epilogue
3384 && prologue_epilogue_contains (insn))
3385 continue;
3387 /* If this insn has a noalias note, process it, Otherwise,
3388 scan for sets. A simple set will have no side effects
3389 which could change the base value of any other register. */
3391 if (GET_CODE (PATTERN (insn)) == SET
3392 && REG_NOTES (insn) != 0
3393 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3394 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3395 else
3396 note_stores (insn, record_set, NULL);
3398 set = single_set (insn);
3400 if (set != 0
3401 && REG_P (SET_DEST (set))
3402 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3404 unsigned int regno = REGNO (SET_DEST (set));
3405 rtx src = SET_SRC (set);
3406 rtx t;
3408 note = find_reg_equal_equiv_note (insn);
3409 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3410 && DF_REG_DEF_COUNT (regno) != 1)
3411 note = NULL_RTX;
3413 poly_int64 offset;
3414 if (note != NULL_RTX
3415 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3416 && ! rtx_varies_p (XEXP (note, 0), 1)
3417 && ! reg_overlap_mentioned_p (SET_DEST (set),
3418 XEXP (note, 0)))
3420 set_reg_known_value (regno, XEXP (note, 0));
3421 set_reg_known_equiv_p (regno,
3422 REG_NOTE_KIND (note) == REG_EQUIV);
3424 else if (DF_REG_DEF_COUNT (regno) == 1
3425 && GET_CODE (src) == PLUS
3426 && REG_P (XEXP (src, 0))
3427 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3428 && poly_int_rtx_p (XEXP (src, 1), &offset))
3430 t = plus_constant (GET_MODE (src), t, offset);
3431 set_reg_known_value (regno, t);
3432 set_reg_known_equiv_p (regno, false);
3434 else if (DF_REG_DEF_COUNT (regno) == 1
3435 && ! rtx_varies_p (src, 1))
3437 set_reg_known_value (regno, src);
3438 set_reg_known_equiv_p (regno, false);
3442 else if (NOTE_P (insn)
3443 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3444 copying_arguments = false;
3448 /* Now propagate values from new_reg_base_value to reg_base_value. */
3449 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3451 for (ui = 0; ui < maxreg; ui++)
3453 if (new_reg_base_value[ui]
3454 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3455 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3457 (*reg_base_value)[ui] = new_reg_base_value[ui];
3458 changed = 1;
3462 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3463 XDELETEVEC (rpo);
3465 /* Fill in the remaining entries. */
3466 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3468 int regno = i + FIRST_PSEUDO_REGISTER;
3469 if (! val)
3470 set_reg_known_value (regno, regno_reg_rtx[regno]);
3473 /* Clean up. */
3474 free (new_reg_base_value);
3475 new_reg_base_value = 0;
3476 sbitmap_free (reg_seen);
3477 reg_seen = 0;
3478 timevar_pop (TV_ALIAS_ANALYSIS);
3481 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3482 Special API for var-tracking pass purposes. */
3484 void
3485 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3487 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3490 void
3491 end_alias_analysis (void)
3493 old_reg_base_value = reg_base_value;
3494 vec_free (reg_known_value);
3495 sbitmap_free (reg_known_equiv_p);
3498 void
3499 dump_alias_stats_in_alias_c (FILE *s)
3501 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3502 " %llu are in alias set 0\n"
3503 " %llu queries asked about the same object\n"
3504 " %llu queries asked about the same alias set\n"
3505 " %llu access volatile\n"
3506 " %llu are dependent in the DAG\n"
3507 " %llu are aritificially in conflict with void *\n",
3508 alias_stats.num_disambiguated,
3509 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3510 + alias_stats.num_same_objects + alias_stats.num_volatile
3511 + alias_stats.num_dag + alias_stats.num_disambiguated
3512 + alias_stats.num_universal,
3513 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3514 alias_stats.num_same_objects, alias_stats.num_volatile,
3515 alias_stats.num_dag, alias_stats.num_universal);
3517 #include "gt-alias.h"