* gcc.dg/vect/slp-9.c: Disable einline.
[official-gcc.git] / gcc / explow.c
blob6ae015cea66d53e2e219d5b156773f7e285c1a64
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "except.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "vec.h"
35 #include "machmode.h"
36 #include "hard-reg-set.h"
37 #include "input.h"
38 #include "function.h"
39 #include "expr.h"
40 #include "insn-codes.h"
41 #include "optabs.h"
42 #include "libfuncs.h"
43 #include "insn-config.h"
44 #include "ggc.h"
45 #include "recog.h"
46 #include "langhooks.h"
47 #include "target.h"
48 #include "common/common-target.h"
49 #include "output.h"
51 static rtx break_out_memory_refs (rtx);
54 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
56 HOST_WIDE_INT
57 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
59 int width = GET_MODE_PRECISION (mode);
61 /* You want to truncate to a _what_? */
62 gcc_assert (SCALAR_INT_MODE_P (mode)
63 || POINTER_BOUNDS_MODE_P (mode));
65 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
66 if (mode == BImode)
67 return c & 1 ? STORE_FLAG_VALUE : 0;
69 /* Sign-extend for the requested mode. */
71 if (width < HOST_BITS_PER_WIDE_INT)
73 HOST_WIDE_INT sign = 1;
74 sign <<= width - 1;
75 c &= (sign << 1) - 1;
76 c ^= sign;
77 c -= sign;
80 return c;
83 /* Return an rtx for the sum of X and the integer C, given that X has
84 mode MODE. INPLACE is true if X can be modified inplace or false
85 if it must be treated as immutable. */
87 rtx
88 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
89 bool inplace)
91 RTX_CODE code;
92 rtx y;
93 rtx tem;
94 int all_constant = 0;
96 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
98 if (c == 0)
99 return x;
101 restart:
103 code = GET_CODE (x);
104 y = x;
106 switch (code)
108 CASE_CONST_SCALAR_INT:
109 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
110 mode);
111 case MEM:
112 /* If this is a reference to the constant pool, try replacing it with
113 a reference to a new constant. If the resulting address isn't
114 valid, don't return it because we have no way to validize it. */
115 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
116 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
118 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
119 tem = force_const_mem (GET_MODE (x), tem);
120 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
121 return tem;
123 break;
125 case CONST:
126 /* If adding to something entirely constant, set a flag
127 so that we can add a CONST around the result. */
128 if (inplace && shared_const_p (x))
129 inplace = false;
130 x = XEXP (x, 0);
131 all_constant = 1;
132 goto restart;
134 case SYMBOL_REF:
135 case LABEL_REF:
136 all_constant = 1;
137 break;
139 case PLUS:
140 /* The interesting case is adding the integer to a sum. Look
141 for constant term in the sum and combine with C. For an
142 integer constant term or a constant term that is not an
143 explicit integer, we combine or group them together anyway.
145 We may not immediately return from the recursive call here, lest
146 all_constant gets lost. */
148 if (CONSTANT_P (XEXP (x, 1)))
150 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
151 if (term == const0_rtx)
152 x = XEXP (x, 0);
153 else if (inplace)
154 XEXP (x, 1) = term;
155 else
156 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
157 c = 0;
159 else if (rtx *const_loc = find_constant_term_loc (&y))
161 if (!inplace)
163 /* We need to be careful since X may be shared and we can't
164 modify it in place. */
165 x = copy_rtx (x);
166 const_loc = find_constant_term_loc (&x);
168 *const_loc = plus_constant (mode, *const_loc, c, true);
169 c = 0;
171 break;
173 default:
174 break;
177 if (c != 0)
178 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
180 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
181 return x;
182 else if (all_constant)
183 return gen_rtx_CONST (mode, x);
184 else
185 return x;
188 /* If X is a sum, return a new sum like X but lacking any constant terms.
189 Add all the removed constant terms into *CONSTPTR.
190 X itself is not altered. The result != X if and only if
191 it is not isomorphic to X. */
194 eliminate_constant_term (rtx x, rtx *constptr)
196 rtx x0, x1;
197 rtx tem;
199 if (GET_CODE (x) != PLUS)
200 return x;
202 /* First handle constants appearing at this level explicitly. */
203 if (CONST_INT_P (XEXP (x, 1))
204 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
205 XEXP (x, 1)))
206 && CONST_INT_P (tem))
208 *constptr = tem;
209 return eliminate_constant_term (XEXP (x, 0), constptr);
212 tem = const0_rtx;
213 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
214 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
215 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
216 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
217 *constptr, tem))
218 && CONST_INT_P (tem))
220 *constptr = tem;
221 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
224 return x;
227 /* Returns a tree for the size of EXP in bytes. */
229 static tree
230 tree_expr_size (const_tree exp)
232 if (DECL_P (exp)
233 && DECL_SIZE_UNIT (exp) != 0)
234 return DECL_SIZE_UNIT (exp);
235 else
236 return size_in_bytes (TREE_TYPE (exp));
239 /* Return an rtx for the size in bytes of the value of EXP. */
242 expr_size (tree exp)
244 tree size;
246 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
247 size = TREE_OPERAND (exp, 1);
248 else
250 size = tree_expr_size (exp);
251 gcc_assert (size);
252 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
255 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
258 /* Return a wide integer for the size in bytes of the value of EXP, or -1
259 if the size can vary or is larger than an integer. */
261 HOST_WIDE_INT
262 int_expr_size (tree exp)
264 tree size;
266 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
267 size = TREE_OPERAND (exp, 1);
268 else
270 size = tree_expr_size (exp);
271 gcc_assert (size);
274 if (size == 0 || !tree_fits_shwi_p (size))
275 return -1;
277 return tree_to_shwi (size);
280 /* Return a copy of X in which all memory references
281 and all constants that involve symbol refs
282 have been replaced with new temporary registers.
283 Also emit code to load the memory locations and constants
284 into those registers.
286 If X contains no such constants or memory references,
287 X itself (not a copy) is returned.
289 If a constant is found in the address that is not a legitimate constant
290 in an insn, it is left alone in the hope that it might be valid in the
291 address.
293 X may contain no arithmetic except addition, subtraction and multiplication.
294 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
296 static rtx
297 break_out_memory_refs (rtx x)
299 if (MEM_P (x)
300 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
301 && GET_MODE (x) != VOIDmode))
302 x = force_reg (GET_MODE (x), x);
303 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
304 || GET_CODE (x) == MULT)
306 rtx op0 = break_out_memory_refs (XEXP (x, 0));
307 rtx op1 = break_out_memory_refs (XEXP (x, 1));
309 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
310 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
313 return x;
316 /* Given X, a memory address in address space AS' pointer mode, convert it to
317 an address in the address space's address mode, or vice versa (TO_MODE says
318 which way). We take advantage of the fact that pointers are not allowed to
319 overflow by commuting arithmetic operations over conversions so that address
320 arithmetic insns can be used. IN_CONST is true if this conversion is inside
321 a CONST. */
323 static rtx
324 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
325 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
326 bool in_const ATTRIBUTE_UNUSED)
328 #ifndef POINTERS_EXTEND_UNSIGNED
329 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
330 return x;
331 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
332 machine_mode pointer_mode, address_mode, from_mode;
333 rtx temp;
334 enum rtx_code code;
336 /* If X already has the right mode, just return it. */
337 if (GET_MODE (x) == to_mode)
338 return x;
340 pointer_mode = targetm.addr_space.pointer_mode (as);
341 address_mode = targetm.addr_space.address_mode (as);
342 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
344 /* Here we handle some special cases. If none of them apply, fall through
345 to the default case. */
346 switch (GET_CODE (x))
348 CASE_CONST_SCALAR_INT:
349 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
350 code = TRUNCATE;
351 else if (POINTERS_EXTEND_UNSIGNED < 0)
352 break;
353 else if (POINTERS_EXTEND_UNSIGNED > 0)
354 code = ZERO_EXTEND;
355 else
356 code = SIGN_EXTEND;
357 temp = simplify_unary_operation (code, to_mode, x, from_mode);
358 if (temp)
359 return temp;
360 break;
362 case SUBREG:
363 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
364 && GET_MODE (SUBREG_REG (x)) == to_mode)
365 return SUBREG_REG (x);
366 break;
368 case LABEL_REF:
369 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
370 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
371 return temp;
372 break;
374 case SYMBOL_REF:
375 temp = shallow_copy_rtx (x);
376 PUT_MODE (temp, to_mode);
377 return temp;
378 break;
380 case CONST:
381 return gen_rtx_CONST (to_mode,
382 convert_memory_address_addr_space_1
383 (to_mode, XEXP (x, 0), as, true));
384 break;
386 case PLUS:
387 case MULT:
388 /* For addition we can safely permute the conversion and addition
389 operation if one operand is a constant and converting the constant
390 does not change it or if one operand is a constant and we are
391 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
392 We can always safely permute them if we are making the address
393 narrower. Inside a CONST RTL, this is safe for both pointers
394 zero or sign extended as pointers cannot wrap. */
395 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
396 || (GET_CODE (x) == PLUS
397 && CONST_INT_P (XEXP (x, 1))
398 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
399 || XEXP (x, 1) == convert_memory_address_addr_space_1
400 (to_mode, XEXP (x, 1), as, in_const)
401 || POINTERS_EXTEND_UNSIGNED < 0)))
402 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
403 convert_memory_address_addr_space_1
404 (to_mode, XEXP (x, 0), as, in_const),
405 XEXP (x, 1));
406 break;
408 default:
409 break;
412 return convert_modes (to_mode, from_mode,
413 x, POINTERS_EXTEND_UNSIGNED);
414 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
417 /* Given X, a memory address in address space AS' pointer mode, convert it to
418 an address in the address space's address mode, or vice versa (TO_MODE says
419 which way). We take advantage of the fact that pointers are not allowed to
420 overflow by commuting arithmetic operations over conversions so that address
421 arithmetic insns can be used. */
424 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
426 return convert_memory_address_addr_space_1 (to_mode, x, as, false);
429 /* Return something equivalent to X but valid as a memory address for something
430 of mode MODE in the named address space AS. When X is not itself valid,
431 this works by copying X or subexpressions of it into registers. */
434 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
436 rtx oldx = x;
437 machine_mode address_mode = targetm.addr_space.address_mode (as);
439 x = convert_memory_address_addr_space (address_mode, x, as);
441 /* By passing constant addresses through registers
442 we get a chance to cse them. */
443 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
444 x = force_reg (address_mode, x);
446 /* We get better cse by rejecting indirect addressing at this stage.
447 Let the combiner create indirect addresses where appropriate.
448 For now, generate the code so that the subexpressions useful to share
449 are visible. But not if cse won't be done! */
450 else
452 if (! cse_not_expected && !REG_P (x))
453 x = break_out_memory_refs (x);
455 /* At this point, any valid address is accepted. */
456 if (memory_address_addr_space_p (mode, x, as))
457 goto done;
459 /* If it was valid before but breaking out memory refs invalidated it,
460 use it the old way. */
461 if (memory_address_addr_space_p (mode, oldx, as))
463 x = oldx;
464 goto done;
467 /* Perform machine-dependent transformations on X
468 in certain cases. This is not necessary since the code
469 below can handle all possible cases, but machine-dependent
470 transformations can make better code. */
472 rtx orig_x = x;
473 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
474 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
475 goto done;
478 /* PLUS and MULT can appear in special ways
479 as the result of attempts to make an address usable for indexing.
480 Usually they are dealt with by calling force_operand, below.
481 But a sum containing constant terms is special
482 if removing them makes the sum a valid address:
483 then we generate that address in a register
484 and index off of it. We do this because it often makes
485 shorter code, and because the addresses thus generated
486 in registers often become common subexpressions. */
487 if (GET_CODE (x) == PLUS)
489 rtx constant_term = const0_rtx;
490 rtx y = eliminate_constant_term (x, &constant_term);
491 if (constant_term == const0_rtx
492 || ! memory_address_addr_space_p (mode, y, as))
493 x = force_operand (x, NULL_RTX);
494 else
496 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
497 if (! memory_address_addr_space_p (mode, y, as))
498 x = force_operand (x, NULL_RTX);
499 else
500 x = y;
504 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
505 x = force_operand (x, NULL_RTX);
507 /* If we have a register that's an invalid address,
508 it must be a hard reg of the wrong class. Copy it to a pseudo. */
509 else if (REG_P (x))
510 x = copy_to_reg (x);
512 /* Last resort: copy the value to a register, since
513 the register is a valid address. */
514 else
515 x = force_reg (address_mode, x);
518 done:
520 gcc_assert (memory_address_addr_space_p (mode, x, as));
521 /* If we didn't change the address, we are done. Otherwise, mark
522 a reg as a pointer if we have REG or REG + CONST_INT. */
523 if (oldx == x)
524 return x;
525 else if (REG_P (x))
526 mark_reg_pointer (x, BITS_PER_UNIT);
527 else if (GET_CODE (x) == PLUS
528 && REG_P (XEXP (x, 0))
529 && CONST_INT_P (XEXP (x, 1)))
530 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
532 /* OLDX may have been the address on a temporary. Update the address
533 to indicate that X is now used. */
534 update_temp_slot_address (oldx, x);
536 return x;
539 /* If REF is a MEM with an invalid address, change it into a valid address.
540 Pass through anything else unchanged. REF must be an unshared rtx and
541 the function may modify it in-place. */
544 validize_mem (rtx ref)
546 if (!MEM_P (ref))
547 return ref;
548 ref = use_anchored_address (ref);
549 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
550 MEM_ADDR_SPACE (ref)))
551 return ref;
553 return replace_equiv_address (ref, XEXP (ref, 0), true);
556 /* If X is a memory reference to a member of an object block, try rewriting
557 it to use an anchor instead. Return the new memory reference on success
558 and the old one on failure. */
561 use_anchored_address (rtx x)
563 rtx base;
564 HOST_WIDE_INT offset;
565 machine_mode mode;
567 if (!flag_section_anchors)
568 return x;
570 if (!MEM_P (x))
571 return x;
573 /* Split the address into a base and offset. */
574 base = XEXP (x, 0);
575 offset = 0;
576 if (GET_CODE (base) == CONST
577 && GET_CODE (XEXP (base, 0)) == PLUS
578 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
580 offset += INTVAL (XEXP (XEXP (base, 0), 1));
581 base = XEXP (XEXP (base, 0), 0);
584 /* Check whether BASE is suitable for anchors. */
585 if (GET_CODE (base) != SYMBOL_REF
586 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
587 || SYMBOL_REF_ANCHOR_P (base)
588 || SYMBOL_REF_BLOCK (base) == NULL
589 || !targetm.use_anchors_for_symbol_p (base))
590 return x;
592 /* Decide where BASE is going to be. */
593 place_block_symbol (base);
595 /* Get the anchor we need to use. */
596 offset += SYMBOL_REF_BLOCK_OFFSET (base);
597 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
598 SYMBOL_REF_TLS_MODEL (base));
600 /* Work out the offset from the anchor. */
601 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
603 /* If we're going to run a CSE pass, force the anchor into a register.
604 We will then be able to reuse registers for several accesses, if the
605 target costs say that that's worthwhile. */
606 mode = GET_MODE (base);
607 if (!cse_not_expected)
608 base = force_reg (mode, base);
610 return replace_equiv_address (x, plus_constant (mode, base, offset));
613 /* Copy the value or contents of X to a new temp reg and return that reg. */
616 copy_to_reg (rtx x)
618 rtx temp = gen_reg_rtx (GET_MODE (x));
620 /* If not an operand, must be an address with PLUS and MULT so
621 do the computation. */
622 if (! general_operand (x, VOIDmode))
623 x = force_operand (x, temp);
625 if (x != temp)
626 emit_move_insn (temp, x);
628 return temp;
631 /* Like copy_to_reg but always give the new register mode Pmode
632 in case X is a constant. */
635 copy_addr_to_reg (rtx x)
637 return copy_to_mode_reg (Pmode, x);
640 /* Like copy_to_reg but always give the new register mode MODE
641 in case X is a constant. */
644 copy_to_mode_reg (machine_mode mode, rtx x)
646 rtx temp = gen_reg_rtx (mode);
648 /* If not an operand, must be an address with PLUS and MULT so
649 do the computation. */
650 if (! general_operand (x, VOIDmode))
651 x = force_operand (x, temp);
653 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
654 if (x != temp)
655 emit_move_insn (temp, x);
656 return temp;
659 /* Load X into a register if it is not already one.
660 Use mode MODE for the register.
661 X should be valid for mode MODE, but it may be a constant which
662 is valid for all integer modes; that's why caller must specify MODE.
664 The caller must not alter the value in the register we return,
665 since we mark it as a "constant" register. */
668 force_reg (machine_mode mode, rtx x)
670 rtx temp, set;
671 rtx_insn *insn;
673 if (REG_P (x))
674 return x;
676 if (general_operand (x, mode))
678 temp = gen_reg_rtx (mode);
679 insn = emit_move_insn (temp, x);
681 else
683 temp = force_operand (x, NULL_RTX);
684 if (REG_P (temp))
685 insn = get_last_insn ();
686 else
688 rtx temp2 = gen_reg_rtx (mode);
689 insn = emit_move_insn (temp2, temp);
690 temp = temp2;
694 /* Let optimizers know that TEMP's value never changes
695 and that X can be substituted for it. Don't get confused
696 if INSN set something else (such as a SUBREG of TEMP). */
697 if (CONSTANT_P (x)
698 && (set = single_set (insn)) != 0
699 && SET_DEST (set) == temp
700 && ! rtx_equal_p (x, SET_SRC (set)))
701 set_unique_reg_note (insn, REG_EQUAL, x);
703 /* Let optimizers know that TEMP is a pointer, and if so, the
704 known alignment of that pointer. */
706 unsigned align = 0;
707 if (GET_CODE (x) == SYMBOL_REF)
709 align = BITS_PER_UNIT;
710 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
711 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
713 else if (GET_CODE (x) == LABEL_REF)
714 align = BITS_PER_UNIT;
715 else if (GET_CODE (x) == CONST
716 && GET_CODE (XEXP (x, 0)) == PLUS
717 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
718 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
720 rtx s = XEXP (XEXP (x, 0), 0);
721 rtx c = XEXP (XEXP (x, 0), 1);
722 unsigned sa, ca;
724 sa = BITS_PER_UNIT;
725 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
726 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
728 if (INTVAL (c) == 0)
729 align = sa;
730 else
732 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
733 align = MIN (sa, ca);
737 if (align || (MEM_P (x) && MEM_POINTER (x)))
738 mark_reg_pointer (temp, align);
741 return temp;
744 /* If X is a memory ref, copy its contents to a new temp reg and return
745 that reg. Otherwise, return X. */
748 force_not_mem (rtx x)
750 rtx temp;
752 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
753 return x;
755 temp = gen_reg_rtx (GET_MODE (x));
757 if (MEM_POINTER (x))
758 REG_POINTER (temp) = 1;
760 emit_move_insn (temp, x);
761 return temp;
764 /* Copy X to TARGET (if it's nonzero and a reg)
765 or to a new temp reg and return that reg.
766 MODE is the mode to use for X in case it is a constant. */
769 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
771 rtx temp;
773 if (target && REG_P (target))
774 temp = target;
775 else
776 temp = gen_reg_rtx (mode);
778 emit_move_insn (temp, x);
779 return temp;
782 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
783 PUNSIGNEDP points to the signedness of the type and may be adjusted
784 to show what signedness to use on extension operations.
786 FOR_RETURN is nonzero if the caller is promoting the return value
787 of FNDECL, else it is for promoting args. */
789 machine_mode
790 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
791 const_tree funtype, int for_return)
793 /* Called without a type node for a libcall. */
794 if (type == NULL_TREE)
796 if (INTEGRAL_MODE_P (mode))
797 return targetm.calls.promote_function_mode (NULL_TREE, mode,
798 punsignedp, funtype,
799 for_return);
800 else
801 return mode;
804 switch (TREE_CODE (type))
806 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
807 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
808 case POINTER_TYPE: case REFERENCE_TYPE:
809 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
810 for_return);
812 default:
813 return mode;
816 /* Return the mode to use to store a scalar of TYPE and MODE.
817 PUNSIGNEDP points to the signedness of the type and may be adjusted
818 to show what signedness to use on extension operations. */
820 machine_mode
821 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
822 int *punsignedp ATTRIBUTE_UNUSED)
824 #ifdef PROMOTE_MODE
825 enum tree_code code;
826 int unsignedp;
827 #endif
829 /* For libcalls this is invoked without TYPE from the backends
830 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
831 case. */
832 if (type == NULL_TREE)
833 return mode;
835 /* FIXME: this is the same logic that was there until GCC 4.4, but we
836 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
837 is not defined. The affected targets are M32C, S390, SPARC. */
838 #ifdef PROMOTE_MODE
839 code = TREE_CODE (type);
840 unsignedp = *punsignedp;
842 switch (code)
844 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
845 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
846 PROMOTE_MODE (mode, unsignedp, type);
847 *punsignedp = unsignedp;
848 return mode;
849 break;
851 #ifdef POINTERS_EXTEND_UNSIGNED
852 case REFERENCE_TYPE:
853 case POINTER_TYPE:
854 *punsignedp = POINTERS_EXTEND_UNSIGNED;
855 return targetm.addr_space.address_mode
856 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
857 break;
858 #endif
860 default:
861 return mode;
863 #else
864 return mode;
865 #endif
869 /* Use one of promote_mode or promote_function_mode to find the promoted
870 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
871 of DECL after promotion. */
873 machine_mode
874 promote_decl_mode (const_tree decl, int *punsignedp)
876 tree type = TREE_TYPE (decl);
877 int unsignedp = TYPE_UNSIGNED (type);
878 machine_mode mode = DECL_MODE (decl);
879 machine_mode pmode;
881 if (TREE_CODE (decl) == RESULT_DECL
882 || TREE_CODE (decl) == PARM_DECL)
883 pmode = promote_function_mode (type, mode, &unsignedp,
884 TREE_TYPE (current_function_decl), 2);
885 else
886 pmode = promote_mode (type, mode, &unsignedp);
888 if (punsignedp)
889 *punsignedp = unsignedp;
890 return pmode;
894 /* Controls the behaviour of {anti_,}adjust_stack. */
895 static bool suppress_reg_args_size;
897 /* A helper for adjust_stack and anti_adjust_stack. */
899 static void
900 adjust_stack_1 (rtx adjust, bool anti_p)
902 rtx temp;
903 rtx_insn *insn;
905 #ifndef STACK_GROWS_DOWNWARD
906 /* Hereafter anti_p means subtract_p. */
907 anti_p = !anti_p;
908 #endif
910 temp = expand_binop (Pmode,
911 anti_p ? sub_optab : add_optab,
912 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
913 OPTAB_LIB_WIDEN);
915 if (temp != stack_pointer_rtx)
916 insn = emit_move_insn (stack_pointer_rtx, temp);
917 else
919 insn = get_last_insn ();
920 temp = single_set (insn);
921 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
924 if (!suppress_reg_args_size)
925 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
928 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
929 This pops when ADJUST is positive. ADJUST need not be constant. */
931 void
932 adjust_stack (rtx adjust)
934 if (adjust == const0_rtx)
935 return;
937 /* We expect all variable sized adjustments to be multiple of
938 PREFERRED_STACK_BOUNDARY. */
939 if (CONST_INT_P (adjust))
940 stack_pointer_delta -= INTVAL (adjust);
942 adjust_stack_1 (adjust, false);
945 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
946 This pushes when ADJUST is positive. ADJUST need not be constant. */
948 void
949 anti_adjust_stack (rtx adjust)
951 if (adjust == const0_rtx)
952 return;
954 /* We expect all variable sized adjustments to be multiple of
955 PREFERRED_STACK_BOUNDARY. */
956 if (CONST_INT_P (adjust))
957 stack_pointer_delta += INTVAL (adjust);
959 adjust_stack_1 (adjust, true);
962 /* Round the size of a block to be pushed up to the boundary required
963 by this machine. SIZE is the desired size, which need not be constant. */
965 static rtx
966 round_push (rtx size)
968 rtx align_rtx, alignm1_rtx;
970 if (!SUPPORTS_STACK_ALIGNMENT
971 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
973 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
975 if (align == 1)
976 return size;
978 if (CONST_INT_P (size))
980 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
982 if (INTVAL (size) != new_size)
983 size = GEN_INT (new_size);
984 return size;
987 align_rtx = GEN_INT (align);
988 alignm1_rtx = GEN_INT (align - 1);
990 else
992 /* If crtl->preferred_stack_boundary might still grow, use
993 virtual_preferred_stack_boundary_rtx instead. This will be
994 substituted by the right value in vregs pass and optimized
995 during combine. */
996 align_rtx = virtual_preferred_stack_boundary_rtx;
997 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
998 NULL_RTX);
1001 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1002 but we know it can't. So add ourselves and then do
1003 TRUNC_DIV_EXPR. */
1004 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1005 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1006 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1007 NULL_RTX, 1);
1008 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1010 return size;
1013 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1014 to a previously-created save area. If no save area has been allocated,
1015 this function will allocate one. If a save area is specified, it
1016 must be of the proper mode. */
1018 void
1019 emit_stack_save (enum save_level save_level, rtx *psave)
1021 rtx sa = *psave;
1022 /* The default is that we use a move insn and save in a Pmode object. */
1023 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1024 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1026 /* See if this machine has anything special to do for this kind of save. */
1027 switch (save_level)
1029 #ifdef HAVE_save_stack_block
1030 case SAVE_BLOCK:
1031 if (HAVE_save_stack_block)
1032 fcn = gen_save_stack_block;
1033 break;
1034 #endif
1035 #ifdef HAVE_save_stack_function
1036 case SAVE_FUNCTION:
1037 if (HAVE_save_stack_function)
1038 fcn = gen_save_stack_function;
1039 break;
1040 #endif
1041 #ifdef HAVE_save_stack_nonlocal
1042 case SAVE_NONLOCAL:
1043 if (HAVE_save_stack_nonlocal)
1044 fcn = gen_save_stack_nonlocal;
1045 break;
1046 #endif
1047 default:
1048 break;
1051 /* If there is no save area and we have to allocate one, do so. Otherwise
1052 verify the save area is the proper mode. */
1054 if (sa == 0)
1056 if (mode != VOIDmode)
1058 if (save_level == SAVE_NONLOCAL)
1059 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1060 else
1061 *psave = sa = gen_reg_rtx (mode);
1065 do_pending_stack_adjust ();
1066 if (sa != 0)
1067 sa = validize_mem (sa);
1068 emit_insn (fcn (sa, stack_pointer_rtx));
1071 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1072 area made by emit_stack_save. If it is zero, we have nothing to do. */
1074 void
1075 emit_stack_restore (enum save_level save_level, rtx sa)
1077 /* The default is that we use a move insn. */
1078 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1080 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1081 STACK_POINTER and HARD_FRAME_POINTER.
1082 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1083 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1084 aligned variables, which is reflected in ix86_can_eliminate.
1085 We normally still have the realigned STACK_POINTER that we can use.
1086 But if there is a stack restore still present at reload, it can trigger
1087 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1088 FRAME_POINTER into a hard reg.
1089 To prevent this situation, we force need_drap if we emit a stack
1090 restore. */
1091 if (SUPPORTS_STACK_ALIGNMENT)
1092 crtl->need_drap = true;
1094 /* See if this machine has anything special to do for this kind of save. */
1095 switch (save_level)
1097 #ifdef HAVE_restore_stack_block
1098 case SAVE_BLOCK:
1099 if (HAVE_restore_stack_block)
1100 fcn = gen_restore_stack_block;
1101 break;
1102 #endif
1103 #ifdef HAVE_restore_stack_function
1104 case SAVE_FUNCTION:
1105 if (HAVE_restore_stack_function)
1106 fcn = gen_restore_stack_function;
1107 break;
1108 #endif
1109 #ifdef HAVE_restore_stack_nonlocal
1110 case SAVE_NONLOCAL:
1111 if (HAVE_restore_stack_nonlocal)
1112 fcn = gen_restore_stack_nonlocal;
1113 break;
1114 #endif
1115 default:
1116 break;
1119 if (sa != 0)
1121 sa = validize_mem (sa);
1122 /* These clobbers prevent the scheduler from moving
1123 references to variable arrays below the code
1124 that deletes (pops) the arrays. */
1125 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1126 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1129 discard_pending_stack_adjust ();
1131 emit_insn (fcn (stack_pointer_rtx, sa));
1134 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1135 function. This function should be called whenever we allocate or
1136 deallocate dynamic stack space. */
1138 void
1139 update_nonlocal_goto_save_area (void)
1141 tree t_save;
1142 rtx r_save;
1144 /* The nonlocal_goto_save_area object is an array of N pointers. The
1145 first one is used for the frame pointer save; the rest are sized by
1146 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1147 of the stack save area slots. */
1148 t_save = build4 (ARRAY_REF,
1149 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1150 cfun->nonlocal_goto_save_area,
1151 integer_one_node, NULL_TREE, NULL_TREE);
1152 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1154 emit_stack_save (SAVE_NONLOCAL, &r_save);
1157 /* Return an rtx representing the address of an area of memory dynamically
1158 pushed on the stack.
1160 Any required stack pointer alignment is preserved.
1162 SIZE is an rtx representing the size of the area.
1164 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1165 parameter may be zero. If so, a proper value will be extracted
1166 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1168 REQUIRED_ALIGN is the alignment (in bits) required for the region
1169 of memory.
1171 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1172 stack space allocated by the generated code cannot be added with itself
1173 in the course of the execution of the function. It is always safe to
1174 pass FALSE here and the following criterion is sufficient in order to
1175 pass TRUE: every path in the CFG that starts at the allocation point and
1176 loops to it executes the associated deallocation code. */
1179 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1180 unsigned required_align, bool cannot_accumulate)
1182 HOST_WIDE_INT stack_usage_size = -1;
1183 rtx_code_label *final_label;
1184 rtx final_target, target;
1185 unsigned extra_align = 0;
1186 bool must_align;
1188 /* If we're asking for zero bytes, it doesn't matter what we point
1189 to since we can't dereference it. But return a reasonable
1190 address anyway. */
1191 if (size == const0_rtx)
1192 return virtual_stack_dynamic_rtx;
1194 /* Otherwise, show we're calling alloca or equivalent. */
1195 cfun->calls_alloca = 1;
1197 /* If stack usage info is requested, look into the size we are passed.
1198 We need to do so this early to avoid the obfuscation that may be
1199 introduced later by the various alignment operations. */
1200 if (flag_stack_usage_info)
1202 if (CONST_INT_P (size))
1203 stack_usage_size = INTVAL (size);
1204 else if (REG_P (size))
1206 /* Look into the last emitted insn and see if we can deduce
1207 something for the register. */
1208 rtx_insn *insn;
1209 rtx set, note;
1210 insn = get_last_insn ();
1211 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1213 if (CONST_INT_P (SET_SRC (set)))
1214 stack_usage_size = INTVAL (SET_SRC (set));
1215 else if ((note = find_reg_equal_equiv_note (insn))
1216 && CONST_INT_P (XEXP (note, 0)))
1217 stack_usage_size = INTVAL (XEXP (note, 0));
1221 /* If the size is not constant, we can't say anything. */
1222 if (stack_usage_size == -1)
1224 current_function_has_unbounded_dynamic_stack_size = 1;
1225 stack_usage_size = 0;
1229 /* Ensure the size is in the proper mode. */
1230 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1231 size = convert_to_mode (Pmode, size, 1);
1233 /* Adjust SIZE_ALIGN, if needed. */
1234 if (CONST_INT_P (size))
1236 unsigned HOST_WIDE_INT lsb;
1238 lsb = INTVAL (size);
1239 lsb &= -lsb;
1241 /* Watch out for overflow truncating to "unsigned". */
1242 if (lsb > UINT_MAX / BITS_PER_UNIT)
1243 size_align = 1u << (HOST_BITS_PER_INT - 1);
1244 else
1245 size_align = (unsigned)lsb * BITS_PER_UNIT;
1247 else if (size_align < BITS_PER_UNIT)
1248 size_align = BITS_PER_UNIT;
1250 /* We can't attempt to minimize alignment necessary, because we don't
1251 know the final value of preferred_stack_boundary yet while executing
1252 this code. */
1253 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1254 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1256 /* We will need to ensure that the address we return is aligned to
1257 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1258 always know its final value at this point in the compilation (it
1259 might depend on the size of the outgoing parameter lists, for
1260 example), so we must align the value to be returned in that case.
1261 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1262 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1263 We must also do an alignment operation on the returned value if
1264 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1266 If we have to align, we must leave space in SIZE for the hole
1267 that might result from the alignment operation. */
1269 must_align = (crtl->preferred_stack_boundary < required_align);
1270 if (must_align)
1272 if (required_align > PREFERRED_STACK_BOUNDARY)
1273 extra_align = PREFERRED_STACK_BOUNDARY;
1274 else if (required_align > STACK_BOUNDARY)
1275 extra_align = STACK_BOUNDARY;
1276 else
1277 extra_align = BITS_PER_UNIT;
1280 /* ??? STACK_POINTER_OFFSET is always defined now. */
1281 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1282 must_align = true;
1283 extra_align = BITS_PER_UNIT;
1284 #endif
1286 if (must_align)
1288 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1290 size = plus_constant (Pmode, size, extra);
1291 size = force_operand (size, NULL_RTX);
1293 if (flag_stack_usage_info)
1294 stack_usage_size += extra;
1296 if (extra && size_align > extra_align)
1297 size_align = extra_align;
1300 /* Round the size to a multiple of the required stack alignment.
1301 Since the stack if presumed to be rounded before this allocation,
1302 this will maintain the required alignment.
1304 If the stack grows downward, we could save an insn by subtracting
1305 SIZE from the stack pointer and then aligning the stack pointer.
1306 The problem with this is that the stack pointer may be unaligned
1307 between the execution of the subtraction and alignment insns and
1308 some machines do not allow this. Even on those that do, some
1309 signal handlers malfunction if a signal should occur between those
1310 insns. Since this is an extremely rare event, we have no reliable
1311 way of knowing which systems have this problem. So we avoid even
1312 momentarily mis-aligning the stack. */
1313 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1315 size = round_push (size);
1317 if (flag_stack_usage_info)
1319 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1320 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1324 target = gen_reg_rtx (Pmode);
1326 /* The size is supposed to be fully adjusted at this point so record it
1327 if stack usage info is requested. */
1328 if (flag_stack_usage_info)
1330 current_function_dynamic_stack_size += stack_usage_size;
1332 /* ??? This is gross but the only safe stance in the absence
1333 of stack usage oriented flow analysis. */
1334 if (!cannot_accumulate)
1335 current_function_has_unbounded_dynamic_stack_size = 1;
1338 final_label = NULL;
1339 final_target = NULL_RTX;
1341 /* If we are splitting the stack, we need to ask the backend whether
1342 there is enough room on the current stack. If there isn't, or if
1343 the backend doesn't know how to tell is, then we need to call a
1344 function to allocate memory in some other way. This memory will
1345 be released when we release the current stack segment. The
1346 effect is that stack allocation becomes less efficient, but at
1347 least it doesn't cause a stack overflow. */
1348 if (flag_split_stack)
1350 rtx_code_label *available_label;
1351 rtx ask, space, func;
1353 available_label = NULL;
1355 #ifdef HAVE_split_stack_space_check
1356 if (HAVE_split_stack_space_check)
1358 available_label = gen_label_rtx ();
1360 /* This instruction will branch to AVAILABLE_LABEL if there
1361 are SIZE bytes available on the stack. */
1362 emit_insn (gen_split_stack_space_check (size, available_label));
1364 #endif
1366 /* The __morestack_allocate_stack_space function will allocate
1367 memory using malloc. If the alignment of the memory returned
1368 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1369 make sure we allocate enough space. */
1370 if (MALLOC_ABI_ALIGNMENT >= required_align)
1371 ask = size;
1372 else
1374 ask = expand_binop (Pmode, add_optab, size,
1375 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1376 Pmode),
1377 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1378 must_align = true;
1381 func = init_one_libfunc ("__morestack_allocate_stack_space");
1383 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1384 1, ask, Pmode);
1386 if (available_label == NULL_RTX)
1387 return space;
1389 final_target = gen_reg_rtx (Pmode);
1391 emit_move_insn (final_target, space);
1393 final_label = gen_label_rtx ();
1394 emit_jump (final_label);
1396 emit_label (available_label);
1399 do_pending_stack_adjust ();
1401 /* We ought to be called always on the toplevel and stack ought to be aligned
1402 properly. */
1403 gcc_assert (!(stack_pointer_delta
1404 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1406 /* If needed, check that we have the required amount of stack. Take into
1407 account what has already been checked. */
1408 if (STACK_CHECK_MOVING_SP)
1410 else if (flag_stack_check == GENERIC_STACK_CHECK)
1411 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1412 size);
1413 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1414 probe_stack_range (STACK_CHECK_PROTECT, size);
1416 /* Don't let anti_adjust_stack emit notes. */
1417 suppress_reg_args_size = true;
1419 /* Perform the required allocation from the stack. Some systems do
1420 this differently than simply incrementing/decrementing from the
1421 stack pointer, such as acquiring the space by calling malloc(). */
1422 #ifdef HAVE_allocate_stack
1423 if (HAVE_allocate_stack)
1425 struct expand_operand ops[2];
1426 /* We don't have to check against the predicate for operand 0 since
1427 TARGET is known to be a pseudo of the proper mode, which must
1428 be valid for the operand. */
1429 create_fixed_operand (&ops[0], target);
1430 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1431 expand_insn (CODE_FOR_allocate_stack, 2, ops);
1433 else
1434 #endif
1436 int saved_stack_pointer_delta;
1438 #ifndef STACK_GROWS_DOWNWARD
1439 emit_move_insn (target, virtual_stack_dynamic_rtx);
1440 #endif
1442 /* Check stack bounds if necessary. */
1443 if (crtl->limit_stack)
1445 rtx available;
1446 rtx_code_label *space_available = gen_label_rtx ();
1447 #ifdef STACK_GROWS_DOWNWARD
1448 available = expand_binop (Pmode, sub_optab,
1449 stack_pointer_rtx, stack_limit_rtx,
1450 NULL_RTX, 1, OPTAB_WIDEN);
1451 #else
1452 available = expand_binop (Pmode, sub_optab,
1453 stack_limit_rtx, stack_pointer_rtx,
1454 NULL_RTX, 1, OPTAB_WIDEN);
1455 #endif
1456 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1457 space_available);
1458 #ifdef HAVE_trap
1459 if (HAVE_trap)
1460 emit_insn (gen_trap ());
1461 else
1462 #endif
1463 error ("stack limits not supported on this target");
1464 emit_barrier ();
1465 emit_label (space_available);
1468 saved_stack_pointer_delta = stack_pointer_delta;
1470 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1471 anti_adjust_stack_and_probe (size, false);
1472 else
1473 anti_adjust_stack (size);
1475 /* Even if size is constant, don't modify stack_pointer_delta.
1476 The constant size alloca should preserve
1477 crtl->preferred_stack_boundary alignment. */
1478 stack_pointer_delta = saved_stack_pointer_delta;
1480 #ifdef STACK_GROWS_DOWNWARD
1481 emit_move_insn (target, virtual_stack_dynamic_rtx);
1482 #endif
1485 suppress_reg_args_size = false;
1487 /* Finish up the split stack handling. */
1488 if (final_label != NULL_RTX)
1490 gcc_assert (flag_split_stack);
1491 emit_move_insn (final_target, target);
1492 emit_label (final_label);
1493 target = final_target;
1496 if (must_align)
1498 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1499 but we know it can't. So add ourselves and then do
1500 TRUNC_DIV_EXPR. */
1501 target = expand_binop (Pmode, add_optab, target,
1502 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1503 Pmode),
1504 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1505 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1506 gen_int_mode (required_align / BITS_PER_UNIT,
1507 Pmode),
1508 NULL_RTX, 1);
1509 target = expand_mult (Pmode, target,
1510 gen_int_mode (required_align / BITS_PER_UNIT,
1511 Pmode),
1512 NULL_RTX, 1);
1515 /* Now that we've committed to a return value, mark its alignment. */
1516 mark_reg_pointer (target, required_align);
1518 /* Record the new stack level for nonlocal gotos. */
1519 if (cfun->nonlocal_goto_save_area != 0)
1520 update_nonlocal_goto_save_area ();
1522 return target;
1525 /* A front end may want to override GCC's stack checking by providing a
1526 run-time routine to call to check the stack, so provide a mechanism for
1527 calling that routine. */
1529 static GTY(()) rtx stack_check_libfunc;
1531 void
1532 set_stack_check_libfunc (const char *libfunc_name)
1534 gcc_assert (stack_check_libfunc == NULL_RTX);
1535 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1538 /* Emit one stack probe at ADDRESS, an address within the stack. */
1540 void
1541 emit_stack_probe (rtx address)
1543 #ifdef HAVE_probe_stack_address
1544 if (HAVE_probe_stack_address)
1545 emit_insn (gen_probe_stack_address (address));
1546 else
1547 #endif
1549 rtx memref = gen_rtx_MEM (word_mode, address);
1551 MEM_VOLATILE_P (memref) = 1;
1553 /* See if we have an insn to probe the stack. */
1554 #ifdef HAVE_probe_stack
1555 if (HAVE_probe_stack)
1556 emit_insn (gen_probe_stack (memref));
1557 else
1558 #endif
1559 emit_move_insn (memref, const0_rtx);
1563 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1564 FIRST is a constant and size is a Pmode RTX. These are offsets from
1565 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1566 or subtract them from the stack pointer. */
1568 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1570 #ifdef STACK_GROWS_DOWNWARD
1571 #define STACK_GROW_OP MINUS
1572 #define STACK_GROW_OPTAB sub_optab
1573 #define STACK_GROW_OFF(off) -(off)
1574 #else
1575 #define STACK_GROW_OP PLUS
1576 #define STACK_GROW_OPTAB add_optab
1577 #define STACK_GROW_OFF(off) (off)
1578 #endif
1580 void
1581 probe_stack_range (HOST_WIDE_INT first, rtx size)
1583 /* First ensure SIZE is Pmode. */
1584 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1585 size = convert_to_mode (Pmode, size, 1);
1587 /* Next see if we have a function to check the stack. */
1588 if (stack_check_libfunc)
1590 rtx addr = memory_address (Pmode,
1591 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1592 stack_pointer_rtx,
1593 plus_constant (Pmode,
1594 size, first)));
1595 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1596 Pmode);
1599 /* Next see if we have an insn to check the stack. */
1600 #ifdef HAVE_check_stack
1601 else if (HAVE_check_stack)
1603 struct expand_operand ops[1];
1604 rtx addr = memory_address (Pmode,
1605 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1606 stack_pointer_rtx,
1607 plus_constant (Pmode,
1608 size, first)));
1609 bool success;
1610 create_input_operand (&ops[0], addr, Pmode);
1611 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1612 gcc_assert (success);
1614 #endif
1616 /* Otherwise we have to generate explicit probes. If we have a constant
1617 small number of them to generate, that's the easy case. */
1618 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1620 HOST_WIDE_INT isize = INTVAL (size), i;
1621 rtx addr;
1623 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1624 it exceeds SIZE. If only one probe is needed, this will not
1625 generate any code. Then probe at FIRST + SIZE. */
1626 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1628 addr = memory_address (Pmode,
1629 plus_constant (Pmode, stack_pointer_rtx,
1630 STACK_GROW_OFF (first + i)));
1631 emit_stack_probe (addr);
1634 addr = memory_address (Pmode,
1635 plus_constant (Pmode, stack_pointer_rtx,
1636 STACK_GROW_OFF (first + isize)));
1637 emit_stack_probe (addr);
1640 /* In the variable case, do the same as above, but in a loop. Note that we
1641 must be extra careful with variables wrapping around because we might be
1642 at the very top (or the very bottom) of the address space and we have to
1643 be able to handle this case properly; in particular, we use an equality
1644 test for the loop condition. */
1645 else
1647 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1648 rtx_code_label *loop_lab = gen_label_rtx ();
1649 rtx_code_label *end_lab = gen_label_rtx ();
1651 /* Step 1: round SIZE to the previous multiple of the interval. */
1653 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1654 rounded_size
1655 = simplify_gen_binary (AND, Pmode, size,
1656 gen_int_mode (-PROBE_INTERVAL, Pmode));
1657 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1660 /* Step 2: compute initial and final value of the loop counter. */
1662 /* TEST_ADDR = SP + FIRST. */
1663 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1664 stack_pointer_rtx,
1665 gen_int_mode (first, Pmode)),
1666 NULL_RTX);
1668 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1669 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1670 test_addr,
1671 rounded_size_op), NULL_RTX);
1674 /* Step 3: the loop
1676 while (TEST_ADDR != LAST_ADDR)
1678 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1679 probe at TEST_ADDR
1682 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1683 until it is equal to ROUNDED_SIZE. */
1685 emit_label (loop_lab);
1687 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1688 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1689 end_lab);
1691 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1692 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1693 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1694 1, OPTAB_WIDEN);
1696 gcc_assert (temp == test_addr);
1698 /* Probe at TEST_ADDR. */
1699 emit_stack_probe (test_addr);
1701 emit_jump (loop_lab);
1703 emit_label (end_lab);
1706 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1707 that SIZE is equal to ROUNDED_SIZE. */
1709 /* TEMP = SIZE - ROUNDED_SIZE. */
1710 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1711 if (temp != const0_rtx)
1713 rtx addr;
1715 if (CONST_INT_P (temp))
1717 /* Use [base + disp} addressing mode if supported. */
1718 HOST_WIDE_INT offset = INTVAL (temp);
1719 addr = memory_address (Pmode,
1720 plus_constant (Pmode, last_addr,
1721 STACK_GROW_OFF (offset)));
1723 else
1725 /* Manual CSE if the difference is not known at compile-time. */
1726 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1727 addr = memory_address (Pmode,
1728 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1729 last_addr, temp));
1732 emit_stack_probe (addr);
1736 /* Make sure nothing is scheduled before we are done. */
1737 emit_insn (gen_blockage ());
1740 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1741 while probing it. This pushes when SIZE is positive. SIZE need not
1742 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1743 by plus SIZE at the end. */
1745 void
1746 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1748 /* We skip the probe for the first interval + a small dope of 4 words and
1749 probe that many bytes past the specified size to maintain a protection
1750 area at the botton of the stack. */
1751 const int dope = 4 * UNITS_PER_WORD;
1753 /* First ensure SIZE is Pmode. */
1754 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1755 size = convert_to_mode (Pmode, size, 1);
1757 /* If we have a constant small number of probes to generate, that's the
1758 easy case. */
1759 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1761 HOST_WIDE_INT isize = INTVAL (size), i;
1762 bool first_probe = true;
1764 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1765 values of N from 1 until it exceeds SIZE. If only one probe is
1766 needed, this will not generate any code. Then adjust and probe
1767 to PROBE_INTERVAL + SIZE. */
1768 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1770 if (first_probe)
1772 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1773 first_probe = false;
1775 else
1776 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1777 emit_stack_probe (stack_pointer_rtx);
1780 if (first_probe)
1781 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1782 else
1783 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1784 emit_stack_probe (stack_pointer_rtx);
1787 /* In the variable case, do the same as above, but in a loop. Note that we
1788 must be extra careful with variables wrapping around because we might be
1789 at the very top (or the very bottom) of the address space and we have to
1790 be able to handle this case properly; in particular, we use an equality
1791 test for the loop condition. */
1792 else
1794 rtx rounded_size, rounded_size_op, last_addr, temp;
1795 rtx_code_label *loop_lab = gen_label_rtx ();
1796 rtx_code_label *end_lab = gen_label_rtx ();
1799 /* Step 1: round SIZE to the previous multiple of the interval. */
1801 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1802 rounded_size
1803 = simplify_gen_binary (AND, Pmode, size,
1804 gen_int_mode (-PROBE_INTERVAL, Pmode));
1805 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1808 /* Step 2: compute initial and final value of the loop counter. */
1810 /* SP = SP_0 + PROBE_INTERVAL. */
1811 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1813 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1814 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1815 stack_pointer_rtx,
1816 rounded_size_op), NULL_RTX);
1819 /* Step 3: the loop
1821 while (SP != LAST_ADDR)
1823 SP = SP + PROBE_INTERVAL
1824 probe at SP
1827 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1828 values of N from 1 until it is equal to ROUNDED_SIZE. */
1830 emit_label (loop_lab);
1832 /* Jump to END_LAB if SP == LAST_ADDR. */
1833 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1834 Pmode, 1, end_lab);
1836 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1837 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1838 emit_stack_probe (stack_pointer_rtx);
1840 emit_jump (loop_lab);
1842 emit_label (end_lab);
1845 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1846 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1848 /* TEMP = SIZE - ROUNDED_SIZE. */
1849 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1850 if (temp != const0_rtx)
1852 /* Manual CSE if the difference is not known at compile-time. */
1853 if (GET_CODE (temp) != CONST_INT)
1854 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1855 anti_adjust_stack (temp);
1856 emit_stack_probe (stack_pointer_rtx);
1860 /* Adjust back and account for the additional first interval. */
1861 if (adjust_back)
1862 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1863 else
1864 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1867 /* Return an rtx representing the register or memory location
1868 in which a scalar value of data type VALTYPE
1869 was returned by a function call to function FUNC.
1870 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1871 function is known, otherwise 0.
1872 OUTGOING is 1 if on a machine with register windows this function
1873 should return the register in which the function will put its result
1874 and 0 otherwise. */
1877 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1878 int outgoing ATTRIBUTE_UNUSED)
1880 rtx val;
1882 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1884 if (REG_P (val)
1885 && GET_MODE (val) == BLKmode)
1887 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1888 machine_mode tmpmode;
1890 /* int_size_in_bytes can return -1. We don't need a check here
1891 since the value of bytes will then be large enough that no
1892 mode will match anyway. */
1894 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1895 tmpmode != VOIDmode;
1896 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1898 /* Have we found a large enough mode? */
1899 if (GET_MODE_SIZE (tmpmode) >= bytes)
1900 break;
1903 /* No suitable mode found. */
1904 gcc_assert (tmpmode != VOIDmode);
1906 PUT_MODE (val, tmpmode);
1908 return val;
1911 /* Return an rtx representing the register or memory location
1912 in which a scalar value of mode MODE was returned by a library call. */
1915 hard_libcall_value (machine_mode mode, rtx fun)
1917 return targetm.calls.libcall_value (mode, fun);
1920 /* Look up the tree code for a given rtx code
1921 to provide the arithmetic operation for REAL_ARITHMETIC.
1922 The function returns an int because the caller may not know
1923 what `enum tree_code' means. */
1926 rtx_to_tree_code (enum rtx_code code)
1928 enum tree_code tcode;
1930 switch (code)
1932 case PLUS:
1933 tcode = PLUS_EXPR;
1934 break;
1935 case MINUS:
1936 tcode = MINUS_EXPR;
1937 break;
1938 case MULT:
1939 tcode = MULT_EXPR;
1940 break;
1941 case DIV:
1942 tcode = RDIV_EXPR;
1943 break;
1944 case SMIN:
1945 tcode = MIN_EXPR;
1946 break;
1947 case SMAX:
1948 tcode = MAX_EXPR;
1949 break;
1950 default:
1951 tcode = LAST_AND_UNUSED_TREE_CODE;
1952 break;
1954 return ((int) tcode);
1957 #include "gt-explow.h"