gcc/ChangeLog
[official-gcc.git] / gcc / fold-const.c
bloba79bfa7b0600eb3f9f3239939d5e8aa982256698
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "predict.h"
48 #include "tree.h"
49 #include "gimple.h"
50 #include "rtl.h"
51 #include "flags.h"
52 #include "alias.h"
53 #include "fold-const.h"
54 #include "stor-layout.h"
55 #include "calls.h"
56 #include "tree-iterator.h"
57 #include "realmpfr.h"
58 #include "insn-config.h"
59 #include "expmed.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "emit-rtl.h"
63 #include "varasm.h"
64 #include "stmt.h"
65 #include "expr.h"
66 #include "tm_p.h"
67 #include "target.h"
68 #include "diagnostic-core.h"
69 #include "intl.h"
70 #include "langhooks.h"
71 #include "md5.h"
72 #include "internal-fn.h"
73 #include "tree-eh.h"
74 #include "gimplify.h"
75 #include "tree-dfa.h"
76 #include "builtins.h"
77 #include "cgraph.h"
78 #include "generic-match.h"
79 #include "optabs.h"
81 #ifndef LOAD_EXTEND_OP
82 #define LOAD_EXTEND_OP(M) UNKNOWN
83 #endif
85 /* Nonzero if we are folding constants inside an initializer; zero
86 otherwise. */
87 int folding_initializer = 0;
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code {
93 COMPCODE_FALSE = 0,
94 COMPCODE_LT = 1,
95 COMPCODE_EQ = 2,
96 COMPCODE_LE = 3,
97 COMPCODE_GT = 4,
98 COMPCODE_LTGT = 5,
99 COMPCODE_GE = 6,
100 COMPCODE_ORD = 7,
101 COMPCODE_UNORD = 8,
102 COMPCODE_UNLT = 9,
103 COMPCODE_UNEQ = 10,
104 COMPCODE_UNLE = 11,
105 COMPCODE_UNGT = 12,
106 COMPCODE_NE = 13,
107 COMPCODE_UNGE = 14,
108 COMPCODE_TRUE = 15
111 static bool negate_mathfn_p (enum built_in_function);
112 static bool negate_expr_p (tree);
113 static tree negate_expr (tree);
114 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
116 static enum comparison_code comparison_to_compcode (enum tree_code);
117 static enum tree_code compcode_to_comparison (enum comparison_code);
118 static int operand_equal_for_comparison_p (tree, tree, tree);
119 static int twoval_comparison_p (tree, tree *, tree *, int *);
120 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
121 static tree make_bit_field_ref (location_t, tree, tree,
122 HOST_WIDE_INT, HOST_WIDE_INT, int);
123 static tree optimize_bit_field_compare (location_t, enum tree_code,
124 tree, tree, tree);
125 static tree decode_field_reference (location_t, tree, HOST_WIDE_INT *,
126 HOST_WIDE_INT *,
127 machine_mode *, int *, int *,
128 tree *, tree *);
129 static int simple_operand_p (const_tree);
130 static bool simple_operand_p_2 (tree);
131 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
132 static tree range_predecessor (tree);
133 static tree range_successor (tree);
134 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
135 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
136 static tree unextend (tree, int, int, tree);
137 static tree optimize_minmax_comparison (location_t, enum tree_code,
138 tree, tree, tree);
139 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
140 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
141 static tree fold_binary_op_with_conditional_arg (location_t,
142 enum tree_code, tree,
143 tree, tree,
144 tree, tree, int);
145 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
146 static bool reorder_operands_p (const_tree, const_tree);
147 static tree fold_negate_const (tree, tree);
148 static tree fold_not_const (const_tree, tree);
149 static tree fold_relational_const (enum tree_code, tree, tree, tree);
150 static tree fold_convert_const (enum tree_code, tree, tree);
151 static tree fold_view_convert_expr (tree, tree);
152 static bool vec_cst_ctor_to_array (tree, tree *);
155 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
156 Otherwise, return LOC. */
158 static location_t
159 expr_location_or (tree t, location_t loc)
161 location_t tloc = EXPR_LOCATION (t);
162 return tloc == UNKNOWN_LOCATION ? loc : tloc;
165 /* Similar to protected_set_expr_location, but never modify x in place,
166 if location can and needs to be set, unshare it. */
168 static inline tree
169 protected_set_expr_location_unshare (tree x, location_t loc)
171 if (CAN_HAVE_LOCATION_P (x)
172 && EXPR_LOCATION (x) != loc
173 && !(TREE_CODE (x) == SAVE_EXPR
174 || TREE_CODE (x) == TARGET_EXPR
175 || TREE_CODE (x) == BIND_EXPR))
177 x = copy_node (x);
178 SET_EXPR_LOCATION (x, loc);
180 return x;
183 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
184 division and returns the quotient. Otherwise returns
185 NULL_TREE. */
187 tree
188 div_if_zero_remainder (const_tree arg1, const_tree arg2)
190 widest_int quo;
192 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
193 SIGNED, &quo))
194 return wide_int_to_tree (TREE_TYPE (arg1), quo);
196 return NULL_TREE;
199 /* This is nonzero if we should defer warnings about undefined
200 overflow. This facility exists because these warnings are a
201 special case. The code to estimate loop iterations does not want
202 to issue any warnings, since it works with expressions which do not
203 occur in user code. Various bits of cleanup code call fold(), but
204 only use the result if it has certain characteristics (e.g., is a
205 constant); that code only wants to issue a warning if the result is
206 used. */
208 static int fold_deferring_overflow_warnings;
210 /* If a warning about undefined overflow is deferred, this is the
211 warning. Note that this may cause us to turn two warnings into
212 one, but that is fine since it is sufficient to only give one
213 warning per expression. */
215 static const char* fold_deferred_overflow_warning;
217 /* If a warning about undefined overflow is deferred, this is the
218 level at which the warning should be emitted. */
220 static enum warn_strict_overflow_code fold_deferred_overflow_code;
222 /* Start deferring overflow warnings. We could use a stack here to
223 permit nested calls, but at present it is not necessary. */
225 void
226 fold_defer_overflow_warnings (void)
228 ++fold_deferring_overflow_warnings;
231 /* Stop deferring overflow warnings. If there is a pending warning,
232 and ISSUE is true, then issue the warning if appropriate. STMT is
233 the statement with which the warning should be associated (used for
234 location information); STMT may be NULL. CODE is the level of the
235 warning--a warn_strict_overflow_code value. This function will use
236 the smaller of CODE and the deferred code when deciding whether to
237 issue the warning. CODE may be zero to mean to always use the
238 deferred code. */
240 void
241 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
243 const char *warnmsg;
244 location_t locus;
246 gcc_assert (fold_deferring_overflow_warnings > 0);
247 --fold_deferring_overflow_warnings;
248 if (fold_deferring_overflow_warnings > 0)
250 if (fold_deferred_overflow_warning != NULL
251 && code != 0
252 && code < (int) fold_deferred_overflow_code)
253 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
254 return;
257 warnmsg = fold_deferred_overflow_warning;
258 fold_deferred_overflow_warning = NULL;
260 if (!issue || warnmsg == NULL)
261 return;
263 if (gimple_no_warning_p (stmt))
264 return;
266 /* Use the smallest code level when deciding to issue the
267 warning. */
268 if (code == 0 || code > (int) fold_deferred_overflow_code)
269 code = fold_deferred_overflow_code;
271 if (!issue_strict_overflow_warning (code))
272 return;
274 if (stmt == NULL)
275 locus = input_location;
276 else
277 locus = gimple_location (stmt);
278 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
281 /* Stop deferring overflow warnings, ignoring any deferred
282 warnings. */
284 void
285 fold_undefer_and_ignore_overflow_warnings (void)
287 fold_undefer_overflow_warnings (false, NULL, 0);
290 /* Whether we are deferring overflow warnings. */
292 bool
293 fold_deferring_overflow_warnings_p (void)
295 return fold_deferring_overflow_warnings > 0;
298 /* This is called when we fold something based on the fact that signed
299 overflow is undefined. */
301 static void
302 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
304 if (fold_deferring_overflow_warnings > 0)
306 if (fold_deferred_overflow_warning == NULL
307 || wc < fold_deferred_overflow_code)
309 fold_deferred_overflow_warning = gmsgid;
310 fold_deferred_overflow_code = wc;
313 else if (issue_strict_overflow_warning (wc))
314 warning (OPT_Wstrict_overflow, gmsgid);
317 /* Return true if the built-in mathematical function specified by CODE
318 is odd, i.e. -f(x) == f(-x). */
320 static bool
321 negate_mathfn_p (enum built_in_function code)
323 switch (code)
325 CASE_FLT_FN (BUILT_IN_ASIN):
326 CASE_FLT_FN (BUILT_IN_ASINH):
327 CASE_FLT_FN (BUILT_IN_ATAN):
328 CASE_FLT_FN (BUILT_IN_ATANH):
329 CASE_FLT_FN (BUILT_IN_CASIN):
330 CASE_FLT_FN (BUILT_IN_CASINH):
331 CASE_FLT_FN (BUILT_IN_CATAN):
332 CASE_FLT_FN (BUILT_IN_CATANH):
333 CASE_FLT_FN (BUILT_IN_CBRT):
334 CASE_FLT_FN (BUILT_IN_CPROJ):
335 CASE_FLT_FN (BUILT_IN_CSIN):
336 CASE_FLT_FN (BUILT_IN_CSINH):
337 CASE_FLT_FN (BUILT_IN_CTAN):
338 CASE_FLT_FN (BUILT_IN_CTANH):
339 CASE_FLT_FN (BUILT_IN_ERF):
340 CASE_FLT_FN (BUILT_IN_LLROUND):
341 CASE_FLT_FN (BUILT_IN_LROUND):
342 CASE_FLT_FN (BUILT_IN_ROUND):
343 CASE_FLT_FN (BUILT_IN_SIN):
344 CASE_FLT_FN (BUILT_IN_SINH):
345 CASE_FLT_FN (BUILT_IN_TAN):
346 CASE_FLT_FN (BUILT_IN_TANH):
347 CASE_FLT_FN (BUILT_IN_TRUNC):
348 return true;
350 CASE_FLT_FN (BUILT_IN_LLRINT):
351 CASE_FLT_FN (BUILT_IN_LRINT):
352 CASE_FLT_FN (BUILT_IN_NEARBYINT):
353 CASE_FLT_FN (BUILT_IN_RINT):
354 return !flag_rounding_math;
356 default:
357 break;
359 return false;
362 /* Check whether we may negate an integer constant T without causing
363 overflow. */
365 bool
366 may_negate_without_overflow_p (const_tree t)
368 tree type;
370 gcc_assert (TREE_CODE (t) == INTEGER_CST);
372 type = TREE_TYPE (t);
373 if (TYPE_UNSIGNED (type))
374 return false;
376 return !wi::only_sign_bit_p (t);
379 /* Determine whether an expression T can be cheaply negated using
380 the function negate_expr without introducing undefined overflow. */
382 static bool
383 negate_expr_p (tree t)
385 tree type;
387 if (t == 0)
388 return false;
390 type = TREE_TYPE (t);
392 STRIP_SIGN_NOPS (t);
393 switch (TREE_CODE (t))
395 case INTEGER_CST:
396 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
397 return true;
399 /* Check that -CST will not overflow type. */
400 return may_negate_without_overflow_p (t);
401 case BIT_NOT_EXPR:
402 return (INTEGRAL_TYPE_P (type)
403 && TYPE_OVERFLOW_WRAPS (type));
405 case FIXED_CST:
406 return true;
408 case NEGATE_EXPR:
409 return !TYPE_OVERFLOW_SANITIZED (type);
411 case REAL_CST:
412 /* We want to canonicalize to positive real constants. Pretend
413 that only negative ones can be easily negated. */
414 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
416 case COMPLEX_CST:
417 return negate_expr_p (TREE_REALPART (t))
418 && negate_expr_p (TREE_IMAGPART (t));
420 case VECTOR_CST:
422 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
423 return true;
425 int count = TYPE_VECTOR_SUBPARTS (type), i;
427 for (i = 0; i < count; i++)
428 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
429 return false;
431 return true;
434 case COMPLEX_EXPR:
435 return negate_expr_p (TREE_OPERAND (t, 0))
436 && negate_expr_p (TREE_OPERAND (t, 1));
438 case CONJ_EXPR:
439 return negate_expr_p (TREE_OPERAND (t, 0));
441 case PLUS_EXPR:
442 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
443 || HONOR_SIGNED_ZEROS (element_mode (type)))
444 return false;
445 /* -(A + B) -> (-B) - A. */
446 if (negate_expr_p (TREE_OPERAND (t, 1))
447 && reorder_operands_p (TREE_OPERAND (t, 0),
448 TREE_OPERAND (t, 1)))
449 return true;
450 /* -(A + B) -> (-A) - B. */
451 return negate_expr_p (TREE_OPERAND (t, 0));
453 case MINUS_EXPR:
454 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
455 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
456 && !HONOR_SIGNED_ZEROS (element_mode (type))
457 && reorder_operands_p (TREE_OPERAND (t, 0),
458 TREE_OPERAND (t, 1));
460 case MULT_EXPR:
461 if (TYPE_UNSIGNED (TREE_TYPE (t)))
462 break;
464 /* Fall through. */
466 case RDIV_EXPR:
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
468 return negate_expr_p (TREE_OPERAND (t, 1))
469 || negate_expr_p (TREE_OPERAND (t, 0));
470 break;
472 case TRUNC_DIV_EXPR:
473 case ROUND_DIV_EXPR:
474 case EXACT_DIV_EXPR:
475 /* In general we can't negate A / B, because if A is INT_MIN and
476 B is 1, we may turn this into INT_MIN / -1 which is undefined
477 and actually traps on some architectures. But if overflow is
478 undefined, we can negate, because - (INT_MIN / 1) is an
479 overflow. */
480 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
482 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
483 break;
484 /* If overflow is undefined then we have to be careful because
485 we ask whether it's ok to associate the negate with the
486 division which is not ok for example for
487 -((a - b) / c) where (-(a - b)) / c may invoke undefined
488 overflow because of negating INT_MIN. So do not use
489 negate_expr_p here but open-code the two important cases. */
490 if (TREE_CODE (TREE_OPERAND (t, 0)) == NEGATE_EXPR
491 || (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
492 && may_negate_without_overflow_p (TREE_OPERAND (t, 0))))
493 return true;
495 else if (negate_expr_p (TREE_OPERAND (t, 0)))
496 return true;
497 return negate_expr_p (TREE_OPERAND (t, 1));
499 case NOP_EXPR:
500 /* Negate -((double)float) as (double)(-float). */
501 if (TREE_CODE (type) == REAL_TYPE)
503 tree tem = strip_float_extensions (t);
504 if (tem != t)
505 return negate_expr_p (tem);
507 break;
509 case CALL_EXPR:
510 /* Negate -f(x) as f(-x). */
511 if (negate_mathfn_p (builtin_mathfn_code (t)))
512 return negate_expr_p (CALL_EXPR_ARG (t, 0));
513 break;
515 case RSHIFT_EXPR:
516 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
517 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
519 tree op1 = TREE_OPERAND (t, 1);
520 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
521 return true;
523 break;
525 default:
526 break;
528 return false;
531 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
532 simplification is possible.
533 If negate_expr_p would return true for T, NULL_TREE will never be
534 returned. */
536 static tree
537 fold_negate_expr (location_t loc, tree t)
539 tree type = TREE_TYPE (t);
540 tree tem;
542 switch (TREE_CODE (t))
544 /* Convert - (~A) to A + 1. */
545 case BIT_NOT_EXPR:
546 if (INTEGRAL_TYPE_P (type))
547 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
548 build_one_cst (type));
549 break;
551 case INTEGER_CST:
552 tem = fold_negate_const (t, type);
553 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
554 || (ANY_INTEGRAL_TYPE_P (type)
555 && !TYPE_OVERFLOW_TRAPS (type)
556 && TYPE_OVERFLOW_WRAPS (type))
557 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
558 return tem;
559 break;
561 case REAL_CST:
562 tem = fold_negate_const (t, type);
563 return tem;
565 case FIXED_CST:
566 tem = fold_negate_const (t, type);
567 return tem;
569 case COMPLEX_CST:
571 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
572 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
573 if (rpart && ipart)
574 return build_complex (type, rpart, ipart);
576 break;
578 case VECTOR_CST:
580 int count = TYPE_VECTOR_SUBPARTS (type), i;
581 tree *elts = XALLOCAVEC (tree, count);
583 for (i = 0; i < count; i++)
585 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
586 if (elts[i] == NULL_TREE)
587 return NULL_TREE;
590 return build_vector (type, elts);
593 case COMPLEX_EXPR:
594 if (negate_expr_p (t))
595 return fold_build2_loc (loc, COMPLEX_EXPR, type,
596 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
597 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
598 break;
600 case CONJ_EXPR:
601 if (negate_expr_p (t))
602 return fold_build1_loc (loc, CONJ_EXPR, type,
603 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
604 break;
606 case NEGATE_EXPR:
607 if (!TYPE_OVERFLOW_SANITIZED (type))
608 return TREE_OPERAND (t, 0);
609 break;
611 case PLUS_EXPR:
612 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
613 && !HONOR_SIGNED_ZEROS (element_mode (type)))
615 /* -(A + B) -> (-B) - A. */
616 if (negate_expr_p (TREE_OPERAND (t, 1))
617 && reorder_operands_p (TREE_OPERAND (t, 0),
618 TREE_OPERAND (t, 1)))
620 tem = negate_expr (TREE_OPERAND (t, 1));
621 return fold_build2_loc (loc, MINUS_EXPR, type,
622 tem, TREE_OPERAND (t, 0));
625 /* -(A + B) -> (-A) - B. */
626 if (negate_expr_p (TREE_OPERAND (t, 0)))
628 tem = negate_expr (TREE_OPERAND (t, 0));
629 return fold_build2_loc (loc, MINUS_EXPR, type,
630 tem, TREE_OPERAND (t, 1));
633 break;
635 case MINUS_EXPR:
636 /* - (A - B) -> B - A */
637 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
638 && !HONOR_SIGNED_ZEROS (element_mode (type))
639 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
640 return fold_build2_loc (loc, MINUS_EXPR, type,
641 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
642 break;
644 case MULT_EXPR:
645 if (TYPE_UNSIGNED (type))
646 break;
648 /* Fall through. */
650 case RDIV_EXPR:
651 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
653 tem = TREE_OPERAND (t, 1);
654 if (negate_expr_p (tem))
655 return fold_build2_loc (loc, TREE_CODE (t), type,
656 TREE_OPERAND (t, 0), negate_expr (tem));
657 tem = TREE_OPERAND (t, 0);
658 if (negate_expr_p (tem))
659 return fold_build2_loc (loc, TREE_CODE (t), type,
660 negate_expr (tem), TREE_OPERAND (t, 1));
662 break;
664 case TRUNC_DIV_EXPR:
665 case ROUND_DIV_EXPR:
666 case EXACT_DIV_EXPR:
667 /* In general we can't negate A / B, because if A is INT_MIN and
668 B is 1, we may turn this into INT_MIN / -1 which is undefined
669 and actually traps on some architectures. But if overflow is
670 undefined, we can negate, because - (INT_MIN / 1) is an
671 overflow. */
672 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
674 const char * const warnmsg = G_("assuming signed overflow does not "
675 "occur when negating a division");
676 tem = TREE_OPERAND (t, 1);
677 if (negate_expr_p (tem))
679 if (INTEGRAL_TYPE_P (type)
680 && (TREE_CODE (tem) != INTEGER_CST
681 || integer_onep (tem)))
682 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
683 return fold_build2_loc (loc, TREE_CODE (t), type,
684 TREE_OPERAND (t, 0), negate_expr (tem));
686 /* If overflow is undefined then we have to be careful because
687 we ask whether it's ok to associate the negate with the
688 division which is not ok for example for
689 -((a - b) / c) where (-(a - b)) / c may invoke undefined
690 overflow because of negating INT_MIN. So do not use
691 negate_expr_p here but open-code the two important cases. */
692 tem = TREE_OPERAND (t, 0);
693 if ((INTEGRAL_TYPE_P (type)
694 && (TREE_CODE (tem) == NEGATE_EXPR
695 || (TREE_CODE (tem) == INTEGER_CST
696 && may_negate_without_overflow_p (tem))))
697 || !INTEGRAL_TYPE_P (type))
698 return fold_build2_loc (loc, TREE_CODE (t), type,
699 negate_expr (tem), TREE_OPERAND (t, 1));
701 break;
703 case NOP_EXPR:
704 /* Convert -((double)float) into (double)(-float). */
705 if (TREE_CODE (type) == REAL_TYPE)
707 tem = strip_float_extensions (t);
708 if (tem != t && negate_expr_p (tem))
709 return fold_convert_loc (loc, type, negate_expr (tem));
711 break;
713 case CALL_EXPR:
714 /* Negate -f(x) as f(-x). */
715 if (negate_mathfn_p (builtin_mathfn_code (t))
716 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
718 tree fndecl, arg;
720 fndecl = get_callee_fndecl (t);
721 arg = negate_expr (CALL_EXPR_ARG (t, 0));
722 return build_call_expr_loc (loc, fndecl, 1, arg);
724 break;
726 case RSHIFT_EXPR:
727 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
728 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
730 tree op1 = TREE_OPERAND (t, 1);
731 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
733 tree ntype = TYPE_UNSIGNED (type)
734 ? signed_type_for (type)
735 : unsigned_type_for (type);
736 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
737 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
738 return fold_convert_loc (loc, type, temp);
741 break;
743 default:
744 break;
747 return NULL_TREE;
750 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
751 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
752 return NULL_TREE. */
754 static tree
755 negate_expr (tree t)
757 tree type, tem;
758 location_t loc;
760 if (t == NULL_TREE)
761 return NULL_TREE;
763 loc = EXPR_LOCATION (t);
764 type = TREE_TYPE (t);
765 STRIP_SIGN_NOPS (t);
767 tem = fold_negate_expr (loc, t);
768 if (!tem)
769 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
770 return fold_convert_loc (loc, type, tem);
773 /* Split a tree IN into a constant, literal and variable parts that could be
774 combined with CODE to make IN. "constant" means an expression with
775 TREE_CONSTANT but that isn't an actual constant. CODE must be a
776 commutative arithmetic operation. Store the constant part into *CONP,
777 the literal in *LITP and return the variable part. If a part isn't
778 present, set it to null. If the tree does not decompose in this way,
779 return the entire tree as the variable part and the other parts as null.
781 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
782 case, we negate an operand that was subtracted. Except if it is a
783 literal for which we use *MINUS_LITP instead.
785 If NEGATE_P is true, we are negating all of IN, again except a literal
786 for which we use *MINUS_LITP instead.
788 If IN is itself a literal or constant, return it as appropriate.
790 Note that we do not guarantee that any of the three values will be the
791 same type as IN, but they will have the same signedness and mode. */
793 static tree
794 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
795 tree *minus_litp, int negate_p)
797 tree var = 0;
799 *conp = 0;
800 *litp = 0;
801 *minus_litp = 0;
803 /* Strip any conversions that don't change the machine mode or signedness. */
804 STRIP_SIGN_NOPS (in);
806 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
807 || TREE_CODE (in) == FIXED_CST)
808 *litp = in;
809 else if (TREE_CODE (in) == code
810 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
811 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
812 /* We can associate addition and subtraction together (even
813 though the C standard doesn't say so) for integers because
814 the value is not affected. For reals, the value might be
815 affected, so we can't. */
816 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
817 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
819 tree op0 = TREE_OPERAND (in, 0);
820 tree op1 = TREE_OPERAND (in, 1);
821 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
822 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
824 /* First see if either of the operands is a literal, then a constant. */
825 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
826 || TREE_CODE (op0) == FIXED_CST)
827 *litp = op0, op0 = 0;
828 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
829 || TREE_CODE (op1) == FIXED_CST)
830 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
832 if (op0 != 0 && TREE_CONSTANT (op0))
833 *conp = op0, op0 = 0;
834 else if (op1 != 0 && TREE_CONSTANT (op1))
835 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
837 /* If we haven't dealt with either operand, this is not a case we can
838 decompose. Otherwise, VAR is either of the ones remaining, if any. */
839 if (op0 != 0 && op1 != 0)
840 var = in;
841 else if (op0 != 0)
842 var = op0;
843 else
844 var = op1, neg_var_p = neg1_p;
846 /* Now do any needed negations. */
847 if (neg_litp_p)
848 *minus_litp = *litp, *litp = 0;
849 if (neg_conp_p)
850 *conp = negate_expr (*conp);
851 if (neg_var_p)
852 var = negate_expr (var);
854 else if (TREE_CODE (in) == BIT_NOT_EXPR
855 && code == PLUS_EXPR)
857 /* -X - 1 is folded to ~X, undo that here. */
858 *minus_litp = build_one_cst (TREE_TYPE (in));
859 var = negate_expr (TREE_OPERAND (in, 0));
861 else if (TREE_CONSTANT (in))
862 *conp = in;
863 else
864 var = in;
866 if (negate_p)
868 if (*litp)
869 *minus_litp = *litp, *litp = 0;
870 else if (*minus_litp)
871 *litp = *minus_litp, *minus_litp = 0;
872 *conp = negate_expr (*conp);
873 var = negate_expr (var);
876 return var;
879 /* Re-associate trees split by the above function. T1 and T2 are
880 either expressions to associate or null. Return the new
881 expression, if any. LOC is the location of the new expression. If
882 we build an operation, do it in TYPE and with CODE. */
884 static tree
885 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
887 if (t1 == 0)
888 return t2;
889 else if (t2 == 0)
890 return t1;
892 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
893 try to fold this since we will have infinite recursion. But do
894 deal with any NEGATE_EXPRs. */
895 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
896 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
898 if (code == PLUS_EXPR)
900 if (TREE_CODE (t1) == NEGATE_EXPR)
901 return build2_loc (loc, MINUS_EXPR, type,
902 fold_convert_loc (loc, type, t2),
903 fold_convert_loc (loc, type,
904 TREE_OPERAND (t1, 0)));
905 else if (TREE_CODE (t2) == NEGATE_EXPR)
906 return build2_loc (loc, MINUS_EXPR, type,
907 fold_convert_loc (loc, type, t1),
908 fold_convert_loc (loc, type,
909 TREE_OPERAND (t2, 0)));
910 else if (integer_zerop (t2))
911 return fold_convert_loc (loc, type, t1);
913 else if (code == MINUS_EXPR)
915 if (integer_zerop (t2))
916 return fold_convert_loc (loc, type, t1);
919 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
920 fold_convert_loc (loc, type, t2));
923 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
924 fold_convert_loc (loc, type, t2));
927 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
928 for use in int_const_binop, size_binop and size_diffop. */
930 static bool
931 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
933 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
934 return false;
935 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
936 return false;
938 switch (code)
940 case LSHIFT_EXPR:
941 case RSHIFT_EXPR:
942 case LROTATE_EXPR:
943 case RROTATE_EXPR:
944 return true;
946 default:
947 break;
950 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
951 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
952 && TYPE_MODE (type1) == TYPE_MODE (type2);
956 /* Combine two integer constants ARG1 and ARG2 under operation CODE
957 to produce a new constant. Return NULL_TREE if we don't know how
958 to evaluate CODE at compile-time. */
960 static tree
961 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
962 int overflowable)
964 wide_int res;
965 tree t;
966 tree type = TREE_TYPE (arg1);
967 signop sign = TYPE_SIGN (type);
968 bool overflow = false;
970 wide_int arg2 = wide_int::from (parg2, TYPE_PRECISION (type),
971 TYPE_SIGN (TREE_TYPE (parg2)));
973 switch (code)
975 case BIT_IOR_EXPR:
976 res = wi::bit_or (arg1, arg2);
977 break;
979 case BIT_XOR_EXPR:
980 res = wi::bit_xor (arg1, arg2);
981 break;
983 case BIT_AND_EXPR:
984 res = wi::bit_and (arg1, arg2);
985 break;
987 case RSHIFT_EXPR:
988 case LSHIFT_EXPR:
989 if (wi::neg_p (arg2))
991 arg2 = -arg2;
992 if (code == RSHIFT_EXPR)
993 code = LSHIFT_EXPR;
994 else
995 code = RSHIFT_EXPR;
998 if (code == RSHIFT_EXPR)
999 /* It's unclear from the C standard whether shifts can overflow.
1000 The following code ignores overflow; perhaps a C standard
1001 interpretation ruling is needed. */
1002 res = wi::rshift (arg1, arg2, sign);
1003 else
1004 res = wi::lshift (arg1, arg2);
1005 break;
1007 case RROTATE_EXPR:
1008 case LROTATE_EXPR:
1009 if (wi::neg_p (arg2))
1011 arg2 = -arg2;
1012 if (code == RROTATE_EXPR)
1013 code = LROTATE_EXPR;
1014 else
1015 code = RROTATE_EXPR;
1018 if (code == RROTATE_EXPR)
1019 res = wi::rrotate (arg1, arg2);
1020 else
1021 res = wi::lrotate (arg1, arg2);
1022 break;
1024 case PLUS_EXPR:
1025 res = wi::add (arg1, arg2, sign, &overflow);
1026 break;
1028 case MINUS_EXPR:
1029 res = wi::sub (arg1, arg2, sign, &overflow);
1030 break;
1032 case MULT_EXPR:
1033 res = wi::mul (arg1, arg2, sign, &overflow);
1034 break;
1036 case MULT_HIGHPART_EXPR:
1037 res = wi::mul_high (arg1, arg2, sign);
1038 break;
1040 case TRUNC_DIV_EXPR:
1041 case EXACT_DIV_EXPR:
1042 if (arg2 == 0)
1043 return NULL_TREE;
1044 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1045 break;
1047 case FLOOR_DIV_EXPR:
1048 if (arg2 == 0)
1049 return NULL_TREE;
1050 res = wi::div_floor (arg1, arg2, sign, &overflow);
1051 break;
1053 case CEIL_DIV_EXPR:
1054 if (arg2 == 0)
1055 return NULL_TREE;
1056 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1057 break;
1059 case ROUND_DIV_EXPR:
1060 if (arg2 == 0)
1061 return NULL_TREE;
1062 res = wi::div_round (arg1, arg2, sign, &overflow);
1063 break;
1065 case TRUNC_MOD_EXPR:
1066 if (arg2 == 0)
1067 return NULL_TREE;
1068 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1069 break;
1071 case FLOOR_MOD_EXPR:
1072 if (arg2 == 0)
1073 return NULL_TREE;
1074 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1075 break;
1077 case CEIL_MOD_EXPR:
1078 if (arg2 == 0)
1079 return NULL_TREE;
1080 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1081 break;
1083 case ROUND_MOD_EXPR:
1084 if (arg2 == 0)
1085 return NULL_TREE;
1086 res = wi::mod_round (arg1, arg2, sign, &overflow);
1087 break;
1089 case MIN_EXPR:
1090 res = wi::min (arg1, arg2, sign);
1091 break;
1093 case MAX_EXPR:
1094 res = wi::max (arg1, arg2, sign);
1095 break;
1097 default:
1098 return NULL_TREE;
1101 t = force_fit_type (type, res, overflowable,
1102 (((sign == SIGNED || overflowable == -1)
1103 && overflow)
1104 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1106 return t;
1109 tree
1110 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1112 return int_const_binop_1 (code, arg1, arg2, 1);
1115 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1116 constant. We assume ARG1 and ARG2 have the same data type, or at least
1117 are the same kind of constant and the same machine mode. Return zero if
1118 combining the constants is not allowed in the current operating mode. */
1120 static tree
1121 const_binop (enum tree_code code, tree arg1, tree arg2)
1123 /* Sanity check for the recursive cases. */
1124 if (!arg1 || !arg2)
1125 return NULL_TREE;
1127 STRIP_NOPS (arg1);
1128 STRIP_NOPS (arg2);
1130 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1132 if (code == POINTER_PLUS_EXPR)
1133 return int_const_binop (PLUS_EXPR,
1134 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1136 return int_const_binop (code, arg1, arg2);
1139 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1141 machine_mode mode;
1142 REAL_VALUE_TYPE d1;
1143 REAL_VALUE_TYPE d2;
1144 REAL_VALUE_TYPE value;
1145 REAL_VALUE_TYPE result;
1146 bool inexact;
1147 tree t, type;
1149 /* The following codes are handled by real_arithmetic. */
1150 switch (code)
1152 case PLUS_EXPR:
1153 case MINUS_EXPR:
1154 case MULT_EXPR:
1155 case RDIV_EXPR:
1156 case MIN_EXPR:
1157 case MAX_EXPR:
1158 break;
1160 default:
1161 return NULL_TREE;
1164 d1 = TREE_REAL_CST (arg1);
1165 d2 = TREE_REAL_CST (arg2);
1167 type = TREE_TYPE (arg1);
1168 mode = TYPE_MODE (type);
1170 /* Don't perform operation if we honor signaling NaNs and
1171 either operand is a NaN. */
1172 if (HONOR_SNANS (mode)
1173 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1174 return NULL_TREE;
1176 /* Don't perform operation if it would raise a division
1177 by zero exception. */
1178 if (code == RDIV_EXPR
1179 && REAL_VALUES_EQUAL (d2, dconst0)
1180 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1181 return NULL_TREE;
1183 /* If either operand is a NaN, just return it. Otherwise, set up
1184 for floating-point trap; we return an overflow. */
1185 if (REAL_VALUE_ISNAN (d1))
1186 return arg1;
1187 else if (REAL_VALUE_ISNAN (d2))
1188 return arg2;
1190 inexact = real_arithmetic (&value, code, &d1, &d2);
1191 real_convert (&result, mode, &value);
1193 /* Don't constant fold this floating point operation if
1194 the result has overflowed and flag_trapping_math. */
1195 if (flag_trapping_math
1196 && MODE_HAS_INFINITIES (mode)
1197 && REAL_VALUE_ISINF (result)
1198 && !REAL_VALUE_ISINF (d1)
1199 && !REAL_VALUE_ISINF (d2))
1200 return NULL_TREE;
1202 /* Don't constant fold this floating point operation if the
1203 result may dependent upon the run-time rounding mode and
1204 flag_rounding_math is set, or if GCC's software emulation
1205 is unable to accurately represent the result. */
1206 if ((flag_rounding_math
1207 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1208 && (inexact || !real_identical (&result, &value)))
1209 return NULL_TREE;
1211 t = build_real (type, result);
1213 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1214 return t;
1217 if (TREE_CODE (arg1) == FIXED_CST)
1219 FIXED_VALUE_TYPE f1;
1220 FIXED_VALUE_TYPE f2;
1221 FIXED_VALUE_TYPE result;
1222 tree t, type;
1223 int sat_p;
1224 bool overflow_p;
1226 /* The following codes are handled by fixed_arithmetic. */
1227 switch (code)
1229 case PLUS_EXPR:
1230 case MINUS_EXPR:
1231 case MULT_EXPR:
1232 case TRUNC_DIV_EXPR:
1233 if (TREE_CODE (arg2) != FIXED_CST)
1234 return NULL_TREE;
1235 f2 = TREE_FIXED_CST (arg2);
1236 break;
1238 case LSHIFT_EXPR:
1239 case RSHIFT_EXPR:
1241 if (TREE_CODE (arg2) != INTEGER_CST)
1242 return NULL_TREE;
1243 wide_int w2 = arg2;
1244 f2.data.high = w2.elt (1);
1245 f2.data.low = w2.elt (0);
1246 f2.mode = SImode;
1248 break;
1250 default:
1251 return NULL_TREE;
1254 f1 = TREE_FIXED_CST (arg1);
1255 type = TREE_TYPE (arg1);
1256 sat_p = TYPE_SATURATING (type);
1257 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1258 t = build_fixed (type, result);
1259 /* Propagate overflow flags. */
1260 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1261 TREE_OVERFLOW (t) = 1;
1262 return t;
1265 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1267 tree type = TREE_TYPE (arg1);
1268 tree r1 = TREE_REALPART (arg1);
1269 tree i1 = TREE_IMAGPART (arg1);
1270 tree r2 = TREE_REALPART (arg2);
1271 tree i2 = TREE_IMAGPART (arg2);
1272 tree real, imag;
1274 switch (code)
1276 case PLUS_EXPR:
1277 case MINUS_EXPR:
1278 real = const_binop (code, r1, r2);
1279 imag = const_binop (code, i1, i2);
1280 break;
1282 case MULT_EXPR:
1283 if (COMPLEX_FLOAT_TYPE_P (type))
1284 return do_mpc_arg2 (arg1, arg2, type,
1285 /* do_nonfinite= */ folding_initializer,
1286 mpc_mul);
1288 real = const_binop (MINUS_EXPR,
1289 const_binop (MULT_EXPR, r1, r2),
1290 const_binop (MULT_EXPR, i1, i2));
1291 imag = const_binop (PLUS_EXPR,
1292 const_binop (MULT_EXPR, r1, i2),
1293 const_binop (MULT_EXPR, i1, r2));
1294 break;
1296 case RDIV_EXPR:
1297 if (COMPLEX_FLOAT_TYPE_P (type))
1298 return do_mpc_arg2 (arg1, arg2, type,
1299 /* do_nonfinite= */ folding_initializer,
1300 mpc_div);
1301 /* Fallthru ... */
1302 case TRUNC_DIV_EXPR:
1303 case CEIL_DIV_EXPR:
1304 case FLOOR_DIV_EXPR:
1305 case ROUND_DIV_EXPR:
1306 if (flag_complex_method == 0)
1308 /* Keep this algorithm in sync with
1309 tree-complex.c:expand_complex_div_straight().
1311 Expand complex division to scalars, straightforward algorithm.
1312 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1313 t = br*br + bi*bi
1315 tree magsquared
1316 = const_binop (PLUS_EXPR,
1317 const_binop (MULT_EXPR, r2, r2),
1318 const_binop (MULT_EXPR, i2, i2));
1319 tree t1
1320 = const_binop (PLUS_EXPR,
1321 const_binop (MULT_EXPR, r1, r2),
1322 const_binop (MULT_EXPR, i1, i2));
1323 tree t2
1324 = const_binop (MINUS_EXPR,
1325 const_binop (MULT_EXPR, i1, r2),
1326 const_binop (MULT_EXPR, r1, i2));
1328 real = const_binop (code, t1, magsquared);
1329 imag = const_binop (code, t2, magsquared);
1331 else
1333 /* Keep this algorithm in sync with
1334 tree-complex.c:expand_complex_div_wide().
1336 Expand complex division to scalars, modified algorithm to minimize
1337 overflow with wide input ranges. */
1338 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1339 fold_abs_const (r2, TREE_TYPE (type)),
1340 fold_abs_const (i2, TREE_TYPE (type)));
1342 if (integer_nonzerop (compare))
1344 /* In the TRUE branch, we compute
1345 ratio = br/bi;
1346 div = (br * ratio) + bi;
1347 tr = (ar * ratio) + ai;
1348 ti = (ai * ratio) - ar;
1349 tr = tr / div;
1350 ti = ti / div; */
1351 tree ratio = const_binop (code, r2, i2);
1352 tree div = const_binop (PLUS_EXPR, i2,
1353 const_binop (MULT_EXPR, r2, ratio));
1354 real = const_binop (MULT_EXPR, r1, ratio);
1355 real = const_binop (PLUS_EXPR, real, i1);
1356 real = const_binop (code, real, div);
1358 imag = const_binop (MULT_EXPR, i1, ratio);
1359 imag = const_binop (MINUS_EXPR, imag, r1);
1360 imag = const_binop (code, imag, div);
1362 else
1364 /* In the FALSE branch, we compute
1365 ratio = d/c;
1366 divisor = (d * ratio) + c;
1367 tr = (b * ratio) + a;
1368 ti = b - (a * ratio);
1369 tr = tr / div;
1370 ti = ti / div; */
1371 tree ratio = const_binop (code, i2, r2);
1372 tree div = const_binop (PLUS_EXPR, r2,
1373 const_binop (MULT_EXPR, i2, ratio));
1375 real = const_binop (MULT_EXPR, i1, ratio);
1376 real = const_binop (PLUS_EXPR, real, r1);
1377 real = const_binop (code, real, div);
1379 imag = const_binop (MULT_EXPR, r1, ratio);
1380 imag = const_binop (MINUS_EXPR, i1, imag);
1381 imag = const_binop (code, imag, div);
1384 break;
1386 default:
1387 return NULL_TREE;
1390 if (real && imag)
1391 return build_complex (type, real, imag);
1394 if (TREE_CODE (arg1) == VECTOR_CST
1395 && TREE_CODE (arg2) == VECTOR_CST)
1397 tree type = TREE_TYPE (arg1);
1398 int count = TYPE_VECTOR_SUBPARTS (type), i;
1399 tree *elts = XALLOCAVEC (tree, count);
1401 for (i = 0; i < count; i++)
1403 tree elem1 = VECTOR_CST_ELT (arg1, i);
1404 tree elem2 = VECTOR_CST_ELT (arg2, i);
1406 elts[i] = const_binop (code, elem1, elem2);
1408 /* It is possible that const_binop cannot handle the given
1409 code and return NULL_TREE */
1410 if (elts[i] == NULL_TREE)
1411 return NULL_TREE;
1414 return build_vector (type, elts);
1417 /* Shifts allow a scalar offset for a vector. */
1418 if (TREE_CODE (arg1) == VECTOR_CST
1419 && TREE_CODE (arg2) == INTEGER_CST)
1421 tree type = TREE_TYPE (arg1);
1422 int count = TYPE_VECTOR_SUBPARTS (type), i;
1423 tree *elts = XALLOCAVEC (tree, count);
1425 for (i = 0; i < count; i++)
1427 tree elem1 = VECTOR_CST_ELT (arg1, i);
1429 elts[i] = const_binop (code, elem1, arg2);
1431 /* It is possible that const_binop cannot handle the given
1432 code and return NULL_TREE. */
1433 if (elts[i] == NULL_TREE)
1434 return NULL_TREE;
1437 return build_vector (type, elts);
1439 return NULL_TREE;
1442 /* Overload that adds a TYPE parameter to be able to dispatch
1443 to fold_relational_const. */
1445 tree
1446 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1448 if (TREE_CODE_CLASS (code) == tcc_comparison)
1449 return fold_relational_const (code, type, arg1, arg2);
1451 /* ??? Until we make the const_binop worker take the type of the
1452 result as argument put those cases that need it here. */
1453 switch (code)
1455 case COMPLEX_EXPR:
1456 if ((TREE_CODE (arg1) == REAL_CST
1457 && TREE_CODE (arg2) == REAL_CST)
1458 || (TREE_CODE (arg1) == INTEGER_CST
1459 && TREE_CODE (arg2) == INTEGER_CST))
1460 return build_complex (type, arg1, arg2);
1461 return NULL_TREE;
1463 case VEC_PACK_TRUNC_EXPR:
1464 case VEC_PACK_FIX_TRUNC_EXPR:
1466 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1467 tree *elts;
1469 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1470 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1471 if (TREE_CODE (arg1) != VECTOR_CST
1472 || TREE_CODE (arg2) != VECTOR_CST)
1473 return NULL_TREE;
1475 elts = XALLOCAVEC (tree, nelts);
1476 if (!vec_cst_ctor_to_array (arg1, elts)
1477 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1478 return NULL_TREE;
1480 for (i = 0; i < nelts; i++)
1482 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1483 ? NOP_EXPR : FIX_TRUNC_EXPR,
1484 TREE_TYPE (type), elts[i]);
1485 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1486 return NULL_TREE;
1489 return build_vector (type, elts);
1492 case VEC_WIDEN_MULT_LO_EXPR:
1493 case VEC_WIDEN_MULT_HI_EXPR:
1494 case VEC_WIDEN_MULT_EVEN_EXPR:
1495 case VEC_WIDEN_MULT_ODD_EXPR:
1497 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1498 unsigned int out, ofs, scale;
1499 tree *elts;
1501 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1502 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1503 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1504 return NULL_TREE;
1506 elts = XALLOCAVEC (tree, nelts * 4);
1507 if (!vec_cst_ctor_to_array (arg1, elts)
1508 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1509 return NULL_TREE;
1511 if (code == VEC_WIDEN_MULT_LO_EXPR)
1512 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1513 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1514 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1515 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1516 scale = 1, ofs = 0;
1517 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1518 scale = 1, ofs = 1;
1520 for (out = 0; out < nelts; out++)
1522 unsigned int in1 = (out << scale) + ofs;
1523 unsigned int in2 = in1 + nelts * 2;
1524 tree t1, t2;
1526 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1527 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1529 if (t1 == NULL_TREE || t2 == NULL_TREE)
1530 return NULL_TREE;
1531 elts[out] = const_binop (MULT_EXPR, t1, t2);
1532 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1533 return NULL_TREE;
1536 return build_vector (type, elts);
1539 default:;
1542 if (TREE_CODE_CLASS (code) != tcc_binary)
1543 return NULL_TREE;
1545 /* Make sure type and arg0 have the same saturating flag. */
1546 gcc_checking_assert (TYPE_SATURATING (type)
1547 == TYPE_SATURATING (TREE_TYPE (arg1)));
1549 return const_binop (code, arg1, arg2);
1552 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1553 Return zero if computing the constants is not possible. */
1555 tree
1556 const_unop (enum tree_code code, tree type, tree arg0)
1558 switch (code)
1560 CASE_CONVERT:
1561 case FLOAT_EXPR:
1562 case FIX_TRUNC_EXPR:
1563 case FIXED_CONVERT_EXPR:
1564 return fold_convert_const (code, type, arg0);
1566 case ADDR_SPACE_CONVERT_EXPR:
1567 if (integer_zerop (arg0))
1568 return fold_convert_const (code, type, arg0);
1569 break;
1571 case VIEW_CONVERT_EXPR:
1572 return fold_view_convert_expr (type, arg0);
1574 case NEGATE_EXPR:
1576 /* Can't call fold_negate_const directly here as that doesn't
1577 handle all cases and we might not be able to negate some
1578 constants. */
1579 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1580 if (tem && CONSTANT_CLASS_P (tem))
1581 return tem;
1582 break;
1585 case ABS_EXPR:
1586 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1587 return fold_abs_const (arg0, type);
1588 break;
1590 case CONJ_EXPR:
1591 if (TREE_CODE (arg0) == COMPLEX_CST)
1593 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1594 TREE_TYPE (type));
1595 return build_complex (type, TREE_REALPART (arg0), ipart);
1597 break;
1599 case BIT_NOT_EXPR:
1600 if (TREE_CODE (arg0) == INTEGER_CST)
1601 return fold_not_const (arg0, type);
1602 /* Perform BIT_NOT_EXPR on each element individually. */
1603 else if (TREE_CODE (arg0) == VECTOR_CST)
1605 tree *elements;
1606 tree elem;
1607 unsigned count = VECTOR_CST_NELTS (arg0), i;
1609 elements = XALLOCAVEC (tree, count);
1610 for (i = 0; i < count; i++)
1612 elem = VECTOR_CST_ELT (arg0, i);
1613 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1614 if (elem == NULL_TREE)
1615 break;
1616 elements[i] = elem;
1618 if (i == count)
1619 return build_vector (type, elements);
1621 break;
1623 case TRUTH_NOT_EXPR:
1624 if (TREE_CODE (arg0) == INTEGER_CST)
1625 return constant_boolean_node (integer_zerop (arg0), type);
1626 break;
1628 case REALPART_EXPR:
1629 if (TREE_CODE (arg0) == COMPLEX_CST)
1630 return fold_convert (type, TREE_REALPART (arg0));
1631 break;
1633 case IMAGPART_EXPR:
1634 if (TREE_CODE (arg0) == COMPLEX_CST)
1635 return fold_convert (type, TREE_IMAGPART (arg0));
1636 break;
1638 case VEC_UNPACK_LO_EXPR:
1639 case VEC_UNPACK_HI_EXPR:
1640 case VEC_UNPACK_FLOAT_LO_EXPR:
1641 case VEC_UNPACK_FLOAT_HI_EXPR:
1643 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1644 tree *elts;
1645 enum tree_code subcode;
1647 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1648 if (TREE_CODE (arg0) != VECTOR_CST)
1649 return NULL_TREE;
1651 elts = XALLOCAVEC (tree, nelts * 2);
1652 if (!vec_cst_ctor_to_array (arg0, elts))
1653 return NULL_TREE;
1655 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1656 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1657 elts += nelts;
1659 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1660 subcode = NOP_EXPR;
1661 else
1662 subcode = FLOAT_EXPR;
1664 for (i = 0; i < nelts; i++)
1666 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1667 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1668 return NULL_TREE;
1671 return build_vector (type, elts);
1674 case REDUC_MIN_EXPR:
1675 case REDUC_MAX_EXPR:
1676 case REDUC_PLUS_EXPR:
1678 unsigned int nelts, i;
1679 tree *elts;
1680 enum tree_code subcode;
1682 if (TREE_CODE (arg0) != VECTOR_CST)
1683 return NULL_TREE;
1684 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1686 elts = XALLOCAVEC (tree, nelts);
1687 if (!vec_cst_ctor_to_array (arg0, elts))
1688 return NULL_TREE;
1690 switch (code)
1692 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1693 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1694 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1695 default: gcc_unreachable ();
1698 for (i = 1; i < nelts; i++)
1700 elts[0] = const_binop (subcode, elts[0], elts[i]);
1701 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1702 return NULL_TREE;
1705 return elts[0];
1708 default:
1709 break;
1712 return NULL_TREE;
1715 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1716 indicates which particular sizetype to create. */
1718 tree
1719 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1721 return build_int_cst (sizetype_tab[(int) kind], number);
1724 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1725 is a tree code. The type of the result is taken from the operands.
1726 Both must be equivalent integer types, ala int_binop_types_match_p.
1727 If the operands are constant, so is the result. */
1729 tree
1730 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1732 tree type = TREE_TYPE (arg0);
1734 if (arg0 == error_mark_node || arg1 == error_mark_node)
1735 return error_mark_node;
1737 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1738 TREE_TYPE (arg1)));
1740 /* Handle the special case of two integer constants faster. */
1741 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1743 /* And some specific cases even faster than that. */
1744 if (code == PLUS_EXPR)
1746 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1747 return arg1;
1748 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1749 return arg0;
1751 else if (code == MINUS_EXPR)
1753 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1754 return arg0;
1756 else if (code == MULT_EXPR)
1758 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1759 return arg1;
1762 /* Handle general case of two integer constants. For sizetype
1763 constant calculations we always want to know about overflow,
1764 even in the unsigned case. */
1765 return int_const_binop_1 (code, arg0, arg1, -1);
1768 return fold_build2_loc (loc, code, type, arg0, arg1);
1771 /* Given two values, either both of sizetype or both of bitsizetype,
1772 compute the difference between the two values. Return the value
1773 in signed type corresponding to the type of the operands. */
1775 tree
1776 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1778 tree type = TREE_TYPE (arg0);
1779 tree ctype;
1781 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1782 TREE_TYPE (arg1)));
1784 /* If the type is already signed, just do the simple thing. */
1785 if (!TYPE_UNSIGNED (type))
1786 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1788 if (type == sizetype)
1789 ctype = ssizetype;
1790 else if (type == bitsizetype)
1791 ctype = sbitsizetype;
1792 else
1793 ctype = signed_type_for (type);
1795 /* If either operand is not a constant, do the conversions to the signed
1796 type and subtract. The hardware will do the right thing with any
1797 overflow in the subtraction. */
1798 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1799 return size_binop_loc (loc, MINUS_EXPR,
1800 fold_convert_loc (loc, ctype, arg0),
1801 fold_convert_loc (loc, ctype, arg1));
1803 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1804 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1805 overflow) and negate (which can't either). Special-case a result
1806 of zero while we're here. */
1807 if (tree_int_cst_equal (arg0, arg1))
1808 return build_int_cst (ctype, 0);
1809 else if (tree_int_cst_lt (arg1, arg0))
1810 return fold_convert_loc (loc, ctype,
1811 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1812 else
1813 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1814 fold_convert_loc (loc, ctype,
1815 size_binop_loc (loc,
1816 MINUS_EXPR,
1817 arg1, arg0)));
1820 /* A subroutine of fold_convert_const handling conversions of an
1821 INTEGER_CST to another integer type. */
1823 static tree
1824 fold_convert_const_int_from_int (tree type, const_tree arg1)
1826 /* Given an integer constant, make new constant with new type,
1827 appropriately sign-extended or truncated. Use widest_int
1828 so that any extension is done according ARG1's type. */
1829 return force_fit_type (type, wi::to_widest (arg1),
1830 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1831 TREE_OVERFLOW (arg1));
1834 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1835 to an integer type. */
1837 static tree
1838 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1840 bool overflow = false;
1841 tree t;
1843 /* The following code implements the floating point to integer
1844 conversion rules required by the Java Language Specification,
1845 that IEEE NaNs are mapped to zero and values that overflow
1846 the target precision saturate, i.e. values greater than
1847 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1848 are mapped to INT_MIN. These semantics are allowed by the
1849 C and C++ standards that simply state that the behavior of
1850 FP-to-integer conversion is unspecified upon overflow. */
1852 wide_int val;
1853 REAL_VALUE_TYPE r;
1854 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1856 switch (code)
1858 case FIX_TRUNC_EXPR:
1859 real_trunc (&r, VOIDmode, &x);
1860 break;
1862 default:
1863 gcc_unreachable ();
1866 /* If R is NaN, return zero and show we have an overflow. */
1867 if (REAL_VALUE_ISNAN (r))
1869 overflow = true;
1870 val = wi::zero (TYPE_PRECISION (type));
1873 /* See if R is less than the lower bound or greater than the
1874 upper bound. */
1876 if (! overflow)
1878 tree lt = TYPE_MIN_VALUE (type);
1879 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1880 if (REAL_VALUES_LESS (r, l))
1882 overflow = true;
1883 val = lt;
1887 if (! overflow)
1889 tree ut = TYPE_MAX_VALUE (type);
1890 if (ut)
1892 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1893 if (REAL_VALUES_LESS (u, r))
1895 overflow = true;
1896 val = ut;
1901 if (! overflow)
1902 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1904 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1905 return t;
1908 /* A subroutine of fold_convert_const handling conversions of a
1909 FIXED_CST to an integer type. */
1911 static tree
1912 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1914 tree t;
1915 double_int temp, temp_trunc;
1916 unsigned int mode;
1918 /* Right shift FIXED_CST to temp by fbit. */
1919 temp = TREE_FIXED_CST (arg1).data;
1920 mode = TREE_FIXED_CST (arg1).mode;
1921 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1923 temp = temp.rshift (GET_MODE_FBIT (mode),
1924 HOST_BITS_PER_DOUBLE_INT,
1925 SIGNED_FIXED_POINT_MODE_P (mode));
1927 /* Left shift temp to temp_trunc by fbit. */
1928 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1929 HOST_BITS_PER_DOUBLE_INT,
1930 SIGNED_FIXED_POINT_MODE_P (mode));
1932 else
1934 temp = double_int_zero;
1935 temp_trunc = double_int_zero;
1938 /* If FIXED_CST is negative, we need to round the value toward 0.
1939 By checking if the fractional bits are not zero to add 1 to temp. */
1940 if (SIGNED_FIXED_POINT_MODE_P (mode)
1941 && temp_trunc.is_negative ()
1942 && TREE_FIXED_CST (arg1).data != temp_trunc)
1943 temp += double_int_one;
1945 /* Given a fixed-point constant, make new constant with new type,
1946 appropriately sign-extended or truncated. */
1947 t = force_fit_type (type, temp, -1,
1948 (temp.is_negative ()
1949 && (TYPE_UNSIGNED (type)
1950 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1951 | TREE_OVERFLOW (arg1));
1953 return t;
1956 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1957 to another floating point type. */
1959 static tree
1960 fold_convert_const_real_from_real (tree type, const_tree arg1)
1962 REAL_VALUE_TYPE value;
1963 tree t;
1965 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1966 t = build_real (type, value);
1968 /* If converting an infinity or NAN to a representation that doesn't
1969 have one, set the overflow bit so that we can produce some kind of
1970 error message at the appropriate point if necessary. It's not the
1971 most user-friendly message, but it's better than nothing. */
1972 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1973 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1974 TREE_OVERFLOW (t) = 1;
1975 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1976 && !MODE_HAS_NANS (TYPE_MODE (type)))
1977 TREE_OVERFLOW (t) = 1;
1978 /* Regular overflow, conversion produced an infinity in a mode that
1979 can't represent them. */
1980 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
1981 && REAL_VALUE_ISINF (value)
1982 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
1983 TREE_OVERFLOW (t) = 1;
1984 else
1985 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1986 return t;
1989 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
1990 to a floating point type. */
1992 static tree
1993 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
1995 REAL_VALUE_TYPE value;
1996 tree t;
1998 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
1999 t = build_real (type, value);
2001 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2002 return t;
2005 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2006 to another fixed-point type. */
2008 static tree
2009 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2011 FIXED_VALUE_TYPE value;
2012 tree t;
2013 bool overflow_p;
2015 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2016 TYPE_SATURATING (type));
2017 t = build_fixed (type, value);
2019 /* Propagate overflow flags. */
2020 if (overflow_p | TREE_OVERFLOW (arg1))
2021 TREE_OVERFLOW (t) = 1;
2022 return t;
2025 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2026 to a fixed-point type. */
2028 static tree
2029 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2031 FIXED_VALUE_TYPE value;
2032 tree t;
2033 bool overflow_p;
2034 double_int di;
2036 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2038 di.low = TREE_INT_CST_ELT (arg1, 0);
2039 if (TREE_INT_CST_NUNITS (arg1) == 1)
2040 di.high = (HOST_WIDE_INT) di.low < 0 ? (HOST_WIDE_INT) -1 : 0;
2041 else
2042 di.high = TREE_INT_CST_ELT (arg1, 1);
2044 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2045 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2046 TYPE_SATURATING (type));
2047 t = build_fixed (type, value);
2049 /* Propagate overflow flags. */
2050 if (overflow_p | TREE_OVERFLOW (arg1))
2051 TREE_OVERFLOW (t) = 1;
2052 return t;
2055 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2056 to a fixed-point type. */
2058 static tree
2059 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2061 FIXED_VALUE_TYPE value;
2062 tree t;
2063 bool overflow_p;
2065 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2066 &TREE_REAL_CST (arg1),
2067 TYPE_SATURATING (type));
2068 t = build_fixed (type, value);
2070 /* Propagate overflow flags. */
2071 if (overflow_p | TREE_OVERFLOW (arg1))
2072 TREE_OVERFLOW (t) = 1;
2073 return t;
2076 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2077 type TYPE. If no simplification can be done return NULL_TREE. */
2079 static tree
2080 fold_convert_const (enum tree_code code, tree type, tree arg1)
2082 if (TREE_TYPE (arg1) == type)
2083 return arg1;
2085 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2086 || TREE_CODE (type) == OFFSET_TYPE)
2088 if (TREE_CODE (arg1) == INTEGER_CST)
2089 return fold_convert_const_int_from_int (type, arg1);
2090 else if (TREE_CODE (arg1) == REAL_CST)
2091 return fold_convert_const_int_from_real (code, type, arg1);
2092 else if (TREE_CODE (arg1) == FIXED_CST)
2093 return fold_convert_const_int_from_fixed (type, arg1);
2095 else if (TREE_CODE (type) == REAL_TYPE)
2097 if (TREE_CODE (arg1) == INTEGER_CST)
2098 return build_real_from_int_cst (type, arg1);
2099 else if (TREE_CODE (arg1) == REAL_CST)
2100 return fold_convert_const_real_from_real (type, arg1);
2101 else if (TREE_CODE (arg1) == FIXED_CST)
2102 return fold_convert_const_real_from_fixed (type, arg1);
2104 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2106 if (TREE_CODE (arg1) == FIXED_CST)
2107 return fold_convert_const_fixed_from_fixed (type, arg1);
2108 else if (TREE_CODE (arg1) == INTEGER_CST)
2109 return fold_convert_const_fixed_from_int (type, arg1);
2110 else if (TREE_CODE (arg1) == REAL_CST)
2111 return fold_convert_const_fixed_from_real (type, arg1);
2113 return NULL_TREE;
2116 /* Construct a vector of zero elements of vector type TYPE. */
2118 static tree
2119 build_zero_vector (tree type)
2121 tree t;
2123 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2124 return build_vector_from_val (type, t);
2127 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2129 bool
2130 fold_convertible_p (const_tree type, const_tree arg)
2132 tree orig = TREE_TYPE (arg);
2134 if (type == orig)
2135 return true;
2137 if (TREE_CODE (arg) == ERROR_MARK
2138 || TREE_CODE (type) == ERROR_MARK
2139 || TREE_CODE (orig) == ERROR_MARK)
2140 return false;
2142 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2143 return true;
2145 switch (TREE_CODE (type))
2147 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2148 case POINTER_TYPE: case REFERENCE_TYPE:
2149 case OFFSET_TYPE:
2150 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2151 || TREE_CODE (orig) == OFFSET_TYPE)
2152 return true;
2153 return (TREE_CODE (orig) == VECTOR_TYPE
2154 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2156 case REAL_TYPE:
2157 case FIXED_POINT_TYPE:
2158 case COMPLEX_TYPE:
2159 case VECTOR_TYPE:
2160 case VOID_TYPE:
2161 return TREE_CODE (type) == TREE_CODE (orig);
2163 default:
2164 return false;
2168 /* Convert expression ARG to type TYPE. Used by the middle-end for
2169 simple conversions in preference to calling the front-end's convert. */
2171 tree
2172 fold_convert_loc (location_t loc, tree type, tree arg)
2174 tree orig = TREE_TYPE (arg);
2175 tree tem;
2177 if (type == orig)
2178 return arg;
2180 if (TREE_CODE (arg) == ERROR_MARK
2181 || TREE_CODE (type) == ERROR_MARK
2182 || TREE_CODE (orig) == ERROR_MARK)
2183 return error_mark_node;
2185 switch (TREE_CODE (type))
2187 case POINTER_TYPE:
2188 case REFERENCE_TYPE:
2189 /* Handle conversions between pointers to different address spaces. */
2190 if (POINTER_TYPE_P (orig)
2191 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2192 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2193 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2194 /* fall through */
2196 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2197 case OFFSET_TYPE:
2198 if (TREE_CODE (arg) == INTEGER_CST)
2200 tem = fold_convert_const (NOP_EXPR, type, arg);
2201 if (tem != NULL_TREE)
2202 return tem;
2204 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2205 || TREE_CODE (orig) == OFFSET_TYPE)
2206 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2207 if (TREE_CODE (orig) == COMPLEX_TYPE)
2208 return fold_convert_loc (loc, type,
2209 fold_build1_loc (loc, REALPART_EXPR,
2210 TREE_TYPE (orig), arg));
2211 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2212 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2213 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2215 case REAL_TYPE:
2216 if (TREE_CODE (arg) == INTEGER_CST)
2218 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2219 if (tem != NULL_TREE)
2220 return tem;
2222 else if (TREE_CODE (arg) == REAL_CST)
2224 tem = fold_convert_const (NOP_EXPR, type, arg);
2225 if (tem != NULL_TREE)
2226 return tem;
2228 else if (TREE_CODE (arg) == FIXED_CST)
2230 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2231 if (tem != NULL_TREE)
2232 return tem;
2235 switch (TREE_CODE (orig))
2237 case INTEGER_TYPE:
2238 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2239 case POINTER_TYPE: case REFERENCE_TYPE:
2240 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2242 case REAL_TYPE:
2243 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2245 case FIXED_POINT_TYPE:
2246 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2248 case COMPLEX_TYPE:
2249 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2250 return fold_convert_loc (loc, type, tem);
2252 default:
2253 gcc_unreachable ();
2256 case FIXED_POINT_TYPE:
2257 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2258 || TREE_CODE (arg) == REAL_CST)
2260 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2261 if (tem != NULL_TREE)
2262 goto fold_convert_exit;
2265 switch (TREE_CODE (orig))
2267 case FIXED_POINT_TYPE:
2268 case INTEGER_TYPE:
2269 case ENUMERAL_TYPE:
2270 case BOOLEAN_TYPE:
2271 case REAL_TYPE:
2272 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2274 case COMPLEX_TYPE:
2275 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2276 return fold_convert_loc (loc, type, tem);
2278 default:
2279 gcc_unreachable ();
2282 case COMPLEX_TYPE:
2283 switch (TREE_CODE (orig))
2285 case INTEGER_TYPE:
2286 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2287 case POINTER_TYPE: case REFERENCE_TYPE:
2288 case REAL_TYPE:
2289 case FIXED_POINT_TYPE:
2290 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2291 fold_convert_loc (loc, TREE_TYPE (type), arg),
2292 fold_convert_loc (loc, TREE_TYPE (type),
2293 integer_zero_node));
2294 case COMPLEX_TYPE:
2296 tree rpart, ipart;
2298 if (TREE_CODE (arg) == COMPLEX_EXPR)
2300 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2301 TREE_OPERAND (arg, 0));
2302 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2303 TREE_OPERAND (arg, 1));
2304 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2307 arg = save_expr (arg);
2308 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2309 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2310 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2311 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2312 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2315 default:
2316 gcc_unreachable ();
2319 case VECTOR_TYPE:
2320 if (integer_zerop (arg))
2321 return build_zero_vector (type);
2322 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2323 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2324 || TREE_CODE (orig) == VECTOR_TYPE);
2325 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2327 case VOID_TYPE:
2328 tem = fold_ignored_result (arg);
2329 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2331 default:
2332 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2333 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2334 gcc_unreachable ();
2336 fold_convert_exit:
2337 protected_set_expr_location_unshare (tem, loc);
2338 return tem;
2341 /* Return false if expr can be assumed not to be an lvalue, true
2342 otherwise. */
2344 static bool
2345 maybe_lvalue_p (const_tree x)
2347 /* We only need to wrap lvalue tree codes. */
2348 switch (TREE_CODE (x))
2350 case VAR_DECL:
2351 case PARM_DECL:
2352 case RESULT_DECL:
2353 case LABEL_DECL:
2354 case FUNCTION_DECL:
2355 case SSA_NAME:
2357 case COMPONENT_REF:
2358 case MEM_REF:
2359 case INDIRECT_REF:
2360 case ARRAY_REF:
2361 case ARRAY_RANGE_REF:
2362 case BIT_FIELD_REF:
2363 case OBJ_TYPE_REF:
2365 case REALPART_EXPR:
2366 case IMAGPART_EXPR:
2367 case PREINCREMENT_EXPR:
2368 case PREDECREMENT_EXPR:
2369 case SAVE_EXPR:
2370 case TRY_CATCH_EXPR:
2371 case WITH_CLEANUP_EXPR:
2372 case COMPOUND_EXPR:
2373 case MODIFY_EXPR:
2374 case TARGET_EXPR:
2375 case COND_EXPR:
2376 case BIND_EXPR:
2377 break;
2379 default:
2380 /* Assume the worst for front-end tree codes. */
2381 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2382 break;
2383 return false;
2386 return true;
2389 /* Return an expr equal to X but certainly not valid as an lvalue. */
2391 tree
2392 non_lvalue_loc (location_t loc, tree x)
2394 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2395 us. */
2396 if (in_gimple_form)
2397 return x;
2399 if (! maybe_lvalue_p (x))
2400 return x;
2401 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2404 /* When pedantic, return an expr equal to X but certainly not valid as a
2405 pedantic lvalue. Otherwise, return X. */
2407 static tree
2408 pedantic_non_lvalue_loc (location_t loc, tree x)
2410 return protected_set_expr_location_unshare (x, loc);
2413 /* Given a tree comparison code, return the code that is the logical inverse.
2414 It is generally not safe to do this for floating-point comparisons, except
2415 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2416 ERROR_MARK in this case. */
2418 enum tree_code
2419 invert_tree_comparison (enum tree_code code, bool honor_nans)
2421 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2422 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2423 return ERROR_MARK;
2425 switch (code)
2427 case EQ_EXPR:
2428 return NE_EXPR;
2429 case NE_EXPR:
2430 return EQ_EXPR;
2431 case GT_EXPR:
2432 return honor_nans ? UNLE_EXPR : LE_EXPR;
2433 case GE_EXPR:
2434 return honor_nans ? UNLT_EXPR : LT_EXPR;
2435 case LT_EXPR:
2436 return honor_nans ? UNGE_EXPR : GE_EXPR;
2437 case LE_EXPR:
2438 return honor_nans ? UNGT_EXPR : GT_EXPR;
2439 case LTGT_EXPR:
2440 return UNEQ_EXPR;
2441 case UNEQ_EXPR:
2442 return LTGT_EXPR;
2443 case UNGT_EXPR:
2444 return LE_EXPR;
2445 case UNGE_EXPR:
2446 return LT_EXPR;
2447 case UNLT_EXPR:
2448 return GE_EXPR;
2449 case UNLE_EXPR:
2450 return GT_EXPR;
2451 case ORDERED_EXPR:
2452 return UNORDERED_EXPR;
2453 case UNORDERED_EXPR:
2454 return ORDERED_EXPR;
2455 default:
2456 gcc_unreachable ();
2460 /* Similar, but return the comparison that results if the operands are
2461 swapped. This is safe for floating-point. */
2463 enum tree_code
2464 swap_tree_comparison (enum tree_code code)
2466 switch (code)
2468 case EQ_EXPR:
2469 case NE_EXPR:
2470 case ORDERED_EXPR:
2471 case UNORDERED_EXPR:
2472 case LTGT_EXPR:
2473 case UNEQ_EXPR:
2474 return code;
2475 case GT_EXPR:
2476 return LT_EXPR;
2477 case GE_EXPR:
2478 return LE_EXPR;
2479 case LT_EXPR:
2480 return GT_EXPR;
2481 case LE_EXPR:
2482 return GE_EXPR;
2483 case UNGT_EXPR:
2484 return UNLT_EXPR;
2485 case UNGE_EXPR:
2486 return UNLE_EXPR;
2487 case UNLT_EXPR:
2488 return UNGT_EXPR;
2489 case UNLE_EXPR:
2490 return UNGE_EXPR;
2491 default:
2492 gcc_unreachable ();
2497 /* Convert a comparison tree code from an enum tree_code representation
2498 into a compcode bit-based encoding. This function is the inverse of
2499 compcode_to_comparison. */
2501 static enum comparison_code
2502 comparison_to_compcode (enum tree_code code)
2504 switch (code)
2506 case LT_EXPR:
2507 return COMPCODE_LT;
2508 case EQ_EXPR:
2509 return COMPCODE_EQ;
2510 case LE_EXPR:
2511 return COMPCODE_LE;
2512 case GT_EXPR:
2513 return COMPCODE_GT;
2514 case NE_EXPR:
2515 return COMPCODE_NE;
2516 case GE_EXPR:
2517 return COMPCODE_GE;
2518 case ORDERED_EXPR:
2519 return COMPCODE_ORD;
2520 case UNORDERED_EXPR:
2521 return COMPCODE_UNORD;
2522 case UNLT_EXPR:
2523 return COMPCODE_UNLT;
2524 case UNEQ_EXPR:
2525 return COMPCODE_UNEQ;
2526 case UNLE_EXPR:
2527 return COMPCODE_UNLE;
2528 case UNGT_EXPR:
2529 return COMPCODE_UNGT;
2530 case LTGT_EXPR:
2531 return COMPCODE_LTGT;
2532 case UNGE_EXPR:
2533 return COMPCODE_UNGE;
2534 default:
2535 gcc_unreachable ();
2539 /* Convert a compcode bit-based encoding of a comparison operator back
2540 to GCC's enum tree_code representation. This function is the
2541 inverse of comparison_to_compcode. */
2543 static enum tree_code
2544 compcode_to_comparison (enum comparison_code code)
2546 switch (code)
2548 case COMPCODE_LT:
2549 return LT_EXPR;
2550 case COMPCODE_EQ:
2551 return EQ_EXPR;
2552 case COMPCODE_LE:
2553 return LE_EXPR;
2554 case COMPCODE_GT:
2555 return GT_EXPR;
2556 case COMPCODE_NE:
2557 return NE_EXPR;
2558 case COMPCODE_GE:
2559 return GE_EXPR;
2560 case COMPCODE_ORD:
2561 return ORDERED_EXPR;
2562 case COMPCODE_UNORD:
2563 return UNORDERED_EXPR;
2564 case COMPCODE_UNLT:
2565 return UNLT_EXPR;
2566 case COMPCODE_UNEQ:
2567 return UNEQ_EXPR;
2568 case COMPCODE_UNLE:
2569 return UNLE_EXPR;
2570 case COMPCODE_UNGT:
2571 return UNGT_EXPR;
2572 case COMPCODE_LTGT:
2573 return LTGT_EXPR;
2574 case COMPCODE_UNGE:
2575 return UNGE_EXPR;
2576 default:
2577 gcc_unreachable ();
2581 /* Return a tree for the comparison which is the combination of
2582 doing the AND or OR (depending on CODE) of the two operations LCODE
2583 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2584 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2585 if this makes the transformation invalid. */
2587 tree
2588 combine_comparisons (location_t loc,
2589 enum tree_code code, enum tree_code lcode,
2590 enum tree_code rcode, tree truth_type,
2591 tree ll_arg, tree lr_arg)
2593 bool honor_nans = HONOR_NANS (ll_arg);
2594 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2595 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2596 int compcode;
2598 switch (code)
2600 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2601 compcode = lcompcode & rcompcode;
2602 break;
2604 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2605 compcode = lcompcode | rcompcode;
2606 break;
2608 default:
2609 return NULL_TREE;
2612 if (!honor_nans)
2614 /* Eliminate unordered comparisons, as well as LTGT and ORD
2615 which are not used unless the mode has NaNs. */
2616 compcode &= ~COMPCODE_UNORD;
2617 if (compcode == COMPCODE_LTGT)
2618 compcode = COMPCODE_NE;
2619 else if (compcode == COMPCODE_ORD)
2620 compcode = COMPCODE_TRUE;
2622 else if (flag_trapping_math)
2624 /* Check that the original operation and the optimized ones will trap
2625 under the same condition. */
2626 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2627 && (lcompcode != COMPCODE_EQ)
2628 && (lcompcode != COMPCODE_ORD);
2629 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2630 && (rcompcode != COMPCODE_EQ)
2631 && (rcompcode != COMPCODE_ORD);
2632 bool trap = (compcode & COMPCODE_UNORD) == 0
2633 && (compcode != COMPCODE_EQ)
2634 && (compcode != COMPCODE_ORD);
2636 /* In a short-circuited boolean expression the LHS might be
2637 such that the RHS, if evaluated, will never trap. For
2638 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2639 if neither x nor y is NaN. (This is a mixed blessing: for
2640 example, the expression above will never trap, hence
2641 optimizing it to x < y would be invalid). */
2642 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2643 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2644 rtrap = false;
2646 /* If the comparison was short-circuited, and only the RHS
2647 trapped, we may now generate a spurious trap. */
2648 if (rtrap && !ltrap
2649 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2650 return NULL_TREE;
2652 /* If we changed the conditions that cause a trap, we lose. */
2653 if ((ltrap || rtrap) != trap)
2654 return NULL_TREE;
2657 if (compcode == COMPCODE_TRUE)
2658 return constant_boolean_node (true, truth_type);
2659 else if (compcode == COMPCODE_FALSE)
2660 return constant_boolean_node (false, truth_type);
2661 else
2663 enum tree_code tcode;
2665 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2666 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2670 /* Return nonzero if two operands (typically of the same tree node)
2671 are necessarily equal. If either argument has side-effects this
2672 function returns zero. FLAGS modifies behavior as follows:
2674 If OEP_ONLY_CONST is set, only return nonzero for constants.
2675 This function tests whether the operands are indistinguishable;
2676 it does not test whether they are equal using C's == operation.
2677 The distinction is important for IEEE floating point, because
2678 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2679 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2681 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2682 even though it may hold multiple values during a function.
2683 This is because a GCC tree node guarantees that nothing else is
2684 executed between the evaluation of its "operands" (which may often
2685 be evaluated in arbitrary order). Hence if the operands themselves
2686 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2687 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2688 unset means assuming isochronic (or instantaneous) tree equivalence.
2689 Unless comparing arbitrary expression trees, such as from different
2690 statements, this flag can usually be left unset.
2692 If OEP_PURE_SAME is set, then pure functions with identical arguments
2693 are considered the same. It is used when the caller has other ways
2694 to ensure that global memory is unchanged in between. */
2697 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2699 /* If either is ERROR_MARK, they aren't equal. */
2700 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2701 || TREE_TYPE (arg0) == error_mark_node
2702 || TREE_TYPE (arg1) == error_mark_node)
2703 return 0;
2705 /* Similar, if either does not have a type (like a released SSA name),
2706 they aren't equal. */
2707 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2708 return 0;
2710 /* Check equality of integer constants before bailing out due to
2711 precision differences. */
2712 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2713 return tree_int_cst_equal (arg0, arg1);
2715 /* If both types don't have the same signedness, then we can't consider
2716 them equal. We must check this before the STRIP_NOPS calls
2717 because they may change the signedness of the arguments. As pointers
2718 strictly don't have a signedness, require either two pointers or
2719 two non-pointers as well. */
2720 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2721 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
2722 return 0;
2724 /* We cannot consider pointers to different address space equal. */
2725 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && POINTER_TYPE_P (TREE_TYPE (arg1))
2726 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2727 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2728 return 0;
2730 /* If both types don't have the same precision, then it is not safe
2731 to strip NOPs. */
2732 if (element_precision (TREE_TYPE (arg0))
2733 != element_precision (TREE_TYPE (arg1)))
2734 return 0;
2736 STRIP_NOPS (arg0);
2737 STRIP_NOPS (arg1);
2739 /* In case both args are comparisons but with different comparison
2740 code, try to swap the comparison operands of one arg to produce
2741 a match and compare that variant. */
2742 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2743 && COMPARISON_CLASS_P (arg0)
2744 && COMPARISON_CLASS_P (arg1))
2746 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2748 if (TREE_CODE (arg0) == swap_code)
2749 return operand_equal_p (TREE_OPERAND (arg0, 0),
2750 TREE_OPERAND (arg1, 1), flags)
2751 && operand_equal_p (TREE_OPERAND (arg0, 1),
2752 TREE_OPERAND (arg1, 0), flags);
2755 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2756 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2757 && !(CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)))
2758 return 0;
2760 /* This is needed for conversions and for COMPONENT_REF.
2761 Might as well play it safe and always test this. */
2762 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2763 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2764 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2765 return 0;
2767 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2768 We don't care about side effects in that case because the SAVE_EXPR
2769 takes care of that for us. In all other cases, two expressions are
2770 equal if they have no side effects. If we have two identical
2771 expressions with side effects that should be treated the same due
2772 to the only side effects being identical SAVE_EXPR's, that will
2773 be detected in the recursive calls below.
2774 If we are taking an invariant address of two identical objects
2775 they are necessarily equal as well. */
2776 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2777 && (TREE_CODE (arg0) == SAVE_EXPR
2778 || (flags & OEP_CONSTANT_ADDRESS_OF)
2779 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2780 return 1;
2782 /* Next handle constant cases, those for which we can return 1 even
2783 if ONLY_CONST is set. */
2784 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2785 switch (TREE_CODE (arg0))
2787 case INTEGER_CST:
2788 return tree_int_cst_equal (arg0, arg1);
2790 case FIXED_CST:
2791 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2792 TREE_FIXED_CST (arg1));
2794 case REAL_CST:
2795 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2796 TREE_REAL_CST (arg1)))
2797 return 1;
2800 if (!HONOR_SIGNED_ZEROS (arg0))
2802 /* If we do not distinguish between signed and unsigned zero,
2803 consider them equal. */
2804 if (real_zerop (arg0) && real_zerop (arg1))
2805 return 1;
2807 return 0;
2809 case VECTOR_CST:
2811 unsigned i;
2813 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2814 return 0;
2816 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2818 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2819 VECTOR_CST_ELT (arg1, i), flags))
2820 return 0;
2822 return 1;
2825 case COMPLEX_CST:
2826 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2827 flags)
2828 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2829 flags));
2831 case STRING_CST:
2832 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2833 && ! memcmp (TREE_STRING_POINTER (arg0),
2834 TREE_STRING_POINTER (arg1),
2835 TREE_STRING_LENGTH (arg0)));
2837 case ADDR_EXPR:
2838 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2839 TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)
2840 ? OEP_CONSTANT_ADDRESS_OF | OEP_ADDRESS_OF : 0);
2841 default:
2842 break;
2845 if (flags & OEP_ONLY_CONST)
2846 return 0;
2848 /* Define macros to test an operand from arg0 and arg1 for equality and a
2849 variant that allows null and views null as being different from any
2850 non-null value. In the latter case, if either is null, the both
2851 must be; otherwise, do the normal comparison. */
2852 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2853 TREE_OPERAND (arg1, N), flags)
2855 #define OP_SAME_WITH_NULL(N) \
2856 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2857 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2859 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2861 case tcc_unary:
2862 /* Two conversions are equal only if signedness and modes match. */
2863 switch (TREE_CODE (arg0))
2865 CASE_CONVERT:
2866 case FIX_TRUNC_EXPR:
2867 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2868 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2869 return 0;
2870 break;
2871 default:
2872 break;
2875 return OP_SAME (0);
2878 case tcc_comparison:
2879 case tcc_binary:
2880 if (OP_SAME (0) && OP_SAME (1))
2881 return 1;
2883 /* For commutative ops, allow the other order. */
2884 return (commutative_tree_code (TREE_CODE (arg0))
2885 && operand_equal_p (TREE_OPERAND (arg0, 0),
2886 TREE_OPERAND (arg1, 1), flags)
2887 && operand_equal_p (TREE_OPERAND (arg0, 1),
2888 TREE_OPERAND (arg1, 0), flags));
2890 case tcc_reference:
2891 /* If either of the pointer (or reference) expressions we are
2892 dereferencing contain a side effect, these cannot be equal,
2893 but their addresses can be. */
2894 if ((flags & OEP_CONSTANT_ADDRESS_OF) == 0
2895 && (TREE_SIDE_EFFECTS (arg0)
2896 || TREE_SIDE_EFFECTS (arg1)))
2897 return 0;
2899 switch (TREE_CODE (arg0))
2901 case INDIRECT_REF:
2902 if (!(flags & OEP_ADDRESS_OF)
2903 && (TYPE_ALIGN (TREE_TYPE (arg0))
2904 != TYPE_ALIGN (TREE_TYPE (arg1))))
2905 return 0;
2906 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2907 return OP_SAME (0);
2909 case REALPART_EXPR:
2910 case IMAGPART_EXPR:
2911 return OP_SAME (0);
2913 case TARGET_MEM_REF:
2914 case MEM_REF:
2915 /* Require equal access sizes, and similar pointer types.
2916 We can have incomplete types for array references of
2917 variable-sized arrays from the Fortran frontend
2918 though. Also verify the types are compatible. */
2919 if (!((TYPE_SIZE (TREE_TYPE (arg0)) == TYPE_SIZE (TREE_TYPE (arg1))
2920 || (TYPE_SIZE (TREE_TYPE (arg0))
2921 && TYPE_SIZE (TREE_TYPE (arg1))
2922 && operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
2923 TYPE_SIZE (TREE_TYPE (arg1)), flags)))
2924 && types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))
2925 && ((flags & OEP_ADDRESS_OF)
2926 || (alias_ptr_types_compatible_p
2927 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
2928 TREE_TYPE (TREE_OPERAND (arg1, 1)))
2929 && (MR_DEPENDENCE_CLIQUE (arg0)
2930 == MR_DEPENDENCE_CLIQUE (arg1))
2931 && (MR_DEPENDENCE_BASE (arg0)
2932 == MR_DEPENDENCE_BASE (arg1))
2933 && (TYPE_ALIGN (TREE_TYPE (arg0))
2934 == TYPE_ALIGN (TREE_TYPE (arg1)))))))
2935 return 0;
2936 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2937 return (OP_SAME (0) && OP_SAME (1)
2938 /* TARGET_MEM_REF require equal extra operands. */
2939 && (TREE_CODE (arg0) != TARGET_MEM_REF
2940 || (OP_SAME_WITH_NULL (2)
2941 && OP_SAME_WITH_NULL (3)
2942 && OP_SAME_WITH_NULL (4))));
2944 case ARRAY_REF:
2945 case ARRAY_RANGE_REF:
2946 /* Operands 2 and 3 may be null.
2947 Compare the array index by value if it is constant first as we
2948 may have different types but same value here. */
2949 if (!OP_SAME (0))
2950 return 0;
2951 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2952 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2953 TREE_OPERAND (arg1, 1))
2954 || OP_SAME (1))
2955 && OP_SAME_WITH_NULL (2)
2956 && OP_SAME_WITH_NULL (3));
2958 case COMPONENT_REF:
2959 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2960 may be NULL when we're called to compare MEM_EXPRs. */
2961 if (!OP_SAME_WITH_NULL (0)
2962 || !OP_SAME (1))
2963 return 0;
2964 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2965 return OP_SAME_WITH_NULL (2);
2967 case BIT_FIELD_REF:
2968 if (!OP_SAME (0))
2969 return 0;
2970 flags &= ~(OEP_CONSTANT_ADDRESS_OF|OEP_ADDRESS_OF);
2971 return OP_SAME (1) && OP_SAME (2);
2973 default:
2974 return 0;
2977 case tcc_expression:
2978 switch (TREE_CODE (arg0))
2980 case ADDR_EXPR:
2981 return operand_equal_p (TREE_OPERAND (arg0, 0),
2982 TREE_OPERAND (arg1, 0),
2983 flags | OEP_ADDRESS_OF);
2985 case TRUTH_NOT_EXPR:
2986 return OP_SAME (0);
2988 case TRUTH_ANDIF_EXPR:
2989 case TRUTH_ORIF_EXPR:
2990 return OP_SAME (0) && OP_SAME (1);
2992 case FMA_EXPR:
2993 case WIDEN_MULT_PLUS_EXPR:
2994 case WIDEN_MULT_MINUS_EXPR:
2995 if (!OP_SAME (2))
2996 return 0;
2997 /* The multiplcation operands are commutative. */
2998 /* FALLTHRU */
3000 case TRUTH_AND_EXPR:
3001 case TRUTH_OR_EXPR:
3002 case TRUTH_XOR_EXPR:
3003 if (OP_SAME (0) && OP_SAME (1))
3004 return 1;
3006 /* Otherwise take into account this is a commutative operation. */
3007 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3008 TREE_OPERAND (arg1, 1), flags)
3009 && operand_equal_p (TREE_OPERAND (arg0, 1),
3010 TREE_OPERAND (arg1, 0), flags));
3012 case COND_EXPR:
3013 case VEC_COND_EXPR:
3014 case DOT_PROD_EXPR:
3015 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3017 default:
3018 return 0;
3021 case tcc_vl_exp:
3022 switch (TREE_CODE (arg0))
3024 case CALL_EXPR:
3025 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3026 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3027 /* If not both CALL_EXPRs are either internal or normal function
3028 functions, then they are not equal. */
3029 return 0;
3030 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3032 /* If the CALL_EXPRs call different internal functions, then they
3033 are not equal. */
3034 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3035 return 0;
3037 else
3039 /* If the CALL_EXPRs call different functions, then they are not
3040 equal. */
3041 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3042 flags))
3043 return 0;
3047 unsigned int cef = call_expr_flags (arg0);
3048 if (flags & OEP_PURE_SAME)
3049 cef &= ECF_CONST | ECF_PURE;
3050 else
3051 cef &= ECF_CONST;
3052 if (!cef)
3053 return 0;
3056 /* Now see if all the arguments are the same. */
3058 const_call_expr_arg_iterator iter0, iter1;
3059 const_tree a0, a1;
3060 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3061 a1 = first_const_call_expr_arg (arg1, &iter1);
3062 a0 && a1;
3063 a0 = next_const_call_expr_arg (&iter0),
3064 a1 = next_const_call_expr_arg (&iter1))
3065 if (! operand_equal_p (a0, a1, flags))
3066 return 0;
3068 /* If we get here and both argument lists are exhausted
3069 then the CALL_EXPRs are equal. */
3070 return ! (a0 || a1);
3072 default:
3073 return 0;
3076 case tcc_declaration:
3077 /* Consider __builtin_sqrt equal to sqrt. */
3078 return (TREE_CODE (arg0) == FUNCTION_DECL
3079 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3080 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3081 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3083 default:
3084 return 0;
3087 #undef OP_SAME
3088 #undef OP_SAME_WITH_NULL
3091 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3092 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3094 When in doubt, return 0. */
3096 static int
3097 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3099 int unsignedp1, unsignedpo;
3100 tree primarg0, primarg1, primother;
3101 unsigned int correct_width;
3103 if (operand_equal_p (arg0, arg1, 0))
3104 return 1;
3106 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3107 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3108 return 0;
3110 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3111 and see if the inner values are the same. This removes any
3112 signedness comparison, which doesn't matter here. */
3113 primarg0 = arg0, primarg1 = arg1;
3114 STRIP_NOPS (primarg0);
3115 STRIP_NOPS (primarg1);
3116 if (operand_equal_p (primarg0, primarg1, 0))
3117 return 1;
3119 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3120 actual comparison operand, ARG0.
3122 First throw away any conversions to wider types
3123 already present in the operands. */
3125 primarg1 = get_narrower (arg1, &unsignedp1);
3126 primother = get_narrower (other, &unsignedpo);
3128 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3129 if (unsignedp1 == unsignedpo
3130 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3131 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3133 tree type = TREE_TYPE (arg0);
3135 /* Make sure shorter operand is extended the right way
3136 to match the longer operand. */
3137 primarg1 = fold_convert (signed_or_unsigned_type_for
3138 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3140 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3141 return 1;
3144 return 0;
3147 /* See if ARG is an expression that is either a comparison or is performing
3148 arithmetic on comparisons. The comparisons must only be comparing
3149 two different values, which will be stored in *CVAL1 and *CVAL2; if
3150 they are nonzero it means that some operands have already been found.
3151 No variables may be used anywhere else in the expression except in the
3152 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3153 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3155 If this is true, return 1. Otherwise, return zero. */
3157 static int
3158 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3160 enum tree_code code = TREE_CODE (arg);
3161 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3163 /* We can handle some of the tcc_expression cases here. */
3164 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3165 tclass = tcc_unary;
3166 else if (tclass == tcc_expression
3167 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3168 || code == COMPOUND_EXPR))
3169 tclass = tcc_binary;
3171 else if (tclass == tcc_expression && code == SAVE_EXPR
3172 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3174 /* If we've already found a CVAL1 or CVAL2, this expression is
3175 two complex to handle. */
3176 if (*cval1 || *cval2)
3177 return 0;
3179 tclass = tcc_unary;
3180 *save_p = 1;
3183 switch (tclass)
3185 case tcc_unary:
3186 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3188 case tcc_binary:
3189 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3190 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3191 cval1, cval2, save_p));
3193 case tcc_constant:
3194 return 1;
3196 case tcc_expression:
3197 if (code == COND_EXPR)
3198 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3199 cval1, cval2, save_p)
3200 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3201 cval1, cval2, save_p)
3202 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3203 cval1, cval2, save_p));
3204 return 0;
3206 case tcc_comparison:
3207 /* First see if we can handle the first operand, then the second. For
3208 the second operand, we know *CVAL1 can't be zero. It must be that
3209 one side of the comparison is each of the values; test for the
3210 case where this isn't true by failing if the two operands
3211 are the same. */
3213 if (operand_equal_p (TREE_OPERAND (arg, 0),
3214 TREE_OPERAND (arg, 1), 0))
3215 return 0;
3217 if (*cval1 == 0)
3218 *cval1 = TREE_OPERAND (arg, 0);
3219 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3221 else if (*cval2 == 0)
3222 *cval2 = TREE_OPERAND (arg, 0);
3223 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3225 else
3226 return 0;
3228 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3230 else if (*cval2 == 0)
3231 *cval2 = TREE_OPERAND (arg, 1);
3232 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3234 else
3235 return 0;
3237 return 1;
3239 default:
3240 return 0;
3244 /* ARG is a tree that is known to contain just arithmetic operations and
3245 comparisons. Evaluate the operations in the tree substituting NEW0 for
3246 any occurrence of OLD0 as an operand of a comparison and likewise for
3247 NEW1 and OLD1. */
3249 static tree
3250 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3251 tree old1, tree new1)
3253 tree type = TREE_TYPE (arg);
3254 enum tree_code code = TREE_CODE (arg);
3255 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3257 /* We can handle some of the tcc_expression cases here. */
3258 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3259 tclass = tcc_unary;
3260 else if (tclass == tcc_expression
3261 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3262 tclass = tcc_binary;
3264 switch (tclass)
3266 case tcc_unary:
3267 return fold_build1_loc (loc, code, type,
3268 eval_subst (loc, TREE_OPERAND (arg, 0),
3269 old0, new0, old1, new1));
3271 case tcc_binary:
3272 return fold_build2_loc (loc, code, type,
3273 eval_subst (loc, TREE_OPERAND (arg, 0),
3274 old0, new0, old1, new1),
3275 eval_subst (loc, TREE_OPERAND (arg, 1),
3276 old0, new0, old1, new1));
3278 case tcc_expression:
3279 switch (code)
3281 case SAVE_EXPR:
3282 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3283 old1, new1);
3285 case COMPOUND_EXPR:
3286 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3287 old1, new1);
3289 case COND_EXPR:
3290 return fold_build3_loc (loc, code, type,
3291 eval_subst (loc, TREE_OPERAND (arg, 0),
3292 old0, new0, old1, new1),
3293 eval_subst (loc, TREE_OPERAND (arg, 1),
3294 old0, new0, old1, new1),
3295 eval_subst (loc, TREE_OPERAND (arg, 2),
3296 old0, new0, old1, new1));
3297 default:
3298 break;
3300 /* Fall through - ??? */
3302 case tcc_comparison:
3304 tree arg0 = TREE_OPERAND (arg, 0);
3305 tree arg1 = TREE_OPERAND (arg, 1);
3307 /* We need to check both for exact equality and tree equality. The
3308 former will be true if the operand has a side-effect. In that
3309 case, we know the operand occurred exactly once. */
3311 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3312 arg0 = new0;
3313 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3314 arg0 = new1;
3316 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3317 arg1 = new0;
3318 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3319 arg1 = new1;
3321 return fold_build2_loc (loc, code, type, arg0, arg1);
3324 default:
3325 return arg;
3329 /* Return a tree for the case when the result of an expression is RESULT
3330 converted to TYPE and OMITTED was previously an operand of the expression
3331 but is now not needed (e.g., we folded OMITTED * 0).
3333 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3334 the conversion of RESULT to TYPE. */
3336 tree
3337 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3339 tree t = fold_convert_loc (loc, type, result);
3341 /* If the resulting operand is an empty statement, just return the omitted
3342 statement casted to void. */
3343 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3344 return build1_loc (loc, NOP_EXPR, void_type_node,
3345 fold_ignored_result (omitted));
3347 if (TREE_SIDE_EFFECTS (omitted))
3348 return build2_loc (loc, COMPOUND_EXPR, type,
3349 fold_ignored_result (omitted), t);
3351 return non_lvalue_loc (loc, t);
3354 /* Return a tree for the case when the result of an expression is RESULT
3355 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3356 of the expression but are now not needed.
3358 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3359 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3360 evaluated before OMITTED2. Otherwise, if neither has side effects,
3361 just do the conversion of RESULT to TYPE. */
3363 tree
3364 omit_two_operands_loc (location_t loc, tree type, tree result,
3365 tree omitted1, tree omitted2)
3367 tree t = fold_convert_loc (loc, type, result);
3369 if (TREE_SIDE_EFFECTS (omitted2))
3370 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3371 if (TREE_SIDE_EFFECTS (omitted1))
3372 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3374 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3378 /* Return a simplified tree node for the truth-negation of ARG. This
3379 never alters ARG itself. We assume that ARG is an operation that
3380 returns a truth value (0 or 1).
3382 FIXME: one would think we would fold the result, but it causes
3383 problems with the dominator optimizer. */
3385 static tree
3386 fold_truth_not_expr (location_t loc, tree arg)
3388 tree type = TREE_TYPE (arg);
3389 enum tree_code code = TREE_CODE (arg);
3390 location_t loc1, loc2;
3392 /* If this is a comparison, we can simply invert it, except for
3393 floating-point non-equality comparisons, in which case we just
3394 enclose a TRUTH_NOT_EXPR around what we have. */
3396 if (TREE_CODE_CLASS (code) == tcc_comparison)
3398 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3399 if (FLOAT_TYPE_P (op_type)
3400 && flag_trapping_math
3401 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3402 && code != NE_EXPR && code != EQ_EXPR)
3403 return NULL_TREE;
3405 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3406 if (code == ERROR_MARK)
3407 return NULL_TREE;
3409 return build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3410 TREE_OPERAND (arg, 1));
3413 switch (code)
3415 case INTEGER_CST:
3416 return constant_boolean_node (integer_zerop (arg), type);
3418 case TRUTH_AND_EXPR:
3419 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3420 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3421 return build2_loc (loc, TRUTH_OR_EXPR, type,
3422 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3423 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3425 case TRUTH_OR_EXPR:
3426 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3427 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3428 return build2_loc (loc, TRUTH_AND_EXPR, type,
3429 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3430 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3432 case TRUTH_XOR_EXPR:
3433 /* Here we can invert either operand. We invert the first operand
3434 unless the second operand is a TRUTH_NOT_EXPR in which case our
3435 result is the XOR of the first operand with the inside of the
3436 negation of the second operand. */
3438 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3439 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3440 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3441 else
3442 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3443 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3444 TREE_OPERAND (arg, 1));
3446 case TRUTH_ANDIF_EXPR:
3447 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3448 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3449 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3450 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3451 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3453 case TRUTH_ORIF_EXPR:
3454 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3455 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3456 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3457 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3458 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3460 case TRUTH_NOT_EXPR:
3461 return TREE_OPERAND (arg, 0);
3463 case COND_EXPR:
3465 tree arg1 = TREE_OPERAND (arg, 1);
3466 tree arg2 = TREE_OPERAND (arg, 2);
3468 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3469 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3471 /* A COND_EXPR may have a throw as one operand, which
3472 then has void type. Just leave void operands
3473 as they are. */
3474 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3475 VOID_TYPE_P (TREE_TYPE (arg1))
3476 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3477 VOID_TYPE_P (TREE_TYPE (arg2))
3478 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3481 case COMPOUND_EXPR:
3482 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3483 return build2_loc (loc, COMPOUND_EXPR, type,
3484 TREE_OPERAND (arg, 0),
3485 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3487 case NON_LVALUE_EXPR:
3488 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3489 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3491 CASE_CONVERT:
3492 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3493 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3495 /* ... fall through ... */
3497 case FLOAT_EXPR:
3498 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3499 return build1_loc (loc, TREE_CODE (arg), type,
3500 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3502 case BIT_AND_EXPR:
3503 if (!integer_onep (TREE_OPERAND (arg, 1)))
3504 return NULL_TREE;
3505 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3507 case SAVE_EXPR:
3508 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3510 case CLEANUP_POINT_EXPR:
3511 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3512 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3513 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3515 default:
3516 return NULL_TREE;
3520 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3521 assume that ARG is an operation that returns a truth value (0 or 1
3522 for scalars, 0 or -1 for vectors). Return the folded expression if
3523 folding is successful. Otherwise, return NULL_TREE. */
3525 static tree
3526 fold_invert_truthvalue (location_t loc, tree arg)
3528 tree type = TREE_TYPE (arg);
3529 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3530 ? BIT_NOT_EXPR
3531 : TRUTH_NOT_EXPR,
3532 type, arg);
3535 /* Return a simplified tree node for the truth-negation of ARG. This
3536 never alters ARG itself. We assume that ARG is an operation that
3537 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3539 tree
3540 invert_truthvalue_loc (location_t loc, tree arg)
3542 if (TREE_CODE (arg) == ERROR_MARK)
3543 return arg;
3545 tree type = TREE_TYPE (arg);
3546 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3547 ? BIT_NOT_EXPR
3548 : TRUTH_NOT_EXPR,
3549 type, arg);
3552 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3553 with code CODE. This optimization is unsafe. */
3554 static tree
3555 distribute_real_division (location_t loc, enum tree_code code, tree type,
3556 tree arg0, tree arg1)
3558 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3559 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3561 /* (A / C) +- (B / C) -> (A +- B) / C. */
3562 if (mul0 == mul1
3563 && operand_equal_p (TREE_OPERAND (arg0, 1),
3564 TREE_OPERAND (arg1, 1), 0))
3565 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3566 fold_build2_loc (loc, code, type,
3567 TREE_OPERAND (arg0, 0),
3568 TREE_OPERAND (arg1, 0)),
3569 TREE_OPERAND (arg0, 1));
3571 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3572 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3573 TREE_OPERAND (arg1, 0), 0)
3574 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3575 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3577 REAL_VALUE_TYPE r0, r1;
3578 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3579 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3580 if (!mul0)
3581 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3582 if (!mul1)
3583 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3584 real_arithmetic (&r0, code, &r0, &r1);
3585 return fold_build2_loc (loc, MULT_EXPR, type,
3586 TREE_OPERAND (arg0, 0),
3587 build_real (type, r0));
3590 return NULL_TREE;
3593 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3594 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3596 static tree
3597 make_bit_field_ref (location_t loc, tree inner, tree type,
3598 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos, int unsignedp)
3600 tree result, bftype;
3602 if (bitpos == 0)
3604 tree size = TYPE_SIZE (TREE_TYPE (inner));
3605 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3606 || POINTER_TYPE_P (TREE_TYPE (inner)))
3607 && tree_fits_shwi_p (size)
3608 && tree_to_shwi (size) == bitsize)
3609 return fold_convert_loc (loc, type, inner);
3612 bftype = type;
3613 if (TYPE_PRECISION (bftype) != bitsize
3614 || TYPE_UNSIGNED (bftype) == !unsignedp)
3615 bftype = build_nonstandard_integer_type (bitsize, 0);
3617 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3618 size_int (bitsize), bitsize_int (bitpos));
3620 if (bftype != type)
3621 result = fold_convert_loc (loc, type, result);
3623 return result;
3626 /* Optimize a bit-field compare.
3628 There are two cases: First is a compare against a constant and the
3629 second is a comparison of two items where the fields are at the same
3630 bit position relative to the start of a chunk (byte, halfword, word)
3631 large enough to contain it. In these cases we can avoid the shift
3632 implicit in bitfield extractions.
3634 For constants, we emit a compare of the shifted constant with the
3635 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3636 compared. For two fields at the same position, we do the ANDs with the
3637 similar mask and compare the result of the ANDs.
3639 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3640 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3641 are the left and right operands of the comparison, respectively.
3643 If the optimization described above can be done, we return the resulting
3644 tree. Otherwise we return zero. */
3646 static tree
3647 optimize_bit_field_compare (location_t loc, enum tree_code code,
3648 tree compare_type, tree lhs, tree rhs)
3650 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3651 tree type = TREE_TYPE (lhs);
3652 tree unsigned_type;
3653 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3654 machine_mode lmode, rmode, nmode;
3655 int lunsignedp, runsignedp;
3656 int lvolatilep = 0, rvolatilep = 0;
3657 tree linner, rinner = NULL_TREE;
3658 tree mask;
3659 tree offset;
3661 /* Get all the information about the extractions being done. If the bit size
3662 if the same as the size of the underlying object, we aren't doing an
3663 extraction at all and so can do nothing. We also don't want to
3664 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3665 then will no longer be able to replace it. */
3666 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3667 &lunsignedp, &lvolatilep, false);
3668 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3669 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3670 return 0;
3672 if (!const_p)
3674 /* If this is not a constant, we can only do something if bit positions,
3675 sizes, and signedness are the same. */
3676 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3677 &runsignedp, &rvolatilep, false);
3679 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3680 || lunsignedp != runsignedp || offset != 0
3681 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3682 return 0;
3685 /* See if we can find a mode to refer to this field. We should be able to,
3686 but fail if we can't. */
3687 nmode = get_best_mode (lbitsize, lbitpos, 0, 0,
3688 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3689 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3690 TYPE_ALIGN (TREE_TYPE (rinner))),
3691 word_mode, false);
3692 if (nmode == VOIDmode)
3693 return 0;
3695 /* Set signed and unsigned types of the precision of this mode for the
3696 shifts below. */
3697 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3699 /* Compute the bit position and size for the new reference and our offset
3700 within it. If the new reference is the same size as the original, we
3701 won't optimize anything, so return zero. */
3702 nbitsize = GET_MODE_BITSIZE (nmode);
3703 nbitpos = lbitpos & ~ (nbitsize - 1);
3704 lbitpos -= nbitpos;
3705 if (nbitsize == lbitsize)
3706 return 0;
3708 if (BYTES_BIG_ENDIAN)
3709 lbitpos = nbitsize - lbitsize - lbitpos;
3711 /* Make the mask to be used against the extracted field. */
3712 mask = build_int_cst_type (unsigned_type, -1);
3713 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3714 mask = const_binop (RSHIFT_EXPR, mask,
3715 size_int (nbitsize - lbitsize - lbitpos));
3717 if (! const_p)
3718 /* If not comparing with constant, just rework the comparison
3719 and return. */
3720 return fold_build2_loc (loc, code, compare_type,
3721 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3722 make_bit_field_ref (loc, linner,
3723 unsigned_type,
3724 nbitsize, nbitpos,
3726 mask),
3727 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3728 make_bit_field_ref (loc, rinner,
3729 unsigned_type,
3730 nbitsize, nbitpos,
3732 mask));
3734 /* Otherwise, we are handling the constant case. See if the constant is too
3735 big for the field. Warn and return a tree of for 0 (false) if so. We do
3736 this not only for its own sake, but to avoid having to test for this
3737 error case below. If we didn't, we might generate wrong code.
3739 For unsigned fields, the constant shifted right by the field length should
3740 be all zero. For signed fields, the high-order bits should agree with
3741 the sign bit. */
3743 if (lunsignedp)
3745 if (wi::lrshift (rhs, lbitsize) != 0)
3747 warning (0, "comparison is always %d due to width of bit-field",
3748 code == NE_EXPR);
3749 return constant_boolean_node (code == NE_EXPR, compare_type);
3752 else
3754 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3755 if (tem != 0 && tem != -1)
3757 warning (0, "comparison is always %d due to width of bit-field",
3758 code == NE_EXPR);
3759 return constant_boolean_node (code == NE_EXPR, compare_type);
3763 /* Single-bit compares should always be against zero. */
3764 if (lbitsize == 1 && ! integer_zerop (rhs))
3766 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3767 rhs = build_int_cst (type, 0);
3770 /* Make a new bitfield reference, shift the constant over the
3771 appropriate number of bits and mask it with the computed mask
3772 (in case this was a signed field). If we changed it, make a new one. */
3773 lhs = make_bit_field_ref (loc, linner, unsigned_type, nbitsize, nbitpos, 1);
3775 rhs = const_binop (BIT_AND_EXPR,
3776 const_binop (LSHIFT_EXPR,
3777 fold_convert_loc (loc, unsigned_type, rhs),
3778 size_int (lbitpos)),
3779 mask);
3781 lhs = build2_loc (loc, code, compare_type,
3782 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
3783 return lhs;
3786 /* Subroutine for fold_truth_andor_1: decode a field reference.
3788 If EXP is a comparison reference, we return the innermost reference.
3790 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3791 set to the starting bit number.
3793 If the innermost field can be completely contained in a mode-sized
3794 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3796 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3797 otherwise it is not changed.
3799 *PUNSIGNEDP is set to the signedness of the field.
3801 *PMASK is set to the mask used. This is either contained in a
3802 BIT_AND_EXPR or derived from the width of the field.
3804 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3806 Return 0 if this is not a component reference or is one that we can't
3807 do anything with. */
3809 static tree
3810 decode_field_reference (location_t loc, tree exp, HOST_WIDE_INT *pbitsize,
3811 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
3812 int *punsignedp, int *pvolatilep,
3813 tree *pmask, tree *pand_mask)
3815 tree outer_type = 0;
3816 tree and_mask = 0;
3817 tree mask, inner, offset;
3818 tree unsigned_type;
3819 unsigned int precision;
3821 /* All the optimizations using this function assume integer fields.
3822 There are problems with FP fields since the type_for_size call
3823 below can fail for, e.g., XFmode. */
3824 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3825 return 0;
3827 /* We are interested in the bare arrangement of bits, so strip everything
3828 that doesn't affect the machine mode. However, record the type of the
3829 outermost expression if it may matter below. */
3830 if (CONVERT_EXPR_P (exp)
3831 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3832 outer_type = TREE_TYPE (exp);
3833 STRIP_NOPS (exp);
3835 if (TREE_CODE (exp) == BIT_AND_EXPR)
3837 and_mask = TREE_OPERAND (exp, 1);
3838 exp = TREE_OPERAND (exp, 0);
3839 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3840 if (TREE_CODE (and_mask) != INTEGER_CST)
3841 return 0;
3844 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3845 punsignedp, pvolatilep, false);
3846 if ((inner == exp && and_mask == 0)
3847 || *pbitsize < 0 || offset != 0
3848 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3849 return 0;
3851 /* If the number of bits in the reference is the same as the bitsize of
3852 the outer type, then the outer type gives the signedness. Otherwise
3853 (in case of a small bitfield) the signedness is unchanged. */
3854 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3855 *punsignedp = TYPE_UNSIGNED (outer_type);
3857 /* Compute the mask to access the bitfield. */
3858 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3859 precision = TYPE_PRECISION (unsigned_type);
3861 mask = build_int_cst_type (unsigned_type, -1);
3863 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3864 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
3866 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3867 if (and_mask != 0)
3868 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3869 fold_convert_loc (loc, unsigned_type, and_mask), mask);
3871 *pmask = mask;
3872 *pand_mask = and_mask;
3873 return inner;
3876 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3877 bit positions and MASK is SIGNED. */
3879 static int
3880 all_ones_mask_p (const_tree mask, unsigned int size)
3882 tree type = TREE_TYPE (mask);
3883 unsigned int precision = TYPE_PRECISION (type);
3885 /* If this function returns true when the type of the mask is
3886 UNSIGNED, then there will be errors. In particular see
3887 gcc.c-torture/execute/990326-1.c. There does not appear to be
3888 any documentation paper trail as to why this is so. But the pre
3889 wide-int worked with that restriction and it has been preserved
3890 here. */
3891 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
3892 return false;
3894 return wi::mask (size, false, precision) == mask;
3897 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3898 represents the sign bit of EXP's type. If EXP represents a sign
3899 or zero extension, also test VAL against the unextended type.
3900 The return value is the (sub)expression whose sign bit is VAL,
3901 or NULL_TREE otherwise. */
3903 tree
3904 sign_bit_p (tree exp, const_tree val)
3906 int width;
3907 tree t;
3909 /* Tree EXP must have an integral type. */
3910 t = TREE_TYPE (exp);
3911 if (! INTEGRAL_TYPE_P (t))
3912 return NULL_TREE;
3914 /* Tree VAL must be an integer constant. */
3915 if (TREE_CODE (val) != INTEGER_CST
3916 || TREE_OVERFLOW (val))
3917 return NULL_TREE;
3919 width = TYPE_PRECISION (t);
3920 if (wi::only_sign_bit_p (val, width))
3921 return exp;
3923 /* Handle extension from a narrower type. */
3924 if (TREE_CODE (exp) == NOP_EXPR
3925 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3926 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3928 return NULL_TREE;
3931 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
3932 to be evaluated unconditionally. */
3934 static int
3935 simple_operand_p (const_tree exp)
3937 /* Strip any conversions that don't change the machine mode. */
3938 STRIP_NOPS (exp);
3940 return (CONSTANT_CLASS_P (exp)
3941 || TREE_CODE (exp) == SSA_NAME
3942 || (DECL_P (exp)
3943 && ! TREE_ADDRESSABLE (exp)
3944 && ! TREE_THIS_VOLATILE (exp)
3945 && ! DECL_NONLOCAL (exp)
3946 /* Don't regard global variables as simple. They may be
3947 allocated in ways unknown to the compiler (shared memory,
3948 #pragma weak, etc). */
3949 && ! TREE_PUBLIC (exp)
3950 && ! DECL_EXTERNAL (exp)
3951 /* Weakrefs are not safe to be read, since they can be NULL.
3952 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
3953 have DECL_WEAK flag set. */
3954 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
3955 /* Loading a static variable is unduly expensive, but global
3956 registers aren't expensive. */
3957 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3960 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
3961 to be evaluated unconditionally.
3962 I addition to simple_operand_p, we assume that comparisons, conversions,
3963 and logic-not operations are simple, if their operands are simple, too. */
3965 static bool
3966 simple_operand_p_2 (tree exp)
3968 enum tree_code code;
3970 if (TREE_SIDE_EFFECTS (exp)
3971 || tree_could_trap_p (exp))
3972 return false;
3974 while (CONVERT_EXPR_P (exp))
3975 exp = TREE_OPERAND (exp, 0);
3977 code = TREE_CODE (exp);
3979 if (TREE_CODE_CLASS (code) == tcc_comparison)
3980 return (simple_operand_p (TREE_OPERAND (exp, 0))
3981 && simple_operand_p (TREE_OPERAND (exp, 1)));
3983 if (code == TRUTH_NOT_EXPR)
3984 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
3986 return simple_operand_p (exp);
3990 /* The following functions are subroutines to fold_range_test and allow it to
3991 try to change a logical combination of comparisons into a range test.
3993 For example, both
3994 X == 2 || X == 3 || X == 4 || X == 5
3996 X >= 2 && X <= 5
3997 are converted to
3998 (unsigned) (X - 2) <= 3
4000 We describe each set of comparisons as being either inside or outside
4001 a range, using a variable named like IN_P, and then describe the
4002 range with a lower and upper bound. If one of the bounds is omitted,
4003 it represents either the highest or lowest value of the type.
4005 In the comments below, we represent a range by two numbers in brackets
4006 preceded by a "+" to designate being inside that range, or a "-" to
4007 designate being outside that range, so the condition can be inverted by
4008 flipping the prefix. An omitted bound is represented by a "-". For
4009 example, "- [-, 10]" means being outside the range starting at the lowest
4010 possible value and ending at 10, in other words, being greater than 10.
4011 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4012 always false.
4014 We set up things so that the missing bounds are handled in a consistent
4015 manner so neither a missing bound nor "true" and "false" need to be
4016 handled using a special case. */
4018 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4019 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4020 and UPPER1_P are nonzero if the respective argument is an upper bound
4021 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4022 must be specified for a comparison. ARG1 will be converted to ARG0's
4023 type if both are specified. */
4025 static tree
4026 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4027 tree arg1, int upper1_p)
4029 tree tem;
4030 int result;
4031 int sgn0, sgn1;
4033 /* If neither arg represents infinity, do the normal operation.
4034 Else, if not a comparison, return infinity. Else handle the special
4035 comparison rules. Note that most of the cases below won't occur, but
4036 are handled for consistency. */
4038 if (arg0 != 0 && arg1 != 0)
4040 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4041 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4042 STRIP_NOPS (tem);
4043 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4046 if (TREE_CODE_CLASS (code) != tcc_comparison)
4047 return 0;
4049 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4050 for neither. In real maths, we cannot assume open ended ranges are
4051 the same. But, this is computer arithmetic, where numbers are finite.
4052 We can therefore make the transformation of any unbounded range with
4053 the value Z, Z being greater than any representable number. This permits
4054 us to treat unbounded ranges as equal. */
4055 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4056 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4057 switch (code)
4059 case EQ_EXPR:
4060 result = sgn0 == sgn1;
4061 break;
4062 case NE_EXPR:
4063 result = sgn0 != sgn1;
4064 break;
4065 case LT_EXPR:
4066 result = sgn0 < sgn1;
4067 break;
4068 case LE_EXPR:
4069 result = sgn0 <= sgn1;
4070 break;
4071 case GT_EXPR:
4072 result = sgn0 > sgn1;
4073 break;
4074 case GE_EXPR:
4075 result = sgn0 >= sgn1;
4076 break;
4077 default:
4078 gcc_unreachable ();
4081 return constant_boolean_node (result, type);
4084 /* Helper routine for make_range. Perform one step for it, return
4085 new expression if the loop should continue or NULL_TREE if it should
4086 stop. */
4088 tree
4089 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4090 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4091 bool *strict_overflow_p)
4093 tree arg0_type = TREE_TYPE (arg0);
4094 tree n_low, n_high, low = *p_low, high = *p_high;
4095 int in_p = *p_in_p, n_in_p;
4097 switch (code)
4099 case TRUTH_NOT_EXPR:
4100 /* We can only do something if the range is testing for zero. */
4101 if (low == NULL_TREE || high == NULL_TREE
4102 || ! integer_zerop (low) || ! integer_zerop (high))
4103 return NULL_TREE;
4104 *p_in_p = ! in_p;
4105 return arg0;
4107 case EQ_EXPR: case NE_EXPR:
4108 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4109 /* We can only do something if the range is testing for zero
4110 and if the second operand is an integer constant. Note that
4111 saying something is "in" the range we make is done by
4112 complementing IN_P since it will set in the initial case of
4113 being not equal to zero; "out" is leaving it alone. */
4114 if (low == NULL_TREE || high == NULL_TREE
4115 || ! integer_zerop (low) || ! integer_zerop (high)
4116 || TREE_CODE (arg1) != INTEGER_CST)
4117 return NULL_TREE;
4119 switch (code)
4121 case NE_EXPR: /* - [c, c] */
4122 low = high = arg1;
4123 break;
4124 case EQ_EXPR: /* + [c, c] */
4125 in_p = ! in_p, low = high = arg1;
4126 break;
4127 case GT_EXPR: /* - [-, c] */
4128 low = 0, high = arg1;
4129 break;
4130 case GE_EXPR: /* + [c, -] */
4131 in_p = ! in_p, low = arg1, high = 0;
4132 break;
4133 case LT_EXPR: /* - [c, -] */
4134 low = arg1, high = 0;
4135 break;
4136 case LE_EXPR: /* + [-, c] */
4137 in_p = ! in_p, low = 0, high = arg1;
4138 break;
4139 default:
4140 gcc_unreachable ();
4143 /* If this is an unsigned comparison, we also know that EXP is
4144 greater than or equal to zero. We base the range tests we make
4145 on that fact, so we record it here so we can parse existing
4146 range tests. We test arg0_type since often the return type
4147 of, e.g. EQ_EXPR, is boolean. */
4148 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4150 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4151 in_p, low, high, 1,
4152 build_int_cst (arg0_type, 0),
4153 NULL_TREE))
4154 return NULL_TREE;
4156 in_p = n_in_p, low = n_low, high = n_high;
4158 /* If the high bound is missing, but we have a nonzero low
4159 bound, reverse the range so it goes from zero to the low bound
4160 minus 1. */
4161 if (high == 0 && low && ! integer_zerop (low))
4163 in_p = ! in_p;
4164 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4165 build_int_cst (TREE_TYPE (low), 1), 0);
4166 low = build_int_cst (arg0_type, 0);
4170 *p_low = low;
4171 *p_high = high;
4172 *p_in_p = in_p;
4173 return arg0;
4175 case NEGATE_EXPR:
4176 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4177 low and high are non-NULL, then normalize will DTRT. */
4178 if (!TYPE_UNSIGNED (arg0_type)
4179 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4181 if (low == NULL_TREE)
4182 low = TYPE_MIN_VALUE (arg0_type);
4183 if (high == NULL_TREE)
4184 high = TYPE_MAX_VALUE (arg0_type);
4187 /* (-x) IN [a,b] -> x in [-b, -a] */
4188 n_low = range_binop (MINUS_EXPR, exp_type,
4189 build_int_cst (exp_type, 0),
4190 0, high, 1);
4191 n_high = range_binop (MINUS_EXPR, exp_type,
4192 build_int_cst (exp_type, 0),
4193 0, low, 0);
4194 if (n_high != 0 && TREE_OVERFLOW (n_high))
4195 return NULL_TREE;
4196 goto normalize;
4198 case BIT_NOT_EXPR:
4199 /* ~ X -> -X - 1 */
4200 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4201 build_int_cst (exp_type, 1));
4203 case PLUS_EXPR:
4204 case MINUS_EXPR:
4205 if (TREE_CODE (arg1) != INTEGER_CST)
4206 return NULL_TREE;
4208 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4209 move a constant to the other side. */
4210 if (!TYPE_UNSIGNED (arg0_type)
4211 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4212 return NULL_TREE;
4214 /* If EXP is signed, any overflow in the computation is undefined,
4215 so we don't worry about it so long as our computations on
4216 the bounds don't overflow. For unsigned, overflow is defined
4217 and this is exactly the right thing. */
4218 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4219 arg0_type, low, 0, arg1, 0);
4220 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4221 arg0_type, high, 1, arg1, 0);
4222 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4223 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4224 return NULL_TREE;
4226 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4227 *strict_overflow_p = true;
4229 normalize:
4230 /* Check for an unsigned range which has wrapped around the maximum
4231 value thus making n_high < n_low, and normalize it. */
4232 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4234 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4235 build_int_cst (TREE_TYPE (n_high), 1), 0);
4236 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4237 build_int_cst (TREE_TYPE (n_low), 1), 0);
4239 /* If the range is of the form +/- [ x+1, x ], we won't
4240 be able to normalize it. But then, it represents the
4241 whole range or the empty set, so make it
4242 +/- [ -, - ]. */
4243 if (tree_int_cst_equal (n_low, low)
4244 && tree_int_cst_equal (n_high, high))
4245 low = high = 0;
4246 else
4247 in_p = ! in_p;
4249 else
4250 low = n_low, high = n_high;
4252 *p_low = low;
4253 *p_high = high;
4254 *p_in_p = in_p;
4255 return arg0;
4257 CASE_CONVERT:
4258 case NON_LVALUE_EXPR:
4259 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4260 return NULL_TREE;
4262 if (! INTEGRAL_TYPE_P (arg0_type)
4263 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4264 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4265 return NULL_TREE;
4267 n_low = low, n_high = high;
4269 if (n_low != 0)
4270 n_low = fold_convert_loc (loc, arg0_type, n_low);
4272 if (n_high != 0)
4273 n_high = fold_convert_loc (loc, arg0_type, n_high);
4275 /* If we're converting arg0 from an unsigned type, to exp,
4276 a signed type, we will be doing the comparison as unsigned.
4277 The tests above have already verified that LOW and HIGH
4278 are both positive.
4280 So we have to ensure that we will handle large unsigned
4281 values the same way that the current signed bounds treat
4282 negative values. */
4284 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4286 tree high_positive;
4287 tree equiv_type;
4288 /* For fixed-point modes, we need to pass the saturating flag
4289 as the 2nd parameter. */
4290 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4291 equiv_type
4292 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4293 TYPE_SATURATING (arg0_type));
4294 else
4295 equiv_type
4296 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4298 /* A range without an upper bound is, naturally, unbounded.
4299 Since convert would have cropped a very large value, use
4300 the max value for the destination type. */
4301 high_positive
4302 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4303 : TYPE_MAX_VALUE (arg0_type);
4305 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4306 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4307 fold_convert_loc (loc, arg0_type,
4308 high_positive),
4309 build_int_cst (arg0_type, 1));
4311 /* If the low bound is specified, "and" the range with the
4312 range for which the original unsigned value will be
4313 positive. */
4314 if (low != 0)
4316 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4317 1, fold_convert_loc (loc, arg0_type,
4318 integer_zero_node),
4319 high_positive))
4320 return NULL_TREE;
4322 in_p = (n_in_p == in_p);
4324 else
4326 /* Otherwise, "or" the range with the range of the input
4327 that will be interpreted as negative. */
4328 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4329 1, fold_convert_loc (loc, arg0_type,
4330 integer_zero_node),
4331 high_positive))
4332 return NULL_TREE;
4334 in_p = (in_p != n_in_p);
4338 *p_low = n_low;
4339 *p_high = n_high;
4340 *p_in_p = in_p;
4341 return arg0;
4343 default:
4344 return NULL_TREE;
4348 /* Given EXP, a logical expression, set the range it is testing into
4349 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4350 actually being tested. *PLOW and *PHIGH will be made of the same
4351 type as the returned expression. If EXP is not a comparison, we
4352 will most likely not be returning a useful value and range. Set
4353 *STRICT_OVERFLOW_P to true if the return value is only valid
4354 because signed overflow is undefined; otherwise, do not change
4355 *STRICT_OVERFLOW_P. */
4357 tree
4358 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4359 bool *strict_overflow_p)
4361 enum tree_code code;
4362 tree arg0, arg1 = NULL_TREE;
4363 tree exp_type, nexp;
4364 int in_p;
4365 tree low, high;
4366 location_t loc = EXPR_LOCATION (exp);
4368 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4369 and see if we can refine the range. Some of the cases below may not
4370 happen, but it doesn't seem worth worrying about this. We "continue"
4371 the outer loop when we've changed something; otherwise we "break"
4372 the switch, which will "break" the while. */
4374 in_p = 0;
4375 low = high = build_int_cst (TREE_TYPE (exp), 0);
4377 while (1)
4379 code = TREE_CODE (exp);
4380 exp_type = TREE_TYPE (exp);
4381 arg0 = NULL_TREE;
4383 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4385 if (TREE_OPERAND_LENGTH (exp) > 0)
4386 arg0 = TREE_OPERAND (exp, 0);
4387 if (TREE_CODE_CLASS (code) == tcc_binary
4388 || TREE_CODE_CLASS (code) == tcc_comparison
4389 || (TREE_CODE_CLASS (code) == tcc_expression
4390 && TREE_OPERAND_LENGTH (exp) > 1))
4391 arg1 = TREE_OPERAND (exp, 1);
4393 if (arg0 == NULL_TREE)
4394 break;
4396 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4397 &high, &in_p, strict_overflow_p);
4398 if (nexp == NULL_TREE)
4399 break;
4400 exp = nexp;
4403 /* If EXP is a constant, we can evaluate whether this is true or false. */
4404 if (TREE_CODE (exp) == INTEGER_CST)
4406 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4407 exp, 0, low, 0))
4408 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4409 exp, 1, high, 1)));
4410 low = high = 0;
4411 exp = 0;
4414 *pin_p = in_p, *plow = low, *phigh = high;
4415 return exp;
4418 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4419 type, TYPE, return an expression to test if EXP is in (or out of, depending
4420 on IN_P) the range. Return 0 if the test couldn't be created. */
4422 tree
4423 build_range_check (location_t loc, tree type, tree exp, int in_p,
4424 tree low, tree high)
4426 tree etype = TREE_TYPE (exp), value;
4428 /* Disable this optimization for function pointer expressions
4429 on targets that require function pointer canonicalization. */
4430 if (targetm.have_canonicalize_funcptr_for_compare ()
4431 && TREE_CODE (etype) == POINTER_TYPE
4432 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4433 return NULL_TREE;
4435 if (! in_p)
4437 value = build_range_check (loc, type, exp, 1, low, high);
4438 if (value != 0)
4439 return invert_truthvalue_loc (loc, value);
4441 return 0;
4444 if (low == 0 && high == 0)
4445 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4447 if (low == 0)
4448 return fold_build2_loc (loc, LE_EXPR, type, exp,
4449 fold_convert_loc (loc, etype, high));
4451 if (high == 0)
4452 return fold_build2_loc (loc, GE_EXPR, type, exp,
4453 fold_convert_loc (loc, etype, low));
4455 if (operand_equal_p (low, high, 0))
4456 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4457 fold_convert_loc (loc, etype, low));
4459 if (integer_zerop (low))
4461 if (! TYPE_UNSIGNED (etype))
4463 etype = unsigned_type_for (etype);
4464 high = fold_convert_loc (loc, etype, high);
4465 exp = fold_convert_loc (loc, etype, exp);
4467 return build_range_check (loc, type, exp, 1, 0, high);
4470 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4471 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4473 int prec = TYPE_PRECISION (etype);
4475 if (wi::mask (prec - 1, false, prec) == high)
4477 if (TYPE_UNSIGNED (etype))
4479 tree signed_etype = signed_type_for (etype);
4480 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4481 etype
4482 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4483 else
4484 etype = signed_etype;
4485 exp = fold_convert_loc (loc, etype, exp);
4487 return fold_build2_loc (loc, GT_EXPR, type, exp,
4488 build_int_cst (etype, 0));
4492 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4493 This requires wrap-around arithmetics for the type of the expression.
4494 First make sure that arithmetics in this type is valid, then make sure
4495 that it wraps around. */
4496 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4497 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4498 TYPE_UNSIGNED (etype));
4500 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4502 tree utype, minv, maxv;
4504 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4505 for the type in question, as we rely on this here. */
4506 utype = unsigned_type_for (etype);
4507 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4508 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4509 build_int_cst (TREE_TYPE (maxv), 1), 1);
4510 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4512 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4513 minv, 1, maxv, 1)))
4514 etype = utype;
4515 else
4516 return 0;
4519 high = fold_convert_loc (loc, etype, high);
4520 low = fold_convert_loc (loc, etype, low);
4521 exp = fold_convert_loc (loc, etype, exp);
4523 value = const_binop (MINUS_EXPR, high, low);
4526 if (POINTER_TYPE_P (etype))
4528 if (value != 0 && !TREE_OVERFLOW (value))
4530 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4531 return build_range_check (loc, type,
4532 fold_build_pointer_plus_loc (loc, exp, low),
4533 1, build_int_cst (etype, 0), value);
4535 return 0;
4538 if (value != 0 && !TREE_OVERFLOW (value))
4539 return build_range_check (loc, type,
4540 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4541 1, build_int_cst (etype, 0), value);
4543 return 0;
4546 /* Return the predecessor of VAL in its type, handling the infinite case. */
4548 static tree
4549 range_predecessor (tree val)
4551 tree type = TREE_TYPE (val);
4553 if (INTEGRAL_TYPE_P (type)
4554 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4555 return 0;
4556 else
4557 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4558 build_int_cst (TREE_TYPE (val), 1), 0);
4561 /* Return the successor of VAL in its type, handling the infinite case. */
4563 static tree
4564 range_successor (tree val)
4566 tree type = TREE_TYPE (val);
4568 if (INTEGRAL_TYPE_P (type)
4569 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4570 return 0;
4571 else
4572 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4573 build_int_cst (TREE_TYPE (val), 1), 0);
4576 /* Given two ranges, see if we can merge them into one. Return 1 if we
4577 can, 0 if we can't. Set the output range into the specified parameters. */
4579 bool
4580 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4581 tree high0, int in1_p, tree low1, tree high1)
4583 int no_overlap;
4584 int subset;
4585 int temp;
4586 tree tem;
4587 int in_p;
4588 tree low, high;
4589 int lowequal = ((low0 == 0 && low1 == 0)
4590 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4591 low0, 0, low1, 0)));
4592 int highequal = ((high0 == 0 && high1 == 0)
4593 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4594 high0, 1, high1, 1)));
4596 /* Make range 0 be the range that starts first, or ends last if they
4597 start at the same value. Swap them if it isn't. */
4598 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4599 low0, 0, low1, 0))
4600 || (lowequal
4601 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4602 high1, 1, high0, 1))))
4604 temp = in0_p, in0_p = in1_p, in1_p = temp;
4605 tem = low0, low0 = low1, low1 = tem;
4606 tem = high0, high0 = high1, high1 = tem;
4609 /* Now flag two cases, whether the ranges are disjoint or whether the
4610 second range is totally subsumed in the first. Note that the tests
4611 below are simplified by the ones above. */
4612 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4613 high0, 1, low1, 0));
4614 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4615 high1, 1, high0, 1));
4617 /* We now have four cases, depending on whether we are including or
4618 excluding the two ranges. */
4619 if (in0_p && in1_p)
4621 /* If they don't overlap, the result is false. If the second range
4622 is a subset it is the result. Otherwise, the range is from the start
4623 of the second to the end of the first. */
4624 if (no_overlap)
4625 in_p = 0, low = high = 0;
4626 else if (subset)
4627 in_p = 1, low = low1, high = high1;
4628 else
4629 in_p = 1, low = low1, high = high0;
4632 else if (in0_p && ! in1_p)
4634 /* If they don't overlap, the result is the first range. If they are
4635 equal, the result is false. If the second range is a subset of the
4636 first, and the ranges begin at the same place, we go from just after
4637 the end of the second range to the end of the first. If the second
4638 range is not a subset of the first, or if it is a subset and both
4639 ranges end at the same place, the range starts at the start of the
4640 first range and ends just before the second range.
4641 Otherwise, we can't describe this as a single range. */
4642 if (no_overlap)
4643 in_p = 1, low = low0, high = high0;
4644 else if (lowequal && highequal)
4645 in_p = 0, low = high = 0;
4646 else if (subset && lowequal)
4648 low = range_successor (high1);
4649 high = high0;
4650 in_p = 1;
4651 if (low == 0)
4653 /* We are in the weird situation where high0 > high1 but
4654 high1 has no successor. Punt. */
4655 return 0;
4658 else if (! subset || highequal)
4660 low = low0;
4661 high = range_predecessor (low1);
4662 in_p = 1;
4663 if (high == 0)
4665 /* low0 < low1 but low1 has no predecessor. Punt. */
4666 return 0;
4669 else
4670 return 0;
4673 else if (! in0_p && in1_p)
4675 /* If they don't overlap, the result is the second range. If the second
4676 is a subset of the first, the result is false. Otherwise,
4677 the range starts just after the first range and ends at the
4678 end of the second. */
4679 if (no_overlap)
4680 in_p = 1, low = low1, high = high1;
4681 else if (subset || highequal)
4682 in_p = 0, low = high = 0;
4683 else
4685 low = range_successor (high0);
4686 high = high1;
4687 in_p = 1;
4688 if (low == 0)
4690 /* high1 > high0 but high0 has no successor. Punt. */
4691 return 0;
4696 else
4698 /* The case where we are excluding both ranges. Here the complex case
4699 is if they don't overlap. In that case, the only time we have a
4700 range is if they are adjacent. If the second is a subset of the
4701 first, the result is the first. Otherwise, the range to exclude
4702 starts at the beginning of the first range and ends at the end of the
4703 second. */
4704 if (no_overlap)
4706 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4707 range_successor (high0),
4708 1, low1, 0)))
4709 in_p = 0, low = low0, high = high1;
4710 else
4712 /* Canonicalize - [min, x] into - [-, x]. */
4713 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4714 switch (TREE_CODE (TREE_TYPE (low0)))
4716 case ENUMERAL_TYPE:
4717 if (TYPE_PRECISION (TREE_TYPE (low0))
4718 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4719 break;
4720 /* FALLTHROUGH */
4721 case INTEGER_TYPE:
4722 if (tree_int_cst_equal (low0,
4723 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4724 low0 = 0;
4725 break;
4726 case POINTER_TYPE:
4727 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4728 && integer_zerop (low0))
4729 low0 = 0;
4730 break;
4731 default:
4732 break;
4735 /* Canonicalize - [x, max] into - [x, -]. */
4736 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4737 switch (TREE_CODE (TREE_TYPE (high1)))
4739 case ENUMERAL_TYPE:
4740 if (TYPE_PRECISION (TREE_TYPE (high1))
4741 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4742 break;
4743 /* FALLTHROUGH */
4744 case INTEGER_TYPE:
4745 if (tree_int_cst_equal (high1,
4746 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4747 high1 = 0;
4748 break;
4749 case POINTER_TYPE:
4750 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4751 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4752 high1, 1,
4753 build_int_cst (TREE_TYPE (high1), 1),
4754 1)))
4755 high1 = 0;
4756 break;
4757 default:
4758 break;
4761 /* The ranges might be also adjacent between the maximum and
4762 minimum values of the given type. For
4763 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4764 return + [x + 1, y - 1]. */
4765 if (low0 == 0 && high1 == 0)
4767 low = range_successor (high0);
4768 high = range_predecessor (low1);
4769 if (low == 0 || high == 0)
4770 return 0;
4772 in_p = 1;
4774 else
4775 return 0;
4778 else if (subset)
4779 in_p = 0, low = low0, high = high0;
4780 else
4781 in_p = 0, low = low0, high = high1;
4784 *pin_p = in_p, *plow = low, *phigh = high;
4785 return 1;
4789 /* Subroutine of fold, looking inside expressions of the form
4790 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4791 of the COND_EXPR. This function is being used also to optimize
4792 A op B ? C : A, by reversing the comparison first.
4794 Return a folded expression whose code is not a COND_EXPR
4795 anymore, or NULL_TREE if no folding opportunity is found. */
4797 static tree
4798 fold_cond_expr_with_comparison (location_t loc, tree type,
4799 tree arg0, tree arg1, tree arg2)
4801 enum tree_code comp_code = TREE_CODE (arg0);
4802 tree arg00 = TREE_OPERAND (arg0, 0);
4803 tree arg01 = TREE_OPERAND (arg0, 1);
4804 tree arg1_type = TREE_TYPE (arg1);
4805 tree tem;
4807 STRIP_NOPS (arg1);
4808 STRIP_NOPS (arg2);
4810 /* If we have A op 0 ? A : -A, consider applying the following
4811 transformations:
4813 A == 0? A : -A same as -A
4814 A != 0? A : -A same as A
4815 A >= 0? A : -A same as abs (A)
4816 A > 0? A : -A same as abs (A)
4817 A <= 0? A : -A same as -abs (A)
4818 A < 0? A : -A same as -abs (A)
4820 None of these transformations work for modes with signed
4821 zeros. If A is +/-0, the first two transformations will
4822 change the sign of the result (from +0 to -0, or vice
4823 versa). The last four will fix the sign of the result,
4824 even though the original expressions could be positive or
4825 negative, depending on the sign of A.
4827 Note that all these transformations are correct if A is
4828 NaN, since the two alternatives (A and -A) are also NaNs. */
4829 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4830 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
4831 ? real_zerop (arg01)
4832 : integer_zerop (arg01))
4833 && ((TREE_CODE (arg2) == NEGATE_EXPR
4834 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4835 /* In the case that A is of the form X-Y, '-A' (arg2) may
4836 have already been folded to Y-X, check for that. */
4837 || (TREE_CODE (arg1) == MINUS_EXPR
4838 && TREE_CODE (arg2) == MINUS_EXPR
4839 && operand_equal_p (TREE_OPERAND (arg1, 0),
4840 TREE_OPERAND (arg2, 1), 0)
4841 && operand_equal_p (TREE_OPERAND (arg1, 1),
4842 TREE_OPERAND (arg2, 0), 0))))
4843 switch (comp_code)
4845 case EQ_EXPR:
4846 case UNEQ_EXPR:
4847 tem = fold_convert_loc (loc, arg1_type, arg1);
4848 return pedantic_non_lvalue_loc (loc,
4849 fold_convert_loc (loc, type,
4850 negate_expr (tem)));
4851 case NE_EXPR:
4852 case LTGT_EXPR:
4853 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4854 case UNGE_EXPR:
4855 case UNGT_EXPR:
4856 if (flag_trapping_math)
4857 break;
4858 /* Fall through. */
4859 case GE_EXPR:
4860 case GT_EXPR:
4861 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4862 arg1 = fold_convert_loc (loc, signed_type_for
4863 (TREE_TYPE (arg1)), arg1);
4864 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4865 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
4866 case UNLE_EXPR:
4867 case UNLT_EXPR:
4868 if (flag_trapping_math)
4869 break;
4870 case LE_EXPR:
4871 case LT_EXPR:
4872 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4873 arg1 = fold_convert_loc (loc, signed_type_for
4874 (TREE_TYPE (arg1)), arg1);
4875 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
4876 return negate_expr (fold_convert_loc (loc, type, tem));
4877 default:
4878 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4879 break;
4882 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4883 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4884 both transformations are correct when A is NaN: A != 0
4885 is then true, and A == 0 is false. */
4887 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4888 && integer_zerop (arg01) && integer_zerop (arg2))
4890 if (comp_code == NE_EXPR)
4891 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4892 else if (comp_code == EQ_EXPR)
4893 return build_zero_cst (type);
4896 /* Try some transformations of A op B ? A : B.
4898 A == B? A : B same as B
4899 A != B? A : B same as A
4900 A >= B? A : B same as max (A, B)
4901 A > B? A : B same as max (B, A)
4902 A <= B? A : B same as min (A, B)
4903 A < B? A : B same as min (B, A)
4905 As above, these transformations don't work in the presence
4906 of signed zeros. For example, if A and B are zeros of
4907 opposite sign, the first two transformations will change
4908 the sign of the result. In the last four, the original
4909 expressions give different results for (A=+0, B=-0) and
4910 (A=-0, B=+0), but the transformed expressions do not.
4912 The first two transformations are correct if either A or B
4913 is a NaN. In the first transformation, the condition will
4914 be false, and B will indeed be chosen. In the case of the
4915 second transformation, the condition A != B will be true,
4916 and A will be chosen.
4918 The conversions to max() and min() are not correct if B is
4919 a number and A is not. The conditions in the original
4920 expressions will be false, so all four give B. The min()
4921 and max() versions would give a NaN instead. */
4922 if (!HONOR_SIGNED_ZEROS (element_mode (type))
4923 && operand_equal_for_comparison_p (arg01, arg2, arg00)
4924 /* Avoid these transformations if the COND_EXPR may be used
4925 as an lvalue in the C++ front-end. PR c++/19199. */
4926 && (in_gimple_form
4927 || VECTOR_TYPE_P (type)
4928 || (! lang_GNU_CXX ()
4929 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4930 || ! maybe_lvalue_p (arg1)
4931 || ! maybe_lvalue_p (arg2)))
4933 tree comp_op0 = arg00;
4934 tree comp_op1 = arg01;
4935 tree comp_type = TREE_TYPE (comp_op0);
4937 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4938 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4940 comp_type = type;
4941 comp_op0 = arg1;
4942 comp_op1 = arg2;
4945 switch (comp_code)
4947 case EQ_EXPR:
4948 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
4949 case NE_EXPR:
4950 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
4951 case LE_EXPR:
4952 case LT_EXPR:
4953 case UNLE_EXPR:
4954 case UNLT_EXPR:
4955 /* In C++ a ?: expression can be an lvalue, so put the
4956 operand which will be used if they are equal first
4957 so that we can convert this back to the
4958 corresponding COND_EXPR. */
4959 if (!HONOR_NANS (arg1))
4961 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4962 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4963 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4964 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
4965 : fold_build2_loc (loc, MIN_EXPR, comp_type,
4966 comp_op1, comp_op0);
4967 return pedantic_non_lvalue_loc (loc,
4968 fold_convert_loc (loc, type, tem));
4970 break;
4971 case GE_EXPR:
4972 case GT_EXPR:
4973 case UNGE_EXPR:
4974 case UNGT_EXPR:
4975 if (!HONOR_NANS (arg1))
4977 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
4978 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
4979 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4980 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
4981 : fold_build2_loc (loc, MAX_EXPR, comp_type,
4982 comp_op1, comp_op0);
4983 return pedantic_non_lvalue_loc (loc,
4984 fold_convert_loc (loc, type, tem));
4986 break;
4987 case UNEQ_EXPR:
4988 if (!HONOR_NANS (arg1))
4989 return pedantic_non_lvalue_loc (loc,
4990 fold_convert_loc (loc, type, arg2));
4991 break;
4992 case LTGT_EXPR:
4993 if (!HONOR_NANS (arg1))
4994 return pedantic_non_lvalue_loc (loc,
4995 fold_convert_loc (loc, type, arg1));
4996 break;
4997 default:
4998 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4999 break;
5003 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5004 we might still be able to simplify this. For example,
5005 if C1 is one less or one more than C2, this might have started
5006 out as a MIN or MAX and been transformed by this function.
5007 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5009 if (INTEGRAL_TYPE_P (type)
5010 && TREE_CODE (arg01) == INTEGER_CST
5011 && TREE_CODE (arg2) == INTEGER_CST)
5012 switch (comp_code)
5014 case EQ_EXPR:
5015 if (TREE_CODE (arg1) == INTEGER_CST)
5016 break;
5017 /* We can replace A with C1 in this case. */
5018 arg1 = fold_convert_loc (loc, type, arg01);
5019 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
5021 case LT_EXPR:
5022 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5023 MIN_EXPR, to preserve the signedness of the comparison. */
5024 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5025 OEP_ONLY_CONST)
5026 && operand_equal_p (arg01,
5027 const_binop (PLUS_EXPR, arg2,
5028 build_int_cst (type, 1)),
5029 OEP_ONLY_CONST))
5031 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5032 fold_convert_loc (loc, TREE_TYPE (arg00),
5033 arg2));
5034 return pedantic_non_lvalue_loc (loc,
5035 fold_convert_loc (loc, type, tem));
5037 break;
5039 case LE_EXPR:
5040 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5041 as above. */
5042 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5043 OEP_ONLY_CONST)
5044 && operand_equal_p (arg01,
5045 const_binop (MINUS_EXPR, arg2,
5046 build_int_cst (type, 1)),
5047 OEP_ONLY_CONST))
5049 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5050 fold_convert_loc (loc, TREE_TYPE (arg00),
5051 arg2));
5052 return pedantic_non_lvalue_loc (loc,
5053 fold_convert_loc (loc, type, tem));
5055 break;
5057 case GT_EXPR:
5058 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5059 MAX_EXPR, to preserve the signedness of the comparison. */
5060 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5061 OEP_ONLY_CONST)
5062 && operand_equal_p (arg01,
5063 const_binop (MINUS_EXPR, arg2,
5064 build_int_cst (type, 1)),
5065 OEP_ONLY_CONST))
5067 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5068 fold_convert_loc (loc, TREE_TYPE (arg00),
5069 arg2));
5070 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5072 break;
5074 case GE_EXPR:
5075 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5076 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5077 OEP_ONLY_CONST)
5078 && operand_equal_p (arg01,
5079 const_binop (PLUS_EXPR, arg2,
5080 build_int_cst (type, 1)),
5081 OEP_ONLY_CONST))
5083 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5084 fold_convert_loc (loc, TREE_TYPE (arg00),
5085 arg2));
5086 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5088 break;
5089 case NE_EXPR:
5090 break;
5091 default:
5092 gcc_unreachable ();
5095 return NULL_TREE;
5100 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5101 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5102 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5103 false) >= 2)
5104 #endif
5106 /* EXP is some logical combination of boolean tests. See if we can
5107 merge it into some range test. Return the new tree if so. */
5109 static tree
5110 fold_range_test (location_t loc, enum tree_code code, tree type,
5111 tree op0, tree op1)
5113 int or_op = (code == TRUTH_ORIF_EXPR
5114 || code == TRUTH_OR_EXPR);
5115 int in0_p, in1_p, in_p;
5116 tree low0, low1, low, high0, high1, high;
5117 bool strict_overflow_p = false;
5118 tree tem, lhs, rhs;
5119 const char * const warnmsg = G_("assuming signed overflow does not occur "
5120 "when simplifying range test");
5122 if (!INTEGRAL_TYPE_P (type))
5123 return 0;
5125 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5126 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5128 /* If this is an OR operation, invert both sides; we will invert
5129 again at the end. */
5130 if (or_op)
5131 in0_p = ! in0_p, in1_p = ! in1_p;
5133 /* If both expressions are the same, if we can merge the ranges, and we
5134 can build the range test, return it or it inverted. If one of the
5135 ranges is always true or always false, consider it to be the same
5136 expression as the other. */
5137 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5138 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5139 in1_p, low1, high1)
5140 && 0 != (tem = (build_range_check (loc, type,
5141 lhs != 0 ? lhs
5142 : rhs != 0 ? rhs : integer_zero_node,
5143 in_p, low, high))))
5145 if (strict_overflow_p)
5146 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5147 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5150 /* On machines where the branch cost is expensive, if this is a
5151 short-circuited branch and the underlying object on both sides
5152 is the same, make a non-short-circuit operation. */
5153 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5154 && lhs != 0 && rhs != 0
5155 && (code == TRUTH_ANDIF_EXPR
5156 || code == TRUTH_ORIF_EXPR)
5157 && operand_equal_p (lhs, rhs, 0))
5159 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5160 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5161 which cases we can't do this. */
5162 if (simple_operand_p (lhs))
5163 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5164 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5165 type, op0, op1);
5167 else if (!lang_hooks.decls.global_bindings_p ()
5168 && !CONTAINS_PLACEHOLDER_P (lhs))
5170 tree common = save_expr (lhs);
5172 if (0 != (lhs = build_range_check (loc, type, common,
5173 or_op ? ! in0_p : in0_p,
5174 low0, high0))
5175 && (0 != (rhs = build_range_check (loc, type, common,
5176 or_op ? ! in1_p : in1_p,
5177 low1, high1))))
5179 if (strict_overflow_p)
5180 fold_overflow_warning (warnmsg,
5181 WARN_STRICT_OVERFLOW_COMPARISON);
5182 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5183 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5184 type, lhs, rhs);
5189 return 0;
5192 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5193 bit value. Arrange things so the extra bits will be set to zero if and
5194 only if C is signed-extended to its full width. If MASK is nonzero,
5195 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5197 static tree
5198 unextend (tree c, int p, int unsignedp, tree mask)
5200 tree type = TREE_TYPE (c);
5201 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5202 tree temp;
5204 if (p == modesize || unsignedp)
5205 return c;
5207 /* We work by getting just the sign bit into the low-order bit, then
5208 into the high-order bit, then sign-extend. We then XOR that value
5209 with C. */
5210 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5212 /* We must use a signed type in order to get an arithmetic right shift.
5213 However, we must also avoid introducing accidental overflows, so that
5214 a subsequent call to integer_zerop will work. Hence we must
5215 do the type conversion here. At this point, the constant is either
5216 zero or one, and the conversion to a signed type can never overflow.
5217 We could get an overflow if this conversion is done anywhere else. */
5218 if (TYPE_UNSIGNED (type))
5219 temp = fold_convert (signed_type_for (type), temp);
5221 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5222 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5223 if (mask != 0)
5224 temp = const_binop (BIT_AND_EXPR, temp,
5225 fold_convert (TREE_TYPE (c), mask));
5226 /* If necessary, convert the type back to match the type of C. */
5227 if (TYPE_UNSIGNED (type))
5228 temp = fold_convert (type, temp);
5230 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5233 /* For an expression that has the form
5234 (A && B) || ~B
5236 (A || B) && ~B,
5237 we can drop one of the inner expressions and simplify to
5238 A || ~B
5240 A && ~B
5241 LOC is the location of the resulting expression. OP is the inner
5242 logical operation; the left-hand side in the examples above, while CMPOP
5243 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5244 removing a condition that guards another, as in
5245 (A != NULL && A->...) || A == NULL
5246 which we must not transform. If RHS_ONLY is true, only eliminate the
5247 right-most operand of the inner logical operation. */
5249 static tree
5250 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5251 bool rhs_only)
5253 tree type = TREE_TYPE (cmpop);
5254 enum tree_code code = TREE_CODE (cmpop);
5255 enum tree_code truthop_code = TREE_CODE (op);
5256 tree lhs = TREE_OPERAND (op, 0);
5257 tree rhs = TREE_OPERAND (op, 1);
5258 tree orig_lhs = lhs, orig_rhs = rhs;
5259 enum tree_code rhs_code = TREE_CODE (rhs);
5260 enum tree_code lhs_code = TREE_CODE (lhs);
5261 enum tree_code inv_code;
5263 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5264 return NULL_TREE;
5266 if (TREE_CODE_CLASS (code) != tcc_comparison)
5267 return NULL_TREE;
5269 if (rhs_code == truthop_code)
5271 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5272 if (newrhs != NULL_TREE)
5274 rhs = newrhs;
5275 rhs_code = TREE_CODE (rhs);
5278 if (lhs_code == truthop_code && !rhs_only)
5280 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5281 if (newlhs != NULL_TREE)
5283 lhs = newlhs;
5284 lhs_code = TREE_CODE (lhs);
5288 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5289 if (inv_code == rhs_code
5290 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5291 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5292 return lhs;
5293 if (!rhs_only && inv_code == lhs_code
5294 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5295 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5296 return rhs;
5297 if (rhs != orig_rhs || lhs != orig_lhs)
5298 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5299 lhs, rhs);
5300 return NULL_TREE;
5303 /* Find ways of folding logical expressions of LHS and RHS:
5304 Try to merge two comparisons to the same innermost item.
5305 Look for range tests like "ch >= '0' && ch <= '9'".
5306 Look for combinations of simple terms on machines with expensive branches
5307 and evaluate the RHS unconditionally.
5309 For example, if we have p->a == 2 && p->b == 4 and we can make an
5310 object large enough to span both A and B, we can do this with a comparison
5311 against the object ANDed with the a mask.
5313 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5314 operations to do this with one comparison.
5316 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5317 function and the one above.
5319 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5320 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5322 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5323 two operands.
5325 We return the simplified tree or 0 if no optimization is possible. */
5327 static tree
5328 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5329 tree lhs, tree rhs)
5331 /* If this is the "or" of two comparisons, we can do something if
5332 the comparisons are NE_EXPR. If this is the "and", we can do something
5333 if the comparisons are EQ_EXPR. I.e.,
5334 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5336 WANTED_CODE is this operation code. For single bit fields, we can
5337 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5338 comparison for one-bit fields. */
5340 enum tree_code wanted_code;
5341 enum tree_code lcode, rcode;
5342 tree ll_arg, lr_arg, rl_arg, rr_arg;
5343 tree ll_inner, lr_inner, rl_inner, rr_inner;
5344 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5345 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5346 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5347 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5348 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5349 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5350 machine_mode lnmode, rnmode;
5351 tree ll_mask, lr_mask, rl_mask, rr_mask;
5352 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5353 tree l_const, r_const;
5354 tree lntype, rntype, result;
5355 HOST_WIDE_INT first_bit, end_bit;
5356 int volatilep;
5358 /* Start by getting the comparison codes. Fail if anything is volatile.
5359 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5360 it were surrounded with a NE_EXPR. */
5362 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5363 return 0;
5365 lcode = TREE_CODE (lhs);
5366 rcode = TREE_CODE (rhs);
5368 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5370 lhs = build2 (NE_EXPR, truth_type, lhs,
5371 build_int_cst (TREE_TYPE (lhs), 0));
5372 lcode = NE_EXPR;
5375 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5377 rhs = build2 (NE_EXPR, truth_type, rhs,
5378 build_int_cst (TREE_TYPE (rhs), 0));
5379 rcode = NE_EXPR;
5382 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5383 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5384 return 0;
5386 ll_arg = TREE_OPERAND (lhs, 0);
5387 lr_arg = TREE_OPERAND (lhs, 1);
5388 rl_arg = TREE_OPERAND (rhs, 0);
5389 rr_arg = TREE_OPERAND (rhs, 1);
5391 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5392 if (simple_operand_p (ll_arg)
5393 && simple_operand_p (lr_arg))
5395 if (operand_equal_p (ll_arg, rl_arg, 0)
5396 && operand_equal_p (lr_arg, rr_arg, 0))
5398 result = combine_comparisons (loc, code, lcode, rcode,
5399 truth_type, ll_arg, lr_arg);
5400 if (result)
5401 return result;
5403 else if (operand_equal_p (ll_arg, rr_arg, 0)
5404 && operand_equal_p (lr_arg, rl_arg, 0))
5406 result = combine_comparisons (loc, code, lcode,
5407 swap_tree_comparison (rcode),
5408 truth_type, ll_arg, lr_arg);
5409 if (result)
5410 return result;
5414 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5415 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5417 /* If the RHS can be evaluated unconditionally and its operands are
5418 simple, it wins to evaluate the RHS unconditionally on machines
5419 with expensive branches. In this case, this isn't a comparison
5420 that can be merged. */
5422 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5423 false) >= 2
5424 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5425 && simple_operand_p (rl_arg)
5426 && simple_operand_p (rr_arg))
5428 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5429 if (code == TRUTH_OR_EXPR
5430 && lcode == NE_EXPR && integer_zerop (lr_arg)
5431 && rcode == NE_EXPR && integer_zerop (rr_arg)
5432 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5433 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5434 return build2_loc (loc, NE_EXPR, truth_type,
5435 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5436 ll_arg, rl_arg),
5437 build_int_cst (TREE_TYPE (ll_arg), 0));
5439 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5440 if (code == TRUTH_AND_EXPR
5441 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5442 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5443 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5444 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5445 return build2_loc (loc, EQ_EXPR, truth_type,
5446 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5447 ll_arg, rl_arg),
5448 build_int_cst (TREE_TYPE (ll_arg), 0));
5451 /* See if the comparisons can be merged. Then get all the parameters for
5452 each side. */
5454 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5455 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5456 return 0;
5458 volatilep = 0;
5459 ll_inner = decode_field_reference (loc, ll_arg,
5460 &ll_bitsize, &ll_bitpos, &ll_mode,
5461 &ll_unsignedp, &volatilep, &ll_mask,
5462 &ll_and_mask);
5463 lr_inner = decode_field_reference (loc, lr_arg,
5464 &lr_bitsize, &lr_bitpos, &lr_mode,
5465 &lr_unsignedp, &volatilep, &lr_mask,
5466 &lr_and_mask);
5467 rl_inner = decode_field_reference (loc, rl_arg,
5468 &rl_bitsize, &rl_bitpos, &rl_mode,
5469 &rl_unsignedp, &volatilep, &rl_mask,
5470 &rl_and_mask);
5471 rr_inner = decode_field_reference (loc, rr_arg,
5472 &rr_bitsize, &rr_bitpos, &rr_mode,
5473 &rr_unsignedp, &volatilep, &rr_mask,
5474 &rr_and_mask);
5476 /* It must be true that the inner operation on the lhs of each
5477 comparison must be the same if we are to be able to do anything.
5478 Then see if we have constants. If not, the same must be true for
5479 the rhs's. */
5480 if (volatilep || ll_inner == 0 || rl_inner == 0
5481 || ! operand_equal_p (ll_inner, rl_inner, 0))
5482 return 0;
5484 if (TREE_CODE (lr_arg) == INTEGER_CST
5485 && TREE_CODE (rr_arg) == INTEGER_CST)
5486 l_const = lr_arg, r_const = rr_arg;
5487 else if (lr_inner == 0 || rr_inner == 0
5488 || ! operand_equal_p (lr_inner, rr_inner, 0))
5489 return 0;
5490 else
5491 l_const = r_const = 0;
5493 /* If either comparison code is not correct for our logical operation,
5494 fail. However, we can convert a one-bit comparison against zero into
5495 the opposite comparison against that bit being set in the field. */
5497 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5498 if (lcode != wanted_code)
5500 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5502 /* Make the left operand unsigned, since we are only interested
5503 in the value of one bit. Otherwise we are doing the wrong
5504 thing below. */
5505 ll_unsignedp = 1;
5506 l_const = ll_mask;
5508 else
5509 return 0;
5512 /* This is analogous to the code for l_const above. */
5513 if (rcode != wanted_code)
5515 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5517 rl_unsignedp = 1;
5518 r_const = rl_mask;
5520 else
5521 return 0;
5524 /* See if we can find a mode that contains both fields being compared on
5525 the left. If we can't, fail. Otherwise, update all constants and masks
5526 to be relative to a field of that size. */
5527 first_bit = MIN (ll_bitpos, rl_bitpos);
5528 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5529 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5530 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5531 volatilep);
5532 if (lnmode == VOIDmode)
5533 return 0;
5535 lnbitsize = GET_MODE_BITSIZE (lnmode);
5536 lnbitpos = first_bit & ~ (lnbitsize - 1);
5537 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5538 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5540 if (BYTES_BIG_ENDIAN)
5542 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5543 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5546 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5547 size_int (xll_bitpos));
5548 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5549 size_int (xrl_bitpos));
5551 if (l_const)
5553 l_const = fold_convert_loc (loc, lntype, l_const);
5554 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5555 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5556 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5557 fold_build1_loc (loc, BIT_NOT_EXPR,
5558 lntype, ll_mask))))
5560 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5562 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5565 if (r_const)
5567 r_const = fold_convert_loc (loc, lntype, r_const);
5568 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5569 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5570 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5571 fold_build1_loc (loc, BIT_NOT_EXPR,
5572 lntype, rl_mask))))
5574 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5576 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5580 /* If the right sides are not constant, do the same for it. Also,
5581 disallow this optimization if a size or signedness mismatch occurs
5582 between the left and right sides. */
5583 if (l_const == 0)
5585 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5586 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5587 /* Make sure the two fields on the right
5588 correspond to the left without being swapped. */
5589 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5590 return 0;
5592 first_bit = MIN (lr_bitpos, rr_bitpos);
5593 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5594 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5595 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5596 volatilep);
5597 if (rnmode == VOIDmode)
5598 return 0;
5600 rnbitsize = GET_MODE_BITSIZE (rnmode);
5601 rnbitpos = first_bit & ~ (rnbitsize - 1);
5602 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5603 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5605 if (BYTES_BIG_ENDIAN)
5607 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5608 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5611 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5612 rntype, lr_mask),
5613 size_int (xlr_bitpos));
5614 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5615 rntype, rr_mask),
5616 size_int (xrr_bitpos));
5618 /* Make a mask that corresponds to both fields being compared.
5619 Do this for both items being compared. If the operands are the
5620 same size and the bits being compared are in the same position
5621 then we can do this by masking both and comparing the masked
5622 results. */
5623 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5624 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5625 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5627 lhs = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5628 ll_unsignedp || rl_unsignedp);
5629 if (! all_ones_mask_p (ll_mask, lnbitsize))
5630 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5632 rhs = make_bit_field_ref (loc, lr_inner, rntype, rnbitsize, rnbitpos,
5633 lr_unsignedp || rr_unsignedp);
5634 if (! all_ones_mask_p (lr_mask, rnbitsize))
5635 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5637 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5640 /* There is still another way we can do something: If both pairs of
5641 fields being compared are adjacent, we may be able to make a wider
5642 field containing them both.
5644 Note that we still must mask the lhs/rhs expressions. Furthermore,
5645 the mask must be shifted to account for the shift done by
5646 make_bit_field_ref. */
5647 if ((ll_bitsize + ll_bitpos == rl_bitpos
5648 && lr_bitsize + lr_bitpos == rr_bitpos)
5649 || (ll_bitpos == rl_bitpos + rl_bitsize
5650 && lr_bitpos == rr_bitpos + rr_bitsize))
5652 tree type;
5654 lhs = make_bit_field_ref (loc, ll_inner, lntype,
5655 ll_bitsize + rl_bitsize,
5656 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5657 rhs = make_bit_field_ref (loc, lr_inner, rntype,
5658 lr_bitsize + rr_bitsize,
5659 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5661 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5662 size_int (MIN (xll_bitpos, xrl_bitpos)));
5663 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5664 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5666 /* Convert to the smaller type before masking out unwanted bits. */
5667 type = lntype;
5668 if (lntype != rntype)
5670 if (lnbitsize > rnbitsize)
5672 lhs = fold_convert_loc (loc, rntype, lhs);
5673 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5674 type = rntype;
5676 else if (lnbitsize < rnbitsize)
5678 rhs = fold_convert_loc (loc, lntype, rhs);
5679 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5680 type = lntype;
5684 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5685 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5687 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5688 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5690 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5693 return 0;
5696 /* Handle the case of comparisons with constants. If there is something in
5697 common between the masks, those bits of the constants must be the same.
5698 If not, the condition is always false. Test for this to avoid generating
5699 incorrect code below. */
5700 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5701 if (! integer_zerop (result)
5702 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5703 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5705 if (wanted_code == NE_EXPR)
5707 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5708 return constant_boolean_node (true, truth_type);
5710 else
5712 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5713 return constant_boolean_node (false, truth_type);
5717 /* Construct the expression we will return. First get the component
5718 reference we will make. Unless the mask is all ones the width of
5719 that field, perform the mask operation. Then compare with the
5720 merged constant. */
5721 result = make_bit_field_ref (loc, ll_inner, lntype, lnbitsize, lnbitpos,
5722 ll_unsignedp || rl_unsignedp);
5724 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5725 if (! all_ones_mask_p (ll_mask, lnbitsize))
5726 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5728 return build2_loc (loc, wanted_code, truth_type, result,
5729 const_binop (BIT_IOR_EXPR, l_const, r_const));
5732 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5733 constant. */
5735 static tree
5736 optimize_minmax_comparison (location_t loc, enum tree_code code, tree type,
5737 tree op0, tree op1)
5739 tree arg0 = op0;
5740 enum tree_code op_code;
5741 tree comp_const;
5742 tree minmax_const;
5743 int consts_equal, consts_lt;
5744 tree inner;
5746 STRIP_SIGN_NOPS (arg0);
5748 op_code = TREE_CODE (arg0);
5749 minmax_const = TREE_OPERAND (arg0, 1);
5750 comp_const = fold_convert_loc (loc, TREE_TYPE (arg0), op1);
5751 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5752 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5753 inner = TREE_OPERAND (arg0, 0);
5755 /* If something does not permit us to optimize, return the original tree. */
5756 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5757 || TREE_CODE (comp_const) != INTEGER_CST
5758 || TREE_OVERFLOW (comp_const)
5759 || TREE_CODE (minmax_const) != INTEGER_CST
5760 || TREE_OVERFLOW (minmax_const))
5761 return NULL_TREE;
5763 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5764 and GT_EXPR, doing the rest with recursive calls using logical
5765 simplifications. */
5766 switch (code)
5768 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5770 tree tem
5771 = optimize_minmax_comparison (loc,
5772 invert_tree_comparison (code, false),
5773 type, op0, op1);
5774 if (tem)
5775 return invert_truthvalue_loc (loc, tem);
5776 return NULL_TREE;
5779 case GE_EXPR:
5780 return
5781 fold_build2_loc (loc, TRUTH_ORIF_EXPR, type,
5782 optimize_minmax_comparison
5783 (loc, EQ_EXPR, type, arg0, comp_const),
5784 optimize_minmax_comparison
5785 (loc, GT_EXPR, type, arg0, comp_const));
5787 case EQ_EXPR:
5788 if (op_code == MAX_EXPR && consts_equal)
5789 /* MAX (X, 0) == 0 -> X <= 0 */
5790 return fold_build2_loc (loc, LE_EXPR, type, inner, comp_const);
5792 else if (op_code == MAX_EXPR && consts_lt)
5793 /* MAX (X, 0) == 5 -> X == 5 */
5794 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5796 else if (op_code == MAX_EXPR)
5797 /* MAX (X, 0) == -1 -> false */
5798 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5800 else if (consts_equal)
5801 /* MIN (X, 0) == 0 -> X >= 0 */
5802 return fold_build2_loc (loc, GE_EXPR, type, inner, comp_const);
5804 else if (consts_lt)
5805 /* MIN (X, 0) == 5 -> false */
5806 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5808 else
5809 /* MIN (X, 0) == -1 -> X == -1 */
5810 return fold_build2_loc (loc, EQ_EXPR, type, inner, comp_const);
5812 case GT_EXPR:
5813 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5814 /* MAX (X, 0) > 0 -> X > 0
5815 MAX (X, 0) > 5 -> X > 5 */
5816 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5818 else if (op_code == MAX_EXPR)
5819 /* MAX (X, 0) > -1 -> true */
5820 return omit_one_operand_loc (loc, type, integer_one_node, inner);
5822 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5823 /* MIN (X, 0) > 0 -> false
5824 MIN (X, 0) > 5 -> false */
5825 return omit_one_operand_loc (loc, type, integer_zero_node, inner);
5827 else
5828 /* MIN (X, 0) > -1 -> X > -1 */
5829 return fold_build2_loc (loc, GT_EXPR, type, inner, comp_const);
5831 default:
5832 return NULL_TREE;
5836 /* T is an integer expression that is being multiplied, divided, or taken a
5837 modulus (CODE says which and what kind of divide or modulus) by a
5838 constant C. See if we can eliminate that operation by folding it with
5839 other operations already in T. WIDE_TYPE, if non-null, is a type that
5840 should be used for the computation if wider than our type.
5842 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5843 (X * 2) + (Y * 4). We must, however, be assured that either the original
5844 expression would not overflow or that overflow is undefined for the type
5845 in the language in question.
5847 If we return a non-null expression, it is an equivalent form of the
5848 original computation, but need not be in the original type.
5850 We set *STRICT_OVERFLOW_P to true if the return values depends on
5851 signed overflow being undefined. Otherwise we do not change
5852 *STRICT_OVERFLOW_P. */
5854 static tree
5855 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5856 bool *strict_overflow_p)
5858 /* To avoid exponential search depth, refuse to allow recursion past
5859 three levels. Beyond that (1) it's highly unlikely that we'll find
5860 something interesting and (2) we've probably processed it before
5861 when we built the inner expression. */
5863 static int depth;
5864 tree ret;
5866 if (depth > 3)
5867 return NULL;
5869 depth++;
5870 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5871 depth--;
5873 return ret;
5876 static tree
5877 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5878 bool *strict_overflow_p)
5880 tree type = TREE_TYPE (t);
5881 enum tree_code tcode = TREE_CODE (t);
5882 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5883 > GET_MODE_SIZE (TYPE_MODE (type)))
5884 ? wide_type : type);
5885 tree t1, t2;
5886 int same_p = tcode == code;
5887 tree op0 = NULL_TREE, op1 = NULL_TREE;
5888 bool sub_strict_overflow_p;
5890 /* Don't deal with constants of zero here; they confuse the code below. */
5891 if (integer_zerop (c))
5892 return NULL_TREE;
5894 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5895 op0 = TREE_OPERAND (t, 0);
5897 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5898 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5900 /* Note that we need not handle conditional operations here since fold
5901 already handles those cases. So just do arithmetic here. */
5902 switch (tcode)
5904 case INTEGER_CST:
5905 /* For a constant, we can always simplify if we are a multiply
5906 or (for divide and modulus) if it is a multiple of our constant. */
5907 if (code == MULT_EXPR
5908 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
5909 return const_binop (code, fold_convert (ctype, t),
5910 fold_convert (ctype, c));
5911 break;
5913 CASE_CONVERT: case NON_LVALUE_EXPR:
5914 /* If op0 is an expression ... */
5915 if ((COMPARISON_CLASS_P (op0)
5916 || UNARY_CLASS_P (op0)
5917 || BINARY_CLASS_P (op0)
5918 || VL_EXP_CLASS_P (op0)
5919 || EXPRESSION_CLASS_P (op0))
5920 /* ... and has wrapping overflow, and its type is smaller
5921 than ctype, then we cannot pass through as widening. */
5922 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5923 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
5924 && (TYPE_PRECISION (ctype)
5925 > TYPE_PRECISION (TREE_TYPE (op0))))
5926 /* ... or this is a truncation (t is narrower than op0),
5927 then we cannot pass through this narrowing. */
5928 || (TYPE_PRECISION (type)
5929 < TYPE_PRECISION (TREE_TYPE (op0)))
5930 /* ... or signedness changes for division or modulus,
5931 then we cannot pass through this conversion. */
5932 || (code != MULT_EXPR
5933 && (TYPE_UNSIGNED (ctype)
5934 != TYPE_UNSIGNED (TREE_TYPE (op0))))
5935 /* ... or has undefined overflow while the converted to
5936 type has not, we cannot do the operation in the inner type
5937 as that would introduce undefined overflow. */
5938 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
5939 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
5940 && !TYPE_OVERFLOW_UNDEFINED (type))))
5941 break;
5943 /* Pass the constant down and see if we can make a simplification. If
5944 we can, replace this expression with the inner simplification for
5945 possible later conversion to our or some other type. */
5946 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5947 && TREE_CODE (t2) == INTEGER_CST
5948 && !TREE_OVERFLOW (t2)
5949 && (0 != (t1 = extract_muldiv (op0, t2, code,
5950 code == MULT_EXPR
5951 ? ctype : NULL_TREE,
5952 strict_overflow_p))))
5953 return t1;
5954 break;
5956 case ABS_EXPR:
5957 /* If widening the type changes it from signed to unsigned, then we
5958 must avoid building ABS_EXPR itself as unsigned. */
5959 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5961 tree cstype = (*signed_type_for) (ctype);
5962 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5963 != 0)
5965 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5966 return fold_convert (ctype, t1);
5968 break;
5970 /* If the constant is negative, we cannot simplify this. */
5971 if (tree_int_cst_sgn (c) == -1)
5972 break;
5973 /* FALLTHROUGH */
5974 case NEGATE_EXPR:
5975 /* For division and modulus, type can't be unsigned, as e.g.
5976 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
5977 For signed types, even with wrapping overflow, this is fine. */
5978 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
5979 break;
5980 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
5981 != 0)
5982 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5983 break;
5985 case MIN_EXPR: case MAX_EXPR:
5986 /* If widening the type changes the signedness, then we can't perform
5987 this optimization as that changes the result. */
5988 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5989 break;
5991 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5992 sub_strict_overflow_p = false;
5993 if ((t1 = extract_muldiv (op0, c, code, wide_type,
5994 &sub_strict_overflow_p)) != 0
5995 && (t2 = extract_muldiv (op1, c, code, wide_type,
5996 &sub_strict_overflow_p)) != 0)
5998 if (tree_int_cst_sgn (c) < 0)
5999 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6000 if (sub_strict_overflow_p)
6001 *strict_overflow_p = true;
6002 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6003 fold_convert (ctype, t2));
6005 break;
6007 case LSHIFT_EXPR: case RSHIFT_EXPR:
6008 /* If the second operand is constant, this is a multiplication
6009 or floor division, by a power of two, so we can treat it that
6010 way unless the multiplier or divisor overflows. Signed
6011 left-shift overflow is implementation-defined rather than
6012 undefined in C90, so do not convert signed left shift into
6013 multiplication. */
6014 if (TREE_CODE (op1) == INTEGER_CST
6015 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6016 /* const_binop may not detect overflow correctly,
6017 so check for it explicitly here. */
6018 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6019 && 0 != (t1 = fold_convert (ctype,
6020 const_binop (LSHIFT_EXPR,
6021 size_one_node,
6022 op1)))
6023 && !TREE_OVERFLOW (t1))
6024 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6025 ? MULT_EXPR : FLOOR_DIV_EXPR,
6026 ctype,
6027 fold_convert (ctype, op0),
6028 t1),
6029 c, code, wide_type, strict_overflow_p);
6030 break;
6032 case PLUS_EXPR: case MINUS_EXPR:
6033 /* See if we can eliminate the operation on both sides. If we can, we
6034 can return a new PLUS or MINUS. If we can't, the only remaining
6035 cases where we can do anything are if the second operand is a
6036 constant. */
6037 sub_strict_overflow_p = false;
6038 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6039 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6040 if (t1 != 0 && t2 != 0
6041 && (code == MULT_EXPR
6042 /* If not multiplication, we can only do this if both operands
6043 are divisible by c. */
6044 || (multiple_of_p (ctype, op0, c)
6045 && multiple_of_p (ctype, op1, c))))
6047 if (sub_strict_overflow_p)
6048 *strict_overflow_p = true;
6049 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6050 fold_convert (ctype, t2));
6053 /* If this was a subtraction, negate OP1 and set it to be an addition.
6054 This simplifies the logic below. */
6055 if (tcode == MINUS_EXPR)
6057 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6058 /* If OP1 was not easily negatable, the constant may be OP0. */
6059 if (TREE_CODE (op0) == INTEGER_CST)
6061 std::swap (op0, op1);
6062 std::swap (t1, t2);
6066 if (TREE_CODE (op1) != INTEGER_CST)
6067 break;
6069 /* If either OP1 or C are negative, this optimization is not safe for
6070 some of the division and remainder types while for others we need
6071 to change the code. */
6072 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6074 if (code == CEIL_DIV_EXPR)
6075 code = FLOOR_DIV_EXPR;
6076 else if (code == FLOOR_DIV_EXPR)
6077 code = CEIL_DIV_EXPR;
6078 else if (code != MULT_EXPR
6079 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6080 break;
6083 /* If it's a multiply or a division/modulus operation of a multiple
6084 of our constant, do the operation and verify it doesn't overflow. */
6085 if (code == MULT_EXPR
6086 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6088 op1 = const_binop (code, fold_convert (ctype, op1),
6089 fold_convert (ctype, c));
6090 /* We allow the constant to overflow with wrapping semantics. */
6091 if (op1 == 0
6092 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6093 break;
6095 else
6096 break;
6098 /* If we have an unsigned type, we cannot widen the operation since it
6099 will change the result if the original computation overflowed. */
6100 if (TYPE_UNSIGNED (ctype) && ctype != type)
6101 break;
6103 /* If we were able to eliminate our operation from the first side,
6104 apply our operation to the second side and reform the PLUS. */
6105 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6106 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6108 /* The last case is if we are a multiply. In that case, we can
6109 apply the distributive law to commute the multiply and addition
6110 if the multiplication of the constants doesn't overflow
6111 and overflow is defined. With undefined overflow
6112 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6113 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6114 return fold_build2 (tcode, ctype,
6115 fold_build2 (code, ctype,
6116 fold_convert (ctype, op0),
6117 fold_convert (ctype, c)),
6118 op1);
6120 break;
6122 case MULT_EXPR:
6123 /* We have a special case here if we are doing something like
6124 (C * 8) % 4 since we know that's zero. */
6125 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6126 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6127 /* If the multiplication can overflow we cannot optimize this. */
6128 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6129 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6130 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6132 *strict_overflow_p = true;
6133 return omit_one_operand (type, integer_zero_node, op0);
6136 /* ... fall through ... */
6138 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6139 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6140 /* If we can extract our operation from the LHS, do so and return a
6141 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6142 do something only if the second operand is a constant. */
6143 if (same_p
6144 && (t1 = extract_muldiv (op0, c, code, wide_type,
6145 strict_overflow_p)) != 0)
6146 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6147 fold_convert (ctype, op1));
6148 else if (tcode == MULT_EXPR && code == MULT_EXPR
6149 && (t1 = extract_muldiv (op1, c, code, wide_type,
6150 strict_overflow_p)) != 0)
6151 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6152 fold_convert (ctype, t1));
6153 else if (TREE_CODE (op1) != INTEGER_CST)
6154 return 0;
6156 /* If these are the same operation types, we can associate them
6157 assuming no overflow. */
6158 if (tcode == code)
6160 bool overflow_p = false;
6161 bool overflow_mul_p;
6162 signop sign = TYPE_SIGN (ctype);
6163 wide_int mul = wi::mul (op1, c, sign, &overflow_mul_p);
6164 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6165 if (overflow_mul_p
6166 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6167 overflow_p = true;
6168 if (!overflow_p)
6169 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6170 wide_int_to_tree (ctype, mul));
6173 /* If these operations "cancel" each other, we have the main
6174 optimizations of this pass, which occur when either constant is a
6175 multiple of the other, in which case we replace this with either an
6176 operation or CODE or TCODE.
6178 If we have an unsigned type, we cannot do this since it will change
6179 the result if the original computation overflowed. */
6180 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6181 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6182 || (tcode == MULT_EXPR
6183 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6184 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6185 && code != MULT_EXPR)))
6187 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6189 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6190 *strict_overflow_p = true;
6191 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6192 fold_convert (ctype,
6193 const_binop (TRUNC_DIV_EXPR,
6194 op1, c)));
6196 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6198 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6199 *strict_overflow_p = true;
6200 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6201 fold_convert (ctype,
6202 const_binop (TRUNC_DIV_EXPR,
6203 c, op1)));
6206 break;
6208 default:
6209 break;
6212 return 0;
6215 /* Return a node which has the indicated constant VALUE (either 0 or
6216 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6217 and is of the indicated TYPE. */
6219 tree
6220 constant_boolean_node (bool value, tree type)
6222 if (type == integer_type_node)
6223 return value ? integer_one_node : integer_zero_node;
6224 else if (type == boolean_type_node)
6225 return value ? boolean_true_node : boolean_false_node;
6226 else if (TREE_CODE (type) == VECTOR_TYPE)
6227 return build_vector_from_val (type,
6228 build_int_cst (TREE_TYPE (type),
6229 value ? -1 : 0));
6230 else
6231 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6235 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6236 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6237 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6238 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6239 COND is the first argument to CODE; otherwise (as in the example
6240 given here), it is the second argument. TYPE is the type of the
6241 original expression. Return NULL_TREE if no simplification is
6242 possible. */
6244 static tree
6245 fold_binary_op_with_conditional_arg (location_t loc,
6246 enum tree_code code,
6247 tree type, tree op0, tree op1,
6248 tree cond, tree arg, int cond_first_p)
6250 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6251 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6252 tree test, true_value, false_value;
6253 tree lhs = NULL_TREE;
6254 tree rhs = NULL_TREE;
6255 enum tree_code cond_code = COND_EXPR;
6257 if (TREE_CODE (cond) == COND_EXPR
6258 || TREE_CODE (cond) == VEC_COND_EXPR)
6260 test = TREE_OPERAND (cond, 0);
6261 true_value = TREE_OPERAND (cond, 1);
6262 false_value = TREE_OPERAND (cond, 2);
6263 /* If this operand throws an expression, then it does not make
6264 sense to try to perform a logical or arithmetic operation
6265 involving it. */
6266 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6267 lhs = true_value;
6268 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6269 rhs = false_value;
6271 else
6273 tree testtype = TREE_TYPE (cond);
6274 test = cond;
6275 true_value = constant_boolean_node (true, testtype);
6276 false_value = constant_boolean_node (false, testtype);
6279 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6280 cond_code = VEC_COND_EXPR;
6282 /* This transformation is only worthwhile if we don't have to wrap ARG
6283 in a SAVE_EXPR and the operation can be simplified without recursing
6284 on at least one of the branches once its pushed inside the COND_EXPR. */
6285 if (!TREE_CONSTANT (arg)
6286 && (TREE_SIDE_EFFECTS (arg)
6287 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6288 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6289 return NULL_TREE;
6291 arg = fold_convert_loc (loc, arg_type, arg);
6292 if (lhs == 0)
6294 true_value = fold_convert_loc (loc, cond_type, true_value);
6295 if (cond_first_p)
6296 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6297 else
6298 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6300 if (rhs == 0)
6302 false_value = fold_convert_loc (loc, cond_type, false_value);
6303 if (cond_first_p)
6304 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6305 else
6306 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6309 /* Check that we have simplified at least one of the branches. */
6310 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6311 return NULL_TREE;
6313 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6317 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6319 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6320 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6321 ADDEND is the same as X.
6323 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6324 and finite. The problematic cases are when X is zero, and its mode
6325 has signed zeros. In the case of rounding towards -infinity,
6326 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6327 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6329 bool
6330 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6332 if (!real_zerop (addend))
6333 return false;
6335 /* Don't allow the fold with -fsignaling-nans. */
6336 if (HONOR_SNANS (element_mode (type)))
6337 return false;
6339 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6340 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6341 return true;
6343 /* In a vector or complex, we would need to check the sign of all zeros. */
6344 if (TREE_CODE (addend) != REAL_CST)
6345 return false;
6347 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6348 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6349 negate = !negate;
6351 /* The mode has signed zeros, and we have to honor their sign.
6352 In this situation, there is only one case we can return true for.
6353 X - 0 is the same as X unless rounding towards -infinity is
6354 supported. */
6355 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6358 /* Subroutine of fold() that optimizes comparisons of a division by
6359 a nonzero integer constant against an integer constant, i.e.
6360 X/C1 op C2.
6362 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6363 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6364 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6366 The function returns the constant folded tree if a simplification
6367 can be made, and NULL_TREE otherwise. */
6369 static tree
6370 fold_div_compare (location_t loc,
6371 enum tree_code code, tree type, tree arg0, tree arg1)
6373 tree prod, tmp, hi, lo;
6374 tree arg00 = TREE_OPERAND (arg0, 0);
6375 tree arg01 = TREE_OPERAND (arg0, 1);
6376 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6377 bool neg_overflow = false;
6378 bool overflow;
6380 /* We have to do this the hard way to detect unsigned overflow.
6381 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6382 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6383 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6384 neg_overflow = false;
6386 if (sign == UNSIGNED)
6388 tmp = int_const_binop (MINUS_EXPR, arg01,
6389 build_int_cst (TREE_TYPE (arg01), 1));
6390 lo = prod;
6392 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6393 val = wi::add (prod, tmp, sign, &overflow);
6394 hi = force_fit_type (TREE_TYPE (arg00), val,
6395 -1, overflow | TREE_OVERFLOW (prod));
6397 else if (tree_int_cst_sgn (arg01) >= 0)
6399 tmp = int_const_binop (MINUS_EXPR, arg01,
6400 build_int_cst (TREE_TYPE (arg01), 1));
6401 switch (tree_int_cst_sgn (arg1))
6403 case -1:
6404 neg_overflow = true;
6405 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6406 hi = prod;
6407 break;
6409 case 0:
6410 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6411 hi = tmp;
6412 break;
6414 case 1:
6415 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6416 lo = prod;
6417 break;
6419 default:
6420 gcc_unreachable ();
6423 else
6425 /* A negative divisor reverses the relational operators. */
6426 code = swap_tree_comparison (code);
6428 tmp = int_const_binop (PLUS_EXPR, arg01,
6429 build_int_cst (TREE_TYPE (arg01), 1));
6430 switch (tree_int_cst_sgn (arg1))
6432 case -1:
6433 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6434 lo = prod;
6435 break;
6437 case 0:
6438 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6439 lo = tmp;
6440 break;
6442 case 1:
6443 neg_overflow = true;
6444 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6445 hi = prod;
6446 break;
6448 default:
6449 gcc_unreachable ();
6453 switch (code)
6455 case EQ_EXPR:
6456 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6457 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6458 if (TREE_OVERFLOW (hi))
6459 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6460 if (TREE_OVERFLOW (lo))
6461 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6462 return build_range_check (loc, type, arg00, 1, lo, hi);
6464 case NE_EXPR:
6465 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6466 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6467 if (TREE_OVERFLOW (hi))
6468 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6469 if (TREE_OVERFLOW (lo))
6470 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6471 return build_range_check (loc, type, arg00, 0, lo, hi);
6473 case LT_EXPR:
6474 if (TREE_OVERFLOW (lo))
6476 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6477 return omit_one_operand_loc (loc, type, tmp, arg00);
6479 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6481 case LE_EXPR:
6482 if (TREE_OVERFLOW (hi))
6484 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6485 return omit_one_operand_loc (loc, type, tmp, arg00);
6487 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6489 case GT_EXPR:
6490 if (TREE_OVERFLOW (hi))
6492 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6493 return omit_one_operand_loc (loc, type, tmp, arg00);
6495 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6497 case GE_EXPR:
6498 if (TREE_OVERFLOW (lo))
6500 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6501 return omit_one_operand_loc (loc, type, tmp, arg00);
6503 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6505 default:
6506 break;
6509 return NULL_TREE;
6513 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6514 equality/inequality test, then return a simplified form of the test
6515 using a sign testing. Otherwise return NULL. TYPE is the desired
6516 result type. */
6518 static tree
6519 fold_single_bit_test_into_sign_test (location_t loc,
6520 enum tree_code code, tree arg0, tree arg1,
6521 tree result_type)
6523 /* If this is testing a single bit, we can optimize the test. */
6524 if ((code == NE_EXPR || code == EQ_EXPR)
6525 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6526 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6528 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6529 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6530 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6532 if (arg00 != NULL_TREE
6533 /* This is only a win if casting to a signed type is cheap,
6534 i.e. when arg00's type is not a partial mode. */
6535 && TYPE_PRECISION (TREE_TYPE (arg00))
6536 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6538 tree stype = signed_type_for (TREE_TYPE (arg00));
6539 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6540 result_type,
6541 fold_convert_loc (loc, stype, arg00),
6542 build_int_cst (stype, 0));
6546 return NULL_TREE;
6549 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6550 equality/inequality test, then return a simplified form of
6551 the test using shifts and logical operations. Otherwise return
6552 NULL. TYPE is the desired result type. */
6554 tree
6555 fold_single_bit_test (location_t loc, enum tree_code code,
6556 tree arg0, tree arg1, tree result_type)
6558 /* If this is testing a single bit, we can optimize the test. */
6559 if ((code == NE_EXPR || code == EQ_EXPR)
6560 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6561 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6563 tree inner = TREE_OPERAND (arg0, 0);
6564 tree type = TREE_TYPE (arg0);
6565 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6566 machine_mode operand_mode = TYPE_MODE (type);
6567 int ops_unsigned;
6568 tree signed_type, unsigned_type, intermediate_type;
6569 tree tem, one;
6571 /* First, see if we can fold the single bit test into a sign-bit
6572 test. */
6573 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6574 result_type);
6575 if (tem)
6576 return tem;
6578 /* Otherwise we have (A & C) != 0 where C is a single bit,
6579 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6580 Similarly for (A & C) == 0. */
6582 /* If INNER is a right shift of a constant and it plus BITNUM does
6583 not overflow, adjust BITNUM and INNER. */
6584 if (TREE_CODE (inner) == RSHIFT_EXPR
6585 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6586 && bitnum < TYPE_PRECISION (type)
6587 && wi::ltu_p (TREE_OPERAND (inner, 1),
6588 TYPE_PRECISION (type) - bitnum))
6590 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6591 inner = TREE_OPERAND (inner, 0);
6594 /* If we are going to be able to omit the AND below, we must do our
6595 operations as unsigned. If we must use the AND, we have a choice.
6596 Normally unsigned is faster, but for some machines signed is. */
6597 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6598 && !flag_syntax_only) ? 0 : 1;
6600 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6601 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6602 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6603 inner = fold_convert_loc (loc, intermediate_type, inner);
6605 if (bitnum != 0)
6606 inner = build2 (RSHIFT_EXPR, intermediate_type,
6607 inner, size_int (bitnum));
6609 one = build_int_cst (intermediate_type, 1);
6611 if (code == EQ_EXPR)
6612 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6614 /* Put the AND last so it can combine with more things. */
6615 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6617 /* Make sure to return the proper type. */
6618 inner = fold_convert_loc (loc, result_type, inner);
6620 return inner;
6622 return NULL_TREE;
6625 /* Check whether we are allowed to reorder operands arg0 and arg1,
6626 such that the evaluation of arg1 occurs before arg0. */
6628 static bool
6629 reorder_operands_p (const_tree arg0, const_tree arg1)
6631 if (! flag_evaluation_order)
6632 return true;
6633 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6634 return true;
6635 return ! TREE_SIDE_EFFECTS (arg0)
6636 && ! TREE_SIDE_EFFECTS (arg1);
6639 /* Test whether it is preferable two swap two operands, ARG0 and
6640 ARG1, for example because ARG0 is an integer constant and ARG1
6641 isn't. If REORDER is true, only recommend swapping if we can
6642 evaluate the operands in reverse order. */
6644 bool
6645 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6647 if (CONSTANT_CLASS_P (arg1))
6648 return 0;
6649 if (CONSTANT_CLASS_P (arg0))
6650 return 1;
6652 STRIP_NOPS (arg0);
6653 STRIP_NOPS (arg1);
6655 if (TREE_CONSTANT (arg1))
6656 return 0;
6657 if (TREE_CONSTANT (arg0))
6658 return 1;
6660 if (reorder && flag_evaluation_order
6661 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6662 return 0;
6664 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6665 for commutative and comparison operators. Ensuring a canonical
6666 form allows the optimizers to find additional redundancies without
6667 having to explicitly check for both orderings. */
6668 if (TREE_CODE (arg0) == SSA_NAME
6669 && TREE_CODE (arg1) == SSA_NAME
6670 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6671 return 1;
6673 /* Put SSA_NAMEs last. */
6674 if (TREE_CODE (arg1) == SSA_NAME)
6675 return 0;
6676 if (TREE_CODE (arg0) == SSA_NAME)
6677 return 1;
6679 /* Put variables last. */
6680 if (DECL_P (arg1))
6681 return 0;
6682 if (DECL_P (arg0))
6683 return 1;
6685 return 0;
6689 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6690 means A >= Y && A != MAX, but in this case we know that
6691 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6693 static tree
6694 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6696 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6698 if (TREE_CODE (bound) == LT_EXPR)
6699 a = TREE_OPERAND (bound, 0);
6700 else if (TREE_CODE (bound) == GT_EXPR)
6701 a = TREE_OPERAND (bound, 1);
6702 else
6703 return NULL_TREE;
6705 typea = TREE_TYPE (a);
6706 if (!INTEGRAL_TYPE_P (typea)
6707 && !POINTER_TYPE_P (typea))
6708 return NULL_TREE;
6710 if (TREE_CODE (ineq) == LT_EXPR)
6712 a1 = TREE_OPERAND (ineq, 1);
6713 y = TREE_OPERAND (ineq, 0);
6715 else if (TREE_CODE (ineq) == GT_EXPR)
6717 a1 = TREE_OPERAND (ineq, 0);
6718 y = TREE_OPERAND (ineq, 1);
6720 else
6721 return NULL_TREE;
6723 if (TREE_TYPE (a1) != typea)
6724 return NULL_TREE;
6726 if (POINTER_TYPE_P (typea))
6728 /* Convert the pointer types into integer before taking the difference. */
6729 tree ta = fold_convert_loc (loc, ssizetype, a);
6730 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6731 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6733 else
6734 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6736 if (!diff || !integer_onep (diff))
6737 return NULL_TREE;
6739 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6742 /* Fold a sum or difference of at least one multiplication.
6743 Returns the folded tree or NULL if no simplification could be made. */
6745 static tree
6746 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6747 tree arg0, tree arg1)
6749 tree arg00, arg01, arg10, arg11;
6750 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6752 /* (A * C) +- (B * C) -> (A+-B) * C.
6753 (A * C) +- A -> A * (C+-1).
6754 We are most concerned about the case where C is a constant,
6755 but other combinations show up during loop reduction. Since
6756 it is not difficult, try all four possibilities. */
6758 if (TREE_CODE (arg0) == MULT_EXPR)
6760 arg00 = TREE_OPERAND (arg0, 0);
6761 arg01 = TREE_OPERAND (arg0, 1);
6763 else if (TREE_CODE (arg0) == INTEGER_CST)
6765 arg00 = build_one_cst (type);
6766 arg01 = arg0;
6768 else
6770 /* We cannot generate constant 1 for fract. */
6771 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6772 return NULL_TREE;
6773 arg00 = arg0;
6774 arg01 = build_one_cst (type);
6776 if (TREE_CODE (arg1) == MULT_EXPR)
6778 arg10 = TREE_OPERAND (arg1, 0);
6779 arg11 = TREE_OPERAND (arg1, 1);
6781 else if (TREE_CODE (arg1) == INTEGER_CST)
6783 arg10 = build_one_cst (type);
6784 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6785 the purpose of this canonicalization. */
6786 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6787 && negate_expr_p (arg1)
6788 && code == PLUS_EXPR)
6790 arg11 = negate_expr (arg1);
6791 code = MINUS_EXPR;
6793 else
6794 arg11 = arg1;
6796 else
6798 /* We cannot generate constant 1 for fract. */
6799 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6800 return NULL_TREE;
6801 arg10 = arg1;
6802 arg11 = build_one_cst (type);
6804 same = NULL_TREE;
6806 if (operand_equal_p (arg01, arg11, 0))
6807 same = arg01, alt0 = arg00, alt1 = arg10;
6808 else if (operand_equal_p (arg00, arg10, 0))
6809 same = arg00, alt0 = arg01, alt1 = arg11;
6810 else if (operand_equal_p (arg00, arg11, 0))
6811 same = arg00, alt0 = arg01, alt1 = arg10;
6812 else if (operand_equal_p (arg01, arg10, 0))
6813 same = arg01, alt0 = arg00, alt1 = arg11;
6815 /* No identical multiplicands; see if we can find a common
6816 power-of-two factor in non-power-of-two multiplies. This
6817 can help in multi-dimensional array access. */
6818 else if (tree_fits_shwi_p (arg01)
6819 && tree_fits_shwi_p (arg11))
6821 HOST_WIDE_INT int01, int11, tmp;
6822 bool swap = false;
6823 tree maybe_same;
6824 int01 = tree_to_shwi (arg01);
6825 int11 = tree_to_shwi (arg11);
6827 /* Move min of absolute values to int11. */
6828 if (absu_hwi (int01) < absu_hwi (int11))
6830 tmp = int01, int01 = int11, int11 = tmp;
6831 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6832 maybe_same = arg01;
6833 swap = true;
6835 else
6836 maybe_same = arg11;
6838 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6839 /* The remainder should not be a constant, otherwise we
6840 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6841 increased the number of multiplications necessary. */
6842 && TREE_CODE (arg10) != INTEGER_CST)
6844 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
6845 build_int_cst (TREE_TYPE (arg00),
6846 int01 / int11));
6847 alt1 = arg10;
6848 same = maybe_same;
6849 if (swap)
6850 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
6854 if (same)
6855 return fold_build2_loc (loc, MULT_EXPR, type,
6856 fold_build2_loc (loc, code, type,
6857 fold_convert_loc (loc, type, alt0),
6858 fold_convert_loc (loc, type, alt1)),
6859 fold_convert_loc (loc, type, same));
6861 return NULL_TREE;
6864 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
6865 specified by EXPR into the buffer PTR of length LEN bytes.
6866 Return the number of bytes placed in the buffer, or zero
6867 upon failure. */
6869 static int
6870 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
6872 tree type = TREE_TYPE (expr);
6873 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6874 int byte, offset, word, words;
6875 unsigned char value;
6877 if ((off == -1 && total_bytes > len)
6878 || off >= total_bytes)
6879 return 0;
6880 if (off == -1)
6881 off = 0;
6882 words = total_bytes / UNITS_PER_WORD;
6884 for (byte = 0; byte < total_bytes; byte++)
6886 int bitpos = byte * BITS_PER_UNIT;
6887 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
6888 number of bytes. */
6889 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
6891 if (total_bytes > UNITS_PER_WORD)
6893 word = byte / UNITS_PER_WORD;
6894 if (WORDS_BIG_ENDIAN)
6895 word = (words - 1) - word;
6896 offset = word * UNITS_PER_WORD;
6897 if (BYTES_BIG_ENDIAN)
6898 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6899 else
6900 offset += byte % UNITS_PER_WORD;
6902 else
6903 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
6904 if (offset >= off
6905 && offset - off < len)
6906 ptr[offset - off] = value;
6908 return MIN (len, total_bytes - off);
6912 /* Subroutine of native_encode_expr. Encode the FIXED_CST
6913 specified by EXPR into the buffer PTR of length LEN bytes.
6914 Return the number of bytes placed in the buffer, or zero
6915 upon failure. */
6917 static int
6918 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
6920 tree type = TREE_TYPE (expr);
6921 machine_mode mode = TYPE_MODE (type);
6922 int total_bytes = GET_MODE_SIZE (mode);
6923 FIXED_VALUE_TYPE value;
6924 tree i_value, i_type;
6926 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
6927 return 0;
6929 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
6931 if (NULL_TREE == i_type
6932 || TYPE_PRECISION (i_type) != total_bytes)
6933 return 0;
6935 value = TREE_FIXED_CST (expr);
6936 i_value = double_int_to_tree (i_type, value.data);
6938 return native_encode_int (i_value, ptr, len, off);
6942 /* Subroutine of native_encode_expr. Encode the REAL_CST
6943 specified by EXPR into the buffer PTR of length LEN bytes.
6944 Return the number of bytes placed in the buffer, or zero
6945 upon failure. */
6947 static int
6948 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
6950 tree type = TREE_TYPE (expr);
6951 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
6952 int byte, offset, word, words, bitpos;
6953 unsigned char value;
6955 /* There are always 32 bits in each long, no matter the size of
6956 the hosts long. We handle floating point representations with
6957 up to 192 bits. */
6958 long tmp[6];
6960 if ((off == -1 && total_bytes > len)
6961 || off >= total_bytes)
6962 return 0;
6963 if (off == -1)
6964 off = 0;
6965 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
6967 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
6969 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
6970 bitpos += BITS_PER_UNIT)
6972 byte = (bitpos / BITS_PER_UNIT) & 3;
6973 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
6975 if (UNITS_PER_WORD < 4)
6977 word = byte / UNITS_PER_WORD;
6978 if (WORDS_BIG_ENDIAN)
6979 word = (words - 1) - word;
6980 offset = word * UNITS_PER_WORD;
6981 if (BYTES_BIG_ENDIAN)
6982 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
6983 else
6984 offset += byte % UNITS_PER_WORD;
6986 else
6987 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
6988 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
6989 if (offset >= off
6990 && offset - off < len)
6991 ptr[offset - off] = value;
6993 return MIN (len, total_bytes - off);
6996 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
6997 specified by EXPR into the buffer PTR of length LEN bytes.
6998 Return the number of bytes placed in the buffer, or zero
6999 upon failure. */
7001 static int
7002 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7004 int rsize, isize;
7005 tree part;
7007 part = TREE_REALPART (expr);
7008 rsize = native_encode_expr (part, ptr, len, off);
7009 if (off == -1
7010 && rsize == 0)
7011 return 0;
7012 part = TREE_IMAGPART (expr);
7013 if (off != -1)
7014 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7015 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7016 if (off == -1
7017 && isize != rsize)
7018 return 0;
7019 return rsize + isize;
7023 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7024 specified by EXPR into the buffer PTR of length LEN bytes.
7025 Return the number of bytes placed in the buffer, or zero
7026 upon failure. */
7028 static int
7029 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7031 unsigned i, count;
7032 int size, offset;
7033 tree itype, elem;
7035 offset = 0;
7036 count = VECTOR_CST_NELTS (expr);
7037 itype = TREE_TYPE (TREE_TYPE (expr));
7038 size = GET_MODE_SIZE (TYPE_MODE (itype));
7039 for (i = 0; i < count; i++)
7041 if (off >= size)
7043 off -= size;
7044 continue;
7046 elem = VECTOR_CST_ELT (expr, i);
7047 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7048 if ((off == -1 && res != size)
7049 || res == 0)
7050 return 0;
7051 offset += res;
7052 if (offset >= len)
7053 return offset;
7054 if (off != -1)
7055 off = 0;
7057 return offset;
7061 /* Subroutine of native_encode_expr. Encode the STRING_CST
7062 specified by EXPR into the buffer PTR of length LEN bytes.
7063 Return the number of bytes placed in the buffer, or zero
7064 upon failure. */
7066 static int
7067 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7069 tree type = TREE_TYPE (expr);
7070 HOST_WIDE_INT total_bytes;
7072 if (TREE_CODE (type) != ARRAY_TYPE
7073 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7074 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7075 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7076 return 0;
7077 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7078 if ((off == -1 && total_bytes > len)
7079 || off >= total_bytes)
7080 return 0;
7081 if (off == -1)
7082 off = 0;
7083 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7085 int written = 0;
7086 if (off < TREE_STRING_LENGTH (expr))
7088 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7089 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7091 memset (ptr + written, 0,
7092 MIN (total_bytes - written, len - written));
7094 else
7095 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7096 return MIN (total_bytes - off, len);
7100 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7101 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7102 buffer PTR of length LEN bytes. If OFF is not -1 then start
7103 the encoding at byte offset OFF and encode at most LEN bytes.
7104 Return the number of bytes placed in the buffer, or zero upon failure. */
7107 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7109 switch (TREE_CODE (expr))
7111 case INTEGER_CST:
7112 return native_encode_int (expr, ptr, len, off);
7114 case REAL_CST:
7115 return native_encode_real (expr, ptr, len, off);
7117 case FIXED_CST:
7118 return native_encode_fixed (expr, ptr, len, off);
7120 case COMPLEX_CST:
7121 return native_encode_complex (expr, ptr, len, off);
7123 case VECTOR_CST:
7124 return native_encode_vector (expr, ptr, len, off);
7126 case STRING_CST:
7127 return native_encode_string (expr, ptr, len, off);
7129 default:
7130 return 0;
7135 /* Subroutine of native_interpret_expr. Interpret the contents of
7136 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7137 If the buffer cannot be interpreted, return NULL_TREE. */
7139 static tree
7140 native_interpret_int (tree type, const unsigned char *ptr, int len)
7142 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7144 if (total_bytes > len
7145 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7146 return NULL_TREE;
7148 wide_int result = wi::from_buffer (ptr, total_bytes);
7150 return wide_int_to_tree (type, result);
7154 /* Subroutine of native_interpret_expr. Interpret the contents of
7155 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7156 If the buffer cannot be interpreted, return NULL_TREE. */
7158 static tree
7159 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7161 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7162 double_int result;
7163 FIXED_VALUE_TYPE fixed_value;
7165 if (total_bytes > len
7166 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7167 return NULL_TREE;
7169 result = double_int::from_buffer (ptr, total_bytes);
7170 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7172 return build_fixed (type, fixed_value);
7176 /* Subroutine of native_interpret_expr. Interpret the contents of
7177 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7178 If the buffer cannot be interpreted, return NULL_TREE. */
7180 static tree
7181 native_interpret_real (tree type, const unsigned char *ptr, int len)
7183 machine_mode mode = TYPE_MODE (type);
7184 int total_bytes = GET_MODE_SIZE (mode);
7185 int byte, offset, word, words, bitpos;
7186 unsigned char value;
7187 /* There are always 32 bits in each long, no matter the size of
7188 the hosts long. We handle floating point representations with
7189 up to 192 bits. */
7190 REAL_VALUE_TYPE r;
7191 long tmp[6];
7193 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7194 if (total_bytes > len || total_bytes > 24)
7195 return NULL_TREE;
7196 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7198 memset (tmp, 0, sizeof (tmp));
7199 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7200 bitpos += BITS_PER_UNIT)
7202 byte = (bitpos / BITS_PER_UNIT) & 3;
7203 if (UNITS_PER_WORD < 4)
7205 word = byte / UNITS_PER_WORD;
7206 if (WORDS_BIG_ENDIAN)
7207 word = (words - 1) - word;
7208 offset = word * UNITS_PER_WORD;
7209 if (BYTES_BIG_ENDIAN)
7210 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7211 else
7212 offset += byte % UNITS_PER_WORD;
7214 else
7215 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7216 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7218 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7221 real_from_target (&r, tmp, mode);
7222 return build_real (type, r);
7226 /* Subroutine of native_interpret_expr. Interpret the contents of
7227 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7228 If the buffer cannot be interpreted, return NULL_TREE. */
7230 static tree
7231 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7233 tree etype, rpart, ipart;
7234 int size;
7236 etype = TREE_TYPE (type);
7237 size = GET_MODE_SIZE (TYPE_MODE (etype));
7238 if (size * 2 > len)
7239 return NULL_TREE;
7240 rpart = native_interpret_expr (etype, ptr, size);
7241 if (!rpart)
7242 return NULL_TREE;
7243 ipart = native_interpret_expr (etype, ptr+size, size);
7244 if (!ipart)
7245 return NULL_TREE;
7246 return build_complex (type, rpart, ipart);
7250 /* Subroutine of native_interpret_expr. Interpret the contents of
7251 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7252 If the buffer cannot be interpreted, return NULL_TREE. */
7254 static tree
7255 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7257 tree etype, elem;
7258 int i, size, count;
7259 tree *elements;
7261 etype = TREE_TYPE (type);
7262 size = GET_MODE_SIZE (TYPE_MODE (etype));
7263 count = TYPE_VECTOR_SUBPARTS (type);
7264 if (size * count > len)
7265 return NULL_TREE;
7267 elements = XALLOCAVEC (tree, count);
7268 for (i = count - 1; i >= 0; i--)
7270 elem = native_interpret_expr (etype, ptr+(i*size), size);
7271 if (!elem)
7272 return NULL_TREE;
7273 elements[i] = elem;
7275 return build_vector (type, elements);
7279 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7280 the buffer PTR of length LEN as a constant of type TYPE. For
7281 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7282 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7283 return NULL_TREE. */
7285 tree
7286 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7288 switch (TREE_CODE (type))
7290 case INTEGER_TYPE:
7291 case ENUMERAL_TYPE:
7292 case BOOLEAN_TYPE:
7293 case POINTER_TYPE:
7294 case REFERENCE_TYPE:
7295 return native_interpret_int (type, ptr, len);
7297 case REAL_TYPE:
7298 return native_interpret_real (type, ptr, len);
7300 case FIXED_POINT_TYPE:
7301 return native_interpret_fixed (type, ptr, len);
7303 case COMPLEX_TYPE:
7304 return native_interpret_complex (type, ptr, len);
7306 case VECTOR_TYPE:
7307 return native_interpret_vector (type, ptr, len);
7309 default:
7310 return NULL_TREE;
7314 /* Returns true if we can interpret the contents of a native encoding
7315 as TYPE. */
7317 static bool
7318 can_native_interpret_type_p (tree type)
7320 switch (TREE_CODE (type))
7322 case INTEGER_TYPE:
7323 case ENUMERAL_TYPE:
7324 case BOOLEAN_TYPE:
7325 case POINTER_TYPE:
7326 case REFERENCE_TYPE:
7327 case FIXED_POINT_TYPE:
7328 case REAL_TYPE:
7329 case COMPLEX_TYPE:
7330 case VECTOR_TYPE:
7331 return true;
7332 default:
7333 return false;
7337 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7338 TYPE at compile-time. If we're unable to perform the conversion
7339 return NULL_TREE. */
7341 static tree
7342 fold_view_convert_expr (tree type, tree expr)
7344 /* We support up to 512-bit values (for V8DFmode). */
7345 unsigned char buffer[64];
7346 int len;
7348 /* Check that the host and target are sane. */
7349 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7350 return NULL_TREE;
7352 len = native_encode_expr (expr, buffer, sizeof (buffer));
7353 if (len == 0)
7354 return NULL_TREE;
7356 return native_interpret_expr (type, buffer, len);
7359 /* Build an expression for the address of T. Folds away INDIRECT_REF
7360 to avoid confusing the gimplify process. */
7362 tree
7363 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7365 /* The size of the object is not relevant when talking about its address. */
7366 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7367 t = TREE_OPERAND (t, 0);
7369 if (TREE_CODE (t) == INDIRECT_REF)
7371 t = TREE_OPERAND (t, 0);
7373 if (TREE_TYPE (t) != ptrtype)
7374 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7376 else if (TREE_CODE (t) == MEM_REF
7377 && integer_zerop (TREE_OPERAND (t, 1)))
7378 return TREE_OPERAND (t, 0);
7379 else if (TREE_CODE (t) == MEM_REF
7380 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7381 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7382 TREE_OPERAND (t, 0),
7383 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7384 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7386 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7388 if (TREE_TYPE (t) != ptrtype)
7389 t = fold_convert_loc (loc, ptrtype, t);
7391 else
7392 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7394 return t;
7397 /* Build an expression for the address of T. */
7399 tree
7400 build_fold_addr_expr_loc (location_t loc, tree t)
7402 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7404 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7407 /* Fold a unary expression of code CODE and type TYPE with operand
7408 OP0. Return the folded expression if folding is successful.
7409 Otherwise, return NULL_TREE. */
7411 tree
7412 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7414 tree tem;
7415 tree arg0;
7416 enum tree_code_class kind = TREE_CODE_CLASS (code);
7418 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7419 && TREE_CODE_LENGTH (code) == 1);
7421 arg0 = op0;
7422 if (arg0)
7424 if (CONVERT_EXPR_CODE_P (code)
7425 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7427 /* Don't use STRIP_NOPS, because signedness of argument type
7428 matters. */
7429 STRIP_SIGN_NOPS (arg0);
7431 else
7433 /* Strip any conversions that don't change the mode. This
7434 is safe for every expression, except for a comparison
7435 expression because its signedness is derived from its
7436 operands.
7438 Note that this is done as an internal manipulation within
7439 the constant folder, in order to find the simplest
7440 representation of the arguments so that their form can be
7441 studied. In any cases, the appropriate type conversions
7442 should be put back in the tree that will get out of the
7443 constant folder. */
7444 STRIP_NOPS (arg0);
7447 if (CONSTANT_CLASS_P (arg0))
7449 tree tem = const_unop (code, type, arg0);
7450 if (tem)
7452 if (TREE_TYPE (tem) != type)
7453 tem = fold_convert_loc (loc, type, tem);
7454 return tem;
7459 tem = generic_simplify (loc, code, type, op0);
7460 if (tem)
7461 return tem;
7463 if (TREE_CODE_CLASS (code) == tcc_unary)
7465 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7466 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7467 fold_build1_loc (loc, code, type,
7468 fold_convert_loc (loc, TREE_TYPE (op0),
7469 TREE_OPERAND (arg0, 1))));
7470 else if (TREE_CODE (arg0) == COND_EXPR)
7472 tree arg01 = TREE_OPERAND (arg0, 1);
7473 tree arg02 = TREE_OPERAND (arg0, 2);
7474 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7475 arg01 = fold_build1_loc (loc, code, type,
7476 fold_convert_loc (loc,
7477 TREE_TYPE (op0), arg01));
7478 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7479 arg02 = fold_build1_loc (loc, code, type,
7480 fold_convert_loc (loc,
7481 TREE_TYPE (op0), arg02));
7482 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7483 arg01, arg02);
7485 /* If this was a conversion, and all we did was to move into
7486 inside the COND_EXPR, bring it back out. But leave it if
7487 it is a conversion from integer to integer and the
7488 result precision is no wider than a word since such a
7489 conversion is cheap and may be optimized away by combine,
7490 while it couldn't if it were outside the COND_EXPR. Then return
7491 so we don't get into an infinite recursion loop taking the
7492 conversion out and then back in. */
7494 if ((CONVERT_EXPR_CODE_P (code)
7495 || code == NON_LVALUE_EXPR)
7496 && TREE_CODE (tem) == COND_EXPR
7497 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7498 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7499 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7500 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7501 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7502 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7503 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7504 && (INTEGRAL_TYPE_P
7505 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7506 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7507 || flag_syntax_only))
7508 tem = build1_loc (loc, code, type,
7509 build3 (COND_EXPR,
7510 TREE_TYPE (TREE_OPERAND
7511 (TREE_OPERAND (tem, 1), 0)),
7512 TREE_OPERAND (tem, 0),
7513 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7514 TREE_OPERAND (TREE_OPERAND (tem, 2),
7515 0)));
7516 return tem;
7520 switch (code)
7522 case NON_LVALUE_EXPR:
7523 if (!maybe_lvalue_p (op0))
7524 return fold_convert_loc (loc, type, op0);
7525 return NULL_TREE;
7527 CASE_CONVERT:
7528 case FLOAT_EXPR:
7529 case FIX_TRUNC_EXPR:
7530 if (COMPARISON_CLASS_P (op0))
7532 /* If we have (type) (a CMP b) and type is an integral type, return
7533 new expression involving the new type. Canonicalize
7534 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7535 non-integral type.
7536 Do not fold the result as that would not simplify further, also
7537 folding again results in recursions. */
7538 if (TREE_CODE (type) == BOOLEAN_TYPE)
7539 return build2_loc (loc, TREE_CODE (op0), type,
7540 TREE_OPERAND (op0, 0),
7541 TREE_OPERAND (op0, 1));
7542 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7543 && TREE_CODE (type) != VECTOR_TYPE)
7544 return build3_loc (loc, COND_EXPR, type, op0,
7545 constant_boolean_node (true, type),
7546 constant_boolean_node (false, type));
7549 /* Handle (T *)&A.B.C for A being of type T and B and C
7550 living at offset zero. This occurs frequently in
7551 C++ upcasting and then accessing the base. */
7552 if (TREE_CODE (op0) == ADDR_EXPR
7553 && POINTER_TYPE_P (type)
7554 && handled_component_p (TREE_OPERAND (op0, 0)))
7556 HOST_WIDE_INT bitsize, bitpos;
7557 tree offset;
7558 machine_mode mode;
7559 int unsignedp, volatilep;
7560 tree base = TREE_OPERAND (op0, 0);
7561 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7562 &mode, &unsignedp, &volatilep, false);
7563 /* If the reference was to a (constant) zero offset, we can use
7564 the address of the base if it has the same base type
7565 as the result type and the pointer type is unqualified. */
7566 if (! offset && bitpos == 0
7567 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7568 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7569 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7570 return fold_convert_loc (loc, type,
7571 build_fold_addr_expr_loc (loc, base));
7574 if (TREE_CODE (op0) == MODIFY_EXPR
7575 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7576 /* Detect assigning a bitfield. */
7577 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7578 && DECL_BIT_FIELD
7579 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7581 /* Don't leave an assignment inside a conversion
7582 unless assigning a bitfield. */
7583 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7584 /* First do the assignment, then return converted constant. */
7585 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7586 TREE_NO_WARNING (tem) = 1;
7587 TREE_USED (tem) = 1;
7588 return tem;
7591 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7592 constants (if x has signed type, the sign bit cannot be set
7593 in c). This folds extension into the BIT_AND_EXPR.
7594 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7595 very likely don't have maximal range for their precision and this
7596 transformation effectively doesn't preserve non-maximal ranges. */
7597 if (TREE_CODE (type) == INTEGER_TYPE
7598 && TREE_CODE (op0) == BIT_AND_EXPR
7599 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7601 tree and_expr = op0;
7602 tree and0 = TREE_OPERAND (and_expr, 0);
7603 tree and1 = TREE_OPERAND (and_expr, 1);
7604 int change = 0;
7606 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7607 || (TYPE_PRECISION (type)
7608 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7609 change = 1;
7610 else if (TYPE_PRECISION (TREE_TYPE (and1))
7611 <= HOST_BITS_PER_WIDE_INT
7612 && tree_fits_uhwi_p (and1))
7614 unsigned HOST_WIDE_INT cst;
7616 cst = tree_to_uhwi (and1);
7617 cst &= HOST_WIDE_INT_M1U
7618 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7619 change = (cst == 0);
7620 if (change
7621 && !flag_syntax_only
7622 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7623 == ZERO_EXTEND))
7625 tree uns = unsigned_type_for (TREE_TYPE (and0));
7626 and0 = fold_convert_loc (loc, uns, and0);
7627 and1 = fold_convert_loc (loc, uns, and1);
7630 if (change)
7632 tem = force_fit_type (type, wi::to_widest (and1), 0,
7633 TREE_OVERFLOW (and1));
7634 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7635 fold_convert_loc (loc, type, and0), tem);
7639 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
7640 when one of the new casts will fold away. Conservatively we assume
7641 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
7642 if (POINTER_TYPE_P (type)
7643 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7644 && (!TYPE_RESTRICT (type) || TYPE_RESTRICT (TREE_TYPE (arg0)))
7645 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7646 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7647 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
7649 tree arg00 = TREE_OPERAND (arg0, 0);
7650 tree arg01 = TREE_OPERAND (arg0, 1);
7652 return fold_build_pointer_plus_loc
7653 (loc, fold_convert_loc (loc, type, arg00), arg01);
7656 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7657 of the same precision, and X is an integer type not narrower than
7658 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7659 if (INTEGRAL_TYPE_P (type)
7660 && TREE_CODE (op0) == BIT_NOT_EXPR
7661 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7662 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7663 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7665 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7666 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7667 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7668 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7669 fold_convert_loc (loc, type, tem));
7672 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7673 type of X and Y (integer types only). */
7674 if (INTEGRAL_TYPE_P (type)
7675 && TREE_CODE (op0) == MULT_EXPR
7676 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7677 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7679 /* Be careful not to introduce new overflows. */
7680 tree mult_type;
7681 if (TYPE_OVERFLOW_WRAPS (type))
7682 mult_type = type;
7683 else
7684 mult_type = unsigned_type_for (type);
7686 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7688 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7689 fold_convert_loc (loc, mult_type,
7690 TREE_OPERAND (op0, 0)),
7691 fold_convert_loc (loc, mult_type,
7692 TREE_OPERAND (op0, 1)));
7693 return fold_convert_loc (loc, type, tem);
7697 return NULL_TREE;
7699 case VIEW_CONVERT_EXPR:
7700 if (TREE_CODE (op0) == MEM_REF)
7701 return fold_build2_loc (loc, MEM_REF, type,
7702 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7704 return NULL_TREE;
7706 case NEGATE_EXPR:
7707 tem = fold_negate_expr (loc, arg0);
7708 if (tem)
7709 return fold_convert_loc (loc, type, tem);
7710 return NULL_TREE;
7712 case ABS_EXPR:
7713 /* Convert fabs((double)float) into (double)fabsf(float). */
7714 if (TREE_CODE (arg0) == NOP_EXPR
7715 && TREE_CODE (type) == REAL_TYPE)
7717 tree targ0 = strip_float_extensions (arg0);
7718 if (targ0 != arg0)
7719 return fold_convert_loc (loc, type,
7720 fold_build1_loc (loc, ABS_EXPR,
7721 TREE_TYPE (targ0),
7722 targ0));
7725 /* Strip sign ops from argument. */
7726 if (TREE_CODE (type) == REAL_TYPE)
7728 tem = fold_strip_sign_ops (arg0);
7729 if (tem)
7730 return fold_build1_loc (loc, ABS_EXPR, type,
7731 fold_convert_loc (loc, type, tem));
7733 return NULL_TREE;
7735 case BIT_NOT_EXPR:
7736 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7737 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7738 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7739 fold_convert_loc (loc, type,
7740 TREE_OPERAND (arg0, 0)))))
7741 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7742 fold_convert_loc (loc, type,
7743 TREE_OPERAND (arg0, 1)));
7744 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7745 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7746 fold_convert_loc (loc, type,
7747 TREE_OPERAND (arg0, 1)))))
7748 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7749 fold_convert_loc (loc, type,
7750 TREE_OPERAND (arg0, 0)), tem);
7752 return NULL_TREE;
7754 case TRUTH_NOT_EXPR:
7755 /* Note that the operand of this must be an int
7756 and its values must be 0 or 1.
7757 ("true" is a fixed value perhaps depending on the language,
7758 but we don't handle values other than 1 correctly yet.) */
7759 tem = fold_truth_not_expr (loc, arg0);
7760 if (!tem)
7761 return NULL_TREE;
7762 return fold_convert_loc (loc, type, tem);
7764 case INDIRECT_REF:
7765 /* Fold *&X to X if X is an lvalue. */
7766 if (TREE_CODE (op0) == ADDR_EXPR)
7768 tree op00 = TREE_OPERAND (op0, 0);
7769 if ((TREE_CODE (op00) == VAR_DECL
7770 || TREE_CODE (op00) == PARM_DECL
7771 || TREE_CODE (op00) == RESULT_DECL)
7772 && !TREE_READONLY (op00))
7773 return op00;
7775 return NULL_TREE;
7777 default:
7778 return NULL_TREE;
7779 } /* switch (code) */
7783 /* If the operation was a conversion do _not_ mark a resulting constant
7784 with TREE_OVERFLOW if the original constant was not. These conversions
7785 have implementation defined behavior and retaining the TREE_OVERFLOW
7786 flag here would confuse later passes such as VRP. */
7787 tree
7788 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7789 tree type, tree op0)
7791 tree res = fold_unary_loc (loc, code, type, op0);
7792 if (res
7793 && TREE_CODE (res) == INTEGER_CST
7794 && TREE_CODE (op0) == INTEGER_CST
7795 && CONVERT_EXPR_CODE_P (code))
7796 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7798 return res;
7801 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7802 operands OP0 and OP1. LOC is the location of the resulting expression.
7803 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7804 Return the folded expression if folding is successful. Otherwise,
7805 return NULL_TREE. */
7806 static tree
7807 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7808 tree arg0, tree arg1, tree op0, tree op1)
7810 tree tem;
7812 /* We only do these simplifications if we are optimizing. */
7813 if (!optimize)
7814 return NULL_TREE;
7816 /* Check for things like (A || B) && (A || C). We can convert this
7817 to A || (B && C). Note that either operator can be any of the four
7818 truth and/or operations and the transformation will still be
7819 valid. Also note that we only care about order for the
7820 ANDIF and ORIF operators. If B contains side effects, this
7821 might change the truth-value of A. */
7822 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7823 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7824 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7825 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7826 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7827 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7829 tree a00 = TREE_OPERAND (arg0, 0);
7830 tree a01 = TREE_OPERAND (arg0, 1);
7831 tree a10 = TREE_OPERAND (arg1, 0);
7832 tree a11 = TREE_OPERAND (arg1, 1);
7833 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7834 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7835 && (code == TRUTH_AND_EXPR
7836 || code == TRUTH_OR_EXPR));
7838 if (operand_equal_p (a00, a10, 0))
7839 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7840 fold_build2_loc (loc, code, type, a01, a11));
7841 else if (commutative && operand_equal_p (a00, a11, 0))
7842 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
7843 fold_build2_loc (loc, code, type, a01, a10));
7844 else if (commutative && operand_equal_p (a01, a10, 0))
7845 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
7846 fold_build2_loc (loc, code, type, a00, a11));
7848 /* This case if tricky because we must either have commutative
7849 operators or else A10 must not have side-effects. */
7851 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
7852 && operand_equal_p (a01, a11, 0))
7853 return fold_build2_loc (loc, TREE_CODE (arg0), type,
7854 fold_build2_loc (loc, code, type, a00, a10),
7855 a01);
7858 /* See if we can build a range comparison. */
7859 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
7860 return tem;
7862 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
7863 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
7865 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
7866 if (tem)
7867 return fold_build2_loc (loc, code, type, tem, arg1);
7870 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
7871 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
7873 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
7874 if (tem)
7875 return fold_build2_loc (loc, code, type, arg0, tem);
7878 /* Check for the possibility of merging component references. If our
7879 lhs is another similar operation, try to merge its rhs with our
7880 rhs. Then try to merge our lhs and rhs. */
7881 if (TREE_CODE (arg0) == code
7882 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
7883 TREE_OPERAND (arg0, 1), arg1)))
7884 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
7886 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
7887 return tem;
7889 if (LOGICAL_OP_NON_SHORT_CIRCUIT
7890 && (code == TRUTH_AND_EXPR
7891 || code == TRUTH_ANDIF_EXPR
7892 || code == TRUTH_OR_EXPR
7893 || code == TRUTH_ORIF_EXPR))
7895 enum tree_code ncode, icode;
7897 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
7898 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
7899 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
7901 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
7902 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
7903 We don't want to pack more than two leafs to a non-IF AND/OR
7904 expression.
7905 If tree-code of left-hand operand isn't an AND/OR-IF code and not
7906 equal to IF-CODE, then we don't want to add right-hand operand.
7907 If the inner right-hand side of left-hand operand has
7908 side-effects, or isn't simple, then we can't add to it,
7909 as otherwise we might destroy if-sequence. */
7910 if (TREE_CODE (arg0) == icode
7911 && simple_operand_p_2 (arg1)
7912 /* Needed for sequence points to handle trappings, and
7913 side-effects. */
7914 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
7916 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
7917 arg1);
7918 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
7919 tem);
7921 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
7922 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
7923 else if (TREE_CODE (arg1) == icode
7924 && simple_operand_p_2 (arg0)
7925 /* Needed for sequence points to handle trappings, and
7926 side-effects. */
7927 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
7929 tem = fold_build2_loc (loc, ncode, type,
7930 arg0, TREE_OPERAND (arg1, 0));
7931 return fold_build2_loc (loc, icode, type, tem,
7932 TREE_OPERAND (arg1, 1));
7934 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
7935 into (A OR B).
7936 For sequence point consistancy, we need to check for trapping,
7937 and side-effects. */
7938 else if (code == icode && simple_operand_p_2 (arg0)
7939 && simple_operand_p_2 (arg1))
7940 return fold_build2_loc (loc, ncode, type, arg0, arg1);
7943 return NULL_TREE;
7946 /* Fold a binary expression of code CODE and type TYPE with operands
7947 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
7948 Return the folded expression if folding is successful. Otherwise,
7949 return NULL_TREE. */
7951 static tree
7952 fold_minmax (location_t loc, enum tree_code code, tree type, tree op0, tree op1)
7954 enum tree_code compl_code;
7956 if (code == MIN_EXPR)
7957 compl_code = MAX_EXPR;
7958 else if (code == MAX_EXPR)
7959 compl_code = MIN_EXPR;
7960 else
7961 gcc_unreachable ();
7963 /* MIN (MAX (a, b), b) == b. */
7964 if (TREE_CODE (op0) == compl_code
7965 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
7966 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 0));
7968 /* MIN (MAX (b, a), b) == b. */
7969 if (TREE_CODE (op0) == compl_code
7970 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
7971 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
7972 return omit_one_operand_loc (loc, type, op1, TREE_OPERAND (op0, 1));
7974 /* MIN (a, MAX (a, b)) == a. */
7975 if (TREE_CODE (op1) == compl_code
7976 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
7977 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
7978 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 1));
7980 /* MIN (a, MAX (b, a)) == a. */
7981 if (TREE_CODE (op1) == compl_code
7982 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
7983 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
7984 return omit_one_operand_loc (loc, type, op0, TREE_OPERAND (op1, 0));
7986 return NULL_TREE;
7989 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
7990 by changing CODE to reduce the magnitude of constants involved in
7991 ARG0 of the comparison.
7992 Returns a canonicalized comparison tree if a simplification was
7993 possible, otherwise returns NULL_TREE.
7994 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
7995 valid if signed overflow is undefined. */
7997 static tree
7998 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
7999 tree arg0, tree arg1,
8000 bool *strict_overflow_p)
8002 enum tree_code code0 = TREE_CODE (arg0);
8003 tree t, cst0 = NULL_TREE;
8004 int sgn0;
8006 /* Match A +- CST code arg1. We can change this only if overflow
8007 is undefined. */
8008 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8009 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8010 /* In principle pointers also have undefined overflow behavior,
8011 but that causes problems elsewhere. */
8012 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8013 && (code0 == MINUS_EXPR
8014 || code0 == PLUS_EXPR)
8015 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8016 return NULL_TREE;
8018 /* Identify the constant in arg0 and its sign. */
8019 cst0 = TREE_OPERAND (arg0, 1);
8020 sgn0 = tree_int_cst_sgn (cst0);
8022 /* Overflowed constants and zero will cause problems. */
8023 if (integer_zerop (cst0)
8024 || TREE_OVERFLOW (cst0))
8025 return NULL_TREE;
8027 /* See if we can reduce the magnitude of the constant in
8028 arg0 by changing the comparison code. */
8029 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8030 if (code == LT_EXPR
8031 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8032 code = LE_EXPR;
8033 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8034 else if (code == GT_EXPR
8035 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8036 code = GE_EXPR;
8037 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8038 else if (code == LE_EXPR
8039 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8040 code = LT_EXPR;
8041 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8042 else if (code == GE_EXPR
8043 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8044 code = GT_EXPR;
8045 else
8046 return NULL_TREE;
8047 *strict_overflow_p = true;
8049 /* Now build the constant reduced in magnitude. But not if that
8050 would produce one outside of its types range. */
8051 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8052 && ((sgn0 == 1
8053 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8054 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8055 || (sgn0 == -1
8056 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8057 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8058 return NULL_TREE;
8060 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8061 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8062 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8063 t = fold_convert (TREE_TYPE (arg1), t);
8065 return fold_build2_loc (loc, code, type, t, arg1);
8068 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8069 overflow further. Try to decrease the magnitude of constants involved
8070 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8071 and put sole constants at the second argument position.
8072 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8074 static tree
8075 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8076 tree arg0, tree arg1)
8078 tree t;
8079 bool strict_overflow_p;
8080 const char * const warnmsg = G_("assuming signed overflow does not occur "
8081 "when reducing constant in comparison");
8083 /* Try canonicalization by simplifying arg0. */
8084 strict_overflow_p = false;
8085 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8086 &strict_overflow_p);
8087 if (t)
8089 if (strict_overflow_p)
8090 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8091 return t;
8094 /* Try canonicalization by simplifying arg1 using the swapped
8095 comparison. */
8096 code = swap_tree_comparison (code);
8097 strict_overflow_p = false;
8098 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8099 &strict_overflow_p);
8100 if (t && strict_overflow_p)
8101 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8102 return t;
8105 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8106 space. This is used to avoid issuing overflow warnings for
8107 expressions like &p->x which can not wrap. */
8109 static bool
8110 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8112 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8113 return true;
8115 if (bitpos < 0)
8116 return true;
8118 wide_int wi_offset;
8119 int precision = TYPE_PRECISION (TREE_TYPE (base));
8120 if (offset == NULL_TREE)
8121 wi_offset = wi::zero (precision);
8122 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8123 return true;
8124 else
8125 wi_offset = offset;
8127 bool overflow;
8128 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8129 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8130 if (overflow)
8131 return true;
8133 if (!wi::fits_uhwi_p (total))
8134 return true;
8136 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8137 if (size <= 0)
8138 return true;
8140 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8141 array. */
8142 if (TREE_CODE (base) == ADDR_EXPR)
8144 HOST_WIDE_INT base_size;
8146 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8147 if (base_size > 0 && size < base_size)
8148 size = base_size;
8151 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8154 /* Return the HOST_WIDE_INT least significant bits of T, a sizetype
8155 kind INTEGER_CST. This makes sure to properly sign-extend the
8156 constant. */
8158 static HOST_WIDE_INT
8159 size_low_cst (const_tree t)
8161 HOST_WIDE_INT w = TREE_INT_CST_ELT (t, 0);
8162 int prec = TYPE_PRECISION (TREE_TYPE (t));
8163 if (prec < HOST_BITS_PER_WIDE_INT)
8164 return sext_hwi (w, prec);
8165 return w;
8168 /* Subroutine of fold_binary. This routine performs all of the
8169 transformations that are common to the equality/inequality
8170 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8171 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8172 fold_binary should call fold_binary. Fold a comparison with
8173 tree code CODE and type TYPE with operands OP0 and OP1. Return
8174 the folded comparison or NULL_TREE. */
8176 static tree
8177 fold_comparison (location_t loc, enum tree_code code, tree type,
8178 tree op0, tree op1)
8180 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8181 tree arg0, arg1, tem;
8183 arg0 = op0;
8184 arg1 = op1;
8186 STRIP_SIGN_NOPS (arg0);
8187 STRIP_SIGN_NOPS (arg1);
8189 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8190 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8191 && (equality_code
8192 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8193 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))))
8194 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8195 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8196 && TREE_CODE (arg1) == INTEGER_CST
8197 && !TREE_OVERFLOW (arg1))
8199 const enum tree_code
8200 reverse_op = TREE_CODE (arg0) == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR;
8201 tree const1 = TREE_OPERAND (arg0, 1);
8202 tree const2 = fold_convert_loc (loc, TREE_TYPE (const1), arg1);
8203 tree variable = TREE_OPERAND (arg0, 0);
8204 tree new_const = int_const_binop (reverse_op, const2, const1);
8206 /* If the constant operation overflowed this can be
8207 simplified as a comparison against INT_MAX/INT_MIN. */
8208 if (TREE_OVERFLOW (new_const)
8209 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
8211 int const1_sgn = tree_int_cst_sgn (const1);
8212 enum tree_code code2 = code;
8214 /* Get the sign of the constant on the lhs if the
8215 operation were VARIABLE + CONST1. */
8216 if (TREE_CODE (arg0) == MINUS_EXPR)
8217 const1_sgn = -const1_sgn;
8219 /* The sign of the constant determines if we overflowed
8220 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8221 Canonicalize to the INT_MIN overflow by swapping the comparison
8222 if necessary. */
8223 if (const1_sgn == -1)
8224 code2 = swap_tree_comparison (code);
8226 /* We now can look at the canonicalized case
8227 VARIABLE + 1 CODE2 INT_MIN
8228 and decide on the result. */
8229 switch (code2)
8231 case EQ_EXPR:
8232 case LT_EXPR:
8233 case LE_EXPR:
8234 return
8235 omit_one_operand_loc (loc, type, boolean_false_node, variable);
8237 case NE_EXPR:
8238 case GE_EXPR:
8239 case GT_EXPR:
8240 return
8241 omit_one_operand_loc (loc, type, boolean_true_node, variable);
8243 default:
8244 gcc_unreachable ();
8247 else
8249 if (!equality_code)
8250 fold_overflow_warning ("assuming signed overflow does not occur "
8251 "when changing X +- C1 cmp C2 to "
8252 "X cmp C2 -+ C1",
8253 WARN_STRICT_OVERFLOW_COMPARISON);
8254 return fold_build2_loc (loc, code, type, variable, new_const);
8258 /* For comparisons of pointers we can decompose it to a compile time
8259 comparison of the base objects and the offsets into the object.
8260 This requires at least one operand being an ADDR_EXPR or a
8261 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8262 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8263 && (TREE_CODE (arg0) == ADDR_EXPR
8264 || TREE_CODE (arg1) == ADDR_EXPR
8265 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8266 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8268 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8269 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8270 machine_mode mode;
8271 int volatilep, unsignedp;
8272 bool indirect_base0 = false, indirect_base1 = false;
8274 /* Get base and offset for the access. Strip ADDR_EXPR for
8275 get_inner_reference, but put it back by stripping INDIRECT_REF
8276 off the base object if possible. indirect_baseN will be true
8277 if baseN is not an address but refers to the object itself. */
8278 base0 = arg0;
8279 if (TREE_CODE (arg0) == ADDR_EXPR)
8281 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8282 &bitsize, &bitpos0, &offset0, &mode,
8283 &unsignedp, &volatilep, false);
8284 if (TREE_CODE (base0) == INDIRECT_REF)
8285 base0 = TREE_OPERAND (base0, 0);
8286 else
8287 indirect_base0 = true;
8289 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8291 base0 = TREE_OPERAND (arg0, 0);
8292 STRIP_SIGN_NOPS (base0);
8293 if (TREE_CODE (base0) == ADDR_EXPR)
8295 base0 = TREE_OPERAND (base0, 0);
8296 indirect_base0 = true;
8298 offset0 = TREE_OPERAND (arg0, 1);
8299 if (tree_fits_shwi_p (offset0))
8301 HOST_WIDE_INT off = size_low_cst (offset0);
8302 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8303 * BITS_PER_UNIT)
8304 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8306 bitpos0 = off * BITS_PER_UNIT;
8307 offset0 = NULL_TREE;
8312 base1 = arg1;
8313 if (TREE_CODE (arg1) == ADDR_EXPR)
8315 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8316 &bitsize, &bitpos1, &offset1, &mode,
8317 &unsignedp, &volatilep, false);
8318 if (TREE_CODE (base1) == INDIRECT_REF)
8319 base1 = TREE_OPERAND (base1, 0);
8320 else
8321 indirect_base1 = true;
8323 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8325 base1 = TREE_OPERAND (arg1, 0);
8326 STRIP_SIGN_NOPS (base1);
8327 if (TREE_CODE (base1) == ADDR_EXPR)
8329 base1 = TREE_OPERAND (base1, 0);
8330 indirect_base1 = true;
8332 offset1 = TREE_OPERAND (arg1, 1);
8333 if (tree_fits_shwi_p (offset1))
8335 HOST_WIDE_INT off = size_low_cst (offset1);
8336 if ((HOST_WIDE_INT) (((unsigned HOST_WIDE_INT) off)
8337 * BITS_PER_UNIT)
8338 / BITS_PER_UNIT == (HOST_WIDE_INT) off)
8340 bitpos1 = off * BITS_PER_UNIT;
8341 offset1 = NULL_TREE;
8346 /* If we have equivalent bases we might be able to simplify. */
8347 if (indirect_base0 == indirect_base1
8348 && operand_equal_p (base0, base1, 0))
8350 /* We can fold this expression to a constant if the non-constant
8351 offset parts are equal. */
8352 if ((offset0 == offset1
8353 || (offset0 && offset1
8354 && operand_equal_p (offset0, offset1, 0)))
8355 && (code == EQ_EXPR
8356 || code == NE_EXPR
8357 || (indirect_base0 && DECL_P (base0))
8358 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8361 if (!equality_code
8362 && bitpos0 != bitpos1
8363 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8364 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8365 fold_overflow_warning (("assuming pointer wraparound does not "
8366 "occur when comparing P +- C1 with "
8367 "P +- C2"),
8368 WARN_STRICT_OVERFLOW_CONDITIONAL);
8370 switch (code)
8372 case EQ_EXPR:
8373 return constant_boolean_node (bitpos0 == bitpos1, type);
8374 case NE_EXPR:
8375 return constant_boolean_node (bitpos0 != bitpos1, type);
8376 case LT_EXPR:
8377 return constant_boolean_node (bitpos0 < bitpos1, type);
8378 case LE_EXPR:
8379 return constant_boolean_node (bitpos0 <= bitpos1, type);
8380 case GE_EXPR:
8381 return constant_boolean_node (bitpos0 >= bitpos1, type);
8382 case GT_EXPR:
8383 return constant_boolean_node (bitpos0 > bitpos1, type);
8384 default:;
8387 /* We can simplify the comparison to a comparison of the variable
8388 offset parts if the constant offset parts are equal.
8389 Be careful to use signed sizetype here because otherwise we
8390 mess with array offsets in the wrong way. This is possible
8391 because pointer arithmetic is restricted to retain within an
8392 object and overflow on pointer differences is undefined as of
8393 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8394 else if (bitpos0 == bitpos1
8395 && (equality_code
8396 || (indirect_base0 && DECL_P (base0))
8397 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8399 /* By converting to signed sizetype we cover middle-end pointer
8400 arithmetic which operates on unsigned pointer types of size
8401 type size and ARRAY_REF offsets which are properly sign or
8402 zero extended from their type in case it is narrower than
8403 sizetype. */
8404 if (offset0 == NULL_TREE)
8405 offset0 = build_int_cst (ssizetype, 0);
8406 else
8407 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8408 if (offset1 == NULL_TREE)
8409 offset1 = build_int_cst (ssizetype, 0);
8410 else
8411 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8413 if (!equality_code
8414 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8415 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8416 fold_overflow_warning (("assuming pointer wraparound does not "
8417 "occur when comparing P +- C1 with "
8418 "P +- C2"),
8419 WARN_STRICT_OVERFLOW_COMPARISON);
8421 return fold_build2_loc (loc, code, type, offset0, offset1);
8424 /* For equal offsets we can simplify to a comparison of the
8425 base addresses. */
8426 else if (bitpos0 == bitpos1
8427 && (indirect_base0
8428 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8429 && (indirect_base1
8430 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8431 && ((offset0 == offset1)
8432 || (offset0 && offset1
8433 && operand_equal_p (offset0, offset1, 0))))
8435 if (indirect_base0)
8436 base0 = build_fold_addr_expr_loc (loc, base0);
8437 if (indirect_base1)
8438 base1 = build_fold_addr_expr_loc (loc, base1);
8439 return fold_build2_loc (loc, code, type, base0, base1);
8443 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8444 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8445 the resulting offset is smaller in absolute value than the
8446 original one and has the same sign. */
8447 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8448 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8449 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8450 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8451 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8452 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8453 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8454 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8456 tree const1 = TREE_OPERAND (arg0, 1);
8457 tree const2 = TREE_OPERAND (arg1, 1);
8458 tree variable1 = TREE_OPERAND (arg0, 0);
8459 tree variable2 = TREE_OPERAND (arg1, 0);
8460 tree cst;
8461 const char * const warnmsg = G_("assuming signed overflow does not "
8462 "occur when combining constants around "
8463 "a comparison");
8465 /* Put the constant on the side where it doesn't overflow and is
8466 of lower absolute value and of same sign than before. */
8467 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8468 ? MINUS_EXPR : PLUS_EXPR,
8469 const2, const1);
8470 if (!TREE_OVERFLOW (cst)
8471 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8472 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8474 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8475 return fold_build2_loc (loc, code, type,
8476 variable1,
8477 fold_build2_loc (loc, TREE_CODE (arg1),
8478 TREE_TYPE (arg1),
8479 variable2, cst));
8482 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8483 ? MINUS_EXPR : PLUS_EXPR,
8484 const1, const2);
8485 if (!TREE_OVERFLOW (cst)
8486 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8487 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8489 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8490 return fold_build2_loc (loc, code, type,
8491 fold_build2_loc (loc, TREE_CODE (arg0),
8492 TREE_TYPE (arg0),
8493 variable1, cst),
8494 variable2);
8498 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8499 if (tem)
8500 return tem;
8502 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8503 constant, we can simplify it. */
8504 if (TREE_CODE (arg1) == INTEGER_CST
8505 && (TREE_CODE (arg0) == MIN_EXPR
8506 || TREE_CODE (arg0) == MAX_EXPR)
8507 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8509 tem = optimize_minmax_comparison (loc, code, type, op0, op1);
8510 if (tem)
8511 return tem;
8514 /* If we are comparing an expression that just has comparisons
8515 of two integer values, arithmetic expressions of those comparisons,
8516 and constants, we can simplify it. There are only three cases
8517 to check: the two values can either be equal, the first can be
8518 greater, or the second can be greater. Fold the expression for
8519 those three values. Since each value must be 0 or 1, we have
8520 eight possibilities, each of which corresponds to the constant 0
8521 or 1 or one of the six possible comparisons.
8523 This handles common cases like (a > b) == 0 but also handles
8524 expressions like ((x > y) - (y > x)) > 0, which supposedly
8525 occur in macroized code. */
8527 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8529 tree cval1 = 0, cval2 = 0;
8530 int save_p = 0;
8532 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8533 /* Don't handle degenerate cases here; they should already
8534 have been handled anyway. */
8535 && cval1 != 0 && cval2 != 0
8536 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8537 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8538 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8539 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8540 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8541 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8542 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8544 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8545 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8547 /* We can't just pass T to eval_subst in case cval1 or cval2
8548 was the same as ARG1. */
8550 tree high_result
8551 = fold_build2_loc (loc, code, type,
8552 eval_subst (loc, arg0, cval1, maxval,
8553 cval2, minval),
8554 arg1);
8555 tree equal_result
8556 = fold_build2_loc (loc, code, type,
8557 eval_subst (loc, arg0, cval1, maxval,
8558 cval2, maxval),
8559 arg1);
8560 tree low_result
8561 = fold_build2_loc (loc, code, type,
8562 eval_subst (loc, arg0, cval1, minval,
8563 cval2, maxval),
8564 arg1);
8566 /* All three of these results should be 0 or 1. Confirm they are.
8567 Then use those values to select the proper code to use. */
8569 if (TREE_CODE (high_result) == INTEGER_CST
8570 && TREE_CODE (equal_result) == INTEGER_CST
8571 && TREE_CODE (low_result) == INTEGER_CST)
8573 /* Make a 3-bit mask with the high-order bit being the
8574 value for `>', the next for '=', and the low for '<'. */
8575 switch ((integer_onep (high_result) * 4)
8576 + (integer_onep (equal_result) * 2)
8577 + integer_onep (low_result))
8579 case 0:
8580 /* Always false. */
8581 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8582 case 1:
8583 code = LT_EXPR;
8584 break;
8585 case 2:
8586 code = EQ_EXPR;
8587 break;
8588 case 3:
8589 code = LE_EXPR;
8590 break;
8591 case 4:
8592 code = GT_EXPR;
8593 break;
8594 case 5:
8595 code = NE_EXPR;
8596 break;
8597 case 6:
8598 code = GE_EXPR;
8599 break;
8600 case 7:
8601 /* Always true. */
8602 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8605 if (save_p)
8607 tem = save_expr (build2 (code, type, cval1, cval2));
8608 SET_EXPR_LOCATION (tem, loc);
8609 return tem;
8611 return fold_build2_loc (loc, code, type, cval1, cval2);
8616 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8617 into a single range test. */
8618 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8619 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8620 && TREE_CODE (arg1) == INTEGER_CST
8621 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8622 && !integer_zerop (TREE_OPERAND (arg0, 1))
8623 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8624 && !TREE_OVERFLOW (arg1))
8626 tem = fold_div_compare (loc, code, type, arg0, arg1);
8627 if (tem != NULL_TREE)
8628 return tem;
8631 return NULL_TREE;
8635 /* Subroutine of fold_binary. Optimize complex multiplications of the
8636 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8637 argument EXPR represents the expression "z" of type TYPE. */
8639 static tree
8640 fold_mult_zconjz (location_t loc, tree type, tree expr)
8642 tree itype = TREE_TYPE (type);
8643 tree rpart, ipart, tem;
8645 if (TREE_CODE (expr) == COMPLEX_EXPR)
8647 rpart = TREE_OPERAND (expr, 0);
8648 ipart = TREE_OPERAND (expr, 1);
8650 else if (TREE_CODE (expr) == COMPLEX_CST)
8652 rpart = TREE_REALPART (expr);
8653 ipart = TREE_IMAGPART (expr);
8655 else
8657 expr = save_expr (expr);
8658 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8659 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8662 rpart = save_expr (rpart);
8663 ipart = save_expr (ipart);
8664 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8665 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8666 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8667 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8668 build_zero_cst (itype));
8672 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8673 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8675 static bool
8676 vec_cst_ctor_to_array (tree arg, tree *elts)
8678 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8680 if (TREE_CODE (arg) == VECTOR_CST)
8682 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8683 elts[i] = VECTOR_CST_ELT (arg, i);
8685 else if (TREE_CODE (arg) == CONSTRUCTOR)
8687 constructor_elt *elt;
8689 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8690 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8691 return false;
8692 else
8693 elts[i] = elt->value;
8695 else
8696 return false;
8697 for (; i < nelts; i++)
8698 elts[i]
8699 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8700 return true;
8703 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8704 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8705 NULL_TREE otherwise. */
8707 static tree
8708 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8710 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8711 tree *elts;
8712 bool need_ctor = false;
8714 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8715 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8716 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8717 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8718 return NULL_TREE;
8720 elts = XALLOCAVEC (tree, nelts * 3);
8721 if (!vec_cst_ctor_to_array (arg0, elts)
8722 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8723 return NULL_TREE;
8725 for (i = 0; i < nelts; i++)
8727 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8728 need_ctor = true;
8729 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8732 if (need_ctor)
8734 vec<constructor_elt, va_gc> *v;
8735 vec_alloc (v, nelts);
8736 for (i = 0; i < nelts; i++)
8737 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8738 return build_constructor (type, v);
8740 else
8741 return build_vector (type, &elts[2 * nelts]);
8744 /* Try to fold a pointer difference of type TYPE two address expressions of
8745 array references AREF0 and AREF1 using location LOC. Return a
8746 simplified expression for the difference or NULL_TREE. */
8748 static tree
8749 fold_addr_of_array_ref_difference (location_t loc, tree type,
8750 tree aref0, tree aref1)
8752 tree base0 = TREE_OPERAND (aref0, 0);
8753 tree base1 = TREE_OPERAND (aref1, 0);
8754 tree base_offset = build_int_cst (type, 0);
8756 /* If the bases are array references as well, recurse. If the bases
8757 are pointer indirections compute the difference of the pointers.
8758 If the bases are equal, we are set. */
8759 if ((TREE_CODE (base0) == ARRAY_REF
8760 && TREE_CODE (base1) == ARRAY_REF
8761 && (base_offset
8762 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8763 || (INDIRECT_REF_P (base0)
8764 && INDIRECT_REF_P (base1)
8765 && (base_offset = fold_binary_loc (loc, MINUS_EXPR, type,
8766 TREE_OPERAND (base0, 0),
8767 TREE_OPERAND (base1, 0))))
8768 || operand_equal_p (base0, base1, 0))
8770 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8771 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8772 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8773 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8774 return fold_build2_loc (loc, PLUS_EXPR, type,
8775 base_offset,
8776 fold_build2_loc (loc, MULT_EXPR, type,
8777 diff, esz));
8779 return NULL_TREE;
8782 /* If the real or vector real constant CST of type TYPE has an exact
8783 inverse, return it, else return NULL. */
8785 tree
8786 exact_inverse (tree type, tree cst)
8788 REAL_VALUE_TYPE r;
8789 tree unit_type, *elts;
8790 machine_mode mode;
8791 unsigned vec_nelts, i;
8793 switch (TREE_CODE (cst))
8795 case REAL_CST:
8796 r = TREE_REAL_CST (cst);
8798 if (exact_real_inverse (TYPE_MODE (type), &r))
8799 return build_real (type, r);
8801 return NULL_TREE;
8803 case VECTOR_CST:
8804 vec_nelts = VECTOR_CST_NELTS (cst);
8805 elts = XALLOCAVEC (tree, vec_nelts);
8806 unit_type = TREE_TYPE (type);
8807 mode = TYPE_MODE (unit_type);
8809 for (i = 0; i < vec_nelts; i++)
8811 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8812 if (!exact_real_inverse (mode, &r))
8813 return NULL_TREE;
8814 elts[i] = build_real (unit_type, r);
8817 return build_vector (type, elts);
8819 default:
8820 return NULL_TREE;
8824 /* Mask out the tz least significant bits of X of type TYPE where
8825 tz is the number of trailing zeroes in Y. */
8826 static wide_int
8827 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8829 int tz = wi::ctz (y);
8830 if (tz > 0)
8831 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8832 return x;
8835 /* Return true when T is an address and is known to be nonzero.
8836 For floating point we further ensure that T is not denormal.
8837 Similar logic is present in nonzero_address in rtlanal.h.
8839 If the return value is based on the assumption that signed overflow
8840 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8841 change *STRICT_OVERFLOW_P. */
8843 static bool
8844 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8846 tree type = TREE_TYPE (t);
8847 enum tree_code code;
8849 /* Doing something useful for floating point would need more work. */
8850 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8851 return false;
8853 code = TREE_CODE (t);
8854 switch (TREE_CODE_CLASS (code))
8856 case tcc_unary:
8857 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8858 strict_overflow_p);
8859 case tcc_binary:
8860 case tcc_comparison:
8861 return tree_binary_nonzero_warnv_p (code, type,
8862 TREE_OPERAND (t, 0),
8863 TREE_OPERAND (t, 1),
8864 strict_overflow_p);
8865 case tcc_constant:
8866 case tcc_declaration:
8867 case tcc_reference:
8868 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8870 default:
8871 break;
8874 switch (code)
8876 case TRUTH_NOT_EXPR:
8877 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8878 strict_overflow_p);
8880 case TRUTH_AND_EXPR:
8881 case TRUTH_OR_EXPR:
8882 case TRUTH_XOR_EXPR:
8883 return tree_binary_nonzero_warnv_p (code, type,
8884 TREE_OPERAND (t, 0),
8885 TREE_OPERAND (t, 1),
8886 strict_overflow_p);
8888 case COND_EXPR:
8889 case CONSTRUCTOR:
8890 case OBJ_TYPE_REF:
8891 case ASSERT_EXPR:
8892 case ADDR_EXPR:
8893 case WITH_SIZE_EXPR:
8894 case SSA_NAME:
8895 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8897 case COMPOUND_EXPR:
8898 case MODIFY_EXPR:
8899 case BIND_EXPR:
8900 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
8901 strict_overflow_p);
8903 case SAVE_EXPR:
8904 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
8905 strict_overflow_p);
8907 case CALL_EXPR:
8909 tree fndecl = get_callee_fndecl (t);
8910 if (!fndecl) return false;
8911 if (flag_delete_null_pointer_checks && !flag_check_new
8912 && DECL_IS_OPERATOR_NEW (fndecl)
8913 && !TREE_NOTHROW (fndecl))
8914 return true;
8915 if (flag_delete_null_pointer_checks
8916 && lookup_attribute ("returns_nonnull",
8917 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
8918 return true;
8919 return alloca_call_p (t);
8922 default:
8923 break;
8925 return false;
8928 /* Return true when T is an address and is known to be nonzero.
8929 Handle warnings about undefined signed overflow. */
8931 static bool
8932 tree_expr_nonzero_p (tree t)
8934 bool ret, strict_overflow_p;
8936 strict_overflow_p = false;
8937 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
8938 if (strict_overflow_p)
8939 fold_overflow_warning (("assuming signed overflow does not occur when "
8940 "determining that expression is always "
8941 "non-zero"),
8942 WARN_STRICT_OVERFLOW_MISC);
8943 return ret;
8946 /* Fold a binary expression of code CODE and type TYPE with operands
8947 OP0 and OP1. LOC is the location of the resulting expression.
8948 Return the folded expression if folding is successful. Otherwise,
8949 return NULL_TREE. */
8951 tree
8952 fold_binary_loc (location_t loc,
8953 enum tree_code code, tree type, tree op0, tree op1)
8955 enum tree_code_class kind = TREE_CODE_CLASS (code);
8956 tree arg0, arg1, tem;
8957 tree t1 = NULL_TREE;
8958 bool strict_overflow_p;
8959 unsigned int prec;
8961 gcc_assert (IS_EXPR_CODE_CLASS (kind)
8962 && TREE_CODE_LENGTH (code) == 2
8963 && op0 != NULL_TREE
8964 && op1 != NULL_TREE);
8966 arg0 = op0;
8967 arg1 = op1;
8969 /* Strip any conversions that don't change the mode. This is
8970 safe for every expression, except for a comparison expression
8971 because its signedness is derived from its operands. So, in
8972 the latter case, only strip conversions that don't change the
8973 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
8974 preserved.
8976 Note that this is done as an internal manipulation within the
8977 constant folder, in order to find the simplest representation
8978 of the arguments so that their form can be studied. In any
8979 cases, the appropriate type conversions should be put back in
8980 the tree that will get out of the constant folder. */
8982 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
8984 STRIP_SIGN_NOPS (arg0);
8985 STRIP_SIGN_NOPS (arg1);
8987 else
8989 STRIP_NOPS (arg0);
8990 STRIP_NOPS (arg1);
8993 /* Note that TREE_CONSTANT isn't enough: static var addresses are
8994 constant but we can't do arithmetic on them. */
8995 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
8997 tem = const_binop (code, type, arg0, arg1);
8998 if (tem != NULL_TREE)
9000 if (TREE_TYPE (tem) != type)
9001 tem = fold_convert_loc (loc, type, tem);
9002 return tem;
9006 /* If this is a commutative operation, and ARG0 is a constant, move it
9007 to ARG1 to reduce the number of tests below. */
9008 if (commutative_tree_code (code)
9009 && tree_swap_operands_p (arg0, arg1, true))
9010 return fold_build2_loc (loc, code, type, op1, op0);
9012 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9013 to ARG1 to reduce the number of tests below. */
9014 if (kind == tcc_comparison
9015 && tree_swap_operands_p (arg0, arg1, true))
9016 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9018 tem = generic_simplify (loc, code, type, op0, op1);
9019 if (tem)
9020 return tem;
9022 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9024 First check for cases where an arithmetic operation is applied to a
9025 compound, conditional, or comparison operation. Push the arithmetic
9026 operation inside the compound or conditional to see if any folding
9027 can then be done. Convert comparison to conditional for this purpose.
9028 The also optimizes non-constant cases that used to be done in
9029 expand_expr.
9031 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9032 one of the operands is a comparison and the other is a comparison, a
9033 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9034 code below would make the expression more complex. Change it to a
9035 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9036 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9038 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9039 || code == EQ_EXPR || code == NE_EXPR)
9040 && TREE_CODE (type) != VECTOR_TYPE
9041 && ((truth_value_p (TREE_CODE (arg0))
9042 && (truth_value_p (TREE_CODE (arg1))
9043 || (TREE_CODE (arg1) == BIT_AND_EXPR
9044 && integer_onep (TREE_OPERAND (arg1, 1)))))
9045 || (truth_value_p (TREE_CODE (arg1))
9046 && (truth_value_p (TREE_CODE (arg0))
9047 || (TREE_CODE (arg0) == BIT_AND_EXPR
9048 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9050 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9051 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9052 : TRUTH_XOR_EXPR,
9053 boolean_type_node,
9054 fold_convert_loc (loc, boolean_type_node, arg0),
9055 fold_convert_loc (loc, boolean_type_node, arg1));
9057 if (code == EQ_EXPR)
9058 tem = invert_truthvalue_loc (loc, tem);
9060 return fold_convert_loc (loc, type, tem);
9063 if (TREE_CODE_CLASS (code) == tcc_binary
9064 || TREE_CODE_CLASS (code) == tcc_comparison)
9066 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9068 tem = fold_build2_loc (loc, code, type,
9069 fold_convert_loc (loc, TREE_TYPE (op0),
9070 TREE_OPERAND (arg0, 1)), op1);
9071 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9072 tem);
9074 if (TREE_CODE (arg1) == COMPOUND_EXPR
9075 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9077 tem = fold_build2_loc (loc, code, type, op0,
9078 fold_convert_loc (loc, TREE_TYPE (op1),
9079 TREE_OPERAND (arg1, 1)));
9080 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9081 tem);
9084 if (TREE_CODE (arg0) == COND_EXPR
9085 || TREE_CODE (arg0) == VEC_COND_EXPR
9086 || COMPARISON_CLASS_P (arg0))
9088 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9089 arg0, arg1,
9090 /*cond_first_p=*/1);
9091 if (tem != NULL_TREE)
9092 return tem;
9095 if (TREE_CODE (arg1) == COND_EXPR
9096 || TREE_CODE (arg1) == VEC_COND_EXPR
9097 || COMPARISON_CLASS_P (arg1))
9099 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9100 arg1, arg0,
9101 /*cond_first_p=*/0);
9102 if (tem != NULL_TREE)
9103 return tem;
9107 switch (code)
9109 case MEM_REF:
9110 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9111 if (TREE_CODE (arg0) == ADDR_EXPR
9112 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9114 tree iref = TREE_OPERAND (arg0, 0);
9115 return fold_build2 (MEM_REF, type,
9116 TREE_OPERAND (iref, 0),
9117 int_const_binop (PLUS_EXPR, arg1,
9118 TREE_OPERAND (iref, 1)));
9121 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9122 if (TREE_CODE (arg0) == ADDR_EXPR
9123 && handled_component_p (TREE_OPERAND (arg0, 0)))
9125 tree base;
9126 HOST_WIDE_INT coffset;
9127 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9128 &coffset);
9129 if (!base)
9130 return NULL_TREE;
9131 return fold_build2 (MEM_REF, type,
9132 build_fold_addr_expr (base),
9133 int_const_binop (PLUS_EXPR, arg1,
9134 size_int (coffset)));
9137 return NULL_TREE;
9139 case POINTER_PLUS_EXPR:
9140 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9141 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9142 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9143 return fold_convert_loc (loc, type,
9144 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9145 fold_convert_loc (loc, sizetype,
9146 arg1),
9147 fold_convert_loc (loc, sizetype,
9148 arg0)));
9150 return NULL_TREE;
9152 case PLUS_EXPR:
9153 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9155 /* X + (X / CST) * -CST is X % CST. */
9156 if (TREE_CODE (arg1) == MULT_EXPR
9157 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9158 && operand_equal_p (arg0,
9159 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9161 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9162 tree cst1 = TREE_OPERAND (arg1, 1);
9163 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9164 cst1, cst0);
9165 if (sum && integer_zerop (sum))
9166 return fold_convert_loc (loc, type,
9167 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9168 TREE_TYPE (arg0), arg0,
9169 cst0));
9173 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9174 one. Make sure the type is not saturating and has the signedness of
9175 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9176 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9177 if ((TREE_CODE (arg0) == MULT_EXPR
9178 || TREE_CODE (arg1) == MULT_EXPR)
9179 && !TYPE_SATURATING (type)
9180 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9181 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9182 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9184 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9185 if (tem)
9186 return tem;
9189 if (! FLOAT_TYPE_P (type))
9191 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9192 (plus (plus (mult) (mult)) (foo)) so that we can
9193 take advantage of the factoring cases below. */
9194 if (ANY_INTEGRAL_TYPE_P (type)
9195 && TYPE_OVERFLOW_WRAPS (type)
9196 && (((TREE_CODE (arg0) == PLUS_EXPR
9197 || TREE_CODE (arg0) == MINUS_EXPR)
9198 && TREE_CODE (arg1) == MULT_EXPR)
9199 || ((TREE_CODE (arg1) == PLUS_EXPR
9200 || TREE_CODE (arg1) == MINUS_EXPR)
9201 && TREE_CODE (arg0) == MULT_EXPR)))
9203 tree parg0, parg1, parg, marg;
9204 enum tree_code pcode;
9206 if (TREE_CODE (arg1) == MULT_EXPR)
9207 parg = arg0, marg = arg1;
9208 else
9209 parg = arg1, marg = arg0;
9210 pcode = TREE_CODE (parg);
9211 parg0 = TREE_OPERAND (parg, 0);
9212 parg1 = TREE_OPERAND (parg, 1);
9213 STRIP_NOPS (parg0);
9214 STRIP_NOPS (parg1);
9216 if (TREE_CODE (parg0) == MULT_EXPR
9217 && TREE_CODE (parg1) != MULT_EXPR)
9218 return fold_build2_loc (loc, pcode, type,
9219 fold_build2_loc (loc, PLUS_EXPR, type,
9220 fold_convert_loc (loc, type,
9221 parg0),
9222 fold_convert_loc (loc, type,
9223 marg)),
9224 fold_convert_loc (loc, type, parg1));
9225 if (TREE_CODE (parg0) != MULT_EXPR
9226 && TREE_CODE (parg1) == MULT_EXPR)
9227 return
9228 fold_build2_loc (loc, PLUS_EXPR, type,
9229 fold_convert_loc (loc, type, parg0),
9230 fold_build2_loc (loc, pcode, type,
9231 fold_convert_loc (loc, type, marg),
9232 fold_convert_loc (loc, type,
9233 parg1)));
9236 else
9238 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9239 to __complex__ ( x, y ). This is not the same for SNaNs or
9240 if signed zeros are involved. */
9241 if (!HONOR_SNANS (element_mode (arg0))
9242 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9243 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9245 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9246 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9247 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9248 bool arg0rz = false, arg0iz = false;
9249 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9250 || (arg0i && (arg0iz = real_zerop (arg0i))))
9252 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9253 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9254 if (arg0rz && arg1i && real_zerop (arg1i))
9256 tree rp = arg1r ? arg1r
9257 : build1 (REALPART_EXPR, rtype, arg1);
9258 tree ip = arg0i ? arg0i
9259 : build1 (IMAGPART_EXPR, rtype, arg0);
9260 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9262 else if (arg0iz && arg1r && real_zerop (arg1r))
9264 tree rp = arg0r ? arg0r
9265 : build1 (REALPART_EXPR, rtype, arg0);
9266 tree ip = arg1i ? arg1i
9267 : build1 (IMAGPART_EXPR, rtype, arg1);
9268 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9273 if (flag_unsafe_math_optimizations
9274 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9275 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9276 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9277 return tem;
9279 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9280 We associate floats only if the user has specified
9281 -fassociative-math. */
9282 if (flag_associative_math
9283 && TREE_CODE (arg1) == PLUS_EXPR
9284 && TREE_CODE (arg0) != MULT_EXPR)
9286 tree tree10 = TREE_OPERAND (arg1, 0);
9287 tree tree11 = TREE_OPERAND (arg1, 1);
9288 if (TREE_CODE (tree11) == MULT_EXPR
9289 && TREE_CODE (tree10) == MULT_EXPR)
9291 tree tree0;
9292 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9293 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9296 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9297 We associate floats only if the user has specified
9298 -fassociative-math. */
9299 if (flag_associative_math
9300 && TREE_CODE (arg0) == PLUS_EXPR
9301 && TREE_CODE (arg1) != MULT_EXPR)
9303 tree tree00 = TREE_OPERAND (arg0, 0);
9304 tree tree01 = TREE_OPERAND (arg0, 1);
9305 if (TREE_CODE (tree01) == MULT_EXPR
9306 && TREE_CODE (tree00) == MULT_EXPR)
9308 tree tree0;
9309 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9310 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9315 bit_rotate:
9316 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9317 is a rotate of A by C1 bits. */
9318 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9319 is a rotate of A by B bits. */
9321 enum tree_code code0, code1;
9322 tree rtype;
9323 code0 = TREE_CODE (arg0);
9324 code1 = TREE_CODE (arg1);
9325 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9326 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9327 && operand_equal_p (TREE_OPERAND (arg0, 0),
9328 TREE_OPERAND (arg1, 0), 0)
9329 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9330 TYPE_UNSIGNED (rtype))
9331 /* Only create rotates in complete modes. Other cases are not
9332 expanded properly. */
9333 && (element_precision (rtype)
9334 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9336 tree tree01, tree11;
9337 enum tree_code code01, code11;
9339 tree01 = TREE_OPERAND (arg0, 1);
9340 tree11 = TREE_OPERAND (arg1, 1);
9341 STRIP_NOPS (tree01);
9342 STRIP_NOPS (tree11);
9343 code01 = TREE_CODE (tree01);
9344 code11 = TREE_CODE (tree11);
9345 if (code01 == INTEGER_CST
9346 && code11 == INTEGER_CST
9347 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9348 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9350 tem = build2_loc (loc, LROTATE_EXPR,
9351 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9352 TREE_OPERAND (arg0, 0),
9353 code0 == LSHIFT_EXPR
9354 ? TREE_OPERAND (arg0, 1)
9355 : TREE_OPERAND (arg1, 1));
9356 return fold_convert_loc (loc, type, tem);
9358 else if (code11 == MINUS_EXPR)
9360 tree tree110, tree111;
9361 tree110 = TREE_OPERAND (tree11, 0);
9362 tree111 = TREE_OPERAND (tree11, 1);
9363 STRIP_NOPS (tree110);
9364 STRIP_NOPS (tree111);
9365 if (TREE_CODE (tree110) == INTEGER_CST
9366 && 0 == compare_tree_int (tree110,
9367 element_precision
9368 (TREE_TYPE (TREE_OPERAND
9369 (arg0, 0))))
9370 && operand_equal_p (tree01, tree111, 0))
9371 return
9372 fold_convert_loc (loc, type,
9373 build2 ((code0 == LSHIFT_EXPR
9374 ? LROTATE_EXPR
9375 : RROTATE_EXPR),
9376 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9377 TREE_OPERAND (arg0, 0),
9378 TREE_OPERAND (arg0, 1)));
9380 else if (code01 == MINUS_EXPR)
9382 tree tree010, tree011;
9383 tree010 = TREE_OPERAND (tree01, 0);
9384 tree011 = TREE_OPERAND (tree01, 1);
9385 STRIP_NOPS (tree010);
9386 STRIP_NOPS (tree011);
9387 if (TREE_CODE (tree010) == INTEGER_CST
9388 && 0 == compare_tree_int (tree010,
9389 element_precision
9390 (TREE_TYPE (TREE_OPERAND
9391 (arg0, 0))))
9392 && operand_equal_p (tree11, tree011, 0))
9393 return fold_convert_loc
9394 (loc, type,
9395 build2 ((code0 != LSHIFT_EXPR
9396 ? LROTATE_EXPR
9397 : RROTATE_EXPR),
9398 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9399 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9404 associate:
9405 /* In most languages, can't associate operations on floats through
9406 parentheses. Rather than remember where the parentheses were, we
9407 don't associate floats at all, unless the user has specified
9408 -fassociative-math.
9409 And, we need to make sure type is not saturating. */
9411 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9412 && !TYPE_SATURATING (type))
9414 tree var0, con0, lit0, minus_lit0;
9415 tree var1, con1, lit1, minus_lit1;
9416 tree atype = type;
9417 bool ok = true;
9419 /* Split both trees into variables, constants, and literals. Then
9420 associate each group together, the constants with literals,
9421 then the result with variables. This increases the chances of
9422 literals being recombined later and of generating relocatable
9423 expressions for the sum of a constant and literal. */
9424 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
9425 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
9426 code == MINUS_EXPR);
9428 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9429 if (code == MINUS_EXPR)
9430 code = PLUS_EXPR;
9432 /* With undefined overflow prefer doing association in a type
9433 which wraps on overflow, if that is one of the operand types. */
9434 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9435 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9437 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9438 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9439 atype = TREE_TYPE (arg0);
9440 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9441 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9442 atype = TREE_TYPE (arg1);
9443 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9446 /* With undefined overflow we can only associate constants with one
9447 variable, and constants whose association doesn't overflow. */
9448 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9449 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9451 if (var0 && var1)
9453 tree tmp0 = var0;
9454 tree tmp1 = var1;
9456 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9457 tmp0 = TREE_OPERAND (tmp0, 0);
9458 if (CONVERT_EXPR_P (tmp0)
9459 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9460 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9461 <= TYPE_PRECISION (atype)))
9462 tmp0 = TREE_OPERAND (tmp0, 0);
9463 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9464 tmp1 = TREE_OPERAND (tmp1, 0);
9465 if (CONVERT_EXPR_P (tmp1)
9466 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9467 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9468 <= TYPE_PRECISION (atype)))
9469 tmp1 = TREE_OPERAND (tmp1, 0);
9470 /* The only case we can still associate with two variables
9471 is if they are the same, modulo negation and bit-pattern
9472 preserving conversions. */
9473 if (!operand_equal_p (tmp0, tmp1, 0))
9474 ok = false;
9478 /* Only do something if we found more than two objects. Otherwise,
9479 nothing has changed and we risk infinite recursion. */
9480 if (ok
9481 && (2 < ((var0 != 0) + (var1 != 0)
9482 + (con0 != 0) + (con1 != 0)
9483 + (lit0 != 0) + (lit1 != 0)
9484 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9486 bool any_overflows = false;
9487 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9488 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9489 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9490 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9491 var0 = associate_trees (loc, var0, var1, code, atype);
9492 con0 = associate_trees (loc, con0, con1, code, atype);
9493 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9494 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9495 code, atype);
9497 /* Preserve the MINUS_EXPR if the negative part of the literal is
9498 greater than the positive part. Otherwise, the multiplicative
9499 folding code (i.e extract_muldiv) may be fooled in case
9500 unsigned constants are subtracted, like in the following
9501 example: ((X*2 + 4) - 8U)/2. */
9502 if (minus_lit0 && lit0)
9504 if (TREE_CODE (lit0) == INTEGER_CST
9505 && TREE_CODE (minus_lit0) == INTEGER_CST
9506 && tree_int_cst_lt (lit0, minus_lit0))
9508 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9509 MINUS_EXPR, atype);
9510 lit0 = 0;
9512 else
9514 lit0 = associate_trees (loc, lit0, minus_lit0,
9515 MINUS_EXPR, atype);
9516 minus_lit0 = 0;
9520 /* Don't introduce overflows through reassociation. */
9521 if (!any_overflows
9522 && ((lit0 && TREE_OVERFLOW_P (lit0))
9523 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9524 return NULL_TREE;
9526 if (minus_lit0)
9528 if (con0 == 0)
9529 return
9530 fold_convert_loc (loc, type,
9531 associate_trees (loc, var0, minus_lit0,
9532 MINUS_EXPR, atype));
9533 else
9535 con0 = associate_trees (loc, con0, minus_lit0,
9536 MINUS_EXPR, atype);
9537 return
9538 fold_convert_loc (loc, type,
9539 associate_trees (loc, var0, con0,
9540 PLUS_EXPR, atype));
9544 con0 = associate_trees (loc, con0, lit0, code, atype);
9545 return
9546 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9547 code, atype));
9551 return NULL_TREE;
9553 case MINUS_EXPR:
9554 /* Pointer simplifications for subtraction, simple reassociations. */
9555 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
9557 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
9558 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
9559 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9561 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9562 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9563 tree arg10 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
9564 tree arg11 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
9565 return fold_build2_loc (loc, PLUS_EXPR, type,
9566 fold_build2_loc (loc, MINUS_EXPR, type,
9567 arg00, arg10),
9568 fold_build2_loc (loc, MINUS_EXPR, type,
9569 arg01, arg11));
9571 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
9572 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9574 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9575 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9576 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type, arg00,
9577 fold_convert_loc (loc, type, arg1));
9578 if (tmp)
9579 return fold_build2_loc (loc, PLUS_EXPR, type, tmp, arg01);
9581 /* PTR0 - (PTR1 p+ A) -> (PTR0 - PTR1) - A, assuming PTR0 - PTR1
9582 simplifies. */
9583 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9585 tree arg10 = fold_convert_loc (loc, type,
9586 TREE_OPERAND (arg1, 0));
9587 tree arg11 = fold_convert_loc (loc, type,
9588 TREE_OPERAND (arg1, 1));
9589 tree tmp = fold_binary_loc (loc, MINUS_EXPR, type,
9590 fold_convert_loc (loc, type, arg0),
9591 arg10);
9592 if (tmp)
9593 return fold_build2_loc (loc, MINUS_EXPR, type, tmp, arg11);
9596 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9597 if (TREE_CODE (arg0) == NEGATE_EXPR
9598 && negate_expr_p (arg1)
9599 && reorder_operands_p (arg0, arg1))
9600 return fold_build2_loc (loc, MINUS_EXPR, type,
9601 fold_convert_loc (loc, type,
9602 negate_expr (arg1)),
9603 fold_convert_loc (loc, type,
9604 TREE_OPERAND (arg0, 0)));
9606 if (! FLOAT_TYPE_P (type))
9608 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
9609 any power of 2 minus 1. */
9610 if (TREE_CODE (arg0) == BIT_AND_EXPR
9611 && TREE_CODE (arg1) == BIT_AND_EXPR
9612 && operand_equal_p (TREE_OPERAND (arg0, 0),
9613 TREE_OPERAND (arg1, 0), 0))
9615 tree mask0 = TREE_OPERAND (arg0, 1);
9616 tree mask1 = TREE_OPERAND (arg1, 1);
9617 tree tem = fold_build1_loc (loc, BIT_NOT_EXPR, type, mask0);
9619 if (operand_equal_p (tem, mask1, 0))
9621 tem = fold_build2_loc (loc, BIT_XOR_EXPR, type,
9622 TREE_OPERAND (arg0, 0), mask1);
9623 return fold_build2_loc (loc, MINUS_EXPR, type, tem, mask1);
9628 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9629 __complex__ ( x, -y ). This is not the same for SNaNs or if
9630 signed zeros are involved. */
9631 if (!HONOR_SNANS (element_mode (arg0))
9632 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9633 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9635 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9636 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9637 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9638 bool arg0rz = false, arg0iz = false;
9639 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9640 || (arg0i && (arg0iz = real_zerop (arg0i))))
9642 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9643 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9644 if (arg0rz && arg1i && real_zerop (arg1i))
9646 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9647 arg1r ? arg1r
9648 : build1 (REALPART_EXPR, rtype, arg1));
9649 tree ip = arg0i ? arg0i
9650 : build1 (IMAGPART_EXPR, rtype, arg0);
9651 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9653 else if (arg0iz && arg1r && real_zerop (arg1r))
9655 tree rp = arg0r ? arg0r
9656 : build1 (REALPART_EXPR, rtype, arg0);
9657 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9658 arg1i ? arg1i
9659 : build1 (IMAGPART_EXPR, rtype, arg1));
9660 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9665 /* A - B -> A + (-B) if B is easily negatable. */
9666 if (negate_expr_p (arg1)
9667 && !TYPE_OVERFLOW_SANITIZED (type)
9668 && ((FLOAT_TYPE_P (type)
9669 /* Avoid this transformation if B is a positive REAL_CST. */
9670 && (TREE_CODE (arg1) != REAL_CST
9671 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
9672 || INTEGRAL_TYPE_P (type)))
9673 return fold_build2_loc (loc, PLUS_EXPR, type,
9674 fold_convert_loc (loc, type, arg0),
9675 fold_convert_loc (loc, type,
9676 negate_expr (arg1)));
9678 /* Fold &a[i] - &a[j] to i-j. */
9679 if (TREE_CODE (arg0) == ADDR_EXPR
9680 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9681 && TREE_CODE (arg1) == ADDR_EXPR
9682 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9684 tree tem = fold_addr_of_array_ref_difference (loc, type,
9685 TREE_OPERAND (arg0, 0),
9686 TREE_OPERAND (arg1, 0));
9687 if (tem)
9688 return tem;
9691 if (FLOAT_TYPE_P (type)
9692 && flag_unsafe_math_optimizations
9693 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9694 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9695 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9696 return tem;
9698 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9699 one. Make sure the type is not saturating and has the signedness of
9700 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9701 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9702 if ((TREE_CODE (arg0) == MULT_EXPR
9703 || TREE_CODE (arg1) == MULT_EXPR)
9704 && !TYPE_SATURATING (type)
9705 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9706 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9707 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9709 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9710 if (tem)
9711 return tem;
9714 goto associate;
9716 case MULT_EXPR:
9717 /* (-A) * (-B) -> A * B */
9718 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
9719 return fold_build2_loc (loc, MULT_EXPR, type,
9720 fold_convert_loc (loc, type,
9721 TREE_OPERAND (arg0, 0)),
9722 fold_convert_loc (loc, type,
9723 negate_expr (arg1)));
9724 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
9725 return fold_build2_loc (loc, MULT_EXPR, type,
9726 fold_convert_loc (loc, type,
9727 negate_expr (arg0)),
9728 fold_convert_loc (loc, type,
9729 TREE_OPERAND (arg1, 0)));
9731 if (! FLOAT_TYPE_P (type))
9733 /* Transform x * -C into -x * C if x is easily negatable. */
9734 if (TREE_CODE (arg1) == INTEGER_CST
9735 && tree_int_cst_sgn (arg1) == -1
9736 && negate_expr_p (arg0)
9737 && (tem = negate_expr (arg1)) != arg1
9738 && !TREE_OVERFLOW (tem))
9739 return fold_build2_loc (loc, MULT_EXPR, type,
9740 fold_convert_loc (loc, type,
9741 negate_expr (arg0)),
9742 tem);
9744 /* (a * (1 << b)) is (a << b) */
9745 if (TREE_CODE (arg1) == LSHIFT_EXPR
9746 && integer_onep (TREE_OPERAND (arg1, 0)))
9747 return fold_build2_loc (loc, LSHIFT_EXPR, type, op0,
9748 TREE_OPERAND (arg1, 1));
9749 if (TREE_CODE (arg0) == LSHIFT_EXPR
9750 && integer_onep (TREE_OPERAND (arg0, 0)))
9751 return fold_build2_loc (loc, LSHIFT_EXPR, type, op1,
9752 TREE_OPERAND (arg0, 1));
9754 /* (A + A) * C -> A * 2 * C */
9755 if (TREE_CODE (arg0) == PLUS_EXPR
9756 && TREE_CODE (arg1) == INTEGER_CST
9757 && operand_equal_p (TREE_OPERAND (arg0, 0),
9758 TREE_OPERAND (arg0, 1), 0))
9759 return fold_build2_loc (loc, MULT_EXPR, type,
9760 omit_one_operand_loc (loc, type,
9761 TREE_OPERAND (arg0, 0),
9762 TREE_OPERAND (arg0, 1)),
9763 fold_build2_loc (loc, MULT_EXPR, type,
9764 build_int_cst (type, 2) , arg1));
9766 /* ((T) (X /[ex] C)) * C cancels out if the conversion is
9767 sign-changing only. */
9768 if (TREE_CODE (arg1) == INTEGER_CST
9769 && TREE_CODE (arg0) == EXACT_DIV_EXPR
9770 && operand_equal_p (arg1, TREE_OPERAND (arg0, 1), 0))
9771 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9773 strict_overflow_p = false;
9774 if (TREE_CODE (arg1) == INTEGER_CST
9775 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9776 &strict_overflow_p)))
9778 if (strict_overflow_p)
9779 fold_overflow_warning (("assuming signed overflow does not "
9780 "occur when simplifying "
9781 "multiplication"),
9782 WARN_STRICT_OVERFLOW_MISC);
9783 return fold_convert_loc (loc, type, tem);
9786 /* Optimize z * conj(z) for integer complex numbers. */
9787 if (TREE_CODE (arg0) == CONJ_EXPR
9788 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9789 return fold_mult_zconjz (loc, type, arg1);
9790 if (TREE_CODE (arg1) == CONJ_EXPR
9791 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9792 return fold_mult_zconjz (loc, type, arg0);
9794 else
9796 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
9797 the result for floating point types due to rounding so it is applied
9798 only if -fassociative-math was specify. */
9799 if (flag_associative_math
9800 && TREE_CODE (arg0) == RDIV_EXPR
9801 && TREE_CODE (arg1) == REAL_CST
9802 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
9804 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
9805 arg1);
9806 if (tem)
9807 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
9808 TREE_OPERAND (arg0, 1));
9811 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
9812 if (operand_equal_p (arg0, arg1, 0))
9814 tree tem = fold_strip_sign_ops (arg0);
9815 if (tem != NULL_TREE)
9817 tem = fold_convert_loc (loc, type, tem);
9818 return fold_build2_loc (loc, MULT_EXPR, type, tem, tem);
9822 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9823 This is not the same for NaNs or if signed zeros are
9824 involved. */
9825 if (!HONOR_NANS (arg0)
9826 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9827 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9828 && TREE_CODE (arg1) == COMPLEX_CST
9829 && real_zerop (TREE_REALPART (arg1)))
9831 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9832 if (real_onep (TREE_IMAGPART (arg1)))
9833 return
9834 fold_build2_loc (loc, COMPLEX_EXPR, type,
9835 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9836 rtype, arg0)),
9837 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9838 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9839 return
9840 fold_build2_loc (loc, COMPLEX_EXPR, type,
9841 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9842 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9843 rtype, arg0)));
9846 /* Optimize z * conj(z) for floating point complex numbers.
9847 Guarded by flag_unsafe_math_optimizations as non-finite
9848 imaginary components don't produce scalar results. */
9849 if (flag_unsafe_math_optimizations
9850 && TREE_CODE (arg0) == CONJ_EXPR
9851 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9852 return fold_mult_zconjz (loc, type, arg1);
9853 if (flag_unsafe_math_optimizations
9854 && TREE_CODE (arg1) == CONJ_EXPR
9855 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9856 return fold_mult_zconjz (loc, type, arg0);
9858 if (flag_unsafe_math_optimizations)
9861 /* Canonicalize x*x as pow(x,2.0), which is expanded as x*x. */
9862 if (!in_gimple_form
9863 && optimize
9864 && operand_equal_p (arg0, arg1, 0))
9866 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
9868 if (powfn)
9870 tree arg = build_real (type, dconst2);
9871 return build_call_expr_loc (loc, powfn, 2, arg0, arg);
9876 goto associate;
9878 case BIT_IOR_EXPR:
9879 /* Canonicalize (X & C1) | C2. */
9880 if (TREE_CODE (arg0) == BIT_AND_EXPR
9881 && TREE_CODE (arg1) == INTEGER_CST
9882 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9884 int width = TYPE_PRECISION (type), w;
9885 wide_int c1 = TREE_OPERAND (arg0, 1);
9886 wide_int c2 = arg1;
9888 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9889 if ((c1 & c2) == c1)
9890 return omit_one_operand_loc (loc, type, arg1,
9891 TREE_OPERAND (arg0, 0));
9893 wide_int msk = wi::mask (width, false,
9894 TYPE_PRECISION (TREE_TYPE (arg1)));
9896 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9897 if (msk.and_not (c1 | c2) == 0)
9898 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9899 TREE_OPERAND (arg0, 0), arg1);
9901 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9902 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9903 mode which allows further optimizations. */
9904 c1 &= msk;
9905 c2 &= msk;
9906 wide_int c3 = c1.and_not (c2);
9907 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9909 wide_int mask = wi::mask (w, false,
9910 TYPE_PRECISION (type));
9911 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
9913 c3 = mask;
9914 break;
9918 if (c3 != c1)
9919 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9920 fold_build2_loc (loc, BIT_AND_EXPR, type,
9921 TREE_OPERAND (arg0, 0),
9922 wide_int_to_tree (type,
9923 c3)),
9924 arg1);
9927 /* (X & ~Y) | (~X & Y) is X ^ Y */
9928 if (TREE_CODE (arg0) == BIT_AND_EXPR
9929 && TREE_CODE (arg1) == BIT_AND_EXPR)
9931 tree a0, a1, l0, l1, n0, n1;
9933 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
9934 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
9936 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
9937 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
9939 n0 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l0);
9940 n1 = fold_build1_loc (loc, BIT_NOT_EXPR, type, l1);
9942 if ((operand_equal_p (n0, a0, 0)
9943 && operand_equal_p (n1, a1, 0))
9944 || (operand_equal_p (n0, a1, 0)
9945 && operand_equal_p (n1, a0, 0)))
9946 return fold_build2_loc (loc, BIT_XOR_EXPR, type, l0, n1);
9949 /* See if this can be simplified into a rotate first. If that
9950 is unsuccessful continue in the association code. */
9951 goto bit_rotate;
9953 case BIT_XOR_EXPR:
9954 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9955 if (TREE_CODE (arg0) == BIT_AND_EXPR
9956 && INTEGRAL_TYPE_P (type)
9957 && integer_onep (TREE_OPERAND (arg0, 1))
9958 && integer_onep (arg1))
9959 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
9960 build_zero_cst (TREE_TYPE (arg0)));
9962 /* See if this can be simplified into a rotate first. If that
9963 is unsuccessful continue in the association code. */
9964 goto bit_rotate;
9966 case BIT_AND_EXPR:
9967 /* ~X & X, (X == 0) & X, and !X & X are always zero. */
9968 if ((TREE_CODE (arg0) == BIT_NOT_EXPR
9969 || TREE_CODE (arg0) == TRUTH_NOT_EXPR
9970 || (TREE_CODE (arg0) == EQ_EXPR
9971 && integer_zerop (TREE_OPERAND (arg0, 1))))
9972 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9973 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
9975 /* X & ~X , X & (X == 0), and X & !X are always zero. */
9976 if ((TREE_CODE (arg1) == BIT_NOT_EXPR
9977 || TREE_CODE (arg1) == TRUTH_NOT_EXPR
9978 || (TREE_CODE (arg1) == EQ_EXPR
9979 && integer_zerop (TREE_OPERAND (arg1, 1))))
9980 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9981 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
9983 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9984 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9985 && INTEGRAL_TYPE_P (type)
9986 && integer_onep (TREE_OPERAND (arg0, 1))
9987 && integer_onep (arg1))
9989 tree tem2;
9990 tem = TREE_OPERAND (arg0, 0);
9991 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9992 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9993 tem, tem2);
9994 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9995 build_zero_cst (TREE_TYPE (tem)));
9997 /* Fold ~X & 1 as (X & 1) == 0. */
9998 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9999 && INTEGRAL_TYPE_P (type)
10000 && integer_onep (arg1))
10002 tree tem2;
10003 tem = TREE_OPERAND (arg0, 0);
10004 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
10005 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
10006 tem, tem2);
10007 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
10008 build_zero_cst (TREE_TYPE (tem)));
10010 /* Fold !X & 1 as X == 0. */
10011 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10012 && integer_onep (arg1))
10014 tem = TREE_OPERAND (arg0, 0);
10015 return fold_build2_loc (loc, EQ_EXPR, type, tem,
10016 build_zero_cst (TREE_TYPE (tem)));
10019 /* Fold (X ^ Y) & Y as ~X & Y. */
10020 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10021 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10023 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10024 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10025 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10026 fold_convert_loc (loc, type, arg1));
10028 /* Fold (X ^ Y) & X as ~Y & X. */
10029 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10030 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10031 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10033 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10034 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10035 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10036 fold_convert_loc (loc, type, arg1));
10038 /* Fold X & (X ^ Y) as X & ~Y. */
10039 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10040 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10042 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10043 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10044 fold_convert_loc (loc, type, arg0),
10045 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem));
10047 /* Fold X & (Y ^ X) as ~Y & X. */
10048 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10049 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10050 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10052 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10053 return fold_build2_loc (loc, BIT_AND_EXPR, type,
10054 fold_build1_loc (loc, BIT_NOT_EXPR, type, tem),
10055 fold_convert_loc (loc, type, arg0));
10058 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10059 multiple of 1 << CST. */
10060 if (TREE_CODE (arg1) == INTEGER_CST)
10062 wide_int cst1 = arg1;
10063 wide_int ncst1 = -cst1;
10064 if ((cst1 & ncst1) == ncst1
10065 && multiple_of_p (type, arg0,
10066 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
10067 return fold_convert_loc (loc, type, arg0);
10070 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10071 bits from CST2. */
10072 if (TREE_CODE (arg1) == INTEGER_CST
10073 && TREE_CODE (arg0) == MULT_EXPR
10074 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10076 wide_int warg1 = arg1;
10077 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10079 if (masked == 0)
10080 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10081 arg0, arg1);
10082 else if (masked != warg1)
10084 /* Avoid the transform if arg1 is a mask of some
10085 mode which allows further optimizations. */
10086 int pop = wi::popcount (warg1);
10087 if (!(pop >= BITS_PER_UNIT
10088 && exact_log2 (pop) != -1
10089 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10090 return fold_build2_loc (loc, code, type, op0,
10091 wide_int_to_tree (type, masked));
10095 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10096 ((A & N) + B) & M -> (A + B) & M
10097 Similarly if (N & M) == 0,
10098 ((A | N) + B) & M -> (A + B) & M
10099 and for - instead of + (or unary - instead of +)
10100 and/or ^ instead of |.
10101 If B is constant and (B & M) == 0, fold into A & M. */
10102 if (TREE_CODE (arg1) == INTEGER_CST)
10104 wide_int cst1 = arg1;
10105 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10106 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10107 && (TREE_CODE (arg0) == PLUS_EXPR
10108 || TREE_CODE (arg0) == MINUS_EXPR
10109 || TREE_CODE (arg0) == NEGATE_EXPR)
10110 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10111 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10113 tree pmop[2];
10114 int which = 0;
10115 wide_int cst0;
10117 /* Now we know that arg0 is (C + D) or (C - D) or
10118 -C and arg1 (M) is == (1LL << cst) - 1.
10119 Store C into PMOP[0] and D into PMOP[1]. */
10120 pmop[0] = TREE_OPERAND (arg0, 0);
10121 pmop[1] = NULL;
10122 if (TREE_CODE (arg0) != NEGATE_EXPR)
10124 pmop[1] = TREE_OPERAND (arg0, 1);
10125 which = 1;
10128 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10129 which = -1;
10131 for (; which >= 0; which--)
10132 switch (TREE_CODE (pmop[which]))
10134 case BIT_AND_EXPR:
10135 case BIT_IOR_EXPR:
10136 case BIT_XOR_EXPR:
10137 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10138 != INTEGER_CST)
10139 break;
10140 cst0 = TREE_OPERAND (pmop[which], 1);
10141 cst0 &= cst1;
10142 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10144 if (cst0 != cst1)
10145 break;
10147 else if (cst0 != 0)
10148 break;
10149 /* If C or D is of the form (A & N) where
10150 (N & M) == M, or of the form (A | N) or
10151 (A ^ N) where (N & M) == 0, replace it with A. */
10152 pmop[which] = TREE_OPERAND (pmop[which], 0);
10153 break;
10154 case INTEGER_CST:
10155 /* If C or D is a N where (N & M) == 0, it can be
10156 omitted (assumed 0). */
10157 if ((TREE_CODE (arg0) == PLUS_EXPR
10158 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10159 && (cst1 & pmop[which]) == 0)
10160 pmop[which] = NULL;
10161 break;
10162 default:
10163 break;
10166 /* Only build anything new if we optimized one or both arguments
10167 above. */
10168 if (pmop[0] != TREE_OPERAND (arg0, 0)
10169 || (TREE_CODE (arg0) != NEGATE_EXPR
10170 && pmop[1] != TREE_OPERAND (arg0, 1)))
10172 tree utype = TREE_TYPE (arg0);
10173 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10175 /* Perform the operations in a type that has defined
10176 overflow behavior. */
10177 utype = unsigned_type_for (TREE_TYPE (arg0));
10178 if (pmop[0] != NULL)
10179 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10180 if (pmop[1] != NULL)
10181 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10184 if (TREE_CODE (arg0) == NEGATE_EXPR)
10185 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10186 else if (TREE_CODE (arg0) == PLUS_EXPR)
10188 if (pmop[0] != NULL && pmop[1] != NULL)
10189 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10190 pmop[0], pmop[1]);
10191 else if (pmop[0] != NULL)
10192 tem = pmop[0];
10193 else if (pmop[1] != NULL)
10194 tem = pmop[1];
10195 else
10196 return build_int_cst (type, 0);
10198 else if (pmop[0] == NULL)
10199 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10200 else
10201 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10202 pmop[0], pmop[1]);
10203 /* TEM is now the new binary +, - or unary - replacement. */
10204 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10205 fold_convert_loc (loc, utype, arg1));
10206 return fold_convert_loc (loc, type, tem);
10211 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10212 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10213 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10215 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10217 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10218 if (mask == -1)
10219 return
10220 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10223 goto associate;
10225 case RDIV_EXPR:
10226 /* Don't touch a floating-point divide by zero unless the mode
10227 of the constant can represent infinity. */
10228 if (TREE_CODE (arg1) == REAL_CST
10229 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10230 && real_zerop (arg1))
10231 return NULL_TREE;
10233 /* (-A) / (-B) -> A / B */
10234 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10235 return fold_build2_loc (loc, RDIV_EXPR, type,
10236 TREE_OPERAND (arg0, 0),
10237 negate_expr (arg1));
10238 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10239 return fold_build2_loc (loc, RDIV_EXPR, type,
10240 negate_expr (arg0),
10241 TREE_OPERAND (arg1, 0));
10243 /* Convert A/B/C to A/(B*C). */
10244 if (flag_reciprocal_math
10245 && TREE_CODE (arg0) == RDIV_EXPR)
10246 return fold_build2_loc (loc, RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
10247 fold_build2_loc (loc, MULT_EXPR, type,
10248 TREE_OPERAND (arg0, 1), arg1));
10250 /* Convert A/(B/C) to (A/B)*C. */
10251 if (flag_reciprocal_math
10252 && TREE_CODE (arg1) == RDIV_EXPR)
10253 return fold_build2_loc (loc, MULT_EXPR, type,
10254 fold_build2_loc (loc, RDIV_EXPR, type, arg0,
10255 TREE_OPERAND (arg1, 0)),
10256 TREE_OPERAND (arg1, 1));
10258 /* Convert C1/(X*C2) into (C1/C2)/X. */
10259 if (flag_reciprocal_math
10260 && TREE_CODE (arg1) == MULT_EXPR
10261 && TREE_CODE (arg0) == REAL_CST
10262 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
10264 tree tem = const_binop (RDIV_EXPR, arg0,
10265 TREE_OPERAND (arg1, 1));
10266 if (tem)
10267 return fold_build2_loc (loc, RDIV_EXPR, type, tem,
10268 TREE_OPERAND (arg1, 0));
10271 return NULL_TREE;
10273 case TRUNC_DIV_EXPR:
10274 /* Optimize (X & (-A)) / A where A is a power of 2,
10275 to X >> log2(A) */
10276 if (TREE_CODE (arg0) == BIT_AND_EXPR
10277 && !TYPE_UNSIGNED (type) && TREE_CODE (arg1) == INTEGER_CST
10278 && integer_pow2p (arg1) && tree_int_cst_sgn (arg1) > 0)
10280 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (arg1),
10281 arg1, TREE_OPERAND (arg0, 1));
10282 if (sum && integer_zerop (sum)) {
10283 tree pow2 = build_int_cst (integer_type_node,
10284 wi::exact_log2 (arg1));
10285 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10286 TREE_OPERAND (arg0, 0), pow2);
10290 /* Fall through */
10292 case FLOOR_DIV_EXPR:
10293 /* Simplify A / (B << N) where A and B are positive and B is
10294 a power of 2, to A >> (N + log2(B)). */
10295 strict_overflow_p = false;
10296 if (TREE_CODE (arg1) == LSHIFT_EXPR
10297 && (TYPE_UNSIGNED (type)
10298 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10300 tree sval = TREE_OPERAND (arg1, 0);
10301 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10303 tree sh_cnt = TREE_OPERAND (arg1, 1);
10304 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10305 wi::exact_log2 (sval));
10307 if (strict_overflow_p)
10308 fold_overflow_warning (("assuming signed overflow does not "
10309 "occur when simplifying A / (B << N)"),
10310 WARN_STRICT_OVERFLOW_MISC);
10312 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10313 sh_cnt, pow2);
10314 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10315 fold_convert_loc (loc, type, arg0), sh_cnt);
10319 /* Fall through */
10321 case ROUND_DIV_EXPR:
10322 case CEIL_DIV_EXPR:
10323 case EXACT_DIV_EXPR:
10324 if (integer_zerop (arg1))
10325 return NULL_TREE;
10327 /* Convert -A / -B to A / B when the type is signed and overflow is
10328 undefined. */
10329 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10330 && TREE_CODE (arg0) == NEGATE_EXPR
10331 && negate_expr_p (arg1))
10333 if (INTEGRAL_TYPE_P (type))
10334 fold_overflow_warning (("assuming signed overflow does not occur "
10335 "when distributing negation across "
10336 "division"),
10337 WARN_STRICT_OVERFLOW_MISC);
10338 return fold_build2_loc (loc, code, type,
10339 fold_convert_loc (loc, type,
10340 TREE_OPERAND (arg0, 0)),
10341 fold_convert_loc (loc, type,
10342 negate_expr (arg1)));
10344 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10345 && TREE_CODE (arg1) == NEGATE_EXPR
10346 && negate_expr_p (arg0))
10348 if (INTEGRAL_TYPE_P (type))
10349 fold_overflow_warning (("assuming signed overflow does not occur "
10350 "when distributing negation across "
10351 "division"),
10352 WARN_STRICT_OVERFLOW_MISC);
10353 return fold_build2_loc (loc, code, type,
10354 fold_convert_loc (loc, type,
10355 negate_expr (arg0)),
10356 fold_convert_loc (loc, type,
10357 TREE_OPERAND (arg1, 0)));
10360 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10361 operation, EXACT_DIV_EXPR.
10363 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10364 At one time others generated faster code, it's not clear if they do
10365 after the last round to changes to the DIV code in expmed.c. */
10366 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10367 && multiple_of_p (type, arg0, arg1))
10368 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10369 fold_convert (type, arg0),
10370 fold_convert (type, arg1));
10372 strict_overflow_p = false;
10373 if (TREE_CODE (arg1) == INTEGER_CST
10374 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10375 &strict_overflow_p)))
10377 if (strict_overflow_p)
10378 fold_overflow_warning (("assuming signed overflow does not occur "
10379 "when simplifying division"),
10380 WARN_STRICT_OVERFLOW_MISC);
10381 return fold_convert_loc (loc, type, tem);
10384 return NULL_TREE;
10386 case CEIL_MOD_EXPR:
10387 case FLOOR_MOD_EXPR:
10388 case ROUND_MOD_EXPR:
10389 case TRUNC_MOD_EXPR:
10390 strict_overflow_p = false;
10391 if (TREE_CODE (arg1) == INTEGER_CST
10392 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10393 &strict_overflow_p)))
10395 if (strict_overflow_p)
10396 fold_overflow_warning (("assuming signed overflow does not occur "
10397 "when simplifying modulus"),
10398 WARN_STRICT_OVERFLOW_MISC);
10399 return fold_convert_loc (loc, type, tem);
10402 return NULL_TREE;
10404 case LROTATE_EXPR:
10405 case RROTATE_EXPR:
10406 case RSHIFT_EXPR:
10407 case LSHIFT_EXPR:
10408 /* Since negative shift count is not well-defined,
10409 don't try to compute it in the compiler. */
10410 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10411 return NULL_TREE;
10413 prec = element_precision (type);
10415 /* If we have a rotate of a bit operation with the rotate count and
10416 the second operand of the bit operation both constant,
10417 permute the two operations. */
10418 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10419 && (TREE_CODE (arg0) == BIT_AND_EXPR
10420 || TREE_CODE (arg0) == BIT_IOR_EXPR
10421 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10422 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10423 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10424 fold_build2_loc (loc, code, type,
10425 TREE_OPERAND (arg0, 0), arg1),
10426 fold_build2_loc (loc, code, type,
10427 TREE_OPERAND (arg0, 1), arg1));
10429 /* Two consecutive rotates adding up to the some integer
10430 multiple of the precision of the type can be ignored. */
10431 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10432 && TREE_CODE (arg0) == RROTATE_EXPR
10433 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10434 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10435 prec) == 0)
10436 return TREE_OPERAND (arg0, 0);
10438 return NULL_TREE;
10440 case MIN_EXPR:
10441 tem = fold_minmax (loc, MIN_EXPR, type, arg0, arg1);
10442 if (tem)
10443 return tem;
10444 goto associate;
10446 case MAX_EXPR:
10447 tem = fold_minmax (loc, MAX_EXPR, type, arg0, arg1);
10448 if (tem)
10449 return tem;
10450 goto associate;
10452 case TRUTH_ANDIF_EXPR:
10453 /* Note that the operands of this must be ints
10454 and their values must be 0 or 1.
10455 ("true" is a fixed value perhaps depending on the language.) */
10456 /* If first arg is constant zero, return it. */
10457 if (integer_zerop (arg0))
10458 return fold_convert_loc (loc, type, arg0);
10459 case TRUTH_AND_EXPR:
10460 /* If either arg is constant true, drop it. */
10461 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10462 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10463 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10464 /* Preserve sequence points. */
10465 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10466 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10467 /* If second arg is constant zero, result is zero, but first arg
10468 must be evaluated. */
10469 if (integer_zerop (arg1))
10470 return omit_one_operand_loc (loc, type, arg1, arg0);
10471 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10472 case will be handled here. */
10473 if (integer_zerop (arg0))
10474 return omit_one_operand_loc (loc, type, arg0, arg1);
10476 /* !X && X is always false. */
10477 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10478 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10479 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10480 /* X && !X is always false. */
10481 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10482 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10483 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10485 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10486 means A >= Y && A != MAX, but in this case we know that
10487 A < X <= MAX. */
10489 if (!TREE_SIDE_EFFECTS (arg0)
10490 && !TREE_SIDE_EFFECTS (arg1))
10492 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10493 if (tem && !operand_equal_p (tem, arg0, 0))
10494 return fold_build2_loc (loc, code, type, tem, arg1);
10496 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10497 if (tem && !operand_equal_p (tem, arg1, 0))
10498 return fold_build2_loc (loc, code, type, arg0, tem);
10501 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10502 != NULL_TREE)
10503 return tem;
10505 return NULL_TREE;
10507 case TRUTH_ORIF_EXPR:
10508 /* Note that the operands of this must be ints
10509 and their values must be 0 or true.
10510 ("true" is a fixed value perhaps depending on the language.) */
10511 /* If first arg is constant true, return it. */
10512 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10513 return fold_convert_loc (loc, type, arg0);
10514 case TRUTH_OR_EXPR:
10515 /* If either arg is constant zero, drop it. */
10516 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10517 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10518 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10519 /* Preserve sequence points. */
10520 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10521 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10522 /* If second arg is constant true, result is true, but we must
10523 evaluate first arg. */
10524 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10525 return omit_one_operand_loc (loc, type, arg1, arg0);
10526 /* Likewise for first arg, but note this only occurs here for
10527 TRUTH_OR_EXPR. */
10528 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10529 return omit_one_operand_loc (loc, type, arg0, arg1);
10531 /* !X || X is always true. */
10532 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10533 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10534 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10535 /* X || !X is always true. */
10536 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10537 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10538 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10540 /* (X && !Y) || (!X && Y) is X ^ Y */
10541 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10542 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10544 tree a0, a1, l0, l1, n0, n1;
10546 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10547 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10549 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10550 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10552 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10553 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10555 if ((operand_equal_p (n0, a0, 0)
10556 && operand_equal_p (n1, a1, 0))
10557 || (operand_equal_p (n0, a1, 0)
10558 && operand_equal_p (n1, a0, 0)))
10559 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10562 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10563 != NULL_TREE)
10564 return tem;
10566 return NULL_TREE;
10568 case TRUTH_XOR_EXPR:
10569 /* If the second arg is constant zero, drop it. */
10570 if (integer_zerop (arg1))
10571 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10572 /* If the second arg is constant true, this is a logical inversion. */
10573 if (integer_onep (arg1))
10575 tem = invert_truthvalue_loc (loc, arg0);
10576 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10578 /* Identical arguments cancel to zero. */
10579 if (operand_equal_p (arg0, arg1, 0))
10580 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10582 /* !X ^ X is always true. */
10583 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10584 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10585 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10587 /* X ^ !X is always true. */
10588 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10589 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10590 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10592 return NULL_TREE;
10594 case EQ_EXPR:
10595 case NE_EXPR:
10596 STRIP_NOPS (arg0);
10597 STRIP_NOPS (arg1);
10599 tem = fold_comparison (loc, code, type, op0, op1);
10600 if (tem != NULL_TREE)
10601 return tem;
10603 /* bool_var != 1 becomes !bool_var. */
10604 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10605 && code == NE_EXPR)
10606 return fold_convert_loc (loc, type,
10607 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10608 TREE_TYPE (arg0), arg0));
10610 /* bool_var == 0 becomes !bool_var. */
10611 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10612 && code == EQ_EXPR)
10613 return fold_convert_loc (loc, type,
10614 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10615 TREE_TYPE (arg0), arg0));
10617 /* !exp != 0 becomes !exp */
10618 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10619 && code == NE_EXPR)
10620 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10622 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10623 if ((TREE_CODE (arg0) == PLUS_EXPR
10624 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10625 || TREE_CODE (arg0) == MINUS_EXPR)
10626 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10627 0)),
10628 arg1, 0)
10629 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10630 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10632 tree val = TREE_OPERAND (arg0, 1);
10633 return omit_two_operands_loc (loc, type,
10634 fold_build2_loc (loc, code, type,
10635 val,
10636 build_int_cst (TREE_TYPE (val),
10637 0)),
10638 TREE_OPERAND (arg0, 0), arg1);
10641 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
10642 if (TREE_CODE (arg0) == MINUS_EXPR
10643 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
10644 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10645 1)),
10646 arg1, 0)
10647 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
10649 return omit_two_operands_loc (loc, type,
10650 code == NE_EXPR
10651 ? boolean_true_node : boolean_false_node,
10652 TREE_OPERAND (arg0, 1), arg1);
10655 /* If this is an EQ or NE comparison with zero and ARG0 is
10656 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10657 two operations, but the latter can be done in one less insn
10658 on machines that have only two-operand insns or on which a
10659 constant cannot be the first operand. */
10660 if (TREE_CODE (arg0) == BIT_AND_EXPR
10661 && integer_zerop (arg1))
10663 tree arg00 = TREE_OPERAND (arg0, 0);
10664 tree arg01 = TREE_OPERAND (arg0, 1);
10665 if (TREE_CODE (arg00) == LSHIFT_EXPR
10666 && integer_onep (TREE_OPERAND (arg00, 0)))
10668 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10669 arg01, TREE_OPERAND (arg00, 1));
10670 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10671 build_int_cst (TREE_TYPE (arg0), 1));
10672 return fold_build2_loc (loc, code, type,
10673 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10674 arg1);
10676 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10677 && integer_onep (TREE_OPERAND (arg01, 0)))
10679 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10680 arg00, TREE_OPERAND (arg01, 1));
10681 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10682 build_int_cst (TREE_TYPE (arg0), 1));
10683 return fold_build2_loc (loc, code, type,
10684 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10685 arg1);
10689 /* If this is an NE or EQ comparison of zero against the result of a
10690 signed MOD operation whose second operand is a power of 2, make
10691 the MOD operation unsigned since it is simpler and equivalent. */
10692 if (integer_zerop (arg1)
10693 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10694 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10695 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10696 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10697 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10698 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10700 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10701 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10702 fold_convert_loc (loc, newtype,
10703 TREE_OPERAND (arg0, 0)),
10704 fold_convert_loc (loc, newtype,
10705 TREE_OPERAND (arg0, 1)));
10707 return fold_build2_loc (loc, code, type, newmod,
10708 fold_convert_loc (loc, newtype, arg1));
10711 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10712 C1 is a valid shift constant, and C2 is a power of two, i.e.
10713 a single bit. */
10714 if (TREE_CODE (arg0) == BIT_AND_EXPR
10715 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10716 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10717 == INTEGER_CST
10718 && integer_pow2p (TREE_OPERAND (arg0, 1))
10719 && integer_zerop (arg1))
10721 tree itype = TREE_TYPE (arg0);
10722 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10723 prec = TYPE_PRECISION (itype);
10725 /* Check for a valid shift count. */
10726 if (wi::ltu_p (arg001, prec))
10728 tree arg01 = TREE_OPERAND (arg0, 1);
10729 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10730 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10731 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10732 can be rewritten as (X & (C2 << C1)) != 0. */
10733 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10735 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10736 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10737 return fold_build2_loc (loc, code, type, tem,
10738 fold_convert_loc (loc, itype, arg1));
10740 /* Otherwise, for signed (arithmetic) shifts,
10741 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10742 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10743 else if (!TYPE_UNSIGNED (itype))
10744 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10745 arg000, build_int_cst (itype, 0));
10746 /* Otherwise, of unsigned (logical) shifts,
10747 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10748 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10749 else
10750 return omit_one_operand_loc (loc, type,
10751 code == EQ_EXPR ? integer_one_node
10752 : integer_zero_node,
10753 arg000);
10757 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10758 Similarly for NE_EXPR. */
10759 if (TREE_CODE (arg0) == BIT_AND_EXPR
10760 && TREE_CODE (arg1) == INTEGER_CST
10761 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10763 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
10764 TREE_TYPE (TREE_OPERAND (arg0, 1)),
10765 TREE_OPERAND (arg0, 1));
10766 tree dandnotc
10767 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10768 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
10769 notc);
10770 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10771 if (integer_nonzerop (dandnotc))
10772 return omit_one_operand_loc (loc, type, rslt, arg0);
10775 /* If this is a comparison of a field, we may be able to simplify it. */
10776 if ((TREE_CODE (arg0) == COMPONENT_REF
10777 || TREE_CODE (arg0) == BIT_FIELD_REF)
10778 /* Handle the constant case even without -O
10779 to make sure the warnings are given. */
10780 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10782 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10783 if (t1)
10784 return t1;
10787 /* Optimize comparisons of strlen vs zero to a compare of the
10788 first character of the string vs zero. To wit,
10789 strlen(ptr) == 0 => *ptr == 0
10790 strlen(ptr) != 0 => *ptr != 0
10791 Other cases should reduce to one of these two (or a constant)
10792 due to the return value of strlen being unsigned. */
10793 if (TREE_CODE (arg0) == CALL_EXPR
10794 && integer_zerop (arg1))
10796 tree fndecl = get_callee_fndecl (arg0);
10798 if (fndecl
10799 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10800 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10801 && call_expr_nargs (arg0) == 1
10802 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10804 tree iref = build_fold_indirect_ref_loc (loc,
10805 CALL_EXPR_ARG (arg0, 0));
10806 return fold_build2_loc (loc, code, type, iref,
10807 build_int_cst (TREE_TYPE (iref), 0));
10811 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10812 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10813 if (TREE_CODE (arg0) == RSHIFT_EXPR
10814 && integer_zerop (arg1)
10815 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10817 tree arg00 = TREE_OPERAND (arg0, 0);
10818 tree arg01 = TREE_OPERAND (arg0, 1);
10819 tree itype = TREE_TYPE (arg00);
10820 if (wi::eq_p (arg01, element_precision (itype) - 1))
10822 if (TYPE_UNSIGNED (itype))
10824 itype = signed_type_for (itype);
10825 arg00 = fold_convert_loc (loc, itype, arg00);
10827 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10828 type, arg00, build_zero_cst (itype));
10832 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10833 (X & C) == 0 when C is a single bit. */
10834 if (TREE_CODE (arg0) == BIT_AND_EXPR
10835 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10836 && integer_zerop (arg1)
10837 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10839 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10840 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10841 TREE_OPERAND (arg0, 1));
10842 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10843 type, tem,
10844 fold_convert_loc (loc, TREE_TYPE (arg0),
10845 arg1));
10848 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10849 constant C is a power of two, i.e. a single bit. */
10850 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10851 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10852 && integer_zerop (arg1)
10853 && integer_pow2p (TREE_OPERAND (arg0, 1))
10854 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10855 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10857 tree arg00 = TREE_OPERAND (arg0, 0);
10858 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10859 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10862 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10863 when is C is a power of two, i.e. a single bit. */
10864 if (TREE_CODE (arg0) == BIT_AND_EXPR
10865 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10866 && integer_zerop (arg1)
10867 && integer_pow2p (TREE_OPERAND (arg0, 1))
10868 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10869 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10871 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10872 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10873 arg000, TREE_OPERAND (arg0, 1));
10874 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10875 tem, build_int_cst (TREE_TYPE (tem), 0));
10878 if (integer_zerop (arg1)
10879 && tree_expr_nonzero_p (arg0))
10881 tree res = constant_boolean_node (code==NE_EXPR, type);
10882 return omit_one_operand_loc (loc, type, res, arg0);
10885 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10886 if (TREE_CODE (arg0) == BIT_AND_EXPR
10887 && TREE_CODE (arg1) == BIT_AND_EXPR)
10889 tree arg00 = TREE_OPERAND (arg0, 0);
10890 tree arg01 = TREE_OPERAND (arg0, 1);
10891 tree arg10 = TREE_OPERAND (arg1, 0);
10892 tree arg11 = TREE_OPERAND (arg1, 1);
10893 tree itype = TREE_TYPE (arg0);
10895 if (operand_equal_p (arg01, arg11, 0))
10896 return fold_build2_loc (loc, code, type,
10897 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10898 fold_build2_loc (loc,
10899 BIT_XOR_EXPR, itype,
10900 arg00, arg10),
10901 arg01),
10902 build_zero_cst (itype));
10904 if (operand_equal_p (arg01, arg10, 0))
10905 return fold_build2_loc (loc, code, type,
10906 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10907 fold_build2_loc (loc,
10908 BIT_XOR_EXPR, itype,
10909 arg00, arg11),
10910 arg01),
10911 build_zero_cst (itype));
10913 if (operand_equal_p (arg00, arg11, 0))
10914 return fold_build2_loc (loc, code, type,
10915 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10916 fold_build2_loc (loc,
10917 BIT_XOR_EXPR, itype,
10918 arg01, arg10),
10919 arg00),
10920 build_zero_cst (itype));
10922 if (operand_equal_p (arg00, arg10, 0))
10923 return fold_build2_loc (loc, code, type,
10924 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10925 fold_build2_loc (loc,
10926 BIT_XOR_EXPR, itype,
10927 arg01, arg11),
10928 arg00),
10929 build_zero_cst (itype));
10932 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10933 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10935 tree arg00 = TREE_OPERAND (arg0, 0);
10936 tree arg01 = TREE_OPERAND (arg0, 1);
10937 tree arg10 = TREE_OPERAND (arg1, 0);
10938 tree arg11 = TREE_OPERAND (arg1, 1);
10939 tree itype = TREE_TYPE (arg0);
10941 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10942 operand_equal_p guarantees no side-effects so we don't need
10943 to use omit_one_operand on Z. */
10944 if (operand_equal_p (arg01, arg11, 0))
10945 return fold_build2_loc (loc, code, type, arg00,
10946 fold_convert_loc (loc, TREE_TYPE (arg00),
10947 arg10));
10948 if (operand_equal_p (arg01, arg10, 0))
10949 return fold_build2_loc (loc, code, type, arg00,
10950 fold_convert_loc (loc, TREE_TYPE (arg00),
10951 arg11));
10952 if (operand_equal_p (arg00, arg11, 0))
10953 return fold_build2_loc (loc, code, type, arg01,
10954 fold_convert_loc (loc, TREE_TYPE (arg01),
10955 arg10));
10956 if (operand_equal_p (arg00, arg10, 0))
10957 return fold_build2_loc (loc, code, type, arg01,
10958 fold_convert_loc (loc, TREE_TYPE (arg01),
10959 arg11));
10961 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10962 if (TREE_CODE (arg01) == INTEGER_CST
10963 && TREE_CODE (arg11) == INTEGER_CST)
10965 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10966 fold_convert_loc (loc, itype, arg11));
10967 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10968 return fold_build2_loc (loc, code, type, tem,
10969 fold_convert_loc (loc, itype, arg10));
10973 /* Attempt to simplify equality/inequality comparisons of complex
10974 values. Only lower the comparison if the result is known or
10975 can be simplified to a single scalar comparison. */
10976 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10977 || TREE_CODE (arg0) == COMPLEX_CST)
10978 && (TREE_CODE (arg1) == COMPLEX_EXPR
10979 || TREE_CODE (arg1) == COMPLEX_CST))
10981 tree real0, imag0, real1, imag1;
10982 tree rcond, icond;
10984 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10986 real0 = TREE_OPERAND (arg0, 0);
10987 imag0 = TREE_OPERAND (arg0, 1);
10989 else
10991 real0 = TREE_REALPART (arg0);
10992 imag0 = TREE_IMAGPART (arg0);
10995 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10997 real1 = TREE_OPERAND (arg1, 0);
10998 imag1 = TREE_OPERAND (arg1, 1);
11000 else
11002 real1 = TREE_REALPART (arg1);
11003 imag1 = TREE_IMAGPART (arg1);
11006 rcond = fold_binary_loc (loc, code, type, real0, real1);
11007 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
11009 if (integer_zerop (rcond))
11011 if (code == EQ_EXPR)
11012 return omit_two_operands_loc (loc, type, boolean_false_node,
11013 imag0, imag1);
11014 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
11016 else
11018 if (code == NE_EXPR)
11019 return omit_two_operands_loc (loc, type, boolean_true_node,
11020 imag0, imag1);
11021 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
11025 icond = fold_binary_loc (loc, code, type, imag0, imag1);
11026 if (icond && TREE_CODE (icond) == INTEGER_CST)
11028 if (integer_zerop (icond))
11030 if (code == EQ_EXPR)
11031 return omit_two_operands_loc (loc, type, boolean_false_node,
11032 real0, real1);
11033 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
11035 else
11037 if (code == NE_EXPR)
11038 return omit_two_operands_loc (loc, type, boolean_true_node,
11039 real0, real1);
11040 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
11045 return NULL_TREE;
11047 case LT_EXPR:
11048 case GT_EXPR:
11049 case LE_EXPR:
11050 case GE_EXPR:
11051 tem = fold_comparison (loc, code, type, op0, op1);
11052 if (tem != NULL_TREE)
11053 return tem;
11055 /* Transform comparisons of the form X +- C CMP X. */
11056 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11057 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11058 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11059 && !HONOR_SNANS (arg0))
11060 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11061 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
11063 tree arg01 = TREE_OPERAND (arg0, 1);
11064 enum tree_code code0 = TREE_CODE (arg0);
11065 int is_positive;
11067 if (TREE_CODE (arg01) == REAL_CST)
11068 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11069 else
11070 is_positive = tree_int_cst_sgn (arg01);
11072 /* (X - c) > X becomes false. */
11073 if (code == GT_EXPR
11074 && ((code0 == MINUS_EXPR && is_positive >= 0)
11075 || (code0 == PLUS_EXPR && is_positive <= 0)))
11077 if (TREE_CODE (arg01) == INTEGER_CST
11078 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11079 fold_overflow_warning (("assuming signed overflow does not "
11080 "occur when assuming that (X - c) > X "
11081 "is always false"),
11082 WARN_STRICT_OVERFLOW_ALL);
11083 return constant_boolean_node (0, type);
11086 /* Likewise (X + c) < X becomes false. */
11087 if (code == LT_EXPR
11088 && ((code0 == PLUS_EXPR && is_positive >= 0)
11089 || (code0 == MINUS_EXPR && is_positive <= 0)))
11091 if (TREE_CODE (arg01) == INTEGER_CST
11092 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11093 fold_overflow_warning (("assuming signed overflow does not "
11094 "occur when assuming that "
11095 "(X + c) < X is always false"),
11096 WARN_STRICT_OVERFLOW_ALL);
11097 return constant_boolean_node (0, type);
11100 /* Convert (X - c) <= X to true. */
11101 if (!HONOR_NANS (arg1)
11102 && code == LE_EXPR
11103 && ((code0 == MINUS_EXPR && is_positive >= 0)
11104 || (code0 == PLUS_EXPR && is_positive <= 0)))
11106 if (TREE_CODE (arg01) == INTEGER_CST
11107 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11108 fold_overflow_warning (("assuming signed overflow does not "
11109 "occur when assuming that "
11110 "(X - c) <= X is always true"),
11111 WARN_STRICT_OVERFLOW_ALL);
11112 return constant_boolean_node (1, type);
11115 /* Convert (X + c) >= X to true. */
11116 if (!HONOR_NANS (arg1)
11117 && code == GE_EXPR
11118 && ((code0 == PLUS_EXPR && is_positive >= 0)
11119 || (code0 == MINUS_EXPR && is_positive <= 0)))
11121 if (TREE_CODE (arg01) == INTEGER_CST
11122 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11123 fold_overflow_warning (("assuming signed overflow does not "
11124 "occur when assuming that "
11125 "(X + c) >= X is always true"),
11126 WARN_STRICT_OVERFLOW_ALL);
11127 return constant_boolean_node (1, type);
11130 if (TREE_CODE (arg01) == INTEGER_CST)
11132 /* Convert X + c > X and X - c < X to true for integers. */
11133 if (code == GT_EXPR
11134 && ((code0 == PLUS_EXPR && is_positive > 0)
11135 || (code0 == MINUS_EXPR && is_positive < 0)))
11137 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11138 fold_overflow_warning (("assuming signed overflow does "
11139 "not occur when assuming that "
11140 "(X + c) > X is always true"),
11141 WARN_STRICT_OVERFLOW_ALL);
11142 return constant_boolean_node (1, type);
11145 if (code == LT_EXPR
11146 && ((code0 == MINUS_EXPR && is_positive > 0)
11147 || (code0 == PLUS_EXPR && is_positive < 0)))
11149 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11150 fold_overflow_warning (("assuming signed overflow does "
11151 "not occur when assuming that "
11152 "(X - c) < X is always true"),
11153 WARN_STRICT_OVERFLOW_ALL);
11154 return constant_boolean_node (1, type);
11157 /* Convert X + c <= X and X - c >= X to false for integers. */
11158 if (code == LE_EXPR
11159 && ((code0 == PLUS_EXPR && is_positive > 0)
11160 || (code0 == MINUS_EXPR && is_positive < 0)))
11162 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11163 fold_overflow_warning (("assuming signed overflow does "
11164 "not occur when assuming that "
11165 "(X + c) <= X is always false"),
11166 WARN_STRICT_OVERFLOW_ALL);
11167 return constant_boolean_node (0, type);
11170 if (code == GE_EXPR
11171 && ((code0 == MINUS_EXPR && is_positive > 0)
11172 || (code0 == PLUS_EXPR && is_positive < 0)))
11174 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11175 fold_overflow_warning (("assuming signed overflow does "
11176 "not occur when assuming that "
11177 "(X - c) >= X is always false"),
11178 WARN_STRICT_OVERFLOW_ALL);
11179 return constant_boolean_node (0, type);
11184 /* If we are comparing an ABS_EXPR with a constant, we can
11185 convert all the cases into explicit comparisons, but they may
11186 well not be faster than doing the ABS and one comparison.
11187 But ABS (X) <= C is a range comparison, which becomes a subtraction
11188 and a comparison, and is probably faster. */
11189 if (code == LE_EXPR
11190 && TREE_CODE (arg1) == INTEGER_CST
11191 && TREE_CODE (arg0) == ABS_EXPR
11192 && ! TREE_SIDE_EFFECTS (arg0)
11193 && (0 != (tem = negate_expr (arg1)))
11194 && TREE_CODE (tem) == INTEGER_CST
11195 && !TREE_OVERFLOW (tem))
11196 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11197 build2 (GE_EXPR, type,
11198 TREE_OPERAND (arg0, 0), tem),
11199 build2 (LE_EXPR, type,
11200 TREE_OPERAND (arg0, 0), arg1));
11202 /* Convert ABS_EXPR<x> >= 0 to true. */
11203 strict_overflow_p = false;
11204 if (code == GE_EXPR
11205 && (integer_zerop (arg1)
11206 || (! HONOR_NANS (arg0)
11207 && real_zerop (arg1)))
11208 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11210 if (strict_overflow_p)
11211 fold_overflow_warning (("assuming signed overflow does not occur "
11212 "when simplifying comparison of "
11213 "absolute value and zero"),
11214 WARN_STRICT_OVERFLOW_CONDITIONAL);
11215 return omit_one_operand_loc (loc, type,
11216 constant_boolean_node (true, type),
11217 arg0);
11220 /* Convert ABS_EXPR<x> < 0 to false. */
11221 strict_overflow_p = false;
11222 if (code == LT_EXPR
11223 && (integer_zerop (arg1) || real_zerop (arg1))
11224 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11226 if (strict_overflow_p)
11227 fold_overflow_warning (("assuming signed overflow does not occur "
11228 "when simplifying comparison of "
11229 "absolute value and zero"),
11230 WARN_STRICT_OVERFLOW_CONDITIONAL);
11231 return omit_one_operand_loc (loc, type,
11232 constant_boolean_node (false, type),
11233 arg0);
11236 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11237 and similarly for >= into !=. */
11238 if ((code == LT_EXPR || code == GE_EXPR)
11239 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11240 && TREE_CODE (arg1) == LSHIFT_EXPR
11241 && integer_onep (TREE_OPERAND (arg1, 0)))
11242 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11243 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11244 TREE_OPERAND (arg1, 1)),
11245 build_zero_cst (TREE_TYPE (arg0)));
11247 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11248 otherwise Y might be >= # of bits in X's type and thus e.g.
11249 (unsigned char) (1 << Y) for Y 15 might be 0.
11250 If the cast is widening, then 1 << Y should have unsigned type,
11251 otherwise if Y is number of bits in the signed shift type minus 1,
11252 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11253 31 might be 0xffffffff80000000. */
11254 if ((code == LT_EXPR || code == GE_EXPR)
11255 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11256 && CONVERT_EXPR_P (arg1)
11257 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11258 && (element_precision (TREE_TYPE (arg1))
11259 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11260 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11261 || (element_precision (TREE_TYPE (arg1))
11262 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11263 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11265 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11266 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11267 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11268 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11269 build_zero_cst (TREE_TYPE (arg0)));
11272 return NULL_TREE;
11274 case UNORDERED_EXPR:
11275 case ORDERED_EXPR:
11276 case UNLT_EXPR:
11277 case UNLE_EXPR:
11278 case UNGT_EXPR:
11279 case UNGE_EXPR:
11280 case UNEQ_EXPR:
11281 case LTGT_EXPR:
11282 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11284 tree targ0 = strip_float_extensions (arg0);
11285 tree targ1 = strip_float_extensions (arg1);
11286 tree newtype = TREE_TYPE (targ0);
11288 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11289 newtype = TREE_TYPE (targ1);
11291 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11292 return fold_build2_loc (loc, code, type,
11293 fold_convert_loc (loc, newtype, targ0),
11294 fold_convert_loc (loc, newtype, targ1));
11297 return NULL_TREE;
11299 case COMPOUND_EXPR:
11300 /* When pedantic, a compound expression can be neither an lvalue
11301 nor an integer constant expression. */
11302 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11303 return NULL_TREE;
11304 /* Don't let (0, 0) be null pointer constant. */
11305 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11306 : fold_convert_loc (loc, type, arg1);
11307 return pedantic_non_lvalue_loc (loc, tem);
11309 case ASSERT_EXPR:
11310 /* An ASSERT_EXPR should never be passed to fold_binary. */
11311 gcc_unreachable ();
11313 default:
11314 return NULL_TREE;
11315 } /* switch (code) */
11318 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11319 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11320 of GOTO_EXPR. */
11322 static tree
11323 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11325 switch (TREE_CODE (*tp))
11327 case LABEL_EXPR:
11328 return *tp;
11330 case GOTO_EXPR:
11331 *walk_subtrees = 0;
11333 /* ... fall through ... */
11335 default:
11336 return NULL_TREE;
11340 /* Return whether the sub-tree ST contains a label which is accessible from
11341 outside the sub-tree. */
11343 static bool
11344 contains_label_p (tree st)
11346 return
11347 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11350 /* Fold a ternary expression of code CODE and type TYPE with operands
11351 OP0, OP1, and OP2. Return the folded expression if folding is
11352 successful. Otherwise, return NULL_TREE. */
11354 tree
11355 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11356 tree op0, tree op1, tree op2)
11358 tree tem;
11359 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11360 enum tree_code_class kind = TREE_CODE_CLASS (code);
11362 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11363 && TREE_CODE_LENGTH (code) == 3);
11365 /* If this is a commutative operation, and OP0 is a constant, move it
11366 to OP1 to reduce the number of tests below. */
11367 if (commutative_ternary_tree_code (code)
11368 && tree_swap_operands_p (op0, op1, true))
11369 return fold_build3_loc (loc, code, type, op1, op0, op2);
11371 tem = generic_simplify (loc, code, type, op0, op1, op2);
11372 if (tem)
11373 return tem;
11375 /* Strip any conversions that don't change the mode. This is safe
11376 for every expression, except for a comparison expression because
11377 its signedness is derived from its operands. So, in the latter
11378 case, only strip conversions that don't change the signedness.
11380 Note that this is done as an internal manipulation within the
11381 constant folder, in order to find the simplest representation of
11382 the arguments so that their form can be studied. In any cases,
11383 the appropriate type conversions should be put back in the tree
11384 that will get out of the constant folder. */
11385 if (op0)
11387 arg0 = op0;
11388 STRIP_NOPS (arg0);
11391 if (op1)
11393 arg1 = op1;
11394 STRIP_NOPS (arg1);
11397 if (op2)
11399 arg2 = op2;
11400 STRIP_NOPS (arg2);
11403 switch (code)
11405 case COMPONENT_REF:
11406 if (TREE_CODE (arg0) == CONSTRUCTOR
11407 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11409 unsigned HOST_WIDE_INT idx;
11410 tree field, value;
11411 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11412 if (field == arg1)
11413 return value;
11415 return NULL_TREE;
11417 case COND_EXPR:
11418 case VEC_COND_EXPR:
11419 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11420 so all simple results must be passed through pedantic_non_lvalue. */
11421 if (TREE_CODE (arg0) == INTEGER_CST)
11423 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11424 tem = integer_zerop (arg0) ? op2 : op1;
11425 /* Only optimize constant conditions when the selected branch
11426 has the same type as the COND_EXPR. This avoids optimizing
11427 away "c ? x : throw", where the throw has a void type.
11428 Avoid throwing away that operand which contains label. */
11429 if ((!TREE_SIDE_EFFECTS (unused_op)
11430 || !contains_label_p (unused_op))
11431 && (! VOID_TYPE_P (TREE_TYPE (tem))
11432 || VOID_TYPE_P (type)))
11433 return pedantic_non_lvalue_loc (loc, tem);
11434 return NULL_TREE;
11436 else if (TREE_CODE (arg0) == VECTOR_CST)
11438 if ((TREE_CODE (arg1) == VECTOR_CST
11439 || TREE_CODE (arg1) == CONSTRUCTOR)
11440 && (TREE_CODE (arg2) == VECTOR_CST
11441 || TREE_CODE (arg2) == CONSTRUCTOR))
11443 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
11444 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
11445 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
11446 for (i = 0; i < nelts; i++)
11448 tree val = VECTOR_CST_ELT (arg0, i);
11449 if (integer_all_onesp (val))
11450 sel[i] = i;
11451 else if (integer_zerop (val))
11452 sel[i] = nelts + i;
11453 else /* Currently unreachable. */
11454 return NULL_TREE;
11456 tree t = fold_vec_perm (type, arg1, arg2, sel);
11457 if (t != NULL_TREE)
11458 return t;
11462 /* If we have A op B ? A : C, we may be able to convert this to a
11463 simpler expression, depending on the operation and the values
11464 of B and C. Signed zeros prevent all of these transformations,
11465 for reasons given above each one.
11467 Also try swapping the arguments and inverting the conditional. */
11468 if (COMPARISON_CLASS_P (arg0)
11469 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11470 arg1, TREE_OPERAND (arg0, 1))
11471 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11473 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11474 if (tem)
11475 return tem;
11478 if (COMPARISON_CLASS_P (arg0)
11479 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11480 op2,
11481 TREE_OPERAND (arg0, 1))
11482 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11484 location_t loc0 = expr_location_or (arg0, loc);
11485 tem = fold_invert_truthvalue (loc0, arg0);
11486 if (tem && COMPARISON_CLASS_P (tem))
11488 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11489 if (tem)
11490 return tem;
11494 /* If the second operand is simpler than the third, swap them
11495 since that produces better jump optimization results. */
11496 if (truth_value_p (TREE_CODE (arg0))
11497 && tree_swap_operands_p (op1, op2, false))
11499 location_t loc0 = expr_location_or (arg0, loc);
11500 /* See if this can be inverted. If it can't, possibly because
11501 it was a floating-point inequality comparison, don't do
11502 anything. */
11503 tem = fold_invert_truthvalue (loc0, arg0);
11504 if (tem)
11505 return fold_build3_loc (loc, code, type, tem, op2, op1);
11508 /* Convert A ? 1 : 0 to simply A. */
11509 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11510 : (integer_onep (op1)
11511 && !VECTOR_TYPE_P (type)))
11512 && integer_zerop (op2)
11513 /* If we try to convert OP0 to our type, the
11514 call to fold will try to move the conversion inside
11515 a COND, which will recurse. In that case, the COND_EXPR
11516 is probably the best choice, so leave it alone. */
11517 && type == TREE_TYPE (arg0))
11518 return pedantic_non_lvalue_loc (loc, arg0);
11520 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11521 over COND_EXPR in cases such as floating point comparisons. */
11522 if (integer_zerop (op1)
11523 && (code == VEC_COND_EXPR ? integer_all_onesp (op2)
11524 : (integer_onep (op2)
11525 && !VECTOR_TYPE_P (type)))
11526 && truth_value_p (TREE_CODE (arg0)))
11527 return pedantic_non_lvalue_loc (loc,
11528 fold_convert_loc (loc, type,
11529 invert_truthvalue_loc (loc,
11530 arg0)));
11532 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11533 if (TREE_CODE (arg0) == LT_EXPR
11534 && integer_zerop (TREE_OPERAND (arg0, 1))
11535 && integer_zerop (op2)
11536 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11538 /* sign_bit_p looks through both zero and sign extensions,
11539 but for this optimization only sign extensions are
11540 usable. */
11541 tree tem2 = TREE_OPERAND (arg0, 0);
11542 while (tem != tem2)
11544 if (TREE_CODE (tem2) != NOP_EXPR
11545 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11547 tem = NULL_TREE;
11548 break;
11550 tem2 = TREE_OPERAND (tem2, 0);
11552 /* sign_bit_p only checks ARG1 bits within A's precision.
11553 If <sign bit of A> has wider type than A, bits outside
11554 of A's precision in <sign bit of A> need to be checked.
11555 If they are all 0, this optimization needs to be done
11556 in unsigned A's type, if they are all 1 in signed A's type,
11557 otherwise this can't be done. */
11558 if (tem
11559 && TYPE_PRECISION (TREE_TYPE (tem))
11560 < TYPE_PRECISION (TREE_TYPE (arg1))
11561 && TYPE_PRECISION (TREE_TYPE (tem))
11562 < TYPE_PRECISION (type))
11564 int inner_width, outer_width;
11565 tree tem_type;
11567 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11568 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11569 if (outer_width > TYPE_PRECISION (type))
11570 outer_width = TYPE_PRECISION (type);
11572 wide_int mask = wi::shifted_mask
11573 (inner_width, outer_width - inner_width, false,
11574 TYPE_PRECISION (TREE_TYPE (arg1)));
11576 wide_int common = mask & arg1;
11577 if (common == mask)
11579 tem_type = signed_type_for (TREE_TYPE (tem));
11580 tem = fold_convert_loc (loc, tem_type, tem);
11582 else if (common == 0)
11584 tem_type = unsigned_type_for (TREE_TYPE (tem));
11585 tem = fold_convert_loc (loc, tem_type, tem);
11587 else
11588 tem = NULL;
11591 if (tem)
11592 return
11593 fold_convert_loc (loc, type,
11594 fold_build2_loc (loc, BIT_AND_EXPR,
11595 TREE_TYPE (tem), tem,
11596 fold_convert_loc (loc,
11597 TREE_TYPE (tem),
11598 arg1)));
11601 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11602 already handled above. */
11603 if (TREE_CODE (arg0) == BIT_AND_EXPR
11604 && integer_onep (TREE_OPERAND (arg0, 1))
11605 && integer_zerop (op2)
11606 && integer_pow2p (arg1))
11608 tree tem = TREE_OPERAND (arg0, 0);
11609 STRIP_NOPS (tem);
11610 if (TREE_CODE (tem) == RSHIFT_EXPR
11611 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11612 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
11613 tree_to_uhwi (TREE_OPERAND (tem, 1)))
11614 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11615 TREE_OPERAND (tem, 0), arg1);
11618 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11619 is probably obsolete because the first operand should be a
11620 truth value (that's why we have the two cases above), but let's
11621 leave it in until we can confirm this for all front-ends. */
11622 if (integer_zerop (op2)
11623 && TREE_CODE (arg0) == NE_EXPR
11624 && integer_zerop (TREE_OPERAND (arg0, 1))
11625 && integer_pow2p (arg1)
11626 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11627 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11628 arg1, OEP_ONLY_CONST))
11629 return pedantic_non_lvalue_loc (loc,
11630 fold_convert_loc (loc, type,
11631 TREE_OPERAND (arg0, 0)));
11633 /* Disable the transformations below for vectors, since
11634 fold_binary_op_with_conditional_arg may undo them immediately,
11635 yielding an infinite loop. */
11636 if (code == VEC_COND_EXPR)
11637 return NULL_TREE;
11639 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11640 if (integer_zerop (op2)
11641 && truth_value_p (TREE_CODE (arg0))
11642 && truth_value_p (TREE_CODE (arg1))
11643 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11644 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11645 : TRUTH_ANDIF_EXPR,
11646 type, fold_convert_loc (loc, type, arg0), arg1);
11648 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11649 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11650 && truth_value_p (TREE_CODE (arg0))
11651 && truth_value_p (TREE_CODE (arg1))
11652 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11654 location_t loc0 = expr_location_or (arg0, loc);
11655 /* Only perform transformation if ARG0 is easily inverted. */
11656 tem = fold_invert_truthvalue (loc0, arg0);
11657 if (tem)
11658 return fold_build2_loc (loc, code == VEC_COND_EXPR
11659 ? BIT_IOR_EXPR
11660 : TRUTH_ORIF_EXPR,
11661 type, fold_convert_loc (loc, type, tem),
11662 arg1);
11665 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11666 if (integer_zerop (arg1)
11667 && truth_value_p (TREE_CODE (arg0))
11668 && truth_value_p (TREE_CODE (op2))
11669 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11671 location_t loc0 = expr_location_or (arg0, loc);
11672 /* Only perform transformation if ARG0 is easily inverted. */
11673 tem = fold_invert_truthvalue (loc0, arg0);
11674 if (tem)
11675 return fold_build2_loc (loc, code == VEC_COND_EXPR
11676 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11677 type, fold_convert_loc (loc, type, tem),
11678 op2);
11681 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11682 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11683 && truth_value_p (TREE_CODE (arg0))
11684 && truth_value_p (TREE_CODE (op2))
11685 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11686 return fold_build2_loc (loc, code == VEC_COND_EXPR
11687 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11688 type, fold_convert_loc (loc, type, arg0), op2);
11690 return NULL_TREE;
11692 case CALL_EXPR:
11693 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11694 of fold_ternary on them. */
11695 gcc_unreachable ();
11697 case BIT_FIELD_REF:
11698 if ((TREE_CODE (arg0) == VECTOR_CST
11699 || (TREE_CODE (arg0) == CONSTRUCTOR
11700 && TREE_CODE (TREE_TYPE (arg0)) == VECTOR_TYPE))
11701 && (type == TREE_TYPE (TREE_TYPE (arg0))
11702 || (TREE_CODE (type) == VECTOR_TYPE
11703 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11705 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11706 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11707 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11708 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11710 if (n != 0
11711 && (idx % width) == 0
11712 && (n % width) == 0
11713 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11715 idx = idx / width;
11716 n = n / width;
11718 if (TREE_CODE (arg0) == VECTOR_CST)
11720 if (n == 1)
11721 return VECTOR_CST_ELT (arg0, idx);
11723 tree *vals = XALLOCAVEC (tree, n);
11724 for (unsigned i = 0; i < n; ++i)
11725 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
11726 return build_vector (type, vals);
11729 /* Constructor elements can be subvectors. */
11730 unsigned HOST_WIDE_INT k = 1;
11731 if (CONSTRUCTOR_NELTS (arg0) != 0)
11733 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (arg0, 0)->value);
11734 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
11735 k = TYPE_VECTOR_SUBPARTS (cons_elem);
11738 /* We keep an exact subset of the constructor elements. */
11739 if ((idx % k) == 0 && (n % k) == 0)
11741 if (CONSTRUCTOR_NELTS (arg0) == 0)
11742 return build_constructor (type, NULL);
11743 idx /= k;
11744 n /= k;
11745 if (n == 1)
11747 if (idx < CONSTRUCTOR_NELTS (arg0))
11748 return CONSTRUCTOR_ELT (arg0, idx)->value;
11749 return build_zero_cst (type);
11752 vec<constructor_elt, va_gc> *vals;
11753 vec_alloc (vals, n);
11754 for (unsigned i = 0;
11755 i < n && idx + i < CONSTRUCTOR_NELTS (arg0);
11756 ++i)
11757 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
11758 CONSTRUCTOR_ELT
11759 (arg0, idx + i)->value);
11760 return build_constructor (type, vals);
11762 /* The bitfield references a single constructor element. */
11763 else if (idx + n <= (idx / k + 1) * k)
11765 if (CONSTRUCTOR_NELTS (arg0) <= idx / k)
11766 return build_zero_cst (type);
11767 else if (n == k)
11768 return CONSTRUCTOR_ELT (arg0, idx / k)->value;
11769 else
11770 return fold_build3_loc (loc, code, type,
11771 CONSTRUCTOR_ELT (arg0, idx / k)->value, op1,
11772 build_int_cst (TREE_TYPE (op2), (idx % k) * width));
11777 /* A bit-field-ref that referenced the full argument can be stripped. */
11778 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11779 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_to_uhwi (arg1)
11780 && integer_zerop (op2))
11781 return fold_convert_loc (loc, type, arg0);
11783 /* On constants we can use native encode/interpret to constant
11784 fold (nearly) all BIT_FIELD_REFs. */
11785 if (CONSTANT_CLASS_P (arg0)
11786 && can_native_interpret_type_p (type)
11787 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (arg0)))
11788 /* This limitation should not be necessary, we just need to
11789 round this up to mode size. */
11790 && tree_to_uhwi (op1) % BITS_PER_UNIT == 0
11791 /* Need bit-shifting of the buffer to relax the following. */
11792 && tree_to_uhwi (op2) % BITS_PER_UNIT == 0)
11794 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11795 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11796 unsigned HOST_WIDE_INT clen;
11797 clen = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (arg0)));
11798 /* ??? We cannot tell native_encode_expr to start at
11799 some random byte only. So limit us to a reasonable amount
11800 of work. */
11801 if (clen <= 4096)
11803 unsigned char *b = XALLOCAVEC (unsigned char, clen);
11804 unsigned HOST_WIDE_INT len = native_encode_expr (arg0, b, clen);
11805 if (len > 0
11806 && len * BITS_PER_UNIT >= bitpos + bitsize)
11808 tree v = native_interpret_expr (type,
11809 b + bitpos / BITS_PER_UNIT,
11810 bitsize / BITS_PER_UNIT);
11811 if (v)
11812 return v;
11817 return NULL_TREE;
11819 case FMA_EXPR:
11820 /* For integers we can decompose the FMA if possible. */
11821 if (TREE_CODE (arg0) == INTEGER_CST
11822 && TREE_CODE (arg1) == INTEGER_CST)
11823 return fold_build2_loc (loc, PLUS_EXPR, type,
11824 const_binop (MULT_EXPR, arg0, arg1), arg2);
11825 if (integer_zerop (arg2))
11826 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11828 return fold_fma (loc, type, arg0, arg1, arg2);
11830 case VEC_PERM_EXPR:
11831 if (TREE_CODE (arg2) == VECTOR_CST)
11833 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
11834 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
11835 unsigned char *sel2 = sel + nelts;
11836 bool need_mask_canon = false;
11837 bool need_mask_canon2 = false;
11838 bool all_in_vec0 = true;
11839 bool all_in_vec1 = true;
11840 bool maybe_identity = true;
11841 bool single_arg = (op0 == op1);
11842 bool changed = false;
11844 mask2 = 2 * nelts - 1;
11845 mask = single_arg ? (nelts - 1) : mask2;
11846 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
11847 for (i = 0; i < nelts; i++)
11849 tree val = VECTOR_CST_ELT (arg2, i);
11850 if (TREE_CODE (val) != INTEGER_CST)
11851 return NULL_TREE;
11853 /* Make sure that the perm value is in an acceptable
11854 range. */
11855 wide_int t = val;
11856 need_mask_canon |= wi::gtu_p (t, mask);
11857 need_mask_canon2 |= wi::gtu_p (t, mask2);
11858 sel[i] = t.to_uhwi () & mask;
11859 sel2[i] = t.to_uhwi () & mask2;
11861 if (sel[i] < nelts)
11862 all_in_vec1 = false;
11863 else
11864 all_in_vec0 = false;
11866 if ((sel[i] & (nelts-1)) != i)
11867 maybe_identity = false;
11870 if (maybe_identity)
11872 if (all_in_vec0)
11873 return op0;
11874 if (all_in_vec1)
11875 return op1;
11878 if (all_in_vec0)
11879 op1 = op0;
11880 else if (all_in_vec1)
11882 op0 = op1;
11883 for (i = 0; i < nelts; i++)
11884 sel[i] -= nelts;
11885 need_mask_canon = true;
11888 if ((TREE_CODE (op0) == VECTOR_CST
11889 || TREE_CODE (op0) == CONSTRUCTOR)
11890 && (TREE_CODE (op1) == VECTOR_CST
11891 || TREE_CODE (op1) == CONSTRUCTOR))
11893 tree t = fold_vec_perm (type, op0, op1, sel);
11894 if (t != NULL_TREE)
11895 return t;
11898 if (op0 == op1 && !single_arg)
11899 changed = true;
11901 /* Some targets are deficient and fail to expand a single
11902 argument permutation while still allowing an equivalent
11903 2-argument version. */
11904 if (need_mask_canon && arg2 == op2
11905 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
11906 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
11908 need_mask_canon = need_mask_canon2;
11909 sel = sel2;
11912 if (need_mask_canon && arg2 == op2)
11914 tree *tsel = XALLOCAVEC (tree, nelts);
11915 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11916 for (i = 0; i < nelts; i++)
11917 tsel[i] = build_int_cst (eltype, sel[i]);
11918 op2 = build_vector (TREE_TYPE (arg2), tsel);
11919 changed = true;
11922 if (changed)
11923 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11925 return NULL_TREE;
11927 default:
11928 return NULL_TREE;
11929 } /* switch (code) */
11932 /* Perform constant folding and related simplification of EXPR.
11933 The related simplifications include x*1 => x, x*0 => 0, etc.,
11934 and application of the associative law.
11935 NOP_EXPR conversions may be removed freely (as long as we
11936 are careful not to change the type of the overall expression).
11937 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11938 but we can constant-fold them if they have constant operands. */
11940 #ifdef ENABLE_FOLD_CHECKING
11941 # define fold(x) fold_1 (x)
11942 static tree fold_1 (tree);
11943 static
11944 #endif
11945 tree
11946 fold (tree expr)
11948 const tree t = expr;
11949 enum tree_code code = TREE_CODE (t);
11950 enum tree_code_class kind = TREE_CODE_CLASS (code);
11951 tree tem;
11952 location_t loc = EXPR_LOCATION (expr);
11954 /* Return right away if a constant. */
11955 if (kind == tcc_constant)
11956 return t;
11958 /* CALL_EXPR-like objects with variable numbers of operands are
11959 treated specially. */
11960 if (kind == tcc_vl_exp)
11962 if (code == CALL_EXPR)
11964 tem = fold_call_expr (loc, expr, false);
11965 return tem ? tem : expr;
11967 return expr;
11970 if (IS_EXPR_CODE_CLASS (kind))
11972 tree type = TREE_TYPE (t);
11973 tree op0, op1, op2;
11975 switch (TREE_CODE_LENGTH (code))
11977 case 1:
11978 op0 = TREE_OPERAND (t, 0);
11979 tem = fold_unary_loc (loc, code, type, op0);
11980 return tem ? tem : expr;
11981 case 2:
11982 op0 = TREE_OPERAND (t, 0);
11983 op1 = TREE_OPERAND (t, 1);
11984 tem = fold_binary_loc (loc, code, type, op0, op1);
11985 return tem ? tem : expr;
11986 case 3:
11987 op0 = TREE_OPERAND (t, 0);
11988 op1 = TREE_OPERAND (t, 1);
11989 op2 = TREE_OPERAND (t, 2);
11990 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11991 return tem ? tem : expr;
11992 default:
11993 break;
11997 switch (code)
11999 case ARRAY_REF:
12001 tree op0 = TREE_OPERAND (t, 0);
12002 tree op1 = TREE_OPERAND (t, 1);
12004 if (TREE_CODE (op1) == INTEGER_CST
12005 && TREE_CODE (op0) == CONSTRUCTOR
12006 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
12008 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (op0);
12009 unsigned HOST_WIDE_INT end = vec_safe_length (elts);
12010 unsigned HOST_WIDE_INT begin = 0;
12012 /* Find a matching index by means of a binary search. */
12013 while (begin != end)
12015 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
12016 tree index = (*elts)[middle].index;
12018 if (TREE_CODE (index) == INTEGER_CST
12019 && tree_int_cst_lt (index, op1))
12020 begin = middle + 1;
12021 else if (TREE_CODE (index) == INTEGER_CST
12022 && tree_int_cst_lt (op1, index))
12023 end = middle;
12024 else if (TREE_CODE (index) == RANGE_EXPR
12025 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
12026 begin = middle + 1;
12027 else if (TREE_CODE (index) == RANGE_EXPR
12028 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
12029 end = middle;
12030 else
12031 return (*elts)[middle].value;
12035 return t;
12038 /* Return a VECTOR_CST if possible. */
12039 case CONSTRUCTOR:
12041 tree type = TREE_TYPE (t);
12042 if (TREE_CODE (type) != VECTOR_TYPE)
12043 return t;
12045 tree *vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
12046 unsigned HOST_WIDE_INT idx, pos = 0;
12047 tree value;
12049 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), idx, value)
12051 if (!CONSTANT_CLASS_P (value))
12052 return t;
12053 if (TREE_CODE (value) == VECTOR_CST)
12055 for (unsigned i = 0; i < VECTOR_CST_NELTS (value); ++i)
12056 vec[pos++] = VECTOR_CST_ELT (value, i);
12058 else
12059 vec[pos++] = value;
12061 for (; pos < TYPE_VECTOR_SUBPARTS (type); ++pos)
12062 vec[pos] = build_zero_cst (TREE_TYPE (type));
12064 return build_vector (type, vec);
12067 case CONST_DECL:
12068 return fold (DECL_INITIAL (t));
12070 default:
12071 return t;
12072 } /* switch (code) */
12075 #ifdef ENABLE_FOLD_CHECKING
12076 #undef fold
12078 static void fold_checksum_tree (const_tree, struct md5_ctx *,
12079 hash_table<nofree_ptr_hash<const tree_node> > *);
12080 static void fold_check_failed (const_tree, const_tree);
12081 void print_fold_checksum (const_tree);
12083 /* When --enable-checking=fold, compute a digest of expr before
12084 and after actual fold call to see if fold did not accidentally
12085 change original expr. */
12087 tree
12088 fold (tree expr)
12090 tree ret;
12091 struct md5_ctx ctx;
12092 unsigned char checksum_before[16], checksum_after[16];
12093 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12095 md5_init_ctx (&ctx);
12096 fold_checksum_tree (expr, &ctx, &ht);
12097 md5_finish_ctx (&ctx, checksum_before);
12098 ht.empty ();
12100 ret = fold_1 (expr);
12102 md5_init_ctx (&ctx);
12103 fold_checksum_tree (expr, &ctx, &ht);
12104 md5_finish_ctx (&ctx, checksum_after);
12106 if (memcmp (checksum_before, checksum_after, 16))
12107 fold_check_failed (expr, ret);
12109 return ret;
12112 void
12113 print_fold_checksum (const_tree expr)
12115 struct md5_ctx ctx;
12116 unsigned char checksum[16], cnt;
12117 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12119 md5_init_ctx (&ctx);
12120 fold_checksum_tree (expr, &ctx, &ht);
12121 md5_finish_ctx (&ctx, checksum);
12122 for (cnt = 0; cnt < 16; ++cnt)
12123 fprintf (stderr, "%02x", checksum[cnt]);
12124 putc ('\n', stderr);
12127 static void
12128 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12130 internal_error ("fold check: original tree changed by fold");
12133 static void
12134 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12135 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12137 const tree_node **slot;
12138 enum tree_code code;
12139 union tree_node buf;
12140 int i, len;
12142 recursive_label:
12143 if (expr == NULL)
12144 return;
12145 slot = ht->find_slot (expr, INSERT);
12146 if (*slot != NULL)
12147 return;
12148 *slot = expr;
12149 code = TREE_CODE (expr);
12150 if (TREE_CODE_CLASS (code) == tcc_declaration
12151 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12153 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12154 memcpy ((char *) &buf, expr, tree_size (expr));
12155 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12156 buf.decl_with_vis.symtab_node = NULL;
12157 expr = (tree) &buf;
12159 else if (TREE_CODE_CLASS (code) == tcc_type
12160 && (TYPE_POINTER_TO (expr)
12161 || TYPE_REFERENCE_TO (expr)
12162 || TYPE_CACHED_VALUES_P (expr)
12163 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12164 || TYPE_NEXT_VARIANT (expr)))
12166 /* Allow these fields to be modified. */
12167 tree tmp;
12168 memcpy ((char *) &buf, expr, tree_size (expr));
12169 expr = tmp = (tree) &buf;
12170 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12171 TYPE_POINTER_TO (tmp) = NULL;
12172 TYPE_REFERENCE_TO (tmp) = NULL;
12173 TYPE_NEXT_VARIANT (tmp) = NULL;
12174 if (TYPE_CACHED_VALUES_P (tmp))
12176 TYPE_CACHED_VALUES_P (tmp) = 0;
12177 TYPE_CACHED_VALUES (tmp) = NULL;
12180 md5_process_bytes (expr, tree_size (expr), ctx);
12181 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12182 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12183 if (TREE_CODE_CLASS (code) != tcc_type
12184 && TREE_CODE_CLASS (code) != tcc_declaration
12185 && code != TREE_LIST
12186 && code != SSA_NAME
12187 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12188 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12189 switch (TREE_CODE_CLASS (code))
12191 case tcc_constant:
12192 switch (code)
12194 case STRING_CST:
12195 md5_process_bytes (TREE_STRING_POINTER (expr),
12196 TREE_STRING_LENGTH (expr), ctx);
12197 break;
12198 case COMPLEX_CST:
12199 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12200 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12201 break;
12202 case VECTOR_CST:
12203 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12204 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12205 break;
12206 default:
12207 break;
12209 break;
12210 case tcc_exceptional:
12211 switch (code)
12213 case TREE_LIST:
12214 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12215 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12216 expr = TREE_CHAIN (expr);
12217 goto recursive_label;
12218 break;
12219 case TREE_VEC:
12220 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12221 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12222 break;
12223 default:
12224 break;
12226 break;
12227 case tcc_expression:
12228 case tcc_reference:
12229 case tcc_comparison:
12230 case tcc_unary:
12231 case tcc_binary:
12232 case tcc_statement:
12233 case tcc_vl_exp:
12234 len = TREE_OPERAND_LENGTH (expr);
12235 for (i = 0; i < len; ++i)
12236 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12237 break;
12238 case tcc_declaration:
12239 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12240 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12241 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12243 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12244 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12245 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12246 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12247 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12250 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12252 if (TREE_CODE (expr) == FUNCTION_DECL)
12254 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12255 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12257 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12259 break;
12260 case tcc_type:
12261 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12262 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12263 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12264 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12265 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12266 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12267 if (INTEGRAL_TYPE_P (expr)
12268 || SCALAR_FLOAT_TYPE_P (expr))
12270 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12271 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12273 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12274 if (TREE_CODE (expr) == RECORD_TYPE
12275 || TREE_CODE (expr) == UNION_TYPE
12276 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12277 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12278 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12279 break;
12280 default:
12281 break;
12285 /* Helper function for outputting the checksum of a tree T. When
12286 debugging with gdb, you can "define mynext" to be "next" followed
12287 by "call debug_fold_checksum (op0)", then just trace down till the
12288 outputs differ. */
12290 DEBUG_FUNCTION void
12291 debug_fold_checksum (const_tree t)
12293 int i;
12294 unsigned char checksum[16];
12295 struct md5_ctx ctx;
12296 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12298 md5_init_ctx (&ctx);
12299 fold_checksum_tree (t, &ctx, &ht);
12300 md5_finish_ctx (&ctx, checksum);
12301 ht.empty ();
12303 for (i = 0; i < 16; i++)
12304 fprintf (stderr, "%d ", checksum[i]);
12306 fprintf (stderr, "\n");
12309 #endif
12311 /* Fold a unary tree expression with code CODE of type TYPE with an
12312 operand OP0. LOC is the location of the resulting expression.
12313 Return a folded expression if successful. Otherwise, return a tree
12314 expression with code CODE of type TYPE with an operand OP0. */
12316 tree
12317 fold_build1_stat_loc (location_t loc,
12318 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12320 tree tem;
12321 #ifdef ENABLE_FOLD_CHECKING
12322 unsigned char checksum_before[16], checksum_after[16];
12323 struct md5_ctx ctx;
12324 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12326 md5_init_ctx (&ctx);
12327 fold_checksum_tree (op0, &ctx, &ht);
12328 md5_finish_ctx (&ctx, checksum_before);
12329 ht.empty ();
12330 #endif
12332 tem = fold_unary_loc (loc, code, type, op0);
12333 if (!tem)
12334 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
12336 #ifdef ENABLE_FOLD_CHECKING
12337 md5_init_ctx (&ctx);
12338 fold_checksum_tree (op0, &ctx, &ht);
12339 md5_finish_ctx (&ctx, checksum_after);
12341 if (memcmp (checksum_before, checksum_after, 16))
12342 fold_check_failed (op0, tem);
12343 #endif
12344 return tem;
12347 /* Fold a binary tree expression with code CODE of type TYPE with
12348 operands OP0 and OP1. LOC is the location of the resulting
12349 expression. Return a folded expression if successful. Otherwise,
12350 return a tree expression with code CODE of type TYPE with operands
12351 OP0 and OP1. */
12353 tree
12354 fold_build2_stat_loc (location_t loc,
12355 enum tree_code code, tree type, tree op0, tree op1
12356 MEM_STAT_DECL)
12358 tree tem;
12359 #ifdef ENABLE_FOLD_CHECKING
12360 unsigned char checksum_before_op0[16],
12361 checksum_before_op1[16],
12362 checksum_after_op0[16],
12363 checksum_after_op1[16];
12364 struct md5_ctx ctx;
12365 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12367 md5_init_ctx (&ctx);
12368 fold_checksum_tree (op0, &ctx, &ht);
12369 md5_finish_ctx (&ctx, checksum_before_op0);
12370 ht.empty ();
12372 md5_init_ctx (&ctx);
12373 fold_checksum_tree (op1, &ctx, &ht);
12374 md5_finish_ctx (&ctx, checksum_before_op1);
12375 ht.empty ();
12376 #endif
12378 tem = fold_binary_loc (loc, code, type, op0, op1);
12379 if (!tem)
12380 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12382 #ifdef ENABLE_FOLD_CHECKING
12383 md5_init_ctx (&ctx);
12384 fold_checksum_tree (op0, &ctx, &ht);
12385 md5_finish_ctx (&ctx, checksum_after_op0);
12386 ht.empty ();
12388 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12389 fold_check_failed (op0, tem);
12391 md5_init_ctx (&ctx);
12392 fold_checksum_tree (op1, &ctx, &ht);
12393 md5_finish_ctx (&ctx, checksum_after_op1);
12395 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12396 fold_check_failed (op1, tem);
12397 #endif
12398 return tem;
12401 /* Fold a ternary tree expression with code CODE of type TYPE with
12402 operands OP0, OP1, and OP2. Return a folded expression if
12403 successful. Otherwise, return a tree expression with code CODE of
12404 type TYPE with operands OP0, OP1, and OP2. */
12406 tree
12407 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
12408 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12410 tree tem;
12411 #ifdef ENABLE_FOLD_CHECKING
12412 unsigned char checksum_before_op0[16],
12413 checksum_before_op1[16],
12414 checksum_before_op2[16],
12415 checksum_after_op0[16],
12416 checksum_after_op1[16],
12417 checksum_after_op2[16];
12418 struct md5_ctx ctx;
12419 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12421 md5_init_ctx (&ctx);
12422 fold_checksum_tree (op0, &ctx, &ht);
12423 md5_finish_ctx (&ctx, checksum_before_op0);
12424 ht.empty ();
12426 md5_init_ctx (&ctx);
12427 fold_checksum_tree (op1, &ctx, &ht);
12428 md5_finish_ctx (&ctx, checksum_before_op1);
12429 ht.empty ();
12431 md5_init_ctx (&ctx);
12432 fold_checksum_tree (op2, &ctx, &ht);
12433 md5_finish_ctx (&ctx, checksum_before_op2);
12434 ht.empty ();
12435 #endif
12437 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12438 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12439 if (!tem)
12440 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12442 #ifdef ENABLE_FOLD_CHECKING
12443 md5_init_ctx (&ctx);
12444 fold_checksum_tree (op0, &ctx, &ht);
12445 md5_finish_ctx (&ctx, checksum_after_op0);
12446 ht.empty ();
12448 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12449 fold_check_failed (op0, tem);
12451 md5_init_ctx (&ctx);
12452 fold_checksum_tree (op1, &ctx, &ht);
12453 md5_finish_ctx (&ctx, checksum_after_op1);
12454 ht.empty ();
12456 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12457 fold_check_failed (op1, tem);
12459 md5_init_ctx (&ctx);
12460 fold_checksum_tree (op2, &ctx, &ht);
12461 md5_finish_ctx (&ctx, checksum_after_op2);
12463 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12464 fold_check_failed (op2, tem);
12465 #endif
12466 return tem;
12469 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12470 arguments in ARGARRAY, and a null static chain.
12471 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12472 of type TYPE from the given operands as constructed by build_call_array. */
12474 tree
12475 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12476 int nargs, tree *argarray)
12478 tree tem;
12479 #ifdef ENABLE_FOLD_CHECKING
12480 unsigned char checksum_before_fn[16],
12481 checksum_before_arglist[16],
12482 checksum_after_fn[16],
12483 checksum_after_arglist[16];
12484 struct md5_ctx ctx;
12485 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12486 int i;
12488 md5_init_ctx (&ctx);
12489 fold_checksum_tree (fn, &ctx, &ht);
12490 md5_finish_ctx (&ctx, checksum_before_fn);
12491 ht.empty ();
12493 md5_init_ctx (&ctx);
12494 for (i = 0; i < nargs; i++)
12495 fold_checksum_tree (argarray[i], &ctx, &ht);
12496 md5_finish_ctx (&ctx, checksum_before_arglist);
12497 ht.empty ();
12498 #endif
12500 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12501 if (!tem)
12502 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12504 #ifdef ENABLE_FOLD_CHECKING
12505 md5_init_ctx (&ctx);
12506 fold_checksum_tree (fn, &ctx, &ht);
12507 md5_finish_ctx (&ctx, checksum_after_fn);
12508 ht.empty ();
12510 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12511 fold_check_failed (fn, tem);
12513 md5_init_ctx (&ctx);
12514 for (i = 0; i < nargs; i++)
12515 fold_checksum_tree (argarray[i], &ctx, &ht);
12516 md5_finish_ctx (&ctx, checksum_after_arglist);
12518 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12519 fold_check_failed (NULL_TREE, tem);
12520 #endif
12521 return tem;
12524 /* Perform constant folding and related simplification of initializer
12525 expression EXPR. These behave identically to "fold_buildN" but ignore
12526 potential run-time traps and exceptions that fold must preserve. */
12528 #define START_FOLD_INIT \
12529 int saved_signaling_nans = flag_signaling_nans;\
12530 int saved_trapping_math = flag_trapping_math;\
12531 int saved_rounding_math = flag_rounding_math;\
12532 int saved_trapv = flag_trapv;\
12533 int saved_folding_initializer = folding_initializer;\
12534 flag_signaling_nans = 0;\
12535 flag_trapping_math = 0;\
12536 flag_rounding_math = 0;\
12537 flag_trapv = 0;\
12538 folding_initializer = 1;
12540 #define END_FOLD_INIT \
12541 flag_signaling_nans = saved_signaling_nans;\
12542 flag_trapping_math = saved_trapping_math;\
12543 flag_rounding_math = saved_rounding_math;\
12544 flag_trapv = saved_trapv;\
12545 folding_initializer = saved_folding_initializer;
12547 tree
12548 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12549 tree type, tree op)
12551 tree result;
12552 START_FOLD_INIT;
12554 result = fold_build1_loc (loc, code, type, op);
12556 END_FOLD_INIT;
12557 return result;
12560 tree
12561 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12562 tree type, tree op0, tree op1)
12564 tree result;
12565 START_FOLD_INIT;
12567 result = fold_build2_loc (loc, code, type, op0, op1);
12569 END_FOLD_INIT;
12570 return result;
12573 tree
12574 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12575 int nargs, tree *argarray)
12577 tree result;
12578 START_FOLD_INIT;
12580 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12582 END_FOLD_INIT;
12583 return result;
12586 #undef START_FOLD_INIT
12587 #undef END_FOLD_INIT
12589 /* Determine if first argument is a multiple of second argument. Return 0 if
12590 it is not, or we cannot easily determined it to be.
12592 An example of the sort of thing we care about (at this point; this routine
12593 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12594 fold cases do now) is discovering that
12596 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12598 is a multiple of
12600 SAVE_EXPR (J * 8)
12602 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12604 This code also handles discovering that
12606 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12608 is a multiple of 8 so we don't have to worry about dealing with a
12609 possible remainder.
12611 Note that we *look* inside a SAVE_EXPR only to determine how it was
12612 calculated; it is not safe for fold to do much of anything else with the
12613 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12614 at run time. For example, the latter example above *cannot* be implemented
12615 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12616 evaluation time of the original SAVE_EXPR is not necessarily the same at
12617 the time the new expression is evaluated. The only optimization of this
12618 sort that would be valid is changing
12620 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12622 divided by 8 to
12624 SAVE_EXPR (I) * SAVE_EXPR (J)
12626 (where the same SAVE_EXPR (J) is used in the original and the
12627 transformed version). */
12630 multiple_of_p (tree type, const_tree top, const_tree bottom)
12632 if (operand_equal_p (top, bottom, 0))
12633 return 1;
12635 if (TREE_CODE (type) != INTEGER_TYPE)
12636 return 0;
12638 switch (TREE_CODE (top))
12640 case BIT_AND_EXPR:
12641 /* Bitwise and provides a power of two multiple. If the mask is
12642 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12643 if (!integer_pow2p (bottom))
12644 return 0;
12645 /* FALLTHRU */
12647 case MULT_EXPR:
12648 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
12649 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
12651 case PLUS_EXPR:
12652 case MINUS_EXPR:
12653 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
12654 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
12656 case LSHIFT_EXPR:
12657 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12659 tree op1, t1;
12661 op1 = TREE_OPERAND (top, 1);
12662 /* const_binop may not detect overflow correctly,
12663 so check for it explicitly here. */
12664 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12665 && 0 != (t1 = fold_convert (type,
12666 const_binop (LSHIFT_EXPR,
12667 size_one_node,
12668 op1)))
12669 && !TREE_OVERFLOW (t1))
12670 return multiple_of_p (type, t1, bottom);
12672 return 0;
12674 case NOP_EXPR:
12675 /* Can't handle conversions from non-integral or wider integral type. */
12676 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12677 || (TYPE_PRECISION (type)
12678 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12679 return 0;
12681 /* .. fall through ... */
12683 case SAVE_EXPR:
12684 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12686 case COND_EXPR:
12687 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12688 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12690 case INTEGER_CST:
12691 if (TREE_CODE (bottom) != INTEGER_CST
12692 || integer_zerop (bottom)
12693 || (TYPE_UNSIGNED (type)
12694 && (tree_int_cst_sgn (top) < 0
12695 || tree_int_cst_sgn (bottom) < 0)))
12696 return 0;
12697 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12698 SIGNED);
12700 default:
12701 return 0;
12705 /* Return true if CODE or TYPE is known to be non-negative. */
12707 static bool
12708 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12710 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12711 && truth_value_p (code))
12712 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12713 have a signed:1 type (where the value is -1 and 0). */
12714 return true;
12715 return false;
12718 /* Return true if (CODE OP0) is known to be non-negative. If the return
12719 value is based on the assumption that signed overflow is undefined,
12720 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12721 *STRICT_OVERFLOW_P. */
12723 bool
12724 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12725 bool *strict_overflow_p)
12727 if (TYPE_UNSIGNED (type))
12728 return true;
12730 switch (code)
12732 case ABS_EXPR:
12733 /* We can't return 1 if flag_wrapv is set because
12734 ABS_EXPR<INT_MIN> = INT_MIN. */
12735 if (!ANY_INTEGRAL_TYPE_P (type))
12736 return true;
12737 if (TYPE_OVERFLOW_UNDEFINED (type))
12739 *strict_overflow_p = true;
12740 return true;
12742 break;
12744 case NON_LVALUE_EXPR:
12745 case FLOAT_EXPR:
12746 case FIX_TRUNC_EXPR:
12747 return tree_expr_nonnegative_warnv_p (op0,
12748 strict_overflow_p);
12750 CASE_CONVERT:
12752 tree inner_type = TREE_TYPE (op0);
12753 tree outer_type = type;
12755 if (TREE_CODE (outer_type) == REAL_TYPE)
12757 if (TREE_CODE (inner_type) == REAL_TYPE)
12758 return tree_expr_nonnegative_warnv_p (op0,
12759 strict_overflow_p);
12760 if (INTEGRAL_TYPE_P (inner_type))
12762 if (TYPE_UNSIGNED (inner_type))
12763 return true;
12764 return tree_expr_nonnegative_warnv_p (op0,
12765 strict_overflow_p);
12768 else if (INTEGRAL_TYPE_P (outer_type))
12770 if (TREE_CODE (inner_type) == REAL_TYPE)
12771 return tree_expr_nonnegative_warnv_p (op0,
12772 strict_overflow_p);
12773 if (INTEGRAL_TYPE_P (inner_type))
12774 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12775 && TYPE_UNSIGNED (inner_type);
12778 break;
12780 default:
12781 return tree_simple_nonnegative_warnv_p (code, type);
12784 /* We don't know sign of `t', so be conservative and return false. */
12785 return false;
12788 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12789 value is based on the assumption that signed overflow is undefined,
12790 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12791 *STRICT_OVERFLOW_P. */
12793 bool
12794 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12795 tree op1, bool *strict_overflow_p)
12797 if (TYPE_UNSIGNED (type))
12798 return true;
12800 switch (code)
12802 case POINTER_PLUS_EXPR:
12803 case PLUS_EXPR:
12804 if (FLOAT_TYPE_P (type))
12805 return (tree_expr_nonnegative_warnv_p (op0,
12806 strict_overflow_p)
12807 && tree_expr_nonnegative_warnv_p (op1,
12808 strict_overflow_p));
12810 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12811 both unsigned and at least 2 bits shorter than the result. */
12812 if (TREE_CODE (type) == INTEGER_TYPE
12813 && TREE_CODE (op0) == NOP_EXPR
12814 && TREE_CODE (op1) == NOP_EXPR)
12816 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12817 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12818 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12819 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12821 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12822 TYPE_PRECISION (inner2)) + 1;
12823 return prec < TYPE_PRECISION (type);
12826 break;
12828 case MULT_EXPR:
12829 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12831 /* x * x is always non-negative for floating point x
12832 or without overflow. */
12833 if (operand_equal_p (op0, op1, 0)
12834 || (tree_expr_nonnegative_warnv_p (op0, strict_overflow_p)
12835 && tree_expr_nonnegative_warnv_p (op1, strict_overflow_p)))
12837 if (ANY_INTEGRAL_TYPE_P (type)
12838 && TYPE_OVERFLOW_UNDEFINED (type))
12839 *strict_overflow_p = true;
12840 return true;
12844 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12845 both unsigned and their total bits is shorter than the result. */
12846 if (TREE_CODE (type) == INTEGER_TYPE
12847 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12848 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12850 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12851 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12852 : TREE_TYPE (op0);
12853 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12854 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12855 : TREE_TYPE (op1);
12857 bool unsigned0 = TYPE_UNSIGNED (inner0);
12858 bool unsigned1 = TYPE_UNSIGNED (inner1);
12860 if (TREE_CODE (op0) == INTEGER_CST)
12861 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12863 if (TREE_CODE (op1) == INTEGER_CST)
12864 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12866 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12867 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12869 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12870 ? tree_int_cst_min_precision (op0, UNSIGNED)
12871 : TYPE_PRECISION (inner0);
12873 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12874 ? tree_int_cst_min_precision (op1, UNSIGNED)
12875 : TYPE_PRECISION (inner1);
12877 return precision0 + precision1 < TYPE_PRECISION (type);
12880 return false;
12882 case BIT_AND_EXPR:
12883 case MAX_EXPR:
12884 return (tree_expr_nonnegative_warnv_p (op0,
12885 strict_overflow_p)
12886 || tree_expr_nonnegative_warnv_p (op1,
12887 strict_overflow_p));
12889 case BIT_IOR_EXPR:
12890 case BIT_XOR_EXPR:
12891 case MIN_EXPR:
12892 case RDIV_EXPR:
12893 case TRUNC_DIV_EXPR:
12894 case CEIL_DIV_EXPR:
12895 case FLOOR_DIV_EXPR:
12896 case ROUND_DIV_EXPR:
12897 return (tree_expr_nonnegative_warnv_p (op0,
12898 strict_overflow_p)
12899 && tree_expr_nonnegative_warnv_p (op1,
12900 strict_overflow_p));
12902 case TRUNC_MOD_EXPR:
12903 case CEIL_MOD_EXPR:
12904 case FLOOR_MOD_EXPR:
12905 case ROUND_MOD_EXPR:
12906 return tree_expr_nonnegative_warnv_p (op0,
12907 strict_overflow_p);
12908 default:
12909 return tree_simple_nonnegative_warnv_p (code, type);
12912 /* We don't know sign of `t', so be conservative and return false. */
12913 return false;
12916 /* Return true if T is known to be non-negative. If the return
12917 value is based on the assumption that signed overflow is undefined,
12918 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12919 *STRICT_OVERFLOW_P. */
12921 bool
12922 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
12924 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12925 return true;
12927 switch (TREE_CODE (t))
12929 case INTEGER_CST:
12930 return tree_int_cst_sgn (t) >= 0;
12932 case REAL_CST:
12933 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12935 case FIXED_CST:
12936 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12938 case COND_EXPR:
12939 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
12940 strict_overflow_p)
12941 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
12942 strict_overflow_p));
12943 default:
12944 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
12945 TREE_TYPE (t));
12947 /* We don't know sign of `t', so be conservative and return false. */
12948 return false;
12951 /* Return true if T is known to be non-negative. If the return
12952 value is based on the assumption that signed overflow is undefined,
12953 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12954 *STRICT_OVERFLOW_P. */
12956 bool
12957 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
12958 tree arg0, tree arg1, bool *strict_overflow_p)
12960 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
12961 switch (DECL_FUNCTION_CODE (fndecl))
12963 CASE_FLT_FN (BUILT_IN_ACOS):
12964 CASE_FLT_FN (BUILT_IN_ACOSH):
12965 CASE_FLT_FN (BUILT_IN_CABS):
12966 CASE_FLT_FN (BUILT_IN_COSH):
12967 CASE_FLT_FN (BUILT_IN_ERFC):
12968 CASE_FLT_FN (BUILT_IN_EXP):
12969 CASE_FLT_FN (BUILT_IN_EXP10):
12970 CASE_FLT_FN (BUILT_IN_EXP2):
12971 CASE_FLT_FN (BUILT_IN_FABS):
12972 CASE_FLT_FN (BUILT_IN_FDIM):
12973 CASE_FLT_FN (BUILT_IN_HYPOT):
12974 CASE_FLT_FN (BUILT_IN_POW10):
12975 CASE_INT_FN (BUILT_IN_FFS):
12976 CASE_INT_FN (BUILT_IN_PARITY):
12977 CASE_INT_FN (BUILT_IN_POPCOUNT):
12978 CASE_INT_FN (BUILT_IN_CLZ):
12979 CASE_INT_FN (BUILT_IN_CLRSB):
12980 case BUILT_IN_BSWAP32:
12981 case BUILT_IN_BSWAP64:
12982 /* Always true. */
12983 return true;
12985 CASE_FLT_FN (BUILT_IN_SQRT):
12986 /* sqrt(-0.0) is -0.0. */
12987 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
12988 return true;
12989 return tree_expr_nonnegative_warnv_p (arg0,
12990 strict_overflow_p);
12992 CASE_FLT_FN (BUILT_IN_ASINH):
12993 CASE_FLT_FN (BUILT_IN_ATAN):
12994 CASE_FLT_FN (BUILT_IN_ATANH):
12995 CASE_FLT_FN (BUILT_IN_CBRT):
12996 CASE_FLT_FN (BUILT_IN_CEIL):
12997 CASE_FLT_FN (BUILT_IN_ERF):
12998 CASE_FLT_FN (BUILT_IN_EXPM1):
12999 CASE_FLT_FN (BUILT_IN_FLOOR):
13000 CASE_FLT_FN (BUILT_IN_FMOD):
13001 CASE_FLT_FN (BUILT_IN_FREXP):
13002 CASE_FLT_FN (BUILT_IN_ICEIL):
13003 CASE_FLT_FN (BUILT_IN_IFLOOR):
13004 CASE_FLT_FN (BUILT_IN_IRINT):
13005 CASE_FLT_FN (BUILT_IN_IROUND):
13006 CASE_FLT_FN (BUILT_IN_LCEIL):
13007 CASE_FLT_FN (BUILT_IN_LDEXP):
13008 CASE_FLT_FN (BUILT_IN_LFLOOR):
13009 CASE_FLT_FN (BUILT_IN_LLCEIL):
13010 CASE_FLT_FN (BUILT_IN_LLFLOOR):
13011 CASE_FLT_FN (BUILT_IN_LLRINT):
13012 CASE_FLT_FN (BUILT_IN_LLROUND):
13013 CASE_FLT_FN (BUILT_IN_LRINT):
13014 CASE_FLT_FN (BUILT_IN_LROUND):
13015 CASE_FLT_FN (BUILT_IN_MODF):
13016 CASE_FLT_FN (BUILT_IN_NEARBYINT):
13017 CASE_FLT_FN (BUILT_IN_RINT):
13018 CASE_FLT_FN (BUILT_IN_ROUND):
13019 CASE_FLT_FN (BUILT_IN_SCALB):
13020 CASE_FLT_FN (BUILT_IN_SCALBLN):
13021 CASE_FLT_FN (BUILT_IN_SCALBN):
13022 CASE_FLT_FN (BUILT_IN_SIGNBIT):
13023 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
13024 CASE_FLT_FN (BUILT_IN_SINH):
13025 CASE_FLT_FN (BUILT_IN_TANH):
13026 CASE_FLT_FN (BUILT_IN_TRUNC):
13027 /* True if the 1st argument is nonnegative. */
13028 return tree_expr_nonnegative_warnv_p (arg0,
13029 strict_overflow_p);
13031 CASE_FLT_FN (BUILT_IN_FMAX):
13032 /* True if the 1st OR 2nd arguments are nonnegative. */
13033 return (tree_expr_nonnegative_warnv_p (arg0,
13034 strict_overflow_p)
13035 || (tree_expr_nonnegative_warnv_p (arg1,
13036 strict_overflow_p)));
13038 CASE_FLT_FN (BUILT_IN_FMIN):
13039 /* True if the 1st AND 2nd arguments are nonnegative. */
13040 return (tree_expr_nonnegative_warnv_p (arg0,
13041 strict_overflow_p)
13042 && (tree_expr_nonnegative_warnv_p (arg1,
13043 strict_overflow_p)));
13045 CASE_FLT_FN (BUILT_IN_COPYSIGN):
13046 /* True if the 2nd argument is nonnegative. */
13047 return tree_expr_nonnegative_warnv_p (arg1,
13048 strict_overflow_p);
13050 CASE_FLT_FN (BUILT_IN_POWI):
13051 /* True if the 1st argument is nonnegative or the second
13052 argument is an even integer. */
13053 if (TREE_CODE (arg1) == INTEGER_CST
13054 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13055 return true;
13056 return tree_expr_nonnegative_warnv_p (arg0,
13057 strict_overflow_p);
13059 CASE_FLT_FN (BUILT_IN_POW):
13060 /* True if the 1st argument is nonnegative or the second
13061 argument is an even integer valued real. */
13062 if (TREE_CODE (arg1) == REAL_CST)
13064 REAL_VALUE_TYPE c;
13065 HOST_WIDE_INT n;
13067 c = TREE_REAL_CST (arg1);
13068 n = real_to_integer (&c);
13069 if ((n & 1) == 0)
13071 REAL_VALUE_TYPE cint;
13072 real_from_integer (&cint, VOIDmode, n, SIGNED);
13073 if (real_identical (&c, &cint))
13074 return true;
13077 return tree_expr_nonnegative_warnv_p (arg0,
13078 strict_overflow_p);
13080 default:
13081 break;
13083 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
13084 type);
13087 /* Return true if T is known to be non-negative. If the return
13088 value is based on the assumption that signed overflow is undefined,
13089 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13090 *STRICT_OVERFLOW_P. */
13092 static bool
13093 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13095 enum tree_code code = TREE_CODE (t);
13096 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13097 return true;
13099 switch (code)
13101 case TARGET_EXPR:
13103 tree temp = TARGET_EXPR_SLOT (t);
13104 t = TARGET_EXPR_INITIAL (t);
13106 /* If the initializer is non-void, then it's a normal expression
13107 that will be assigned to the slot. */
13108 if (!VOID_TYPE_P (t))
13109 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
13111 /* Otherwise, the initializer sets the slot in some way. One common
13112 way is an assignment statement at the end of the initializer. */
13113 while (1)
13115 if (TREE_CODE (t) == BIND_EXPR)
13116 t = expr_last (BIND_EXPR_BODY (t));
13117 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13118 || TREE_CODE (t) == TRY_CATCH_EXPR)
13119 t = expr_last (TREE_OPERAND (t, 0));
13120 else if (TREE_CODE (t) == STATEMENT_LIST)
13121 t = expr_last (t);
13122 else
13123 break;
13125 if (TREE_CODE (t) == MODIFY_EXPR
13126 && TREE_OPERAND (t, 0) == temp)
13127 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13128 strict_overflow_p);
13130 return false;
13133 case CALL_EXPR:
13135 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13136 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13138 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13139 get_callee_fndecl (t),
13140 arg0,
13141 arg1,
13142 strict_overflow_p);
13144 case COMPOUND_EXPR:
13145 case MODIFY_EXPR:
13146 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13147 strict_overflow_p);
13148 case BIND_EXPR:
13149 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
13150 strict_overflow_p);
13151 case SAVE_EXPR:
13152 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13153 strict_overflow_p);
13155 default:
13156 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
13157 TREE_TYPE (t));
13160 /* We don't know sign of `t', so be conservative and return false. */
13161 return false;
13164 /* Return true if T is known to be non-negative. If the return
13165 value is based on the assumption that signed overflow is undefined,
13166 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13167 *STRICT_OVERFLOW_P. */
13169 bool
13170 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13172 enum tree_code code;
13173 if (t == error_mark_node)
13174 return false;
13176 code = TREE_CODE (t);
13177 switch (TREE_CODE_CLASS (code))
13179 case tcc_binary:
13180 case tcc_comparison:
13181 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13182 TREE_TYPE (t),
13183 TREE_OPERAND (t, 0),
13184 TREE_OPERAND (t, 1),
13185 strict_overflow_p);
13187 case tcc_unary:
13188 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13189 TREE_TYPE (t),
13190 TREE_OPERAND (t, 0),
13191 strict_overflow_p);
13193 case tcc_constant:
13194 case tcc_declaration:
13195 case tcc_reference:
13196 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
13198 default:
13199 break;
13202 switch (code)
13204 case TRUTH_AND_EXPR:
13205 case TRUTH_OR_EXPR:
13206 case TRUTH_XOR_EXPR:
13207 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13208 TREE_TYPE (t),
13209 TREE_OPERAND (t, 0),
13210 TREE_OPERAND (t, 1),
13211 strict_overflow_p);
13212 case TRUTH_NOT_EXPR:
13213 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13214 TREE_TYPE (t),
13215 TREE_OPERAND (t, 0),
13216 strict_overflow_p);
13218 case COND_EXPR:
13219 case CONSTRUCTOR:
13220 case OBJ_TYPE_REF:
13221 case ASSERT_EXPR:
13222 case ADDR_EXPR:
13223 case WITH_SIZE_EXPR:
13224 case SSA_NAME:
13225 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
13227 default:
13228 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
13232 /* Return true if `t' is known to be non-negative. Handle warnings
13233 about undefined signed overflow. */
13235 bool
13236 tree_expr_nonnegative_p (tree t)
13238 bool ret, strict_overflow_p;
13240 strict_overflow_p = false;
13241 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13242 if (strict_overflow_p)
13243 fold_overflow_warning (("assuming signed overflow does not occur when "
13244 "determining that expression is always "
13245 "non-negative"),
13246 WARN_STRICT_OVERFLOW_MISC);
13247 return ret;
13251 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13252 For floating point we further ensure that T is not denormal.
13253 Similar logic is present in nonzero_address in rtlanal.h.
13255 If the return value is based on the assumption that signed overflow
13256 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13257 change *STRICT_OVERFLOW_P. */
13259 bool
13260 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13261 bool *strict_overflow_p)
13263 switch (code)
13265 case ABS_EXPR:
13266 return tree_expr_nonzero_warnv_p (op0,
13267 strict_overflow_p);
13269 case NOP_EXPR:
13271 tree inner_type = TREE_TYPE (op0);
13272 tree outer_type = type;
13274 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13275 && tree_expr_nonzero_warnv_p (op0,
13276 strict_overflow_p));
13278 break;
13280 case NON_LVALUE_EXPR:
13281 return tree_expr_nonzero_warnv_p (op0,
13282 strict_overflow_p);
13284 default:
13285 break;
13288 return false;
13291 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13292 For floating point we further ensure that T is not denormal.
13293 Similar logic is present in nonzero_address in rtlanal.h.
13295 If the return value is based on the assumption that signed overflow
13296 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13297 change *STRICT_OVERFLOW_P. */
13299 bool
13300 tree_binary_nonzero_warnv_p (enum tree_code code,
13301 tree type,
13302 tree op0,
13303 tree op1, bool *strict_overflow_p)
13305 bool sub_strict_overflow_p;
13306 switch (code)
13308 case POINTER_PLUS_EXPR:
13309 case PLUS_EXPR:
13310 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13312 /* With the presence of negative values it is hard
13313 to say something. */
13314 sub_strict_overflow_p = false;
13315 if (!tree_expr_nonnegative_warnv_p (op0,
13316 &sub_strict_overflow_p)
13317 || !tree_expr_nonnegative_warnv_p (op1,
13318 &sub_strict_overflow_p))
13319 return false;
13320 /* One of operands must be positive and the other non-negative. */
13321 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13322 overflows, on a twos-complement machine the sum of two
13323 nonnegative numbers can never be zero. */
13324 return (tree_expr_nonzero_warnv_p (op0,
13325 strict_overflow_p)
13326 || tree_expr_nonzero_warnv_p (op1,
13327 strict_overflow_p));
13329 break;
13331 case MULT_EXPR:
13332 if (TYPE_OVERFLOW_UNDEFINED (type))
13334 if (tree_expr_nonzero_warnv_p (op0,
13335 strict_overflow_p)
13336 && tree_expr_nonzero_warnv_p (op1,
13337 strict_overflow_p))
13339 *strict_overflow_p = true;
13340 return true;
13343 break;
13345 case MIN_EXPR:
13346 sub_strict_overflow_p = false;
13347 if (tree_expr_nonzero_warnv_p (op0,
13348 &sub_strict_overflow_p)
13349 && tree_expr_nonzero_warnv_p (op1,
13350 &sub_strict_overflow_p))
13352 if (sub_strict_overflow_p)
13353 *strict_overflow_p = true;
13355 break;
13357 case MAX_EXPR:
13358 sub_strict_overflow_p = false;
13359 if (tree_expr_nonzero_warnv_p (op0,
13360 &sub_strict_overflow_p))
13362 if (sub_strict_overflow_p)
13363 *strict_overflow_p = true;
13365 /* When both operands are nonzero, then MAX must be too. */
13366 if (tree_expr_nonzero_warnv_p (op1,
13367 strict_overflow_p))
13368 return true;
13370 /* MAX where operand 0 is positive is positive. */
13371 return tree_expr_nonnegative_warnv_p (op0,
13372 strict_overflow_p);
13374 /* MAX where operand 1 is positive is positive. */
13375 else if (tree_expr_nonzero_warnv_p (op1,
13376 &sub_strict_overflow_p)
13377 && tree_expr_nonnegative_warnv_p (op1,
13378 &sub_strict_overflow_p))
13380 if (sub_strict_overflow_p)
13381 *strict_overflow_p = true;
13382 return true;
13384 break;
13386 case BIT_IOR_EXPR:
13387 return (tree_expr_nonzero_warnv_p (op1,
13388 strict_overflow_p)
13389 || tree_expr_nonzero_warnv_p (op0,
13390 strict_overflow_p));
13392 default:
13393 break;
13396 return false;
13399 /* Return true when T is an address and is known to be nonzero.
13400 For floating point we further ensure that T is not denormal.
13401 Similar logic is present in nonzero_address in rtlanal.h.
13403 If the return value is based on the assumption that signed overflow
13404 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13405 change *STRICT_OVERFLOW_P. */
13407 bool
13408 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13410 bool sub_strict_overflow_p;
13411 switch (TREE_CODE (t))
13413 case INTEGER_CST:
13414 return !integer_zerop (t);
13416 case ADDR_EXPR:
13418 tree base = TREE_OPERAND (t, 0);
13420 if (!DECL_P (base))
13421 base = get_base_address (base);
13423 if (!base)
13424 return false;
13426 /* For objects in symbol table check if we know they are non-zero.
13427 Don't do anything for variables and functions before symtab is built;
13428 it is quite possible that they will be declared weak later. */
13429 if (DECL_P (base) && decl_in_symtab_p (base))
13431 struct symtab_node *symbol;
13433 symbol = symtab_node::get_create (base);
13434 if (symbol)
13435 return symbol->nonzero_address ();
13436 else
13437 return false;
13440 /* Function local objects are never NULL. */
13441 if (DECL_P (base)
13442 && (DECL_CONTEXT (base)
13443 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
13444 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
13445 return true;
13447 /* Constants are never weak. */
13448 if (CONSTANT_CLASS_P (base))
13449 return true;
13451 return false;
13454 case COND_EXPR:
13455 sub_strict_overflow_p = false;
13456 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13457 &sub_strict_overflow_p)
13458 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13459 &sub_strict_overflow_p))
13461 if (sub_strict_overflow_p)
13462 *strict_overflow_p = true;
13463 return true;
13465 break;
13467 default:
13468 break;
13470 return false;
13473 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13474 attempt to fold the expression to a constant without modifying TYPE,
13475 OP0 or OP1.
13477 If the expression could be simplified to a constant, then return
13478 the constant. If the expression would not be simplified to a
13479 constant, then return NULL_TREE. */
13481 tree
13482 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13484 tree tem = fold_binary (code, type, op0, op1);
13485 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13488 /* Given the components of a unary expression CODE, TYPE and OP0,
13489 attempt to fold the expression to a constant without modifying
13490 TYPE or OP0.
13492 If the expression could be simplified to a constant, then return
13493 the constant. If the expression would not be simplified to a
13494 constant, then return NULL_TREE. */
13496 tree
13497 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13499 tree tem = fold_unary (code, type, op0);
13500 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13503 /* If EXP represents referencing an element in a constant string
13504 (either via pointer arithmetic or array indexing), return the
13505 tree representing the value accessed, otherwise return NULL. */
13507 tree
13508 fold_read_from_constant_string (tree exp)
13510 if ((TREE_CODE (exp) == INDIRECT_REF
13511 || TREE_CODE (exp) == ARRAY_REF)
13512 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13514 tree exp1 = TREE_OPERAND (exp, 0);
13515 tree index;
13516 tree string;
13517 location_t loc = EXPR_LOCATION (exp);
13519 if (TREE_CODE (exp) == INDIRECT_REF)
13520 string = string_constant (exp1, &index);
13521 else
13523 tree low_bound = array_ref_low_bound (exp);
13524 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13526 /* Optimize the special-case of a zero lower bound.
13528 We convert the low_bound to sizetype to avoid some problems
13529 with constant folding. (E.g. suppose the lower bound is 1,
13530 and its mode is QI. Without the conversion,l (ARRAY
13531 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13532 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13533 if (! integer_zerop (low_bound))
13534 index = size_diffop_loc (loc, index,
13535 fold_convert_loc (loc, sizetype, low_bound));
13537 string = exp1;
13540 if (string
13541 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13542 && TREE_CODE (string) == STRING_CST
13543 && TREE_CODE (index) == INTEGER_CST
13544 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13545 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
13546 == MODE_INT)
13547 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
13548 return build_int_cst_type (TREE_TYPE (exp),
13549 (TREE_STRING_POINTER (string)
13550 [TREE_INT_CST_LOW (index)]));
13552 return NULL;
13555 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13556 an integer constant, real, or fixed-point constant.
13558 TYPE is the type of the result. */
13560 static tree
13561 fold_negate_const (tree arg0, tree type)
13563 tree t = NULL_TREE;
13565 switch (TREE_CODE (arg0))
13567 case INTEGER_CST:
13569 bool overflow;
13570 wide_int val = wi::neg (arg0, &overflow);
13571 t = force_fit_type (type, val, 1,
13572 (overflow | TREE_OVERFLOW (arg0))
13573 && !TYPE_UNSIGNED (type));
13574 break;
13577 case REAL_CST:
13578 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13579 break;
13581 case FIXED_CST:
13583 FIXED_VALUE_TYPE f;
13584 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13585 &(TREE_FIXED_CST (arg0)), NULL,
13586 TYPE_SATURATING (type));
13587 t = build_fixed (type, f);
13588 /* Propagate overflow flags. */
13589 if (overflow_p | TREE_OVERFLOW (arg0))
13590 TREE_OVERFLOW (t) = 1;
13591 break;
13594 default:
13595 gcc_unreachable ();
13598 return t;
13601 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13602 an integer constant or real constant.
13604 TYPE is the type of the result. */
13606 tree
13607 fold_abs_const (tree arg0, tree type)
13609 tree t = NULL_TREE;
13611 switch (TREE_CODE (arg0))
13613 case INTEGER_CST:
13615 /* If the value is unsigned or non-negative, then the absolute value
13616 is the same as the ordinary value. */
13617 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13618 t = arg0;
13620 /* If the value is negative, then the absolute value is
13621 its negation. */
13622 else
13624 bool overflow;
13625 wide_int val = wi::neg (arg0, &overflow);
13626 t = force_fit_type (type, val, -1,
13627 overflow | TREE_OVERFLOW (arg0));
13630 break;
13632 case REAL_CST:
13633 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13634 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13635 else
13636 t = arg0;
13637 break;
13639 default:
13640 gcc_unreachable ();
13643 return t;
13646 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13647 constant. TYPE is the type of the result. */
13649 static tree
13650 fold_not_const (const_tree arg0, tree type)
13652 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13654 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13657 /* Given CODE, a relational operator, the target type, TYPE and two
13658 constant operands OP0 and OP1, return the result of the
13659 relational operation. If the result is not a compile time
13660 constant, then return NULL_TREE. */
13662 static tree
13663 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13665 int result, invert;
13667 /* From here on, the only cases we handle are when the result is
13668 known to be a constant. */
13670 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13672 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13673 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13675 /* Handle the cases where either operand is a NaN. */
13676 if (real_isnan (c0) || real_isnan (c1))
13678 switch (code)
13680 case EQ_EXPR:
13681 case ORDERED_EXPR:
13682 result = 0;
13683 break;
13685 case NE_EXPR:
13686 case UNORDERED_EXPR:
13687 case UNLT_EXPR:
13688 case UNLE_EXPR:
13689 case UNGT_EXPR:
13690 case UNGE_EXPR:
13691 case UNEQ_EXPR:
13692 result = 1;
13693 break;
13695 case LT_EXPR:
13696 case LE_EXPR:
13697 case GT_EXPR:
13698 case GE_EXPR:
13699 case LTGT_EXPR:
13700 if (flag_trapping_math)
13701 return NULL_TREE;
13702 result = 0;
13703 break;
13705 default:
13706 gcc_unreachable ();
13709 return constant_boolean_node (result, type);
13712 return constant_boolean_node (real_compare (code, c0, c1), type);
13715 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13717 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13718 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13719 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13722 /* Handle equality/inequality of complex constants. */
13723 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13725 tree rcond = fold_relational_const (code, type,
13726 TREE_REALPART (op0),
13727 TREE_REALPART (op1));
13728 tree icond = fold_relational_const (code, type,
13729 TREE_IMAGPART (op0),
13730 TREE_IMAGPART (op1));
13731 if (code == EQ_EXPR)
13732 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13733 else if (code == NE_EXPR)
13734 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13735 else
13736 return NULL_TREE;
13739 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13741 unsigned count = VECTOR_CST_NELTS (op0);
13742 tree *elts = XALLOCAVEC (tree, count);
13743 gcc_assert (VECTOR_CST_NELTS (op1) == count
13744 && TYPE_VECTOR_SUBPARTS (type) == count);
13746 for (unsigned i = 0; i < count; i++)
13748 tree elem_type = TREE_TYPE (type);
13749 tree elem0 = VECTOR_CST_ELT (op0, i);
13750 tree elem1 = VECTOR_CST_ELT (op1, i);
13752 tree tem = fold_relational_const (code, elem_type,
13753 elem0, elem1);
13755 if (tem == NULL_TREE)
13756 return NULL_TREE;
13758 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
13761 return build_vector (type, elts);
13764 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13766 To compute GT, swap the arguments and do LT.
13767 To compute GE, do LT and invert the result.
13768 To compute LE, swap the arguments, do LT and invert the result.
13769 To compute NE, do EQ and invert the result.
13771 Therefore, the code below must handle only EQ and LT. */
13773 if (code == LE_EXPR || code == GT_EXPR)
13775 std::swap (op0, op1);
13776 code = swap_tree_comparison (code);
13779 /* Note that it is safe to invert for real values here because we
13780 have already handled the one case that it matters. */
13782 invert = 0;
13783 if (code == NE_EXPR || code == GE_EXPR)
13785 invert = 1;
13786 code = invert_tree_comparison (code, false);
13789 /* Compute a result for LT or EQ if args permit;
13790 Otherwise return T. */
13791 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13793 if (code == EQ_EXPR)
13794 result = tree_int_cst_equal (op0, op1);
13795 else
13796 result = tree_int_cst_lt (op0, op1);
13798 else
13799 return NULL_TREE;
13801 if (invert)
13802 result ^= 1;
13803 return constant_boolean_node (result, type);
13806 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13807 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13808 itself. */
13810 tree
13811 fold_build_cleanup_point_expr (tree type, tree expr)
13813 /* If the expression does not have side effects then we don't have to wrap
13814 it with a cleanup point expression. */
13815 if (!TREE_SIDE_EFFECTS (expr))
13816 return expr;
13818 /* If the expression is a return, check to see if the expression inside the
13819 return has no side effects or the right hand side of the modify expression
13820 inside the return. If either don't have side effects set we don't need to
13821 wrap the expression in a cleanup point expression. Note we don't check the
13822 left hand side of the modify because it should always be a return decl. */
13823 if (TREE_CODE (expr) == RETURN_EXPR)
13825 tree op = TREE_OPERAND (expr, 0);
13826 if (!op || !TREE_SIDE_EFFECTS (op))
13827 return expr;
13828 op = TREE_OPERAND (op, 1);
13829 if (!TREE_SIDE_EFFECTS (op))
13830 return expr;
13833 return build1 (CLEANUP_POINT_EXPR, type, expr);
13836 /* Given a pointer value OP0 and a type TYPE, return a simplified version
13837 of an indirection through OP0, or NULL_TREE if no simplification is
13838 possible. */
13840 tree
13841 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
13843 tree sub = op0;
13844 tree subtype;
13846 STRIP_NOPS (sub);
13847 subtype = TREE_TYPE (sub);
13848 if (!POINTER_TYPE_P (subtype))
13849 return NULL_TREE;
13851 if (TREE_CODE (sub) == ADDR_EXPR)
13853 tree op = TREE_OPERAND (sub, 0);
13854 tree optype = TREE_TYPE (op);
13855 /* *&CONST_DECL -> to the value of the const decl. */
13856 if (TREE_CODE (op) == CONST_DECL)
13857 return DECL_INITIAL (op);
13858 /* *&p => p; make sure to handle *&"str"[cst] here. */
13859 if (type == optype)
13861 tree fop = fold_read_from_constant_string (op);
13862 if (fop)
13863 return fop;
13864 else
13865 return op;
13867 /* *(foo *)&fooarray => fooarray[0] */
13868 else if (TREE_CODE (optype) == ARRAY_TYPE
13869 && type == TREE_TYPE (optype)
13870 && (!in_gimple_form
13871 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
13873 tree type_domain = TYPE_DOMAIN (optype);
13874 tree min_val = size_zero_node;
13875 if (type_domain && TYPE_MIN_VALUE (type_domain))
13876 min_val = TYPE_MIN_VALUE (type_domain);
13877 if (in_gimple_form
13878 && TREE_CODE (min_val) != INTEGER_CST)
13879 return NULL_TREE;
13880 return build4_loc (loc, ARRAY_REF, type, op, min_val,
13881 NULL_TREE, NULL_TREE);
13883 /* *(foo *)&complexfoo => __real__ complexfoo */
13884 else if (TREE_CODE (optype) == COMPLEX_TYPE
13885 && type == TREE_TYPE (optype))
13886 return fold_build1_loc (loc, REALPART_EXPR, type, op);
13887 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
13888 else if (TREE_CODE (optype) == VECTOR_TYPE
13889 && type == TREE_TYPE (optype))
13891 tree part_width = TYPE_SIZE (type);
13892 tree index = bitsize_int (0);
13893 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
13897 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
13898 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
13900 tree op00 = TREE_OPERAND (sub, 0);
13901 tree op01 = TREE_OPERAND (sub, 1);
13903 STRIP_NOPS (op00);
13904 if (TREE_CODE (op00) == ADDR_EXPR)
13906 tree op00type;
13907 op00 = TREE_OPERAND (op00, 0);
13908 op00type = TREE_TYPE (op00);
13910 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
13911 if (TREE_CODE (op00type) == VECTOR_TYPE
13912 && type == TREE_TYPE (op00type))
13914 HOST_WIDE_INT offset = tree_to_shwi (op01);
13915 tree part_width = TYPE_SIZE (type);
13916 unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width)/BITS_PER_UNIT;
13917 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
13918 tree index = bitsize_int (indexi);
13920 if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (op00type))
13921 return fold_build3_loc (loc,
13922 BIT_FIELD_REF, type, op00,
13923 part_width, index);
13926 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
13927 else if (TREE_CODE (op00type) == COMPLEX_TYPE
13928 && type == TREE_TYPE (op00type))
13930 tree size = TYPE_SIZE_UNIT (type);
13931 if (tree_int_cst_equal (size, op01))
13932 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
13934 /* ((foo *)&fooarray)[1] => fooarray[1] */
13935 else if (TREE_CODE (op00type) == ARRAY_TYPE
13936 && type == TREE_TYPE (op00type))
13938 tree type_domain = TYPE_DOMAIN (op00type);
13939 tree min_val = size_zero_node;
13940 if (type_domain && TYPE_MIN_VALUE (type_domain))
13941 min_val = TYPE_MIN_VALUE (type_domain);
13942 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
13943 TYPE_SIZE_UNIT (type));
13944 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
13945 return build4_loc (loc, ARRAY_REF, type, op00, op01,
13946 NULL_TREE, NULL_TREE);
13951 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
13952 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
13953 && type == TREE_TYPE (TREE_TYPE (subtype))
13954 && (!in_gimple_form
13955 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
13957 tree type_domain;
13958 tree min_val = size_zero_node;
13959 sub = build_fold_indirect_ref_loc (loc, sub);
13960 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
13961 if (type_domain && TYPE_MIN_VALUE (type_domain))
13962 min_val = TYPE_MIN_VALUE (type_domain);
13963 if (in_gimple_form
13964 && TREE_CODE (min_val) != INTEGER_CST)
13965 return NULL_TREE;
13966 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
13967 NULL_TREE);
13970 return NULL_TREE;
13973 /* Builds an expression for an indirection through T, simplifying some
13974 cases. */
13976 tree
13977 build_fold_indirect_ref_loc (location_t loc, tree t)
13979 tree type = TREE_TYPE (TREE_TYPE (t));
13980 tree sub = fold_indirect_ref_1 (loc, type, t);
13982 if (sub)
13983 return sub;
13985 return build1_loc (loc, INDIRECT_REF, type, t);
13988 /* Given an INDIRECT_REF T, return either T or a simplified version. */
13990 tree
13991 fold_indirect_ref_loc (location_t loc, tree t)
13993 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
13995 if (sub)
13996 return sub;
13997 else
13998 return t;
14001 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14002 whose result is ignored. The type of the returned tree need not be
14003 the same as the original expression. */
14005 tree
14006 fold_ignored_result (tree t)
14008 if (!TREE_SIDE_EFFECTS (t))
14009 return integer_zero_node;
14011 for (;;)
14012 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14014 case tcc_unary:
14015 t = TREE_OPERAND (t, 0);
14016 break;
14018 case tcc_binary:
14019 case tcc_comparison:
14020 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14021 t = TREE_OPERAND (t, 0);
14022 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14023 t = TREE_OPERAND (t, 1);
14024 else
14025 return t;
14026 break;
14028 case tcc_expression:
14029 switch (TREE_CODE (t))
14031 case COMPOUND_EXPR:
14032 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14033 return t;
14034 t = TREE_OPERAND (t, 0);
14035 break;
14037 case COND_EXPR:
14038 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14039 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14040 return t;
14041 t = TREE_OPERAND (t, 0);
14042 break;
14044 default:
14045 return t;
14047 break;
14049 default:
14050 return t;
14054 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14056 tree
14057 round_up_loc (location_t loc, tree value, unsigned int divisor)
14059 tree div = NULL_TREE;
14061 if (divisor == 1)
14062 return value;
14064 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14065 have to do anything. Only do this when we are not given a const,
14066 because in that case, this check is more expensive than just
14067 doing it. */
14068 if (TREE_CODE (value) != INTEGER_CST)
14070 div = build_int_cst (TREE_TYPE (value), divisor);
14072 if (multiple_of_p (TREE_TYPE (value), value, div))
14073 return value;
14076 /* If divisor is a power of two, simplify this to bit manipulation. */
14077 if (divisor == (divisor & -divisor))
14079 if (TREE_CODE (value) == INTEGER_CST)
14081 wide_int val = value;
14082 bool overflow_p;
14084 if ((val & (divisor - 1)) == 0)
14085 return value;
14087 overflow_p = TREE_OVERFLOW (value);
14088 val += divisor - 1;
14089 val &= - (int) divisor;
14090 if (val == 0)
14091 overflow_p = true;
14093 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14095 else
14097 tree t;
14099 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14100 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14101 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14102 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14105 else
14107 if (!div)
14108 div = build_int_cst (TREE_TYPE (value), divisor);
14109 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14110 value = size_binop_loc (loc, MULT_EXPR, value, div);
14113 return value;
14116 /* Likewise, but round down. */
14118 tree
14119 round_down_loc (location_t loc, tree value, int divisor)
14121 tree div = NULL_TREE;
14123 gcc_assert (divisor > 0);
14124 if (divisor == 1)
14125 return value;
14127 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14128 have to do anything. Only do this when we are not given a const,
14129 because in that case, this check is more expensive than just
14130 doing it. */
14131 if (TREE_CODE (value) != INTEGER_CST)
14133 div = build_int_cst (TREE_TYPE (value), divisor);
14135 if (multiple_of_p (TREE_TYPE (value), value, div))
14136 return value;
14139 /* If divisor is a power of two, simplify this to bit manipulation. */
14140 if (divisor == (divisor & -divisor))
14142 tree t;
14144 t = build_int_cst (TREE_TYPE (value), -divisor);
14145 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14147 else
14149 if (!div)
14150 div = build_int_cst (TREE_TYPE (value), divisor);
14151 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14152 value = size_binop_loc (loc, MULT_EXPR, value, div);
14155 return value;
14158 /* Returns the pointer to the base of the object addressed by EXP and
14159 extracts the information about the offset of the access, storing it
14160 to PBITPOS and POFFSET. */
14162 static tree
14163 split_address_to_core_and_offset (tree exp,
14164 HOST_WIDE_INT *pbitpos, tree *poffset)
14166 tree core;
14167 machine_mode mode;
14168 int unsignedp, volatilep;
14169 HOST_WIDE_INT bitsize;
14170 location_t loc = EXPR_LOCATION (exp);
14172 if (TREE_CODE (exp) == ADDR_EXPR)
14174 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14175 poffset, &mode, &unsignedp, &volatilep,
14176 false);
14177 core = build_fold_addr_expr_loc (loc, core);
14179 else
14181 core = exp;
14182 *pbitpos = 0;
14183 *poffset = NULL_TREE;
14186 return core;
14189 /* Returns true if addresses of E1 and E2 differ by a constant, false
14190 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14192 bool
14193 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14195 tree core1, core2;
14196 HOST_WIDE_INT bitpos1, bitpos2;
14197 tree toffset1, toffset2, tdiff, type;
14199 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14200 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14202 if (bitpos1 % BITS_PER_UNIT != 0
14203 || bitpos2 % BITS_PER_UNIT != 0
14204 || !operand_equal_p (core1, core2, 0))
14205 return false;
14207 if (toffset1 && toffset2)
14209 type = TREE_TYPE (toffset1);
14210 if (type != TREE_TYPE (toffset2))
14211 toffset2 = fold_convert (type, toffset2);
14213 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14214 if (!cst_and_fits_in_hwi (tdiff))
14215 return false;
14217 *diff = int_cst_value (tdiff);
14219 else if (toffset1 || toffset2)
14221 /* If only one of the offsets is non-constant, the difference cannot
14222 be a constant. */
14223 return false;
14225 else
14226 *diff = 0;
14228 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14229 return true;
14232 /* Simplify the floating point expression EXP when the sign of the
14233 result is not significant. Return NULL_TREE if no simplification
14234 is possible. */
14236 tree
14237 fold_strip_sign_ops (tree exp)
14239 tree arg0, arg1;
14240 location_t loc = EXPR_LOCATION (exp);
14242 switch (TREE_CODE (exp))
14244 case ABS_EXPR:
14245 case NEGATE_EXPR:
14246 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
14247 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
14249 case MULT_EXPR:
14250 case RDIV_EXPR:
14251 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (exp)))
14252 return NULL_TREE;
14253 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
14254 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14255 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
14256 return fold_build2_loc (loc, TREE_CODE (exp), TREE_TYPE (exp),
14257 arg0 ? arg0 : TREE_OPERAND (exp, 0),
14258 arg1 ? arg1 : TREE_OPERAND (exp, 1));
14259 break;
14261 case COMPOUND_EXPR:
14262 arg0 = TREE_OPERAND (exp, 0);
14263 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14264 if (arg1)
14265 return fold_build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
14266 break;
14268 case COND_EXPR:
14269 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14270 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
14271 if (arg0 || arg1)
14272 return fold_build3_loc (loc,
14273 COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
14274 arg0 ? arg0 : TREE_OPERAND (exp, 1),
14275 arg1 ? arg1 : TREE_OPERAND (exp, 2));
14276 break;
14278 case CALL_EXPR:
14280 const enum built_in_function fcode = builtin_mathfn_code (exp);
14281 switch (fcode)
14283 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14284 /* Strip copysign function call, return the 1st argument. */
14285 arg0 = CALL_EXPR_ARG (exp, 0);
14286 arg1 = CALL_EXPR_ARG (exp, 1);
14287 return omit_one_operand_loc (loc, TREE_TYPE (exp), arg0, arg1);
14289 default:
14290 /* Strip sign ops from the argument of "odd" math functions. */
14291 if (negate_mathfn_p (fcode))
14293 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
14294 if (arg0)
14295 return build_call_expr_loc (loc, get_callee_fndecl (exp), 1, arg0);
14297 break;
14300 break;
14302 default:
14303 break;
14305 return NULL_TREE;
14308 /* Return OFF converted to a pointer offset type suitable as offset for
14309 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14310 tree
14311 convert_to_ptrofftype_loc (location_t loc, tree off)
14313 return fold_convert_loc (loc, sizetype, off);
14316 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14317 tree
14318 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14320 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14321 ptr, convert_to_ptrofftype_loc (loc, off));
14324 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14325 tree
14326 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14328 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14329 ptr, size_int (off));