1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "tree-pretty-print.h"
30 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "tree-ssa-live.h"
34 #include "diagnostic-core.h"
38 /* This set of routines implements a coalesce_list. This is an object which
39 is used to track pairs of ssa_names which are desirable to coalesce
40 together to avoid copies. Costs are associated with each pair, and when
41 all desired information has been collected, the object can be used to
42 order the pairs for processing. */
44 /* This structure defines a pair entry. */
46 typedef struct coalesce_pair
52 typedef const struct coalesce_pair
*const_coalesce_pair_p
;
54 typedef struct cost_one_pair_d
58 struct cost_one_pair_d
*next
;
61 /* This structure maintains the list of coalesce pairs. */
63 typedef struct coalesce_list_d
65 htab_t list
; /* Hash table. */
66 coalesce_pair_p
*sorted
; /* List when sorted. */
67 int num_sorted
; /* Number in the sorted list. */
68 cost_one_pair_p cost_one_list
;/* Single use coalesces with cost 1. */
71 #define NO_BEST_COALESCE -1
72 #define MUST_COALESCE_COST INT_MAX
75 /* Return cost of execution of copy instruction with FREQUENCY. */
78 coalesce_cost (int frequency
, bool optimize_for_size
)
80 /* Base costs on BB frequencies bounded by 1. */
86 if (optimize_for_size
)
93 /* Return the cost of executing a copy instruction in basic block BB. */
96 coalesce_cost_bb (basic_block bb
)
98 return coalesce_cost (bb
->frequency
, optimize_bb_for_size_p (bb
));
102 /* Return the cost of executing a copy instruction on edge E. */
105 coalesce_cost_edge (edge e
)
109 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
110 if (EDGE_CRITICAL_P (e
))
112 if (e
->flags
& EDGE_ABNORMAL
)
113 return MUST_COALESCE_COST
;
114 if (e
->flags
& EDGE_EH
)
118 FOR_EACH_EDGE (e2
, ei
, e
->dest
->preds
)
121 /* Putting code on EH edge that leads to BB
122 with multiple predecestors imply splitting of
126 /* If there are multiple EH predecestors, we
127 also copy EH regions and produce separate
128 landing pad. This is expensive. */
129 if (e2
->flags
& EDGE_EH
)
137 return coalesce_cost (EDGE_FREQUENCY (e
),
138 optimize_edge_for_size_p (e
)) * mult
;
142 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
143 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
144 NO_BEST_COALESCE is returned if there aren't any. */
147 pop_cost_one_pair (coalesce_list_p cl
, int *p1
, int *p2
)
151 ptr
= cl
->cost_one_list
;
153 return NO_BEST_COALESCE
;
155 *p1
= ptr
->first_element
;
156 *p2
= ptr
->second_element
;
157 cl
->cost_one_list
= ptr
->next
;
164 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
165 2 elements via P1 and P2. Their calculated cost is returned by the function.
166 NO_BEST_COALESCE is returned if the coalesce list is empty. */
169 pop_best_coalesce (coalesce_list_p cl
, int *p1
, int *p2
)
171 coalesce_pair_p node
;
174 if (cl
->sorted
== NULL
)
175 return pop_cost_one_pair (cl
, p1
, p2
);
177 if (cl
->num_sorted
== 0)
178 return pop_cost_one_pair (cl
, p1
, p2
);
180 node
= cl
->sorted
[--(cl
->num_sorted
)];
181 *p1
= node
->first_element
;
182 *p2
= node
->second_element
;
190 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
192 /* Hash function for coalesce list. Calculate hash for PAIR. */
195 coalesce_pair_map_hash (const void *pair
)
197 hashval_t a
= (hashval_t
)(((const_coalesce_pair_p
)pair
)->first_element
);
198 hashval_t b
= (hashval_t
)(((const_coalesce_pair_p
)pair
)->second_element
);
200 return COALESCE_HASH_FN (a
,b
);
204 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
205 returning TRUE if the two pairs are equivalent. */
208 coalesce_pair_map_eq (const void *pair1
, const void *pair2
)
210 const_coalesce_pair_p
const p1
= (const_coalesce_pair_p
) pair1
;
211 const_coalesce_pair_p
const p2
= (const_coalesce_pair_p
) pair2
;
213 return (p1
->first_element
== p2
->first_element
214 && p1
->second_element
== p2
->second_element
);
218 /* Create a new empty coalesce list object and return it. */
220 static inline coalesce_list_p
221 create_coalesce_list (void)
223 coalesce_list_p list
;
224 unsigned size
= num_ssa_names
* 3;
229 list
= (coalesce_list_p
) xmalloc (sizeof (struct coalesce_list_d
));
230 list
->list
= htab_create (size
, coalesce_pair_map_hash
,
231 coalesce_pair_map_eq
, NULL
);
233 list
->num_sorted
= 0;
234 list
->cost_one_list
= NULL
;
239 /* Delete coalesce list CL. */
242 delete_coalesce_list (coalesce_list_p cl
)
244 gcc_assert (cl
->cost_one_list
== NULL
);
245 htab_delete (cl
->list
);
248 gcc_assert (cl
->num_sorted
== 0);
253 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
254 one isn't found, return NULL if CREATE is false, otherwise create a new
255 coalesce pair object and return it. */
257 static coalesce_pair_p
258 find_coalesce_pair (coalesce_list_p cl
, int p1
, int p2
, bool create
)
260 struct coalesce_pair p
;
264 /* Normalize so that p1 is the smaller value. */
267 p
.first_element
= p2
;
268 p
.second_element
= p1
;
272 p
.first_element
= p1
;
273 p
.second_element
= p2
;
276 hash
= coalesce_pair_map_hash (&p
);
277 slot
= htab_find_slot_with_hash (cl
->list
, &p
, hash
,
278 create
? INSERT
: NO_INSERT
);
284 struct coalesce_pair
* pair
= XNEW (struct coalesce_pair
);
285 gcc_assert (cl
->sorted
== NULL
);
286 pair
->first_element
= p
.first_element
;
287 pair
->second_element
= p
.second_element
;
289 *slot
= (void *)pair
;
292 return (struct coalesce_pair
*) *slot
;
296 add_cost_one_coalesce (coalesce_list_p cl
, int p1
, int p2
)
298 cost_one_pair_p pair
;
300 pair
= XNEW (struct cost_one_pair_d
);
301 pair
->first_element
= p1
;
302 pair
->second_element
= p2
;
303 pair
->next
= cl
->cost_one_list
;
304 cl
->cost_one_list
= pair
;
308 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
311 add_coalesce (coalesce_list_p cl
, int p1
, int p2
, int value
)
313 coalesce_pair_p node
;
315 gcc_assert (cl
->sorted
== NULL
);
319 node
= find_coalesce_pair (cl
, p1
, p2
, true);
321 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
322 if (node
->cost
< MUST_COALESCE_COST
- 1)
324 if (value
< MUST_COALESCE_COST
- 1)
332 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
335 compare_pairs (const void *p1
, const void *p2
)
337 const_coalesce_pair_p
const *const pp1
= (const_coalesce_pair_p
const *) p1
;
338 const_coalesce_pair_p
const *const pp2
= (const_coalesce_pair_p
const *) p2
;
341 result
= (* pp1
)->cost
- (* pp2
)->cost
;
342 /* Since qsort does not guarantee stability we use the elements
343 as a secondary key. This provides us with independence from
344 the host's implementation of the sorting algorithm. */
347 result
= (* pp2
)->first_element
- (* pp1
)->first_element
;
349 result
= (* pp2
)->second_element
- (* pp1
)->second_element
;
356 /* Return the number of unique coalesce pairs in CL. */
359 num_coalesce_pairs (coalesce_list_p cl
)
361 return htab_elements (cl
->list
);
365 /* Iterator over hash table pairs. */
369 } coalesce_pair_iterator
;
372 /* Return first partition pair from list CL, initializing iterator ITER. */
374 static inline coalesce_pair_p
375 first_coalesce_pair (coalesce_list_p cl
, coalesce_pair_iterator
*iter
)
377 coalesce_pair_p pair
;
379 pair
= (coalesce_pair_p
) first_htab_element (&(iter
->hti
), cl
->list
);
384 /* Return TRUE if there are no more partitions in for ITER to process. */
387 end_coalesce_pair_p (coalesce_pair_iterator
*iter
)
389 return end_htab_p (&(iter
->hti
));
393 /* Return the next partition pair to be visited by ITER. */
395 static inline coalesce_pair_p
396 next_coalesce_pair (coalesce_pair_iterator
*iter
)
398 coalesce_pair_p pair
;
400 pair
= (coalesce_pair_p
) next_htab_element (&(iter
->hti
));
405 /* Iterate over CL using ITER, returning values in PAIR. */
407 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
408 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
409 !end_coalesce_pair_p (&(ITER)); \
410 (PAIR) = next_coalesce_pair (&(ITER)))
413 /* Prepare CL for removal of preferred pairs. When finished they are sorted
414 in order from most important coalesce to least important. */
417 sort_coalesce_list (coalesce_list_p cl
)
421 coalesce_pair_iterator ppi
;
423 gcc_assert (cl
->sorted
== NULL
);
425 num
= num_coalesce_pairs (cl
);
426 cl
->num_sorted
= num
;
430 /* Allocate a vector for the pair pointers. */
431 cl
->sorted
= XNEWVEC (coalesce_pair_p
, num
);
433 /* Populate the vector with pointers to the pairs. */
435 FOR_EACH_PARTITION_PAIR (p
, ppi
, cl
)
437 gcc_assert (x
== num
);
439 /* Already sorted. */
443 /* If there are only 2, just pick swap them if the order isn't correct. */
446 if (cl
->sorted
[0]->cost
> cl
->sorted
[1]->cost
)
449 cl
->sorted
[0] = cl
->sorted
[1];
455 /* Only call qsort if there are more than 2 items. */
457 qsort (cl
->sorted
, num
, sizeof (coalesce_pair_p
), compare_pairs
);
461 /* Send debug info for coalesce list CL to file F. */
464 dump_coalesce_list (FILE *f
, coalesce_list_p cl
)
466 coalesce_pair_p node
;
467 coalesce_pair_iterator ppi
;
471 if (cl
->sorted
== NULL
)
473 fprintf (f
, "Coalesce List:\n");
474 FOR_EACH_PARTITION_PAIR (node
, ppi
, cl
)
476 tree var1
= ssa_name (node
->first_element
);
477 tree var2
= ssa_name (node
->second_element
);
478 print_generic_expr (f
, var1
, TDF_SLIM
);
479 fprintf (f
, " <-> ");
480 print_generic_expr (f
, var2
, TDF_SLIM
);
481 fprintf (f
, " (%1d), ", node
->cost
);
487 fprintf (f
, "Sorted Coalesce list:\n");
488 for (x
= cl
->num_sorted
- 1 ; x
>=0; x
--)
490 node
= cl
->sorted
[x
];
491 fprintf (f
, "(%d) ", node
->cost
);
492 var
= ssa_name (node
->first_element
);
493 print_generic_expr (f
, var
, TDF_SLIM
);
494 fprintf (f
, " <-> ");
495 var
= ssa_name (node
->second_element
);
496 print_generic_expr (f
, var
, TDF_SLIM
);
503 /* This represents a conflict graph. Implemented as an array of bitmaps.
504 A full matrix is used for conflicts rather than just upper triangular form.
505 this make sit much simpler and faster to perform conflict merges. */
507 typedef struct ssa_conflicts_d
514 /* Return an empty new conflict graph for SIZE elements. */
516 static inline ssa_conflicts_p
517 ssa_conflicts_new (unsigned size
)
521 ptr
= XNEW (struct ssa_conflicts_d
);
522 ptr
->conflicts
= XCNEWVEC (bitmap
, size
);
528 /* Free storage for conflict graph PTR. */
531 ssa_conflicts_delete (ssa_conflicts_p ptr
)
534 for (x
= 0; x
< ptr
->size
; x
++)
535 if (ptr
->conflicts
[x
])
536 BITMAP_FREE (ptr
->conflicts
[x
]);
538 free (ptr
->conflicts
);
543 /* Test if elements X and Y conflict in graph PTR. */
546 ssa_conflicts_test_p (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
550 #ifdef ENABLE_CHECKING
551 gcc_assert (x
< ptr
->size
);
552 gcc_assert (y
< ptr
->size
);
556 b
= ptr
->conflicts
[x
];
558 /* Avoid the lookup if Y has no conflicts. */
559 return ptr
->conflicts
[y
] ? bitmap_bit_p (b
, y
) : false;
565 /* Add a conflict with Y to the bitmap for X in graph PTR. */
568 ssa_conflicts_add_one (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
570 /* If there are no conflicts yet, allocate the bitmap and set bit. */
571 if (!ptr
->conflicts
[x
])
572 ptr
->conflicts
[x
] = BITMAP_ALLOC (NULL
);
573 bitmap_set_bit (ptr
->conflicts
[x
], y
);
577 /* Add conflicts between X and Y in graph PTR. */
580 ssa_conflicts_add (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
582 #ifdef ENABLE_CHECKING
583 gcc_assert (x
< ptr
->size
);
584 gcc_assert (y
< ptr
->size
);
587 ssa_conflicts_add_one (ptr
, x
, y
);
588 ssa_conflicts_add_one (ptr
, y
, x
);
592 /* Merge all Y's conflict into X in graph PTR. */
595 ssa_conflicts_merge (ssa_conflicts_p ptr
, unsigned x
, unsigned y
)
601 if (!(ptr
->conflicts
[y
]))
604 /* Add a conflict between X and every one Y has. If the bitmap doesn't
605 exist, then it has already been coalesced, and we don't need to add a
607 EXECUTE_IF_SET_IN_BITMAP (ptr
->conflicts
[y
], 0, z
, bi
)
608 if (ptr
->conflicts
[z
])
609 bitmap_set_bit (ptr
->conflicts
[z
], x
);
611 if (ptr
->conflicts
[x
])
613 /* If X has conflicts, add Y's to X. */
614 bitmap_ior_into (ptr
->conflicts
[x
], ptr
->conflicts
[y
]);
615 BITMAP_FREE (ptr
->conflicts
[y
]);
619 /* If X has no conflicts, simply use Y's. */
620 ptr
->conflicts
[x
] = ptr
->conflicts
[y
];
621 ptr
->conflicts
[y
] = NULL
;
626 /* Dump a conflicts graph. */
629 ssa_conflicts_dump (FILE *file
, ssa_conflicts_p ptr
)
633 fprintf (file
, "\nConflict graph:\n");
635 for (x
= 0; x
< ptr
->size
; x
++)
636 if (ptr
->conflicts
[x
])
638 fprintf (dump_file
, "%d: ", x
);
639 dump_bitmap (file
, ptr
->conflicts
[x
]);
644 /* This structure is used to efficiently record the current status of live
645 SSA_NAMES when building a conflict graph.
646 LIVE_BASE_VAR has a bit set for each base variable which has at least one
648 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
649 index, and is used to track what partitions of each base variable are
650 live. This makes it easy to add conflicts between just live partitions
651 with the same base variable.
652 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
653 marked as being live. This delays clearing of these bitmaps until
654 they are actually needed again. */
656 typedef struct live_track_d
658 bitmap live_base_var
; /* Indicates if a basevar is live. */
659 bitmap
*live_base_partitions
; /* Live partitions for each basevar. */
660 var_map map
; /* Var_map being used for partition mapping. */
664 /* This routine will create a new live track structure based on the partitions
668 new_live_track (var_map map
)
673 /* Make sure there is a partition view in place. */
674 gcc_assert (map
->partition_to_base_index
!= NULL
);
676 ptr
= (live_track_p
) xmalloc (sizeof (struct live_track_d
));
678 lim
= num_basevars (map
);
679 ptr
->live_base_partitions
= (bitmap
*) xmalloc(sizeof (bitmap
*) * lim
);
680 ptr
->live_base_var
= BITMAP_ALLOC (NULL
);
681 for (x
= 0; x
< lim
; x
++)
682 ptr
->live_base_partitions
[x
] = BITMAP_ALLOC (NULL
);
687 /* This routine will free the memory associated with PTR. */
690 delete_live_track (live_track_p ptr
)
694 lim
= num_basevars (ptr
->map
);
695 for (x
= 0; x
< lim
; x
++)
696 BITMAP_FREE (ptr
->live_base_partitions
[x
]);
697 BITMAP_FREE (ptr
->live_base_var
);
698 free (ptr
->live_base_partitions
);
703 /* This function will remove PARTITION from the live list in PTR. */
706 live_track_remove_partition (live_track_p ptr
, int partition
)
710 root
= basevar_index (ptr
->map
, partition
);
711 bitmap_clear_bit (ptr
->live_base_partitions
[root
], partition
);
712 /* If the element list is empty, make the base variable not live either. */
713 if (bitmap_empty_p (ptr
->live_base_partitions
[root
]))
714 bitmap_clear_bit (ptr
->live_base_var
, root
);
718 /* This function will adds PARTITION to the live list in PTR. */
721 live_track_add_partition (live_track_p ptr
, int partition
)
725 root
= basevar_index (ptr
->map
, partition
);
726 /* If this base var wasn't live before, it is now. Clear the element list
727 since it was delayed until needed. */
728 if (bitmap_set_bit (ptr
->live_base_var
, root
))
729 bitmap_clear (ptr
->live_base_partitions
[root
]);
730 bitmap_set_bit (ptr
->live_base_partitions
[root
], partition
);
735 /* Clear the live bit for VAR in PTR. */
738 live_track_clear_var (live_track_p ptr
, tree var
)
742 p
= var_to_partition (ptr
->map
, var
);
743 if (p
!= NO_PARTITION
)
744 live_track_remove_partition (ptr
, p
);
748 /* Return TRUE if VAR is live in PTR. */
751 live_track_live_p (live_track_p ptr
, tree var
)
755 p
= var_to_partition (ptr
->map
, var
);
756 if (p
!= NO_PARTITION
)
758 root
= basevar_index (ptr
->map
, p
);
759 if (bitmap_bit_p (ptr
->live_base_var
, root
))
760 return bitmap_bit_p (ptr
->live_base_partitions
[root
], p
);
766 /* This routine will add USE to PTR. USE will be marked as live in both the
767 ssa live map and the live bitmap for the root of USE. */
770 live_track_process_use (live_track_p ptr
, tree use
)
774 p
= var_to_partition (ptr
->map
, use
);
775 if (p
== NO_PARTITION
)
778 /* Mark as live in the appropriate live list. */
779 live_track_add_partition (ptr
, p
);
783 /* This routine will process a DEF in PTR. DEF will be removed from the live
784 lists, and if there are any other live partitions with the same base
785 variable, conflicts will be added to GRAPH. */
788 live_track_process_def (live_track_p ptr
, tree def
, ssa_conflicts_p graph
)
795 p
= var_to_partition (ptr
->map
, def
);
796 if (p
== NO_PARTITION
)
799 /* Clear the liveness bit. */
800 live_track_remove_partition (ptr
, p
);
802 /* If the bitmap isn't empty now, conflicts need to be added. */
803 root
= basevar_index (ptr
->map
, p
);
804 if (bitmap_bit_p (ptr
->live_base_var
, root
))
806 b
= ptr
->live_base_partitions
[root
];
807 EXECUTE_IF_SET_IN_BITMAP (b
, 0, x
, bi
)
808 ssa_conflicts_add (graph
, p
, x
);
813 /* Initialize PTR with the partitions set in INIT. */
816 live_track_init (live_track_p ptr
, bitmap init
)
821 /* Mark all live on exit partitions. */
822 EXECUTE_IF_SET_IN_BITMAP (init
, 0, p
, bi
)
823 live_track_add_partition (ptr
, p
);
827 /* This routine will clear all live partitions in PTR. */
830 live_track_clear_base_vars (live_track_p ptr
)
832 /* Simply clear the live base list. Anything marked as live in the element
833 lists will be cleared later if/when the base variable ever comes alive
835 bitmap_clear (ptr
->live_base_var
);
839 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
840 partition view of the var_map liveinfo is based on get entries in the
841 conflict graph. Only conflicts between ssa_name partitions with the same
842 base variable are added. */
844 static ssa_conflicts_p
845 build_ssa_conflict_graph (tree_live_info_p liveinfo
)
847 ssa_conflicts_p graph
;
853 map
= live_var_map (liveinfo
);
854 graph
= ssa_conflicts_new (num_var_partitions (map
));
856 live
= new_live_track (map
);
860 gimple_stmt_iterator gsi
;
862 /* Start with live on exit temporaries. */
863 live_track_init (live
, live_on_exit (liveinfo
, bb
));
865 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
868 gimple stmt
= gsi_stmt (gsi
);
870 /* A copy between 2 partitions does not introduce an interference
871 by itself. If they did, you would never be able to coalesce
872 two things which are copied. If the two variables really do
873 conflict, they will conflict elsewhere in the program.
875 This is handled by simply removing the SRC of the copy from the
876 live list, and processing the stmt normally. */
877 if (is_gimple_assign (stmt
))
879 tree lhs
= gimple_assign_lhs (stmt
);
880 tree rhs1
= gimple_assign_rhs1 (stmt
);
881 if (gimple_assign_copy_p (stmt
)
882 && TREE_CODE (lhs
) == SSA_NAME
883 && TREE_CODE (rhs1
) == SSA_NAME
)
884 live_track_clear_var (live
, rhs1
);
886 else if (is_gimple_debug (stmt
))
889 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_DEF
)
890 live_track_process_def (live
, var
, graph
);
892 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, SSA_OP_USE
)
893 live_track_process_use (live
, var
);
896 /* If result of a PHI is unused, looping over the statements will not
897 record any conflicts since the def was never live. Since the PHI node
898 is going to be translated out of SSA form, it will insert a copy.
899 There must be a conflict recorded between the result of the PHI and
900 any variables that are live. Otherwise the out-of-ssa translation
901 may create incorrect code. */
902 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
904 gimple phi
= gsi_stmt (gsi
);
905 tree result
= PHI_RESULT (phi
);
906 if (live_track_live_p (live
, result
))
907 live_track_process_def (live
, result
, graph
);
910 live_track_clear_base_vars (live
);
913 delete_live_track (live
);
918 /* Shortcut routine to print messages to file F of the form:
919 "STR1 EXPR1 STR2 EXPR2 STR3." */
922 print_exprs (FILE *f
, const char *str1
, tree expr1
, const char *str2
,
923 tree expr2
, const char *str3
)
925 fprintf (f
, "%s", str1
);
926 print_generic_expr (f
, expr1
, TDF_SLIM
);
927 fprintf (f
, "%s", str2
);
928 print_generic_expr (f
, expr2
, TDF_SLIM
);
929 fprintf (f
, "%s", str3
);
933 /* Called if a coalesce across and abnormal edge cannot be performed. PHI is
934 the phi node at fault, I is the argument index at fault. A message is
935 printed and compilation is then terminated. */
938 abnormal_corrupt (gimple phi
, int i
)
940 edge e
= gimple_phi_arg_edge (phi
, i
);
941 tree res
= gimple_phi_result (phi
);
942 tree arg
= gimple_phi_arg_def (phi
, i
);
944 fprintf (stderr
, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
945 e
->src
->index
, e
->dest
->index
);
946 fprintf (stderr
, "Argument %d (", i
);
947 print_generic_expr (stderr
, arg
, TDF_SLIM
);
948 if (TREE_CODE (arg
) != SSA_NAME
)
949 fprintf (stderr
, ") is not an SSA_NAME.\n");
952 gcc_assert (SSA_NAME_VAR (res
) != SSA_NAME_VAR (arg
));
953 fprintf (stderr
, ") does not have the same base variable as the result ");
954 print_generic_stmt (stderr
, res
, TDF_SLIM
);
957 internal_error ("SSA corruption");
961 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
964 fail_abnormal_edge_coalesce (int x
, int y
)
966 fprintf (stderr
, "\nUnable to coalesce ssa_names %d and %d",x
, y
);
967 fprintf (stderr
, " which are marked as MUST COALESCE.\n");
968 print_generic_expr (stderr
, ssa_name (x
), TDF_SLIM
);
969 fprintf (stderr
, " and ");
970 print_generic_stmt (stderr
, ssa_name (y
), TDF_SLIM
);
972 internal_error ("SSA corruption");
976 /* This function creates a var_map for the current function as well as creating
977 a coalesce list for use later in the out of ssa process. */
980 create_outofssa_var_map (coalesce_list_p cl
, bitmap used_in_copy
)
982 gimple_stmt_iterator gsi
;
992 #ifdef ENABLE_CHECKING
993 bitmap used_in_real_ops
;
994 bitmap used_in_virtual_ops
;
996 used_in_real_ops
= BITMAP_ALLOC (NULL
);
997 used_in_virtual_ops
= BITMAP_ALLOC (NULL
);
1000 map
= init_var_map (num_ssa_names
);
1006 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1008 gimple phi
= gsi_stmt (gsi
);
1012 bool saw_copy
= false;
1014 res
= gimple_phi_result (phi
);
1015 ver
= SSA_NAME_VERSION (res
);
1016 register_ssa_partition (map
, res
);
1018 /* Register ssa_names and coalesces between the args and the result
1020 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1022 edge e
= gimple_phi_arg_edge (phi
, i
);
1023 arg
= PHI_ARG_DEF (phi
, i
);
1024 if (TREE_CODE (arg
) == SSA_NAME
)
1025 register_ssa_partition (map
, arg
);
1026 if (TREE_CODE (arg
) == SSA_NAME
1027 && SSA_NAME_VAR (arg
) == SSA_NAME_VAR (res
))
1030 bitmap_set_bit (used_in_copy
, SSA_NAME_VERSION (arg
));
1031 if ((e
->flags
& EDGE_ABNORMAL
) == 0)
1033 int cost
= coalesce_cost_edge (e
);
1034 if (cost
== 1 && has_single_use (arg
))
1035 add_cost_one_coalesce (cl
, ver
, SSA_NAME_VERSION (arg
));
1037 add_coalesce (cl
, ver
, SSA_NAME_VERSION (arg
), cost
);
1041 if (e
->flags
& EDGE_ABNORMAL
)
1042 abnormal_corrupt (phi
, i
);
1045 bitmap_set_bit (used_in_copy
, ver
);
1048 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1050 stmt
= gsi_stmt (gsi
);
1052 if (is_gimple_debug (stmt
))
1055 /* Register USE and DEF operands in each statement. */
1056 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, (SSA_OP_DEF
|SSA_OP_USE
))
1057 register_ssa_partition (map
, var
);
1059 /* Check for copy coalesces. */
1060 switch (gimple_code (stmt
))
1064 tree lhs
= gimple_assign_lhs (stmt
);
1065 tree rhs1
= gimple_assign_rhs1 (stmt
);
1067 if (gimple_assign_copy_p (stmt
)
1068 && TREE_CODE (lhs
) == SSA_NAME
1069 && TREE_CODE (rhs1
) == SSA_NAME
1070 && SSA_NAME_VAR (lhs
) == SSA_NAME_VAR (rhs1
))
1072 v1
= SSA_NAME_VERSION (lhs
);
1073 v2
= SSA_NAME_VERSION (rhs1
);
1074 cost
= coalesce_cost_bb (bb
);
1075 add_coalesce (cl
, v1
, v2
, cost
);
1076 bitmap_set_bit (used_in_copy
, v1
);
1077 bitmap_set_bit (used_in_copy
, v2
);
1084 unsigned long noutputs
, i
;
1085 unsigned long ninputs
;
1086 tree
*outputs
, link
;
1087 noutputs
= gimple_asm_noutputs (stmt
);
1088 ninputs
= gimple_asm_ninputs (stmt
);
1089 outputs
= (tree
*) alloca (noutputs
* sizeof (tree
));
1090 for (i
= 0; i
< noutputs
; ++i
) {
1091 link
= gimple_asm_output_op (stmt
, i
);
1092 outputs
[i
] = TREE_VALUE (link
);
1095 for (i
= 0; i
< ninputs
; ++i
)
1097 const char *constraint
;
1100 unsigned long match
;
1102 link
= gimple_asm_input_op (stmt
, i
);
1104 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1105 input
= TREE_VALUE (link
);
1107 if (TREE_CODE (input
) != SSA_NAME
)
1110 match
= strtoul (constraint
, &end
, 10);
1111 if (match
>= noutputs
|| end
== constraint
)
1114 if (TREE_CODE (outputs
[match
]) != SSA_NAME
)
1117 v1
= SSA_NAME_VERSION (outputs
[match
]);
1118 v2
= SSA_NAME_VERSION (input
);
1120 if (SSA_NAME_VAR (outputs
[match
]) == SSA_NAME_VAR (input
))
1122 cost
= coalesce_cost (REG_BR_PROB_BASE
,
1123 optimize_bb_for_size_p (bb
));
1124 add_coalesce (cl
, v1
, v2
, cost
);
1125 bitmap_set_bit (used_in_copy
, v1
);
1126 bitmap_set_bit (used_in_copy
, v2
);
1136 #ifdef ENABLE_CHECKING
1137 /* Mark real uses and defs. */
1138 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, iter
, (SSA_OP_DEF
|SSA_OP_USE
))
1139 bitmap_set_bit (used_in_real_ops
, DECL_UID (SSA_NAME_VAR (var
)));
1141 /* Validate that virtual ops don't get used in funny ways. */
1142 if (gimple_vuse (stmt
))
1143 bitmap_set_bit (used_in_virtual_ops
,
1144 DECL_UID (SSA_NAME_VAR (gimple_vuse (stmt
))));
1145 #endif /* ENABLE_CHECKING */
1149 /* Now process result decls and live on entry variables for entry into
1150 the coalesce list. */
1152 for (i
= 1; i
< num_ssa_names
; i
++)
1155 if (var
!= NULL_TREE
&& is_gimple_reg (var
))
1157 /* Add coalesces between all the result decls. */
1158 if (TREE_CODE (SSA_NAME_VAR (var
)) == RESULT_DECL
)
1160 if (first
== NULL_TREE
)
1164 gcc_assert (SSA_NAME_VAR (var
) == SSA_NAME_VAR (first
));
1165 v1
= SSA_NAME_VERSION (first
);
1166 v2
= SSA_NAME_VERSION (var
);
1167 bitmap_set_bit (used_in_copy
, v1
);
1168 bitmap_set_bit (used_in_copy
, v2
);
1169 cost
= coalesce_cost_bb (EXIT_BLOCK_PTR
);
1170 add_coalesce (cl
, v1
, v2
, cost
);
1173 /* Mark any default_def variables as being in the coalesce list
1174 since they will have to be coalesced with the base variable. If
1175 not marked as present, they won't be in the coalesce view. */
1176 if (gimple_default_def (cfun
, SSA_NAME_VAR (var
)) == var
1177 && !has_zero_uses (var
))
1178 bitmap_set_bit (used_in_copy
, SSA_NAME_VERSION (var
));
1182 #if defined ENABLE_CHECKING
1185 bitmap both
= BITMAP_ALLOC (NULL
);
1186 bitmap_and (both
, used_in_real_ops
, used_in_virtual_ops
);
1187 if (!bitmap_empty_p (both
))
1191 EXECUTE_IF_SET_IN_BITMAP (both
, 0, i
, bi
)
1192 fprintf (stderr
, "Variable %s used in real and virtual operands\n",
1193 get_name (referenced_var (i
)));
1194 internal_error ("SSA corruption");
1197 BITMAP_FREE (used_in_real_ops
);
1198 BITMAP_FREE (used_in_virtual_ops
);
1207 /* Attempt to coalesce ssa versions X and Y together using the partition
1208 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1209 DEBUG, if it is nun-NULL. */
1212 attempt_coalesce (var_map map
, ssa_conflicts_p graph
, int x
, int y
,
1219 p1
= var_to_partition (map
, ssa_name (x
));
1220 p2
= var_to_partition (map
, ssa_name (y
));
1224 fprintf (debug
, "(%d)", x
);
1225 print_generic_expr (debug
, partition_to_var (map
, p1
), TDF_SLIM
);
1226 fprintf (debug
, " & (%d)", y
);
1227 print_generic_expr (debug
, partition_to_var (map
, p2
), TDF_SLIM
);
1233 fprintf (debug
, ": Already Coalesced.\n");
1238 fprintf (debug
, " [map: %d, %d] ", p1
, p2
);
1241 if (!ssa_conflicts_test_p (graph
, p1
, p2
))
1243 var1
= partition_to_var (map
, p1
);
1244 var2
= partition_to_var (map
, p2
);
1245 z
= var_union (map
, var1
, var2
);
1246 if (z
== NO_PARTITION
)
1249 fprintf (debug
, ": Unable to perform partition union.\n");
1253 /* z is the new combined partition. Remove the other partition from
1254 the list, and merge the conflicts. */
1256 ssa_conflicts_merge (graph
, p1
, p2
);
1258 ssa_conflicts_merge (graph
, p2
, p1
);
1261 fprintf (debug
, ": Success -> %d\n", z
);
1266 fprintf (debug
, ": Fail due to conflict\n");
1272 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1273 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1276 coalesce_partitions (var_map map
, ssa_conflicts_p graph
, coalesce_list_p cl
,
1286 /* First, coalesce all the copies across abnormal edges. These are not placed
1287 in the coalesce list because they do not need to be sorted, and simply
1288 consume extra memory/compilation time in large programs. */
1292 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1293 if (e
->flags
& EDGE_ABNORMAL
)
1295 gimple_stmt_iterator gsi
;
1296 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
1299 gimple phi
= gsi_stmt (gsi
);
1300 tree res
= PHI_RESULT (phi
);
1301 tree arg
= PHI_ARG_DEF (phi
, e
->dest_idx
);
1302 int v1
= SSA_NAME_VERSION (res
);
1303 int v2
= SSA_NAME_VERSION (arg
);
1305 if (SSA_NAME_VAR (arg
) != SSA_NAME_VAR (res
))
1306 abnormal_corrupt (phi
, e
->dest_idx
);
1309 fprintf (debug
, "Abnormal coalesce: ");
1311 if (!attempt_coalesce (map
, graph
, v1
, v2
, debug
))
1312 fail_abnormal_edge_coalesce (v1
, v2
);
1317 /* Now process the items in the coalesce list. */
1319 while ((cost
= pop_best_coalesce (cl
, &x
, &y
)) != NO_BEST_COALESCE
)
1321 var1
= ssa_name (x
);
1322 var2
= ssa_name (y
);
1324 /* Assert the coalesces have the same base variable. */
1325 gcc_assert (SSA_NAME_VAR (var1
) == SSA_NAME_VAR (var2
));
1328 fprintf (debug
, "Coalesce list: ");
1329 attempt_coalesce (map
, graph
, x
, y
, debug
);
1333 /* Returns a hash code for P. */
1336 hash_ssa_name_by_var (const void *p
)
1338 const_tree n
= (const_tree
) p
;
1339 return (hashval_t
) htab_hash_pointer (SSA_NAME_VAR (n
));
1342 /* Returns nonzero if P1 and P2 are equal. */
1345 eq_ssa_name_by_var (const void *p1
, const void *p2
)
1347 const_tree n1
= (const_tree
) p1
;
1348 const_tree n2
= (const_tree
) p2
;
1349 return SSA_NAME_VAR (n1
) == SSA_NAME_VAR (n2
);
1352 /* Reduce the number of copies by coalescing variables in the function. Return
1353 a partition map with the resulting coalesces. */
1356 coalesce_ssa_name (void)
1358 tree_live_info_p liveinfo
;
1359 ssa_conflicts_p graph
;
1361 bitmap used_in_copies
= BITMAP_ALLOC (NULL
);
1364 static htab_t ssa_name_hash
;
1366 cl
= create_coalesce_list ();
1367 map
= create_outofssa_var_map (cl
, used_in_copies
);
1369 /* We need to coalesce all names originating same SSA_NAME_VAR
1370 so debug info remains undisturbed. */
1373 ssa_name_hash
= htab_create (10, hash_ssa_name_by_var
,
1374 eq_ssa_name_by_var
, NULL
);
1375 for (i
= 1; i
< num_ssa_names
; i
++)
1377 tree a
= ssa_name (i
);
1381 && !DECL_ARTIFICIAL (SSA_NAME_VAR (a
))
1382 && (!has_zero_uses (a
) || !SSA_NAME_IS_DEFAULT_DEF (a
)))
1384 tree
*slot
= (tree
*) htab_find_slot (ssa_name_hash
, a
, INSERT
);
1390 add_coalesce (cl
, SSA_NAME_VERSION (a
), SSA_NAME_VERSION (*slot
),
1391 MUST_COALESCE_COST
- 1);
1392 bitmap_set_bit (used_in_copies
, SSA_NAME_VERSION (a
));
1393 bitmap_set_bit (used_in_copies
, SSA_NAME_VERSION (*slot
));
1397 htab_delete (ssa_name_hash
);
1399 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1400 dump_var_map (dump_file
, map
);
1402 /* Don't calculate live ranges for variables not in the coalesce list. */
1403 partition_view_bitmap (map
, used_in_copies
, true);
1404 BITMAP_FREE (used_in_copies
);
1406 if (num_var_partitions (map
) < 1)
1408 delete_coalesce_list (cl
);
1412 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1413 dump_var_map (dump_file
, map
);
1415 liveinfo
= calculate_live_ranges (map
);
1417 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1418 dump_live_info (dump_file
, liveinfo
, LIVEDUMP_ENTRY
);
1420 /* Build a conflict graph. */
1421 graph
= build_ssa_conflict_graph (liveinfo
);
1422 delete_tree_live_info (liveinfo
);
1423 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1424 ssa_conflicts_dump (dump_file
, graph
);
1426 sort_coalesce_list (cl
);
1428 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1430 fprintf (dump_file
, "\nAfter sorting:\n");
1431 dump_coalesce_list (dump_file
, cl
);
1434 /* First, coalesce all live on entry variables to their base variable.
1435 This will ensure the first use is coming from the correct location. */
1437 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1438 dump_var_map (dump_file
, map
);
1440 /* Now coalesce everything in the list. */
1441 coalesce_partitions (map
, graph
, cl
,
1442 ((dump_flags
& TDF_DETAILS
) ? dump_file
1445 delete_coalesce_list (cl
);
1446 ssa_conflicts_delete (graph
);