Merge branch 'master' into python
[official-gcc.git] / gcc / sel-sched-ir.c
blob853205d66c571cba5b72c2f8f38cc9e0c99b50a2
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "function.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "toplev.h"
36 #include "recog.h"
37 #include "params.h"
38 #include "target.h"
39 #include "timevar.h"
40 #include "tree-pass.h"
41 #include "sched-int.h"
42 #include "ggc.h"
43 #include "tree.h"
44 #include "vec.h"
45 #include "langhooks.h"
46 #include "rtlhooks-def.h"
47 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
49 #ifdef INSN_SCHEDULING
50 #include "sel-sched-ir.h"
51 /* We don't have to use it except for sel_print_insn. */
52 #include "sel-sched-dump.h"
54 /* A vector holding bb info for whole scheduling pass. */
55 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
57 /* A vector holding bb info. */
58 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
60 /* A pool for allocating all lists. */
61 alloc_pool sched_lists_pool;
63 /* This contains information about successors for compute_av_set. */
64 struct succs_info current_succs;
66 /* Data structure to describe interaction with the generic scheduler utils. */
67 static struct common_sched_info_def sel_common_sched_info;
69 /* The loop nest being pipelined. */
70 struct loop *current_loop_nest;
72 /* LOOP_NESTS is a vector containing the corresponding loop nest for
73 each region. */
74 static VEC(loop_p, heap) *loop_nests = NULL;
76 /* Saves blocks already in loop regions, indexed by bb->index. */
77 static sbitmap bbs_in_loop_rgns = NULL;
79 /* CFG hooks that are saved before changing create_basic_block hook. */
80 static struct cfg_hooks orig_cfg_hooks;
83 /* Array containing reverse topological index of function basic blocks,
84 indexed by BB->INDEX. */
85 static int *rev_top_order_index = NULL;
87 /* Length of the above array. */
88 static int rev_top_order_index_len = -1;
90 /* A regset pool structure. */
91 static struct
93 /* The stack to which regsets are returned. */
94 regset *v;
96 /* Its pointer. */
97 int n;
99 /* Its size. */
100 int s;
102 /* In VV we save all generated regsets so that, when destructing the
103 pool, we can compare it with V and check that every regset was returned
104 back to pool. */
105 regset *vv;
107 /* The pointer of VV stack. */
108 int nn;
110 /* Its size. */
111 int ss;
113 /* The difference between allocated and returned regsets. */
114 int diff;
115 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
117 /* This represents the nop pool. */
118 static struct
120 /* The vector which holds previously emitted nops. */
121 insn_t *v;
123 /* Its pointer. */
124 int n;
126 /* Its size. */
127 int s;
128 } nop_pool = { NULL, 0, 0 };
130 /* The pool for basic block notes. */
131 static rtx_vec_t bb_note_pool;
133 /* A NOP pattern used to emit placeholder insns. */
134 rtx nop_pattern = NULL_RTX;
135 /* A special instruction that resides in EXIT_BLOCK.
136 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
137 rtx exit_insn = NULL_RTX;
139 /* TRUE if while scheduling current region, which is loop, its preheader
140 was removed. */
141 bool preheader_removed = false;
144 /* Forward static declarations. */
145 static void fence_clear (fence_t);
147 static void deps_init_id (idata_t, insn_t, bool);
148 static void init_id_from_df (idata_t, insn_t, bool);
149 static expr_t set_insn_init (expr_t, vinsn_t, int);
151 static void cfg_preds (basic_block, insn_t **, int *);
152 static void prepare_insn_expr (insn_t, int);
153 static void free_history_vect (VEC (expr_history_def, heap) **);
155 static void move_bb_info (basic_block, basic_block);
156 static void remove_empty_bb (basic_block, bool);
157 static void sel_remove_loop_preheader (void);
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int);
166 static void finish_insns (void);
168 /* Various list functions. */
170 /* Copy an instruction list L. */
171 ilist_t
172 ilist_copy (ilist_t l)
174 ilist_t head = NULL, *tailp = &head;
176 while (l)
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
183 return head;
186 /* Invert an instruction list L. */
187 ilist_t
188 ilist_invert (ilist_t l)
190 ilist_t res = NULL;
192 while (l)
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
198 return res;
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205 bnd_t bnd;
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
217 /* Remove the list note pointed to by LP. */
218 void
219 blist_remove (blist_t *lp)
221 bnd_t b = BLIST_BND (*lp);
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
227 _list_remove (lp);
230 /* Init a fence tail L. */
231 void
232 flist_tail_init (flist_tail_t l)
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
238 /* Try to find fence corresponding to INSN in L. */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
242 while (l)
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
247 l = FLIST_NEXT (l);
250 return NULL;
253 /* Init the fields of F before running fill_insns. */
254 static void
255 init_fence_for_scheduling (fence_t f)
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267 int cycle, int cycle_issued_insns, int issue_more,
268 bool starts_cycle_p, bool after_stall_p)
270 fence_t f;
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
275 FENCE_INSN (f) = insn;
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292 FENCE_ISSUE_MORE (f) = issue_more;
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
298 init_fence_for_scheduling (f);
301 /* Remove the head node of the list pointed to by LP. */
302 static void
303 flist_remove (flist_t *lp)
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
310 /* Clear the fence list pointed to by LP. */
311 void
312 flist_clear (flist_t *lp)
314 while (*lp)
315 flist_remove (lp);
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322 def_t d;
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
332 /* Functions to work with target contexts. */
334 /* Bulk target context. It is convenient for debugging purposes to ensure
335 that there are no uninitialized (null) target contexts. */
336 static tc_t bulk_tc = (tc_t) 1;
338 /* Target hooks wrappers. In the future we can provide some default
339 implementations for them. */
341 /* Allocate a store for the target context. */
342 static tc_t
343 alloc_target_context (void)
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
349 /* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
359 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361 tc_t
362 create_target_context (bool clean_p)
364 tc_t tc = alloc_target_context ();
366 init_target_context (tc, clean_p);
367 return tc;
370 /* Copy TC to the current backend context. */
371 void
372 set_target_context (tc_t tc)
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
378 /* TC is about to be destroyed. Free any internal data. */
379 static void
380 clear_target_context (tc_t tc)
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
386 /* Clear and free it. */
387 static void
388 delete_target_context (tc_t tc)
390 clear_target_context (tc);
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
396 /* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398 static void
399 copy_target_context (tc_t to, tc_t from)
401 tc_t tmp = create_target_context (false);
403 set_target_context (from);
404 init_target_context (to, false);
406 set_target_context (tmp);
407 delete_target_context (tmp);
410 /* Create a copy of TC. */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
414 tc_t copy = alloc_target_context ();
416 copy_target_context (copy, tc);
418 return copy;
421 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
430 /* Functions to work with dependence contexts.
431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
435 /* Make a copy of FROM in TO. */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
439 init_deps (to, false);
440 deps_join (to, from);
443 /* Allocate store for dep context. */
444 static deps_t
445 alloc_deps_context (void)
447 return XNEW (struct deps_desc);
450 /* Allocate and initialize dep context. */
451 static deps_t
452 create_deps_context (void)
454 deps_t dc = alloc_deps_context ();
456 init_deps (dc, false);
457 return dc;
460 /* Create a copy of FROM. */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
464 deps_t to = alloc_deps_context ();
466 copy_deps_context (to, from);
467 return to;
470 /* Clean up internal data of DC. */
471 static void
472 clear_deps_context (deps_t dc)
474 free_deps (dc);
477 /* Clear and free DC. */
478 static void
479 delete_deps_context (deps_t dc)
481 clear_deps_context (dc);
482 free (dc);
485 /* Clear and init DC. */
486 static void
487 reset_deps_context (deps_t dc)
489 clear_deps_context (dc);
490 init_deps (dc, false);
493 /* This structure describes the dependence analysis hooks for advancing
494 dependence context. */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 NULL,
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
511 0, 0, 0
514 /* Process INSN and add its impact on DC. */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
523 /* Functions to work with DFA states. */
525 /* Allocate store for a DFA state. */
526 static state_t
527 state_alloc (void)
529 return xmalloc (dfa_state_size);
532 /* Allocate and initialize DFA state. */
533 static state_t
534 state_create (void)
536 state_t state = state_alloc ();
538 state_reset (state);
539 advance_state (state);
540 return state;
543 /* Free DFA state. */
544 static void
545 state_free (state_t state)
547 free (state);
550 /* Make a copy of FROM in TO. */
551 static void
552 state_copy (state_t to, state_t from)
554 memcpy (to, from, dfa_state_size);
557 /* Create a copy of FROM. */
558 static state_t
559 state_create_copy (state_t from)
561 state_t to = state_alloc ();
563 state_copy (to, from);
564 return to;
568 /* Functions to work with fences. */
570 /* Clear the fence. */
571 static void
572 fence_clear (fence_t f)
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
578 ilist_clear (&FENCE_BNDS (f));
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
583 if (s != NULL)
584 free (s);
586 if (dc != NULL)
587 delete_deps_context (dc);
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
596 /* Init a list of fences with successors of OLD_FENCE. */
597 void
598 init_fences (insn_t old_fence)
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
618 NULL_RTX /* last_scheduled_insn */,
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
623 1 /* cycle */, 0 /* cycle_issued_insns */,
624 issue_rate, /* issue_more */
625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
629 /* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
631 propagated from fallthrough edge if it is available;
632 2) deps context and cycle is propagated from more probable edge;
633 3) all other fields are set to corresponding constant values.
635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
638 static void
639 merge_fences (fence_t f, insn_t insn,
640 state_t state, deps_t dc, void *tc,
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
650 /* Check if we can decide which path fences came.
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
660 state_reset (FENCE_STATE (f));
661 state_free (state);
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673 FENCE_ISSUE_MORE (f) = issue_rate;
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
682 else
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691 candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705 FENCE_ISSUE_MORE (f) = issue_rate;
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
710 /* Would be weird if same insn is successor of several fallthrough
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722 FENCE_ISSUE_MORE (f) = issue_more;
724 else
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
738 if (succ == insn)
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
749 if (succ == insn)
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
772 else
773 if (edge_new->probability > edge_old->probability)
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
784 else
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
802 /* Add a new fence to NEW_FENCES list, initializing it from all
803 other parameters. */
804 static void
805 add_to_fences (flist_tail_t new_fences, insn_t insn,
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
814 if (! f)
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
817 last_scheduled_insn, executing_insns, ready_ticks,
818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
819 issue_rate, starts_cycle_p, after_stall_p);
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
824 else
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
828 sched_next, cycle, issue_rate, after_stall_p);
832 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833 void
834 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
839 old = FLIST_FENCE (old_fences);
840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
847 old->sched_next, old->cycle, old->issue_more,
848 old->after_stall_p);
850 else
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
857 FENCE_INSN (old) = NULL;
860 /* Add a new fence to NEW_FENCES list and initialize most of its data
861 as a clean one. */
862 void
863 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
865 int ready_ticks_size = get_max_uid () + 1;
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
870 NULL_RTX, NULL,
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
876 /* Add a new fence to NEW_FENCES list and initialize all of its data
877 from FENCE and SUCC. */
878 void
879 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
881 int * new_ready_ticks
882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
890 FENCE_LAST_SCHEDULED_INSN (fence),
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
897 FENCE_ISSUE_MORE (fence),
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
903 /* Functions to work with regset and nop pools. */
905 /* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907 regset
908 get_regset_from_pool (void)
910 regset rs;
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
917 rs = ALLOC_REG_SET (&reg_obstack);
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
925 regset_pool.diff++;
927 return rs;
930 /* Same as above, but returns the empty regset. */
931 regset
932 get_clear_regset_from_pool (void)
934 regset rs = get_regset_from_pool ();
936 CLEAR_REG_SET (rs);
937 return rs;
940 /* Return regset RS to the pool for future use. */
941 void
942 return_regset_to_pool (regset rs)
944 regset_pool.diff--;
946 if (regset_pool.n == regset_pool.s)
947 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
948 (regset_pool.s = 2 * regset_pool.s + 1));
949 regset_pool.v[regset_pool.n++] = rs;
952 #ifdef ENABLE_CHECKING
953 /* This is used as a qsort callback for sorting regset pool stacks.
954 X and XX are addresses of two regsets. They are never equal. */
955 static int
956 cmp_v_in_regset_pool (const void *x, const void *xx)
958 return *((const regset *) x) - *((const regset *) xx);
960 #endif
962 /* Free the regset pool possibly checking for memory leaks. */
963 void
964 free_regset_pool (void)
966 #ifdef ENABLE_CHECKING
968 regset *v = regset_pool.v;
969 int i = 0;
970 int n = regset_pool.n;
972 regset *vv = regset_pool.vv;
973 int ii = 0;
974 int nn = regset_pool.nn;
976 int diff = 0;
978 gcc_assert (n <= nn);
980 /* Sort both vectors so it will be possible to compare them. */
981 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
982 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
984 while (ii < nn)
986 if (v[i] == vv[ii])
987 i++;
988 else
989 /* VV[II] was lost. */
990 diff++;
992 ii++;
995 gcc_assert (diff == regset_pool.diff);
997 #endif
999 /* If not true - we have a memory leak. */
1000 gcc_assert (regset_pool.diff == 0);
1002 while (regset_pool.n)
1004 --regset_pool.n;
1005 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1008 free (regset_pool.v);
1009 regset_pool.v = NULL;
1010 regset_pool.s = 0;
1012 free (regset_pool.vv);
1013 regset_pool.vv = NULL;
1014 regset_pool.nn = 0;
1015 regset_pool.ss = 0;
1017 regset_pool.diff = 0;
1021 /* Functions to work with nop pools. NOP insns are used as temporary
1022 placeholders of the insns being scheduled to allow correct update of
1023 the data sets. When update is finished, NOPs are deleted. */
1025 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1026 nops sel-sched generates. */
1027 static vinsn_t nop_vinsn = NULL;
1029 /* Emit a nop before INSN, taking it from pool. */
1030 insn_t
1031 get_nop_from_pool (insn_t insn)
1033 insn_t nop;
1034 bool old_p = nop_pool.n != 0;
1035 int flags;
1037 if (old_p)
1038 nop = nop_pool.v[--nop_pool.n];
1039 else
1040 nop = nop_pattern;
1042 nop = emit_insn_before (nop, insn);
1044 if (old_p)
1045 flags = INSN_INIT_TODO_SSID;
1046 else
1047 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1049 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1050 sel_init_new_insn (nop, flags);
1052 return nop;
1055 /* Remove NOP from the instruction stream and return it to the pool. */
1056 void
1057 return_nop_to_pool (insn_t nop, bool full_tidying)
1059 gcc_assert (INSN_IN_STREAM_P (nop));
1060 sel_remove_insn (nop, false, full_tidying);
1062 if (nop_pool.n == nop_pool.s)
1063 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1064 (nop_pool.s = 2 * nop_pool.s + 1));
1065 nop_pool.v[nop_pool.n++] = nop;
1068 /* Free the nop pool. */
1069 void
1070 free_nop_pool (void)
1072 nop_pool.n = 0;
1073 nop_pool.s = 0;
1074 free (nop_pool.v);
1075 nop_pool.v = NULL;
1079 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1080 The callback is given two rtxes XX and YY and writes the new rtxes
1081 to NX and NY in case some needs to be skipped. */
1082 static int
1083 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1085 const_rtx x = *xx;
1086 const_rtx y = *yy;
1088 if (GET_CODE (x) == UNSPEC
1089 && (targetm.sched.skip_rtx_p == NULL
1090 || targetm.sched.skip_rtx_p (x)))
1092 *nx = XVECEXP (x, 0, 0);
1093 *ny = CONST_CAST_RTX (y);
1094 return 1;
1097 if (GET_CODE (y) == UNSPEC
1098 && (targetm.sched.skip_rtx_p == NULL
1099 || targetm.sched.skip_rtx_p (y)))
1101 *nx = CONST_CAST_RTX (x);
1102 *ny = XVECEXP (y, 0, 0);
1103 return 1;
1106 return 0;
1109 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1110 to support ia64 speculation. When changes are needed, new rtx X and new mode
1111 NMODE are written, and the callback returns true. */
1112 static int
1113 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1114 rtx *nx, enum machine_mode* nmode)
1116 if (GET_CODE (x) == UNSPEC
1117 && targetm.sched.skip_rtx_p
1118 && targetm.sched.skip_rtx_p (x))
1120 *nx = XVECEXP (x, 0 ,0);
1121 *nmode = VOIDmode;
1122 return 1;
1125 return 0;
1128 /* Returns LHS and RHS are ok to be scheduled separately. */
1129 static bool
1130 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1132 if (lhs == NULL || rhs == NULL)
1133 return false;
1135 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1136 to use reg, if const can be used. Moreover, scheduling const as rhs may
1137 lead to mode mismatch cause consts don't have modes but they could be
1138 merged from branches where the same const used in different modes. */
1139 if (CONSTANT_P (rhs))
1140 return false;
1142 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1143 if (COMPARISON_P (rhs))
1144 return false;
1146 /* Do not allow single REG to be an rhs. */
1147 if (REG_P (rhs))
1148 return false;
1150 /* See comment at find_used_regs_1 (*1) for explanation of this
1151 restriction. */
1152 /* FIXME: remove this later. */
1153 if (MEM_P (lhs))
1154 return false;
1156 /* This will filter all tricky things like ZERO_EXTRACT etc.
1157 For now we don't handle it. */
1158 if (!REG_P (lhs) && !MEM_P (lhs))
1159 return false;
1161 return true;
1164 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1165 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1166 used e.g. for insns from recovery blocks. */
1167 static void
1168 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1170 hash_rtx_callback_function hrcf;
1171 int insn_class;
1173 VINSN_INSN_RTX (vi) = insn;
1174 VINSN_COUNT (vi) = 0;
1175 vi->cost = -1;
1177 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1178 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1179 else
1180 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1182 /* Hash vinsn depending on whether it is separable or not. */
1183 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1184 if (VINSN_SEPARABLE_P (vi))
1186 rtx rhs = VINSN_RHS (vi);
1188 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1189 NULL, NULL, false, hrcf);
1190 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1191 VOIDmode, NULL, NULL,
1192 false, hrcf);
1194 else
1196 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1197 NULL, NULL, false, hrcf);
1198 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1201 insn_class = haifa_classify_insn (insn);
1202 if (insn_class >= 2
1203 && (!targetm.sched.get_insn_spec_ds
1204 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1205 == 0)))
1206 VINSN_MAY_TRAP_P (vi) = true;
1207 else
1208 VINSN_MAY_TRAP_P (vi) = false;
1211 /* Indicate that VI has become the part of an rtx object. */
1212 void
1213 vinsn_attach (vinsn_t vi)
1215 /* Assert that VI is not pending for deletion. */
1216 gcc_assert (VINSN_INSN_RTX (vi));
1218 VINSN_COUNT (vi)++;
1221 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1222 VINSN_TYPE (VI). */
1223 static vinsn_t
1224 vinsn_create (insn_t insn, bool force_unique_p)
1226 vinsn_t vi = XCNEW (struct vinsn_def);
1228 vinsn_init (vi, insn, force_unique_p);
1229 return vi;
1232 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1233 the copy. */
1234 vinsn_t
1235 vinsn_copy (vinsn_t vi, bool reattach_p)
1237 rtx copy;
1238 bool unique = VINSN_UNIQUE_P (vi);
1239 vinsn_t new_vi;
1241 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1242 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1243 if (reattach_p)
1245 vinsn_detach (vi);
1246 vinsn_attach (new_vi);
1249 return new_vi;
1252 /* Delete the VI vinsn and free its data. */
1253 static void
1254 vinsn_delete (vinsn_t vi)
1256 gcc_assert (VINSN_COUNT (vi) == 0);
1258 return_regset_to_pool (VINSN_REG_SETS (vi));
1259 return_regset_to_pool (VINSN_REG_USES (vi));
1260 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1262 free (vi);
1265 /* Indicate that VI is no longer a part of some rtx object.
1266 Remove VI if it is no longer needed. */
1267 void
1268 vinsn_detach (vinsn_t vi)
1270 gcc_assert (VINSN_COUNT (vi) > 0);
1272 if (--VINSN_COUNT (vi) == 0)
1273 vinsn_delete (vi);
1276 /* Returns TRUE if VI is a branch. */
1277 bool
1278 vinsn_cond_branch_p (vinsn_t vi)
1280 insn_t insn;
1282 if (!VINSN_UNIQUE_P (vi))
1283 return false;
1285 insn = VINSN_INSN_RTX (vi);
1286 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1287 return false;
1289 return control_flow_insn_p (insn);
1292 /* Return latency of INSN. */
1293 static int
1294 sel_insn_rtx_cost (rtx insn)
1296 int cost;
1298 /* A USE insn, or something else we don't need to
1299 understand. We can't pass these directly to
1300 result_ready_cost or insn_default_latency because it will
1301 trigger a fatal error for unrecognizable insns. */
1302 if (recog_memoized (insn) < 0)
1303 cost = 0;
1304 else
1306 cost = insn_default_latency (insn);
1308 if (cost < 0)
1309 cost = 0;
1312 return cost;
1315 /* Return the cost of the VI.
1316 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1318 sel_vinsn_cost (vinsn_t vi)
1320 int cost = vi->cost;
1322 if (cost < 0)
1324 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1325 vi->cost = cost;
1328 return cost;
1332 /* Functions for insn emitting. */
1334 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1335 EXPR and SEQNO. */
1336 insn_t
1337 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1339 insn_t new_insn;
1341 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1343 new_insn = emit_insn_after (pattern, after);
1344 set_insn_init (expr, NULL, seqno);
1345 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1347 return new_insn;
1350 /* Force newly generated vinsns to be unique. */
1351 static bool init_insn_force_unique_p = false;
1353 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1354 initialize its data from EXPR and SEQNO. */
1355 insn_t
1356 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1357 insn_t after)
1359 insn_t insn;
1361 gcc_assert (!init_insn_force_unique_p);
1363 init_insn_force_unique_p = true;
1364 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1365 CANT_MOVE (insn) = 1;
1366 init_insn_force_unique_p = false;
1368 return insn;
1371 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1372 take it as a new vinsn instead of EXPR's vinsn.
1373 We simplify insns later, after scheduling region in
1374 simplify_changed_insns. */
1375 insn_t
1376 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1377 insn_t after)
1379 expr_t emit_expr;
1380 insn_t insn;
1381 int flags;
1383 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1384 seqno);
1385 insn = EXPR_INSN_RTX (emit_expr);
1386 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1388 flags = INSN_INIT_TODO_SSID;
1389 if (INSN_LUID (insn) == 0)
1390 flags |= INSN_INIT_TODO_LUID;
1391 sel_init_new_insn (insn, flags);
1393 return insn;
1396 /* Move insn from EXPR after AFTER. */
1397 insn_t
1398 sel_move_insn (expr_t expr, int seqno, insn_t after)
1400 insn_t insn = EXPR_INSN_RTX (expr);
1401 basic_block bb = BLOCK_FOR_INSN (after);
1402 insn_t next = NEXT_INSN (after);
1404 /* Assert that in move_op we disconnected this insn properly. */
1405 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1406 PREV_INSN (insn) = after;
1407 NEXT_INSN (insn) = next;
1409 NEXT_INSN (after) = insn;
1410 PREV_INSN (next) = insn;
1412 /* Update links from insn to bb and vice versa. */
1413 df_insn_change_bb (insn, bb);
1414 if (BB_END (bb) == after)
1415 BB_END (bb) = insn;
1417 prepare_insn_expr (insn, seqno);
1418 return insn;
1422 /* Functions to work with right-hand sides. */
1424 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1425 VECT and return true when found. Use NEW_VINSN for comparison only when
1426 COMPARE_VINSNS is true. Write to INDP the index on which
1427 the search has stopped, such that inserting the new element at INDP will
1428 retain VECT's sort order. */
1429 static bool
1430 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1431 unsigned uid, vinsn_t new_vinsn,
1432 bool compare_vinsns, int *indp)
1434 expr_history_def *arr;
1435 int i, j, len = VEC_length (expr_history_def, vect);
1437 if (len == 0)
1439 *indp = 0;
1440 return false;
1443 arr = VEC_address (expr_history_def, vect);
1444 i = 0, j = len - 1;
1446 while (i <= j)
1448 unsigned auid = arr[i].uid;
1449 vinsn_t avinsn = arr[i].new_expr_vinsn;
1451 if (auid == uid
1452 /* When undoing transformation on a bookkeeping copy, the new vinsn
1453 may not be exactly equal to the one that is saved in the vector.
1454 This is because the insn whose copy we're checking was possibly
1455 substituted itself. */
1456 && (! compare_vinsns
1457 || vinsn_equal_p (avinsn, new_vinsn)))
1459 *indp = i;
1460 return true;
1462 else if (auid > uid)
1463 break;
1464 i++;
1467 *indp = i;
1468 return false;
1471 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1472 the position found or -1, if no such value is in vector.
1473 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1475 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1476 vinsn_t new_vinsn, bool originators_p)
1478 int ind;
1480 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1481 false, &ind))
1482 return ind;
1484 if (INSN_ORIGINATORS (insn) && originators_p)
1486 unsigned uid;
1487 bitmap_iterator bi;
1489 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1490 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1491 return ind;
1494 return -1;
1497 /* Insert new element in a sorted history vector pointed to by PVECT,
1498 if it is not there already. The element is searched using
1499 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1500 the history of a transformation. */
1501 void
1502 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1503 unsigned uid, enum local_trans_type type,
1504 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1505 ds_t spec_ds)
1507 VEC(expr_history_def, heap) *vect = *pvect;
1508 expr_history_def temp;
1509 bool res;
1510 int ind;
1512 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1514 if (res)
1516 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1518 /* It is possible that speculation types of expressions that were
1519 propagated through different paths will be different here. In this
1520 case, merge the status to get the correct check later. */
1521 if (phist->spec_ds != spec_ds)
1522 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1523 return;
1526 temp.uid = uid;
1527 temp.old_expr_vinsn = old_expr_vinsn;
1528 temp.new_expr_vinsn = new_expr_vinsn;
1529 temp.spec_ds = spec_ds;
1530 temp.type = type;
1532 vinsn_attach (old_expr_vinsn);
1533 vinsn_attach (new_expr_vinsn);
1534 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1535 *pvect = vect;
1538 /* Free history vector PVECT. */
1539 static void
1540 free_history_vect (VEC (expr_history_def, heap) **pvect)
1542 unsigned i;
1543 expr_history_def *phist;
1545 if (! *pvect)
1546 return;
1548 for (i = 0;
1549 VEC_iterate (expr_history_def, *pvect, i, phist);
1550 i++)
1552 vinsn_detach (phist->old_expr_vinsn);
1553 vinsn_detach (phist->new_expr_vinsn);
1556 VEC_free (expr_history_def, heap, *pvect);
1557 *pvect = NULL;
1561 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1562 bool
1563 vinsn_equal_p (vinsn_t x, vinsn_t y)
1565 rtx_equal_p_callback_function repcf;
1567 if (x == y)
1568 return true;
1570 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1571 return false;
1573 if (VINSN_HASH (x) != VINSN_HASH (y))
1574 return false;
1576 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1577 if (VINSN_SEPARABLE_P (x))
1579 /* Compare RHSes of VINSNs. */
1580 gcc_assert (VINSN_RHS (x));
1581 gcc_assert (VINSN_RHS (y));
1583 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1586 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1590 /* Functions for working with expressions. */
1592 /* Initialize EXPR. */
1593 static void
1594 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1595 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1596 ds_t spec_to_check_ds, int orig_sched_cycle,
1597 VEC(expr_history_def, heap) *history, bool target_available,
1598 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1599 bool cant_move)
1601 vinsn_attach (vi);
1603 EXPR_VINSN (expr) = vi;
1604 EXPR_SPEC (expr) = spec;
1605 EXPR_USEFULNESS (expr) = use;
1606 EXPR_PRIORITY (expr) = priority;
1607 EXPR_PRIORITY_ADJ (expr) = 0;
1608 EXPR_SCHED_TIMES (expr) = sched_times;
1609 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1610 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1611 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1612 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1614 if (history)
1615 EXPR_HISTORY_OF_CHANGES (expr) = history;
1616 else
1617 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1619 EXPR_TARGET_AVAILABLE (expr) = target_available;
1620 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1621 EXPR_WAS_RENAMED (expr) = was_renamed;
1622 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1623 EXPR_CANT_MOVE (expr) = cant_move;
1626 /* Make a copy of the expr FROM into the expr TO. */
1627 void
1628 copy_expr (expr_t to, expr_t from)
1630 VEC(expr_history_def, heap) *temp = NULL;
1632 if (EXPR_HISTORY_OF_CHANGES (from))
1634 unsigned i;
1635 expr_history_def *phist;
1637 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1638 for (i = 0;
1639 VEC_iterate (expr_history_def, temp, i, phist);
1640 i++)
1642 vinsn_attach (phist->old_expr_vinsn);
1643 vinsn_attach (phist->new_expr_vinsn);
1647 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1648 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1649 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1650 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1651 EXPR_ORIG_SCHED_CYCLE (from), temp,
1652 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1653 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1654 EXPR_CANT_MOVE (from));
1657 /* Same, but the final expr will not ever be in av sets, so don't copy
1658 "uninteresting" data such as bitmap cache. */
1659 void
1660 copy_expr_onside (expr_t to, expr_t from)
1662 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1663 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1664 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1665 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1666 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1667 EXPR_CANT_MOVE (from));
1670 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1671 initializing new insns. */
1672 static void
1673 prepare_insn_expr (insn_t insn, int seqno)
1675 expr_t expr = INSN_EXPR (insn);
1676 ds_t ds;
1678 INSN_SEQNO (insn) = seqno;
1679 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1680 EXPR_SPEC (expr) = 0;
1681 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1682 EXPR_WAS_SUBSTITUTED (expr) = 0;
1683 EXPR_WAS_RENAMED (expr) = 0;
1684 EXPR_TARGET_AVAILABLE (expr) = 1;
1685 INSN_LIVE_VALID_P (insn) = false;
1687 /* ??? If this expression is speculative, make its dependence
1688 as weak as possible. We can filter this expression later
1689 in process_spec_exprs, because we do not distinguish
1690 between the status we got during compute_av_set and the
1691 existing status. To be fixed. */
1692 ds = EXPR_SPEC_DONE_DS (expr);
1693 if (ds)
1694 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1696 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1699 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1700 is non-null when expressions are merged from different successors at
1701 a split point. */
1702 static void
1703 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1705 if (EXPR_TARGET_AVAILABLE (to) < 0
1706 || EXPR_TARGET_AVAILABLE (from) < 0)
1707 EXPR_TARGET_AVAILABLE (to) = -1;
1708 else
1710 /* We try to detect the case when one of the expressions
1711 can only be reached through another one. In this case,
1712 we can do better. */
1713 if (split_point == NULL)
1715 int toind, fromind;
1717 toind = EXPR_ORIG_BB_INDEX (to);
1718 fromind = EXPR_ORIG_BB_INDEX (from);
1720 if (toind && toind == fromind)
1721 /* Do nothing -- everything is done in
1722 merge_with_other_exprs. */
1724 else
1725 EXPR_TARGET_AVAILABLE (to) = -1;
1727 else
1728 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1732 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1733 is non-null when expressions are merged from different successors at
1734 a split point. */
1735 static void
1736 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1738 ds_t old_to_ds, old_from_ds;
1740 old_to_ds = EXPR_SPEC_DONE_DS (to);
1741 old_from_ds = EXPR_SPEC_DONE_DS (from);
1743 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1744 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1745 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1747 /* When merging e.g. control & data speculative exprs, or a control
1748 speculative with a control&data speculative one, we really have
1749 to change vinsn too. Also, when speculative status is changed,
1750 we also need to record this as a transformation in expr's history. */
1751 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1753 old_to_ds = ds_get_speculation_types (old_to_ds);
1754 old_from_ds = ds_get_speculation_types (old_from_ds);
1756 if (old_to_ds != old_from_ds)
1758 ds_t record_ds;
1760 /* When both expressions are speculative, we need to change
1761 the vinsn first. */
1762 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1764 int res;
1766 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1767 gcc_assert (res >= 0);
1770 if (split_point != NULL)
1772 /* Record the change with proper status. */
1773 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1774 record_ds &= ~(old_to_ds & SPECULATIVE);
1775 record_ds &= ~(old_from_ds & SPECULATIVE);
1777 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1778 INSN_UID (split_point), TRANS_SPECULATION,
1779 EXPR_VINSN (from), EXPR_VINSN (to),
1780 record_ds);
1787 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1788 this is done along different paths. */
1789 void
1790 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1792 int i;
1793 expr_history_def *phist;
1795 /* For now, we just set the spec of resulting expr to be minimum of the specs
1796 of merged exprs. */
1797 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1798 EXPR_SPEC (to) = EXPR_SPEC (from);
1800 if (split_point)
1801 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1802 else
1803 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1804 EXPR_USEFULNESS (from));
1806 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1807 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1809 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1810 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1812 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1813 EXPR_ORIG_BB_INDEX (to) = 0;
1815 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1816 EXPR_ORIG_SCHED_CYCLE (from));
1818 /* We keep this vector sorted. */
1819 for (i = 0;
1820 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
1821 i, phist);
1822 i++)
1823 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1824 phist->uid, phist->type,
1825 phist->old_expr_vinsn, phist->new_expr_vinsn,
1826 phist->spec_ds);
1828 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1829 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1830 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1832 update_target_availability (to, from, split_point);
1833 update_speculative_bits (to, from, split_point);
1836 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1837 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1838 are merged from different successors at a split point. */
1839 void
1840 merge_expr (expr_t to, expr_t from, insn_t split_point)
1842 vinsn_t to_vi = EXPR_VINSN (to);
1843 vinsn_t from_vi = EXPR_VINSN (from);
1845 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1847 /* Make sure that speculative pattern is propagated into exprs that
1848 have non-speculative one. This will provide us with consistent
1849 speculative bits and speculative patterns inside expr. */
1850 if (EXPR_SPEC_DONE_DS (to) == 0
1851 && EXPR_SPEC_DONE_DS (from) != 0)
1852 change_vinsn_in_expr (to, EXPR_VINSN (from));
1854 merge_expr_data (to, from, split_point);
1855 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1858 /* Clear the information of this EXPR. */
1859 void
1860 clear_expr (expr_t expr)
1863 vinsn_detach (EXPR_VINSN (expr));
1864 EXPR_VINSN (expr) = NULL;
1866 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1869 /* For a given LV_SET, mark EXPR having unavailable target register. */
1870 static void
1871 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1873 if (EXPR_SEPARABLE_P (expr))
1875 if (REG_P (EXPR_LHS (expr))
1876 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1878 /* If it's an insn like r1 = use (r1, ...), and it exists in
1879 different forms in each of the av_sets being merged, we can't say
1880 whether original destination register is available or not.
1881 However, this still works if destination register is not used
1882 in the original expression: if the branch at which LV_SET we're
1883 looking here is not actually 'other branch' in sense that same
1884 expression is available through it (but it can't be determined
1885 at computation stage because of transformations on one of the
1886 branches), it still won't affect the availability.
1887 Liveness of a register somewhere on a code motion path means
1888 it's either read somewhere on a codemotion path, live on
1889 'other' branch, live at the point immediately following
1890 the original operation, or is read by the original operation.
1891 The latter case is filtered out in the condition below.
1892 It still doesn't cover the case when register is defined and used
1893 somewhere within the code motion path, and in this case we could
1894 miss a unifying code motion along both branches using a renamed
1895 register, but it won't affect a code correctness since upon
1896 an actual code motion a bookkeeping code would be generated. */
1897 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1898 REGNO (EXPR_LHS (expr))))
1899 EXPR_TARGET_AVAILABLE (expr) = -1;
1900 else
1901 EXPR_TARGET_AVAILABLE (expr) = false;
1904 else
1906 unsigned regno;
1907 reg_set_iterator rsi;
1909 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1910 0, regno, rsi)
1911 if (bitmap_bit_p (lv_set, regno))
1913 EXPR_TARGET_AVAILABLE (expr) = false;
1914 break;
1917 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1918 0, regno, rsi)
1919 if (bitmap_bit_p (lv_set, regno))
1921 EXPR_TARGET_AVAILABLE (expr) = false;
1922 break;
1927 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1928 or dependence status have changed, 2 when also the target register
1929 became unavailable, 0 if nothing had to be changed. */
1931 speculate_expr (expr_t expr, ds_t ds)
1933 int res;
1934 rtx orig_insn_rtx;
1935 rtx spec_pat;
1936 ds_t target_ds, current_ds;
1938 /* Obtain the status we need to put on EXPR. */
1939 target_ds = (ds & SPECULATIVE);
1940 current_ds = EXPR_SPEC_DONE_DS (expr);
1941 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1943 orig_insn_rtx = EXPR_INSN_RTX (expr);
1945 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1947 switch (res)
1949 case 0:
1950 EXPR_SPEC_DONE_DS (expr) = ds;
1951 return current_ds != ds ? 1 : 0;
1953 case 1:
1955 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1956 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1958 change_vinsn_in_expr (expr, spec_vinsn);
1959 EXPR_SPEC_DONE_DS (expr) = ds;
1960 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1962 /* Do not allow clobbering the address register of speculative
1963 insns. */
1964 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1965 expr_dest_regno (expr)))
1967 EXPR_TARGET_AVAILABLE (expr) = false;
1968 return 2;
1971 return 1;
1974 case -1:
1975 return -1;
1977 default:
1978 gcc_unreachable ();
1979 return -1;
1983 /* Return a destination register, if any, of EXPR. */
1985 expr_dest_reg (expr_t expr)
1987 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1989 if (dest != NULL_RTX && REG_P (dest))
1990 return dest;
1992 return NULL_RTX;
1995 /* Returns the REGNO of the R's destination. */
1996 unsigned
1997 expr_dest_regno (expr_t expr)
1999 rtx dest = expr_dest_reg (expr);
2001 gcc_assert (dest != NULL_RTX);
2002 return REGNO (dest);
2005 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2006 AV_SET having unavailable target register. */
2007 void
2008 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2010 expr_t expr;
2011 av_set_iterator avi;
2013 FOR_EACH_EXPR (expr, avi, join_set)
2014 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2015 set_unavailable_target_for_expr (expr, lv_set);
2019 /* Av set functions. */
2021 /* Add a new element to av set SETP.
2022 Return the element added. */
2023 static av_set_t
2024 av_set_add_element (av_set_t *setp)
2026 /* Insert at the beginning of the list. */
2027 _list_add (setp);
2028 return *setp;
2031 /* Add EXPR to SETP. */
2032 void
2033 av_set_add (av_set_t *setp, expr_t expr)
2035 av_set_t elem;
2037 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2038 elem = av_set_add_element (setp);
2039 copy_expr (_AV_SET_EXPR (elem), expr);
2042 /* Same, but do not copy EXPR. */
2043 static void
2044 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2046 av_set_t elem;
2048 elem = av_set_add_element (setp);
2049 *_AV_SET_EXPR (elem) = *expr;
2052 /* Remove expr pointed to by IP from the av_set. */
2053 void
2054 av_set_iter_remove (av_set_iterator *ip)
2056 clear_expr (_AV_SET_EXPR (*ip->lp));
2057 _list_iter_remove (ip);
2060 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2061 sense of vinsn_equal_p function. Return NULL if no such expr is
2062 in SET was found. */
2063 expr_t
2064 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2066 expr_t expr;
2067 av_set_iterator i;
2069 FOR_EACH_EXPR (expr, i, set)
2070 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2071 return expr;
2072 return NULL;
2075 /* Same, but also remove the EXPR found. */
2076 static expr_t
2077 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2079 expr_t expr;
2080 av_set_iterator i;
2082 FOR_EACH_EXPR_1 (expr, i, setp)
2083 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2085 _list_iter_remove_nofree (&i);
2086 return expr;
2088 return NULL;
2091 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2092 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2093 Returns NULL if no such expr is in SET was found. */
2094 static expr_t
2095 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2097 expr_t cur_expr;
2098 av_set_iterator i;
2100 FOR_EACH_EXPR (cur_expr, i, set)
2102 if (cur_expr == expr)
2103 continue;
2104 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2105 return cur_expr;
2108 return NULL;
2111 /* If other expression is already in AVP, remove one of them. */
2112 expr_t
2113 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2115 expr_t expr2;
2117 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2118 if (expr2 != NULL)
2120 /* Reset target availability on merge, since taking it only from one
2121 of the exprs would be controversial for different code. */
2122 EXPR_TARGET_AVAILABLE (expr2) = -1;
2123 EXPR_USEFULNESS (expr2) = 0;
2125 merge_expr (expr2, expr, NULL);
2127 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2128 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2130 av_set_iter_remove (ip);
2131 return expr2;
2134 return expr;
2137 /* Return true if there is an expr that correlates to VI in SET. */
2138 bool
2139 av_set_is_in_p (av_set_t set, vinsn_t vi)
2141 return av_set_lookup (set, vi) != NULL;
2144 /* Return a copy of SET. */
2145 av_set_t
2146 av_set_copy (av_set_t set)
2148 expr_t expr;
2149 av_set_iterator i;
2150 av_set_t res = NULL;
2152 FOR_EACH_EXPR (expr, i, set)
2153 av_set_add (&res, expr);
2155 return res;
2158 /* Join two av sets that do not have common elements by attaching second set
2159 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2160 _AV_SET_NEXT of first set's last element). */
2161 static void
2162 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2164 gcc_assert (*to_tailp == NULL);
2165 *to_tailp = *fromp;
2166 *fromp = NULL;
2169 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2170 pointed to by FROMP afterwards. */
2171 void
2172 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2174 expr_t expr1;
2175 av_set_iterator i;
2177 /* Delete from TOP all exprs, that present in FROMP. */
2178 FOR_EACH_EXPR_1 (expr1, i, top)
2180 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2182 if (expr2)
2184 merge_expr (expr2, expr1, insn);
2185 av_set_iter_remove (&i);
2189 join_distinct_sets (i.lp, fromp);
2192 /* Same as above, but also update availability of target register in
2193 TOP judging by TO_LV_SET and FROM_LV_SET. */
2194 void
2195 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2196 regset from_lv_set, insn_t insn)
2198 expr_t expr1;
2199 av_set_iterator i;
2200 av_set_t *to_tailp, in_both_set = NULL;
2202 /* Delete from TOP all expres, that present in FROMP. */
2203 FOR_EACH_EXPR_1 (expr1, i, top)
2205 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2207 if (expr2)
2209 /* It may be that the expressions have different destination
2210 registers, in which case we need to check liveness here. */
2211 if (EXPR_SEPARABLE_P (expr1))
2213 int regno1 = (REG_P (EXPR_LHS (expr1))
2214 ? (int) expr_dest_regno (expr1) : -1);
2215 int regno2 = (REG_P (EXPR_LHS (expr2))
2216 ? (int) expr_dest_regno (expr2) : -1);
2218 /* ??? We don't have a way to check restrictions for
2219 *other* register on the current path, we did it only
2220 for the current target register. Give up. */
2221 if (regno1 != regno2)
2222 EXPR_TARGET_AVAILABLE (expr2) = -1;
2224 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2225 EXPR_TARGET_AVAILABLE (expr2) = -1;
2227 merge_expr (expr2, expr1, insn);
2228 av_set_add_nocopy (&in_both_set, expr2);
2229 av_set_iter_remove (&i);
2231 else
2232 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2233 FROM_LV_SET. */
2234 set_unavailable_target_for_expr (expr1, from_lv_set);
2236 to_tailp = i.lp;
2238 /* These expressions are not present in TOP. Check liveness
2239 restrictions on TO_LV_SET. */
2240 FOR_EACH_EXPR (expr1, i, *fromp)
2241 set_unavailable_target_for_expr (expr1, to_lv_set);
2243 join_distinct_sets (i.lp, &in_both_set);
2244 join_distinct_sets (to_tailp, fromp);
2247 /* Clear av_set pointed to by SETP. */
2248 void
2249 av_set_clear (av_set_t *setp)
2251 expr_t expr;
2252 av_set_iterator i;
2254 FOR_EACH_EXPR_1 (expr, i, setp)
2255 av_set_iter_remove (&i);
2257 gcc_assert (*setp == NULL);
2260 /* Leave only one non-speculative element in the SETP. */
2261 void
2262 av_set_leave_one_nonspec (av_set_t *setp)
2264 expr_t expr;
2265 av_set_iterator i;
2266 bool has_one_nonspec = false;
2268 /* Keep all speculative exprs, and leave one non-speculative
2269 (the first one). */
2270 FOR_EACH_EXPR_1 (expr, i, setp)
2272 if (!EXPR_SPEC_DONE_DS (expr))
2274 if (has_one_nonspec)
2275 av_set_iter_remove (&i);
2276 else
2277 has_one_nonspec = true;
2282 /* Return the N'th element of the SET. */
2283 expr_t
2284 av_set_element (av_set_t set, int n)
2286 expr_t expr;
2287 av_set_iterator i;
2289 FOR_EACH_EXPR (expr, i, set)
2290 if (n-- == 0)
2291 return expr;
2293 gcc_unreachable ();
2294 return NULL;
2297 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2298 void
2299 av_set_substract_cond_branches (av_set_t *avp)
2301 av_set_iterator i;
2302 expr_t expr;
2304 FOR_EACH_EXPR_1 (expr, i, avp)
2305 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2306 av_set_iter_remove (&i);
2309 /* Multiplies usefulness attribute of each member of av-set *AVP by
2310 value PROB / ALL_PROB. */
2311 void
2312 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2314 av_set_iterator i;
2315 expr_t expr;
2317 FOR_EACH_EXPR (expr, i, av)
2318 EXPR_USEFULNESS (expr) = (all_prob
2319 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2320 : 0);
2323 /* Leave in AVP only those expressions, which are present in AV,
2324 and return it. */
2325 void
2326 av_set_intersect (av_set_t *avp, av_set_t av)
2328 av_set_iterator i;
2329 expr_t expr;
2331 FOR_EACH_EXPR_1 (expr, i, avp)
2332 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2333 av_set_iter_remove (&i);
2338 /* Dependence hooks to initialize insn data. */
2340 /* This is used in hooks callable from dependence analysis when initializing
2341 instruction's data. */
2342 static struct
2344 /* Where the dependence was found (lhs/rhs). */
2345 deps_where_t where;
2347 /* The actual data object to initialize. */
2348 idata_t id;
2350 /* True when the insn should not be made clonable. */
2351 bool force_unique_p;
2353 /* True when insn should be treated as of type USE, i.e. never renamed. */
2354 bool force_use_p;
2355 } deps_init_id_data;
2358 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2359 clonable. */
2360 static void
2361 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2363 int type;
2365 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2366 That clonable insns which can be separated into lhs and rhs have type SET.
2367 Other clonable insns have type USE. */
2368 type = GET_CODE (insn);
2370 /* Only regular insns could be cloned. */
2371 if (type == INSN && !force_unique_p)
2372 type = SET;
2373 else if (type == JUMP_INSN && simplejump_p (insn))
2374 type = PC;
2375 else if (type == DEBUG_INSN)
2376 type = !force_unique_p ? USE : INSN;
2378 IDATA_TYPE (id) = type;
2379 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2380 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2381 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2384 /* Start initializing insn data. */
2385 static void
2386 deps_init_id_start_insn (insn_t insn)
2388 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2390 setup_id_for_insn (deps_init_id_data.id, insn,
2391 deps_init_id_data.force_unique_p);
2392 deps_init_id_data.where = DEPS_IN_INSN;
2395 /* Start initializing lhs data. */
2396 static void
2397 deps_init_id_start_lhs (rtx lhs)
2399 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2400 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2402 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2404 IDATA_LHS (deps_init_id_data.id) = lhs;
2405 deps_init_id_data.where = DEPS_IN_LHS;
2409 /* Finish initializing lhs data. */
2410 static void
2411 deps_init_id_finish_lhs (void)
2413 deps_init_id_data.where = DEPS_IN_INSN;
2416 /* Note a set of REGNO. */
2417 static void
2418 deps_init_id_note_reg_set (int regno)
2420 haifa_note_reg_set (regno);
2422 if (deps_init_id_data.where == DEPS_IN_RHS)
2423 deps_init_id_data.force_use_p = true;
2425 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2426 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2428 #ifdef STACK_REGS
2429 /* Make instructions that set stack registers to be ineligible for
2430 renaming to avoid issues with find_used_regs. */
2431 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2432 deps_init_id_data.force_use_p = true;
2433 #endif
2436 /* Note a clobber of REGNO. */
2437 static void
2438 deps_init_id_note_reg_clobber (int regno)
2440 haifa_note_reg_clobber (regno);
2442 if (deps_init_id_data.where == DEPS_IN_RHS)
2443 deps_init_id_data.force_use_p = true;
2445 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2446 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2449 /* Note a use of REGNO. */
2450 static void
2451 deps_init_id_note_reg_use (int regno)
2453 haifa_note_reg_use (regno);
2455 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2456 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2459 /* Start initializing rhs data. */
2460 static void
2461 deps_init_id_start_rhs (rtx rhs)
2463 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2465 /* And there was no sel_deps_reset_to_insn (). */
2466 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2468 IDATA_RHS (deps_init_id_data.id) = rhs;
2469 deps_init_id_data.where = DEPS_IN_RHS;
2473 /* Finish initializing rhs data. */
2474 static void
2475 deps_init_id_finish_rhs (void)
2477 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2478 || deps_init_id_data.where == DEPS_IN_INSN);
2479 deps_init_id_data.where = DEPS_IN_INSN;
2482 /* Finish initializing insn data. */
2483 static void
2484 deps_init_id_finish_insn (void)
2486 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2488 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2490 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2491 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2493 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2494 || deps_init_id_data.force_use_p)
2496 /* This should be a USE, as we don't want to schedule its RHS
2497 separately. However, we still want to have them recorded
2498 for the purposes of substitution. That's why we don't
2499 simply call downgrade_to_use () here. */
2500 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2501 gcc_assert (!lhs == !rhs);
2503 IDATA_TYPE (deps_init_id_data.id) = USE;
2507 deps_init_id_data.where = DEPS_IN_NOWHERE;
2510 /* This is dependence info used for initializing insn's data. */
2511 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2513 /* This initializes most of the static part of the above structure. */
2514 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2516 NULL,
2518 deps_init_id_start_insn,
2519 deps_init_id_finish_insn,
2520 deps_init_id_start_lhs,
2521 deps_init_id_finish_lhs,
2522 deps_init_id_start_rhs,
2523 deps_init_id_finish_rhs,
2524 deps_init_id_note_reg_set,
2525 deps_init_id_note_reg_clobber,
2526 deps_init_id_note_reg_use,
2527 NULL, /* note_mem_dep */
2528 NULL, /* note_dep */
2530 0, /* use_cselib */
2531 0, /* use_deps_list */
2532 0 /* generate_spec_deps */
2535 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2536 we don't actually need information about lhs and rhs. */
2537 static void
2538 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2540 rtx pat = PATTERN (insn);
2542 if (NONJUMP_INSN_P (insn)
2543 && GET_CODE (pat) == SET
2544 && !force_unique_p)
2546 IDATA_RHS (id) = SET_SRC (pat);
2547 IDATA_LHS (id) = SET_DEST (pat);
2549 else
2550 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2553 /* Possibly downgrade INSN to USE. */
2554 static void
2555 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2557 bool must_be_use = false;
2558 unsigned uid = INSN_UID (insn);
2559 df_ref *rec;
2560 rtx lhs = IDATA_LHS (id);
2561 rtx rhs = IDATA_RHS (id);
2563 /* We downgrade only SETs. */
2564 if (IDATA_TYPE (id) != SET)
2565 return;
2567 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2569 IDATA_TYPE (id) = USE;
2570 return;
2573 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2575 df_ref def = *rec;
2577 if (DF_REF_INSN (def)
2578 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2579 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2581 must_be_use = true;
2582 break;
2585 #ifdef STACK_REGS
2586 /* Make instructions that set stack registers to be ineligible for
2587 renaming to avoid issues with find_used_regs. */
2588 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2590 must_be_use = true;
2591 break;
2593 #endif
2596 if (must_be_use)
2597 IDATA_TYPE (id) = USE;
2600 /* Setup register sets describing INSN in ID. */
2601 static void
2602 setup_id_reg_sets (idata_t id, insn_t insn)
2604 unsigned uid = INSN_UID (insn);
2605 df_ref *rec;
2606 regset tmp = get_clear_regset_from_pool ();
2608 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2610 df_ref def = *rec;
2611 unsigned int regno = DF_REF_REGNO (def);
2613 /* Post modifies are treated like clobbers by sched-deps.c. */
2614 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2615 | DF_REF_PRE_POST_MODIFY)))
2616 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2617 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2619 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2621 #ifdef STACK_REGS
2622 /* For stack registers, treat writes to them as writes
2623 to the first one to be consistent with sched-deps.c. */
2624 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2625 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2626 #endif
2628 /* Mark special refs that generate read/write def pair. */
2629 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2630 || regno == STACK_POINTER_REGNUM)
2631 bitmap_set_bit (tmp, regno);
2634 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2636 df_ref use = *rec;
2637 unsigned int regno = DF_REF_REGNO (use);
2639 /* When these refs are met for the first time, skip them, as
2640 these uses are just counterparts of some defs. */
2641 if (bitmap_bit_p (tmp, regno))
2642 bitmap_clear_bit (tmp, regno);
2643 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2645 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2647 #ifdef STACK_REGS
2648 /* For stack registers, treat reads from them as reads from
2649 the first one to be consistent with sched-deps.c. */
2650 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2651 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2652 #endif
2656 return_regset_to_pool (tmp);
2659 /* Initialize instruction data for INSN in ID using DF's data. */
2660 static void
2661 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2663 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2665 setup_id_for_insn (id, insn, force_unique_p);
2666 setup_id_lhs_rhs (id, insn, force_unique_p);
2668 if (INSN_NOP_P (insn))
2669 return;
2671 maybe_downgrade_id_to_use (id, insn);
2672 setup_id_reg_sets (id, insn);
2675 /* Initialize instruction data for INSN in ID. */
2676 static void
2677 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2679 struct deps_desc _dc, *dc = &_dc;
2681 deps_init_id_data.where = DEPS_IN_NOWHERE;
2682 deps_init_id_data.id = id;
2683 deps_init_id_data.force_unique_p = force_unique_p;
2684 deps_init_id_data.force_use_p = false;
2686 init_deps (dc, false);
2688 memcpy (&deps_init_id_sched_deps_info,
2689 &const_deps_init_id_sched_deps_info,
2690 sizeof (deps_init_id_sched_deps_info));
2692 if (spec_info != NULL)
2693 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2695 sched_deps_info = &deps_init_id_sched_deps_info;
2697 deps_analyze_insn (dc, insn);
2699 free_deps (dc);
2701 deps_init_id_data.id = NULL;
2706 /* Implement hooks for collecting fundamental insn properties like if insn is
2707 an ASM or is within a SCHED_GROUP. */
2709 /* True when a "one-time init" data for INSN was already inited. */
2710 static bool
2711 first_time_insn_init (insn_t insn)
2713 return INSN_LIVE (insn) == NULL;
2716 /* Hash an entry in a transformed_insns hashtable. */
2717 static hashval_t
2718 hash_transformed_insns (const void *p)
2720 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2723 /* Compare the entries in a transformed_insns hashtable. */
2724 static int
2725 eq_transformed_insns (const void *p, const void *q)
2727 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2728 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2730 if (INSN_UID (i1) == INSN_UID (i2))
2731 return 1;
2732 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2735 /* Free an entry in a transformed_insns hashtable. */
2736 static void
2737 free_transformed_insns (void *p)
2739 struct transformed_insns *pti = (struct transformed_insns *) p;
2741 vinsn_detach (pti->vinsn_old);
2742 vinsn_detach (pti->vinsn_new);
2743 free (pti);
2746 /* Init the s_i_d data for INSN which should be inited just once, when
2747 we first see the insn. */
2748 static void
2749 init_first_time_insn_data (insn_t insn)
2751 /* This should not be set if this is the first time we init data for
2752 insn. */
2753 gcc_assert (first_time_insn_init (insn));
2755 /* These are needed for nops too. */
2756 INSN_LIVE (insn) = get_regset_from_pool ();
2757 INSN_LIVE_VALID_P (insn) = false;
2759 if (!INSN_NOP_P (insn))
2761 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2762 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2763 INSN_TRANSFORMED_INSNS (insn)
2764 = htab_create (16, hash_transformed_insns,
2765 eq_transformed_insns, free_transformed_insns);
2766 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2770 /* Free almost all above data for INSN that is scheduled already.
2771 Used for extra-large basic blocks. */
2772 void
2773 free_data_for_scheduled_insn (insn_t insn)
2775 gcc_assert (! first_time_insn_init (insn));
2777 if (! INSN_ANALYZED_DEPS (insn))
2778 return;
2780 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2781 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2782 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2784 /* This is allocated only for bookkeeping insns. */
2785 if (INSN_ORIGINATORS (insn))
2786 BITMAP_FREE (INSN_ORIGINATORS (insn));
2787 free_deps (&INSN_DEPS_CONTEXT (insn));
2789 INSN_ANALYZED_DEPS (insn) = NULL;
2791 /* Clear the readonly flag so we would ICE when trying to recalculate
2792 the deps context (as we believe that it should not happen). */
2793 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2796 /* Free the same data as above for INSN. */
2797 static void
2798 free_first_time_insn_data (insn_t insn)
2800 gcc_assert (! first_time_insn_init (insn));
2802 free_data_for_scheduled_insn (insn);
2803 return_regset_to_pool (INSN_LIVE (insn));
2804 INSN_LIVE (insn) = NULL;
2805 INSN_LIVE_VALID_P (insn) = false;
2808 /* Initialize region-scope data structures for basic blocks. */
2809 static void
2810 init_global_and_expr_for_bb (basic_block bb)
2812 if (sel_bb_empty_p (bb))
2813 return;
2815 invalidate_av_set (bb);
2818 /* Data for global dependency analysis (to initialize CANT_MOVE and
2819 SCHED_GROUP_P). */
2820 static struct
2822 /* Previous insn. */
2823 insn_t prev_insn;
2824 } init_global_data;
2826 /* Determine if INSN is in the sched_group, is an asm or should not be
2827 cloned. After that initialize its expr. */
2828 static void
2829 init_global_and_expr_for_insn (insn_t insn)
2831 if (LABEL_P (insn))
2832 return;
2834 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2836 init_global_data.prev_insn = NULL_RTX;
2837 return;
2840 gcc_assert (INSN_P (insn));
2842 if (SCHED_GROUP_P (insn))
2843 /* Setup a sched_group. */
2845 insn_t prev_insn = init_global_data.prev_insn;
2847 if (prev_insn)
2848 INSN_SCHED_NEXT (prev_insn) = insn;
2850 init_global_data.prev_insn = insn;
2852 else
2853 init_global_data.prev_insn = NULL_RTX;
2855 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2856 || asm_noperands (PATTERN (insn)) >= 0)
2857 /* Mark INSN as an asm. */
2858 INSN_ASM_P (insn) = true;
2861 bool force_unique_p;
2862 ds_t spec_done_ds;
2864 /* Certain instructions cannot be cloned. */
2865 if (CANT_MOVE (insn)
2866 || INSN_ASM_P (insn)
2867 || SCHED_GROUP_P (insn)
2868 || prologue_epilogue_contains (insn)
2869 /* Exception handling insns are always unique. */
2870 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2871 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2872 || control_flow_insn_p (insn))
2873 force_unique_p = true;
2874 else
2875 force_unique_p = false;
2877 if (targetm.sched.get_insn_spec_ds)
2879 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2880 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2882 else
2883 spec_done_ds = 0;
2885 /* Initialize INSN's expr. */
2886 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2887 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2888 spec_done_ds, 0, 0, NULL, true, false, false, false,
2889 CANT_MOVE (insn));
2892 init_first_time_insn_data (insn);
2895 /* Scan the region and initialize instruction data for basic blocks BBS. */
2896 void
2897 sel_init_global_and_expr (bb_vec_t bbs)
2899 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2900 const struct sched_scan_info_def ssi =
2902 NULL, /* extend_bb */
2903 init_global_and_expr_for_bb, /* init_bb */
2904 extend_insn_data, /* extend_insn */
2905 init_global_and_expr_for_insn /* init_insn */
2908 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2911 /* Finalize region-scope data structures for basic blocks. */
2912 static void
2913 finish_global_and_expr_for_bb (basic_block bb)
2915 av_set_clear (&BB_AV_SET (bb));
2916 BB_AV_LEVEL (bb) = 0;
2919 /* Finalize INSN's data. */
2920 static void
2921 finish_global_and_expr_insn (insn_t insn)
2923 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2924 return;
2926 gcc_assert (INSN_P (insn));
2928 if (INSN_LUID (insn) > 0)
2930 free_first_time_insn_data (insn);
2931 INSN_WS_LEVEL (insn) = 0;
2932 CANT_MOVE (insn) = 0;
2934 /* We can no longer assert this, as vinsns of this insn could be
2935 easily live in other insn's caches. This should be changed to
2936 a counter-like approach among all vinsns. */
2937 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2938 clear_expr (INSN_EXPR (insn));
2942 /* Finalize per instruction data for the whole region. */
2943 void
2944 sel_finish_global_and_expr (void)
2947 bb_vec_t bbs;
2948 int i;
2950 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2952 for (i = 0; i < current_nr_blocks; i++)
2953 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2955 /* Clear AV_SETs and INSN_EXPRs. */
2957 const struct sched_scan_info_def ssi =
2959 NULL, /* extend_bb */
2960 finish_global_and_expr_for_bb, /* init_bb */
2961 NULL, /* extend_insn */
2962 finish_global_and_expr_insn /* init_insn */
2965 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2968 VEC_free (basic_block, heap, bbs);
2971 finish_insns ();
2975 /* In the below hooks, we merely calculate whether or not a dependence
2976 exists, and in what part of insn. However, we will need more data
2977 when we'll start caching dependence requests. */
2979 /* Container to hold information for dependency analysis. */
2980 static struct
2982 deps_t dc;
2984 /* A variable to track which part of rtx we are scanning in
2985 sched-deps.c: sched_analyze_insn (). */
2986 deps_where_t where;
2988 /* Current producer. */
2989 insn_t pro;
2991 /* Current consumer. */
2992 vinsn_t con;
2994 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
2995 X is from { INSN, LHS, RHS }. */
2996 ds_t has_dep_p[DEPS_IN_NOWHERE];
2997 } has_dependence_data;
2999 /* Start analyzing dependencies of INSN. */
3000 static void
3001 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3003 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3005 has_dependence_data.where = DEPS_IN_INSN;
3008 /* Finish analyzing dependencies of an insn. */
3009 static void
3010 has_dependence_finish_insn (void)
3012 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3014 has_dependence_data.where = DEPS_IN_NOWHERE;
3017 /* Start analyzing dependencies of LHS. */
3018 static void
3019 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3021 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3023 if (VINSN_LHS (has_dependence_data.con) != NULL)
3024 has_dependence_data.where = DEPS_IN_LHS;
3027 /* Finish analyzing dependencies of an lhs. */
3028 static void
3029 has_dependence_finish_lhs (void)
3031 has_dependence_data.where = DEPS_IN_INSN;
3034 /* Start analyzing dependencies of RHS. */
3035 static void
3036 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3038 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3040 if (VINSN_RHS (has_dependence_data.con) != NULL)
3041 has_dependence_data.where = DEPS_IN_RHS;
3044 /* Start analyzing dependencies of an rhs. */
3045 static void
3046 has_dependence_finish_rhs (void)
3048 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3049 || has_dependence_data.where == DEPS_IN_INSN);
3051 has_dependence_data.where = DEPS_IN_INSN;
3054 /* Note a set of REGNO. */
3055 static void
3056 has_dependence_note_reg_set (int regno)
3058 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3060 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3061 VINSN_INSN_RTX
3062 (has_dependence_data.con)))
3064 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3066 if (reg_last->sets != NULL
3067 || reg_last->clobbers != NULL)
3068 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3070 if (reg_last->uses)
3071 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3075 /* Note a clobber of REGNO. */
3076 static void
3077 has_dependence_note_reg_clobber (int regno)
3079 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3081 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3082 VINSN_INSN_RTX
3083 (has_dependence_data.con)))
3085 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3087 if (reg_last->sets)
3088 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3090 if (reg_last->uses)
3091 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3095 /* Note a use of REGNO. */
3096 static void
3097 has_dependence_note_reg_use (int regno)
3099 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3101 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3102 VINSN_INSN_RTX
3103 (has_dependence_data.con)))
3105 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3107 if (reg_last->sets)
3108 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3110 if (reg_last->clobbers)
3111 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3113 /* Handle BE_IN_SPEC. */
3114 if (reg_last->uses)
3116 ds_t pro_spec_checked_ds;
3118 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3119 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3121 if (pro_spec_checked_ds != 0)
3122 /* Merge BE_IN_SPEC bits into *DSP. */
3123 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3124 NULL_RTX, NULL_RTX);
3129 /* Note a memory dependence. */
3130 static void
3131 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3132 rtx pending_mem ATTRIBUTE_UNUSED,
3133 insn_t pending_insn ATTRIBUTE_UNUSED,
3134 ds_t ds ATTRIBUTE_UNUSED)
3136 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3137 VINSN_INSN_RTX (has_dependence_data.con)))
3139 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3141 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3145 /* Note a dependence. */
3146 static void
3147 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3148 ds_t ds ATTRIBUTE_UNUSED)
3150 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3151 VINSN_INSN_RTX (has_dependence_data.con)))
3153 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3155 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3159 /* Mark the insn as having a hard dependence that prevents speculation. */
3160 void
3161 sel_mark_hard_insn (rtx insn)
3163 int i;
3165 /* Only work when we're in has_dependence_p mode.
3166 ??? This is a hack, this should actually be a hook. */
3167 if (!has_dependence_data.dc || !has_dependence_data.pro)
3168 return;
3170 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3171 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3173 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3174 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3177 /* This structure holds the hooks for the dependency analysis used when
3178 actually processing dependencies in the scheduler. */
3179 static struct sched_deps_info_def has_dependence_sched_deps_info;
3181 /* This initializes most of the fields of the above structure. */
3182 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3184 NULL,
3186 has_dependence_start_insn,
3187 has_dependence_finish_insn,
3188 has_dependence_start_lhs,
3189 has_dependence_finish_lhs,
3190 has_dependence_start_rhs,
3191 has_dependence_finish_rhs,
3192 has_dependence_note_reg_set,
3193 has_dependence_note_reg_clobber,
3194 has_dependence_note_reg_use,
3195 has_dependence_note_mem_dep,
3196 has_dependence_note_dep,
3198 0, /* use_cselib */
3199 0, /* use_deps_list */
3200 0 /* generate_spec_deps */
3203 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3204 static void
3205 setup_has_dependence_sched_deps_info (void)
3207 memcpy (&has_dependence_sched_deps_info,
3208 &const_has_dependence_sched_deps_info,
3209 sizeof (has_dependence_sched_deps_info));
3211 if (spec_info != NULL)
3212 has_dependence_sched_deps_info.generate_spec_deps = 1;
3214 sched_deps_info = &has_dependence_sched_deps_info;
3217 /* Remove all dependences found and recorded in has_dependence_data array. */
3218 void
3219 sel_clear_has_dependence (void)
3221 int i;
3223 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3224 has_dependence_data.has_dep_p[i] = 0;
3227 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3228 to the dependence information array in HAS_DEP_PP. */
3229 ds_t
3230 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3232 int i;
3233 ds_t ds;
3234 struct deps_desc *dc;
3236 if (INSN_SIMPLEJUMP_P (pred))
3237 /* Unconditional jump is just a transfer of control flow.
3238 Ignore it. */
3239 return false;
3241 dc = &INSN_DEPS_CONTEXT (pred);
3243 /* We init this field lazily. */
3244 if (dc->reg_last == NULL)
3245 init_deps_reg_last (dc);
3247 if (!dc->readonly)
3249 has_dependence_data.pro = NULL;
3250 /* Initialize empty dep context with information about PRED. */
3251 advance_deps_context (dc, pred);
3252 dc->readonly = 1;
3255 has_dependence_data.where = DEPS_IN_NOWHERE;
3256 has_dependence_data.pro = pred;
3257 has_dependence_data.con = EXPR_VINSN (expr);
3258 has_dependence_data.dc = dc;
3260 sel_clear_has_dependence ();
3262 /* Now catch all dependencies that would be generated between PRED and
3263 INSN. */
3264 setup_has_dependence_sched_deps_info ();
3265 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3266 has_dependence_data.dc = NULL;
3268 /* When a barrier was found, set DEPS_IN_INSN bits. */
3269 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3270 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3271 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3272 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3274 /* Do not allow stores to memory to move through checks. Currently
3275 we don't move this to sched-deps.c as the check doesn't have
3276 obvious places to which this dependence can be attached.
3277 FIMXE: this should go to a hook. */
3278 if (EXPR_LHS (expr)
3279 && MEM_P (EXPR_LHS (expr))
3280 && sel_insn_is_speculation_check (pred))
3281 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3283 *has_dep_pp = has_dependence_data.has_dep_p;
3284 ds = 0;
3285 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3286 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3287 NULL_RTX, NULL_RTX);
3289 return ds;
3293 /* Dependence hooks implementation that checks dependence latency constraints
3294 on the insns being scheduled. The entry point for these routines is
3295 tick_check_p predicate. */
3297 static struct
3299 /* An expr we are currently checking. */
3300 expr_t expr;
3302 /* A minimal cycle for its scheduling. */
3303 int cycle;
3305 /* Whether we have seen a true dependence while checking. */
3306 bool seen_true_dep_p;
3307 } tick_check_data;
3309 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3310 on PRO with status DS and weight DW. */
3311 static void
3312 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3314 expr_t con_expr = tick_check_data.expr;
3315 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3317 if (con_insn != pro_insn)
3319 enum reg_note dt;
3320 int tick;
3322 if (/* PROducer was removed from above due to pipelining. */
3323 !INSN_IN_STREAM_P (pro_insn)
3324 /* Or PROducer was originally on the next iteration regarding the
3325 CONsumer. */
3326 || (INSN_SCHED_TIMES (pro_insn)
3327 - EXPR_SCHED_TIMES (con_expr)) > 1)
3328 /* Don't count this dependence. */
3329 return;
3331 dt = ds_to_dt (ds);
3332 if (dt == REG_DEP_TRUE)
3333 tick_check_data.seen_true_dep_p = true;
3335 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3338 dep_def _dep, *dep = &_dep;
3340 init_dep (dep, pro_insn, con_insn, dt);
3342 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3345 /* When there are several kinds of dependencies between pro and con,
3346 only REG_DEP_TRUE should be taken into account. */
3347 if (tick > tick_check_data.cycle
3348 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3349 tick_check_data.cycle = tick;
3353 /* An implementation of note_dep hook. */
3354 static void
3355 tick_check_note_dep (insn_t pro, ds_t ds)
3357 tick_check_dep_with_dw (pro, ds, 0);
3360 /* An implementation of note_mem_dep hook. */
3361 static void
3362 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3364 dw_t dw;
3366 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3367 ? estimate_dep_weak (mem1, mem2)
3368 : 0);
3370 tick_check_dep_with_dw (pro, ds, dw);
3373 /* This structure contains hooks for dependence analysis used when determining
3374 whether an insn is ready for scheduling. */
3375 static struct sched_deps_info_def tick_check_sched_deps_info =
3377 NULL,
3379 NULL,
3380 NULL,
3381 NULL,
3382 NULL,
3383 NULL,
3384 NULL,
3385 haifa_note_reg_set,
3386 haifa_note_reg_clobber,
3387 haifa_note_reg_use,
3388 tick_check_note_mem_dep,
3389 tick_check_note_dep,
3391 0, 0, 0
3394 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3395 scheduled. Return 0 if all data from producers in DC is ready. */
3397 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3399 int cycles_left;
3400 /* Initialize variables. */
3401 tick_check_data.expr = expr;
3402 tick_check_data.cycle = 0;
3403 tick_check_data.seen_true_dep_p = false;
3404 sched_deps_info = &tick_check_sched_deps_info;
3406 gcc_assert (!dc->readonly);
3407 dc->readonly = 1;
3408 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3409 dc->readonly = 0;
3411 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3413 return cycles_left >= 0 ? cycles_left : 0;
3417 /* Functions to work with insns. */
3419 /* Returns true if LHS of INSN is the same as DEST of an insn
3420 being moved. */
3421 bool
3422 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3424 rtx lhs = INSN_LHS (insn);
3426 if (lhs == NULL || dest == NULL)
3427 return false;
3429 return rtx_equal_p (lhs, dest);
3432 /* Return s_i_d entry of INSN. Callable from debugger. */
3433 sel_insn_data_def
3434 insn_sid (insn_t insn)
3436 return *SID (insn);
3439 /* True when INSN is a speculative check. We can tell this by looking
3440 at the data structures of the selective scheduler, not by examining
3441 the pattern. */
3442 bool
3443 sel_insn_is_speculation_check (rtx insn)
3445 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3448 /* Extracts machine mode MODE and destination location DST_LOC
3449 for given INSN. */
3450 void
3451 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3453 rtx pat = PATTERN (insn);
3455 gcc_assert (dst_loc);
3456 gcc_assert (GET_CODE (pat) == SET);
3458 *dst_loc = SET_DEST (pat);
3460 gcc_assert (*dst_loc);
3461 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3463 if (mode)
3464 *mode = GET_MODE (*dst_loc);
3467 /* Returns true when moving through JUMP will result in bookkeeping
3468 creation. */
3469 bool
3470 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3472 insn_t succ;
3473 succ_iterator si;
3475 FOR_EACH_SUCC (succ, si, jump)
3476 if (sel_num_cfg_preds_gt_1 (succ))
3477 return true;
3479 return false;
3482 /* Return 'true' if INSN is the only one in its basic block. */
3483 static bool
3484 insn_is_the_only_one_in_bb_p (insn_t insn)
3486 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3489 #ifdef ENABLE_CHECKING
3490 /* Check that the region we're scheduling still has at most one
3491 backedge. */
3492 static void
3493 verify_backedges (void)
3495 if (pipelining_p)
3497 int i, n = 0;
3498 edge e;
3499 edge_iterator ei;
3501 for (i = 0; i < current_nr_blocks; i++)
3502 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3503 if (in_current_region_p (e->dest)
3504 && BLOCK_TO_BB (e->dest->index) < i)
3505 n++;
3507 gcc_assert (n <= 1);
3510 #endif
3513 /* Functions to work with control flow. */
3515 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3516 are sorted in topological order (it might have been invalidated by
3517 redirecting an edge). */
3518 static void
3519 sel_recompute_toporder (void)
3521 int i, n, rgn;
3522 int *postorder, n_blocks;
3524 postorder = XALLOCAVEC (int, n_basic_blocks);
3525 n_blocks = post_order_compute (postorder, false, false);
3527 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3528 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3529 if (CONTAINING_RGN (postorder[i]) == rgn)
3531 BLOCK_TO_BB (postorder[i]) = n;
3532 BB_TO_BLOCK (n) = postorder[i];
3533 n++;
3536 /* Assert that we updated info for all blocks. We may miss some blocks if
3537 this function is called when redirecting an edge made a block
3538 unreachable, but that block is not deleted yet. */
3539 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3542 /* Tidy the possibly empty block BB. */
3543 bool
3544 maybe_tidy_empty_bb (basic_block bb, bool recompute_toporder_p)
3546 basic_block succ_bb, pred_bb;
3547 edge e;
3548 edge_iterator ei;
3549 bool rescan_p;
3551 /* Keep empty bb only if this block immediately precedes EXIT and
3552 has incoming non-fallthrough edge, or it has no predecessors or
3553 successors. Otherwise remove it. */
3554 if (!sel_bb_empty_p (bb)
3555 || (single_succ_p (bb)
3556 && single_succ (bb) == EXIT_BLOCK_PTR
3557 && (!single_pred_p (bb)
3558 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3559 || EDGE_COUNT (bb->preds) == 0
3560 || EDGE_COUNT (bb->succs) == 0)
3561 return false;
3563 /* Do not attempt to redirect complex edges. */
3564 FOR_EACH_EDGE (e, ei, bb->preds)
3565 if (e->flags & EDGE_COMPLEX)
3566 return false;
3568 free_data_sets (bb);
3570 /* Do not delete BB if it has more than one successor.
3571 That can occur when we moving a jump. */
3572 if (!single_succ_p (bb))
3574 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3575 sel_merge_blocks (bb->prev_bb, bb);
3576 return true;
3579 succ_bb = single_succ (bb);
3580 rescan_p = true;
3581 pred_bb = NULL;
3583 /* Redirect all non-fallthru edges to the next bb. */
3584 while (rescan_p)
3586 rescan_p = false;
3588 FOR_EACH_EDGE (e, ei, bb->preds)
3590 pred_bb = e->src;
3592 if (!(e->flags & EDGE_FALLTHRU))
3594 recompute_toporder_p |= sel_redirect_edge_and_branch (e, succ_bb);
3595 rescan_p = true;
3596 break;
3601 /* If it is possible - merge BB with its predecessor. */
3602 if (can_merge_blocks_p (bb->prev_bb, bb))
3603 sel_merge_blocks (bb->prev_bb, bb);
3604 else
3605 /* Otherwise this is a block without fallthru predecessor.
3606 Just delete it. */
3608 gcc_assert (pred_bb != NULL);
3610 if (in_current_region_p (pred_bb))
3611 move_bb_info (pred_bb, bb);
3612 remove_empty_bb (bb, true);
3615 if (recompute_toporder_p)
3616 sel_recompute_toporder ();
3618 #ifdef ENABLE_CHECKING
3619 verify_backedges ();
3620 #endif
3622 return true;
3625 /* Tidy the control flow after we have removed original insn from
3626 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3627 is true, also try to optimize control flow on non-empty blocks. */
3628 bool
3629 tidy_control_flow (basic_block xbb, bool full_tidying)
3631 bool changed = true;
3632 insn_t first, last;
3634 /* First check whether XBB is empty. */
3635 changed = maybe_tidy_empty_bb (xbb, false);
3636 if (changed || !full_tidying)
3637 return changed;
3639 /* Check if there is a unnecessary jump after insn left. */
3640 if (jump_leads_only_to_bb_p (BB_END (xbb), xbb->next_bb)
3641 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3642 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3644 if (sel_remove_insn (BB_END (xbb), false, false))
3645 return true;
3646 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3649 first = sel_bb_head (xbb);
3650 last = sel_bb_end (xbb);
3651 if (MAY_HAVE_DEBUG_INSNS)
3653 if (first != last && DEBUG_INSN_P (first))
3655 first = NEXT_INSN (first);
3656 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3658 if (first != last && DEBUG_INSN_P (last))
3660 last = PREV_INSN (last);
3661 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3663 /* Check if there is an unnecessary jump in previous basic block leading
3664 to next basic block left after removing INSN from stream.
3665 If it is so, remove that jump and redirect edge to current
3666 basic block (where there was INSN before deletion). This way
3667 when NOP will be deleted several instructions later with its
3668 basic block we will not get a jump to next instruction, which
3669 can be harmful. */
3670 if (first == last
3671 && !sel_bb_empty_p (xbb)
3672 && INSN_NOP_P (last)
3673 /* Flow goes fallthru from current block to the next. */
3674 && EDGE_COUNT (xbb->succs) == 1
3675 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3676 /* When successor is an EXIT block, it may not be the next block. */
3677 && single_succ (xbb) != EXIT_BLOCK_PTR
3678 /* And unconditional jump in previous basic block leads to
3679 next basic block of XBB and this jump can be safely removed. */
3680 && in_current_region_p (xbb->prev_bb)
3681 && jump_leads_only_to_bb_p (BB_END (xbb->prev_bb), xbb->next_bb)
3682 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3683 /* Also this jump is not at the scheduling boundary. */
3684 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3686 bool recompute_toporder_p;
3687 /* Clear data structures of jump - jump itself will be removed
3688 by sel_redirect_edge_and_branch. */
3689 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3690 recompute_toporder_p
3691 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3693 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3695 /* It can turn out that after removing unused jump, basic block
3696 that contained that jump, becomes empty too. In such case
3697 remove it too. */
3698 if (sel_bb_empty_p (xbb->prev_bb))
3699 changed = maybe_tidy_empty_bb (xbb->prev_bb, recompute_toporder_p);
3700 else if (recompute_toporder_p)
3701 sel_recompute_toporder ();
3704 return changed;
3707 /* Purge meaningless empty blocks in the middle of a region. */
3708 void
3709 purge_empty_blocks (void)
3711 /* Do not attempt to delete preheader. */
3712 int i = sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) ? 1 : 0;
3714 while (i < current_nr_blocks)
3716 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3718 if (maybe_tidy_empty_bb (b, false))
3719 continue;
3721 i++;
3725 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3726 do not delete insn's data, because it will be later re-emitted.
3727 Return true if we have removed some blocks afterwards. */
3728 bool
3729 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3731 basic_block bb = BLOCK_FOR_INSN (insn);
3733 gcc_assert (INSN_IN_STREAM_P (insn));
3735 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3737 expr_t expr;
3738 av_set_iterator i;
3740 /* When we remove a debug insn that is head of a BB, it remains
3741 in the AV_SET of the block, but it shouldn't. */
3742 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3743 if (EXPR_INSN_RTX (expr) == insn)
3745 av_set_iter_remove (&i);
3746 break;
3750 if (only_disconnect)
3752 insn_t prev = PREV_INSN (insn);
3753 insn_t next = NEXT_INSN (insn);
3754 basic_block bb = BLOCK_FOR_INSN (insn);
3756 NEXT_INSN (prev) = next;
3757 PREV_INSN (next) = prev;
3759 if (BB_HEAD (bb) == insn)
3761 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3762 BB_HEAD (bb) = prev;
3764 if (BB_END (bb) == insn)
3765 BB_END (bb) = prev;
3767 else
3769 remove_insn (insn);
3770 clear_expr (INSN_EXPR (insn));
3773 /* It is necessary to null this fields before calling add_insn (). */
3774 PREV_INSN (insn) = NULL_RTX;
3775 NEXT_INSN (insn) = NULL_RTX;
3777 return tidy_control_flow (bb, full_tidying);
3780 /* Estimate number of the insns in BB. */
3781 static int
3782 sel_estimate_number_of_insns (basic_block bb)
3784 int res = 0;
3785 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3787 for (; insn != next_tail; insn = NEXT_INSN (insn))
3788 if (NONDEBUG_INSN_P (insn))
3789 res++;
3791 return res;
3794 /* We don't need separate luids for notes or labels. */
3795 static int
3796 sel_luid_for_non_insn (rtx x)
3798 gcc_assert (NOTE_P (x) || LABEL_P (x));
3800 return -1;
3803 /* Return seqno of the only predecessor of INSN. */
3804 static int
3805 get_seqno_of_a_pred (insn_t insn)
3807 int seqno;
3809 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3811 if (!sel_bb_head_p (insn))
3812 seqno = INSN_SEQNO (PREV_INSN (insn));
3813 else
3815 basic_block bb = BLOCK_FOR_INSN (insn);
3817 if (single_pred_p (bb)
3818 && !in_current_region_p (single_pred (bb)))
3820 /* We can have preds outside a region when splitting edges
3821 for pipelining of an outer loop. Use succ instead.
3822 There should be only one of them. */
3823 insn_t succ = NULL;
3824 succ_iterator si;
3825 bool first = true;
3827 gcc_assert (flag_sel_sched_pipelining_outer_loops
3828 && current_loop_nest);
3829 FOR_EACH_SUCC_1 (succ, si, insn,
3830 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3832 gcc_assert (first);
3833 first = false;
3836 gcc_assert (succ != NULL);
3837 seqno = INSN_SEQNO (succ);
3839 else
3841 insn_t *preds;
3842 int n;
3844 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3845 gcc_assert (n == 1);
3847 seqno = INSN_SEQNO (preds[0]);
3849 free (preds);
3853 return seqno;
3856 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3857 with positive seqno exist. */
3859 get_seqno_by_preds (rtx insn)
3861 basic_block bb = BLOCK_FOR_INSN (insn);
3862 rtx tmp = insn, head = BB_HEAD (bb);
3863 insn_t *preds;
3864 int n, i, seqno;
3866 while (tmp != head)
3867 if (INSN_P (tmp))
3868 return INSN_SEQNO (tmp);
3869 else
3870 tmp = PREV_INSN (tmp);
3872 cfg_preds (bb, &preds, &n);
3873 for (i = 0, seqno = -1; i < n; i++)
3874 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3876 return seqno;
3881 /* Extend pass-scope data structures for basic blocks. */
3882 void
3883 sel_extend_global_bb_info (void)
3885 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3886 last_basic_block);
3889 /* Extend region-scope data structures for basic blocks. */
3890 static void
3891 extend_region_bb_info (void)
3893 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3894 last_basic_block);
3897 /* Extend all data structures to fit for all basic blocks. */
3898 static void
3899 extend_bb_info (void)
3901 sel_extend_global_bb_info ();
3902 extend_region_bb_info ();
3905 /* Finalize pass-scope data structures for basic blocks. */
3906 void
3907 sel_finish_global_bb_info (void)
3909 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3912 /* Finalize region-scope data structures for basic blocks. */
3913 static void
3914 finish_region_bb_info (void)
3916 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3920 /* Data for each insn in current region. */
3921 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3923 /* A vector for the insns we've emitted. */
3924 static insn_vec_t new_insns = NULL;
3926 /* Extend data structures for insns from current region. */
3927 static void
3928 extend_insn_data (void)
3930 int reserve;
3932 sched_extend_target ();
3933 sched_deps_init (false);
3935 /* Extend data structures for insns from current region. */
3936 reserve = (sched_max_luid + 1
3937 - VEC_length (sel_insn_data_def, s_i_d));
3938 if (reserve > 0
3939 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
3941 int size;
3943 if (sched_max_luid / 2 > 1024)
3944 size = sched_max_luid + 1024;
3945 else
3946 size = 3 * sched_max_luid / 2;
3949 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3953 /* Finalize data structures for insns from current region. */
3954 static void
3955 finish_insns (void)
3957 unsigned i;
3959 /* Clear here all dependence contexts that may have left from insns that were
3960 removed during the scheduling. */
3961 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
3963 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
3965 if (sid_entry->live)
3966 return_regset_to_pool (sid_entry->live);
3967 if (sid_entry->analyzed_deps)
3969 BITMAP_FREE (sid_entry->analyzed_deps);
3970 BITMAP_FREE (sid_entry->found_deps);
3971 htab_delete (sid_entry->transformed_insns);
3972 free_deps (&sid_entry->deps_context);
3974 if (EXPR_VINSN (&sid_entry->expr))
3976 clear_expr (&sid_entry->expr);
3978 /* Also, clear CANT_MOVE bit here, because we really don't want it
3979 to be passed to the next region. */
3980 CANT_MOVE_BY_LUID (i) = 0;
3984 VEC_free (sel_insn_data_def, heap, s_i_d);
3987 /* A proxy to pass initialization data to init_insn (). */
3988 static sel_insn_data_def _insn_init_ssid;
3989 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
3991 /* If true create a new vinsn. Otherwise use the one from EXPR. */
3992 static bool insn_init_create_new_vinsn_p;
3994 /* Set all necessary data for initialization of the new insn[s]. */
3995 static expr_t
3996 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
3998 expr_t x = &insn_init_ssid->expr;
4000 copy_expr_onside (x, expr);
4001 if (vi != NULL)
4003 insn_init_create_new_vinsn_p = false;
4004 change_vinsn_in_expr (x, vi);
4006 else
4007 insn_init_create_new_vinsn_p = true;
4009 insn_init_ssid->seqno = seqno;
4010 return x;
4013 /* Init data for INSN. */
4014 static void
4015 init_insn_data (insn_t insn)
4017 expr_t expr;
4018 sel_insn_data_t ssid = insn_init_ssid;
4020 /* The fields mentioned below are special and hence are not being
4021 propagated to the new insns. */
4022 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4023 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4024 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4026 expr = INSN_EXPR (insn);
4027 copy_expr (expr, &ssid->expr);
4028 prepare_insn_expr (insn, ssid->seqno);
4030 if (insn_init_create_new_vinsn_p)
4031 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4033 if (first_time_insn_init (insn))
4034 init_first_time_insn_data (insn);
4037 /* This is used to initialize spurious jumps generated by
4038 sel_redirect_edge (). */
4039 static void
4040 init_simplejump_data (insn_t insn)
4042 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4043 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4044 false, true);
4045 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4046 init_first_time_insn_data (insn);
4049 /* Perform deferred initialization of insns. This is used to process
4050 a new jump that may be created by redirect_edge. */
4051 void
4052 sel_init_new_insn (insn_t insn, int flags)
4054 /* We create data structures for bb when the first insn is emitted in it. */
4055 if (INSN_P (insn)
4056 && INSN_IN_STREAM_P (insn)
4057 && insn_is_the_only_one_in_bb_p (insn))
4059 extend_bb_info ();
4060 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4063 if (flags & INSN_INIT_TODO_LUID)
4064 sched_init_luids (NULL, NULL, NULL, insn);
4066 if (flags & INSN_INIT_TODO_SSID)
4068 extend_insn_data ();
4069 init_insn_data (insn);
4070 clear_expr (&insn_init_ssid->expr);
4073 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4075 extend_insn_data ();
4076 init_simplejump_data (insn);
4079 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4080 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4084 /* Functions to init/finish work with lv sets. */
4086 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4087 static void
4088 init_lv_set (basic_block bb)
4090 gcc_assert (!BB_LV_SET_VALID_P (bb));
4092 BB_LV_SET (bb) = get_regset_from_pool ();
4093 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4094 BB_LV_SET_VALID_P (bb) = true;
4097 /* Copy liveness information to BB from FROM_BB. */
4098 static void
4099 copy_lv_set_from (basic_block bb, basic_block from_bb)
4101 gcc_assert (!BB_LV_SET_VALID_P (bb));
4103 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4104 BB_LV_SET_VALID_P (bb) = true;
4107 /* Initialize lv set of all bb headers. */
4108 void
4109 init_lv_sets (void)
4111 basic_block bb;
4113 /* Initialize of LV sets. */
4114 FOR_EACH_BB (bb)
4115 init_lv_set (bb);
4117 /* Don't forget EXIT_BLOCK. */
4118 init_lv_set (EXIT_BLOCK_PTR);
4121 /* Release lv set of HEAD. */
4122 static void
4123 free_lv_set (basic_block bb)
4125 gcc_assert (BB_LV_SET (bb) != NULL);
4127 return_regset_to_pool (BB_LV_SET (bb));
4128 BB_LV_SET (bb) = NULL;
4129 BB_LV_SET_VALID_P (bb) = false;
4132 /* Finalize lv sets of all bb headers. */
4133 void
4134 free_lv_sets (void)
4136 basic_block bb;
4138 /* Don't forget EXIT_BLOCK. */
4139 free_lv_set (EXIT_BLOCK_PTR);
4141 /* Free LV sets. */
4142 FOR_EACH_BB (bb)
4143 if (BB_LV_SET (bb))
4144 free_lv_set (bb);
4147 /* Initialize an invalid AV_SET for BB.
4148 This set will be updated next time compute_av () process BB. */
4149 static void
4150 invalidate_av_set (basic_block bb)
4152 gcc_assert (BB_AV_LEVEL (bb) <= 0
4153 && BB_AV_SET (bb) == NULL);
4155 BB_AV_LEVEL (bb) = -1;
4158 /* Create initial data sets for BB (they will be invalid). */
4159 static void
4160 create_initial_data_sets (basic_block bb)
4162 if (BB_LV_SET (bb))
4163 BB_LV_SET_VALID_P (bb) = false;
4164 else
4165 BB_LV_SET (bb) = get_regset_from_pool ();
4166 invalidate_av_set (bb);
4169 /* Free av set of BB. */
4170 static void
4171 free_av_set (basic_block bb)
4173 av_set_clear (&BB_AV_SET (bb));
4174 BB_AV_LEVEL (bb) = 0;
4177 /* Free data sets of BB. */
4178 void
4179 free_data_sets (basic_block bb)
4181 free_lv_set (bb);
4182 free_av_set (bb);
4185 /* Exchange lv sets of TO and FROM. */
4186 static void
4187 exchange_lv_sets (basic_block to, basic_block from)
4190 regset to_lv_set = BB_LV_SET (to);
4192 BB_LV_SET (to) = BB_LV_SET (from);
4193 BB_LV_SET (from) = to_lv_set;
4197 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4199 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4200 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4205 /* Exchange av sets of TO and FROM. */
4206 static void
4207 exchange_av_sets (basic_block to, basic_block from)
4210 av_set_t to_av_set = BB_AV_SET (to);
4212 BB_AV_SET (to) = BB_AV_SET (from);
4213 BB_AV_SET (from) = to_av_set;
4217 int to_av_level = BB_AV_LEVEL (to);
4219 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4220 BB_AV_LEVEL (from) = to_av_level;
4224 /* Exchange data sets of TO and FROM. */
4225 void
4226 exchange_data_sets (basic_block to, basic_block from)
4228 exchange_lv_sets (to, from);
4229 exchange_av_sets (to, from);
4232 /* Copy data sets of FROM to TO. */
4233 void
4234 copy_data_sets (basic_block to, basic_block from)
4236 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4237 gcc_assert (BB_AV_SET (to) == NULL);
4239 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4240 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4242 if (BB_AV_SET_VALID_P (from))
4244 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4246 if (BB_LV_SET_VALID_P (from))
4248 gcc_assert (BB_LV_SET (to) != NULL);
4249 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4253 /* Return an av set for INSN, if any. */
4254 av_set_t
4255 get_av_set (insn_t insn)
4257 av_set_t av_set;
4259 gcc_assert (AV_SET_VALID_P (insn));
4261 if (sel_bb_head_p (insn))
4262 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4263 else
4264 av_set = NULL;
4266 return av_set;
4269 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4271 get_av_level (insn_t insn)
4273 int av_level;
4275 gcc_assert (INSN_P (insn));
4277 if (sel_bb_head_p (insn))
4278 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4279 else
4280 av_level = INSN_WS_LEVEL (insn);
4282 return av_level;
4287 /* Variables to work with control-flow graph. */
4289 /* The basic block that already has been processed by the sched_data_update (),
4290 but hasn't been in sel_add_bb () yet. */
4291 static VEC (basic_block, heap) *last_added_blocks = NULL;
4293 /* A pool for allocating successor infos. */
4294 static struct
4296 /* A stack for saving succs_info structures. */
4297 struct succs_info *stack;
4299 /* Its size. */
4300 int size;
4302 /* Top of the stack. */
4303 int top;
4305 /* Maximal value of the top. */
4306 int max_top;
4307 } succs_info_pool;
4309 /* Functions to work with control-flow graph. */
4311 /* Return basic block note of BB. */
4312 insn_t
4313 sel_bb_head (basic_block bb)
4315 insn_t head;
4317 if (bb == EXIT_BLOCK_PTR)
4319 gcc_assert (exit_insn != NULL_RTX);
4320 head = exit_insn;
4322 else
4324 insn_t note;
4326 note = bb_note (bb);
4327 head = next_nonnote_insn (note);
4329 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4330 head = NULL_RTX;
4333 return head;
4336 /* Return true if INSN is a basic block header. */
4337 bool
4338 sel_bb_head_p (insn_t insn)
4340 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4343 /* Return last insn of BB. */
4344 insn_t
4345 sel_bb_end (basic_block bb)
4347 if (sel_bb_empty_p (bb))
4348 return NULL_RTX;
4350 gcc_assert (bb != EXIT_BLOCK_PTR);
4352 return BB_END (bb);
4355 /* Return true if INSN is the last insn in its basic block. */
4356 bool
4357 sel_bb_end_p (insn_t insn)
4359 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4362 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4363 bool
4364 sel_bb_empty_p (basic_block bb)
4366 return sel_bb_head (bb) == NULL;
4369 /* True when BB belongs to the current scheduling region. */
4370 bool
4371 in_current_region_p (basic_block bb)
4373 if (bb->index < NUM_FIXED_BLOCKS)
4374 return false;
4376 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4379 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4380 basic_block
4381 fallthru_bb_of_jump (rtx jump)
4383 if (!JUMP_P (jump))
4384 return NULL;
4386 if (any_uncondjump_p (jump))
4387 return single_succ (BLOCK_FOR_INSN (jump));
4389 if (!any_condjump_p (jump))
4390 return NULL;
4392 /* A basic block that ends with a conditional jump may still have one successor
4393 (and be followed by a barrier), we are not interested. */
4394 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4395 return NULL;
4397 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4400 /* Remove all notes from BB. */
4401 static void
4402 init_bb (basic_block bb)
4404 remove_notes (bb_note (bb), BB_END (bb));
4405 BB_NOTE_LIST (bb) = note_list;
4408 void
4409 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4411 const struct sched_scan_info_def ssi =
4413 extend_bb_info, /* extend_bb */
4414 init_bb, /* init_bb */
4415 NULL, /* extend_insn */
4416 NULL /* init_insn */
4419 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4422 /* Restore notes for the whole region. */
4423 static void
4424 sel_restore_notes (void)
4426 int bb;
4427 insn_t insn;
4429 for (bb = 0; bb < current_nr_blocks; bb++)
4431 basic_block first, last;
4433 first = EBB_FIRST_BB (bb);
4434 last = EBB_LAST_BB (bb)->next_bb;
4438 note_list = BB_NOTE_LIST (first);
4439 restore_other_notes (NULL, first);
4440 BB_NOTE_LIST (first) = NULL_RTX;
4442 FOR_BB_INSNS (first, insn)
4443 if (NONDEBUG_INSN_P (insn))
4444 reemit_notes (insn);
4446 first = first->next_bb;
4448 while (first != last);
4452 /* Free per-bb data structures. */
4453 void
4454 sel_finish_bbs (void)
4456 sel_restore_notes ();
4458 /* Remove current loop preheader from this loop. */
4459 if (current_loop_nest)
4460 sel_remove_loop_preheader ();
4462 finish_region_bb_info ();
4465 /* Return true if INSN has a single successor of type FLAGS. */
4466 bool
4467 sel_insn_has_single_succ_p (insn_t insn, int flags)
4469 insn_t succ;
4470 succ_iterator si;
4471 bool first_p = true;
4473 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4475 if (first_p)
4476 first_p = false;
4477 else
4478 return false;
4481 return true;
4484 /* Allocate successor's info. */
4485 static struct succs_info *
4486 alloc_succs_info (void)
4488 if (succs_info_pool.top == succs_info_pool.max_top)
4490 int i;
4492 if (++succs_info_pool.max_top >= succs_info_pool.size)
4493 gcc_unreachable ();
4495 i = ++succs_info_pool.top;
4496 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4497 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4498 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4500 else
4501 succs_info_pool.top++;
4503 return &succs_info_pool.stack[succs_info_pool.top];
4506 /* Free successor's info. */
4507 void
4508 free_succs_info (struct succs_info * sinfo)
4510 gcc_assert (succs_info_pool.top >= 0
4511 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4512 succs_info_pool.top--;
4514 /* Clear stale info. */
4515 VEC_block_remove (rtx, sinfo->succs_ok,
4516 0, VEC_length (rtx, sinfo->succs_ok));
4517 VEC_block_remove (rtx, sinfo->succs_other,
4518 0, VEC_length (rtx, sinfo->succs_other));
4519 VEC_block_remove (int, sinfo->probs_ok,
4520 0, VEC_length (int, sinfo->probs_ok));
4521 sinfo->all_prob = 0;
4522 sinfo->succs_ok_n = 0;
4523 sinfo->all_succs_n = 0;
4526 /* Compute successor info for INSN. FLAGS are the flags passed
4527 to the FOR_EACH_SUCC_1 iterator. */
4528 struct succs_info *
4529 compute_succs_info (insn_t insn, short flags)
4531 succ_iterator si;
4532 insn_t succ;
4533 struct succs_info *sinfo = alloc_succs_info ();
4535 /* Traverse *all* successors and decide what to do with each. */
4536 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4538 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4539 perform code motion through inner loops. */
4540 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4542 if (current_flags & flags)
4544 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4545 VEC_safe_push (int, heap, sinfo->probs_ok,
4546 /* FIXME: Improve calculation when skipping
4547 inner loop to exits. */
4548 (si.bb_end
4549 ? si.e1->probability
4550 : REG_BR_PROB_BASE));
4551 sinfo->succs_ok_n++;
4553 else
4554 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4556 /* Compute all_prob. */
4557 if (!si.bb_end)
4558 sinfo->all_prob = REG_BR_PROB_BASE;
4559 else
4560 sinfo->all_prob += si.e1->probability;
4562 sinfo->all_succs_n++;
4565 return sinfo;
4568 /* Return the predecessors of BB in PREDS and their number in N.
4569 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4570 static void
4571 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4573 edge e;
4574 edge_iterator ei;
4576 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4578 FOR_EACH_EDGE (e, ei, bb->preds)
4580 basic_block pred_bb = e->src;
4581 insn_t bb_end = BB_END (pred_bb);
4583 /* ??? This code is not supposed to walk out of a region. */
4584 gcc_assert (in_current_region_p (pred_bb));
4586 if (sel_bb_empty_p (pred_bb))
4587 cfg_preds_1 (pred_bb, preds, n, size);
4588 else
4590 if (*n == *size)
4591 *preds = XRESIZEVEC (insn_t, *preds,
4592 (*size = 2 * *size + 1));
4593 (*preds)[(*n)++] = bb_end;
4597 gcc_assert (*n != 0);
4600 /* Find all predecessors of BB and record them in PREDS and their number
4601 in N. Empty blocks are skipped, and only normal (forward in-region)
4602 edges are processed. */
4603 static void
4604 cfg_preds (basic_block bb, insn_t **preds, int *n)
4606 int size = 0;
4608 *preds = NULL;
4609 *n = 0;
4610 cfg_preds_1 (bb, preds, n, &size);
4613 /* Returns true if we are moving INSN through join point. */
4614 bool
4615 sel_num_cfg_preds_gt_1 (insn_t insn)
4617 basic_block bb;
4619 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4620 return false;
4622 bb = BLOCK_FOR_INSN (insn);
4624 while (1)
4626 if (EDGE_COUNT (bb->preds) > 1)
4627 return true;
4629 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4630 bb = EDGE_PRED (bb, 0)->src;
4632 if (!sel_bb_empty_p (bb))
4633 break;
4636 return false;
4639 /* Returns true when BB should be the end of an ebb. Adapted from the
4640 code in sched-ebb.c. */
4641 bool
4642 bb_ends_ebb_p (basic_block bb)
4644 basic_block next_bb = bb_next_bb (bb);
4645 edge e;
4646 edge_iterator ei;
4648 if (next_bb == EXIT_BLOCK_PTR
4649 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4650 || (LABEL_P (BB_HEAD (next_bb))
4651 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4652 Work around that. */
4653 && !single_pred_p (next_bb)))
4654 return true;
4656 if (!in_current_region_p (next_bb))
4657 return true;
4659 FOR_EACH_EDGE (e, ei, bb->succs)
4660 if ((e->flags & EDGE_FALLTHRU) != 0)
4662 gcc_assert (e->dest == next_bb);
4664 return false;
4667 return true;
4670 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4671 successor of INSN. */
4672 bool
4673 in_same_ebb_p (insn_t insn, insn_t succ)
4675 basic_block ptr = BLOCK_FOR_INSN (insn);
4677 for(;;)
4679 if (ptr == BLOCK_FOR_INSN (succ))
4680 return true;
4682 if (bb_ends_ebb_p (ptr))
4683 return false;
4685 ptr = bb_next_bb (ptr);
4688 gcc_unreachable ();
4689 return false;
4692 /* Recomputes the reverse topological order for the function and
4693 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4694 modified appropriately. */
4695 static void
4696 recompute_rev_top_order (void)
4698 int *postorder;
4699 int n_blocks, i;
4701 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4703 rev_top_order_index_len = last_basic_block;
4704 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4705 rev_top_order_index_len);
4708 postorder = XNEWVEC (int, n_basic_blocks);
4710 n_blocks = post_order_compute (postorder, true, false);
4711 gcc_assert (n_basic_blocks == n_blocks);
4713 /* Build reverse function: for each basic block with BB->INDEX == K
4714 rev_top_order_index[K] is it's reverse topological sort number. */
4715 for (i = 0; i < n_blocks; i++)
4717 gcc_assert (postorder[i] < rev_top_order_index_len);
4718 rev_top_order_index[postorder[i]] = i;
4721 free (postorder);
4724 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4725 void
4726 clear_outdated_rtx_info (basic_block bb)
4728 rtx insn;
4730 FOR_BB_INSNS (bb, insn)
4731 if (INSN_P (insn))
4733 SCHED_GROUP_P (insn) = 0;
4734 INSN_AFTER_STALL_P (insn) = 0;
4735 INSN_SCHED_TIMES (insn) = 0;
4736 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4738 /* We cannot use the changed caches, as previously we could ignore
4739 the LHS dependence due to enabled renaming and transform
4740 the expression, and currently we'll be unable to do this. */
4741 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4745 /* Add BB_NOTE to the pool of available basic block notes. */
4746 static void
4747 return_bb_to_pool (basic_block bb)
4749 rtx note = bb_note (bb);
4751 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4752 && bb->aux == NULL);
4754 /* It turns out that current cfg infrastructure does not support
4755 reuse of basic blocks. Don't bother for now. */
4756 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4759 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4760 static rtx
4761 get_bb_note_from_pool (void)
4763 if (VEC_empty (rtx, bb_note_pool))
4764 return NULL_RTX;
4765 else
4767 rtx note = VEC_pop (rtx, bb_note_pool);
4769 PREV_INSN (note) = NULL_RTX;
4770 NEXT_INSN (note) = NULL_RTX;
4772 return note;
4776 /* Free bb_note_pool. */
4777 void
4778 free_bb_note_pool (void)
4780 VEC_free (rtx, heap, bb_note_pool);
4783 /* Setup scheduler pool and successor structure. */
4784 void
4785 alloc_sched_pools (void)
4787 int succs_size;
4789 succs_size = MAX_WS + 1;
4790 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4791 succs_info_pool.size = succs_size;
4792 succs_info_pool.top = -1;
4793 succs_info_pool.max_top = -1;
4795 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4796 sizeof (struct _list_node), 500);
4799 /* Free the pools. */
4800 void
4801 free_sched_pools (void)
4803 int i;
4805 free_alloc_pool (sched_lists_pool);
4806 gcc_assert (succs_info_pool.top == -1);
4807 for (i = 0; i < succs_info_pool.max_top; i++)
4809 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4810 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4811 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4813 free (succs_info_pool.stack);
4817 /* Returns a position in RGN where BB can be inserted retaining
4818 topological order. */
4819 static int
4820 find_place_to_insert_bb (basic_block bb, int rgn)
4822 bool has_preds_outside_rgn = false;
4823 edge e;
4824 edge_iterator ei;
4826 /* Find whether we have preds outside the region. */
4827 FOR_EACH_EDGE (e, ei, bb->preds)
4828 if (!in_current_region_p (e->src))
4830 has_preds_outside_rgn = true;
4831 break;
4834 /* Recompute the top order -- needed when we have > 1 pred
4835 and in case we don't have preds outside. */
4836 if (flag_sel_sched_pipelining_outer_loops
4837 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4839 int i, bbi = bb->index, cur_bbi;
4841 recompute_rev_top_order ();
4842 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4844 cur_bbi = BB_TO_BLOCK (i);
4845 if (rev_top_order_index[bbi]
4846 < rev_top_order_index[cur_bbi])
4847 break;
4850 /* We skipped the right block, so we increase i. We accomodate
4851 it for increasing by step later, so we decrease i. */
4852 return (i + 1) - 1;
4854 else if (has_preds_outside_rgn)
4856 /* This is the case when we generate an extra empty block
4857 to serve as region head during pipelining. */
4858 e = EDGE_SUCC (bb, 0);
4859 gcc_assert (EDGE_COUNT (bb->succs) == 1
4860 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4861 && (BLOCK_TO_BB (e->dest->index) == 0));
4862 return -1;
4865 /* We don't have preds outside the region. We should have
4866 the only pred, because the multiple preds case comes from
4867 the pipelining of outer loops, and that is handled above.
4868 Just take the bbi of this single pred. */
4869 if (EDGE_COUNT (bb->succs) > 0)
4871 int pred_bbi;
4873 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4875 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4876 return BLOCK_TO_BB (pred_bbi);
4878 else
4879 /* BB has no successors. It is safe to put it in the end. */
4880 return current_nr_blocks - 1;
4883 /* Deletes an empty basic block freeing its data. */
4884 static void
4885 delete_and_free_basic_block (basic_block bb)
4887 gcc_assert (sel_bb_empty_p (bb));
4889 if (BB_LV_SET (bb))
4890 free_lv_set (bb);
4892 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4894 /* Can't assert av_set properties because we use sel_aremove_bb
4895 when removing loop preheader from the region. At the point of
4896 removing the preheader we already have deallocated sel_region_bb_info. */
4897 gcc_assert (BB_LV_SET (bb) == NULL
4898 && !BB_LV_SET_VALID_P (bb)
4899 && BB_AV_LEVEL (bb) == 0
4900 && BB_AV_SET (bb) == NULL);
4902 delete_basic_block (bb);
4905 /* Add BB to the current region and update the region data. */
4906 static void
4907 add_block_to_current_region (basic_block bb)
4909 int i, pos, bbi = -2, rgn;
4911 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4912 bbi = find_place_to_insert_bb (bb, rgn);
4913 bbi += 1;
4914 pos = RGN_BLOCKS (rgn) + bbi;
4916 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4917 && ebb_head[bbi] == pos);
4919 /* Make a place for the new block. */
4920 extend_regions ();
4922 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4923 BLOCK_TO_BB (rgn_bb_table[i])++;
4925 memmove (rgn_bb_table + pos + 1,
4926 rgn_bb_table + pos,
4927 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4929 /* Initialize data for BB. */
4930 rgn_bb_table[pos] = bb->index;
4931 BLOCK_TO_BB (bb->index) = bbi;
4932 CONTAINING_RGN (bb->index) = rgn;
4934 RGN_NR_BLOCKS (rgn)++;
4936 for (i = rgn + 1; i <= nr_regions; i++)
4937 RGN_BLOCKS (i)++;
4940 /* Remove BB from the current region and update the region data. */
4941 static void
4942 remove_bb_from_region (basic_block bb)
4944 int i, pos, bbi = -2, rgn;
4946 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4947 bbi = BLOCK_TO_BB (bb->index);
4948 pos = RGN_BLOCKS (rgn) + bbi;
4950 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4951 && ebb_head[bbi] == pos);
4953 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4954 BLOCK_TO_BB (rgn_bb_table[i])--;
4956 memmove (rgn_bb_table + pos,
4957 rgn_bb_table + pos + 1,
4958 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4960 RGN_NR_BLOCKS (rgn)--;
4961 for (i = rgn + 1; i <= nr_regions; i++)
4962 RGN_BLOCKS (i)--;
4965 /* Add BB to the current region and update all data. If BB is NULL, add all
4966 blocks from last_added_blocks vector. */
4967 static void
4968 sel_add_bb (basic_block bb)
4970 /* Extend luids so that new notes will receive zero luids. */
4971 sched_init_luids (NULL, NULL, NULL, NULL);
4972 sched_init_bbs ();
4973 sel_init_bbs (last_added_blocks, NULL);
4975 /* When bb is passed explicitly, the vector should contain
4976 the only element that equals to bb; otherwise, the vector
4977 should not be NULL. */
4978 gcc_assert (last_added_blocks != NULL);
4980 if (bb != NULL)
4982 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
4983 && VEC_index (basic_block,
4984 last_added_blocks, 0) == bb);
4985 add_block_to_current_region (bb);
4987 /* We associate creating/deleting data sets with the first insn
4988 appearing / disappearing in the bb. */
4989 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
4990 create_initial_data_sets (bb);
4992 VEC_free (basic_block, heap, last_added_blocks);
4994 else
4995 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
4997 int i;
4998 basic_block temp_bb = NULL;
5000 for (i = 0;
5001 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5003 add_block_to_current_region (bb);
5004 temp_bb = bb;
5007 /* We need to fetch at least one bb so we know the region
5008 to update. */
5009 gcc_assert (temp_bb != NULL);
5010 bb = temp_bb;
5012 VEC_free (basic_block, heap, last_added_blocks);
5015 rgn_setup_region (CONTAINING_RGN (bb->index));
5018 /* Remove BB from the current region and update all data.
5019 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5020 static void
5021 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5023 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5025 remove_bb_from_region (bb);
5026 return_bb_to_pool (bb);
5027 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5029 if (remove_from_cfg_p)
5030 delete_and_free_basic_block (bb);
5032 rgn_setup_region (CONTAINING_RGN (bb->index));
5035 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5036 static void
5037 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5039 gcc_assert (in_current_region_p (merge_bb));
5041 concat_note_lists (BB_NOTE_LIST (empty_bb),
5042 &BB_NOTE_LIST (merge_bb));
5043 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5047 /* Remove an empty basic block EMPTY_BB. When MERGE_UP_P is true, we put
5048 EMPTY_BB's note lists into its predecessor instead of putting them
5049 into the successor. When REMOVE_FROM_CFG_P is true, also remove
5050 the empty block. */
5051 void
5052 sel_remove_empty_bb (basic_block empty_bb, bool merge_up_p,
5053 bool remove_from_cfg_p)
5055 basic_block merge_bb;
5057 gcc_assert (sel_bb_empty_p (empty_bb));
5059 if (merge_up_p)
5061 merge_bb = empty_bb->prev_bb;
5062 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1
5063 && EDGE_PRED (empty_bb, 0)->src == merge_bb);
5065 else
5067 edge e;
5068 edge_iterator ei;
5070 merge_bb = bb_next_bb (empty_bb);
5072 /* Redirect incoming edges (except fallthrough one) of EMPTY_BB to its
5073 successor block. */
5074 for (ei = ei_start (empty_bb->preds);
5075 (e = ei_safe_edge (ei)); )
5077 if (! (e->flags & EDGE_FALLTHRU))
5078 sel_redirect_edge_and_branch (e, merge_bb);
5079 else
5080 ei_next (&ei);
5083 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1
5084 && EDGE_SUCC (empty_bb, 0)->dest == merge_bb);
5087 move_bb_info (merge_bb, empty_bb);
5088 remove_empty_bb (empty_bb, remove_from_cfg_p);
5091 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5092 region, but keep it in CFG. */
5093 static void
5094 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5096 /* The block should contain just a note or a label.
5097 We try to check whether it is unused below. */
5098 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5099 || LABEL_P (BB_HEAD (empty_bb)));
5101 /* If basic block has predecessors or successors, redirect them. */
5102 if (remove_from_cfg_p
5103 && (EDGE_COUNT (empty_bb->preds) > 0
5104 || EDGE_COUNT (empty_bb->succs) > 0))
5106 basic_block pred;
5107 basic_block succ;
5109 /* We need to init PRED and SUCC before redirecting edges. */
5110 if (EDGE_COUNT (empty_bb->preds) > 0)
5112 edge e;
5114 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5116 e = EDGE_PRED (empty_bb, 0);
5117 gcc_assert (e->src == empty_bb->prev_bb
5118 && (e->flags & EDGE_FALLTHRU));
5120 pred = empty_bb->prev_bb;
5122 else
5123 pred = NULL;
5125 if (EDGE_COUNT (empty_bb->succs) > 0)
5127 /* We do not check fallthruness here as above, because
5128 after removing a jump the edge may actually be not fallthru. */
5129 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5130 succ = EDGE_SUCC (empty_bb, 0)->dest;
5132 else
5133 succ = NULL;
5135 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5137 edge e = EDGE_PRED (empty_bb, 0);
5139 if (e->flags & EDGE_FALLTHRU)
5140 redirect_edge_succ_nodup (e, succ);
5141 else
5142 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5145 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5147 edge e = EDGE_SUCC (empty_bb, 0);
5149 if (find_edge (pred, e->dest) == NULL)
5150 redirect_edge_pred (e, pred);
5154 /* Finish removing. */
5155 sel_remove_bb (empty_bb, remove_from_cfg_p);
5158 /* An implementation of create_basic_block hook, which additionally updates
5159 per-bb data structures. */
5160 static basic_block
5161 sel_create_basic_block (void *headp, void *endp, basic_block after)
5163 basic_block new_bb;
5164 insn_t new_bb_note;
5166 gcc_assert (flag_sel_sched_pipelining_outer_loops
5167 || last_added_blocks == NULL);
5169 new_bb_note = get_bb_note_from_pool ();
5171 if (new_bb_note == NULL_RTX)
5172 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5173 else
5175 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5176 new_bb_note, after);
5177 new_bb->aux = NULL;
5180 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5182 return new_bb;
5185 /* Implement sched_init_only_bb (). */
5186 static void
5187 sel_init_only_bb (basic_block bb, basic_block after)
5189 gcc_assert (after == NULL);
5191 extend_regions ();
5192 rgn_make_new_region_out_of_new_block (bb);
5195 /* Update the latch when we've splitted or merged it from FROM block to TO.
5196 This should be checked for all outer loops, too. */
5197 static void
5198 change_loops_latches (basic_block from, basic_block to)
5200 gcc_assert (from != to);
5202 if (current_loop_nest)
5204 struct loop *loop;
5206 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5207 if (considered_for_pipelining_p (loop) && loop->latch == from)
5209 gcc_assert (loop == current_loop_nest);
5210 loop->latch = to;
5211 gcc_assert (loop_latch_edge (loop));
5216 /* Splits BB on two basic blocks, adding it to the region and extending
5217 per-bb data structures. Returns the newly created bb. */
5218 static basic_block
5219 sel_split_block (basic_block bb, rtx after)
5221 basic_block new_bb;
5222 insn_t insn;
5224 new_bb = sched_split_block_1 (bb, after);
5225 sel_add_bb (new_bb);
5227 /* This should be called after sel_add_bb, because this uses
5228 CONTAINING_RGN for the new block, which is not yet initialized.
5229 FIXME: this function may be a no-op now. */
5230 change_loops_latches (bb, new_bb);
5232 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5233 FOR_BB_INSNS (new_bb, insn)
5234 if (INSN_P (insn))
5235 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5237 if (sel_bb_empty_p (bb))
5239 gcc_assert (!sel_bb_empty_p (new_bb));
5241 /* NEW_BB has data sets that need to be updated and BB holds
5242 data sets that should be removed. Exchange these data sets
5243 so that we won't lose BB's valid data sets. */
5244 exchange_data_sets (new_bb, bb);
5245 free_data_sets (bb);
5248 if (!sel_bb_empty_p (new_bb)
5249 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5250 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5252 return new_bb;
5255 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5256 Otherwise returns NULL. */
5257 static rtx
5258 check_for_new_jump (basic_block bb, int prev_max_uid)
5260 rtx end;
5262 end = sel_bb_end (bb);
5263 if (end && INSN_UID (end) >= prev_max_uid)
5264 return end;
5265 return NULL;
5268 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5269 New means having UID at least equal to PREV_MAX_UID. */
5270 static rtx
5271 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5273 rtx jump;
5275 /* Return immediately if no new insns were emitted. */
5276 if (get_max_uid () == prev_max_uid)
5277 return NULL;
5279 /* Now check both blocks for new jumps. It will ever be only one. */
5280 if ((jump = check_for_new_jump (from, prev_max_uid)))
5281 return jump;
5283 if (jump_bb != NULL
5284 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5285 return jump;
5286 return NULL;
5289 /* Splits E and adds the newly created basic block to the current region.
5290 Returns this basic block. */
5291 basic_block
5292 sel_split_edge (edge e)
5294 basic_block new_bb, src, other_bb = NULL;
5295 int prev_max_uid;
5296 rtx jump;
5298 src = e->src;
5299 prev_max_uid = get_max_uid ();
5300 new_bb = split_edge (e);
5302 if (flag_sel_sched_pipelining_outer_loops
5303 && current_loop_nest)
5305 int i;
5306 basic_block bb;
5308 /* Some of the basic blocks might not have been added to the loop.
5309 Add them here, until this is fixed in force_fallthru. */
5310 for (i = 0;
5311 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5312 if (!bb->loop_father)
5314 add_bb_to_loop (bb, e->dest->loop_father);
5316 gcc_assert (!other_bb && (new_bb->index != bb->index));
5317 other_bb = bb;
5321 /* Add all last_added_blocks to the region. */
5322 sel_add_bb (NULL);
5324 jump = find_new_jump (src, new_bb, prev_max_uid);
5325 if (jump)
5326 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5328 /* Put the correct lv set on this block. */
5329 if (other_bb && !sel_bb_empty_p (other_bb))
5330 compute_live (sel_bb_head (other_bb));
5332 return new_bb;
5335 /* Implement sched_create_empty_bb (). */
5336 static basic_block
5337 sel_create_empty_bb (basic_block after)
5339 basic_block new_bb;
5341 new_bb = sched_create_empty_bb_1 (after);
5343 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5344 later. */
5345 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5346 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5348 VEC_free (basic_block, heap, last_added_blocks);
5349 return new_bb;
5352 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5353 will be splitted to insert a check. */
5354 basic_block
5355 sel_create_recovery_block (insn_t orig_insn)
5357 basic_block first_bb, second_bb, recovery_block;
5358 basic_block before_recovery = NULL;
5359 rtx jump;
5361 first_bb = BLOCK_FOR_INSN (orig_insn);
5362 if (sel_bb_end_p (orig_insn))
5364 /* Avoid introducing an empty block while splitting. */
5365 gcc_assert (single_succ_p (first_bb));
5366 second_bb = single_succ (first_bb);
5368 else
5369 second_bb = sched_split_block (first_bb, orig_insn);
5371 recovery_block = sched_create_recovery_block (&before_recovery);
5372 if (before_recovery)
5373 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5375 gcc_assert (sel_bb_empty_p (recovery_block));
5376 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5377 if (current_loops != NULL)
5378 add_bb_to_loop (recovery_block, first_bb->loop_father);
5380 sel_add_bb (recovery_block);
5382 jump = BB_END (recovery_block);
5383 gcc_assert (sel_bb_head (recovery_block) == jump);
5384 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5386 return recovery_block;
5389 /* Merge basic block B into basic block A. */
5390 void
5391 sel_merge_blocks (basic_block a, basic_block b)
5393 sel_remove_empty_bb (b, true, false);
5394 merge_blocks (a, b);
5396 change_loops_latches (b, a);
5399 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5400 data structures for possibly created bb and insns. Returns the newly
5401 added bb or NULL, when a bb was not needed. */
5402 void
5403 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5405 basic_block jump_bb, src;
5406 int prev_max_uid;
5407 rtx jump;
5409 gcc_assert (!sel_bb_empty_p (e->src));
5411 src = e->src;
5412 prev_max_uid = get_max_uid ();
5413 jump_bb = redirect_edge_and_branch_force (e, to);
5415 if (jump_bb != NULL)
5416 sel_add_bb (jump_bb);
5418 /* This function could not be used to spoil the loop structure by now,
5419 thus we don't care to update anything. But check it to be sure. */
5420 if (current_loop_nest
5421 && pipelining_p)
5422 gcc_assert (loop_latch_edge (current_loop_nest));
5424 jump = find_new_jump (src, jump_bb, prev_max_uid);
5425 if (jump)
5426 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5429 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5430 redirected edge are in reverse topological order. */
5431 bool
5432 sel_redirect_edge_and_branch (edge e, basic_block to)
5434 bool latch_edge_p;
5435 basic_block src;
5436 int prev_max_uid;
5437 rtx jump;
5438 edge redirected;
5439 bool recompute_toporder_p = false;
5441 latch_edge_p = (pipelining_p
5442 && current_loop_nest
5443 && e == loop_latch_edge (current_loop_nest));
5445 src = e->src;
5446 prev_max_uid = get_max_uid ();
5448 redirected = redirect_edge_and_branch (e, to);
5450 gcc_assert (redirected && last_added_blocks == NULL);
5452 /* When we've redirected a latch edge, update the header. */
5453 if (latch_edge_p)
5455 current_loop_nest->header = to;
5456 gcc_assert (loop_latch_edge (current_loop_nest));
5459 /* In rare situations, the topological relation between the blocks connected
5460 by the redirected edge can change (see PR42245 for an example). Update
5461 block_to_bb/bb_to_block. */
5462 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5463 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5464 recompute_toporder_p = true;
5466 jump = find_new_jump (src, NULL, prev_max_uid);
5467 if (jump)
5468 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5470 return recompute_toporder_p;
5473 /* This variable holds the cfg hooks used by the selective scheduler. */
5474 static struct cfg_hooks sel_cfg_hooks;
5476 /* Register sel-sched cfg hooks. */
5477 void
5478 sel_register_cfg_hooks (void)
5480 sched_split_block = sel_split_block;
5482 orig_cfg_hooks = get_cfg_hooks ();
5483 sel_cfg_hooks = orig_cfg_hooks;
5485 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5487 set_cfg_hooks (sel_cfg_hooks);
5489 sched_init_only_bb = sel_init_only_bb;
5490 sched_split_block = sel_split_block;
5491 sched_create_empty_bb = sel_create_empty_bb;
5494 /* Unregister sel-sched cfg hooks. */
5495 void
5496 sel_unregister_cfg_hooks (void)
5498 sched_create_empty_bb = NULL;
5499 sched_split_block = NULL;
5500 sched_init_only_bb = NULL;
5502 set_cfg_hooks (orig_cfg_hooks);
5506 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5507 LABEL is where this jump should be directed. */
5509 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5511 rtx insn_rtx;
5513 gcc_assert (!INSN_P (pattern));
5515 start_sequence ();
5517 if (label == NULL_RTX)
5518 insn_rtx = emit_insn (pattern);
5519 else if (DEBUG_INSN_P (label))
5520 insn_rtx = emit_debug_insn (pattern);
5521 else
5523 insn_rtx = emit_jump_insn (pattern);
5524 JUMP_LABEL (insn_rtx) = label;
5525 ++LABEL_NUSES (label);
5528 end_sequence ();
5530 sched_init_luids (NULL, NULL, NULL, NULL);
5531 sched_extend_target ();
5532 sched_deps_init (false);
5534 /* Initialize INSN_CODE now. */
5535 recog_memoized (insn_rtx);
5536 return insn_rtx;
5539 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5540 must not be clonable. */
5541 vinsn_t
5542 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5544 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5546 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5547 return vinsn_create (insn_rtx, force_unique_p);
5550 /* Create a copy of INSN_RTX. */
5552 create_copy_of_insn_rtx (rtx insn_rtx)
5554 rtx res;
5556 if (DEBUG_INSN_P (insn_rtx))
5557 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5558 insn_rtx);
5560 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5562 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5563 NULL_RTX);
5564 return res;
5567 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5568 void
5569 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5571 vinsn_detach (EXPR_VINSN (expr));
5573 EXPR_VINSN (expr) = new_vinsn;
5574 vinsn_attach (new_vinsn);
5577 /* Helpers for global init. */
5578 /* This structure is used to be able to call existing bundling mechanism
5579 and calculate insn priorities. */
5580 static struct haifa_sched_info sched_sel_haifa_sched_info =
5582 NULL, /* init_ready_list */
5583 NULL, /* can_schedule_ready_p */
5584 NULL, /* schedule_more_p */
5585 NULL, /* new_ready */
5586 NULL, /* rgn_rank */
5587 sel_print_insn, /* rgn_print_insn */
5588 contributes_to_priority,
5589 NULL, /* insn_finishes_block_p */
5591 NULL, NULL,
5592 NULL, NULL,
5593 0, 0,
5595 NULL, /* add_remove_insn */
5596 NULL, /* begin_schedule_ready */
5597 NULL, /* advance_target_bb */
5598 SEL_SCHED | NEW_BBS
5601 /* Setup special insns used in the scheduler. */
5602 void
5603 setup_nop_and_exit_insns (void)
5605 gcc_assert (nop_pattern == NULL_RTX
5606 && exit_insn == NULL_RTX);
5608 nop_pattern = gen_nop ();
5610 start_sequence ();
5611 emit_insn (nop_pattern);
5612 exit_insn = get_insns ();
5613 end_sequence ();
5614 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5617 /* Free special insns used in the scheduler. */
5618 void
5619 free_nop_and_exit_insns (void)
5621 exit_insn = NULL_RTX;
5622 nop_pattern = NULL_RTX;
5625 /* Setup a special vinsn used in new insns initialization. */
5626 void
5627 setup_nop_vinsn (void)
5629 nop_vinsn = vinsn_create (exit_insn, false);
5630 vinsn_attach (nop_vinsn);
5633 /* Free a special vinsn used in new insns initialization. */
5634 void
5635 free_nop_vinsn (void)
5637 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5638 vinsn_detach (nop_vinsn);
5639 nop_vinsn = NULL;
5642 /* Call a set_sched_flags hook. */
5643 void
5644 sel_set_sched_flags (void)
5646 /* ??? This means that set_sched_flags were called, and we decided to
5647 support speculation. However, set_sched_flags also modifies flags
5648 on current_sched_info, doing this only at global init. And we
5649 sometimes change c_s_i later. So put the correct flags again. */
5650 if (spec_info && targetm.sched.set_sched_flags)
5651 targetm.sched.set_sched_flags (spec_info);
5654 /* Setup pointers to global sched info structures. */
5655 void
5656 sel_setup_sched_infos (void)
5658 rgn_setup_common_sched_info ();
5660 memcpy (&sel_common_sched_info, common_sched_info,
5661 sizeof (sel_common_sched_info));
5663 sel_common_sched_info.fix_recovery_cfg = NULL;
5664 sel_common_sched_info.add_block = NULL;
5665 sel_common_sched_info.estimate_number_of_insns
5666 = sel_estimate_number_of_insns;
5667 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5668 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5670 common_sched_info = &sel_common_sched_info;
5672 current_sched_info = &sched_sel_haifa_sched_info;
5673 current_sched_info->sched_max_insns_priority =
5674 get_rgn_sched_max_insns_priority ();
5676 sel_set_sched_flags ();
5680 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5681 *BB_ORD_INDEX after that is increased. */
5682 static void
5683 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5685 RGN_NR_BLOCKS (rgn) += 1;
5686 RGN_DONT_CALC_DEPS (rgn) = 0;
5687 RGN_HAS_REAL_EBB (rgn) = 0;
5688 CONTAINING_RGN (bb->index) = rgn;
5689 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5690 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5691 (*bb_ord_index)++;
5693 /* FIXME: it is true only when not scheduling ebbs. */
5694 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5697 /* Functions to support pipelining of outer loops. */
5699 /* Creates a new empty region and returns it's number. */
5700 static int
5701 sel_create_new_region (void)
5703 int new_rgn_number = nr_regions;
5705 RGN_NR_BLOCKS (new_rgn_number) = 0;
5707 /* FIXME: This will work only when EBBs are not created. */
5708 if (new_rgn_number != 0)
5709 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5710 RGN_NR_BLOCKS (new_rgn_number - 1);
5711 else
5712 RGN_BLOCKS (new_rgn_number) = 0;
5714 /* Set the blocks of the next region so the other functions may
5715 calculate the number of blocks in the region. */
5716 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5717 RGN_NR_BLOCKS (new_rgn_number);
5719 nr_regions++;
5721 return new_rgn_number;
5724 /* If X has a smaller topological sort number than Y, returns -1;
5725 if greater, returns 1. */
5726 static int
5727 bb_top_order_comparator (const void *x, const void *y)
5729 basic_block bb1 = *(const basic_block *) x;
5730 basic_block bb2 = *(const basic_block *) y;
5732 gcc_assert (bb1 == bb2
5733 || rev_top_order_index[bb1->index]
5734 != rev_top_order_index[bb2->index]);
5736 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5737 bbs with greater number should go earlier. */
5738 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5739 return -1;
5740 else
5741 return 1;
5744 /* Create a region for LOOP and return its number. If we don't want
5745 to pipeline LOOP, return -1. */
5746 static int
5747 make_region_from_loop (struct loop *loop)
5749 unsigned int i;
5750 int new_rgn_number = -1;
5751 struct loop *inner;
5753 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5754 int bb_ord_index = 0;
5755 basic_block *loop_blocks;
5756 basic_block preheader_block;
5758 if (loop->num_nodes
5759 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5760 return -1;
5762 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5763 for (inner = loop->inner; inner; inner = inner->inner)
5764 if (flow_bb_inside_loop_p (inner, loop->latch))
5765 return -1;
5767 loop->ninsns = num_loop_insns (loop);
5768 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5769 return -1;
5771 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5773 for (i = 0; i < loop->num_nodes; i++)
5774 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5776 free (loop_blocks);
5777 return -1;
5780 preheader_block = loop_preheader_edge (loop)->src;
5781 gcc_assert (preheader_block);
5782 gcc_assert (loop_blocks[0] == loop->header);
5784 new_rgn_number = sel_create_new_region ();
5786 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5787 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5789 for (i = 0; i < loop->num_nodes; i++)
5791 /* Add only those blocks that haven't been scheduled in the inner loop.
5792 The exception is the basic blocks with bookkeeping code - they should
5793 be added to the region (and they actually don't belong to the loop
5794 body, but to the region containing that loop body). */
5796 gcc_assert (new_rgn_number >= 0);
5798 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5800 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5801 new_rgn_number);
5802 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5806 free (loop_blocks);
5807 MARK_LOOP_FOR_PIPELINING (loop);
5809 return new_rgn_number;
5812 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5813 void
5814 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5816 unsigned int i;
5817 int new_rgn_number = -1;
5818 basic_block bb;
5820 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5821 int bb_ord_index = 0;
5823 new_rgn_number = sel_create_new_region ();
5825 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
5827 gcc_assert (new_rgn_number >= 0);
5829 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5832 VEC_free (basic_block, heap, *loop_blocks);
5833 gcc_assert (*loop_blocks == NULL);
5837 /* Create region(s) from loop nest LOOP, such that inner loops will be
5838 pipelined before outer loops. Returns true when a region for LOOP
5839 is created. */
5840 static bool
5841 make_regions_from_loop_nest (struct loop *loop)
5843 struct loop *cur_loop;
5844 int rgn_number;
5846 /* Traverse all inner nodes of the loop. */
5847 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5848 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5849 return false;
5851 /* At this moment all regular inner loops should have been pipelined.
5852 Try to create a region from this loop. */
5853 rgn_number = make_region_from_loop (loop);
5855 if (rgn_number < 0)
5856 return false;
5858 VEC_safe_push (loop_p, heap, loop_nests, loop);
5859 return true;
5862 /* Initalize data structures needed. */
5863 void
5864 sel_init_pipelining (void)
5866 /* Collect loop information to be used in outer loops pipelining. */
5867 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5868 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5869 | LOOPS_HAVE_RECORDED_EXITS
5870 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5871 current_loop_nest = NULL;
5873 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5874 sbitmap_zero (bbs_in_loop_rgns);
5876 recompute_rev_top_order ();
5879 /* Returns a struct loop for region RGN. */
5880 loop_p
5881 get_loop_nest_for_rgn (unsigned int rgn)
5883 /* Regions created with extend_rgns don't have corresponding loop nests,
5884 because they don't represent loops. */
5885 if (rgn < VEC_length (loop_p, loop_nests))
5886 return VEC_index (loop_p, loop_nests, rgn);
5887 else
5888 return NULL;
5891 /* True when LOOP was included into pipelining regions. */
5892 bool
5893 considered_for_pipelining_p (struct loop *loop)
5895 if (loop_depth (loop) == 0)
5896 return false;
5898 /* Now, the loop could be too large or irreducible. Check whether its
5899 region is in LOOP_NESTS.
5900 We determine the region number of LOOP as the region number of its
5901 latch. We can't use header here, because this header could be
5902 just removed preheader and it will give us the wrong region number.
5903 Latch can't be used because it could be in the inner loop too. */
5904 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
5906 int rgn = CONTAINING_RGN (loop->latch->index);
5908 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5909 return true;
5912 return false;
5915 /* Makes regions from the rest of the blocks, after loops are chosen
5916 for pipelining. */
5917 static void
5918 make_regions_from_the_rest (void)
5920 int cur_rgn_blocks;
5921 int *loop_hdr;
5922 int i;
5924 basic_block bb;
5925 edge e;
5926 edge_iterator ei;
5927 int *degree;
5929 /* Index in rgn_bb_table where to start allocating new regions. */
5930 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5932 /* Make regions from all the rest basic blocks - those that don't belong to
5933 any loop or belong to irreducible loops. Prepare the data structures
5934 for extend_rgns. */
5936 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5937 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5938 loop. */
5939 loop_hdr = XNEWVEC (int, last_basic_block);
5940 degree = XCNEWVEC (int, last_basic_block);
5943 /* For each basic block that belongs to some loop assign the number
5944 of innermost loop it belongs to. */
5945 for (i = 0; i < last_basic_block; i++)
5946 loop_hdr[i] = -1;
5948 FOR_EACH_BB (bb)
5950 if (bb->loop_father && !bb->loop_father->num == 0
5951 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5952 loop_hdr[bb->index] = bb->loop_father->num;
5955 /* For each basic block degree is calculated as the number of incoming
5956 edges, that are going out of bbs that are not yet scheduled.
5957 The basic blocks that are scheduled have degree value of zero. */
5958 FOR_EACH_BB (bb)
5960 degree[bb->index] = 0;
5962 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5964 FOR_EACH_EDGE (e, ei, bb->preds)
5965 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
5966 degree[bb->index]++;
5968 else
5969 degree[bb->index] = -1;
5972 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
5974 /* Any block that did not end up in a region is placed into a region
5975 by itself. */
5976 FOR_EACH_BB (bb)
5977 if (degree[bb->index] >= 0)
5979 rgn_bb_table[cur_rgn_blocks] = bb->index;
5980 RGN_NR_BLOCKS (nr_regions) = 1;
5981 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
5982 RGN_DONT_CALC_DEPS (nr_regions) = 0;
5983 RGN_HAS_REAL_EBB (nr_regions) = 0;
5984 CONTAINING_RGN (bb->index) = nr_regions++;
5985 BLOCK_TO_BB (bb->index) = 0;
5988 free (degree);
5989 free (loop_hdr);
5992 /* Free data structures used in pipelining of loops. */
5993 void sel_finish_pipelining (void)
5995 loop_iterator li;
5996 struct loop *loop;
5998 /* Release aux fields so we don't free them later by mistake. */
5999 FOR_EACH_LOOP (li, loop, 0)
6000 loop->aux = NULL;
6002 loop_optimizer_finalize ();
6004 VEC_free (loop_p, heap, loop_nests);
6006 free (rev_top_order_index);
6007 rev_top_order_index = NULL;
6010 /* This function replaces the find_rgns when
6011 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6012 void
6013 sel_find_rgns (void)
6015 sel_init_pipelining ();
6016 extend_regions ();
6018 if (current_loops)
6020 loop_p loop;
6021 loop_iterator li;
6023 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6024 ? LI_FROM_INNERMOST
6025 : LI_ONLY_INNERMOST))
6026 make_regions_from_loop_nest (loop);
6029 /* Make regions from all the rest basic blocks and schedule them.
6030 These blocks include blocks that don't belong to any loop or belong
6031 to irreducible loops. */
6032 make_regions_from_the_rest ();
6034 /* We don't need bbs_in_loop_rgns anymore. */
6035 sbitmap_free (bbs_in_loop_rgns);
6036 bbs_in_loop_rgns = NULL;
6039 /* Adds the preheader blocks from previous loop to current region taking
6040 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
6041 This function is only used with -fsel-sched-pipelining-outer-loops. */
6042 void
6043 sel_add_loop_preheaders (void)
6045 int i;
6046 basic_block bb;
6047 VEC(basic_block, heap) *preheader_blocks
6048 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6050 for (i = 0;
6051 VEC_iterate (basic_block, preheader_blocks, i, bb);
6052 i++)
6054 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6055 sel_add_bb (bb);
6058 VEC_free (basic_block, heap, preheader_blocks);
6061 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6062 Please note that the function should also work when pipelining_p is
6063 false, because it is used when deciding whether we should or should
6064 not reschedule pipelined code. */
6065 bool
6066 sel_is_loop_preheader_p (basic_block bb)
6068 if (current_loop_nest)
6070 struct loop *outer;
6072 if (preheader_removed)
6073 return false;
6075 /* Preheader is the first block in the region. */
6076 if (BLOCK_TO_BB (bb->index) == 0)
6077 return true;
6079 /* We used to find a preheader with the topological information.
6080 Check that the above code is equivalent to what we did before. */
6082 if (in_current_region_p (current_loop_nest->header))
6083 gcc_assert (!(BLOCK_TO_BB (bb->index)
6084 < BLOCK_TO_BB (current_loop_nest->header->index)));
6086 /* Support the situation when the latch block of outer loop
6087 could be from here. */
6088 for (outer = loop_outer (current_loop_nest);
6089 outer;
6090 outer = loop_outer (outer))
6091 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6092 gcc_unreachable ();
6095 return false;
6098 /* Checks whether JUMP leads to basic block DEST_BB and no other blocks. */
6099 bool
6100 jump_leads_only_to_bb_p (insn_t jump, basic_block dest_bb)
6102 basic_block jump_bb = BLOCK_FOR_INSN (jump);
6104 /* It is not jump, jump with side-effects or jump can lead to several
6105 basic blocks. */
6106 if (!onlyjump_p (jump)
6107 || !any_uncondjump_p (jump))
6108 return false;
6110 /* Several outgoing edges, abnormal edge or destination of jump is
6111 not DEST_BB. */
6112 if (EDGE_COUNT (jump_bb->succs) != 1
6113 || EDGE_SUCC (jump_bb, 0)->flags & EDGE_ABNORMAL
6114 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6115 return false;
6117 /* If not anything of the upper. */
6118 return true;
6121 /* Removes the loop preheader from the current region and saves it in
6122 PREHEADER_BLOCKS of the father loop, so they will be added later to
6123 region that represents an outer loop. */
6124 static void
6125 sel_remove_loop_preheader (void)
6127 int i, old_len;
6128 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6129 basic_block bb;
6130 bool all_empty_p = true;
6131 VEC(basic_block, heap) *preheader_blocks
6132 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6134 gcc_assert (current_loop_nest);
6135 old_len = VEC_length (basic_block, preheader_blocks);
6137 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6138 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6140 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6142 /* If the basic block belongs to region, but doesn't belong to
6143 corresponding loop, then it should be a preheader. */
6144 if (sel_is_loop_preheader_p (bb))
6146 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6147 if (BB_END (bb) != bb_note (bb))
6148 all_empty_p = false;
6152 /* Remove these blocks only after iterating over the whole region. */
6153 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6154 i >= old_len;
6155 i--)
6157 bb = VEC_index (basic_block, preheader_blocks, i);
6158 sel_remove_bb (bb, false);
6161 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6163 if (!all_empty_p)
6164 /* Immediately create new region from preheader. */
6165 make_region_from_loop_preheader (&preheader_blocks);
6166 else
6168 /* If all preheader blocks are empty - dont create new empty region.
6169 Instead, remove them completely. */
6170 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6172 edge e;
6173 edge_iterator ei;
6174 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6176 /* Redirect all incoming edges to next basic block. */
6177 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6179 if (! (e->flags & EDGE_FALLTHRU))
6180 redirect_edge_and_branch (e, bb->next_bb);
6181 else
6182 redirect_edge_succ (e, bb->next_bb);
6184 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6185 delete_and_free_basic_block (bb);
6187 /* Check if after deleting preheader there is a nonconditional
6188 jump in PREV_BB that leads to the next basic block NEXT_BB.
6189 If it is so - delete this jump and clear data sets of its
6190 basic block if it becomes empty. */
6191 if (next_bb->prev_bb == prev_bb
6192 && prev_bb != ENTRY_BLOCK_PTR
6193 && jump_leads_only_to_bb_p (BB_END (prev_bb), next_bb))
6195 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6196 if (BB_END (prev_bb) == bb_note (prev_bb))
6197 free_data_sets (prev_bb);
6201 VEC_free (basic_block, heap, preheader_blocks);
6203 else
6204 /* Store preheader within the father's loop structure. */
6205 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6206 preheader_blocks);
6208 #endif