1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
49 #include "coretypes.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
59 #include "conditions.h"
61 #include "hard-reg-set.h"
65 #include "rtl-error.h"
66 #include "toplev.h" /* exact_log2, floor_log2 */
69 #include "basic-block.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
75 #include "tree-flow.h"
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data
87 declarations for e.g. AIX 4.x. */
90 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
91 #include "dwarf2out.h"
94 #ifdef DBX_DEBUGGING_INFO
98 #ifdef SDB_DEBUGGING_INFO
102 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
103 So define a null default for it to save conditionalization later. */
104 #ifndef CC_STATUS_INIT
105 #define CC_STATUS_INIT
108 /* How to start an assembler comment. */
109 #ifndef ASM_COMMENT_START
110 #define ASM_COMMENT_START ";#"
113 /* Is the given character a logical line separator for the assembler? */
114 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
115 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
118 #ifndef JUMP_TABLES_IN_TEXT_SECTION
119 #define JUMP_TABLES_IN_TEXT_SECTION 0
122 /* Bitflags used by final_scan_insn. */
125 #define SEEN_EMITTED 4
127 /* Last insn processed by final_scan_insn. */
128 static rtx debug_insn
;
129 rtx current_output_insn
;
131 /* Line number of last NOTE. */
132 static int last_linenum
;
134 /* Last discriminator written to assembly. */
135 static int last_discriminator
;
137 /* Discriminator of current block. */
138 static int discriminator
;
140 /* Highest line number in current block. */
141 static int high_block_linenum
;
143 /* Likewise for function. */
144 static int high_function_linenum
;
146 /* Filename of last NOTE. */
147 static const char *last_filename
;
149 /* Override filename and line number. */
150 static const char *override_filename
;
151 static int override_linenum
;
153 /* Whether to force emission of a line note before the next insn. */
154 static bool force_source_line
= false;
156 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
158 /* Nonzero while outputting an `asm' with operands.
159 This means that inconsistencies are the user's fault, so don't die.
160 The precise value is the insn being output, to pass to error_for_asm. */
161 rtx this_is_asm_operands
;
163 /* Number of operands of this insn, for an `asm' with operands. */
164 static unsigned int insn_noperands
;
166 /* Compare optimization flag. */
168 static rtx last_ignored_compare
= 0;
170 /* Assign a unique number to each insn that is output.
171 This can be used to generate unique local labels. */
173 static int insn_counter
= 0;
176 /* This variable contains machine-dependent flags (defined in tm.h)
177 set and examined by output routines
178 that describe how to interpret the condition codes properly. */
182 /* During output of an insn, this contains a copy of cc_status
183 from before the insn. */
185 CC_STATUS cc_prev_status
;
188 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
190 static int block_depth
;
192 /* Nonzero if have enabled APP processing of our assembler output. */
196 /* If we are outputting an insn sequence, this contains the sequence rtx.
201 #ifdef ASSEMBLER_DIALECT
203 /* Number of the assembler dialect to use, starting at 0. */
204 static int dialect_number
;
207 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
208 rtx current_insn_predicate
;
210 /* True if printing into -fdump-final-insns= dump. */
211 bool final_insns_dump_p
;
213 #ifdef HAVE_ATTR_length
214 static int asm_insn_count (rtx
);
216 static void profile_function (FILE *);
217 static void profile_after_prologue (FILE *);
218 static bool notice_source_line (rtx
, bool *);
219 static rtx
walk_alter_subreg (rtx
*, bool *);
220 static void output_asm_name (void);
221 static void output_alternate_entry_point (FILE *, rtx
);
222 static tree
get_mem_expr_from_op (rtx
, int *);
223 static void output_asm_operand_names (rtx
*, int *, int);
224 #ifdef LEAF_REGISTERS
225 static void leaf_renumber_regs (rtx
);
228 static int alter_cond (rtx
);
230 #ifndef ADDR_VEC_ALIGN
231 static int final_addr_vec_align (rtx
);
233 #ifdef HAVE_ATTR_length
234 static int align_fuzz (rtx
, rtx
, int, unsigned);
237 /* Initialize data in final at the beginning of a compilation. */
240 init_final (const char *filename ATTRIBUTE_UNUSED
)
245 #ifdef ASSEMBLER_DIALECT
246 dialect_number
= ASSEMBLER_DIALECT
;
250 /* Default target function prologue and epilogue assembler output.
252 If not overridden for epilogue code, then the function body itself
253 contains return instructions wherever needed. */
255 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
256 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
260 /* Default target hook that outputs nothing to a stream. */
262 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
266 /* Enable APP processing of subsequent output.
267 Used before the output from an `asm' statement. */
274 fputs (ASM_APP_ON
, asm_out_file
);
279 /* Disable APP processing of subsequent output.
280 Called from varasm.c before most kinds of output. */
287 fputs (ASM_APP_OFF
, asm_out_file
);
292 /* Return the number of slots filled in the current
293 delayed branch sequence (we don't count the insn needing the
294 delay slot). Zero if not in a delayed branch sequence. */
298 dbr_sequence_length (void)
300 if (final_sequence
!= 0)
301 return XVECLEN (final_sequence
, 0) - 1;
307 /* The next two pages contain routines used to compute the length of an insn
308 and to shorten branches. */
310 /* Arrays for insn lengths, and addresses. The latter is referenced by
311 `insn_current_length'. */
313 static int *insn_lengths
;
315 VEC(int,heap
) *insn_addresses_
;
317 /* Max uid for which the above arrays are valid. */
318 static int insn_lengths_max_uid
;
320 /* Address of insn being processed. Used by `insn_current_length'. */
321 int insn_current_address
;
323 /* Address of insn being processed in previous iteration. */
324 int insn_last_address
;
326 /* known invariant alignment of insn being processed. */
327 int insn_current_align
;
329 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
330 gives the next following alignment insn that increases the known
331 alignment, or NULL_RTX if there is no such insn.
332 For any alignment obtained this way, we can again index uid_align with
333 its uid to obtain the next following align that in turn increases the
334 alignment, till we reach NULL_RTX; the sequence obtained this way
335 for each insn we'll call the alignment chain of this insn in the following
338 struct label_alignment
344 static rtx
*uid_align
;
345 static int *uid_shuid
;
346 static struct label_alignment
*label_align
;
348 /* Indicate that branch shortening hasn't yet been done. */
351 init_insn_lengths (void)
362 insn_lengths_max_uid
= 0;
364 #ifdef HAVE_ATTR_length
365 INSN_ADDRESSES_FREE ();
374 /* Obtain the current length of an insn. If branch shortening has been done,
375 get its actual length. Otherwise, use FALLBACK_FN to calculate the
378 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED
,
379 int (*fallback_fn
) (rtx
) ATTRIBUTE_UNUSED
)
381 #ifdef HAVE_ATTR_length
386 if (insn_lengths_max_uid
> INSN_UID (insn
))
387 return insn_lengths
[INSN_UID (insn
)];
389 switch (GET_CODE (insn
))
398 length
= fallback_fn (insn
);
402 body
= PATTERN (insn
);
403 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
405 /* Alignment is machine-dependent and should be handled by
409 length
= fallback_fn (insn
);
413 body
= PATTERN (insn
);
414 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
417 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
418 length
= asm_insn_count (body
) * fallback_fn (insn
);
419 else if (GET_CODE (body
) == SEQUENCE
)
420 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
421 length
+= get_attr_length_1 (XVECEXP (body
, 0, i
), fallback_fn
);
423 length
= fallback_fn (insn
);
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn
, length
);
434 #else /* not HAVE_ATTR_length */
436 #define insn_default_length 0
437 #define insn_min_length 0
438 #endif /* not HAVE_ATTR_length */
441 /* Obtain the current length of an insn. If branch shortening has been done,
442 get its actual length. Otherwise, get its maximum length. */
444 get_attr_length (rtx insn
)
446 return get_attr_length_1 (insn
, insn_default_length
);
449 /* Obtain the current length of an insn. If branch shortening has been done,
450 get its actual length. Otherwise, get its minimum length. */
452 get_attr_min_length (rtx insn
)
454 return get_attr_length_1 (insn
, insn_min_length
);
457 /* Code to handle alignment inside shorten_branches. */
459 /* Here is an explanation how the algorithm in align_fuzz can give
462 Call a sequence of instructions beginning with alignment point X
463 and continuing until the next alignment point `block X'. When `X'
464 is used in an expression, it means the alignment value of the
467 Call the distance between the start of the first insn of block X, and
468 the end of the last insn of block X `IX', for the `inner size of X'.
469 This is clearly the sum of the instruction lengths.
471 Likewise with the next alignment-delimited block following X, which we
474 Call the distance between the start of the first insn of block X, and
475 the start of the first insn of block Y `OX', for the `outer size of X'.
477 The estimated padding is then OX - IX.
479 OX can be safely estimated as
484 OX = round_up(IX, X) + Y - X
486 Clearly est(IX) >= real(IX), because that only depends on the
487 instruction lengths, and those being overestimated is a given.
489 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
490 we needn't worry about that when thinking about OX.
492 When X >= Y, the alignment provided by Y adds no uncertainty factor
493 for branch ranges starting before X, so we can just round what we have.
494 But when X < Y, we don't know anything about the, so to speak,
495 `middle bits', so we have to assume the worst when aligning up from an
496 address mod X to one mod Y, which is Y - X. */
499 #define LABEL_ALIGN(LABEL) align_labels_log
502 #ifndef LABEL_ALIGN_MAX_SKIP
503 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
507 #define LOOP_ALIGN(LABEL) align_loops_log
510 #ifndef LOOP_ALIGN_MAX_SKIP
511 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
514 #ifndef LABEL_ALIGN_AFTER_BARRIER
515 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
518 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
519 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
523 #define JUMP_ALIGN(LABEL) align_jumps_log
526 #ifndef JUMP_ALIGN_MAX_SKIP
527 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
530 #ifndef ADDR_VEC_ALIGN
532 final_addr_vec_align (rtx addr_vec
)
534 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
536 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
537 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
538 return exact_log2 (align
);
542 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
545 #ifndef INSN_LENGTH_ALIGNMENT
546 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
549 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
551 static int min_labelno
, max_labelno
;
553 #define LABEL_TO_ALIGNMENT(LABEL) \
554 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
556 #define LABEL_TO_MAX_SKIP(LABEL) \
557 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
559 /* For the benefit of port specific code do this also as a function. */
562 label_to_alignment (rtx label
)
564 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
565 return LABEL_TO_ALIGNMENT (label
);
570 label_to_max_skip (rtx label
)
572 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
573 return LABEL_TO_MAX_SKIP (label
);
577 #ifdef HAVE_ATTR_length
578 /* The differences in addresses
579 between a branch and its target might grow or shrink depending on
580 the alignment the start insn of the range (the branch for a forward
581 branch or the label for a backward branch) starts out on; if these
582 differences are used naively, they can even oscillate infinitely.
583 We therefore want to compute a 'worst case' address difference that
584 is independent of the alignment the start insn of the range end
585 up on, and that is at least as large as the actual difference.
586 The function align_fuzz calculates the amount we have to add to the
587 naively computed difference, by traversing the part of the alignment
588 chain of the start insn of the range that is in front of the end insn
589 of the range, and considering for each alignment the maximum amount
590 that it might contribute to a size increase.
592 For casesi tables, we also want to know worst case minimum amounts of
593 address difference, in case a machine description wants to introduce
594 some common offset that is added to all offsets in a table.
595 For this purpose, align_fuzz with a growth argument of 0 computes the
596 appropriate adjustment. */
598 /* Compute the maximum delta by which the difference of the addresses of
599 START and END might grow / shrink due to a different address for start
600 which changes the size of alignment insns between START and END.
601 KNOWN_ALIGN_LOG is the alignment known for START.
602 GROWTH should be ~0 if the objective is to compute potential code size
603 increase, and 0 if the objective is to compute potential shrink.
604 The return value is undefined for any other value of GROWTH. */
607 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
609 int uid
= INSN_UID (start
);
611 int known_align
= 1 << known_align_log
;
612 int end_shuid
= INSN_SHUID (end
);
615 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
617 int align_addr
, new_align
;
619 uid
= INSN_UID (align_label
);
620 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
621 if (uid_shuid
[uid
] > end_shuid
)
623 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
624 new_align
= 1 << known_align_log
;
625 if (new_align
< known_align
)
627 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
628 known_align
= new_align
;
633 /* Compute a worst-case reference address of a branch so that it
634 can be safely used in the presence of aligned labels. Since the
635 size of the branch itself is unknown, the size of the branch is
636 not included in the range. I.e. for a forward branch, the reference
637 address is the end address of the branch as known from the previous
638 branch shortening pass, minus a value to account for possible size
639 increase due to alignment. For a backward branch, it is the start
640 address of the branch as known from the current pass, plus a value
641 to account for possible size increase due to alignment.
642 NB.: Therefore, the maximum offset allowed for backward branches needs
643 to exclude the branch size. */
646 insn_current_reference_address (rtx branch
)
651 if (! INSN_ADDRESSES_SET_P ())
654 seq
= NEXT_INSN (PREV_INSN (branch
));
655 seq_uid
= INSN_UID (seq
);
656 if (!JUMP_P (branch
))
657 /* This can happen for example on the PA; the objective is to know the
658 offset to address something in front of the start of the function.
659 Thus, we can treat it like a backward branch.
660 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
661 any alignment we'd encounter, so we skip the call to align_fuzz. */
662 return insn_current_address
;
663 dest
= JUMP_LABEL (branch
);
665 /* BRANCH has no proper alignment chain set, so use SEQ.
666 BRANCH also has no INSN_SHUID. */
667 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
669 /* Forward branch. */
670 return (insn_last_address
+ insn_lengths
[seq_uid
]
671 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
675 /* Backward branch. */
676 return (insn_current_address
677 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
680 #endif /* HAVE_ATTR_length */
682 /* Compute branch alignments based on frequency information in the
686 compute_alignments (void)
688 int log
, max_skip
, max_log
;
691 int freq_threshold
= 0;
699 max_labelno
= max_label_num ();
700 min_labelno
= get_first_label_num ();
701 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
703 /* If not optimizing or optimizing for size, don't assign any alignments. */
704 if (! optimize
|| optimize_function_for_size_p (cfun
))
709 dump_flow_info (dump_file
, TDF_DETAILS
);
710 flow_loops_dump (dump_file
, NULL
, 1);
711 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
714 if (bb
->frequency
> freq_max
)
715 freq_max
= bb
->frequency
;
716 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
719 fprintf(dump_file
, "freq_max: %i\n",freq_max
);
722 rtx label
= BB_HEAD (bb
);
723 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
728 || optimize_bb_for_size_p (bb
))
731 fprintf(dump_file
, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
732 bb
->index
, bb
->frequency
, bb
->loop_father
->num
, bb
->loop_depth
);
735 max_log
= LABEL_ALIGN (label
);
736 max_skip
= LABEL_ALIGN_MAX_SKIP
;
738 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
740 if (e
->flags
& EDGE_FALLTHRU
)
741 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
743 branch_frequency
+= EDGE_FREQUENCY (e
);
747 fprintf(dump_file
, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
748 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
750 fallthru_frequency
, branch_frequency
);
751 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
752 fprintf (dump_file
, " inner_loop");
753 if (bb
->loop_father
->header
== bb
)
754 fprintf (dump_file
, " loop_header");
755 fprintf (dump_file
, "\n");
758 /* There are two purposes to align block with no fallthru incoming edge:
759 1) to avoid fetch stalls when branch destination is near cache boundary
760 2) to improve cache efficiency in case the previous block is not executed
761 (so it does not need to be in the cache).
763 We to catch first case, we align frequently executed blocks.
764 To catch the second, we align blocks that are executed more frequently
765 than the predecessor and the predecessor is likely to not be executed
766 when function is called. */
769 && (branch_frequency
> freq_threshold
770 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
771 && (bb
->prev_bb
->frequency
772 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
774 log
= JUMP_ALIGN (label
);
776 fprintf(dump_file
, " jump alignment added.\n");
780 max_skip
= JUMP_ALIGN_MAX_SKIP
;
783 /* In case block is frequent and reached mostly by non-fallthru edge,
784 align it. It is most likely a first block of loop. */
786 && optimize_bb_for_speed_p (bb
)
787 && branch_frequency
+ fallthru_frequency
> freq_threshold
789 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
791 log
= LOOP_ALIGN (label
);
793 fprintf(dump_file
, " internal loop alignment added.\n");
797 max_skip
= LOOP_ALIGN_MAX_SKIP
;
800 LABEL_TO_ALIGNMENT (label
) = max_log
;
801 LABEL_TO_MAX_SKIP (label
) = max_skip
;
806 loop_optimizer_finalize ();
807 free_dominance_info (CDI_DOMINATORS
);
812 struct rtl_opt_pass pass_compute_alignments
=
816 "alignments", /* name */
818 compute_alignments
, /* execute */
821 0, /* static_pass_number */
823 0, /* properties_required */
824 0, /* properties_provided */
825 0, /* properties_destroyed */
826 0, /* todo_flags_start */
827 TODO_dump_func
| TODO_verify_rtl_sharing
828 | TODO_ggc_collect
/* todo_flags_finish */
833 /* Make a pass over all insns and compute their actual lengths by shortening
834 any branches of variable length if possible. */
836 /* shorten_branches might be called multiple times: for example, the SH
837 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
838 In order to do this, it needs proper length information, which it obtains
839 by calling shorten_branches. This cannot be collapsed with
840 shorten_branches itself into a single pass unless we also want to integrate
841 reorg.c, since the branch splitting exposes new instructions with delay
845 shorten_branches (rtx first ATTRIBUTE_UNUSED
)
852 #ifdef HAVE_ATTR_length
853 #define MAX_CODE_ALIGN 16
855 int something_changed
= 1;
856 char *varying_length
;
859 rtx align_tab
[MAX_CODE_ALIGN
];
863 /* Compute maximum UID and allocate label_align / uid_shuid. */
864 max_uid
= get_max_uid ();
866 /* Free uid_shuid before reallocating it. */
869 uid_shuid
= XNEWVEC (int, max_uid
);
871 if (max_labelno
!= max_label_num ())
873 int old
= max_labelno
;
877 max_labelno
= max_label_num ();
879 n_labels
= max_labelno
- min_labelno
+ 1;
880 n_old_labels
= old
- min_labelno
+ 1;
882 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
884 /* Range of labels grows monotonically in the function. Failing here
885 means that the initialization of array got lost. */
886 gcc_assert (n_old_labels
<= n_labels
);
888 memset (label_align
+ n_old_labels
, 0,
889 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
892 /* Initialize label_align and set up uid_shuid to be strictly
893 monotonically rising with insn order. */
894 /* We use max_log here to keep track of the maximum alignment we want to
895 impose on the next CODE_LABEL (or the current one if we are processing
896 the CODE_LABEL itself). */
901 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
905 INSN_SHUID (insn
) = i
++;
912 bool next_is_jumptable
;
914 /* Merge in alignments computed by compute_alignments. */
915 log
= LABEL_TO_ALIGNMENT (insn
);
919 max_skip
= LABEL_TO_MAX_SKIP (insn
);
922 next
= next_nonnote_insn (insn
);
923 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
924 if (!next_is_jumptable
)
926 log
= LABEL_ALIGN (insn
);
930 max_skip
= LABEL_ALIGN_MAX_SKIP
;
933 /* ADDR_VECs only take room if read-only data goes into the text
935 if ((JUMP_TABLES_IN_TEXT_SECTION
936 || readonly_data_section
== text_section
)
937 && next_is_jumptable
)
939 log
= ADDR_VEC_ALIGN (next
);
943 max_skip
= LABEL_ALIGN_MAX_SKIP
;
946 LABEL_TO_ALIGNMENT (insn
) = max_log
;
947 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
951 else if (BARRIER_P (insn
))
955 for (label
= insn
; label
&& ! INSN_P (label
);
956 label
= NEXT_INSN (label
))
959 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
963 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
969 #ifdef HAVE_ATTR_length
971 /* Allocate the rest of the arrays. */
972 insn_lengths
= XNEWVEC (int, max_uid
);
973 insn_lengths_max_uid
= max_uid
;
974 /* Syntax errors can lead to labels being outside of the main insn stream.
975 Initialize insn_addresses, so that we get reproducible results. */
976 INSN_ADDRESSES_ALLOC (max_uid
);
978 varying_length
= XCNEWVEC (char, max_uid
);
980 /* Initialize uid_align. We scan instructions
981 from end to start, and keep in align_tab[n] the last seen insn
982 that does an alignment of at least n+1, i.e. the successor
983 in the alignment chain for an insn that does / has a known
985 uid_align
= XCNEWVEC (rtx
, max_uid
);
987 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
988 align_tab
[i
] = NULL_RTX
;
989 seq
= get_last_insn ();
990 for (; seq
; seq
= PREV_INSN (seq
))
992 int uid
= INSN_UID (seq
);
994 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
995 uid_align
[uid
] = align_tab
[0];
998 /* Found an alignment label. */
999 uid_align
[uid
] = align_tab
[log
];
1000 for (i
= log
- 1; i
>= 0; i
--)
1004 #ifdef CASE_VECTOR_SHORTEN_MODE
1007 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1010 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1011 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1014 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1016 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1017 int len
, i
, min
, max
, insn_shuid
;
1019 addr_diff_vec_flags flags
;
1022 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1024 pat
= PATTERN (insn
);
1025 len
= XVECLEN (pat
, 1);
1026 gcc_assert (len
> 0);
1027 min_align
= MAX_CODE_ALIGN
;
1028 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1030 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1031 int shuid
= INSN_SHUID (lab
);
1042 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1043 min_align
= LABEL_TO_ALIGNMENT (lab
);
1045 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1046 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1047 insn_shuid
= INSN_SHUID (insn
);
1048 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1049 memset (&flags
, 0, sizeof (flags
));
1050 flags
.min_align
= min_align
;
1051 flags
.base_after_vec
= rel
> insn_shuid
;
1052 flags
.min_after_vec
= min
> insn_shuid
;
1053 flags
.max_after_vec
= max
> insn_shuid
;
1054 flags
.min_after_base
= min
> rel
;
1055 flags
.max_after_base
= max
> rel
;
1056 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1059 #endif /* CASE_VECTOR_SHORTEN_MODE */
1061 /* Compute initial lengths, addresses, and varying flags for each insn. */
1062 for (insn_current_address
= 0, insn
= first
;
1064 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1066 uid
= INSN_UID (insn
);
1068 insn_lengths
[uid
] = 0;
1072 int log
= LABEL_TO_ALIGNMENT (insn
);
1075 int align
= 1 << log
;
1076 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1077 insn_lengths
[uid
] = new_address
- insn_current_address
;
1081 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1083 if (NOTE_P (insn
) || BARRIER_P (insn
)
1084 || LABEL_P (insn
) || DEBUG_INSN_P(insn
))
1086 if (INSN_DELETED_P (insn
))
1089 body
= PATTERN (insn
);
1090 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1092 /* This only takes room if read-only data goes into the text
1094 if (JUMP_TABLES_IN_TEXT_SECTION
1095 || readonly_data_section
== text_section
)
1096 insn_lengths
[uid
] = (XVECLEN (body
,
1097 GET_CODE (body
) == ADDR_DIFF_VEC
)
1098 * GET_MODE_SIZE (GET_MODE (body
)));
1099 /* Alignment is handled by ADDR_VEC_ALIGN. */
1101 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1102 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1103 else if (GET_CODE (body
) == SEQUENCE
)
1106 int const_delay_slots
;
1108 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1110 const_delay_slots
= 0;
1112 /* Inside a delay slot sequence, we do not do any branch shortening
1113 if the shortening could change the number of delay slots
1115 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1117 rtx inner_insn
= XVECEXP (body
, 0, i
);
1118 int inner_uid
= INSN_UID (inner_insn
);
1121 if (GET_CODE (body
) == ASM_INPUT
1122 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1123 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1124 * insn_default_length (inner_insn
));
1126 inner_length
= insn_default_length (inner_insn
);
1128 insn_lengths
[inner_uid
] = inner_length
;
1129 if (const_delay_slots
)
1131 if ((varying_length
[inner_uid
]
1132 = insn_variable_length_p (inner_insn
)) != 0)
1133 varying_length
[uid
] = 1;
1134 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1135 + insn_lengths
[uid
]);
1138 varying_length
[inner_uid
] = 0;
1139 insn_lengths
[uid
] += inner_length
;
1142 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1144 insn_lengths
[uid
] = insn_default_length (insn
);
1145 varying_length
[uid
] = insn_variable_length_p (insn
);
1148 /* If needed, do any adjustment. */
1149 #ifdef ADJUST_INSN_LENGTH
1150 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1151 if (insn_lengths
[uid
] < 0)
1152 fatal_insn ("negative insn length", insn
);
1156 /* Now loop over all the insns finding varying length insns. For each,
1157 get the current insn length. If it has changed, reflect the change.
1158 When nothing changes for a full pass, we are done. */
1160 while (something_changed
)
1162 something_changed
= 0;
1163 insn_current_align
= MAX_CODE_ALIGN
- 1;
1164 for (insn_current_address
= 0, insn
= first
;
1166 insn
= NEXT_INSN (insn
))
1169 #ifdef ADJUST_INSN_LENGTH
1174 uid
= INSN_UID (insn
);
1178 int log
= LABEL_TO_ALIGNMENT (insn
);
1179 if (log
> insn_current_align
)
1181 int align
= 1 << log
;
1182 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1183 insn_lengths
[uid
] = new_address
- insn_current_address
;
1184 insn_current_align
= log
;
1185 insn_current_address
= new_address
;
1188 insn_lengths
[uid
] = 0;
1189 INSN_ADDRESSES (uid
) = insn_current_address
;
1193 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1194 if (length_align
< insn_current_align
)
1195 insn_current_align
= length_align
;
1197 insn_last_address
= INSN_ADDRESSES (uid
);
1198 INSN_ADDRESSES (uid
) = insn_current_address
;
1200 #ifdef CASE_VECTOR_SHORTEN_MODE
1201 if (optimize
&& JUMP_P (insn
)
1202 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1204 rtx body
= PATTERN (insn
);
1205 int old_length
= insn_lengths
[uid
];
1206 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1207 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1208 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1209 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1210 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1211 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1214 addr_diff_vec_flags flags
;
1216 /* Avoid automatic aggregate initialization. */
1217 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1219 /* Try to find a known alignment for rel_lab. */
1220 for (prev
= rel_lab
;
1222 && ! insn_lengths
[INSN_UID (prev
)]
1223 && ! (varying_length
[INSN_UID (prev
)] & 1);
1224 prev
= PREV_INSN (prev
))
1225 if (varying_length
[INSN_UID (prev
)] & 2)
1227 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1231 /* See the comment on addr_diff_vec_flags in rtl.h for the
1232 meaning of the flags values. base: REL_LAB vec: INSN */
1233 /* Anything after INSN has still addresses from the last
1234 pass; adjust these so that they reflect our current
1235 estimate for this pass. */
1236 if (flags
.base_after_vec
)
1237 rel_addr
+= insn_current_address
- insn_last_address
;
1238 if (flags
.min_after_vec
)
1239 min_addr
+= insn_current_address
- insn_last_address
;
1240 if (flags
.max_after_vec
)
1241 max_addr
+= insn_current_address
- insn_last_address
;
1242 /* We want to know the worst case, i.e. lowest possible value
1243 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1244 its offset is positive, and we have to be wary of code shrink;
1245 otherwise, it is negative, and we have to be vary of code
1247 if (flags
.min_after_base
)
1249 /* If INSN is between REL_LAB and MIN_LAB, the size
1250 changes we are about to make can change the alignment
1251 within the observed offset, therefore we have to break
1252 it up into two parts that are independent. */
1253 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1255 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1256 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1259 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1263 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1265 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1266 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1269 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1271 /* Likewise, determine the highest lowest possible value
1272 for the offset of MAX_LAB. */
1273 if (flags
.max_after_base
)
1275 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1277 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1278 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1281 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1285 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1287 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1288 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1291 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1293 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1294 max_addr
- rel_addr
,
1296 if (JUMP_TABLES_IN_TEXT_SECTION
1297 || readonly_data_section
== text_section
)
1300 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1301 insn_current_address
+= insn_lengths
[uid
];
1302 if (insn_lengths
[uid
] != old_length
)
1303 something_changed
= 1;
1308 #endif /* CASE_VECTOR_SHORTEN_MODE */
1310 if (! (varying_length
[uid
]))
1312 if (NONJUMP_INSN_P (insn
)
1313 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1317 body
= PATTERN (insn
);
1318 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1320 rtx inner_insn
= XVECEXP (body
, 0, i
);
1321 int inner_uid
= INSN_UID (inner_insn
);
1323 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1325 insn_current_address
+= insn_lengths
[inner_uid
];
1329 insn_current_address
+= insn_lengths
[uid
];
1334 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1338 body
= PATTERN (insn
);
1340 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1342 rtx inner_insn
= XVECEXP (body
, 0, i
);
1343 int inner_uid
= INSN_UID (inner_insn
);
1346 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1348 /* insn_current_length returns 0 for insns with a
1349 non-varying length. */
1350 if (! varying_length
[inner_uid
])
1351 inner_length
= insn_lengths
[inner_uid
];
1353 inner_length
= insn_current_length (inner_insn
);
1355 if (inner_length
!= insn_lengths
[inner_uid
])
1357 insn_lengths
[inner_uid
] = inner_length
;
1358 something_changed
= 1;
1360 insn_current_address
+= insn_lengths
[inner_uid
];
1361 new_length
+= inner_length
;
1366 new_length
= insn_current_length (insn
);
1367 insn_current_address
+= new_length
;
1370 #ifdef ADJUST_INSN_LENGTH
1371 /* If needed, do any adjustment. */
1372 tmp_length
= new_length
;
1373 ADJUST_INSN_LENGTH (insn
, new_length
);
1374 insn_current_address
+= (new_length
- tmp_length
);
1377 if (new_length
!= insn_lengths
[uid
])
1379 insn_lengths
[uid
] = new_length
;
1380 something_changed
= 1;
1383 /* For a non-optimizing compile, do only a single pass. */
1388 free (varying_length
);
1390 #endif /* HAVE_ATTR_length */
1393 #ifdef HAVE_ATTR_length
1394 /* Given the body of an INSN known to be generated by an ASM statement, return
1395 the number of machine instructions likely to be generated for this insn.
1396 This is used to compute its length. */
1399 asm_insn_count (rtx body
)
1403 if (GET_CODE (body
) == ASM_INPUT
)
1404 templ
= XSTR (body
, 0);
1406 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1408 return asm_str_count (templ
);
1412 /* Return the number of machine instructions likely to be generated for the
1413 inline-asm template. */
1415 asm_str_count (const char *templ
)
1422 for (; *templ
; templ
++)
1423 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1430 /* ??? This is probably the wrong place for these. */
1431 /* Structure recording the mapping from source file and directory
1432 names at compile time to those to be embedded in debug
1434 typedef struct debug_prefix_map
1436 const char *old_prefix
;
1437 const char *new_prefix
;
1440 struct debug_prefix_map
*next
;
1443 /* Linked list of such structures. */
1444 debug_prefix_map
*debug_prefix_maps
;
1447 /* Record a debug file prefix mapping. ARG is the argument to
1448 -fdebug-prefix-map and must be of the form OLD=NEW. */
1451 add_debug_prefix_map (const char *arg
)
1453 debug_prefix_map
*map
;
1456 p
= strchr (arg
, '=');
1459 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1462 map
= XNEW (debug_prefix_map
);
1463 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1464 map
->old_len
= p
- arg
;
1466 map
->new_prefix
= xstrdup (p
);
1467 map
->new_len
= strlen (p
);
1468 map
->next
= debug_prefix_maps
;
1469 debug_prefix_maps
= map
;
1472 /* Perform user-specified mapping of debug filename prefixes. Return
1473 the new name corresponding to FILENAME. */
1476 remap_debug_filename (const char *filename
)
1478 debug_prefix_map
*map
;
1483 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1484 if (strncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1488 name
= filename
+ map
->old_len
;
1489 name_len
= strlen (name
) + 1;
1490 s
= (char *) alloca (name_len
+ map
->new_len
);
1491 memcpy (s
, map
->new_prefix
, map
->new_len
);
1492 memcpy (s
+ map
->new_len
, name
, name_len
);
1493 return ggc_strdup (s
);
1496 /* Return true if DWARF2 debug info can be emitted for DECL. */
1499 dwarf2_debug_info_emitted_p (tree decl
)
1501 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1504 if (DECL_IGNORED_P (decl
))
1510 /* Output assembler code for the start of a function,
1511 and initialize some of the variables in this file
1512 for the new function. The label for the function and associated
1513 assembler pseudo-ops have already been output in `assemble_start_function'.
1515 FIRST is the first insn of the rtl for the function being compiled.
1516 FILE is the file to write assembler code to.
1517 OPTIMIZE is nonzero if we should eliminate redundant
1518 test and compare insns. */
1521 final_start_function (rtx first ATTRIBUTE_UNUSED
, FILE *file
,
1522 int optimize ATTRIBUTE_UNUSED
)
1526 this_is_asm_operands
= 0;
1528 last_filename
= locator_file (prologue_locator
);
1529 last_linenum
= locator_line (prologue_locator
);
1530 last_discriminator
= discriminator
= 0;
1532 high_block_linenum
= high_function_linenum
= last_linenum
;
1534 if (!DECL_IGNORED_P (current_function_decl
))
1535 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1537 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1538 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1539 dwarf2out_begin_prologue (0, NULL
);
1542 #ifdef LEAF_REG_REMAP
1543 if (current_function_uses_only_leaf_regs
)
1544 leaf_renumber_regs (first
);
1547 /* The Sun386i and perhaps other machines don't work right
1548 if the profiling code comes after the prologue. */
1549 if (targetm
.profile_before_prologue () && crtl
->profile
)
1550 profile_function (file
);
1552 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1553 if (dwarf2out_do_frame ())
1554 dwarf2out_frame_debug (NULL_RTX
, false);
1557 /* If debugging, assign block numbers to all of the blocks in this
1561 reemit_insn_block_notes ();
1562 number_blocks (current_function_decl
);
1563 /* We never actually put out begin/end notes for the top-level
1564 block in the function. But, conceptually, that block is
1566 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1569 if (warn_frame_larger_than
1570 && get_frame_size () > frame_larger_than_size
)
1572 /* Issue a warning */
1573 warning (OPT_Wframe_larger_than_
,
1574 "the frame size of %wd bytes is larger than %wd bytes",
1575 get_frame_size (), frame_larger_than_size
);
1578 /* First output the function prologue: code to set up the stack frame. */
1579 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1581 /* If the machine represents the prologue as RTL, the profiling code must
1582 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1583 #ifdef HAVE_prologue
1584 if (! HAVE_prologue
)
1586 profile_after_prologue (file
);
1590 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1592 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1593 profile_function (file
);
1597 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1599 #ifndef NO_PROFILE_COUNTERS
1600 # define NO_PROFILE_COUNTERS 0
1602 #ifdef ASM_OUTPUT_REG_PUSH
1603 rtx sval
= NULL
, chain
= NULL
;
1605 if (cfun
->returns_struct
)
1606 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1608 if (cfun
->static_chain_decl
)
1609 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1610 #endif /* ASM_OUTPUT_REG_PUSH */
1612 if (! NO_PROFILE_COUNTERS
)
1614 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1615 switch_to_section (data_section
);
1616 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1617 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1618 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1621 switch_to_section (current_function_section ());
1623 #ifdef ASM_OUTPUT_REG_PUSH
1624 if (sval
&& REG_P (sval
))
1625 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1626 if (chain
&& REG_P (chain
))
1627 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1630 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1632 #ifdef ASM_OUTPUT_REG_PUSH
1633 if (chain
&& REG_P (chain
))
1634 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1635 if (sval
&& REG_P (sval
))
1636 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1640 /* Output assembler code for the end of a function.
1641 For clarity, args are same as those of `final_start_function'
1642 even though not all of them are needed. */
1645 final_end_function (void)
1649 if (!DECL_IGNORED_P (current_function_decl
))
1650 debug_hooks
->end_function (high_function_linenum
);
1652 /* Finally, output the function epilogue:
1653 code to restore the stack frame and return to the caller. */
1654 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1656 /* And debug output. */
1657 if (!DECL_IGNORED_P (current_function_decl
))
1658 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1660 #if defined (DWARF2_UNWIND_INFO)
1661 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1662 && dwarf2out_do_frame ())
1663 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1667 /* Output assembler code for some insns: all or part of a function.
1668 For description of args, see `final_start_function', above. */
1671 final (rtx first
, FILE *file
, int optimize
)
1677 last_ignored_compare
= 0;
1679 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1681 if (INSN_UID (insn
) > max_uid
) /* Find largest UID. */
1682 max_uid
= INSN_UID (insn
);
1684 /* If CC tracking across branches is enabled, record the insn which
1685 jumps to each branch only reached from one place. */
1686 if (optimize
&& JUMP_P (insn
))
1688 rtx lab
= JUMP_LABEL (insn
);
1689 if (lab
&& LABEL_NUSES (lab
) == 1)
1691 LABEL_REFS (lab
) = insn
;
1701 /* Output the insns. */
1702 for (insn
= first
; insn
;)
1704 #ifdef HAVE_ATTR_length
1705 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1707 /* This can be triggered by bugs elsewhere in the compiler if
1708 new insns are created after init_insn_lengths is called. */
1709 gcc_assert (NOTE_P (insn
));
1710 insn_current_address
= -1;
1713 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1714 #endif /* HAVE_ATTR_length */
1716 insn
= final_scan_insn (insn
, file
, optimize
, 0, &seen
);
1721 get_insn_template (int code
, rtx insn
)
1723 switch (insn_data
[code
].output_format
)
1725 case INSN_OUTPUT_FORMAT_SINGLE
:
1726 return insn_data
[code
].output
.single
;
1727 case INSN_OUTPUT_FORMAT_MULTI
:
1728 return insn_data
[code
].output
.multi
[which_alternative
];
1729 case INSN_OUTPUT_FORMAT_FUNCTION
:
1731 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
1738 /* Emit the appropriate declaration for an alternate-entry-point
1739 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1740 LABEL_KIND != LABEL_NORMAL.
1742 The case fall-through in this function is intentional. */
1744 output_alternate_entry_point (FILE *file
, rtx insn
)
1746 const char *name
= LABEL_NAME (insn
);
1748 switch (LABEL_KIND (insn
))
1750 case LABEL_WEAK_ENTRY
:
1751 #ifdef ASM_WEAKEN_LABEL
1752 ASM_WEAKEN_LABEL (file
, name
);
1754 case LABEL_GLOBAL_ENTRY
:
1755 targetm
.asm_out
.globalize_label (file
, name
);
1756 case LABEL_STATIC_ENTRY
:
1757 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1758 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
1760 ASM_OUTPUT_LABEL (file
, name
);
1769 /* Given a CALL_INSN, find and return the nested CALL. */
1771 call_from_call_insn (rtx insn
)
1774 gcc_assert (CALL_P (insn
));
1777 while (GET_CODE (x
) != CALL
)
1779 switch (GET_CODE (x
))
1784 x
= COND_EXEC_CODE (x
);
1787 x
= XVECEXP (x
, 0, 0);
1797 /* The final scan for one insn, INSN.
1798 Args are same as in `final', except that INSN
1799 is the insn being scanned.
1800 Value returned is the next insn to be scanned.
1802 NOPEEPHOLES is the flag to disallow peephole processing (currently
1803 used for within delayed branch sequence output).
1805 SEEN is used to track the end of the prologue, for emitting
1806 debug information. We force the emission of a line note after
1807 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1808 at the beginning of the second basic block, whichever comes
1812 final_scan_insn (rtx insn
, FILE *file
, int optimize ATTRIBUTE_UNUSED
,
1813 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
1822 /* Ignore deleted insns. These can occur when we split insns (due to a
1823 template of "#") while not optimizing. */
1824 if (INSN_DELETED_P (insn
))
1825 return NEXT_INSN (insn
);
1827 switch (GET_CODE (insn
))
1830 switch (NOTE_KIND (insn
))
1832 case NOTE_INSN_DELETED
:
1835 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
1836 in_cold_section_p
= !in_cold_section_p
;
1837 #ifdef DWARF2_UNWIND_INFO
1838 if (dwarf2out_do_frame ())
1839 dwarf2out_switch_text_section ();
1842 if (!DECL_IGNORED_P (current_function_decl
))
1843 debug_hooks
->switch_text_section ();
1845 switch_to_section (current_function_section ());
1848 case NOTE_INSN_BASIC_BLOCK
:
1849 if (targetm
.asm_out
.unwind_emit
)
1850 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
1853 fprintf (asm_out_file
, "\t%s basic block %d\n",
1854 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
1856 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
1858 *seen
|= SEEN_EMITTED
;
1859 force_source_line
= true;
1864 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
1868 case NOTE_INSN_EH_REGION_BEG
:
1869 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
1870 NOTE_EH_HANDLER (insn
));
1873 case NOTE_INSN_EH_REGION_END
:
1874 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
1875 NOTE_EH_HANDLER (insn
));
1878 case NOTE_INSN_PROLOGUE_END
:
1879 targetm
.asm_out
.function_end_prologue (file
);
1880 profile_after_prologue (file
);
1882 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1884 *seen
|= SEEN_EMITTED
;
1885 force_source_line
= true;
1892 case NOTE_INSN_EPILOGUE_BEG
:
1893 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_epilogue)
1894 if (dwarf2out_do_frame ())
1895 dwarf2out_cfi_begin_epilogue (insn
);
1897 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
1898 targetm
.asm_out
.function_begin_epilogue (file
);
1901 case NOTE_INSN_CFA_RESTORE_STATE
:
1902 #if defined (DWARF2_UNWIND_INFO)
1903 dwarf2out_frame_debug_restore_state ();
1907 case NOTE_INSN_FUNCTION_BEG
:
1909 if (!DECL_IGNORED_P (current_function_decl
))
1910 debug_hooks
->end_prologue (last_linenum
, last_filename
);
1912 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1914 *seen
|= SEEN_EMITTED
;
1915 force_source_line
= true;
1922 case NOTE_INSN_BLOCK_BEG
:
1923 if (debug_info_level
== DINFO_LEVEL_NORMAL
1924 || debug_info_level
== DINFO_LEVEL_VERBOSE
1925 || write_symbols
== DWARF2_DEBUG
1926 || write_symbols
== VMS_AND_DWARF2_DEBUG
1927 || write_symbols
== VMS_DEBUG
)
1929 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1933 high_block_linenum
= last_linenum
;
1935 /* Output debugging info about the symbol-block beginning. */
1936 if (!DECL_IGNORED_P (current_function_decl
))
1937 debug_hooks
->begin_block (last_linenum
, n
);
1939 /* Mark this block as output. */
1940 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
1942 if (write_symbols
== DBX_DEBUG
1943 || write_symbols
== SDB_DEBUG
)
1945 location_t
*locus_ptr
1946 = block_nonartificial_location (NOTE_BLOCK (insn
));
1948 if (locus_ptr
!= NULL
)
1950 override_filename
= LOCATION_FILE (*locus_ptr
);
1951 override_linenum
= LOCATION_LINE (*locus_ptr
);
1956 case NOTE_INSN_BLOCK_END
:
1957 if (debug_info_level
== DINFO_LEVEL_NORMAL
1958 || debug_info_level
== DINFO_LEVEL_VERBOSE
1959 || write_symbols
== DWARF2_DEBUG
1960 || write_symbols
== VMS_AND_DWARF2_DEBUG
1961 || write_symbols
== VMS_DEBUG
)
1963 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1967 /* End of a symbol-block. */
1969 gcc_assert (block_depth
>= 0);
1971 if (!DECL_IGNORED_P (current_function_decl
))
1972 debug_hooks
->end_block (high_block_linenum
, n
);
1974 if (write_symbols
== DBX_DEBUG
1975 || write_symbols
== SDB_DEBUG
)
1977 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
1978 location_t
*locus_ptr
1979 = block_nonartificial_location (outer_block
);
1981 if (locus_ptr
!= NULL
)
1983 override_filename
= LOCATION_FILE (*locus_ptr
);
1984 override_linenum
= LOCATION_LINE (*locus_ptr
);
1988 override_filename
= NULL
;
1989 override_linenum
= 0;
1994 case NOTE_INSN_DELETED_LABEL
:
1995 /* Emit the label. We may have deleted the CODE_LABEL because
1996 the label could be proved to be unreachable, though still
1997 referenced (in the form of having its address taken. */
1998 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2001 case NOTE_INSN_VAR_LOCATION
:
2002 if (!DECL_IGNORED_P (current_function_decl
))
2003 debug_hooks
->var_location (insn
);
2013 #if defined (DWARF2_UNWIND_INFO)
2014 if (dwarf2out_do_frame ())
2015 dwarf2out_frame_debug (insn
, false);
2020 /* The target port might emit labels in the output function for
2021 some insn, e.g. sh.c output_branchy_insn. */
2022 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2024 int align
= LABEL_TO_ALIGNMENT (insn
);
2025 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2026 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2029 if (align
&& NEXT_INSN (insn
))
2031 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2032 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2034 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2035 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2037 ASM_OUTPUT_ALIGN (file
, align
);
2044 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2045 debug_hooks
->label (insn
);
2049 next
= next_nonnote_insn (insn
);
2050 /* If this label is followed by a jump-table, make sure we put
2051 the label in the read-only section. Also possibly write the
2052 label and jump table together. */
2053 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2055 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2056 /* In this case, the case vector is being moved by the
2057 target, so don't output the label at all. Leave that
2058 to the back end macros. */
2060 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2064 switch_to_section (targetm
.asm_out
.function_rodata_section
2065 (current_function_decl
));
2067 #ifdef ADDR_VEC_ALIGN
2068 log_align
= ADDR_VEC_ALIGN (next
);
2070 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2072 ASM_OUTPUT_ALIGN (file
, log_align
);
2075 switch_to_section (current_function_section ());
2077 #ifdef ASM_OUTPUT_CASE_LABEL
2078 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2081 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2086 if (LABEL_ALT_ENTRY_P (insn
))
2087 output_alternate_entry_point (file
, insn
);
2089 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2094 rtx body
= PATTERN (insn
);
2095 int insn_code_number
;
2099 /* Reset this early so it is correct for ASM statements. */
2100 current_insn_predicate
= NULL_RTX
;
2102 /* An INSN, JUMP_INSN or CALL_INSN.
2103 First check for special kinds that recog doesn't recognize. */
2105 if (GET_CODE (body
) == USE
/* These are just declarations. */
2106 || GET_CODE (body
) == CLOBBER
)
2111 /* If there is a REG_CC_SETTER note on this insn, it means that
2112 the setting of the condition code was done in the delay slot
2113 of the insn that branched here. So recover the cc status
2114 from the insn that set it. */
2116 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2119 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2120 cc_prev_status
= cc_status
;
2125 /* Detect insns that are really jump-tables
2126 and output them as such. */
2128 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
2130 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2134 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2135 switch_to_section (targetm
.asm_out
.function_rodata_section
2136 (current_function_decl
));
2138 switch_to_section (current_function_section ());
2142 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2143 if (GET_CODE (body
) == ADDR_VEC
)
2145 #ifdef ASM_OUTPUT_ADDR_VEC
2146 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2153 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2154 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2160 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2161 for (idx
= 0; idx
< vlen
; idx
++)
2163 if (GET_CODE (body
) == ADDR_VEC
)
2165 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2166 ASM_OUTPUT_ADDR_VEC_ELT
2167 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2174 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2175 ASM_OUTPUT_ADDR_DIFF_ELT
2178 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2179 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2185 #ifdef ASM_OUTPUT_CASE_END
2186 ASM_OUTPUT_CASE_END (file
,
2187 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2192 switch_to_section (current_function_section ());
2196 /* Output this line note if it is the first or the last line
2198 if (!DECL_IGNORED_P (current_function_decl
)
2199 && notice_source_line (insn
, &is_stmt
))
2200 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2201 last_discriminator
, is_stmt
);
2203 if (GET_CODE (body
) == ASM_INPUT
)
2205 const char *string
= XSTR (body
, 0);
2207 /* There's no telling what that did to the condition codes. */
2212 expanded_location loc
;
2215 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2216 if (*loc
.file
&& loc
.line
)
2217 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2218 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2219 fprintf (asm_out_file
, "\t%s\n", string
);
2220 #if HAVE_AS_LINE_ZERO
2221 if (*loc
.file
&& loc
.line
)
2222 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2228 /* Detect `asm' construct with operands. */
2229 if (asm_noperands (body
) >= 0)
2231 unsigned int noperands
= asm_noperands (body
);
2232 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2235 expanded_location expanded
;
2237 /* There's no telling what that did to the condition codes. */
2240 /* Get out the operand values. */
2241 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2242 /* Inhibit dying on what would otherwise be compiler bugs. */
2243 insn_noperands
= noperands
;
2244 this_is_asm_operands
= insn
;
2245 expanded
= expand_location (loc
);
2247 #ifdef FINAL_PRESCAN_INSN
2248 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2251 /* Output the insn using them. */
2255 if (expanded
.file
&& expanded
.line
)
2256 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2257 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2258 output_asm_insn (string
, ops
);
2259 #if HAVE_AS_LINE_ZERO
2260 if (expanded
.file
&& expanded
.line
)
2261 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2265 if (targetm
.asm_out
.final_postscan_insn
)
2266 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2269 this_is_asm_operands
= 0;
2275 if (GET_CODE (body
) == SEQUENCE
)
2277 /* A delayed-branch sequence */
2280 final_sequence
= body
;
2282 /* Record the delay slots' frame information before the branch.
2283 This is needed for delayed calls: see execute_cfa_program(). */
2284 #if defined (DWARF2_UNWIND_INFO)
2285 if (dwarf2out_do_frame ())
2286 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2287 dwarf2out_frame_debug (XVECEXP (body
, 0, i
), false);
2290 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2291 force the restoration of a comparison that was previously
2292 thought unnecessary. If that happens, cancel this sequence
2293 and cause that insn to be restored. */
2295 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2296 if (next
!= XVECEXP (body
, 0, 1))
2302 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2304 rtx insn
= XVECEXP (body
, 0, i
);
2305 rtx next
= NEXT_INSN (insn
);
2306 /* We loop in case any instruction in a delay slot gets
2309 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2310 while (insn
!= next
);
2312 #ifdef DBR_OUTPUT_SEQEND
2313 DBR_OUTPUT_SEQEND (file
);
2317 /* If the insn requiring the delay slot was a CALL_INSN, the
2318 insns in the delay slot are actually executed before the
2319 called function. Hence we don't preserve any CC-setting
2320 actions in these insns and the CC must be marked as being
2321 clobbered by the function. */
2322 if (CALL_P (XVECEXP (body
, 0, 0)))
2329 /* We have a real machine instruction as rtl. */
2331 body
= PATTERN (insn
);
2334 set
= single_set (insn
);
2336 /* Check for redundant test and compare instructions
2337 (when the condition codes are already set up as desired).
2338 This is done only when optimizing; if not optimizing,
2339 it should be possible for the user to alter a variable
2340 with the debugger in between statements
2341 and the next statement should reexamine the variable
2342 to compute the condition codes. */
2347 && GET_CODE (SET_DEST (set
)) == CC0
2348 && insn
!= last_ignored_compare
)
2351 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2352 SET_SRC (set
) = alter_subreg (&SET_SRC (set
));
2354 src1
= SET_SRC (set
);
2356 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2358 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2359 XEXP (SET_SRC (set
), 0)
2360 = alter_subreg (&XEXP (SET_SRC (set
), 0));
2361 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2362 XEXP (SET_SRC (set
), 1)
2363 = alter_subreg (&XEXP (SET_SRC (set
), 1));
2364 if (XEXP (SET_SRC (set
), 1)
2365 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2366 src2
= XEXP (SET_SRC (set
), 0);
2368 if ((cc_status
.value1
!= 0
2369 && rtx_equal_p (src1
, cc_status
.value1
))
2370 || (cc_status
.value2
!= 0
2371 && rtx_equal_p (src1
, cc_status
.value2
))
2372 || (src2
!= 0 && cc_status
.value1
!= 0
2373 && rtx_equal_p (src2
, cc_status
.value1
))
2374 || (src2
!= 0 && cc_status
.value2
!= 0
2375 && rtx_equal_p (src2
, cc_status
.value2
)))
2377 /* Don't delete insn if it has an addressing side-effect. */
2378 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2379 /* or if anything in it is volatile. */
2380 && ! volatile_refs_p (PATTERN (insn
)))
2382 /* We don't really delete the insn; just ignore it. */
2383 last_ignored_compare
= insn
;
2390 /* If this is a conditional branch, maybe modify it
2391 if the cc's are in a nonstandard state
2392 so that it accomplishes the same thing that it would
2393 do straightforwardly if the cc's were set up normally. */
2395 if (cc_status
.flags
!= 0
2397 && GET_CODE (body
) == SET
2398 && SET_DEST (body
) == pc_rtx
2399 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2400 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2401 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2403 /* This function may alter the contents of its argument
2404 and clear some of the cc_status.flags bits.
2405 It may also return 1 meaning condition now always true
2406 or -1 meaning condition now always false
2407 or 2 meaning condition nontrivial but altered. */
2408 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2409 /* If condition now has fixed value, replace the IF_THEN_ELSE
2410 with its then-operand or its else-operand. */
2412 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2414 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2416 /* The jump is now either unconditional or a no-op.
2417 If it has become a no-op, don't try to output it.
2418 (It would not be recognized.) */
2419 if (SET_SRC (body
) == pc_rtx
)
2424 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2425 /* Replace (set (pc) (return)) with (return). */
2426 PATTERN (insn
) = body
= SET_SRC (body
);
2428 /* Rerecognize the instruction if it has changed. */
2430 INSN_CODE (insn
) = -1;
2433 /* If this is a conditional trap, maybe modify it if the cc's
2434 are in a nonstandard state so that it accomplishes the same
2435 thing that it would do straightforwardly if the cc's were
2437 if (cc_status
.flags
!= 0
2438 && NONJUMP_INSN_P (insn
)
2439 && GET_CODE (body
) == TRAP_IF
2440 && COMPARISON_P (TRAP_CONDITION (body
))
2441 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2443 /* This function may alter the contents of its argument
2444 and clear some of the cc_status.flags bits.
2445 It may also return 1 meaning condition now always true
2446 or -1 meaning condition now always false
2447 or 2 meaning condition nontrivial but altered. */
2448 int result
= alter_cond (TRAP_CONDITION (body
));
2450 /* If TRAP_CONDITION has become always false, delete the
2458 /* If TRAP_CONDITION has become always true, replace
2459 TRAP_CONDITION with const_true_rtx. */
2461 TRAP_CONDITION (body
) = const_true_rtx
;
2463 /* Rerecognize the instruction if it has changed. */
2465 INSN_CODE (insn
) = -1;
2468 /* Make same adjustments to instructions that examine the
2469 condition codes without jumping and instructions that
2470 handle conditional moves (if this machine has either one). */
2472 if (cc_status
.flags
!= 0
2475 rtx cond_rtx
, then_rtx
, else_rtx
;
2478 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2480 cond_rtx
= XEXP (SET_SRC (set
), 0);
2481 then_rtx
= XEXP (SET_SRC (set
), 1);
2482 else_rtx
= XEXP (SET_SRC (set
), 2);
2486 cond_rtx
= SET_SRC (set
);
2487 then_rtx
= const_true_rtx
;
2488 else_rtx
= const0_rtx
;
2491 switch (GET_CODE (cond_rtx
))
2505 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2507 result
= alter_cond (cond_rtx
);
2509 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2510 else if (result
== -1)
2511 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2512 else if (result
== 2)
2513 INSN_CODE (insn
) = -1;
2514 if (SET_DEST (set
) == SET_SRC (set
))
2526 #ifdef HAVE_peephole
2527 /* Do machine-specific peephole optimizations if desired. */
2529 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2531 rtx next
= peephole (insn
);
2532 /* When peepholing, if there were notes within the peephole,
2533 emit them before the peephole. */
2534 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2536 rtx note
, prev
= PREV_INSN (insn
);
2538 for (note
= NEXT_INSN (insn
); note
!= next
;
2539 note
= NEXT_INSN (note
))
2540 final_scan_insn (note
, file
, optimize
, nopeepholes
, seen
);
2542 /* Put the notes in the proper position for a later
2543 rescan. For example, the SH target can do this
2544 when generating a far jump in a delayed branch
2546 note
= NEXT_INSN (insn
);
2547 PREV_INSN (note
) = prev
;
2548 NEXT_INSN (prev
) = note
;
2549 NEXT_INSN (PREV_INSN (next
)) = insn
;
2550 PREV_INSN (insn
) = PREV_INSN (next
);
2551 NEXT_INSN (insn
) = next
;
2552 PREV_INSN (next
) = insn
;
2555 /* PEEPHOLE might have changed this. */
2556 body
= PATTERN (insn
);
2560 /* Try to recognize the instruction.
2561 If successful, verify that the operands satisfy the
2562 constraints for the instruction. Crash if they don't,
2563 since `reload' should have changed them so that they do. */
2565 insn_code_number
= recog_memoized (insn
);
2566 cleanup_subreg_operands (insn
);
2568 /* Dump the insn in the assembly for debugging. */
2569 if (flag_dump_rtl_in_asm
)
2571 print_rtx_head
= ASM_COMMENT_START
;
2572 print_rtl_single (asm_out_file
, insn
);
2573 print_rtx_head
= "";
2576 if (! constrain_operands_cached (1))
2577 fatal_insn_not_found (insn
);
2579 /* Some target machines need to prescan each insn before
2582 #ifdef FINAL_PRESCAN_INSN
2583 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2586 if (targetm
.have_conditional_execution ()
2587 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2588 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2591 cc_prev_status
= cc_status
;
2593 /* Update `cc_status' for this instruction.
2594 The instruction's output routine may change it further.
2595 If the output routine for a jump insn needs to depend
2596 on the cc status, it should look at cc_prev_status. */
2598 NOTICE_UPDATE_CC (body
, insn
);
2601 current_output_insn
= debug_insn
= insn
;
2603 #if defined (DWARF2_UNWIND_INFO)
2604 if (CALL_P (insn
) && dwarf2out_do_frame ())
2605 dwarf2out_frame_debug (insn
, false);
2608 /* Find the proper template for this insn. */
2609 templ
= get_insn_template (insn_code_number
, insn
);
2611 /* If the C code returns 0, it means that it is a jump insn
2612 which follows a deleted test insn, and that test insn
2613 needs to be reinserted. */
2618 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2620 /* We have already processed the notes between the setter and
2621 the user. Make sure we don't process them again, this is
2622 particularly important if one of the notes is a block
2623 scope note or an EH note. */
2625 prev
!= last_ignored_compare
;
2626 prev
= PREV_INSN (prev
))
2629 delete_insn (prev
); /* Use delete_note. */
2635 /* If the template is the string "#", it means that this insn must
2637 if (templ
[0] == '#' && templ
[1] == '\0')
2639 rtx new_rtx
= try_split (body
, insn
, 0);
2641 /* If we didn't split the insn, go away. */
2642 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2643 fatal_insn ("could not split insn", insn
);
2645 #ifdef HAVE_ATTR_length
2646 /* This instruction should have been split in shorten_branches,
2647 to ensure that we would have valid length info for the
2655 /* ??? This will put the directives in the wrong place if
2656 get_insn_template outputs assembly directly. However calling it
2657 before get_insn_template breaks if the insns is split. */
2658 if (targetm
.asm_out
.unwind_emit_before_insn
2659 && targetm
.asm_out
.unwind_emit
)
2660 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2664 rtx x
= call_from_call_insn (insn
);
2666 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2670 t
= SYMBOL_REF_DECL (x
);
2672 assemble_external (t
);
2676 /* Output assembler code from the template. */
2677 output_asm_insn (templ
, recog_data
.operand
);
2679 /* Record point-of-call information for ICF debugging. */
2680 if (flag_enable_icf_debug
&& CALL_P (insn
))
2682 rtx x
= call_from_call_insn (insn
);
2686 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2690 t
= SYMBOL_REF_DECL (x
);
2692 (*debug_hooks
->direct_call
) (t
);
2695 (*debug_hooks
->virtual_call
) (INSN_UID (insn
));
2699 /* Some target machines need to postscan each insn after
2701 if (targetm
.asm_out
.final_postscan_insn
)
2702 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
2703 recog_data
.n_operands
);
2705 /* If necessary, report the effect that the instruction has on
2706 the unwind info. We've already done this for delay slots
2707 and call instructions. */
2708 #if defined (DWARF2_UNWIND_INFO)
2709 if (final_sequence
== 0
2710 #if !defined (HAVE_prologue)
2711 && !ACCUMULATE_OUTGOING_ARGS
2713 && dwarf2out_do_frame ())
2714 dwarf2out_frame_debug (insn
, true);
2717 if (!targetm
.asm_out
.unwind_emit_before_insn
2718 && targetm
.asm_out
.unwind_emit
)
2719 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2721 current_output_insn
= debug_insn
= 0;
2724 return NEXT_INSN (insn
);
2727 /* Return whether a source line note needs to be emitted before INSN.
2728 Sets IS_STMT to TRUE if the line should be marked as a possible
2729 breakpoint location. */
2732 notice_source_line (rtx insn
, bool *is_stmt
)
2734 const char *filename
;
2737 if (override_filename
)
2739 filename
= override_filename
;
2740 linenum
= override_linenum
;
2744 filename
= insn_file (insn
);
2745 linenum
= insn_line (insn
);
2748 if (filename
== NULL
)
2751 if (force_source_line
2752 || filename
!= last_filename
2753 || last_linenum
!= linenum
)
2755 force_source_line
= false;
2756 last_filename
= filename
;
2757 last_linenum
= linenum
;
2758 last_discriminator
= discriminator
;
2760 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2761 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2765 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
2767 /* If the discriminator changed, but the line number did not,
2768 output the line table entry with is_stmt false so the
2769 debugger does not treat this as a breakpoint location. */
2770 last_discriminator
= discriminator
;
2778 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2779 directly to the desired hard register. */
2782 cleanup_subreg_operands (rtx insn
)
2785 bool changed
= false;
2786 extract_insn_cached (insn
);
2787 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2789 /* The following test cannot use recog_data.operand when testing
2790 for a SUBREG: the underlying object might have been changed
2791 already if we are inside a match_operator expression that
2792 matches the else clause. Instead we test the underlying
2793 expression directly. */
2794 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2796 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
]);
2799 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
2800 || GET_CODE (recog_data
.operand
[i
]) == MULT
2801 || MEM_P (recog_data
.operand
[i
]))
2802 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
2805 for (i
= 0; i
< recog_data
.n_dups
; i
++)
2807 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
2809 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
]);
2812 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
2813 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
2814 || MEM_P (*recog_data
.dup_loc
[i
]))
2815 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
2818 df_insn_rescan (insn
);
2821 /* If X is a SUBREG, replace it with a REG or a MEM,
2822 based on the thing it is a subreg of. */
2825 alter_subreg (rtx
*xp
)
2828 rtx y
= SUBREG_REG (x
);
2830 /* simplify_subreg does not remove subreg from volatile references.
2831 We are required to. */
2834 int offset
= SUBREG_BYTE (x
);
2836 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2837 contains 0 instead of the proper offset. See simplify_subreg. */
2839 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
2841 int difference
= GET_MODE_SIZE (GET_MODE (y
))
2842 - GET_MODE_SIZE (GET_MODE (x
));
2843 if (WORDS_BIG_ENDIAN
)
2844 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
2845 if (BYTES_BIG_ENDIAN
)
2846 offset
+= difference
% UNITS_PER_WORD
;
2849 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
2853 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
2860 /* Simplify_subreg can't handle some REG cases, but we have to. */
2862 HOST_WIDE_INT offset
;
2864 regno
= subreg_regno (x
);
2865 if (subreg_lowpart_p (x
))
2866 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
2868 offset
= SUBREG_BYTE (x
);
2869 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
2876 /* Do alter_subreg on all the SUBREGs contained in X. */
2879 walk_alter_subreg (rtx
*xp
, bool *changed
)
2882 switch (GET_CODE (x
))
2887 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
2888 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
2893 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
2898 return alter_subreg (xp
);
2909 /* Given BODY, the body of a jump instruction, alter the jump condition
2910 as required by the bits that are set in cc_status.flags.
2911 Not all of the bits there can be handled at this level in all cases.
2913 The value is normally 0.
2914 1 means that the condition has become always true.
2915 -1 means that the condition has become always false.
2916 2 means that COND has been altered. */
2919 alter_cond (rtx cond
)
2923 if (cc_status
.flags
& CC_REVERSED
)
2926 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
2929 if (cc_status
.flags
& CC_INVERTED
)
2932 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
2935 if (cc_status
.flags
& CC_NOT_POSITIVE
)
2936 switch (GET_CODE (cond
))
2941 /* Jump becomes unconditional. */
2947 /* Jump becomes no-op. */
2951 PUT_CODE (cond
, EQ
);
2956 PUT_CODE (cond
, NE
);
2964 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
2965 switch (GET_CODE (cond
))
2969 /* Jump becomes unconditional. */
2974 /* Jump becomes no-op. */
2979 PUT_CODE (cond
, EQ
);
2985 PUT_CODE (cond
, NE
);
2993 if (cc_status
.flags
& CC_NO_OVERFLOW
)
2994 switch (GET_CODE (cond
))
2997 /* Jump becomes unconditional. */
3001 PUT_CODE (cond
, EQ
);
3006 PUT_CODE (cond
, NE
);
3011 /* Jump becomes no-op. */
3018 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3019 switch (GET_CODE (cond
))
3025 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3030 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3035 if (cc_status
.flags
& CC_NOT_SIGNED
)
3036 /* The flags are valid if signed condition operators are converted
3038 switch (GET_CODE (cond
))
3041 PUT_CODE (cond
, LEU
);
3046 PUT_CODE (cond
, LTU
);
3051 PUT_CODE (cond
, GTU
);
3056 PUT_CODE (cond
, GEU
);
3068 /* Report inconsistency between the assembler template and the operands.
3069 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3072 output_operand_lossage (const char *cmsgid
, ...)
3076 const char *pfx_str
;
3079 va_start (ap
, cmsgid
);
3081 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3082 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
3083 vasprintf (&new_message
, fmt_string
, ap
);
3085 if (this_is_asm_operands
)
3086 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3088 internal_error ("%s", new_message
);
3095 /* Output of assembler code from a template, and its subroutines. */
3097 /* Annotate the assembly with a comment describing the pattern and
3098 alternative used. */
3101 output_asm_name (void)
3105 int num
= INSN_CODE (debug_insn
);
3106 fprintf (asm_out_file
, "\t%s %d\t%s",
3107 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3108 insn_data
[num
].name
);
3109 if (insn_data
[num
].n_alternatives
> 1)
3110 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3111 #ifdef HAVE_ATTR_length
3112 fprintf (asm_out_file
, "\t[length = %d]",
3113 get_attr_length (debug_insn
));
3115 /* Clear this so only the first assembler insn
3116 of any rtl insn will get the special comment for -dp. */
3121 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3122 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3123 corresponds to the address of the object and 0 if to the object. */
3126 get_mem_expr_from_op (rtx op
, int *paddressp
)
3134 return REG_EXPR (op
);
3135 else if (!MEM_P (op
))
3138 if (MEM_EXPR (op
) != 0)
3139 return MEM_EXPR (op
);
3141 /* Otherwise we have an address, so indicate it and look at the address. */
3145 /* First check if we have a decl for the address, then look at the right side
3146 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3147 But don't allow the address to itself be indirect. */
3148 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3150 else if (GET_CODE (op
) == PLUS
3151 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3155 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3158 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3159 return inner_addressp
? 0 : expr
;
3162 /* Output operand names for assembler instructions. OPERANDS is the
3163 operand vector, OPORDER is the order to write the operands, and NOPS
3164 is the number of operands to write. */
3167 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3172 for (i
= 0; i
< nops
; i
++)
3175 rtx op
= operands
[oporder
[i
]];
3176 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3178 fprintf (asm_out_file
, "%c%s",
3179 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3183 fprintf (asm_out_file
, "%s",
3184 addressp
? "*" : "");
3185 print_mem_expr (asm_out_file
, expr
);
3188 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3189 && ORIGINAL_REGNO (op
) != REGNO (op
))
3190 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3194 /* Output text from TEMPLATE to the assembler output file,
3195 obeying %-directions to substitute operands taken from
3196 the vector OPERANDS.
3198 %N (for N a digit) means print operand N in usual manner.
3199 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3200 and print the label name with no punctuation.
3201 %cN means require operand N to be a constant
3202 and print the constant expression with no punctuation.
3203 %aN means expect operand N to be a memory address
3204 (not a memory reference!) and print a reference
3206 %nN means expect operand N to be a constant
3207 and print a constant expression for minus the value
3208 of the operand, with no other punctuation. */
3211 output_asm_insn (const char *templ
, rtx
*operands
)
3215 #ifdef ASSEMBLER_DIALECT
3218 int oporder
[MAX_RECOG_OPERANDS
];
3219 char opoutput
[MAX_RECOG_OPERANDS
];
3222 /* An insn may return a null string template
3223 in a case where no assembler code is needed. */
3227 memset (opoutput
, 0, sizeof opoutput
);
3229 putc ('\t', asm_out_file
);
3231 #ifdef ASM_OUTPUT_OPCODE
3232 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3239 if (flag_verbose_asm
)
3240 output_asm_operand_names (operands
, oporder
, ops
);
3241 if (flag_print_asm_name
)
3245 memset (opoutput
, 0, sizeof opoutput
);
3247 putc (c
, asm_out_file
);
3248 #ifdef ASM_OUTPUT_OPCODE
3249 while ((c
= *p
) == '\t')
3251 putc (c
, asm_out_file
);
3254 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3258 #ifdef ASSEMBLER_DIALECT
3264 output_operand_lossage ("nested assembly dialect alternatives");
3268 /* If we want the first dialect, do nothing. Otherwise, skip
3269 DIALECT_NUMBER of strings ending with '|'. */
3270 for (i
= 0; i
< dialect_number
; i
++)
3272 while (*p
&& *p
!= '}' && *p
++ != '|')
3281 output_operand_lossage ("unterminated assembly dialect alternative");
3288 /* Skip to close brace. */
3293 output_operand_lossage ("unterminated assembly dialect alternative");
3297 while (*p
++ != '}');
3301 putc (c
, asm_out_file
);
3306 putc (c
, asm_out_file
);
3312 /* %% outputs a single %. */
3316 putc (c
, asm_out_file
);
3318 /* %= outputs a number which is unique to each insn in the entire
3319 compilation. This is useful for making local labels that are
3320 referred to more than once in a given insn. */
3324 fprintf (asm_out_file
, "%d", insn_counter
);
3326 /* % followed by a letter and some digits
3327 outputs an operand in a special way depending on the letter.
3328 Letters `acln' are implemented directly.
3329 Other letters are passed to `output_operand' so that
3330 the TARGET_PRINT_OPERAND hook can define them. */
3331 else if (ISALPHA (*p
))
3334 unsigned long opnum
;
3337 opnum
= strtoul (p
, &endptr
, 10);
3340 output_operand_lossage ("operand number missing "
3342 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3343 output_operand_lossage ("operand number out of range");
3344 else if (letter
== 'l')
3345 output_asm_label (operands
[opnum
]);
3346 else if (letter
== 'a')
3347 output_address (operands
[opnum
]);
3348 else if (letter
== 'c')
3350 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3351 output_addr_const (asm_out_file
, operands
[opnum
]);
3353 output_operand (operands
[opnum
], 'c');
3355 else if (letter
== 'n')
3357 if (CONST_INT_P (operands
[opnum
]))
3358 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3359 - INTVAL (operands
[opnum
]));
3362 putc ('-', asm_out_file
);
3363 output_addr_const (asm_out_file
, operands
[opnum
]);
3367 output_operand (operands
[opnum
], letter
);
3369 if (!opoutput
[opnum
])
3370 oporder
[ops
++] = opnum
;
3371 opoutput
[opnum
] = 1;
3376 /* % followed by a digit outputs an operand the default way. */
3377 else if (ISDIGIT (*p
))
3379 unsigned long opnum
;
3382 opnum
= strtoul (p
, &endptr
, 10);
3383 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3384 output_operand_lossage ("operand number out of range");
3386 output_operand (operands
[opnum
], 0);
3388 if (!opoutput
[opnum
])
3389 oporder
[ops
++] = opnum
;
3390 opoutput
[opnum
] = 1;
3395 /* % followed by punctuation: output something for that
3396 punctuation character alone, with no operand. The
3397 TARGET_PRINT_OPERAND hook decides what is actually done. */
3398 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3399 output_operand (NULL_RTX
, *p
++);
3401 output_operand_lossage ("invalid %%-code");
3405 putc (c
, asm_out_file
);
3408 /* Write out the variable names for operands, if we know them. */
3409 if (flag_verbose_asm
)
3410 output_asm_operand_names (operands
, oporder
, ops
);
3411 if (flag_print_asm_name
)
3414 putc ('\n', asm_out_file
);
3417 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3420 output_asm_label (rtx x
)
3424 if (GET_CODE (x
) == LABEL_REF
)
3428 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3429 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3431 output_operand_lossage ("'%%l' operand isn't a label");
3433 assemble_name (asm_out_file
, buf
);
3436 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3437 output_operand. Marks SYMBOL_REFs as referenced through use of
3438 assemble_external. */
3441 mark_symbol_ref_as_used (rtx
*xp
, void *dummy ATTRIBUTE_UNUSED
)
3445 /* If we have a used symbol, we may have to emit assembly
3446 annotations corresponding to whether the symbol is external, weak
3447 or has non-default visibility. */
3448 if (GET_CODE (x
) == SYMBOL_REF
)
3452 t
= SYMBOL_REF_DECL (x
);
3454 assemble_external (t
);
3462 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3465 mark_symbol_refs_as_used (rtx x
)
3467 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3470 /* Print operand X using machine-dependent assembler syntax.
3471 CODE is a non-digit that preceded the operand-number in the % spec,
3472 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3473 between the % and the digits.
3474 When CODE is a non-letter, X is 0.
3476 The meanings of the letters are machine-dependent and controlled
3477 by TARGET_PRINT_OPERAND. */
3480 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3482 if (x
&& GET_CODE (x
) == SUBREG
)
3483 x
= alter_subreg (&x
);
3485 /* X must not be a pseudo reg. */
3486 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3488 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3493 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3496 /* Print a memory reference operand for address X using
3497 machine-dependent assembler syntax. */
3500 output_address (rtx x
)
3502 bool changed
= false;
3503 walk_alter_subreg (&x
, &changed
);
3504 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3507 /* Print an integer constant expression in assembler syntax.
3508 Addition and subtraction are the only arithmetic
3509 that may appear in these expressions. */
3512 output_addr_const (FILE *file
, rtx x
)
3517 switch (GET_CODE (x
))
3524 if (SYMBOL_REF_DECL (x
))
3525 assemble_external (SYMBOL_REF_DECL (x
));
3526 #ifdef ASM_OUTPUT_SYMBOL_REF
3527 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3529 assemble_name (file
, XSTR (x
, 0));
3537 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3538 #ifdef ASM_OUTPUT_LABEL_REF
3539 ASM_OUTPUT_LABEL_REF (file
, buf
);
3541 assemble_name (file
, buf
);
3546 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3550 /* This used to output parentheses around the expression,
3551 but that does not work on the 386 (either ATT or BSD assembler). */
3552 output_addr_const (file
, XEXP (x
, 0));
3556 if (GET_MODE (x
) == VOIDmode
)
3558 /* We can use %d if the number is one word and positive. */
3559 if (CONST_DOUBLE_HIGH (x
))
3560 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3561 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3562 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3563 else if (CONST_DOUBLE_LOW (x
) < 0)
3564 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3565 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3567 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3570 /* We can't handle floating point constants;
3571 PRINT_OPERAND must handle them. */
3572 output_operand_lossage ("floating constant misused");
3576 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3577 (unsigned HOST_WIDE_INT
) CONST_FIXED_VALUE_LOW (x
));
3581 /* Some assemblers need integer constants to appear last (eg masm). */
3582 if (CONST_INT_P (XEXP (x
, 0)))
3584 output_addr_const (file
, XEXP (x
, 1));
3585 if (INTVAL (XEXP (x
, 0)) >= 0)
3586 fprintf (file
, "+");
3587 output_addr_const (file
, XEXP (x
, 0));
3591 output_addr_const (file
, XEXP (x
, 0));
3592 if (!CONST_INT_P (XEXP (x
, 1))
3593 || INTVAL (XEXP (x
, 1)) >= 0)
3594 fprintf (file
, "+");
3595 output_addr_const (file
, XEXP (x
, 1));
3600 /* Avoid outputting things like x-x or x+5-x,
3601 since some assemblers can't handle that. */
3602 x
= simplify_subtraction (x
);
3603 if (GET_CODE (x
) != MINUS
)
3606 output_addr_const (file
, XEXP (x
, 0));
3607 fprintf (file
, "-");
3608 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3609 || GET_CODE (XEXP (x
, 1)) == PC
3610 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3611 output_addr_const (file
, XEXP (x
, 1));
3614 fputs (targetm
.asm_out
.open_paren
, file
);
3615 output_addr_const (file
, XEXP (x
, 1));
3616 fputs (targetm
.asm_out
.close_paren
, file
);
3624 output_addr_const (file
, XEXP (x
, 0));
3628 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
3631 output_operand_lossage ("invalid expression as operand");
3635 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3636 %R prints the value of REGISTER_PREFIX.
3637 %L prints the value of LOCAL_LABEL_PREFIX.
3638 %U prints the value of USER_LABEL_PREFIX.
3639 %I prints the value of IMMEDIATE_PREFIX.
3640 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3641 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3643 We handle alternate assembler dialects here, just like output_asm_insn. */
3646 asm_fprintf (FILE *file
, const char *p
, ...)
3652 va_start (argptr
, p
);
3659 #ifdef ASSEMBLER_DIALECT
3664 /* If we want the first dialect, do nothing. Otherwise, skip
3665 DIALECT_NUMBER of strings ending with '|'. */
3666 for (i
= 0; i
< dialect_number
; i
++)
3668 while (*p
&& *p
++ != '|')
3678 /* Skip to close brace. */
3679 while (*p
&& *p
++ != '}')
3690 while (strchr ("-+ #0", c
))
3695 while (ISDIGIT (c
) || c
== '.')
3706 case 'd': case 'i': case 'u':
3707 case 'x': case 'X': case 'o':
3711 fprintf (file
, buf
, va_arg (argptr
, int));
3715 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3716 'o' cases, but we do not check for those cases. It
3717 means that the value is a HOST_WIDE_INT, which may be
3718 either `long' or `long long'. */
3719 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
3720 q
+= strlen (HOST_WIDE_INT_PRINT
);
3723 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3728 #ifdef HAVE_LONG_LONG
3734 fprintf (file
, buf
, va_arg (argptr
, long long));
3741 fprintf (file
, buf
, va_arg (argptr
, long));
3749 fprintf (file
, buf
, va_arg (argptr
, char *));
3753 #ifdef ASM_OUTPUT_OPCODE
3754 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3759 #ifdef REGISTER_PREFIX
3760 fprintf (file
, "%s", REGISTER_PREFIX
);
3765 #ifdef IMMEDIATE_PREFIX
3766 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3771 #ifdef LOCAL_LABEL_PREFIX
3772 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3777 fputs (user_label_prefix
, file
);
3780 #ifdef ASM_FPRINTF_EXTENSIONS
3781 /* Uppercase letters are reserved for general use by asm_fprintf
3782 and so are not available to target specific code. In order to
3783 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3784 they are defined here. As they get turned into real extensions
3785 to asm_fprintf they should be removed from this list. */
3786 case 'A': case 'B': case 'C': case 'D': case 'E':
3787 case 'F': case 'G': case 'H': case 'J': case 'K':
3788 case 'M': case 'N': case 'P': case 'Q': case 'S':
3789 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3792 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3805 /* Split up a CONST_DOUBLE or integer constant rtx
3806 into two rtx's for single words,
3807 storing in *FIRST the word that comes first in memory in the target
3808 and in *SECOND the other. */
3811 split_double (rtx value
, rtx
*first
, rtx
*second
)
3813 if (CONST_INT_P (value
))
3815 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3817 /* In this case the CONST_INT holds both target words.
3818 Extract the bits from it into two word-sized pieces.
3819 Sign extend each half to HOST_WIDE_INT. */
3820 unsigned HOST_WIDE_INT low
, high
;
3821 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3823 /* Set sign_bit to the most significant bit of a word. */
3825 sign_bit
<<= BITS_PER_WORD
- 1;
3827 /* Set mask so that all bits of the word are set. We could
3828 have used 1 << BITS_PER_WORD instead of basing the
3829 calculation on sign_bit. However, on machines where
3830 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3831 compiler warning, even though the code would never be
3833 mask
= sign_bit
<< 1;
3836 /* Set sign_extend as any remaining bits. */
3837 sign_extend
= ~mask
;
3839 /* Pick the lower word and sign-extend it. */
3840 low
= INTVAL (value
);
3845 /* Pick the higher word, shifted to the least significant
3846 bits, and sign-extend it. */
3847 high
= INTVAL (value
);
3848 high
>>= BITS_PER_WORD
- 1;
3851 if (high
& sign_bit
)
3852 high
|= sign_extend
;
3854 /* Store the words in the target machine order. */
3855 if (WORDS_BIG_ENDIAN
)
3857 *first
= GEN_INT (high
);
3858 *second
= GEN_INT (low
);
3862 *first
= GEN_INT (low
);
3863 *second
= GEN_INT (high
);
3868 /* The rule for using CONST_INT for a wider mode
3869 is that we regard the value as signed.
3870 So sign-extend it. */
3871 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3872 if (WORDS_BIG_ENDIAN
)
3884 else if (GET_CODE (value
) != CONST_DOUBLE
)
3886 if (WORDS_BIG_ENDIAN
)
3888 *first
= const0_rtx
;
3894 *second
= const0_rtx
;
3897 else if (GET_MODE (value
) == VOIDmode
3898 /* This is the old way we did CONST_DOUBLE integers. */
3899 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3901 /* In an integer, the words are defined as most and least significant.
3902 So order them by the target's convention. */
3903 if (WORDS_BIG_ENDIAN
)
3905 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3906 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3910 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3911 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3918 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3920 /* Note, this converts the REAL_VALUE_TYPE to the target's
3921 format, splits up the floating point double and outputs
3922 exactly 32 bits of it into each of l[0] and l[1] --
3923 not necessarily BITS_PER_WORD bits. */
3924 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3926 /* If 32 bits is an entire word for the target, but not for the host,
3927 then sign-extend on the host so that the number will look the same
3928 way on the host that it would on the target. See for instance
3929 simplify_unary_operation. The #if is needed to avoid compiler
3932 #if HOST_BITS_PER_LONG > 32
3933 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3935 if (l
[0] & ((long) 1 << 31))
3936 l
[0] |= ((long) (-1) << 32);
3937 if (l
[1] & ((long) 1 << 31))
3938 l
[1] |= ((long) (-1) << 32);
3942 *first
= GEN_INT (l
[0]);
3943 *second
= GEN_INT (l
[1]);
3947 /* Return nonzero if this function has no function calls. */
3950 leaf_function_p (void)
3955 if (crtl
->profile
|| profile_arc_flag
)
3958 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3961 && ! SIBLING_CALL_P (insn
))
3963 if (NONJUMP_INSN_P (insn
)
3964 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3965 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3966 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3969 for (link
= crtl
->epilogue_delay_list
;
3971 link
= XEXP (link
, 1))
3973 insn
= XEXP (link
, 0);
3976 && ! SIBLING_CALL_P (insn
))
3978 if (NONJUMP_INSN_P (insn
)
3979 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3980 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3981 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3988 /* Return 1 if branch is a forward branch.
3989 Uses insn_shuid array, so it works only in the final pass. May be used by
3990 output templates to customary add branch prediction hints.
3993 final_forward_branch_p (rtx insn
)
3995 int insn_id
, label_id
;
3997 gcc_assert (uid_shuid
);
3998 insn_id
= INSN_SHUID (insn
);
3999 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4000 /* We've hit some insns that does not have id information available. */
4001 gcc_assert (insn_id
&& label_id
);
4002 return insn_id
< label_id
;
4005 /* On some machines, a function with no call insns
4006 can run faster if it doesn't create its own register window.
4007 When output, the leaf function should use only the "output"
4008 registers. Ordinarily, the function would be compiled to use
4009 the "input" registers to find its arguments; it is a candidate
4010 for leaf treatment if it uses only the "input" registers.
4011 Leaf function treatment means renumbering so the function
4012 uses the "output" registers instead. */
4014 #ifdef LEAF_REGISTERS
4016 /* Return 1 if this function uses only the registers that can be
4017 safely renumbered. */
4020 only_leaf_regs_used (void)
4023 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4025 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4026 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4027 && ! permitted_reg_in_leaf_functions
[i
])
4030 if (crtl
->uses_pic_offset_table
4031 && pic_offset_table_rtx
!= 0
4032 && REG_P (pic_offset_table_rtx
)
4033 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4039 /* Scan all instructions and renumber all registers into those
4040 available in leaf functions. */
4043 leaf_renumber_regs (rtx first
)
4047 /* Renumber only the actual patterns.
4048 The reg-notes can contain frame pointer refs,
4049 and renumbering them could crash, and should not be needed. */
4050 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4052 leaf_renumber_regs_insn (PATTERN (insn
));
4053 for (insn
= crtl
->epilogue_delay_list
;
4055 insn
= XEXP (insn
, 1))
4056 if (INSN_P (XEXP (insn
, 0)))
4057 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
4060 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4061 available in leaf functions. */
4064 leaf_renumber_regs_insn (rtx in_rtx
)
4067 const char *format_ptr
;
4072 /* Renumber all input-registers into output-registers.
4073 renumbered_regs would be 1 for an output-register;
4080 /* Don't renumber the same reg twice. */
4084 newreg
= REGNO (in_rtx
);
4085 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4086 to reach here as part of a REG_NOTE. */
4087 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4092 newreg
= LEAF_REG_REMAP (newreg
);
4093 gcc_assert (newreg
>= 0);
4094 df_set_regs_ever_live (REGNO (in_rtx
), false);
4095 df_set_regs_ever_live (newreg
, true);
4096 SET_REGNO (in_rtx
, newreg
);
4100 if (INSN_P (in_rtx
))
4102 /* Inside a SEQUENCE, we find insns.
4103 Renumber just the patterns of these insns,
4104 just as we do for the top-level insns. */
4105 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4109 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4111 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4112 switch (*format_ptr
++)
4115 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4119 if (NULL
!= XVEC (in_rtx
, i
))
4121 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4122 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4142 /* When -gused is used, emit debug info for only used symbols. But in
4143 addition to the standard intercepted debug_hooks there are some direct
4144 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
4145 Those routines may also be called from a higher level intercepted routine. So
4146 to prevent recording data for an inner call to one of these for an intercept,
4147 we maintain an intercept nesting counter (debug_nesting). We only save the
4148 intercepted arguments if the nesting is 1. */
4149 int debug_nesting
= 0;
4151 static tree
*symbol_queue
;
4152 int symbol_queue_index
= 0;
4153 static int symbol_queue_size
= 0;
4155 /* Generate the symbols for any queued up type symbols we encountered
4156 while generating the type info for some originally used symbol.
4157 This might generate additional entries in the queue. Only when
4158 the nesting depth goes to 0 is this routine called. */
4161 debug_flush_symbol_queue (void)
4165 /* Make sure that additionally queued items are not flushed
4170 for (i
= 0; i
< symbol_queue_index
; ++i
)
4172 /* If we pushed queued symbols then such symbols must be
4173 output no matter what anyone else says. Specifically,
4174 we need to make sure dbxout_symbol() thinks the symbol was
4175 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
4176 which may be set for outside reasons. */
4177 int saved_tree_used
= TREE_USED (symbol_queue
[i
]);
4178 int saved_suppress_debug
= TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]);
4179 TREE_USED (symbol_queue
[i
]) = 1;
4180 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = 0;
4182 #ifdef DBX_DEBUGGING_INFO
4183 dbxout_symbol (symbol_queue
[i
], 0);
4186 TREE_USED (symbol_queue
[i
]) = saved_tree_used
;
4187 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = saved_suppress_debug
;
4190 symbol_queue_index
= 0;
4194 /* Queue a type symbol needed as part of the definition of a decl
4195 symbol. These symbols are generated when debug_flush_symbol_queue()
4199 debug_queue_symbol (tree decl
)
4201 if (symbol_queue_index
>= symbol_queue_size
)
4203 symbol_queue_size
+= 10;
4204 symbol_queue
= XRESIZEVEC (tree
, symbol_queue
, symbol_queue_size
);
4207 symbol_queue
[symbol_queue_index
++] = decl
;
4210 /* Free symbol queue. */
4212 debug_free_queue (void)
4216 free (symbol_queue
);
4217 symbol_queue
= NULL
;
4218 symbol_queue_size
= 0;
4222 /* Turn the RTL into assembly. */
4224 rest_of_handle_final (void)
4229 /* Get the function's name, as described by its RTL. This may be
4230 different from the DECL_NAME name used in the source file. */
4232 x
= DECL_RTL (current_function_decl
);
4233 gcc_assert (MEM_P (x
));
4235 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
4236 fnname
= XSTR (x
, 0);
4238 assemble_start_function (current_function_decl
, fnname
);
4239 final_start_function (get_insns (), asm_out_file
, optimize
);
4240 final (get_insns (), asm_out_file
, optimize
);
4241 final_end_function ();
4243 #ifdef TARGET_UNWIND_INFO
4244 /* ??? The IA-64 ".handlerdata" directive must be issued before
4245 the ".endp" directive that closes the procedure descriptor. */
4246 output_function_exception_table (fnname
);
4249 assemble_end_function (current_function_decl
, fnname
);
4251 #ifndef TARGET_UNWIND_INFO
4252 /* Otherwise, it feels unclean to switch sections in the middle. */
4253 output_function_exception_table (fnname
);
4256 user_defined_section_attribute
= false;
4258 /* Free up reg info memory. */
4262 fflush (asm_out_file
);
4264 /* Write DBX symbols if requested. */
4266 /* Note that for those inline functions where we don't initially
4267 know for certain that we will be generating an out-of-line copy,
4268 the first invocation of this routine (rest_of_compilation) will
4269 skip over this code by doing a `goto exit_rest_of_compilation;'.
4270 Later on, wrapup_global_declarations will (indirectly) call
4271 rest_of_compilation again for those inline functions that need
4272 to have out-of-line copies generated. During that call, we
4273 *will* be routed past here. */
4275 timevar_push (TV_SYMOUT
);
4276 if (!DECL_IGNORED_P (current_function_decl
))
4277 debug_hooks
->function_decl (current_function_decl
);
4278 timevar_pop (TV_SYMOUT
);
4280 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4281 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4283 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4284 && targetm
.have_ctors_dtors
)
4285 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4286 decl_init_priority_lookup
4287 (current_function_decl
));
4288 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4289 && targetm
.have_ctors_dtors
)
4290 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4291 decl_fini_priority_lookup
4292 (current_function_decl
));
4296 struct rtl_opt_pass pass_final
=
4302 rest_of_handle_final
, /* execute */
4305 0, /* static_pass_number */
4306 TV_FINAL
, /* tv_id */
4307 0, /* properties_required */
4308 0, /* properties_provided */
4309 0, /* properties_destroyed */
4310 0, /* todo_flags_start */
4311 TODO_ggc_collect
/* todo_flags_finish */
4317 rest_of_handle_shorten_branches (void)
4319 /* Shorten branches. */
4320 shorten_branches (get_insns ());
4324 struct rtl_opt_pass pass_shorten_branches
=
4328 "shorten", /* name */
4330 rest_of_handle_shorten_branches
, /* execute */
4333 0, /* static_pass_number */
4334 TV_FINAL
, /* tv_id */
4335 0, /* properties_required */
4336 0, /* properties_provided */
4337 0, /* properties_destroyed */
4338 0, /* todo_flags_start */
4339 TODO_dump_func
/* todo_flags_finish */
4345 rest_of_clean_state (void)
4348 FILE *final_output
= NULL
;
4349 int save_unnumbered
= flag_dump_unnumbered
;
4350 int save_noaddr
= flag_dump_noaddr
;
4352 if (flag_dump_final_insns
)
4354 final_output
= fopen (flag_dump_final_insns
, "a");
4357 error ("could not open final insn dump file %qs: %m",
4358 flag_dump_final_insns
);
4359 flag_dump_final_insns
= NULL
;
4364 struct cgraph_node
*node
= cgraph_node (current_function_decl
);
4366 aname
= (IDENTIFIER_POINTER
4367 (DECL_ASSEMBLER_NAME (current_function_decl
)));
4368 fprintf (final_output
, "\n;; Function (%s) %s\n\n", aname
,
4369 node
->frequency
== NODE_FREQUENCY_HOT
4371 : node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
4372 ? " (unlikely executed)"
4373 : node
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
4374 ? " (executed once)"
4377 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4378 if (flag_compare_debug_opt
|| flag_compare_debug
)
4379 dump_flags
|= TDF_NOUID
;
4380 final_insns_dump_p
= true;
4382 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4384 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4386 INSN_UID (insn
) = 0;
4390 /* It is very important to decompose the RTL instruction chain here:
4391 debug information keeps pointing into CODE_LABEL insns inside the function
4392 body. If these remain pointing to the other insns, we end up preserving
4393 whole RTL chain and attached detailed debug info in memory. */
4394 for (insn
= get_insns (); insn
; insn
= next
)
4396 next
= NEXT_INSN (insn
);
4397 NEXT_INSN (insn
) = NULL
;
4398 PREV_INSN (insn
) = NULL
;
4401 && (!NOTE_P (insn
) ||
4402 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4403 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4404 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4405 && NOTE_KIND (insn
) != NOTE_INSN_CFA_RESTORE_STATE
)))
4406 print_rtl_single (final_output
, insn
);
4412 flag_dump_noaddr
= save_noaddr
;
4413 flag_dump_unnumbered
= save_unnumbered
;
4414 final_insns_dump_p
= false;
4416 if (fclose (final_output
))
4418 error ("could not close final insn dump file %qs: %m",
4419 flag_dump_final_insns
);
4420 flag_dump_final_insns
= NULL
;
4424 /* In case the function was not output,
4425 don't leave any temporary anonymous types
4426 queued up for sdb output. */
4427 #ifdef SDB_DEBUGGING_INFO
4428 if (write_symbols
== SDB_DEBUG
)
4429 sdbout_types (NULL_TREE
);
4432 flag_rerun_cse_after_global_opts
= 0;
4433 reload_completed
= 0;
4434 epilogue_completed
= 0;
4436 regstack_completed
= 0;
4439 /* Clear out the insn_length contents now that they are no
4441 init_insn_lengths ();
4443 /* Show no temporary slots allocated. */
4446 free_bb_for_insn ();
4450 if (targetm
.binds_local_p (current_function_decl
))
4452 unsigned int pref
= crtl
->preferred_stack_boundary
;
4453 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4454 pref
= crtl
->stack_alignment_needed
;
4455 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4459 /* Make sure volatile mem refs aren't considered valid operands for
4460 arithmetic insns. We must call this here if this is a nested inline
4461 function, since the above code leaves us in the init_recog state,
4462 and the function context push/pop code does not save/restore volatile_ok.
4464 ??? Maybe it isn't necessary for expand_start_function to call this
4465 anymore if we do it here? */
4467 init_recog_no_volatile ();
4469 /* We're done with this function. Free up memory if we can. */
4470 free_after_parsing (cfun
);
4471 free_after_compilation (cfun
);
4475 struct rtl_opt_pass pass_clean_state
=
4479 "*clean_state", /* name */
4481 rest_of_clean_state
, /* execute */
4484 0, /* static_pass_number */
4485 TV_FINAL
, /* tv_id */
4486 0, /* properties_required */
4487 0, /* properties_provided */
4488 PROP_rtl
, /* properties_destroyed */
4489 0, /* todo_flags_start */
4490 0 /* todo_flags_finish */