2018-08-29 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ada / sem_ch8.adb
blobf5381447b32867266247a9ed17edb0c3a22bbdf1
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Impunit; use Impunit;
37 with Lib; use Lib;
38 with Lib.Load; use Lib.Load;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch4; use Sem_Ch4;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch12; use Sem_Ch12;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Disp; use Sem_Disp;
59 with Sem_Dist; use Sem_Dist;
60 with Sem_Elab; use Sem_Elab;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Prag; use Sem_Prag;
63 with Sem_Res; use Sem_Res;
64 with Sem_Util; use Sem_Util;
65 with Sem_Type; use Sem_Type;
66 with Stand; use Stand;
67 with Sinfo; use Sinfo;
68 with Sinfo.CN; use Sinfo.CN;
69 with Snames; use Snames;
70 with Style;
71 with Table;
72 with Tbuild; use Tbuild;
73 with Uintp; use Uintp;
75 package body Sem_Ch8 is
77 ------------------------------------
78 -- Visibility and Name Resolution --
79 ------------------------------------
81 -- This package handles name resolution and the collection of possible
82 -- interpretations for overloaded names, prior to overload resolution.
84 -- Name resolution is the process that establishes a mapping between source
85 -- identifiers and the entities they denote at each point in the program.
86 -- Each entity is represented by a defining occurrence. Each identifier
87 -- that denotes an entity points to the corresponding defining occurrence.
88 -- This is the entity of the applied occurrence. Each occurrence holds
89 -- an index into the names table, where source identifiers are stored.
91 -- Each entry in the names table for an identifier or designator uses the
92 -- Info pointer to hold a link to the currently visible entity that has
93 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
94 -- in package Sem_Util). The visibility is initialized at the beginning of
95 -- semantic processing to make entities in package Standard immediately
96 -- visible. The visibility table is used in a more subtle way when
97 -- compiling subunits (see below).
99 -- Entities that have the same name (i.e. homonyms) are chained. In the
100 -- case of overloaded entities, this chain holds all the possible meanings
101 -- of a given identifier. The process of overload resolution uses type
102 -- information to select from this chain the unique meaning of a given
103 -- identifier.
105 -- Entities are also chained in their scope, through the Next_Entity link.
106 -- As a consequence, the name space is organized as a sparse matrix, where
107 -- each row corresponds to a scope, and each column to a source identifier.
108 -- Open scopes, that is to say scopes currently being compiled, have their
109 -- corresponding rows of entities in order, innermost scope first.
111 -- The scopes of packages that are mentioned in context clauses appear in
112 -- no particular order, interspersed among open scopes. This is because
113 -- in the course of analyzing the context of a compilation, a package
114 -- declaration is first an open scope, and subsequently an element of the
115 -- context. If subunits or child units are present, a parent unit may
116 -- appear under various guises at various times in the compilation.
118 -- When the compilation of the innermost scope is complete, the entities
119 -- defined therein are no longer visible. If the scope is not a package
120 -- declaration, these entities are never visible subsequently, and can be
121 -- removed from visibility chains. If the scope is a package declaration,
122 -- its visible declarations may still be accessible. Therefore the entities
123 -- defined in such a scope are left on the visibility chains, and only
124 -- their visibility (immediately visibility or potential use-visibility)
125 -- is affected.
127 -- The ordering of homonyms on their chain does not necessarily follow
128 -- the order of their corresponding scopes on the scope stack. For
129 -- example, if package P and the enclosing scope both contain entities
130 -- named E, then when compiling the package body the chain for E will
131 -- hold the global entity first, and the local one (corresponding to
132 -- the current inner scope) next. As a result, name resolution routines
133 -- do not assume any relative ordering of the homonym chains, either
134 -- for scope nesting or to order of appearance of context clauses.
136 -- When compiling a child unit, entities in the parent scope are always
137 -- immediately visible. When compiling the body of a child unit, private
138 -- entities in the parent must also be made immediately visible. There
139 -- are separate routines to make the visible and private declarations
140 -- visible at various times (see package Sem_Ch7).
142 -- +--------+ +-----+
143 -- | In use |-------->| EU1 |-------------------------->
144 -- +--------+ +-----+
145 -- | |
146 -- +--------+ +-----+ +-----+
147 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
148 -- +--------+ +-----+ +-----+
149 -- | |
150 -- +---------+ | +-----+
151 -- | with'ed |------------------------------>| EW2 |--->
152 -- +---------+ | +-----+
153 -- | |
154 -- +--------+ +-----+ +-----+
155 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
156 -- +--------+ +-----+ +-----+
157 -- | |
158 -- +--------+ +-----+ +-----+
159 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
160 -- +--------+ +-----+ +-----+
161 -- ^ | |
162 -- | | |
163 -- | +---------+ | |
164 -- | | with'ed |----------------------------------------->
165 -- | +---------+ | |
166 -- | | |
167 -- Scope stack | |
168 -- (innermost first) | |
169 -- +----------------------------+
170 -- Names table => | Id1 | | | | Id2 |
171 -- +----------------------------+
173 -- Name resolution must deal with several syntactic forms: simple names,
174 -- qualified names, indexed names, and various forms of calls.
176 -- Each identifier points to an entry in the names table. The resolution
177 -- of a simple name consists in traversing the homonym chain, starting
178 -- from the names table. If an entry is immediately visible, it is the one
179 -- designated by the identifier. If only potentially use-visible entities
180 -- are on the chain, we must verify that they do not hide each other. If
181 -- the entity we find is overloadable, we collect all other overloadable
182 -- entities on the chain as long as they are not hidden.
184 -- To resolve expanded names, we must find the entity at the intersection
185 -- of the entity chain for the scope (the prefix) and the homonym chain
186 -- for the selector. In general, homonym chains will be much shorter than
187 -- entity chains, so it is preferable to start from the names table as
188 -- well. If the entity found is overloadable, we must collect all other
189 -- interpretations that are defined in the scope denoted by the prefix.
191 -- For records, protected types, and tasks, their local entities are
192 -- removed from visibility chains on exit from the corresponding scope.
193 -- From the outside, these entities are always accessed by selected
194 -- notation, and the entity chain for the record type, protected type,
195 -- etc. is traversed sequentially in order to find the designated entity.
197 -- The discriminants of a type and the operations of a protected type or
198 -- task are unchained on exit from the first view of the type, (such as
199 -- a private or incomplete type declaration, or a protected type speci-
200 -- fication) and re-chained when compiling the second view.
202 -- In the case of operators, we do not make operators on derived types
203 -- explicit. As a result, the notation P."+" may denote either a user-
204 -- defined function with name "+", or else an implicit declaration of the
205 -- operator "+" in package P. The resolution of expanded names always
206 -- tries to resolve an operator name as such an implicitly defined entity,
207 -- in addition to looking for explicit declarations.
209 -- All forms of names that denote entities (simple names, expanded names,
210 -- character literals in some cases) have a Entity attribute, which
211 -- identifies the entity denoted by the name.
213 ---------------------
214 -- The Scope Stack --
215 ---------------------
217 -- The Scope stack keeps track of the scopes currently been compiled.
218 -- Every entity that contains declarations (including records) is placed
219 -- on the scope stack while it is being processed, and removed at the end.
220 -- Whenever a non-package scope is exited, the entities defined therein
221 -- are removed from the visibility table, so that entities in outer scopes
222 -- become visible (see previous description). On entry to Sem, the scope
223 -- stack only contains the package Standard. As usual, subunits complicate
224 -- this picture ever so slightly.
226 -- The Rtsfind mechanism can force a call to Semantics while another
227 -- compilation is in progress. The unit retrieved by Rtsfind must be
228 -- compiled in its own context, and has no access to the visibility of
229 -- the unit currently being compiled. The procedures Save_Scope_Stack and
230 -- Restore_Scope_Stack make entities in current open scopes invisible
231 -- before compiling the retrieved unit, and restore the compilation
232 -- environment afterwards.
234 ------------------------
235 -- Compiling subunits --
236 ------------------------
238 -- Subunits must be compiled in the environment of the corresponding stub,
239 -- that is to say with the same visibility into the parent (and its
240 -- context) that is available at the point of the stub declaration, but
241 -- with the additional visibility provided by the context clause of the
242 -- subunit itself. As a result, compilation of a subunit forces compilation
243 -- of the parent (see description in lib-). At the point of the stub
244 -- declaration, Analyze is called recursively to compile the proper body of
245 -- the subunit, but without reinitializing the names table, nor the scope
246 -- stack (i.e. standard is not pushed on the stack). In this fashion the
247 -- context of the subunit is added to the context of the parent, and the
248 -- subunit is compiled in the correct environment. Note that in the course
249 -- of processing the context of a subunit, Standard will appear twice on
250 -- the scope stack: once for the parent of the subunit, and once for the
251 -- unit in the context clause being compiled. However, the two sets of
252 -- entities are not linked by homonym chains, so that the compilation of
253 -- any context unit happens in a fresh visibility environment.
255 -------------------------------
256 -- Processing of USE Clauses --
257 -------------------------------
259 -- Every defining occurrence has a flag indicating if it is potentially use
260 -- visible. Resolution of simple names examines this flag. The processing
261 -- of use clauses consists in setting this flag on all visible entities
262 -- defined in the corresponding package. On exit from the scope of the use
263 -- clause, the corresponding flag must be reset. However, a package may
264 -- appear in several nested use clauses (pathological but legal, alas)
265 -- which forces us to use a slightly more involved scheme:
267 -- a) The defining occurrence for a package holds a flag -In_Use- to
268 -- indicate that it is currently in the scope of a use clause. If a
269 -- redundant use clause is encountered, then the corresponding occurrence
270 -- of the package name is flagged -Redundant_Use-.
272 -- b) On exit from a scope, the use clauses in its declarative part are
273 -- scanned. The visibility flag is reset in all entities declared in
274 -- package named in a use clause, as long as the package is not flagged
275 -- as being in a redundant use clause (in which case the outer use
276 -- clause is still in effect, and the direct visibility of its entities
277 -- must be retained).
279 -- Note that entities are not removed from their homonym chains on exit
280 -- from the package specification. A subsequent use clause does not need
281 -- to rechain the visible entities, but only to establish their direct
282 -- visibility.
284 -----------------------------------
285 -- Handling private declarations --
286 -----------------------------------
288 -- The principle that each entity has a single defining occurrence clashes
289 -- with the presence of two separate definitions for private types: the
290 -- first is the private type declaration, and second is the full type
291 -- declaration. It is important that all references to the type point to
292 -- the same defining occurrence, namely the first one. To enforce the two
293 -- separate views of the entity, the corresponding information is swapped
294 -- between the two declarations. Outside of the package, the defining
295 -- occurrence only contains the private declaration information, while in
296 -- the private part and the body of the package the defining occurrence
297 -- contains the full declaration. To simplify the swap, the defining
298 -- occurrence that currently holds the private declaration points to the
299 -- full declaration. During semantic processing the defining occurrence
300 -- also points to a list of private dependents, that is to say access types
301 -- or composite types whose designated types or component types are
302 -- subtypes or derived types of the private type in question. After the
303 -- full declaration has been seen, the private dependents are updated to
304 -- indicate that they have full definitions.
306 ------------------------------------
307 -- Handling of Undefined Messages --
308 ------------------------------------
310 -- In normal mode, only the first use of an undefined identifier generates
311 -- a message. The table Urefs is used to record error messages that have
312 -- been issued so that second and subsequent ones do not generate further
313 -- messages. However, the second reference causes text to be added to the
314 -- original undefined message noting "(more references follow)". The
315 -- full error list option (-gnatf) forces messages to be generated for
316 -- every reference and disconnects the use of this table.
318 type Uref_Entry is record
319 Node : Node_Id;
320 -- Node for identifier for which original message was posted. The
321 -- Chars field of this identifier is used to detect later references
322 -- to the same identifier.
324 Err : Error_Msg_Id;
325 -- Records error message Id of original undefined message. Reset to
326 -- No_Error_Msg after the second occurrence, where it is used to add
327 -- text to the original message as described above.
329 Nvis : Boolean;
330 -- Set if the message is not visible rather than undefined
332 Loc : Source_Ptr;
333 -- Records location of error message. Used to make sure that we do
334 -- not consider a, b : undefined as two separate instances, which
335 -- would otherwise happen, since the parser converts this sequence
336 -- to a : undefined; b : undefined.
338 end record;
340 package Urefs is new Table.Table (
341 Table_Component_Type => Uref_Entry,
342 Table_Index_Type => Nat,
343 Table_Low_Bound => 1,
344 Table_Initial => 10,
345 Table_Increment => 100,
346 Table_Name => "Urefs");
348 Candidate_Renaming : Entity_Id;
349 -- Holds a candidate interpretation that appears in a subprogram renaming
350 -- declaration and does not match the given specification, but matches at
351 -- least on the first formal. Allows better error message when given
352 -- specification omits defaulted parameters, a common error.
354 -----------------------
355 -- Local Subprograms --
356 -----------------------
358 procedure Analyze_Generic_Renaming
359 (N : Node_Id;
360 K : Entity_Kind);
361 -- Common processing for all three kinds of generic renaming declarations.
362 -- Enter new name and indicate that it renames the generic unit.
364 procedure Analyze_Renamed_Character
365 (N : Node_Id;
366 New_S : Entity_Id;
367 Is_Body : Boolean);
368 -- Renamed entity is given by a character literal, which must belong
369 -- to the return type of the new entity. Is_Body indicates whether the
370 -- declaration is a renaming_as_body. If the original declaration has
371 -- already been frozen (because of an intervening body, e.g.) the body of
372 -- the function must be built now. The same applies to the following
373 -- various renaming procedures.
375 procedure Analyze_Renamed_Dereference
376 (N : Node_Id;
377 New_S : Entity_Id;
378 Is_Body : Boolean);
379 -- Renamed entity is given by an explicit dereference. Prefix must be a
380 -- conformant access_to_subprogram type.
382 procedure Analyze_Renamed_Entry
383 (N : Node_Id;
384 New_S : Entity_Id;
385 Is_Body : Boolean);
386 -- If the renamed entity in a subprogram renaming is an entry or protected
387 -- subprogram, build a body for the new entity whose only statement is a
388 -- call to the renamed entity.
390 procedure Analyze_Renamed_Family_Member
391 (N : Node_Id;
392 New_S : Entity_Id;
393 Is_Body : Boolean);
394 -- Used when the renamed entity is an indexed component. The prefix must
395 -- denote an entry family.
397 procedure Analyze_Renamed_Primitive_Operation
398 (N : Node_Id;
399 New_S : Entity_Id;
400 Is_Body : Boolean);
401 -- If the renamed entity in a subprogram renaming is a primitive operation
402 -- or a class-wide operation in prefix form, save the target object,
403 -- which must be added to the list of actuals in any subsequent call.
404 -- The renaming operation is intrinsic because the compiler must in
405 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
407 procedure Attribute_Renaming (N : Node_Id);
408 -- Analyze renaming of attribute as subprogram. The renaming declaration N
409 -- is rewritten as a subprogram body that returns the attribute reference
410 -- applied to the formals of the function.
412 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
413 -- Set Entity, with style check if need be. For a discriminant reference,
414 -- replace by the corresponding discriminal, i.e. the parameter of the
415 -- initialization procedure that corresponds to the discriminant.
417 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
418 -- A renaming_as_body may occur after the entity of the original decla-
419 -- ration has been frozen. In that case, the body of the new entity must
420 -- be built now, because the usual mechanism of building the renamed
421 -- body at the point of freezing will not work. Subp is the subprogram
422 -- for which N provides the Renaming_As_Body.
424 procedure Check_In_Previous_With_Clause
425 (N : Node_Id;
426 Nam : Node_Id);
427 -- N is a use_package clause and Nam the package name, or N is a use_type
428 -- clause and Nam is the prefix of the type name. In either case, verify
429 -- that the package is visible at that point in the context: either it
430 -- appears in a previous with_clause, or because it is a fully qualified
431 -- name and the root ancestor appears in a previous with_clause.
433 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
434 -- Verify that the entity in a renaming declaration that is a library unit
435 -- is itself a library unit and not a nested unit or subunit. Also check
436 -- that if the renaming is a child unit of a generic parent, then the
437 -- renamed unit must also be a child unit of that parent. Finally, verify
438 -- that a renamed generic unit is not an implicit child declared within
439 -- an instance of the parent.
441 procedure Chain_Use_Clause (N : Node_Id);
442 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
443 -- the proper scope table entry. This is usually the current scope, but it
444 -- will be an inner scope when installing the use clauses of the private
445 -- declarations of a parent unit prior to compiling the private part of a
446 -- child unit. This chain is traversed when installing/removing use clauses
447 -- when compiling a subunit or instantiating a generic body on the fly,
448 -- when it is necessary to save and restore full environments.
450 function Enclosing_Instance return Entity_Id;
451 -- In an instance nested within another one, several semantic checks are
452 -- unnecessary because the legality of the nested instance has been checked
453 -- in the enclosing generic unit. This applies in particular to legality
454 -- checks on actuals for formal subprograms of the inner instance, which
455 -- are checked as subprogram renamings, and may be complicated by confusion
456 -- in private/full views. This function returns the instance enclosing the
457 -- current one if there is such, else it returns Empty.
459 -- If the renaming determines the entity for the default of a formal
460 -- subprogram nested within another instance, choose the innermost
461 -- candidate. This is because if the formal has a box, and we are within
462 -- an enclosing instance where some candidate interpretations are local
463 -- to this enclosing instance, we know that the default was properly
464 -- resolved when analyzing the generic, so we prefer the local
465 -- candidates to those that are external. This is not always the case
466 -- but is a reasonable heuristic on the use of nested generics. The
467 -- proper solution requires a full renaming model.
469 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
470 -- Return the appropriate entity for determining which unit has a deeper
471 -- scope: the defining entity for U, unless U is a package instance, in
472 -- which case we retrieve the entity of the instance spec.
474 procedure Find_Expanded_Name (N : Node_Id);
475 -- The input is a selected component known to be an expanded name. Verify
476 -- legality of selector given the scope denoted by prefix, and change node
477 -- N into a expanded name with a properly set Entity field.
479 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id;
480 -- Find the most previous use clause (that is, the first one to appear in
481 -- the source) by traversing the previous clause chain that exists in both
482 -- N_Use_Package_Clause nodes and N_Use_Type_Clause nodes.
483 -- ??? a better subprogram name is in order
485 function Find_Renamed_Entity
486 (N : Node_Id;
487 Nam : Node_Id;
488 New_S : Entity_Id;
489 Is_Actual : Boolean := False) return Entity_Id;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
497 -- Find a type derived from Character or Wide_Character in the prefix of N.
498 -- Used to resolved qualified names whose selector is a character literal.
500 function Has_Private_With (E : Entity_Id) return Boolean;
501 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
502 -- private with on E.
504 function Has_Implicit_Operator (N : Node_Id) return Boolean;
505 -- N is an expanded name whose selector is an operator name (e.g. P."+").
506 -- declarative part contains an implicit declaration of an operator if it
507 -- has a declaration of a type to which one of the predefined operators
508 -- apply. The existence of this routine is an implementation artifact. A
509 -- more straightforward but more space-consuming choice would be to make
510 -- all inherited operators explicit in the symbol table.
512 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
513 -- A subprogram defined by a renaming declaration inherits the parameter
514 -- profile of the renamed entity. The subtypes given in the subprogram
515 -- specification are discarded and replaced with those of the renamed
516 -- subprogram, which are then used to recheck the default values.
518 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
519 -- True if it is of a task type, a protected type, or else an access to one
520 -- of these types.
522 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
523 -- Prefix is appropriate for record if it is of a record type, or an access
524 -- to such.
526 function Most_Descendant_Use_Clause
527 (Clause1 : Entity_Id;
528 Clause2 : Entity_Id) return Entity_Id;
529 -- Determine which use clause parameter is the most descendant in terms of
530 -- scope.
531 -- ??? a better subprogram name is in order
533 procedure Premature_Usage (N : Node_Id);
534 -- Diagnose usage of an entity before it is visible
536 procedure Use_One_Package
537 (N : Node_Id;
538 Pack_Name : Entity_Id := Empty;
539 Force : Boolean := False);
540 -- Make visible entities declared in package P potentially use-visible
541 -- in the current context. Also used in the analysis of subunits, when
542 -- re-installing use clauses of parent units. N is the use_clause that
543 -- names P (and possibly other packages).
545 procedure Use_One_Type
546 (Id : Node_Id;
547 Installed : Boolean := False;
548 Force : Boolean := False);
549 -- Id is the subtype mark from a use_type_clause. This procedure makes
550 -- the primitive operators of the type potentially use-visible. The
551 -- boolean flag Installed indicates that the clause is being reinstalled
552 -- after previous analysis, and primitive operations are already chained
553 -- on the Used_Operations list of the clause.
555 procedure Write_Info;
556 -- Write debugging information on entities declared in current scope
558 --------------------------------
559 -- Analyze_Exception_Renaming --
560 --------------------------------
562 -- The language only allows a single identifier, but the tree holds an
563 -- identifier list. The parser has already issued an error message if
564 -- there is more than one element in the list.
566 procedure Analyze_Exception_Renaming (N : Node_Id) is
567 Id : constant Entity_Id := Defining_Entity (N);
568 Nam : constant Node_Id := Name (N);
570 begin
571 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
573 Enter_Name (Id);
574 Analyze (Nam);
576 Set_Ekind (Id, E_Exception);
577 Set_Etype (Id, Standard_Exception_Type);
578 Set_Is_Pure (Id, Is_Pure (Current_Scope));
580 if Is_Entity_Name (Nam)
581 and then Present (Entity (Nam))
582 and then Ekind (Entity (Nam)) = E_Exception
583 then
584 if Present (Renamed_Object (Entity (Nam))) then
585 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
586 else
587 Set_Renamed_Object (Id, Entity (Nam));
588 end if;
590 -- The exception renaming declaration may become Ghost if it renames
591 -- a Ghost entity.
593 Mark_Ghost_Renaming (N, Entity (Nam));
594 else
595 Error_Msg_N ("invalid exception name in renaming", Nam);
596 end if;
598 -- Implementation-defined aspect specifications can appear in a renaming
599 -- declaration, but not language-defined ones. The call to procedure
600 -- Analyze_Aspect_Specifications will take care of this error check.
602 if Has_Aspects (N) then
603 Analyze_Aspect_Specifications (N, Id);
604 end if;
605 end Analyze_Exception_Renaming;
607 ---------------------------
608 -- Analyze_Expanded_Name --
609 ---------------------------
611 procedure Analyze_Expanded_Name (N : Node_Id) is
612 begin
613 -- If the entity pointer is already set, this is an internal node, or a
614 -- node that is analyzed more than once, after a tree modification. In
615 -- such a case there is no resolution to perform, just set the type. In
616 -- either case, start by analyzing the prefix.
618 Analyze (Prefix (N));
620 if Present (Entity (N)) then
621 if Is_Type (Entity (N)) then
622 Set_Etype (N, Entity (N));
623 else
624 Set_Etype (N, Etype (Entity (N)));
625 end if;
627 else
628 Find_Expanded_Name (N);
629 end if;
631 -- In either case, propagate dimension of entity to expanded name
633 Analyze_Dimension (N);
634 end Analyze_Expanded_Name;
636 ---------------------------------------
637 -- Analyze_Generic_Function_Renaming --
638 ---------------------------------------
640 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
641 begin
642 Analyze_Generic_Renaming (N, E_Generic_Function);
643 end Analyze_Generic_Function_Renaming;
645 --------------------------------------
646 -- Analyze_Generic_Package_Renaming --
647 --------------------------------------
649 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
650 begin
651 -- Test for the Text_IO special unit case here, since we may be renaming
652 -- one of the subpackages of Text_IO, then join common routine.
654 Check_Text_IO_Special_Unit (Name (N));
656 Analyze_Generic_Renaming (N, E_Generic_Package);
657 end Analyze_Generic_Package_Renaming;
659 ----------------------------------------
660 -- Analyze_Generic_Procedure_Renaming --
661 ----------------------------------------
663 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
664 begin
665 Analyze_Generic_Renaming (N, E_Generic_Procedure);
666 end Analyze_Generic_Procedure_Renaming;
668 ------------------------------
669 -- Analyze_Generic_Renaming --
670 ------------------------------
672 procedure Analyze_Generic_Renaming
673 (N : Node_Id;
674 K : Entity_Kind)
676 New_P : constant Entity_Id := Defining_Entity (N);
677 Inst : Boolean := False;
678 Old_P : Entity_Id;
680 begin
681 if Name (N) = Error then
682 return;
683 end if;
685 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
687 Generate_Definition (New_P);
689 if Current_Scope /= Standard_Standard then
690 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
691 end if;
693 if Nkind (Name (N)) = N_Selected_Component then
694 Check_Generic_Child_Unit (Name (N), Inst);
695 else
696 Analyze (Name (N));
697 end if;
699 if not Is_Entity_Name (Name (N)) then
700 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
701 Old_P := Any_Id;
702 else
703 Old_P := Entity (Name (N));
704 end if;
706 Enter_Name (New_P);
707 Set_Ekind (New_P, K);
709 if Etype (Old_P) = Any_Type then
710 null;
712 elsif Ekind (Old_P) /= K then
713 Error_Msg_N ("invalid generic unit name", Name (N));
715 else
716 if Present (Renamed_Object (Old_P)) then
717 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
718 else
719 Set_Renamed_Object (New_P, Old_P);
720 end if;
722 -- The generic renaming declaration may become Ghost if it renames a
723 -- Ghost entity.
725 Mark_Ghost_Renaming (N, Old_P);
727 Set_Is_Pure (New_P, Is_Pure (Old_P));
728 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
730 Set_Etype (New_P, Etype (Old_P));
731 Set_Has_Completion (New_P);
733 if In_Open_Scopes (Old_P) then
734 Error_Msg_N ("within its scope, generic denotes its instance", N);
735 end if;
737 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
738 -- renamings and subsequent instantiations of Unchecked_Conversion.
740 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
741 Set_Is_Intrinsic_Subprogram
742 (New_P, Is_Intrinsic_Subprogram (Old_P));
743 end if;
745 Check_Library_Unit_Renaming (N, Old_P);
746 end if;
748 -- Implementation-defined aspect specifications can appear in a renaming
749 -- declaration, but not language-defined ones. The call to procedure
750 -- Analyze_Aspect_Specifications will take care of this error check.
752 if Has_Aspects (N) then
753 Analyze_Aspect_Specifications (N, New_P);
754 end if;
755 end Analyze_Generic_Renaming;
757 -----------------------------
758 -- Analyze_Object_Renaming --
759 -----------------------------
761 procedure Analyze_Object_Renaming (N : Node_Id) is
762 Id : constant Entity_Id := Defining_Identifier (N);
763 Loc : constant Source_Ptr := Sloc (N);
764 Nam : constant Node_Id := Name (N);
765 Dec : Node_Id;
766 T : Entity_Id;
767 T2 : Entity_Id;
769 procedure Check_Constrained_Object;
770 -- If the nominal type is unconstrained but the renamed object is
771 -- constrained, as can happen with renaming an explicit dereference or
772 -- a function return, build a constrained subtype from the object. If
773 -- the renaming is for a formal in an accept statement, the analysis
774 -- has already established its actual subtype. This is only relevant
775 -- if the renamed object is an explicit dereference.
777 ------------------------------
778 -- Check_Constrained_Object --
779 ------------------------------
781 procedure Check_Constrained_Object is
782 Typ : constant Entity_Id := Etype (Nam);
783 Subt : Entity_Id;
785 begin
786 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
787 and then Is_Composite_Type (Etype (Nam))
788 and then not Is_Constrained (Etype (Nam))
789 and then not Has_Unknown_Discriminants (Etype (Nam))
790 and then Expander_Active
791 then
792 -- If Actual_Subtype is already set, nothing to do
794 if Ekind_In (Id, E_Variable, E_Constant)
795 and then Present (Actual_Subtype (Id))
796 then
797 null;
799 -- A renaming of an unchecked union has no actual subtype
801 elsif Is_Unchecked_Union (Typ) then
802 null;
804 -- If a record is limited its size is invariant. This is the case
805 -- in particular with record types with an access discirminant
806 -- that are used in iterators. This is an optimization, but it
807 -- also prevents typing anomalies when the prefix is further
808 -- expanded. Limited types with discriminants are included.
810 elsif Is_Limited_Record (Typ)
811 or else
812 (Ekind (Typ) = E_Limited_Private_Type
813 and then Has_Discriminants (Typ)
814 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
815 then
816 null;
818 else
819 Subt := Make_Temporary (Loc, 'T');
820 Remove_Side_Effects (Nam);
821 Insert_Action (N,
822 Make_Subtype_Declaration (Loc,
823 Defining_Identifier => Subt,
824 Subtype_Indication =>
825 Make_Subtype_From_Expr (Nam, Typ)));
826 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
827 Set_Etype (Nam, Subt);
829 -- Freeze subtype at once, to prevent order of elaboration
830 -- issues in the backend. The renamed object exists, so its
831 -- type is already frozen in any case.
833 Freeze_Before (N, Subt);
834 end if;
835 end if;
836 end Check_Constrained_Object;
838 -- Start of processing for Analyze_Object_Renaming
840 begin
841 if Nam = Error then
842 return;
843 end if;
845 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
847 Set_Is_Pure (Id, Is_Pure (Current_Scope));
848 Enter_Name (Id);
850 -- The renaming of a component that depends on a discriminant requires
851 -- an actual subtype, because in subsequent use of the object Gigi will
852 -- be unable to locate the actual bounds. This explicit step is required
853 -- when the renaming is generated in removing side effects of an
854 -- already-analyzed expression.
856 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
858 -- The object renaming declaration may become Ghost if it renames a
859 -- Ghost entity.
861 if Is_Entity_Name (Nam) then
862 Mark_Ghost_Renaming (N, Entity (Nam));
863 end if;
865 T := Etype (Nam);
866 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
868 if Present (Dec) then
869 Insert_Action (N, Dec);
870 T := Defining_Identifier (Dec);
871 Set_Etype (Nam, T);
872 end if;
874 -- Complete analysis of the subtype mark in any case, for ASIS use
876 if Present (Subtype_Mark (N)) then
877 Find_Type (Subtype_Mark (N));
878 end if;
880 elsif Present (Subtype_Mark (N)) then
881 Find_Type (Subtype_Mark (N));
882 T := Entity (Subtype_Mark (N));
883 Analyze (Nam);
885 -- The object renaming declaration may become Ghost if it renames a
886 -- Ghost entity.
888 if Is_Entity_Name (Nam) then
889 Mark_Ghost_Renaming (N, Entity (Nam));
890 end if;
892 -- Reject renamings of conversions unless the type is tagged, or
893 -- the conversion is implicit (which can occur for cases of anonymous
894 -- access types in Ada 2012).
896 if Nkind (Nam) = N_Type_Conversion
897 and then Comes_From_Source (Nam)
898 and then not Is_Tagged_Type (T)
899 then
900 Error_Msg_N
901 ("renaming of conversion only allowed for tagged types", Nam);
902 end if;
904 Resolve (Nam, T);
906 -- If the renamed object is a function call of a limited type,
907 -- the expansion of the renaming is complicated by the presence
908 -- of various temporaries and subtypes that capture constraints
909 -- of the renamed object. Rewrite node as an object declaration,
910 -- whose expansion is simpler. Given that the object is limited
911 -- there is no copy involved and no performance hit.
913 if Nkind (Nam) = N_Function_Call
914 and then Is_Limited_View (Etype (Nam))
915 and then not Is_Constrained (Etype (Nam))
916 and then Comes_From_Source (N)
917 then
918 Set_Etype (Id, T);
919 Set_Ekind (Id, E_Constant);
920 Rewrite (N,
921 Make_Object_Declaration (Loc,
922 Defining_Identifier => Id,
923 Constant_Present => True,
924 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
925 Expression => Relocate_Node (Nam)));
926 return;
927 end if;
929 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
930 -- when renaming declaration has a named access type. The Ada 2012
931 -- coverage rules allow an anonymous access type in the context of
932 -- an expected named general access type, but the renaming rules
933 -- require the types to be the same. (An exception is when the type
934 -- of the renaming is also an anonymous access type, which can only
935 -- happen due to a renaming created by the expander.)
937 if Nkind (Nam) = N_Type_Conversion
938 and then not Comes_From_Source (Nam)
939 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
940 and then Ekind (T) /= E_Anonymous_Access_Type
941 then
942 Wrong_Type (Expression (Nam), T); -- Should we give better error???
943 end if;
945 -- Check that a class-wide object is not being renamed as an object
946 -- of a specific type. The test for access types is needed to exclude
947 -- cases where the renamed object is a dynamically tagged access
948 -- result, such as occurs in certain expansions.
950 if Is_Tagged_Type (T) then
951 Check_Dynamically_Tagged_Expression
952 (Expr => Nam,
953 Typ => T,
954 Related_Nod => N);
955 end if;
957 -- Ada 2005 (AI-230/AI-254): Access renaming
959 else pragma Assert (Present (Access_Definition (N)));
960 T :=
961 Access_Definition
962 (Related_Nod => N,
963 N => Access_Definition (N));
965 Analyze (Nam);
967 -- The object renaming declaration may become Ghost if it renames a
968 -- Ghost entity.
970 if Is_Entity_Name (Nam) then
971 Mark_Ghost_Renaming (N, Entity (Nam));
972 end if;
974 -- Ada 2005 AI05-105: if the declaration has an anonymous access
975 -- type, the renamed object must also have an anonymous type, and
976 -- this is a name resolution rule. This was implicit in the last part
977 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
978 -- recent AI.
980 if not Is_Overloaded (Nam) then
981 if Ekind (Etype (Nam)) /= Ekind (T) then
982 Error_Msg_N
983 ("expect anonymous access type in object renaming", N);
984 end if;
986 else
987 declare
988 I : Interp_Index;
989 It : Interp;
990 Typ : Entity_Id := Empty;
991 Seen : Boolean := False;
993 begin
994 Get_First_Interp (Nam, I, It);
995 while Present (It.Typ) loop
997 -- Renaming is ambiguous if more than one candidate
998 -- interpretation is type-conformant with the context.
1000 if Ekind (It.Typ) = Ekind (T) then
1001 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1002 and then
1003 Type_Conformant
1004 (Designated_Type (T), Designated_Type (It.Typ))
1005 then
1006 if not Seen then
1007 Seen := True;
1008 else
1009 Error_Msg_N
1010 ("ambiguous expression in renaming", Nam);
1011 end if;
1013 elsif Ekind (T) = E_Anonymous_Access_Type
1014 and then
1015 Covers (Designated_Type (T), Designated_Type (It.Typ))
1016 then
1017 if not Seen then
1018 Seen := True;
1019 else
1020 Error_Msg_N
1021 ("ambiguous expression in renaming", Nam);
1022 end if;
1023 end if;
1025 if Covers (T, It.Typ) then
1026 Typ := It.Typ;
1027 Set_Etype (Nam, Typ);
1028 Set_Is_Overloaded (Nam, False);
1029 end if;
1030 end if;
1032 Get_Next_Interp (I, It);
1033 end loop;
1034 end;
1035 end if;
1037 Resolve (Nam, T);
1039 -- Do not perform the legality checks below when the resolution of
1040 -- the renaming name failed because the associated type is Any_Type.
1042 if Etype (Nam) = Any_Type then
1043 null;
1045 -- Ada 2005 (AI-231): In the case where the type is defined by an
1046 -- access_definition, the renamed entity shall be of an access-to-
1047 -- constant type if and only if the access_definition defines an
1048 -- access-to-constant type. ARM 8.5.1(4)
1050 elsif Constant_Present (Access_Definition (N))
1051 and then not Is_Access_Constant (Etype (Nam))
1052 then
1053 Error_Msg_N
1054 ("(Ada 2005): the renamed object is not access-to-constant "
1055 & "(RM 8.5.1(6))", N);
1057 elsif not Constant_Present (Access_Definition (N))
1058 and then Is_Access_Constant (Etype (Nam))
1059 then
1060 Error_Msg_N
1061 ("(Ada 2005): the renamed object is not access-to-variable "
1062 & "(RM 8.5.1(6))", N);
1063 end if;
1065 if Is_Access_Subprogram_Type (Etype (Nam)) then
1066 Check_Subtype_Conformant
1067 (Designated_Type (T), Designated_Type (Etype (Nam)));
1069 elsif not Subtypes_Statically_Match
1070 (Designated_Type (T),
1071 Available_View (Designated_Type (Etype (Nam))))
1072 then
1073 Error_Msg_N
1074 ("subtype of renamed object does not statically match", N);
1075 end if;
1076 end if;
1078 -- Special processing for renaming function return object. Some errors
1079 -- and warnings are produced only for calls that come from source.
1081 if Nkind (Nam) = N_Function_Call then
1082 case Ada_Version is
1084 -- Usage is illegal in Ada 83, but renamings are also introduced
1085 -- during expansion, and error does not apply to those.
1087 when Ada_83 =>
1088 if Comes_From_Source (N) then
1089 Error_Msg_N
1090 ("(Ada 83) cannot rename function return object", Nam);
1091 end if;
1093 -- In Ada 95, warn for odd case of renaming parameterless function
1094 -- call if this is not a limited type (where this is useful).
1096 when others =>
1097 if Warn_On_Object_Renames_Function
1098 and then No (Parameter_Associations (Nam))
1099 and then not Is_Limited_Type (Etype (Nam))
1100 and then Comes_From_Source (Nam)
1101 then
1102 Error_Msg_N
1103 ("renaming function result object is suspicious?R?", Nam);
1104 Error_Msg_NE
1105 ("\function & will be called only once?R?", Nam,
1106 Entity (Name (Nam)));
1107 Error_Msg_N -- CODEFIX
1108 ("\suggest using an initialized constant object "
1109 & "instead?R?", Nam);
1110 end if;
1111 end case;
1112 end if;
1114 Check_Constrained_Object;
1116 -- An object renaming requires an exact match of the type. Class-wide
1117 -- matching is not allowed.
1119 if Is_Class_Wide_Type (T)
1120 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1121 then
1122 Wrong_Type (Nam, T);
1123 end if;
1125 T2 := Etype (Nam);
1127 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1129 if Nkind (Nam) = N_Explicit_Dereference
1130 and then Ekind (Etype (T2)) = E_Incomplete_Type
1131 then
1132 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1133 return;
1135 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1136 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1137 return;
1138 end if;
1140 -- Ada 2005 (AI-327)
1142 if Ada_Version >= Ada_2005
1143 and then Nkind (Nam) = N_Attribute_Reference
1144 and then Attribute_Name (Nam) = Name_Priority
1145 then
1146 null;
1148 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1149 declare
1150 Nam_Decl : Node_Id;
1151 Nam_Ent : Entity_Id;
1153 begin
1154 if Nkind (Nam) = N_Attribute_Reference then
1155 Nam_Ent := Entity (Prefix (Nam));
1156 else
1157 Nam_Ent := Entity (Nam);
1158 end if;
1160 Nam_Decl := Parent (Nam_Ent);
1162 if Has_Null_Exclusion (N)
1163 and then not Has_Null_Exclusion (Nam_Decl)
1164 then
1165 -- Ada 2005 (AI-423): If the object name denotes a generic
1166 -- formal object of a generic unit G, and the object renaming
1167 -- declaration occurs within the body of G or within the body
1168 -- of a generic unit declared within the declarative region
1169 -- of G, then the declaration of the formal object of G must
1170 -- have a null exclusion or a null-excluding subtype.
1172 if Is_Formal_Object (Nam_Ent)
1173 and then In_Generic_Scope (Id)
1174 then
1175 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1176 Error_Msg_N
1177 ("renamed formal does not exclude `NULL` "
1178 & "(RM 8.5.1(4.6/2))", N);
1180 elsif In_Package_Body (Scope (Id)) then
1181 Error_Msg_N
1182 ("formal object does not have a null exclusion"
1183 & "(RM 8.5.1(4.6/2))", N);
1184 end if;
1186 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1187 -- shall exclude null.
1189 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1190 Error_Msg_N
1191 ("renamed object does not exclude `NULL` "
1192 & "(RM 8.5.1(4.6/2))", N);
1194 -- An instance is illegal if it contains a renaming that
1195 -- excludes null, and the actual does not. The renaming
1196 -- declaration has already indicated that the declaration
1197 -- of the renamed actual in the instance will raise
1198 -- constraint_error.
1200 elsif Nkind (Nam_Decl) = N_Object_Declaration
1201 and then In_Instance
1202 and then
1203 Present (Corresponding_Generic_Association (Nam_Decl))
1204 and then Nkind (Expression (Nam_Decl)) =
1205 N_Raise_Constraint_Error
1206 then
1207 Error_Msg_N
1208 ("renamed actual does not exclude `NULL` "
1209 & "(RM 8.5.1(4.6/2))", N);
1211 -- Finally, if there is a null exclusion, the subtype mark
1212 -- must not be null-excluding.
1214 elsif No (Access_Definition (N))
1215 and then Can_Never_Be_Null (T)
1216 then
1217 Error_Msg_NE
1218 ("`NOT NULL` not allowed (& already excludes null)",
1219 N, T);
1221 end if;
1223 elsif Can_Never_Be_Null (T)
1224 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1225 then
1226 Error_Msg_N
1227 ("renamed object does not exclude `NULL` "
1228 & "(RM 8.5.1(4.6/2))", N);
1230 elsif Has_Null_Exclusion (N)
1231 and then No (Access_Definition (N))
1232 and then Can_Never_Be_Null (T)
1233 then
1234 Error_Msg_NE
1235 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1236 end if;
1237 end;
1238 end if;
1240 -- Set the Ekind of the entity, unless it has been set already, as is
1241 -- the case for the iteration object over a container with no variable
1242 -- indexing. In that case it's been marked as a constant, and we do not
1243 -- want to change it to a variable.
1245 if Ekind (Id) /= E_Constant then
1246 Set_Ekind (Id, E_Variable);
1247 end if;
1249 -- Initialize the object size and alignment. Note that we used to call
1250 -- Init_Size_Align here, but that's wrong for objects which have only
1251 -- an Esize, not an RM_Size field.
1253 Init_Object_Size_Align (Id);
1255 if T = Any_Type or else Etype (Nam) = Any_Type then
1256 return;
1258 -- Verify that the renamed entity is an object or a function call. It
1259 -- may have been rewritten in several ways.
1261 elsif Is_Object_Reference (Nam) then
1262 if Comes_From_Source (N) then
1263 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1264 Error_Msg_N
1265 ("illegal renaming of discriminant-dependent component", Nam);
1266 end if;
1268 -- If the renaming comes from source and the renamed object is a
1269 -- dereference, then mark the prefix as needing debug information,
1270 -- since it might have been rewritten hence internally generated
1271 -- and Debug_Renaming_Declaration will link the renaming to it.
1273 if Nkind (Nam) = N_Explicit_Dereference
1274 and then Is_Entity_Name (Prefix (Nam))
1275 then
1276 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1277 end if;
1278 end if;
1280 -- A static function call may have been folded into a literal
1282 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1284 -- When expansion is disabled, attribute reference is not rewritten
1285 -- as function call. Otherwise it may be rewritten as a conversion,
1286 -- so check original node.
1288 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1289 and then Is_Function_Attribute_Name
1290 (Attribute_Name (Original_Node (Nam))))
1292 -- Weird but legal, equivalent to renaming a function call. Illegal
1293 -- if the literal is the result of constant-folding an attribute
1294 -- reference that is not a function.
1296 or else (Is_Entity_Name (Nam)
1297 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1298 and then
1299 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1301 or else (Nkind (Nam) = N_Type_Conversion
1302 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1303 then
1304 null;
1306 elsif Nkind (Nam) = N_Type_Conversion then
1307 Error_Msg_N
1308 ("renaming of conversion only allowed for tagged types", Nam);
1310 -- Ada 2005 (AI-327)
1312 elsif Ada_Version >= Ada_2005
1313 and then Nkind (Nam) = N_Attribute_Reference
1314 and then Attribute_Name (Nam) = Name_Priority
1315 then
1316 null;
1318 -- Allow internally generated x'Ref resulting in N_Reference node
1320 elsif Nkind (Nam) = N_Reference then
1321 null;
1323 else
1324 Error_Msg_N ("expect object name in renaming", Nam);
1325 end if;
1327 Set_Etype (Id, T2);
1329 if not Is_Variable (Nam) then
1330 Set_Ekind (Id, E_Constant);
1331 Set_Never_Set_In_Source (Id, True);
1332 Set_Is_True_Constant (Id, True);
1333 end if;
1335 -- The entity of the renaming declaration needs to reflect whether the
1336 -- renamed object is volatile. Is_Volatile is set if the renamed object
1337 -- is volatile in the RM legality sense.
1339 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1341 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1343 if Is_Entity_Name (Nam) then
1344 Set_Is_Atomic (Id, Is_Atomic (Entity (Nam)));
1345 Set_Is_Independent (Id, Is_Independent (Entity (Nam)));
1346 Set_Is_Volatile_Full_Access (Id,
1347 Is_Volatile_Full_Access (Entity (Nam)));
1348 end if;
1350 -- Treat as volatile if we just set the Volatile flag
1352 if Is_Volatile (Id)
1354 -- Or if we are renaming an entity which was marked this way
1356 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1358 or else (Is_Entity_Name (Nam)
1359 and then Treat_As_Volatile (Entity (Nam)))
1360 then
1361 Set_Treat_As_Volatile (Id, True);
1362 end if;
1364 -- Now make the link to the renamed object
1366 Set_Renamed_Object (Id, Nam);
1368 -- Implementation-defined aspect specifications can appear in a renaming
1369 -- declaration, but not language-defined ones. The call to procedure
1370 -- Analyze_Aspect_Specifications will take care of this error check.
1372 if Has_Aspects (N) then
1373 Analyze_Aspect_Specifications (N, Id);
1374 end if;
1376 -- Deal with dimensions
1378 Analyze_Dimension (N);
1379 end Analyze_Object_Renaming;
1381 ------------------------------
1382 -- Analyze_Package_Renaming --
1383 ------------------------------
1385 procedure Analyze_Package_Renaming (N : Node_Id) is
1386 New_P : constant Entity_Id := Defining_Entity (N);
1387 Old_P : Entity_Id;
1388 Spec : Node_Id;
1390 begin
1391 if Name (N) = Error then
1392 return;
1393 end if;
1395 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1397 Check_Text_IO_Special_Unit (Name (N));
1399 if Current_Scope /= Standard_Standard then
1400 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1401 end if;
1403 Enter_Name (New_P);
1404 Analyze (Name (N));
1406 if Is_Entity_Name (Name (N)) then
1407 Old_P := Entity (Name (N));
1408 else
1409 Old_P := Any_Id;
1410 end if;
1412 if Etype (Old_P) = Any_Type then
1413 Error_Msg_N ("expect package name in renaming", Name (N));
1415 elsif Ekind (Old_P) /= E_Package
1416 and then not (Ekind (Old_P) = E_Generic_Package
1417 and then In_Open_Scopes (Old_P))
1418 then
1419 if Ekind (Old_P) = E_Generic_Package then
1420 Error_Msg_N
1421 ("generic package cannot be renamed as a package", Name (N));
1422 else
1423 Error_Msg_Sloc := Sloc (Old_P);
1424 Error_Msg_NE
1425 ("expect package name in renaming, found& declared#",
1426 Name (N), Old_P);
1427 end if;
1429 -- Set basic attributes to minimize cascaded errors
1431 Set_Ekind (New_P, E_Package);
1432 Set_Etype (New_P, Standard_Void_Type);
1434 -- Here for OK package renaming
1436 else
1437 -- Entities in the old package are accessible through the renaming
1438 -- entity. The simplest implementation is to have both packages share
1439 -- the entity list.
1441 Set_Ekind (New_P, E_Package);
1442 Set_Etype (New_P, Standard_Void_Type);
1444 if Present (Renamed_Object (Old_P)) then
1445 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1446 else
1447 Set_Renamed_Object (New_P, Old_P);
1448 end if;
1450 -- The package renaming declaration may become Ghost if it renames a
1451 -- Ghost entity.
1453 Mark_Ghost_Renaming (N, Old_P);
1455 Set_Has_Completion (New_P);
1456 Set_First_Entity (New_P, First_Entity (Old_P));
1457 Set_Last_Entity (New_P, Last_Entity (Old_P));
1458 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1459 Check_Library_Unit_Renaming (N, Old_P);
1460 Generate_Reference (Old_P, Name (N));
1462 -- If the renaming is in the visible part of a package, then we set
1463 -- Renamed_In_Spec for the renamed package, to prevent giving
1464 -- warnings about no entities referenced. Such a warning would be
1465 -- overenthusiastic, since clients can see entities in the renamed
1466 -- package via the visible package renaming.
1468 declare
1469 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1470 begin
1471 if Ekind (Ent) = E_Package
1472 and then not In_Private_Part (Ent)
1473 and then In_Extended_Main_Source_Unit (N)
1474 and then Ekind (Old_P) = E_Package
1475 then
1476 Set_Renamed_In_Spec (Old_P);
1477 end if;
1478 end;
1480 -- If this is the renaming declaration of a package instantiation
1481 -- within itself, it is the declaration that ends the list of actuals
1482 -- for the instantiation. At this point, the subtypes that rename
1483 -- the actuals are flagged as generic, to avoid spurious ambiguities
1484 -- if the actuals for two distinct formals happen to coincide. If
1485 -- the actual is a private type, the subtype has a private completion
1486 -- that is flagged in the same fashion.
1488 -- Resolution is identical to what is was in the original generic.
1489 -- On exit from the generic instance, these are turned into regular
1490 -- subtypes again, so they are compatible with types in their class.
1492 if not Is_Generic_Instance (Old_P) then
1493 return;
1494 else
1495 Spec := Specification (Unit_Declaration_Node (Old_P));
1496 end if;
1498 if Nkind (Spec) = N_Package_Specification
1499 and then Present (Generic_Parent (Spec))
1500 and then Old_P = Current_Scope
1501 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1502 then
1503 declare
1504 E : Entity_Id;
1506 begin
1507 E := First_Entity (Old_P);
1508 while Present (E) and then E /= New_P loop
1509 if Is_Type (E)
1510 and then Nkind (Parent (E)) = N_Subtype_Declaration
1511 then
1512 Set_Is_Generic_Actual_Type (E);
1514 if Is_Private_Type (E)
1515 and then Present (Full_View (E))
1516 then
1517 Set_Is_Generic_Actual_Type (Full_View (E));
1518 end if;
1519 end if;
1521 Next_Entity (E);
1522 end loop;
1523 end;
1524 end if;
1525 end if;
1527 -- Implementation-defined aspect specifications can appear in a renaming
1528 -- declaration, but not language-defined ones. The call to procedure
1529 -- Analyze_Aspect_Specifications will take care of this error check.
1531 if Has_Aspects (N) then
1532 Analyze_Aspect_Specifications (N, New_P);
1533 end if;
1534 end Analyze_Package_Renaming;
1536 -------------------------------
1537 -- Analyze_Renamed_Character --
1538 -------------------------------
1540 procedure Analyze_Renamed_Character
1541 (N : Node_Id;
1542 New_S : Entity_Id;
1543 Is_Body : Boolean)
1545 C : constant Node_Id := Name (N);
1547 begin
1548 if Ekind (New_S) = E_Function then
1549 Resolve (C, Etype (New_S));
1551 if Is_Body then
1552 Check_Frozen_Renaming (N, New_S);
1553 end if;
1555 else
1556 Error_Msg_N ("character literal can only be renamed as function", N);
1557 end if;
1558 end Analyze_Renamed_Character;
1560 ---------------------------------
1561 -- Analyze_Renamed_Dereference --
1562 ---------------------------------
1564 procedure Analyze_Renamed_Dereference
1565 (N : Node_Id;
1566 New_S : Entity_Id;
1567 Is_Body : Boolean)
1569 Nam : constant Node_Id := Name (N);
1570 P : constant Node_Id := Prefix (Nam);
1571 Typ : Entity_Id;
1572 Ind : Interp_Index;
1573 It : Interp;
1575 begin
1576 if not Is_Overloaded (P) then
1577 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1578 or else not Type_Conformant (Etype (Nam), New_S)
1579 then
1580 Error_Msg_N ("designated type does not match specification", P);
1581 else
1582 Resolve (P);
1583 end if;
1585 return;
1587 else
1588 Typ := Any_Type;
1589 Get_First_Interp (Nam, Ind, It);
1591 while Present (It.Nam) loop
1593 if Ekind (It.Nam) = E_Subprogram_Type
1594 and then Type_Conformant (It.Nam, New_S)
1595 then
1596 if Typ /= Any_Id then
1597 Error_Msg_N ("ambiguous renaming", P);
1598 return;
1599 else
1600 Typ := It.Nam;
1601 end if;
1602 end if;
1604 Get_Next_Interp (Ind, It);
1605 end loop;
1607 if Typ = Any_Type then
1608 Error_Msg_N ("designated type does not match specification", P);
1609 else
1610 Resolve (N, Typ);
1612 if Is_Body then
1613 Check_Frozen_Renaming (N, New_S);
1614 end if;
1615 end if;
1616 end if;
1617 end Analyze_Renamed_Dereference;
1619 ---------------------------
1620 -- Analyze_Renamed_Entry --
1621 ---------------------------
1623 procedure Analyze_Renamed_Entry
1624 (N : Node_Id;
1625 New_S : Entity_Id;
1626 Is_Body : Boolean)
1628 Nam : constant Node_Id := Name (N);
1629 Sel : constant Node_Id := Selector_Name (Nam);
1630 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1631 Old_S : Entity_Id;
1633 begin
1634 if Entity (Sel) = Any_Id then
1636 -- Selector is undefined on prefix. Error emitted already
1638 Set_Has_Completion (New_S);
1639 return;
1640 end if;
1642 -- Otherwise find renamed entity and build body of New_S as a call to it
1644 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1646 if Old_S = Any_Id then
1647 Error_Msg_N (" no subprogram or entry matches specification", N);
1648 else
1649 if Is_Body then
1650 Check_Subtype_Conformant (New_S, Old_S, N);
1651 Generate_Reference (New_S, Defining_Entity (N), 'b');
1652 Style.Check_Identifier (Defining_Entity (N), New_S);
1654 else
1655 -- Only mode conformance required for a renaming_as_declaration
1657 Check_Mode_Conformant (New_S, Old_S, N);
1658 end if;
1660 Inherit_Renamed_Profile (New_S, Old_S);
1662 -- The prefix can be an arbitrary expression that yields a task or
1663 -- protected object, so it must be resolved.
1665 Resolve (Prefix (Nam), Scope (Old_S));
1666 end if;
1668 Set_Convention (New_S, Convention (Old_S));
1669 Set_Has_Completion (New_S, Inside_A_Generic);
1671 -- AI05-0225: If the renamed entity is a procedure or entry of a
1672 -- protected object, the target object must be a variable.
1674 if Ekind (Scope (Old_S)) in Protected_Kind
1675 and then Ekind (New_S) = E_Procedure
1676 and then not Is_Variable (Prefix (Nam))
1677 then
1678 if Is_Actual then
1679 Error_Msg_N
1680 ("target object of protected operation used as actual for "
1681 & "formal procedure must be a variable", Nam);
1682 else
1683 Error_Msg_N
1684 ("target object of protected operation renamed as procedure, "
1685 & "must be a variable", Nam);
1686 end if;
1687 end if;
1689 if Is_Body then
1690 Check_Frozen_Renaming (N, New_S);
1691 end if;
1692 end Analyze_Renamed_Entry;
1694 -----------------------------------
1695 -- Analyze_Renamed_Family_Member --
1696 -----------------------------------
1698 procedure Analyze_Renamed_Family_Member
1699 (N : Node_Id;
1700 New_S : Entity_Id;
1701 Is_Body : Boolean)
1703 Nam : constant Node_Id := Name (N);
1704 P : constant Node_Id := Prefix (Nam);
1705 Old_S : Entity_Id;
1707 begin
1708 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1709 or else (Nkind (P) = N_Selected_Component
1710 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1711 then
1712 if Is_Entity_Name (P) then
1713 Old_S := Entity (P);
1714 else
1715 Old_S := Entity (Selector_Name (P));
1716 end if;
1718 if not Entity_Matches_Spec (Old_S, New_S) then
1719 Error_Msg_N ("entry family does not match specification", N);
1721 elsif Is_Body then
1722 Check_Subtype_Conformant (New_S, Old_S, N);
1723 Generate_Reference (New_S, Defining_Entity (N), 'b');
1724 Style.Check_Identifier (Defining_Entity (N), New_S);
1725 end if;
1727 else
1728 Error_Msg_N ("no entry family matches specification", N);
1729 end if;
1731 Set_Has_Completion (New_S, Inside_A_Generic);
1733 if Is_Body then
1734 Check_Frozen_Renaming (N, New_S);
1735 end if;
1736 end Analyze_Renamed_Family_Member;
1738 -----------------------------------------
1739 -- Analyze_Renamed_Primitive_Operation --
1740 -----------------------------------------
1742 procedure Analyze_Renamed_Primitive_Operation
1743 (N : Node_Id;
1744 New_S : Entity_Id;
1745 Is_Body : Boolean)
1747 Old_S : Entity_Id;
1749 function Conforms
1750 (Subp : Entity_Id;
1751 Ctyp : Conformance_Type) return Boolean;
1752 -- Verify that the signatures of the renamed entity and the new entity
1753 -- match. The first formal of the renamed entity is skipped because it
1754 -- is the target object in any subsequent call.
1756 --------------
1757 -- Conforms --
1758 --------------
1760 function Conforms
1761 (Subp : Entity_Id;
1762 Ctyp : Conformance_Type) return Boolean
1764 Old_F : Entity_Id;
1765 New_F : Entity_Id;
1767 begin
1768 if Ekind (Subp) /= Ekind (New_S) then
1769 return False;
1770 end if;
1772 Old_F := Next_Formal (First_Formal (Subp));
1773 New_F := First_Formal (New_S);
1774 while Present (Old_F) and then Present (New_F) loop
1775 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1776 return False;
1777 end if;
1779 if Ctyp >= Mode_Conformant
1780 and then Ekind (Old_F) /= Ekind (New_F)
1781 then
1782 return False;
1783 end if;
1785 Next_Formal (New_F);
1786 Next_Formal (Old_F);
1787 end loop;
1789 return True;
1790 end Conforms;
1792 -- Start of processing for Analyze_Renamed_Primitive_Operation
1794 begin
1795 if not Is_Overloaded (Selector_Name (Name (N))) then
1796 Old_S := Entity (Selector_Name (Name (N)));
1798 if not Conforms (Old_S, Type_Conformant) then
1799 Old_S := Any_Id;
1800 end if;
1802 else
1803 -- Find the operation that matches the given signature
1805 declare
1806 It : Interp;
1807 Ind : Interp_Index;
1809 begin
1810 Old_S := Any_Id;
1811 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1813 while Present (It.Nam) loop
1814 if Conforms (It.Nam, Type_Conformant) then
1815 Old_S := It.Nam;
1816 end if;
1818 Get_Next_Interp (Ind, It);
1819 end loop;
1820 end;
1821 end if;
1823 if Old_S = Any_Id then
1824 Error_Msg_N (" no subprogram or entry matches specification", N);
1826 else
1827 if Is_Body then
1828 if not Conforms (Old_S, Subtype_Conformant) then
1829 Error_Msg_N ("subtype conformance error in renaming", N);
1830 end if;
1832 Generate_Reference (New_S, Defining_Entity (N), 'b');
1833 Style.Check_Identifier (Defining_Entity (N), New_S);
1835 else
1836 -- Only mode conformance required for a renaming_as_declaration
1838 if not Conforms (Old_S, Mode_Conformant) then
1839 Error_Msg_N ("mode conformance error in renaming", N);
1840 end if;
1842 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1843 -- view of a subprogram is intrinsic, because the compiler has
1844 -- to generate a wrapper for any call to it. If the name in a
1845 -- subprogram renaming is a prefixed view, the entity is thus
1846 -- intrinsic, and 'Access cannot be applied to it.
1848 Set_Convention (New_S, Convention_Intrinsic);
1849 end if;
1851 -- Inherit_Renamed_Profile (New_S, Old_S);
1853 -- The prefix can be an arbitrary expression that yields an
1854 -- object, so it must be resolved.
1856 Resolve (Prefix (Name (N)));
1857 end if;
1858 end Analyze_Renamed_Primitive_Operation;
1860 ---------------------------------
1861 -- Analyze_Subprogram_Renaming --
1862 ---------------------------------
1864 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1865 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1866 Is_Actual : constant Boolean := Present (Formal_Spec);
1867 Nam : constant Node_Id := Name (N);
1868 Save_AV : constant Ada_Version_Type := Ada_Version;
1869 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1870 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1871 Spec : constant Node_Id := Specification (N);
1873 Old_S : Entity_Id := Empty;
1874 Rename_Spec : Entity_Id;
1876 procedure Build_Class_Wide_Wrapper
1877 (Ren_Id : out Entity_Id;
1878 Wrap_Id : out Entity_Id);
1879 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1880 -- type with unknown discriminants and a generic primitive operation of
1881 -- the said type with a box require special processing when the actual
1882 -- is a class-wide type:
1884 -- generic
1885 -- type Formal_Typ (<>) is private;
1886 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1887 -- package Gen is ...
1889 -- package Inst is new Gen (Actual_Typ'Class);
1891 -- In this case the general renaming mechanism used in the prologue of
1892 -- an instance no longer applies:
1894 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1896 -- The above is replaced the following wrapper/renaming combination:
1898 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1899 -- begin
1900 -- Prim_Op (Param); -- primitive
1901 -- end Wrapper;
1903 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1905 -- This transformation applies only if there is no explicit visible
1906 -- class-wide operation at the point of the instantiation. Ren_Id is
1907 -- the entity of the renaming declaration. When the transformation
1908 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1909 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1910 -- operation.
1912 procedure Check_Null_Exclusion
1913 (Ren : Entity_Id;
1914 Sub : Entity_Id);
1915 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1916 -- following AI rules:
1918 -- If Ren is a renaming of a formal subprogram and one of its
1919 -- parameters has a null exclusion, then the corresponding formal
1920 -- in Sub must also have one. Otherwise the subtype of the Sub's
1921 -- formal parameter must exclude null.
1923 -- If Ren is a renaming of a formal function and its return
1924 -- profile has a null exclusion, then Sub's return profile must
1925 -- have one. Otherwise the subtype of Sub's return profile must
1926 -- exclude null.
1928 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id);
1929 -- Ensure that a SPARK renaming denoted by its entity Subp_Id does not
1930 -- declare a primitive operation of a tagged type (SPARK RM 6.1.1(3)).
1932 procedure Freeze_Actual_Profile;
1933 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1934 -- types: a callable entity freezes its profile, unless it has an
1935 -- incomplete untagged formal (RM 13.14(10.2/3)).
1937 function Has_Class_Wide_Actual return Boolean;
1938 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1939 -- defaulted formal subprogram where the actual for the controlling
1940 -- formal type is class-wide.
1942 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1943 -- Find renamed entity when the declaration is a renaming_as_body and
1944 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1945 -- rule that a renaming_as_body is illegal if the declaration occurs
1946 -- before the subprogram it completes is frozen, and renaming indirectly
1947 -- renames the subprogram itself.(Defect Report 8652/0027).
1949 ------------------------------
1950 -- Build_Class_Wide_Wrapper --
1951 ------------------------------
1953 procedure Build_Class_Wide_Wrapper
1954 (Ren_Id : out Entity_Id;
1955 Wrap_Id : out Entity_Id)
1957 Loc : constant Source_Ptr := Sloc (N);
1959 function Build_Call
1960 (Subp_Id : Entity_Id;
1961 Params : List_Id) return Node_Id;
1962 -- Create a dispatching call to invoke routine Subp_Id with actuals
1963 -- built from the parameter specifications of list Params.
1965 function Build_Expr_Fun_Call
1966 (Subp_Id : Entity_Id;
1967 Params : List_Id) return Node_Id;
1968 -- Create a dispatching call to invoke function Subp_Id with actuals
1969 -- built from the parameter specifications of list Params. Return
1970 -- directly the call, so that it can be used inside an expression
1971 -- function. This is a specificity of the GNATprove mode.
1973 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1974 -- Create a subprogram specification based on the subprogram profile
1975 -- of Subp_Id.
1977 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1978 -- Find a primitive subprogram of type Typ which matches the profile
1979 -- of the renaming declaration.
1981 procedure Interpretation_Error (Subp_Id : Entity_Id);
1982 -- Emit a continuation error message suggesting subprogram Subp_Id as
1983 -- a possible interpretation.
1985 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1986 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1987 -- operator.
1989 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1990 -- Determine whether subprogram Subp_Id is a suitable candidate for
1991 -- the role of a wrapped subprogram.
1993 ----------------
1994 -- Build_Call --
1995 ----------------
1997 function Build_Call
1998 (Subp_Id : Entity_Id;
1999 Params : List_Id) return Node_Id
2001 Actuals : constant List_Id := New_List;
2002 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2003 Formal : Node_Id;
2005 begin
2006 -- Build the actual parameters of the call
2008 Formal := First (Params);
2009 while Present (Formal) loop
2010 Append_To (Actuals,
2011 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2012 Next (Formal);
2013 end loop;
2015 -- Generate:
2016 -- return Subp_Id (Actuals);
2018 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2019 return
2020 Make_Simple_Return_Statement (Loc,
2021 Expression =>
2022 Make_Function_Call (Loc,
2023 Name => Call_Ref,
2024 Parameter_Associations => Actuals));
2026 -- Generate:
2027 -- Subp_Id (Actuals);
2029 else
2030 return
2031 Make_Procedure_Call_Statement (Loc,
2032 Name => Call_Ref,
2033 Parameter_Associations => Actuals);
2034 end if;
2035 end Build_Call;
2037 -------------------------
2038 -- Build_Expr_Fun_Call --
2039 -------------------------
2041 function Build_Expr_Fun_Call
2042 (Subp_Id : Entity_Id;
2043 Params : List_Id) return Node_Id
2045 Actuals : constant List_Id := New_List;
2046 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2047 Formal : Node_Id;
2049 begin
2050 pragma Assert (Ekind_In (Subp_Id, E_Function, E_Operator));
2052 -- Build the actual parameters of the call
2054 Formal := First (Params);
2055 while Present (Formal) loop
2056 Append_To (Actuals,
2057 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2058 Next (Formal);
2059 end loop;
2061 -- Generate:
2062 -- Subp_Id (Actuals);
2064 return
2065 Make_Function_Call (Loc,
2066 Name => Call_Ref,
2067 Parameter_Associations => Actuals);
2068 end Build_Expr_Fun_Call;
2070 ----------------
2071 -- Build_Spec --
2072 ----------------
2074 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2075 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2076 Spec_Id : constant Entity_Id :=
2077 Make_Defining_Identifier (Loc,
2078 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2080 begin
2081 if Ekind (Formal_Spec) = E_Procedure then
2082 return
2083 Make_Procedure_Specification (Loc,
2084 Defining_Unit_Name => Spec_Id,
2085 Parameter_Specifications => Params);
2086 else
2087 return
2088 Make_Function_Specification (Loc,
2089 Defining_Unit_Name => Spec_Id,
2090 Parameter_Specifications => Params,
2091 Result_Definition =>
2092 New_Copy_Tree (Result_Definition (Spec)));
2093 end if;
2094 end Build_Spec;
2096 --------------------
2097 -- Find_Primitive --
2098 --------------------
2100 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2101 procedure Replace_Parameter_Types (Spec : Node_Id);
2102 -- Given a specification Spec, replace all class-wide parameter
2103 -- types with reference to type Typ.
2105 -----------------------------
2106 -- Replace_Parameter_Types --
2107 -----------------------------
2109 procedure Replace_Parameter_Types (Spec : Node_Id) is
2110 Formal : Node_Id;
2111 Formal_Id : Entity_Id;
2112 Formal_Typ : Node_Id;
2114 begin
2115 Formal := First (Parameter_Specifications (Spec));
2116 while Present (Formal) loop
2117 Formal_Id := Defining_Identifier (Formal);
2118 Formal_Typ := Parameter_Type (Formal);
2120 -- Create a new entity for each class-wide formal to prevent
2121 -- aliasing with the original renaming. Replace the type of
2122 -- such a parameter with the candidate type.
2124 if Nkind (Formal_Typ) = N_Identifier
2125 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2126 then
2127 Set_Defining_Identifier (Formal,
2128 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2130 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2131 end if;
2133 Next (Formal);
2134 end loop;
2135 end Replace_Parameter_Types;
2137 -- Local variables
2139 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2140 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2141 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2142 Subp_Id : Entity_Id;
2144 -- Start of processing for Find_Primitive
2146 begin
2147 -- Each attempt to find a suitable primitive of a particular type
2148 -- operates on its own copy of the original renaming. As a result
2149 -- the original renaming is kept decoration and side-effect free.
2151 -- Inherit the overloaded status of the renamed subprogram name
2153 if Is_Overloaded (Nam) then
2154 Set_Is_Overloaded (Alt_Nam);
2155 Save_Interps (Nam, Alt_Nam);
2156 end if;
2158 -- The copied renaming is hidden from visibility to prevent the
2159 -- pollution of the enclosing context.
2161 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2163 -- The types of all class-wide parameters must be changed to the
2164 -- candidate type.
2166 Replace_Parameter_Types (Alt_Spec);
2168 -- Try to find a suitable primitive which matches the altered
2169 -- profile of the renaming specification.
2171 Subp_Id :=
2172 Find_Renamed_Entity
2173 (N => Alt_Ren,
2174 Nam => Name (Alt_Ren),
2175 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2176 Is_Actual => Is_Actual);
2178 -- Do not return Any_Id if the resolion of the altered profile
2179 -- failed as this complicates further checks on the caller side,
2180 -- return Empty instead.
2182 if Subp_Id = Any_Id then
2183 return Empty;
2184 else
2185 return Subp_Id;
2186 end if;
2187 end Find_Primitive;
2189 --------------------------
2190 -- Interpretation_Error --
2191 --------------------------
2193 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2194 begin
2195 Error_Msg_Sloc := Sloc (Subp_Id);
2197 if Is_Internal (Subp_Id) then
2198 Error_Msg_NE
2199 ("\\possible interpretation: predefined & #",
2200 Spec, Formal_Spec);
2201 else
2202 Error_Msg_NE
2203 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2204 end if;
2205 end Interpretation_Error;
2207 ---------------------------
2208 -- Is_Intrinsic_Equality --
2209 ---------------------------
2211 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2212 begin
2213 return
2214 Ekind (Subp_Id) = E_Operator
2215 and then Chars (Subp_Id) = Name_Op_Eq
2216 and then Is_Intrinsic_Subprogram (Subp_Id);
2217 end Is_Intrinsic_Equality;
2219 ---------------------------
2220 -- Is_Suitable_Candidate --
2221 ---------------------------
2223 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2224 begin
2225 if No (Subp_Id) then
2226 return False;
2228 -- An intrinsic subprogram is never a good candidate. This is an
2229 -- indication of a missing primitive, either defined directly or
2230 -- inherited from a parent tagged type.
2232 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2233 return False;
2235 else
2236 return True;
2237 end if;
2238 end Is_Suitable_Candidate;
2240 -- Local variables
2242 Actual_Typ : Entity_Id := Empty;
2243 -- The actual class-wide type for Formal_Typ
2245 CW_Prim_OK : Boolean;
2246 CW_Prim_Op : Entity_Id;
2247 -- The class-wide subprogram (if available) which corresponds to the
2248 -- renamed generic formal subprogram.
2250 Formal_Typ : Entity_Id := Empty;
2251 -- The generic formal type with unknown discriminants
2253 Root_Prim_OK : Boolean;
2254 Root_Prim_Op : Entity_Id;
2255 -- The root type primitive (if available) which corresponds to the
2256 -- renamed generic formal subprogram.
2258 Root_Typ : Entity_Id := Empty;
2259 -- The root type of Actual_Typ
2261 Body_Decl : Node_Id;
2262 Formal : Node_Id;
2263 Prim_Op : Entity_Id;
2264 Spec_Decl : Node_Id;
2265 New_Spec : Node_Id;
2267 -- Start of processing for Build_Class_Wide_Wrapper
2269 begin
2270 -- Analyze the specification of the renaming in case the generation
2271 -- of the class-wide wrapper fails.
2273 Ren_Id := Analyze_Subprogram_Specification (Spec);
2274 Wrap_Id := Any_Id;
2276 -- Do not attempt to build a wrapper if the renaming is in error
2278 if Error_Posted (Nam) then
2279 return;
2280 end if;
2282 -- Analyze the renamed name, but do not resolve it. The resolution is
2283 -- completed once a suitable subprogram is found.
2285 Analyze (Nam);
2287 -- When the renamed name denotes the intrinsic operator equals, the
2288 -- name must be treated as overloaded. This allows for a potential
2289 -- match against the root type's predefined equality function.
2291 if Is_Intrinsic_Equality (Entity (Nam)) then
2292 Set_Is_Overloaded (Nam);
2293 Collect_Interps (Nam);
2294 end if;
2296 -- Step 1: Find the generic formal type with unknown discriminants
2297 -- and its corresponding class-wide actual type from the renamed
2298 -- generic formal subprogram.
2300 Formal := First_Formal (Formal_Spec);
2301 while Present (Formal) loop
2302 if Has_Unknown_Discriminants (Etype (Formal))
2303 and then not Is_Class_Wide_Type (Etype (Formal))
2304 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2305 then
2306 Formal_Typ := Etype (Formal);
2307 Actual_Typ := Get_Instance_Of (Formal_Typ);
2308 Root_Typ := Etype (Actual_Typ);
2309 exit;
2310 end if;
2312 Next_Formal (Formal);
2313 end loop;
2315 -- The specification of the generic formal subprogram should always
2316 -- contain a formal type with unknown discriminants whose actual is
2317 -- a class-wide type, otherwise this indicates a failure in routine
2318 -- Has_Class_Wide_Actual.
2320 pragma Assert (Present (Formal_Typ));
2322 -- Step 2: Find the proper class-wide subprogram or primitive which
2323 -- corresponds to the renamed generic formal subprogram.
2325 CW_Prim_Op := Find_Primitive (Actual_Typ);
2326 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2327 Root_Prim_Op := Find_Primitive (Root_Typ);
2328 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2330 -- The class-wide actual type has two subprograms which correspond to
2331 -- the renamed generic formal subprogram:
2333 -- with procedure Prim_Op (Param : Formal_Typ);
2335 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2336 -- procedure Prim_Op (Param : Actual_Typ'Class);
2338 -- Even though the declaration of the two subprograms is legal, a
2339 -- call to either one is ambiguous and therefore illegal.
2341 if CW_Prim_OK and Root_Prim_OK then
2343 -- A user-defined primitive has precedence over a predefined one
2345 if Is_Internal (CW_Prim_Op)
2346 and then not Is_Internal (Root_Prim_Op)
2347 then
2348 Prim_Op := Root_Prim_Op;
2350 elsif Is_Internal (Root_Prim_Op)
2351 and then not Is_Internal (CW_Prim_Op)
2352 then
2353 Prim_Op := CW_Prim_Op;
2355 elsif CW_Prim_Op = Root_Prim_Op then
2356 Prim_Op := Root_Prim_Op;
2358 -- Otherwise both candidate subprograms are user-defined and
2359 -- ambiguous.
2361 else
2362 Error_Msg_NE
2363 ("ambiguous actual for generic subprogram &",
2364 Spec, Formal_Spec);
2365 Interpretation_Error (Root_Prim_Op);
2366 Interpretation_Error (CW_Prim_Op);
2367 return;
2368 end if;
2370 elsif CW_Prim_OK and not Root_Prim_OK then
2371 Prim_Op := CW_Prim_Op;
2373 elsif not CW_Prim_OK and Root_Prim_OK then
2374 Prim_Op := Root_Prim_Op;
2376 -- An intrinsic equality may act as a suitable candidate in the case
2377 -- of a null type extension where the parent's equality is hidden. A
2378 -- call to an intrinsic equality is expanded as dispatching.
2380 elsif Present (Root_Prim_Op)
2381 and then Is_Intrinsic_Equality (Root_Prim_Op)
2382 then
2383 Prim_Op := Root_Prim_Op;
2385 -- Otherwise there are no candidate subprograms. Let the caller
2386 -- diagnose the error.
2388 else
2389 return;
2390 end if;
2392 -- At this point resolution has taken place and the name is no longer
2393 -- overloaded. Mark the primitive as referenced.
2395 Set_Is_Overloaded (Name (N), False);
2396 Set_Referenced (Prim_Op);
2398 -- Do not generate a wrapper when the only candidate is a class-wide
2399 -- subprogram. Instead modify the renaming to directly map the actual
2400 -- to the generic formal.
2402 if CW_Prim_OK and then Prim_Op = CW_Prim_Op then
2403 Wrap_Id := Prim_Op;
2404 Rewrite (Nam, New_Occurrence_Of (Prim_Op, Loc));
2405 return;
2406 end if;
2408 -- Step 3: Create the declaration and the body of the wrapper, insert
2409 -- all the pieces into the tree.
2411 -- In GNATprove mode, create a function wrapper in the form of an
2412 -- expression function, so that an implicit postcondition relating
2413 -- the result of calling the wrapper function and the result of the
2414 -- dispatching call to the wrapped function is known during proof.
2416 if GNATprove_Mode
2417 and then Ekind_In (Ren_Id, E_Function, E_Operator)
2418 then
2419 New_Spec := Build_Spec (Ren_Id);
2420 Body_Decl :=
2421 Make_Expression_Function (Loc,
2422 Specification => New_Spec,
2423 Expression =>
2424 Build_Expr_Fun_Call
2425 (Subp_Id => Prim_Op,
2426 Params => Parameter_Specifications (New_Spec)));
2428 Wrap_Id := Defining_Entity (Body_Decl);
2430 -- Otherwise, create separate spec and body for the subprogram
2432 else
2433 Spec_Decl :=
2434 Make_Subprogram_Declaration (Loc,
2435 Specification => Build_Spec (Ren_Id));
2436 Insert_Before_And_Analyze (N, Spec_Decl);
2438 Wrap_Id := Defining_Entity (Spec_Decl);
2440 Body_Decl :=
2441 Make_Subprogram_Body (Loc,
2442 Specification => Build_Spec (Ren_Id),
2443 Declarations => New_List,
2444 Handled_Statement_Sequence =>
2445 Make_Handled_Sequence_Of_Statements (Loc,
2446 Statements => New_List (
2447 Build_Call
2448 (Subp_Id => Prim_Op,
2449 Params =>
2450 Parameter_Specifications
2451 (Specification (Spec_Decl))))));
2453 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
2454 end if;
2456 -- If the operator carries an Eliminated pragma, indicate that the
2457 -- wrapper is also to be eliminated, to prevent spurious error when
2458 -- using gnatelim on programs that include box-initialization of
2459 -- equality operators.
2461 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2463 -- In GNATprove mode, insert the body in the tree for analysis
2465 if GNATprove_Mode then
2466 Insert_Before_And_Analyze (N, Body_Decl);
2467 end if;
2469 -- The generated body does not freeze and must be analyzed when the
2470 -- class-wide wrapper is frozen. The body is only needed if expansion
2471 -- is enabled.
2473 if Expander_Active then
2474 Append_Freeze_Action (Wrap_Id, Body_Decl);
2475 end if;
2477 -- Step 4: The subprogram renaming aliases the wrapper
2479 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2480 end Build_Class_Wide_Wrapper;
2482 --------------------------
2483 -- Check_Null_Exclusion --
2484 --------------------------
2486 procedure Check_Null_Exclusion
2487 (Ren : Entity_Id;
2488 Sub : Entity_Id)
2490 Ren_Formal : Entity_Id;
2491 Sub_Formal : Entity_Id;
2493 begin
2494 -- Parameter check
2496 Ren_Formal := First_Formal (Ren);
2497 Sub_Formal := First_Formal (Sub);
2498 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2499 if Has_Null_Exclusion (Parent (Ren_Formal))
2500 and then
2501 not (Has_Null_Exclusion (Parent (Sub_Formal))
2502 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2503 then
2504 Error_Msg_NE
2505 ("`NOT NULL` required for parameter &",
2506 Parent (Sub_Formal), Sub_Formal);
2507 end if;
2509 Next_Formal (Ren_Formal);
2510 Next_Formal (Sub_Formal);
2511 end loop;
2513 -- Return profile check
2515 if Nkind (Parent (Ren)) = N_Function_Specification
2516 and then Nkind (Parent (Sub)) = N_Function_Specification
2517 and then Has_Null_Exclusion (Parent (Ren))
2518 and then not (Has_Null_Exclusion (Parent (Sub))
2519 or else Can_Never_Be_Null (Etype (Sub)))
2520 then
2521 Error_Msg_N
2522 ("return must specify `NOT NULL`",
2523 Result_Definition (Parent (Sub)));
2524 end if;
2525 end Check_Null_Exclusion;
2527 -------------------------------------
2528 -- Check_SPARK_Primitive_Operation --
2529 -------------------------------------
2531 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id) is
2532 Prag : constant Node_Id := SPARK_Pragma (Subp_Id);
2533 Typ : Entity_Id;
2535 begin
2536 -- Nothing to do when the subprogram is not subject to SPARK_Mode On
2537 -- because this check applies to SPARK code only.
2539 if not (Present (Prag)
2540 and then Get_SPARK_Mode_From_Annotation (Prag) = On)
2541 then
2542 return;
2544 -- Nothing to do when the subprogram is not a primitive operation
2546 elsif not Is_Primitive (Subp_Id) then
2547 return;
2548 end if;
2550 Typ := Find_Dispatching_Type (Subp_Id);
2552 -- Nothing to do when the subprogram is a primitive operation of an
2553 -- untagged type.
2555 if No (Typ) then
2556 return;
2557 end if;
2559 -- At this point a renaming declaration introduces a new primitive
2560 -- operation for a tagged type.
2562 Error_Msg_Node_2 := Typ;
2563 Error_Msg_NE
2564 ("subprogram renaming & cannot declare primitive for type & "
2565 & "(SPARK RM 6.1.1(3))", N, Subp_Id);
2566 end Check_SPARK_Primitive_Operation;
2568 ---------------------------
2569 -- Freeze_Actual_Profile --
2570 ---------------------------
2572 procedure Freeze_Actual_Profile is
2573 F : Entity_Id;
2574 Has_Untagged_Inc : Boolean;
2575 Instantiation_Node : constant Node_Id := Parent (N);
2577 begin
2578 if Ada_Version >= Ada_2012 then
2579 F := First_Formal (Formal_Spec);
2580 Has_Untagged_Inc := False;
2581 while Present (F) loop
2582 if Ekind (Etype (F)) = E_Incomplete_Type
2583 and then not Is_Tagged_Type (Etype (F))
2584 then
2585 Has_Untagged_Inc := True;
2586 exit;
2587 end if;
2589 F := Next_Formal (F);
2590 end loop;
2592 if Ekind (Formal_Spec) = E_Function
2593 and then not Is_Tagged_Type (Etype (Formal_Spec))
2594 then
2595 Has_Untagged_Inc := True;
2596 end if;
2598 if not Has_Untagged_Inc then
2599 F := First_Formal (Old_S);
2600 while Present (F) loop
2601 Freeze_Before (Instantiation_Node, Etype (F));
2603 if Is_Incomplete_Or_Private_Type (Etype (F))
2604 and then No (Underlying_Type (Etype (F)))
2605 then
2606 -- Exclude generic types, or types derived from them.
2607 -- They will be frozen in the enclosing instance.
2609 if Is_Generic_Type (Etype (F))
2610 or else Is_Generic_Type (Root_Type (Etype (F)))
2611 then
2612 null;
2614 -- A limited view of a type declared elsewhere needs no
2615 -- freezing actions.
2617 elsif From_Limited_With (Etype (F)) then
2618 null;
2620 else
2621 Error_Msg_NE
2622 ("type& must be frozen before this point",
2623 Instantiation_Node, Etype (F));
2624 end if;
2625 end if;
2627 F := Next_Formal (F);
2628 end loop;
2629 end if;
2630 end if;
2631 end Freeze_Actual_Profile;
2633 ---------------------------
2634 -- Has_Class_Wide_Actual --
2635 ---------------------------
2637 function Has_Class_Wide_Actual return Boolean is
2638 Formal : Entity_Id;
2639 Formal_Typ : Entity_Id;
2641 begin
2642 if Is_Actual then
2643 Formal := First_Formal (Formal_Spec);
2644 while Present (Formal) loop
2645 Formal_Typ := Etype (Formal);
2647 if Has_Unknown_Discriminants (Formal_Typ)
2648 and then not Is_Class_Wide_Type (Formal_Typ)
2649 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2650 then
2651 return True;
2652 end if;
2654 Next_Formal (Formal);
2655 end loop;
2656 end if;
2658 return False;
2659 end Has_Class_Wide_Actual;
2661 -------------------------
2662 -- Original_Subprogram --
2663 -------------------------
2665 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2666 Orig_Decl : Node_Id;
2667 Orig_Subp : Entity_Id;
2669 begin
2670 -- First case: renamed entity is itself a renaming
2672 if Present (Alias (Subp)) then
2673 return Alias (Subp);
2675 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2676 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2677 then
2678 -- Check if renamed entity is a renaming_as_body
2680 Orig_Decl :=
2681 Unit_Declaration_Node
2682 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2684 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2685 Orig_Subp := Entity (Name (Orig_Decl));
2687 if Orig_Subp = Rename_Spec then
2689 -- Circularity detected
2691 return Orig_Subp;
2693 else
2694 return (Original_Subprogram (Orig_Subp));
2695 end if;
2696 else
2697 return Subp;
2698 end if;
2699 else
2700 return Subp;
2701 end if;
2702 end Original_Subprogram;
2704 -- Local variables
2706 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2707 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2708 -- defaulted formal subprogram when the actual for a related formal
2709 -- type is class-wide.
2711 Inst_Node : Node_Id := Empty;
2712 New_S : Entity_Id;
2714 -- Start of processing for Analyze_Subprogram_Renaming
2716 begin
2717 -- We must test for the attribute renaming case before the Analyze
2718 -- call because otherwise Sem_Attr will complain that the attribute
2719 -- is missing an argument when it is analyzed.
2721 if Nkind (Nam) = N_Attribute_Reference then
2723 -- In the case of an abstract formal subprogram association, rewrite
2724 -- an actual given by a stream attribute as the name of the
2725 -- corresponding stream primitive of the type.
2727 -- In a generic context the stream operations are not generated, and
2728 -- this must be treated as a normal attribute reference, to be
2729 -- expanded in subsequent instantiations.
2731 if Is_Actual
2732 and then Is_Abstract_Subprogram (Formal_Spec)
2733 and then Expander_Active
2734 then
2735 declare
2736 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2737 Stream_Prim : Entity_Id;
2739 begin
2740 -- The class-wide forms of the stream attributes are not
2741 -- primitive dispatching operations (even though they
2742 -- internally dispatch to a stream attribute).
2744 if Is_Class_Wide_Type (Prefix_Type) then
2745 Error_Msg_N
2746 ("attribute must be a primitive dispatching operation",
2747 Nam);
2748 return;
2749 end if;
2751 -- Retrieve the primitive subprogram associated with the
2752 -- attribute. This can only be a stream attribute, since those
2753 -- are the only ones that are dispatching (and the actual for
2754 -- an abstract formal subprogram must be dispatching
2755 -- operation).
2757 case Attribute_Name (Nam) is
2758 when Name_Input =>
2759 Stream_Prim :=
2760 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
2762 when Name_Output =>
2763 Stream_Prim :=
2764 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
2766 when Name_Read =>
2767 Stream_Prim :=
2768 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
2770 when Name_Write =>
2771 Stream_Prim :=
2772 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
2774 when others =>
2775 Error_Msg_N
2776 ("attribute must be a primitive dispatching operation",
2777 Nam);
2778 return;
2779 end case;
2781 -- If no operation was found, and the type is limited, the user
2782 -- should have defined one.
2784 if No (Stream_Prim) then
2785 if Is_Limited_Type (Prefix_Type) then
2786 Error_Msg_NE
2787 ("stream operation not defined for type&",
2788 N, Prefix_Type);
2789 return;
2791 -- Otherwise, compiler should have generated default
2793 else
2794 raise Program_Error;
2795 end if;
2796 end if;
2798 -- Rewrite the attribute into the name of its corresponding
2799 -- primitive dispatching subprogram. We can then proceed with
2800 -- the usual processing for subprogram renamings.
2802 declare
2803 Prim_Name : constant Node_Id :=
2804 Make_Identifier (Sloc (Nam),
2805 Chars => Chars (Stream_Prim));
2806 begin
2807 Set_Entity (Prim_Name, Stream_Prim);
2808 Rewrite (Nam, Prim_Name);
2809 Analyze (Nam);
2810 end;
2811 end;
2813 -- Normal processing for a renaming of an attribute
2815 else
2816 Attribute_Renaming (N);
2817 return;
2818 end if;
2819 end if;
2821 -- Check whether this declaration corresponds to the instantiation of a
2822 -- formal subprogram.
2824 -- If this is an instantiation, the corresponding actual is frozen and
2825 -- error messages can be made more precise. If this is a default
2826 -- subprogram, the entity is already established in the generic, and is
2827 -- not retrieved by visibility. If it is a default with a box, the
2828 -- candidate interpretations, if any, have been collected when building
2829 -- the renaming declaration. If overloaded, the proper interpretation is
2830 -- determined in Find_Renamed_Entity. If the entity is an operator,
2831 -- Find_Renamed_Entity applies additional visibility checks.
2833 if Is_Actual then
2834 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2836 -- Check whether the renaming is for a defaulted actual subprogram
2837 -- with a class-wide actual.
2839 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2840 -- is an external axiomatization on the package.
2842 if CW_Actual
2843 and then Box_Present (Inst_Node)
2844 and then not
2845 (GNATprove_Mode
2846 and then
2847 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2848 then
2849 Build_Class_Wide_Wrapper (New_S, Old_S);
2851 elsif Is_Entity_Name (Nam)
2852 and then Present (Entity (Nam))
2853 and then not Comes_From_Source (Nam)
2854 and then not Is_Overloaded (Nam)
2855 then
2856 Old_S := Entity (Nam);
2858 -- The subprogram renaming declaration may become Ghost if it
2859 -- renames a Ghost entity.
2861 Mark_Ghost_Renaming (N, Old_S);
2863 New_S := Analyze_Subprogram_Specification (Spec);
2865 -- Operator case
2867 if Ekind (Old_S) = E_Operator then
2869 -- Box present
2871 if Box_Present (Inst_Node) then
2872 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2874 -- If there is an immediately visible homonym of the operator
2875 -- and the declaration has a default, this is worth a warning
2876 -- because the user probably did not intend to get the pre-
2877 -- defined operator, visible in the generic declaration. To
2878 -- find if there is an intended candidate, analyze the renaming
2879 -- again in the current context.
2881 elsif Scope (Old_S) = Standard_Standard
2882 and then Present (Default_Name (Inst_Node))
2883 then
2884 declare
2885 Decl : constant Node_Id := New_Copy_Tree (N);
2886 Hidden : Entity_Id;
2888 begin
2889 Set_Entity (Name (Decl), Empty);
2890 Analyze (Name (Decl));
2891 Hidden :=
2892 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2894 if Present (Hidden)
2895 and then In_Open_Scopes (Scope (Hidden))
2896 and then Is_Immediately_Visible (Hidden)
2897 and then Comes_From_Source (Hidden)
2898 and then Hidden /= Old_S
2899 then
2900 Error_Msg_Sloc := Sloc (Hidden);
2901 Error_Msg_N
2902 ("default subprogram is resolved in the generic "
2903 & "declaration (RM 12.6(17))??", N);
2904 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2905 end if;
2906 end;
2907 end if;
2908 end if;
2910 else
2911 Analyze (Nam);
2913 -- The subprogram renaming declaration may become Ghost if it
2914 -- renames a Ghost entity.
2916 if Is_Entity_Name (Nam) then
2917 Mark_Ghost_Renaming (N, Entity (Nam));
2918 end if;
2920 New_S := Analyze_Subprogram_Specification (Spec);
2921 end if;
2923 else
2924 -- Renamed entity must be analyzed first, to avoid being hidden by
2925 -- new name (which might be the same in a generic instance).
2927 Analyze (Nam);
2929 -- The subprogram renaming declaration may become Ghost if it renames
2930 -- a Ghost entity.
2932 if Is_Entity_Name (Nam) then
2933 Mark_Ghost_Renaming (N, Entity (Nam));
2934 end if;
2936 -- The renaming defines a new overloaded entity, which is analyzed
2937 -- like a subprogram declaration.
2939 New_S := Analyze_Subprogram_Specification (Spec);
2940 end if;
2942 if Current_Scope /= Standard_Standard then
2943 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2944 end if;
2946 -- Set SPARK mode from current context
2948 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2949 Set_SPARK_Pragma_Inherited (New_S);
2951 Rename_Spec := Find_Corresponding_Spec (N);
2953 -- Case of Renaming_As_Body
2955 if Present (Rename_Spec) then
2956 Check_Previous_Null_Procedure (N, Rename_Spec);
2958 -- Renaming declaration is the completion of the declaration of
2959 -- Rename_Spec. We build an actual body for it at the freezing point.
2961 Set_Corresponding_Spec (N, Rename_Spec);
2963 -- Deal with special case of stream functions of abstract types
2964 -- and interfaces.
2966 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2967 N_Abstract_Subprogram_Declaration
2968 then
2969 -- Input stream functions are abstract if the object type is
2970 -- abstract. Similarly, all default stream functions for an
2971 -- interface type are abstract. However, these subprograms may
2972 -- receive explicit declarations in representation clauses, making
2973 -- the attribute subprograms usable as defaults in subsequent
2974 -- type extensions.
2975 -- In this case we rewrite the declaration to make the subprogram
2976 -- non-abstract. We remove the previous declaration, and insert
2977 -- the new one at the point of the renaming, to prevent premature
2978 -- access to unfrozen types. The new declaration reuses the
2979 -- specification of the previous one, and must not be analyzed.
2981 pragma Assert
2982 (Is_Primitive (Entity (Nam))
2983 and then
2984 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2985 declare
2986 Old_Decl : constant Node_Id :=
2987 Unit_Declaration_Node (Rename_Spec);
2988 New_Decl : constant Node_Id :=
2989 Make_Subprogram_Declaration (Sloc (N),
2990 Specification =>
2991 Relocate_Node (Specification (Old_Decl)));
2992 begin
2993 Remove (Old_Decl);
2994 Insert_After (N, New_Decl);
2995 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2996 Set_Analyzed (New_Decl);
2997 end;
2998 end if;
3000 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
3002 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3003 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
3004 end if;
3006 Set_Convention (New_S, Convention (Rename_Spec));
3007 Check_Fully_Conformant (New_S, Rename_Spec);
3008 Set_Public_Status (New_S);
3010 if No_Return (Rename_Spec)
3011 and then not No_Return (Entity (Nam))
3012 then
3013 Error_Msg_N ("renaming completes a No_Return procedure", N);
3014 Error_Msg_N
3015 ("\renamed procedure must be nonreturning (RM 6.5.1 (7/2))", N);
3016 end if;
3018 -- The specification does not introduce new formals, but only
3019 -- repeats the formals of the original subprogram declaration.
3020 -- For cross-reference purposes, and for refactoring tools, we
3021 -- treat the formals of the renaming declaration as body formals.
3023 Reference_Body_Formals (Rename_Spec, New_S);
3025 -- Indicate that the entity in the declaration functions like the
3026 -- corresponding body, and is not a new entity. The body will be
3027 -- constructed later at the freeze point, so indicate that the
3028 -- completion has not been seen yet.
3030 Set_Ekind (New_S, E_Subprogram_Body);
3031 New_S := Rename_Spec;
3032 Set_Has_Completion (Rename_Spec, False);
3034 -- Ada 2005: check overriding indicator
3036 if Present (Overridden_Operation (Rename_Spec)) then
3037 if Must_Not_Override (Specification (N)) then
3038 Error_Msg_NE
3039 ("subprogram& overrides inherited operation",
3040 N, Rename_Spec);
3042 elsif Style_Check
3043 and then not Must_Override (Specification (N))
3044 then
3045 Style.Missing_Overriding (N, Rename_Spec);
3046 end if;
3048 elsif Must_Override (Specification (N)) then
3049 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
3050 end if;
3052 -- Normal subprogram renaming (not renaming as body)
3054 else
3055 Generate_Definition (New_S);
3056 New_Overloaded_Entity (New_S);
3058 if not (Is_Entity_Name (Nam)
3059 and then Is_Intrinsic_Subprogram (Entity (Nam)))
3060 then
3061 Check_Delayed_Subprogram (New_S);
3062 end if;
3064 -- Verify that a SPARK renaming does not declare a primitive
3065 -- operation of a tagged type.
3067 Check_SPARK_Primitive_Operation (New_S);
3068 end if;
3070 -- There is no need for elaboration checks on the new entity, which may
3071 -- be called before the next freezing point where the body will appear.
3072 -- Elaboration checks refer to the real entity, not the one created by
3073 -- the renaming declaration.
3075 Set_Kill_Elaboration_Checks (New_S, True);
3077 -- If we had a previous error, indicate a completely is present to stop
3078 -- junk cascaded messages, but don't take any further action.
3080 if Etype (Nam) = Any_Type then
3081 Set_Has_Completion (New_S);
3082 return;
3084 -- Case where name has the form of a selected component
3086 elsif Nkind (Nam) = N_Selected_Component then
3088 -- A name which has the form A.B can designate an entry of task A, a
3089 -- protected operation of protected object A, or finally a primitive
3090 -- operation of object A. In the later case, A is an object of some
3091 -- tagged type, or an access type that denotes one such. To further
3092 -- distinguish these cases, note that the scope of a task entry or
3093 -- protected operation is type of the prefix.
3095 -- The prefix could be an overloaded function call that returns both
3096 -- kinds of operations. This overloading pathology is left to the
3097 -- dedicated reader ???
3099 declare
3100 T : constant Entity_Id := Etype (Prefix (Nam));
3102 begin
3103 if Present (T)
3104 and then
3105 (Is_Tagged_Type (T)
3106 or else
3107 (Is_Access_Type (T)
3108 and then Is_Tagged_Type (Designated_Type (T))))
3109 and then Scope (Entity (Selector_Name (Nam))) /= T
3110 then
3111 Analyze_Renamed_Primitive_Operation
3112 (N, New_S, Present (Rename_Spec));
3113 return;
3115 else
3116 -- Renamed entity is an entry or protected operation. For those
3117 -- cases an explicit body is built (at the point of freezing of
3118 -- this entity) that contains a call to the renamed entity.
3120 -- This is not allowed for renaming as body if the renamed
3121 -- spec is already frozen (see RM 8.5.4(5) for details).
3123 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
3124 Error_Msg_N
3125 ("renaming-as-body cannot rename entry as subprogram", N);
3126 Error_Msg_NE
3127 ("\since & is already frozen (RM 8.5.4(5))",
3128 N, Rename_Spec);
3129 else
3130 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
3131 end if;
3133 return;
3134 end if;
3135 end;
3137 -- Case where name is an explicit dereference X.all
3139 elsif Nkind (Nam) = N_Explicit_Dereference then
3141 -- Renamed entity is designated by access_to_subprogram expression.
3142 -- Must build body to encapsulate call, as in the entry case.
3144 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3145 return;
3147 -- Indexed component
3149 elsif Nkind (Nam) = N_Indexed_Component then
3150 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3151 return;
3153 -- Character literal
3155 elsif Nkind (Nam) = N_Character_Literal then
3156 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3157 return;
3159 -- Only remaining case is where we have a non-entity name, or a renaming
3160 -- of some other non-overloadable entity.
3162 elsif not Is_Entity_Name (Nam)
3163 or else not Is_Overloadable (Entity (Nam))
3164 then
3165 -- Do not mention the renaming if it comes from an instance
3167 if not Is_Actual then
3168 Error_Msg_N ("expect valid subprogram name in renaming", N);
3169 else
3170 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3171 end if;
3173 return;
3174 end if;
3176 -- Find the renamed entity that matches the given specification. Disable
3177 -- Ada_83 because there is no requirement of full conformance between
3178 -- renamed entity and new entity, even though the same circuit is used.
3180 -- This is a bit of an odd case, which introduces a really irregular use
3181 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3182 -- this. ???
3184 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3185 Ada_Version_Pragma := Empty;
3186 Ada_Version_Explicit := Ada_Version;
3188 if No (Old_S) then
3189 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3191 -- The visible operation may be an inherited abstract operation that
3192 -- was overridden in the private part, in which case a call will
3193 -- dispatch to the overriding operation. Use the overriding one in
3194 -- the renaming declaration, to prevent spurious errors below.
3196 if Is_Overloadable (Old_S)
3197 and then Is_Abstract_Subprogram (Old_S)
3198 and then No (DTC_Entity (Old_S))
3199 and then Present (Alias (Old_S))
3200 and then not Is_Abstract_Subprogram (Alias (Old_S))
3201 and then Present (Overridden_Operation (Alias (Old_S)))
3202 then
3203 Old_S := Alias (Old_S);
3204 end if;
3206 -- When the renamed subprogram is overloaded and used as an actual
3207 -- of a generic, its entity is set to the first available homonym.
3208 -- We must first disambiguate the name, then set the proper entity.
3210 if Is_Actual and then Is_Overloaded (Nam) then
3211 Set_Entity (Nam, Old_S);
3212 end if;
3213 end if;
3215 -- Most common case: subprogram renames subprogram. No body is generated
3216 -- in this case, so we must indicate the declaration is complete as is.
3217 -- and inherit various attributes of the renamed subprogram.
3219 if No (Rename_Spec) then
3220 Set_Has_Completion (New_S);
3221 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3222 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3223 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3225 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3226 -- between a subprogram and its correct renaming.
3228 -- Note: the Any_Id check is a guard that prevents compiler crashes
3229 -- when performing a null exclusion check between a renaming and a
3230 -- renamed subprogram that has been found to be illegal.
3232 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3233 Check_Null_Exclusion
3234 (Ren => New_S,
3235 Sub => Entity (Nam));
3236 end if;
3238 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3239 -- overriding. The flag Requires_Overriding is set very selectively
3240 -- and misses some other illegal cases. The additional conditions
3241 -- checked below are sufficient but not necessary ???
3243 -- The rule does not apply to the renaming generated for an actual
3244 -- subprogram in an instance.
3246 if Is_Actual then
3247 null;
3249 -- Guard against previous errors, and omit renamings of predefined
3250 -- operators.
3252 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3253 null;
3255 elsif Requires_Overriding (Old_S)
3256 or else
3257 (Is_Abstract_Subprogram (Old_S)
3258 and then Present (Find_Dispatching_Type (Old_S))
3259 and then not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3260 then
3261 Error_Msg_N
3262 ("renamed entity cannot be subprogram that requires overriding "
3263 & "(RM 8.5.4 (5.1))", N);
3264 end if;
3266 declare
3267 Prev : constant Entity_Id := Overridden_Operation (New_S);
3268 begin
3269 if Present (Prev)
3270 and then
3271 (Has_Non_Trivial_Precondition (Prev)
3272 or else Has_Non_Trivial_Precondition (Old_S))
3273 then
3274 Error_Msg_NE
3275 ("conflicting inherited classwide preconditions in renaming "
3276 & "of& (RM 6.1.1 (17)", N, Old_S);
3277 end if;
3278 end;
3279 end if;
3281 if Old_S /= Any_Id then
3282 if Is_Actual and then From_Default (N) then
3284 -- This is an implicit reference to the default actual
3286 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3288 else
3289 Generate_Reference (Old_S, Nam);
3290 end if;
3292 Check_Internal_Protected_Use (N, Old_S);
3294 -- For a renaming-as-body, require subtype conformance, but if the
3295 -- declaration being completed has not been frozen, then inherit the
3296 -- convention of the renamed subprogram prior to checking conformance
3297 -- (unless the renaming has an explicit convention established; the
3298 -- rule stated in the RM doesn't seem to address this ???).
3300 if Present (Rename_Spec) then
3301 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3302 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3304 if not Is_Frozen (Rename_Spec) then
3305 if not Has_Convention_Pragma (Rename_Spec) then
3306 Set_Convention (New_S, Convention (Old_S));
3307 end if;
3309 if Ekind (Old_S) /= E_Operator then
3310 Check_Mode_Conformant (New_S, Old_S, Spec);
3311 end if;
3313 if Original_Subprogram (Old_S) = Rename_Spec then
3314 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3315 end if;
3316 else
3317 Check_Subtype_Conformant (New_S, Old_S, Spec);
3318 end if;
3320 Check_Frozen_Renaming (N, Rename_Spec);
3322 -- Check explicitly that renamed entity is not intrinsic, because
3323 -- in a generic the renamed body is not built. In this case,
3324 -- the renaming_as_body is a completion.
3326 if Inside_A_Generic then
3327 if Is_Frozen (Rename_Spec)
3328 and then Is_Intrinsic_Subprogram (Old_S)
3329 then
3330 Error_Msg_N
3331 ("subprogram in renaming_as_body cannot be intrinsic",
3332 Name (N));
3333 end if;
3335 Set_Has_Completion (Rename_Spec);
3336 end if;
3338 elsif Ekind (Old_S) /= E_Operator then
3340 -- If this a defaulted subprogram for a class-wide actual there is
3341 -- no check for mode conformance, given that the signatures don't
3342 -- match (the source mentions T but the actual mentions T'Class).
3344 if CW_Actual then
3345 null;
3346 elsif not Is_Actual or else No (Enclosing_Instance) then
3347 Check_Mode_Conformant (New_S, Old_S);
3348 end if;
3350 if Is_Actual and then Error_Posted (New_S) then
3351 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3352 end if;
3353 end if;
3355 if No (Rename_Spec) then
3357 -- The parameter profile of the new entity is that of the renamed
3358 -- entity: the subtypes given in the specification are irrelevant.
3360 Inherit_Renamed_Profile (New_S, Old_S);
3362 -- A call to the subprogram is transformed into a call to the
3363 -- renamed entity. This is transitive if the renamed entity is
3364 -- itself a renaming.
3366 if Present (Alias (Old_S)) then
3367 Set_Alias (New_S, Alias (Old_S));
3368 else
3369 Set_Alias (New_S, Old_S);
3370 end if;
3372 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3373 -- renaming as body, since the entity in this case is not an
3374 -- intrinsic (it calls an intrinsic, but we have a real body for
3375 -- this call, and it is in this body that the required intrinsic
3376 -- processing will take place).
3378 -- Also, if this is a renaming of inequality, the renamed operator
3379 -- is intrinsic, but what matters is the corresponding equality
3380 -- operator, which may be user-defined.
3382 Set_Is_Intrinsic_Subprogram
3383 (New_S,
3384 Is_Intrinsic_Subprogram (Old_S)
3385 and then
3386 (Chars (Old_S) /= Name_Op_Ne
3387 or else Ekind (Old_S) = E_Operator
3388 or else Is_Intrinsic_Subprogram
3389 (Corresponding_Equality (Old_S))));
3391 if Ekind (Alias (New_S)) = E_Operator then
3392 Set_Has_Delayed_Freeze (New_S, False);
3393 end if;
3395 -- If the renaming corresponds to an association for an abstract
3396 -- formal subprogram, then various attributes must be set to
3397 -- indicate that the renaming is an abstract dispatching operation
3398 -- with a controlling type.
3400 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3402 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3403 -- see it as corresponding to a generic association for a
3404 -- formal abstract subprogram
3406 Set_Is_Abstract_Subprogram (New_S);
3408 declare
3409 New_S_Ctrl_Type : constant Entity_Id :=
3410 Find_Dispatching_Type (New_S);
3411 Old_S_Ctrl_Type : constant Entity_Id :=
3412 Find_Dispatching_Type (Old_S);
3414 begin
3416 -- The actual must match the (instance of the) formal,
3417 -- and must be a controlling type.
3419 if Old_S_Ctrl_Type /= New_S_Ctrl_Type
3420 or else No (New_S_Ctrl_Type)
3421 then
3422 Error_Msg_NE
3423 ("actual must be dispatching subprogram for type&",
3424 Nam, New_S_Ctrl_Type);
3426 else
3427 Set_Is_Dispatching_Operation (New_S);
3428 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3430 -- If the actual in the formal subprogram is itself a
3431 -- formal abstract subprogram association, there's no
3432 -- dispatch table component or position to inherit.
3434 if Present (DTC_Entity (Old_S)) then
3435 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3436 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3437 end if;
3438 end if;
3439 end;
3440 end if;
3441 end if;
3443 if Is_Actual then
3444 null;
3446 -- The following is illegal, because F hides whatever other F may
3447 -- be around:
3448 -- function F (...) renames F;
3450 elsif Old_S = New_S
3451 or else (Nkind (Nam) /= N_Expanded_Name
3452 and then Chars (Old_S) = Chars (New_S))
3453 then
3454 Error_Msg_N ("subprogram cannot rename itself", N);
3456 -- This is illegal even if we use a selector:
3457 -- function F (...) renames Pkg.F;
3458 -- because F is still hidden.
3460 elsif Nkind (Nam) = N_Expanded_Name
3461 and then Entity (Prefix (Nam)) = Current_Scope
3462 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3463 then
3464 -- This is an error, but we overlook the error and accept the
3465 -- renaming if the special Overriding_Renamings mode is in effect.
3467 if not Overriding_Renamings then
3468 Error_Msg_NE
3469 ("implicit operation& is not visible (RM 8.3 (15))",
3470 Nam, Old_S);
3471 end if;
3472 end if;
3474 Set_Convention (New_S, Convention (Old_S));
3476 if Is_Abstract_Subprogram (Old_S) then
3477 if Present (Rename_Spec) then
3478 Error_Msg_N
3479 ("a renaming-as-body cannot rename an abstract subprogram",
3481 Set_Has_Completion (Rename_Spec);
3482 else
3483 Set_Is_Abstract_Subprogram (New_S);
3484 end if;
3485 end if;
3487 Check_Library_Unit_Renaming (N, Old_S);
3489 -- Pathological case: procedure renames entry in the scope of its
3490 -- task. Entry is given by simple name, but body must be built for
3491 -- procedure. Of course if called it will deadlock.
3493 if Ekind (Old_S) = E_Entry then
3494 Set_Has_Completion (New_S, False);
3495 Set_Alias (New_S, Empty);
3496 end if;
3498 -- Do not freeze the renaming nor the renamed entity when the context
3499 -- is an enclosing generic. Freezing is an expansion activity, and in
3500 -- addition the renamed entity may depend on the generic formals of
3501 -- the enclosing generic.
3503 if Is_Actual and not Inside_A_Generic then
3504 Freeze_Before (N, Old_S);
3505 Freeze_Actual_Profile;
3506 Set_Has_Delayed_Freeze (New_S, False);
3507 Freeze_Before (N, New_S);
3509 -- An abstract subprogram is only allowed as an actual in the case
3510 -- where the formal subprogram is also abstract.
3512 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3513 and then Is_Abstract_Subprogram (Old_S)
3514 and then not Is_Abstract_Subprogram (Formal_Spec)
3515 then
3516 Error_Msg_N
3517 ("abstract subprogram not allowed as generic actual", Nam);
3518 end if;
3519 end if;
3521 else
3522 -- A common error is to assume that implicit operators for types are
3523 -- defined in Standard, or in the scope of a subtype. In those cases
3524 -- where the renamed entity is given with an expanded name, it is
3525 -- worth mentioning that operators for the type are not declared in
3526 -- the scope given by the prefix.
3528 if Nkind (Nam) = N_Expanded_Name
3529 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3530 and then Scope (Entity (Nam)) = Standard_Standard
3531 then
3532 declare
3533 T : constant Entity_Id :=
3534 Base_Type (Etype (First_Formal (New_S)));
3535 begin
3536 Error_Msg_Node_2 := Prefix (Nam);
3537 Error_Msg_NE
3538 ("operator for type& is not declared in&", Prefix (Nam), T);
3539 end;
3541 else
3542 Error_Msg_NE
3543 ("no visible subprogram matches the specification for&",
3544 Spec, New_S);
3545 end if;
3547 if Present (Candidate_Renaming) then
3548 declare
3549 F1 : Entity_Id;
3550 F2 : Entity_Id;
3551 T1 : Entity_Id;
3553 begin
3554 F1 := First_Formal (Candidate_Renaming);
3555 F2 := First_Formal (New_S);
3556 T1 := First_Subtype (Etype (F1));
3557 while Present (F1) and then Present (F2) loop
3558 Next_Formal (F1);
3559 Next_Formal (F2);
3560 end loop;
3562 if Present (F1) and then Present (Default_Value (F1)) then
3563 if Present (Next_Formal (F1)) then
3564 Error_Msg_NE
3565 ("\missing specification for & and other formals with "
3566 & "defaults", Spec, F1);
3567 else
3568 Error_Msg_NE ("\missing specification for &", Spec, F1);
3569 end if;
3570 end if;
3572 if Nkind (Nam) = N_Operator_Symbol
3573 and then From_Default (N)
3574 then
3575 Error_Msg_Node_2 := T1;
3576 Error_Msg_NE
3577 ("default & on & is not directly visible", Nam, Nam);
3578 end if;
3579 end;
3580 end if;
3581 end if;
3583 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3584 -- controlling access parameters are known non-null for the renamed
3585 -- subprogram. Test also applies to a subprogram instantiation that
3586 -- is dispatching. Test is skipped if some previous error was detected
3587 -- that set Old_S to Any_Id.
3589 if Ada_Version >= Ada_2005
3590 and then Old_S /= Any_Id
3591 and then not Is_Dispatching_Operation (Old_S)
3592 and then Is_Dispatching_Operation (New_S)
3593 then
3594 declare
3595 Old_F : Entity_Id;
3596 New_F : Entity_Id;
3598 begin
3599 Old_F := First_Formal (Old_S);
3600 New_F := First_Formal (New_S);
3601 while Present (Old_F) loop
3602 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3603 and then Is_Controlling_Formal (New_F)
3604 and then not Can_Never_Be_Null (Old_F)
3605 then
3606 Error_Msg_N ("access parameter is controlling,", New_F);
3607 Error_Msg_NE
3608 ("\corresponding parameter of& must be explicitly null "
3609 & "excluding", New_F, Old_S);
3610 end if;
3612 Next_Formal (Old_F);
3613 Next_Formal (New_F);
3614 end loop;
3615 end;
3616 end if;
3618 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3619 -- is to warn if an operator is being renamed as a different operator.
3620 -- If the operator is predefined, examine the kind of the entity, not
3621 -- the abbreviated declaration in Standard.
3623 if Comes_From_Source (N)
3624 and then Present (Old_S)
3625 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3626 or else Ekind (Old_S) = E_Operator)
3627 and then Nkind (New_S) = N_Defining_Operator_Symbol
3628 and then Chars (Old_S) /= Chars (New_S)
3629 then
3630 Error_Msg_NE
3631 ("& is being renamed as a different operator??", N, Old_S);
3632 end if;
3634 -- Check for renaming of obsolescent subprogram
3636 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3638 -- Another warning or some utility: if the new subprogram as the same
3639 -- name as the old one, the old one is not hidden by an outer homograph,
3640 -- the new one is not a public symbol, and the old one is otherwise
3641 -- directly visible, the renaming is superfluous.
3643 if Chars (Old_S) = Chars (New_S)
3644 and then Comes_From_Source (N)
3645 and then Scope (Old_S) /= Standard_Standard
3646 and then Warn_On_Redundant_Constructs
3647 and then (Is_Immediately_Visible (Old_S)
3648 or else Is_Potentially_Use_Visible (Old_S))
3649 and then Is_Overloadable (Current_Scope)
3650 and then Chars (Current_Scope) /= Chars (Old_S)
3651 then
3652 Error_Msg_N
3653 ("redundant renaming, entity is directly visible?r?", Name (N));
3654 end if;
3656 -- Implementation-defined aspect specifications can appear in a renaming
3657 -- declaration, but not language-defined ones. The call to procedure
3658 -- Analyze_Aspect_Specifications will take care of this error check.
3660 if Has_Aspects (N) then
3661 Analyze_Aspect_Specifications (N, New_S);
3662 end if;
3664 Ada_Version := Save_AV;
3665 Ada_Version_Pragma := Save_AVP;
3666 Ada_Version_Explicit := Save_AV_Exp;
3668 -- In GNATprove mode, the renamings of actual subprograms are replaced
3669 -- with wrapper functions that make it easier to propagate axioms to the
3670 -- points of call within an instance. Wrappers are generated if formal
3671 -- subprogram is subject to axiomatization.
3673 -- The types in the wrapper profiles are obtained from (instances of)
3674 -- the types of the formal subprogram.
3676 if Is_Actual
3677 and then GNATprove_Mode
3678 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3679 and then not Inside_A_Generic
3680 then
3681 if Ekind (Old_S) = E_Function then
3682 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3683 Analyze (N);
3685 elsif Ekind (Old_S) = E_Operator then
3686 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3687 Analyze (N);
3688 end if;
3689 end if;
3691 -- Check if we are looking at an Ada 2012 defaulted formal subprogram
3692 -- and mark any use_package_clauses that affect the visibility of the
3693 -- implicit generic actual.
3695 if Is_Generic_Actual_Subprogram (New_S)
3696 and then (Is_Intrinsic_Subprogram (New_S) or else From_Default (N))
3697 then
3698 Mark_Use_Clauses (New_S);
3700 -- Handle overloaded subprograms
3702 if Present (Alias (New_S)) then
3703 Mark_Use_Clauses (Alias (New_S));
3704 end if;
3705 end if;
3706 end Analyze_Subprogram_Renaming;
3708 -------------------------
3709 -- Analyze_Use_Package --
3710 -------------------------
3712 -- Resolve the package names in the use clause, and make all the visible
3713 -- entities defined in the package potentially use-visible. If the package
3714 -- is already in use from a previous use clause, its visible entities are
3715 -- already use-visible. In that case, mark the occurrence as a redundant
3716 -- use. If the package is an open scope, i.e. if the use clause occurs
3717 -- within the package itself, ignore it.
3719 procedure Analyze_Use_Package (N : Node_Id; Chain : Boolean := True) is
3720 procedure Analyze_Package_Name (Clause : Node_Id);
3721 -- Perform analysis on a package name from a use_package_clause
3723 procedure Analyze_Package_Name_List (Head_Clause : Node_Id);
3724 -- Similar to Analyze_Package_Name but iterates over all the names
3725 -- in a use clause.
3727 --------------------------
3728 -- Analyze_Package_Name --
3729 --------------------------
3731 procedure Analyze_Package_Name (Clause : Node_Id) is
3732 Pack : constant Node_Id := Name (Clause);
3733 Pref : Node_Id;
3735 begin
3736 pragma Assert (Nkind (Clause) = N_Use_Package_Clause);
3737 Analyze (Pack);
3739 -- Verify that the package standard is not directly named in a
3740 -- use_package_clause.
3742 if Nkind (Parent (Clause)) = N_Compilation_Unit
3743 and then Nkind (Pack) = N_Expanded_Name
3744 then
3745 Pref := Prefix (Pack);
3747 while Nkind (Pref) = N_Expanded_Name loop
3748 Pref := Prefix (Pref);
3749 end loop;
3751 if Entity (Pref) = Standard_Standard then
3752 Error_Msg_N
3753 ("predefined package Standard cannot appear in a context "
3754 & "clause", Pref);
3755 end if;
3756 end if;
3757 end Analyze_Package_Name;
3759 -------------------------------
3760 -- Analyze_Package_Name_List --
3761 -------------------------------
3763 procedure Analyze_Package_Name_List (Head_Clause : Node_Id) is
3764 Curr : Node_Id;
3766 begin
3767 -- Due to the way source use clauses are split during parsing we are
3768 -- forced to simply iterate through all entities in scope until the
3769 -- clause representing the last name in the list is found.
3771 Curr := Head_Clause;
3772 while Present (Curr) loop
3773 Analyze_Package_Name (Curr);
3775 -- Stop iterating over the names in the use clause when we are at
3776 -- the last one.
3778 exit when not More_Ids (Curr) and then Prev_Ids (Curr);
3779 Next (Curr);
3780 end loop;
3781 end Analyze_Package_Name_List;
3783 -- Local variables
3785 Pack : Entity_Id;
3787 -- Start of processing for Analyze_Use_Package
3789 begin
3790 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3792 Set_Hidden_By_Use_Clause (N, No_Elist);
3794 -- Use clause not allowed in a spec of a predefined package declaration
3795 -- except that packages whose file name starts a-n are OK (these are
3796 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3798 if Is_Predefined_Unit (Current_Sem_Unit)
3799 and then Get_Name_String
3800 (Unit_File_Name (Current_Sem_Unit)) (1 .. 3) /= "a-n"
3801 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
3802 N_Package_Declaration
3803 then
3804 Error_Msg_N ("use clause not allowed in predefined spec", N);
3805 end if;
3807 -- Loop through all package names from the original use clause in
3808 -- order to analyze referenced packages. A use_package_clause with only
3809 -- one name does not have More_Ids or Prev_Ids set, while a clause with
3810 -- More_Ids only starts the chain produced by the parser.
3812 if not More_Ids (N) and then not Prev_Ids (N) then
3813 Analyze_Package_Name (N);
3815 elsif More_Ids (N) and then not Prev_Ids (N) then
3816 Analyze_Package_Name_List (N);
3817 end if;
3819 if not Is_Entity_Name (Name (N)) then
3820 Error_Msg_N ("& is not a package", Name (N));
3822 return;
3823 end if;
3825 if Chain then
3826 Chain_Use_Clause (N);
3827 end if;
3829 Pack := Entity (Name (N));
3831 -- There are many cases where scopes are manipulated during analysis, so
3832 -- check that Pack's current use clause has not already been chained
3833 -- before setting its previous use clause.
3835 if Ekind (Pack) = E_Package
3836 and then Present (Current_Use_Clause (Pack))
3837 and then Current_Use_Clause (Pack) /= N
3838 and then No (Prev_Use_Clause (N))
3839 and then Prev_Use_Clause (Current_Use_Clause (Pack)) /= N
3840 then
3841 Set_Prev_Use_Clause (N, Current_Use_Clause (Pack));
3842 end if;
3844 -- Mark all entities as potentially use visible.
3846 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3847 if Ekind (Pack) = E_Generic_Package then
3848 Error_Msg_N -- CODEFIX
3849 ("a generic package is not allowed in a use clause", Name (N));
3851 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3852 then
3853 Error_Msg_N -- CODEFIX
3854 ("a generic subprogram is not allowed in a use clause",
3855 Name (N));
3857 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3858 Error_Msg_N -- CODEFIX
3859 ("a subprogram is not allowed in a use clause", Name (N));
3861 else
3862 Error_Msg_N ("& is not allowed in a use clause", Name (N));
3863 end if;
3865 else
3866 if Nkind (Parent (N)) = N_Compilation_Unit then
3867 Check_In_Previous_With_Clause (N, Name (N));
3868 end if;
3870 Use_One_Package (N, Name (N));
3871 end if;
3873 Mark_Ghost_Clause (N);
3874 end Analyze_Use_Package;
3876 ----------------------
3877 -- Analyze_Use_Type --
3878 ----------------------
3880 procedure Analyze_Use_Type (N : Node_Id; Chain : Boolean := True) is
3881 E : Entity_Id;
3882 Id : Node_Id;
3884 begin
3885 Set_Hidden_By_Use_Clause (N, No_Elist);
3887 -- Chain clause to list of use clauses in current scope when flagged
3889 if Chain then
3890 Chain_Use_Clause (N);
3891 end if;
3893 -- Obtain the base type of the type denoted within the use_type_clause's
3894 -- subtype mark.
3896 Id := Subtype_Mark (N);
3897 Find_Type (Id);
3898 E := Base_Type (Entity (Id));
3900 -- There are many cases where a use_type_clause may be reanalyzed due to
3901 -- manipulation of the scope stack so we much guard against those cases
3902 -- here, otherwise, we must add the new use_type_clause to the previous
3903 -- use_type_clause chain in order to mark redundant use_type_clauses as
3904 -- used. When the redundant use-type clauses appear in a parent unit and
3905 -- a child unit we must prevent a circularity in the chain that would
3906 -- otherwise result from the separate steps of analysis and installation
3907 -- of the parent context.
3909 if Present (Current_Use_Clause (E))
3910 and then Current_Use_Clause (E) /= N
3911 and then Prev_Use_Clause (Current_Use_Clause (E)) /= N
3912 and then No (Prev_Use_Clause (N))
3913 then
3914 Set_Prev_Use_Clause (N, Current_Use_Clause (E));
3915 end if;
3917 -- If the Used_Operations list is already initialized, the clause has
3918 -- been analyzed previously, and it is being reinstalled, for example
3919 -- when the clause appears in a package spec and we are compiling the
3920 -- corresponding package body. In that case, make the entities on the
3921 -- existing list use_visible, and mark the corresponding types In_Use.
3923 if Present (Used_Operations (N)) then
3924 declare
3925 Elmt : Elmt_Id;
3927 begin
3928 Use_One_Type (Subtype_Mark (N), Installed => True);
3930 Elmt := First_Elmt (Used_Operations (N));
3931 while Present (Elmt) loop
3932 Set_Is_Potentially_Use_Visible (Node (Elmt));
3933 Next_Elmt (Elmt);
3934 end loop;
3935 end;
3937 return;
3938 end if;
3940 -- Otherwise, create new list and attach to it the operations that are
3941 -- made use-visible by the clause.
3943 Set_Used_Operations (N, New_Elmt_List);
3944 E := Entity (Id);
3946 if E /= Any_Type then
3947 Use_One_Type (Id);
3949 if Nkind (Parent (N)) = N_Compilation_Unit then
3950 if Nkind (Id) = N_Identifier then
3951 Error_Msg_N ("type is not directly visible", Id);
3953 elsif Is_Child_Unit (Scope (E))
3954 and then Scope (E) /= System_Aux_Id
3955 then
3956 Check_In_Previous_With_Clause (N, Prefix (Id));
3957 end if;
3958 end if;
3960 else
3961 -- If the use_type_clause appears in a compilation unit context,
3962 -- check whether it comes from a unit that may appear in a
3963 -- limited_with_clause, for a better error message.
3965 if Nkind (Parent (N)) = N_Compilation_Unit
3966 and then Nkind (Id) /= N_Identifier
3967 then
3968 declare
3969 Item : Node_Id;
3970 Pref : Node_Id;
3972 function Mentioned (Nam : Node_Id) return Boolean;
3973 -- Check whether the prefix of expanded name for the type
3974 -- appears in the prefix of some limited_with_clause.
3976 ---------------
3977 -- Mentioned --
3978 ---------------
3980 function Mentioned (Nam : Node_Id) return Boolean is
3981 begin
3982 return Nkind (Name (Item)) = N_Selected_Component
3983 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3984 end Mentioned;
3986 begin
3987 Pref := Prefix (Id);
3988 Item := First (Context_Items (Parent (N)));
3989 while Present (Item) and then Item /= N loop
3990 if Nkind (Item) = N_With_Clause
3991 and then Limited_Present (Item)
3992 and then Mentioned (Pref)
3993 then
3994 Change_Error_Text
3995 (Get_Msg_Id, "premature usage of incomplete type");
3996 end if;
3998 Next (Item);
3999 end loop;
4000 end;
4001 end if;
4002 end if;
4004 Mark_Ghost_Clause (N);
4005 end Analyze_Use_Type;
4007 ------------------------
4008 -- Attribute_Renaming --
4009 ------------------------
4011 procedure Attribute_Renaming (N : Node_Id) is
4012 Loc : constant Source_Ptr := Sloc (N);
4013 Nam : constant Node_Id := Name (N);
4014 Spec : constant Node_Id := Specification (N);
4015 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
4016 Aname : constant Name_Id := Attribute_Name (Nam);
4018 Form_Num : Nat := 0;
4019 Expr_List : List_Id := No_List;
4021 Attr_Node : Node_Id;
4022 Body_Node : Node_Id;
4023 Param_Spec : Node_Id;
4025 begin
4026 Generate_Definition (New_S);
4028 -- This procedure is called in the context of subprogram renaming, and
4029 -- thus the attribute must be one that is a subprogram. All of those
4030 -- have at least one formal parameter, with the exceptions of the GNAT
4031 -- attribute 'Img, which GNAT treats as renameable.
4033 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
4034 if Aname /= Name_Img then
4035 Error_Msg_N
4036 ("subprogram renaming an attribute must have formals", N);
4037 return;
4038 end if;
4040 else
4041 Param_Spec := First (Parameter_Specifications (Spec));
4042 while Present (Param_Spec) loop
4043 Form_Num := Form_Num + 1;
4045 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4046 Find_Type (Parameter_Type (Param_Spec));
4048 -- The profile of the new entity denotes the base type (s) of
4049 -- the types given in the specification. For access parameters
4050 -- there are no subtypes involved.
4052 Rewrite (Parameter_Type (Param_Spec),
4053 New_Occurrence_Of
4054 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
4055 end if;
4057 if No (Expr_List) then
4058 Expr_List := New_List;
4059 end if;
4061 Append_To (Expr_List,
4062 Make_Identifier (Loc,
4063 Chars => Chars (Defining_Identifier (Param_Spec))));
4065 -- The expressions in the attribute reference are not freeze
4066 -- points. Neither is the attribute as a whole, see below.
4068 Set_Must_Not_Freeze (Last (Expr_List));
4069 Next (Param_Spec);
4070 end loop;
4071 end if;
4073 -- Immediate error if too many formals. Other mismatches in number or
4074 -- types of parameters are detected when we analyze the body of the
4075 -- subprogram that we construct.
4077 if Form_Num > 2 then
4078 Error_Msg_N ("too many formals for attribute", N);
4080 -- Error if the attribute reference has expressions that look like
4081 -- formal parameters.
4083 elsif Present (Expressions (Nam)) then
4084 Error_Msg_N ("illegal expressions in attribute reference", Nam);
4086 elsif
4087 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
4088 Name_Pos, Name_Round, Name_Scaling,
4089 Name_Val)
4090 then
4091 if Nkind (N) = N_Subprogram_Renaming_Declaration
4092 and then Present (Corresponding_Formal_Spec (N))
4093 then
4094 Error_Msg_N
4095 ("generic actual cannot be attribute involving universal type",
4096 Nam);
4097 else
4098 Error_Msg_N
4099 ("attribute involving a universal type cannot be renamed",
4100 Nam);
4101 end if;
4102 end if;
4104 -- Rewrite attribute node to have a list of expressions corresponding to
4105 -- the subprogram formals. A renaming declaration is not a freeze point,
4106 -- and the analysis of the attribute reference should not freeze the
4107 -- type of the prefix. We use the original node in the renaming so that
4108 -- its source location is preserved, and checks on stream attributes are
4109 -- properly applied.
4111 Attr_Node := Relocate_Node (Nam);
4112 Set_Expressions (Attr_Node, Expr_List);
4114 Set_Must_Not_Freeze (Attr_Node);
4115 Set_Must_Not_Freeze (Prefix (Nam));
4117 -- Case of renaming a function
4119 if Nkind (Spec) = N_Function_Specification then
4120 if Is_Procedure_Attribute_Name (Aname) then
4121 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
4122 return;
4123 end if;
4125 Find_Type (Result_Definition (Spec));
4126 Rewrite (Result_Definition (Spec),
4127 New_Occurrence_Of
4128 (Base_Type (Entity (Result_Definition (Spec))), Loc));
4130 Body_Node :=
4131 Make_Subprogram_Body (Loc,
4132 Specification => Spec,
4133 Declarations => New_List,
4134 Handled_Statement_Sequence =>
4135 Make_Handled_Sequence_Of_Statements (Loc,
4136 Statements => New_List (
4137 Make_Simple_Return_Statement (Loc,
4138 Expression => Attr_Node))));
4140 -- Case of renaming a procedure
4142 else
4143 if not Is_Procedure_Attribute_Name (Aname) then
4144 Error_Msg_N ("attribute can only be renamed as function", Nam);
4145 return;
4146 end if;
4148 Body_Node :=
4149 Make_Subprogram_Body (Loc,
4150 Specification => Spec,
4151 Declarations => New_List,
4152 Handled_Statement_Sequence =>
4153 Make_Handled_Sequence_Of_Statements (Loc,
4154 Statements => New_List (Attr_Node)));
4155 end if;
4157 -- Signal the ABE mechanism that the generated subprogram body has not
4158 -- ABE ramifications.
4160 Set_Was_Attribute_Reference (Body_Node);
4162 -- In case of tagged types we add the body of the generated function to
4163 -- the freezing actions of the type (because in the general case such
4164 -- type is still not frozen). We exclude from this processing generic
4165 -- formal subprograms found in instantiations.
4167 -- We must exclude restricted run-time libraries because
4168 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4169 -- available in those platforms. Note that we cannot use the function
4170 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4171 -- the ZFP run-time library is not defined as a profile, and we do not
4172 -- want to deal with AST_Handler in ZFP mode.
4174 if not Configurable_Run_Time_Mode
4175 and then not Present (Corresponding_Formal_Spec (N))
4176 and then Etype (Nam) /= RTE (RE_AST_Handler)
4177 then
4178 declare
4179 P : constant Node_Id := Prefix (Nam);
4181 begin
4182 -- The prefix of 'Img is an object that is evaluated for each call
4183 -- of the function that renames it.
4185 if Aname = Name_Img then
4186 Preanalyze_And_Resolve (P);
4188 -- For all other attribute renamings, the prefix is a subtype
4190 else
4191 Find_Type (P);
4192 end if;
4194 -- If the target type is not yet frozen, add the body to the
4195 -- actions to be elaborated at freeze time.
4197 if Is_Tagged_Type (Etype (P))
4198 and then In_Open_Scopes (Scope (Etype (P)))
4199 then
4200 Ensure_Freeze_Node (Etype (P));
4201 Append_Freeze_Action (Etype (P), Body_Node);
4202 else
4203 Rewrite (N, Body_Node);
4204 Analyze (N);
4205 Set_Etype (New_S, Base_Type (Etype (New_S)));
4206 end if;
4207 end;
4209 -- Generic formal subprograms or AST_Handler renaming
4211 else
4212 Rewrite (N, Body_Node);
4213 Analyze (N);
4214 Set_Etype (New_S, Base_Type (Etype (New_S)));
4215 end if;
4217 if Is_Compilation_Unit (New_S) then
4218 Error_Msg_N
4219 ("a library unit can only rename another library unit", N);
4220 end if;
4222 -- We suppress elaboration warnings for the resulting entity, since
4223 -- clearly they are not needed, and more particularly, in the case
4224 -- of a generic formal subprogram, the resulting entity can appear
4225 -- after the instantiation itself, and thus look like a bogus case
4226 -- of access before elaboration.
4228 if Legacy_Elaboration_Checks then
4229 Set_Suppress_Elaboration_Warnings (New_S);
4230 end if;
4231 end Attribute_Renaming;
4233 ----------------------
4234 -- Chain_Use_Clause --
4235 ----------------------
4237 procedure Chain_Use_Clause (N : Node_Id) is
4238 Level : Int := Scope_Stack.Last;
4239 Pack : Entity_Id;
4241 begin
4242 -- Common case
4244 if not Is_Compilation_Unit (Current_Scope)
4245 or else not Is_Child_Unit (Current_Scope)
4246 then
4247 null;
4249 -- Common case for compilation unit
4251 elsif Defining_Entity (N => Parent (N),
4252 Empty_On_Errors => True) = Current_Scope
4253 then
4254 null;
4256 else
4257 -- If declaration appears in some other scope, it must be in some
4258 -- parent unit when compiling a child.
4260 Pack := Defining_Entity (Parent (N), Empty_On_Errors => True);
4262 if not In_Open_Scopes (Pack) then
4263 null;
4265 -- If the use clause appears in an ancestor and we are in the
4266 -- private part of the immediate parent, the use clauses are
4267 -- already installed.
4269 elsif Pack /= Scope (Current_Scope)
4270 and then In_Private_Part (Scope (Current_Scope))
4271 then
4272 null;
4274 else
4275 -- Find entry for parent unit in scope stack
4277 while Scope_Stack.Table (Level).Entity /= Pack loop
4278 Level := Level - 1;
4279 end loop;
4280 end if;
4281 end if;
4283 Set_Next_Use_Clause (N,
4284 Scope_Stack.Table (Level).First_Use_Clause);
4285 Scope_Stack.Table (Level).First_Use_Clause := N;
4286 end Chain_Use_Clause;
4288 ---------------------------
4289 -- Check_Frozen_Renaming --
4290 ---------------------------
4292 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4293 B_Node : Node_Id;
4294 Old_S : Entity_Id;
4296 begin
4297 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4298 B_Node :=
4299 Build_Renamed_Body
4300 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4302 if Is_Entity_Name (Name (N)) then
4303 Old_S := Entity (Name (N));
4305 if not Is_Frozen (Old_S)
4306 and then Operating_Mode /= Check_Semantics
4307 then
4308 Append_Freeze_Action (Old_S, B_Node);
4309 else
4310 Insert_After (N, B_Node);
4311 Analyze (B_Node);
4312 end if;
4314 if Is_Intrinsic_Subprogram (Old_S)
4315 and then not In_Instance
4316 and then not Relaxed_RM_Semantics
4317 then
4318 Error_Msg_N
4319 ("subprogram used in renaming_as_body cannot be intrinsic",
4320 Name (N));
4321 end if;
4323 else
4324 Insert_After (N, B_Node);
4325 Analyze (B_Node);
4326 end if;
4327 end if;
4328 end Check_Frozen_Renaming;
4330 -------------------------------
4331 -- Set_Entity_Or_Discriminal --
4332 -------------------------------
4334 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4335 P : Node_Id;
4337 begin
4338 -- If the entity is not a discriminant, or else expansion is disabled,
4339 -- simply set the entity.
4341 if not In_Spec_Expression
4342 or else Ekind (E) /= E_Discriminant
4343 or else Inside_A_Generic
4344 then
4345 Set_Entity_With_Checks (N, E);
4347 -- The replacement of a discriminant by the corresponding discriminal
4348 -- is not done for a task discriminant that appears in a default
4349 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4350 -- for details on their handling.
4352 elsif Is_Concurrent_Type (Scope (E)) then
4353 P := Parent (N);
4354 while Present (P)
4355 and then not Nkind_In (P, N_Parameter_Specification,
4356 N_Component_Declaration)
4357 loop
4358 P := Parent (P);
4359 end loop;
4361 if Present (P)
4362 and then Nkind (P) = N_Parameter_Specification
4363 then
4364 null;
4366 else
4367 Set_Entity (N, Discriminal (E));
4368 end if;
4370 -- Otherwise, this is a discriminant in a context in which
4371 -- it is a reference to the corresponding parameter of the
4372 -- init proc for the enclosing type.
4374 else
4375 Set_Entity (N, Discriminal (E));
4376 end if;
4377 end Set_Entity_Or_Discriminal;
4379 -----------------------------------
4380 -- Check_In_Previous_With_Clause --
4381 -----------------------------------
4383 procedure Check_In_Previous_With_Clause
4384 (N : Node_Id;
4385 Nam : Entity_Id)
4387 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4388 Item : Node_Id;
4389 Par : Node_Id;
4391 begin
4392 Item := First (Context_Items (Parent (N)));
4393 while Present (Item) and then Item /= N loop
4394 if Nkind (Item) = N_With_Clause
4396 -- Protect the frontend against previous critical errors
4398 and then Nkind (Name (Item)) /= N_Selected_Component
4399 and then Entity (Name (Item)) = Pack
4400 then
4401 Par := Nam;
4403 -- Find root library unit in with_clause
4405 while Nkind (Par) = N_Expanded_Name loop
4406 Par := Prefix (Par);
4407 end loop;
4409 if Is_Child_Unit (Entity (Original_Node (Par))) then
4410 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4411 else
4412 return;
4413 end if;
4414 end if;
4416 Next (Item);
4417 end loop;
4419 -- On exit, package is not mentioned in a previous with_clause.
4420 -- Check if its prefix is.
4422 if Nkind (Nam) = N_Expanded_Name then
4423 Check_In_Previous_With_Clause (N, Prefix (Nam));
4425 elsif Pack /= Any_Id then
4426 Error_Msg_NE ("& is not visible", Nam, Pack);
4427 end if;
4428 end Check_In_Previous_With_Clause;
4430 ---------------------------------
4431 -- Check_Library_Unit_Renaming --
4432 ---------------------------------
4434 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4435 New_E : Entity_Id;
4437 begin
4438 if Nkind (Parent (N)) /= N_Compilation_Unit then
4439 return;
4441 -- Check for library unit. Note that we used to check for the scope
4442 -- being Standard here, but that was wrong for Standard itself.
4444 elsif not Is_Compilation_Unit (Old_E)
4445 and then not Is_Child_Unit (Old_E)
4446 then
4447 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4449 -- Entities defined in Standard (operators and boolean literals) cannot
4450 -- be renamed as library units.
4452 elsif Scope (Old_E) = Standard_Standard
4453 and then Sloc (Old_E) = Standard_Location
4454 then
4455 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4457 elsif Present (Parent_Spec (N))
4458 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4459 and then not Is_Child_Unit (Old_E)
4460 then
4461 Error_Msg_N
4462 ("renamed unit must be a child unit of generic parent", Name (N));
4464 elsif Nkind (N) in N_Generic_Renaming_Declaration
4465 and then Nkind (Name (N)) = N_Expanded_Name
4466 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4467 and then Is_Generic_Unit (Old_E)
4468 then
4469 Error_Msg_N
4470 ("renamed generic unit must be a library unit", Name (N));
4472 elsif Is_Package_Or_Generic_Package (Old_E) then
4474 -- Inherit categorization flags
4476 New_E := Defining_Entity (N);
4477 Set_Is_Pure (New_E, Is_Pure (Old_E));
4478 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4479 Set_Is_Remote_Call_Interface (New_E,
4480 Is_Remote_Call_Interface (Old_E));
4481 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4482 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4483 end if;
4484 end Check_Library_Unit_Renaming;
4486 ------------------------
4487 -- Enclosing_Instance --
4488 ------------------------
4490 function Enclosing_Instance return Entity_Id is
4491 S : Entity_Id;
4493 begin
4494 if not Is_Generic_Instance (Current_Scope) then
4495 return Empty;
4496 end if;
4498 S := Scope (Current_Scope);
4499 while S /= Standard_Standard loop
4500 if Is_Generic_Instance (S) then
4501 return S;
4502 end if;
4504 S := Scope (S);
4505 end loop;
4507 return Empty;
4508 end Enclosing_Instance;
4510 ---------------
4511 -- End_Scope --
4512 ---------------
4514 procedure End_Scope is
4515 Id : Entity_Id;
4516 Prev : Entity_Id;
4517 Outer : Entity_Id;
4519 begin
4520 Id := First_Entity (Current_Scope);
4521 while Present (Id) loop
4522 -- An entity in the current scope is not necessarily the first one
4523 -- on its homonym chain. Find its predecessor if any,
4524 -- If it is an internal entity, it will not be in the visibility
4525 -- chain altogether, and there is nothing to unchain.
4527 if Id /= Current_Entity (Id) then
4528 Prev := Current_Entity (Id);
4529 while Present (Prev)
4530 and then Present (Homonym (Prev))
4531 and then Homonym (Prev) /= Id
4532 loop
4533 Prev := Homonym (Prev);
4534 end loop;
4536 -- Skip to end of loop if Id is not in the visibility chain
4538 if No (Prev) or else Homonym (Prev) /= Id then
4539 goto Next_Ent;
4540 end if;
4542 else
4543 Prev := Empty;
4544 end if;
4546 Set_Is_Immediately_Visible (Id, False);
4548 Outer := Homonym (Id);
4549 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4550 Outer := Homonym (Outer);
4551 end loop;
4553 -- Reset homonym link of other entities, but do not modify link
4554 -- between entities in current scope, so that the back-end can have
4555 -- a proper count of local overloadings.
4557 if No (Prev) then
4558 Set_Name_Entity_Id (Chars (Id), Outer);
4560 elsif Scope (Prev) /= Scope (Id) then
4561 Set_Homonym (Prev, Outer);
4562 end if;
4564 <<Next_Ent>>
4565 Next_Entity (Id);
4566 end loop;
4568 -- If the scope generated freeze actions, place them before the
4569 -- current declaration and analyze them. Type declarations and
4570 -- the bodies of initialization procedures can generate such nodes.
4571 -- We follow the parent chain until we reach a list node, which is
4572 -- the enclosing list of declarations. If the list appears within
4573 -- a protected definition, move freeze nodes outside the protected
4574 -- type altogether.
4576 if Present
4577 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4578 then
4579 declare
4580 Decl : Node_Id;
4581 L : constant List_Id := Scope_Stack.Table
4582 (Scope_Stack.Last).Pending_Freeze_Actions;
4584 begin
4585 if Is_Itype (Current_Scope) then
4586 Decl := Associated_Node_For_Itype (Current_Scope);
4587 else
4588 Decl := Parent (Current_Scope);
4589 end if;
4591 Pop_Scope;
4593 while not (Is_List_Member (Decl))
4594 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4595 N_Task_Definition)
4596 loop
4597 Decl := Parent (Decl);
4598 end loop;
4600 Insert_List_Before_And_Analyze (Decl, L);
4601 end;
4603 else
4604 Pop_Scope;
4605 end if;
4606 end End_Scope;
4608 ---------------------
4609 -- End_Use_Clauses --
4610 ---------------------
4612 procedure End_Use_Clauses (Clause : Node_Id) is
4613 U : Node_Id;
4615 begin
4616 -- Remove use_type_clauses first, because they affect the visibility of
4617 -- operators in subsequent used packages.
4619 U := Clause;
4620 while Present (U) loop
4621 if Nkind (U) = N_Use_Type_Clause then
4622 End_Use_Type (U);
4623 end if;
4625 Next_Use_Clause (U);
4626 end loop;
4628 U := Clause;
4629 while Present (U) loop
4630 if Nkind (U) = N_Use_Package_Clause then
4631 End_Use_Package (U);
4632 end if;
4634 Next_Use_Clause (U);
4635 end loop;
4636 end End_Use_Clauses;
4638 ---------------------
4639 -- End_Use_Package --
4640 ---------------------
4642 procedure End_Use_Package (N : Node_Id) is
4643 Pack : Entity_Id;
4644 Pack_Name : Node_Id;
4645 Id : Entity_Id;
4646 Elmt : Elmt_Id;
4648 function Is_Primitive_Operator_In_Use
4649 (Op : Entity_Id;
4650 F : Entity_Id) return Boolean;
4651 -- Check whether Op is a primitive operator of a use-visible type
4653 ----------------------------------
4654 -- Is_Primitive_Operator_In_Use --
4655 ----------------------------------
4657 function Is_Primitive_Operator_In_Use
4658 (Op : Entity_Id;
4659 F : Entity_Id) return Boolean
4661 T : constant Entity_Id := Base_Type (Etype (F));
4662 begin
4663 return In_Use (T) and then Scope (T) = Scope (Op);
4664 end Is_Primitive_Operator_In_Use;
4666 -- Start of processing for End_Use_Package
4668 begin
4669 Pack_Name := Name (N);
4671 -- Test that Pack_Name actually denotes a package before processing
4673 if Is_Entity_Name (Pack_Name)
4674 and then Ekind (Entity (Pack_Name)) = E_Package
4675 then
4676 Pack := Entity (Pack_Name);
4678 if In_Open_Scopes (Pack) then
4679 null;
4681 elsif not Redundant_Use (Pack_Name) then
4682 Set_In_Use (Pack, False);
4683 Set_Current_Use_Clause (Pack, Empty);
4685 Id := First_Entity (Pack);
4686 while Present (Id) loop
4688 -- Preserve use-visibility of operators that are primitive
4689 -- operators of a type that is use-visible through an active
4690 -- use_type_clause.
4692 if Nkind (Id) = N_Defining_Operator_Symbol
4693 and then
4694 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4695 or else
4696 (Present (Next_Formal (First_Formal (Id)))
4697 and then
4698 Is_Primitive_Operator_In_Use
4699 (Id, Next_Formal (First_Formal (Id)))))
4700 then
4701 null;
4702 else
4703 Set_Is_Potentially_Use_Visible (Id, False);
4704 end if;
4706 if Is_Private_Type (Id)
4707 and then Present (Full_View (Id))
4708 then
4709 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4710 end if;
4712 Next_Entity (Id);
4713 end loop;
4715 if Present (Renamed_Object (Pack)) then
4716 Set_In_Use (Renamed_Object (Pack), False);
4717 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4718 end if;
4720 if Chars (Pack) = Name_System
4721 and then Scope (Pack) = Standard_Standard
4722 and then Present_System_Aux
4723 then
4724 Id := First_Entity (System_Aux_Id);
4725 while Present (Id) loop
4726 Set_Is_Potentially_Use_Visible (Id, False);
4728 if Is_Private_Type (Id)
4729 and then Present (Full_View (Id))
4730 then
4731 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4732 end if;
4734 Next_Entity (Id);
4735 end loop;
4737 Set_In_Use (System_Aux_Id, False);
4738 end if;
4739 else
4740 Set_Redundant_Use (Pack_Name, False);
4741 end if;
4742 end if;
4744 if Present (Hidden_By_Use_Clause (N)) then
4745 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4746 while Present (Elmt) loop
4747 declare
4748 E : constant Entity_Id := Node (Elmt);
4750 begin
4751 -- Reset either Use_Visibility or Direct_Visibility, depending
4752 -- on how the entity was hidden by the use clause.
4754 if In_Use (Scope (E))
4755 and then Used_As_Generic_Actual (Scope (E))
4756 then
4757 Set_Is_Potentially_Use_Visible (Node (Elmt));
4758 else
4759 Set_Is_Immediately_Visible (Node (Elmt));
4760 end if;
4762 Next_Elmt (Elmt);
4763 end;
4764 end loop;
4766 Set_Hidden_By_Use_Clause (N, No_Elist);
4767 end if;
4768 end End_Use_Package;
4770 ------------------
4771 -- End_Use_Type --
4772 ------------------
4774 procedure End_Use_Type (N : Node_Id) is
4775 Elmt : Elmt_Id;
4776 Id : Entity_Id;
4777 T : Entity_Id;
4779 -- Start of processing for End_Use_Type
4781 begin
4782 Id := Subtype_Mark (N);
4784 -- A call to Rtsfind may occur while analyzing a use_type_clause, in
4785 -- which case the type marks are not resolved yet, so guard against that
4786 -- here.
4788 if Is_Entity_Name (Id) and then Present (Entity (Id)) then
4789 T := Entity (Id);
4791 if T = Any_Type or else From_Limited_With (T) then
4792 null;
4794 -- Note that the use_type_clause may mention a subtype of the type
4795 -- whose primitive operations have been made visible. Here as
4796 -- elsewhere, it is the base type that matters for visibility.
4798 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4799 null;
4801 elsif not Redundant_Use (Id) then
4802 Set_In_Use (T, False);
4803 Set_In_Use (Base_Type (T), False);
4804 Set_Current_Use_Clause (T, Empty);
4805 Set_Current_Use_Clause (Base_Type (T), Empty);
4806 end if;
4807 end if;
4809 if Is_Empty_Elmt_List (Used_Operations (N)) then
4810 return;
4812 else
4813 Elmt := First_Elmt (Used_Operations (N));
4814 while Present (Elmt) loop
4815 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4816 Next_Elmt (Elmt);
4817 end loop;
4818 end if;
4819 end End_Use_Type;
4821 --------------------
4822 -- Entity_Of_Unit --
4823 --------------------
4825 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
4826 begin
4827 if Nkind (U) = N_Package_Instantiation and then Analyzed (U) then
4828 return Defining_Entity (Instance_Spec (U));
4829 else
4830 return Defining_Entity (U);
4831 end if;
4832 end Entity_Of_Unit;
4834 ----------------------
4835 -- Find_Direct_Name --
4836 ----------------------
4838 procedure Find_Direct_Name (N : Node_Id) is
4839 E : Entity_Id;
4840 E2 : Entity_Id;
4841 Msg : Boolean;
4843 Homonyms : Entity_Id;
4844 -- Saves start of homonym chain
4846 Inst : Entity_Id := Empty;
4847 -- Enclosing instance, if any
4849 Nvis_Entity : Boolean;
4850 -- Set True to indicate that there is at least one entity on the homonym
4851 -- chain which, while not visible, is visible enough from the user point
4852 -- of view to warrant an error message of "not visible" rather than
4853 -- undefined.
4855 Nvis_Is_Private_Subprg : Boolean := False;
4856 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4857 -- effect concerning library subprograms has been detected. Used to
4858 -- generate the precise error message.
4860 function From_Actual_Package (E : Entity_Id) return Boolean;
4861 -- Returns true if the entity is an actual for a package that is itself
4862 -- an actual for a formal package of the current instance. Such an
4863 -- entity requires special handling because it may be use-visible but
4864 -- hides directly visible entities defined outside the instance, because
4865 -- the corresponding formal did so in the generic.
4867 function Is_Actual_Parameter return Boolean;
4868 -- This function checks if the node N is an identifier that is an actual
4869 -- parameter of a procedure call. If so it returns True, otherwise it
4870 -- return False. The reason for this check is that at this stage we do
4871 -- not know what procedure is being called if the procedure might be
4872 -- overloaded, so it is premature to go setting referenced flags or
4873 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4874 -- for that processing
4876 function Known_But_Invisible (E : Entity_Id) return Boolean;
4877 -- This function determines whether a reference to the entity E, which
4878 -- is not visible, can reasonably be considered to be known to the
4879 -- writer of the reference. This is a heuristic test, used only for
4880 -- the purposes of figuring out whether we prefer to complain that an
4881 -- entity is undefined or invisible (and identify the declaration of
4882 -- the invisible entity in the latter case). The point here is that we
4883 -- don't want to complain that something is invisible and then point to
4884 -- something entirely mysterious to the writer.
4886 procedure Nvis_Messages;
4887 -- Called if there are no visible entries for N, but there is at least
4888 -- one non-directly visible, or hidden declaration. This procedure
4889 -- outputs an appropriate set of error messages.
4891 procedure Undefined (Nvis : Boolean);
4892 -- This function is called if the current node has no corresponding
4893 -- visible entity or entities. The value set in Msg indicates whether
4894 -- an error message was generated (multiple error messages for the
4895 -- same variable are generally suppressed, see body for details).
4896 -- Msg is True if an error message was generated, False if not. This
4897 -- value is used by the caller to determine whether or not to output
4898 -- additional messages where appropriate. The parameter is set False
4899 -- to get the message "X is undefined", and True to get the message
4900 -- "X is not visible".
4902 -------------------------
4903 -- From_Actual_Package --
4904 -------------------------
4906 function From_Actual_Package (E : Entity_Id) return Boolean is
4907 Scop : constant Entity_Id := Scope (E);
4908 -- Declared scope of candidate entity
4910 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4911 -- Recursive function that does the work and examines actuals of
4912 -- actual packages of current instance.
4914 ------------------------
4915 -- Declared_In_Actual --
4916 ------------------------
4918 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4919 Act : Entity_Id;
4921 begin
4922 if No (Associated_Formal_Package (Pack)) then
4923 return False;
4925 else
4926 Act := First_Entity (Pack);
4927 while Present (Act) loop
4928 if Renamed_Object (Pack) = Scop then
4929 return True;
4931 -- Check for end of list of actuals
4933 elsif Ekind (Act) = E_Package
4934 and then Renamed_Object (Act) = Pack
4935 then
4936 return False;
4938 elsif Ekind (Act) = E_Package
4939 and then Declared_In_Actual (Act)
4940 then
4941 return True;
4942 end if;
4944 Next_Entity (Act);
4945 end loop;
4947 return False;
4948 end if;
4949 end Declared_In_Actual;
4951 -- Local variables
4953 Act : Entity_Id;
4955 -- Start of processing for From_Actual_Package
4957 begin
4958 if not In_Instance then
4959 return False;
4961 else
4962 Inst := Current_Scope;
4963 while Present (Inst)
4964 and then Ekind (Inst) /= E_Package
4965 and then not Is_Generic_Instance (Inst)
4966 loop
4967 Inst := Scope (Inst);
4968 end loop;
4970 if No (Inst) then
4971 return False;
4972 end if;
4974 Act := First_Entity (Inst);
4975 while Present (Act) loop
4976 if Ekind (Act) = E_Package
4977 and then Declared_In_Actual (Act)
4978 then
4979 return True;
4980 end if;
4982 Next_Entity (Act);
4983 end loop;
4985 return False;
4986 end if;
4987 end From_Actual_Package;
4989 -------------------------
4990 -- Is_Actual_Parameter --
4991 -------------------------
4993 function Is_Actual_Parameter return Boolean is
4994 begin
4995 return
4996 Nkind (N) = N_Identifier
4997 and then
4998 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4999 or else
5000 (Nkind (Parent (N)) = N_Parameter_Association
5001 and then N = Explicit_Actual_Parameter (Parent (N))
5002 and then Nkind (Parent (Parent (N))) =
5003 N_Procedure_Call_Statement));
5004 end Is_Actual_Parameter;
5006 -------------------------
5007 -- Known_But_Invisible --
5008 -------------------------
5010 function Known_But_Invisible (E : Entity_Id) return Boolean is
5011 Fname : File_Name_Type;
5013 begin
5014 -- Entities in Standard are always considered to be known
5016 if Sloc (E) <= Standard_Location then
5017 return True;
5019 -- An entity that does not come from source is always considered
5020 -- to be unknown, since it is an artifact of code expansion.
5022 elsif not Comes_From_Source (E) then
5023 return False;
5025 -- In gnat internal mode, we consider all entities known. The
5026 -- historical reason behind this discrepancy is not known??? But the
5027 -- only effect is to modify the error message given, so it is not
5028 -- critical. Since it only affects the exact wording of error
5029 -- messages in illegal programs, we do not mention this as an
5030 -- effect of -gnatg, since it is not a language modification.
5032 elsif GNAT_Mode then
5033 return True;
5034 end if;
5036 -- Here we have an entity that is not from package Standard, and
5037 -- which comes from Source. See if it comes from an internal file.
5039 Fname := Unit_File_Name (Get_Source_Unit (E));
5041 -- Case of from internal file
5043 if In_Internal_Unit (E) then
5045 -- Private part entities in internal files are never considered
5046 -- to be known to the writer of normal application code.
5048 if Is_Hidden (E) then
5049 return False;
5050 end if;
5052 -- Entities from System packages other than System and
5053 -- System.Storage_Elements are not considered to be known.
5054 -- System.Auxxxx files are also considered known to the user.
5056 -- Should refine this at some point to generally distinguish
5057 -- between known and unknown internal files ???
5059 Get_Name_String (Fname);
5061 return
5062 Name_Len < 2
5063 or else
5064 Name_Buffer (1 .. 2) /= "s-"
5065 or else
5066 Name_Buffer (3 .. 8) = "stoele"
5067 or else
5068 Name_Buffer (3 .. 5) = "aux";
5070 -- If not an internal file, then entity is definitely known, even if
5071 -- it is in a private part (the message generated will note that it
5072 -- is in a private part).
5074 else
5075 return True;
5076 end if;
5077 end Known_But_Invisible;
5079 -------------------
5080 -- Nvis_Messages --
5081 -------------------
5083 procedure Nvis_Messages is
5084 Comp_Unit : Node_Id;
5085 Ent : Entity_Id;
5086 Found : Boolean := False;
5087 Hidden : Boolean := False;
5088 Item : Node_Id;
5090 begin
5091 -- Ada 2005 (AI-262): Generate a precise error concerning the
5092 -- Beaujolais effect that was previously detected
5094 if Nvis_Is_Private_Subprg then
5096 pragma Assert (Nkind (E2) = N_Defining_Identifier
5097 and then Ekind (E2) = E_Function
5098 and then Scope (E2) = Standard_Standard
5099 and then Has_Private_With (E2));
5101 -- Find the sloc corresponding to the private with'ed unit
5103 Comp_Unit := Cunit (Current_Sem_Unit);
5104 Error_Msg_Sloc := No_Location;
5106 Item := First (Context_Items (Comp_Unit));
5107 while Present (Item) loop
5108 if Nkind (Item) = N_With_Clause
5109 and then Private_Present (Item)
5110 and then Entity (Name (Item)) = E2
5111 then
5112 Error_Msg_Sloc := Sloc (Item);
5113 exit;
5114 end if;
5116 Next (Item);
5117 end loop;
5119 pragma Assert (Error_Msg_Sloc /= No_Location);
5121 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
5122 return;
5123 end if;
5125 Undefined (Nvis => True);
5127 if Msg then
5129 -- First loop does hidden declarations
5131 Ent := Homonyms;
5132 while Present (Ent) loop
5133 if Is_Potentially_Use_Visible (Ent) then
5134 if not Hidden then
5135 Error_Msg_N -- CODEFIX
5136 ("multiple use clauses cause hiding!", N);
5137 Hidden := True;
5138 end if;
5140 Error_Msg_Sloc := Sloc (Ent);
5141 Error_Msg_N -- CODEFIX
5142 ("hidden declaration#!", N);
5143 end if;
5145 Ent := Homonym (Ent);
5146 end loop;
5148 -- If we found hidden declarations, then that's enough, don't
5149 -- bother looking for non-visible declarations as well.
5151 if Hidden then
5152 return;
5153 end if;
5155 -- Second loop does non-directly visible declarations
5157 Ent := Homonyms;
5158 while Present (Ent) loop
5159 if not Is_Potentially_Use_Visible (Ent) then
5161 -- Do not bother the user with unknown entities
5163 if not Known_But_Invisible (Ent) then
5164 goto Continue;
5165 end if;
5167 Error_Msg_Sloc := Sloc (Ent);
5169 -- Output message noting that there is a non-visible
5170 -- declaration, distinguishing the private part case.
5172 if Is_Hidden (Ent) then
5173 Error_Msg_N ("non-visible (private) declaration#!", N);
5175 -- If the entity is declared in a generic package, it
5176 -- cannot be visible, so there is no point in adding it
5177 -- to the list of candidates if another homograph from a
5178 -- non-generic package has been seen.
5180 elsif Ekind (Scope (Ent)) = E_Generic_Package
5181 and then Found
5182 then
5183 null;
5185 else
5186 Error_Msg_N -- CODEFIX
5187 ("non-visible declaration#!", N);
5189 if Ekind (Scope (Ent)) /= E_Generic_Package then
5190 Found := True;
5191 end if;
5193 if Is_Compilation_Unit (Ent)
5194 and then
5195 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
5196 then
5197 Error_Msg_Qual_Level := 99;
5198 Error_Msg_NE -- CODEFIX
5199 ("\\missing `WITH &;`", N, Ent);
5200 Error_Msg_Qual_Level := 0;
5201 end if;
5203 if Ekind (Ent) = E_Discriminant
5204 and then Present (Corresponding_Discriminant (Ent))
5205 and then Scope (Corresponding_Discriminant (Ent)) =
5206 Etype (Scope (Ent))
5207 then
5208 Error_Msg_N
5209 ("inherited discriminant not allowed here" &
5210 " (RM 3.8 (12), 3.8.1 (6))!", N);
5211 end if;
5212 end if;
5214 -- Set entity and its containing package as referenced. We
5215 -- can't be sure of this, but this seems a better choice
5216 -- to avoid unused entity messages.
5218 if Comes_From_Source (Ent) then
5219 Set_Referenced (Ent);
5220 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5221 end if;
5222 end if;
5224 <<Continue>>
5225 Ent := Homonym (Ent);
5226 end loop;
5227 end if;
5228 end Nvis_Messages;
5230 ---------------
5231 -- Undefined --
5232 ---------------
5234 procedure Undefined (Nvis : Boolean) is
5235 Emsg : Error_Msg_Id;
5237 begin
5238 -- We should never find an undefined internal name. If we do, then
5239 -- see if we have previous errors. If so, ignore on the grounds that
5240 -- it is probably a cascaded message (e.g. a block label from a badly
5241 -- formed block). If no previous errors, then we have a real internal
5242 -- error of some kind so raise an exception.
5244 if Is_Internal_Name (Chars (N)) then
5245 if Total_Errors_Detected /= 0 then
5246 return;
5247 else
5248 raise Program_Error;
5249 end if;
5250 end if;
5252 -- A very specialized error check, if the undefined variable is
5253 -- a case tag, and the case type is an enumeration type, check
5254 -- for a possible misspelling, and if so, modify the identifier
5256 -- Named aggregate should also be handled similarly ???
5258 if Nkind (N) = N_Identifier
5259 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5260 then
5261 declare
5262 Case_Stm : constant Node_Id := Parent (Parent (N));
5263 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5265 Lit : Node_Id;
5267 begin
5268 if Is_Enumeration_Type (Case_Typ)
5269 and then not Is_Standard_Character_Type (Case_Typ)
5270 then
5271 Lit := First_Literal (Case_Typ);
5272 Get_Name_String (Chars (Lit));
5274 if Chars (Lit) /= Chars (N)
5275 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5276 then
5277 Error_Msg_Node_2 := Lit;
5278 Error_Msg_N -- CODEFIX
5279 ("& is undefined, assume misspelling of &", N);
5280 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5281 return;
5282 end if;
5284 Lit := Next_Literal (Lit);
5285 end if;
5286 end;
5287 end if;
5289 -- Normal processing
5291 Set_Entity (N, Any_Id);
5292 Set_Etype (N, Any_Type);
5294 -- We use the table Urefs to keep track of entities for which we
5295 -- have issued errors for undefined references. Multiple errors
5296 -- for a single name are normally suppressed, however we modify
5297 -- the error message to alert the programmer to this effect.
5299 for J in Urefs.First .. Urefs.Last loop
5300 if Chars (N) = Chars (Urefs.Table (J).Node) then
5301 if Urefs.Table (J).Err /= No_Error_Msg
5302 and then Sloc (N) /= Urefs.Table (J).Loc
5303 then
5304 Error_Msg_Node_1 := Urefs.Table (J).Node;
5306 if Urefs.Table (J).Nvis then
5307 Change_Error_Text (Urefs.Table (J).Err,
5308 "& is not visible (more references follow)");
5309 else
5310 Change_Error_Text (Urefs.Table (J).Err,
5311 "& is undefined (more references follow)");
5312 end if;
5314 Urefs.Table (J).Err := No_Error_Msg;
5315 end if;
5317 -- Although we will set Msg False, and thus suppress the
5318 -- message, we also set Error_Posted True, to avoid any
5319 -- cascaded messages resulting from the undefined reference.
5321 Msg := False;
5322 Set_Error_Posted (N, True);
5323 return;
5324 end if;
5325 end loop;
5327 -- If entry not found, this is first undefined occurrence
5329 if Nvis then
5330 Error_Msg_N ("& is not visible!", N);
5331 Emsg := Get_Msg_Id;
5333 else
5334 Error_Msg_N ("& is undefined!", N);
5335 Emsg := Get_Msg_Id;
5337 -- A very bizarre special check, if the undefined identifier
5338 -- is put or put_line, then add a special error message (since
5339 -- this is a very common error for beginners to make).
5341 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5342 Error_Msg_N -- CODEFIX
5343 ("\\possible missing `WITH Ada.Text_'I'O; " &
5344 "USE Ada.Text_'I'O`!", N);
5346 -- Another special check if N is the prefix of a selected
5347 -- component which is a known unit, add message complaining
5348 -- about missing with for this unit.
5350 elsif Nkind (Parent (N)) = N_Selected_Component
5351 and then N = Prefix (Parent (N))
5352 and then Is_Known_Unit (Parent (N))
5353 then
5354 Error_Msg_Node_2 := Selector_Name (Parent (N));
5355 Error_Msg_N -- CODEFIX
5356 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5357 end if;
5359 -- Now check for possible misspellings
5361 declare
5362 E : Entity_Id;
5363 Ematch : Entity_Id := Empty;
5365 Last_Name_Id : constant Name_Id :=
5366 Name_Id (Nat (First_Name_Id) +
5367 Name_Entries_Count - 1);
5369 begin
5370 for Nam in First_Name_Id .. Last_Name_Id loop
5371 E := Get_Name_Entity_Id (Nam);
5373 if Present (E)
5374 and then (Is_Immediately_Visible (E)
5375 or else
5376 Is_Potentially_Use_Visible (E))
5377 then
5378 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5379 Ematch := E;
5380 exit;
5381 end if;
5382 end if;
5383 end loop;
5385 if Present (Ematch) then
5386 Error_Msg_NE -- CODEFIX
5387 ("\possible misspelling of&", N, Ematch);
5388 end if;
5389 end;
5390 end if;
5392 -- Make entry in undefined references table unless the full errors
5393 -- switch is set, in which case by refraining from generating the
5394 -- table entry, we guarantee that we get an error message for every
5395 -- undefined reference. The entry is not added if we are ignoring
5396 -- errors.
5398 if not All_Errors_Mode and then Ignore_Errors_Enable = 0 then
5399 Urefs.Append (
5400 (Node => N,
5401 Err => Emsg,
5402 Nvis => Nvis,
5403 Loc => Sloc (N)));
5404 end if;
5406 Msg := True;
5407 end Undefined;
5409 -- Local variables
5411 Nested_Inst : Entity_Id := Empty;
5412 -- The entity of a nested instance which appears within Inst (if any)
5414 -- Start of processing for Find_Direct_Name
5416 begin
5417 -- If the entity pointer is already set, this is an internal node, or
5418 -- a node that is analyzed more than once, after a tree modification.
5419 -- In such a case there is no resolution to perform, just set the type.
5421 if Present (Entity (N)) then
5422 if Is_Type (Entity (N)) then
5423 Set_Etype (N, Entity (N));
5425 else
5426 declare
5427 Entyp : constant Entity_Id := Etype (Entity (N));
5429 begin
5430 -- One special case here. If the Etype field is already set,
5431 -- and references the packed array type corresponding to the
5432 -- etype of the referenced entity, then leave it alone. This
5433 -- happens for trees generated from Exp_Pakd, where expressions
5434 -- can be deliberately "mis-typed" to the packed array type.
5436 if Is_Array_Type (Entyp)
5437 and then Is_Packed (Entyp)
5438 and then Present (Etype (N))
5439 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5440 then
5441 null;
5443 -- If not that special case, then just reset the Etype
5445 else
5446 Set_Etype (N, Etype (Entity (N)));
5447 end if;
5448 end;
5449 end if;
5451 -- Although the marking of use clauses happens at the end of
5452 -- Find_Direct_Name, a certain case where a generic actual satisfies
5453 -- a use clause must be checked here due to how the generic machinery
5454 -- handles the analysis of said actuals.
5456 if In_Instance
5457 and then Nkind (Parent (N)) = N_Generic_Association
5458 then
5459 Mark_Use_Clauses (Entity (N));
5460 end if;
5462 return;
5463 end if;
5465 -- Preserve relevant elaboration-related attributes of the context which
5466 -- are no longer available or very expensive to recompute once analysis,
5467 -- resolution, and expansion are over.
5469 if Nkind (N) = N_Identifier then
5470 Mark_Elaboration_Attributes
5471 (N_Id => N,
5472 Modes => True);
5473 end if;
5475 -- Here if Entity pointer was not set, we need full visibility analysis
5476 -- First we generate debugging output if the debug E flag is set.
5478 if Debug_Flag_E then
5479 Write_Str ("Looking for ");
5480 Write_Name (Chars (N));
5481 Write_Eol;
5482 end if;
5484 Homonyms := Current_Entity (N);
5485 Nvis_Entity := False;
5487 E := Homonyms;
5488 while Present (E) loop
5490 -- If entity is immediately visible or potentially use visible, then
5491 -- process the entity and we are done.
5493 if Is_Immediately_Visible (E) then
5494 goto Immediately_Visible_Entity;
5496 elsif Is_Potentially_Use_Visible (E) then
5497 goto Potentially_Use_Visible_Entity;
5499 -- Note if a known but invisible entity encountered
5501 elsif Known_But_Invisible (E) then
5502 Nvis_Entity := True;
5503 end if;
5505 -- Move to next entity in chain and continue search
5507 E := Homonym (E);
5508 end loop;
5510 -- If no entries on homonym chain that were potentially visible,
5511 -- and no entities reasonably considered as non-visible, then
5512 -- we have a plain undefined reference, with no additional
5513 -- explanation required.
5515 if not Nvis_Entity then
5516 Undefined (Nvis => False);
5518 -- Otherwise there is at least one entry on the homonym chain that
5519 -- is reasonably considered as being known and non-visible.
5521 else
5522 Nvis_Messages;
5523 end if;
5525 goto Done;
5527 -- Processing for a potentially use visible entry found. We must search
5528 -- the rest of the homonym chain for two reasons. First, if there is a
5529 -- directly visible entry, then none of the potentially use-visible
5530 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5531 -- for the case of multiple potentially use-visible entries hiding one
5532 -- another and as a result being non-directly visible (RM 8.4(11)).
5534 <<Potentially_Use_Visible_Entity>> declare
5535 Only_One_Visible : Boolean := True;
5536 All_Overloadable : Boolean := Is_Overloadable (E);
5538 begin
5539 E2 := Homonym (E);
5540 while Present (E2) loop
5541 if Is_Immediately_Visible (E2) then
5543 -- If the use-visible entity comes from the actual for a
5544 -- formal package, it hides a directly visible entity from
5545 -- outside the instance.
5547 if From_Actual_Package (E)
5548 and then Scope_Depth (E2) < Scope_Depth (Inst)
5549 then
5550 goto Found;
5551 else
5552 E := E2;
5553 goto Immediately_Visible_Entity;
5554 end if;
5556 elsif Is_Potentially_Use_Visible (E2) then
5557 Only_One_Visible := False;
5558 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5560 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5561 -- that can occur in private_with clauses. Example:
5563 -- with A;
5564 -- private with B; package A is
5565 -- package C is function B return Integer;
5566 -- use A; end A;
5567 -- V1 : Integer := B;
5568 -- private function B return Integer;
5569 -- V2 : Integer := B;
5570 -- end C;
5572 -- V1 resolves to A.B, but V2 resolves to library unit B
5574 elsif Ekind (E2) = E_Function
5575 and then Scope (E2) = Standard_Standard
5576 and then Has_Private_With (E2)
5577 then
5578 Only_One_Visible := False;
5579 All_Overloadable := False;
5580 Nvis_Is_Private_Subprg := True;
5581 exit;
5582 end if;
5584 E2 := Homonym (E2);
5585 end loop;
5587 -- On falling through this loop, we have checked that there are no
5588 -- immediately visible entities. Only_One_Visible is set if exactly
5589 -- one potentially use visible entity exists. All_Overloadable is
5590 -- set if all the potentially use visible entities are overloadable.
5591 -- The condition for legality is that either there is one potentially
5592 -- use visible entity, or if there is more than one, then all of them
5593 -- are overloadable.
5595 if Only_One_Visible or All_Overloadable then
5596 goto Found;
5598 -- If there is more than one potentially use-visible entity and at
5599 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5600 -- Note that E points to the first such entity on the homonym list.
5602 else
5603 -- If one of the entities is declared in an actual package, it
5604 -- was visible in the generic, and takes precedence over other
5605 -- entities that are potentially use-visible. The same applies
5606 -- if the entity is declared in a local instantiation of the
5607 -- current instance.
5609 if In_Instance then
5611 -- Find the current instance
5613 Inst := Current_Scope;
5614 while Present (Inst) and then Inst /= Standard_Standard loop
5615 if Is_Generic_Instance (Inst) then
5616 exit;
5617 end if;
5619 Inst := Scope (Inst);
5620 end loop;
5622 -- Reexamine the candidate entities, giving priority to those
5623 -- that were visible within the generic.
5625 E2 := E;
5626 while Present (E2) loop
5627 Nested_Inst := Nearest_Enclosing_Instance (E2);
5629 -- The entity is declared within an actual package, or in a
5630 -- nested instance. The ">=" accounts for the case where the
5631 -- current instance and the nested instance are the same.
5633 if From_Actual_Package (E2)
5634 or else (Present (Nested_Inst)
5635 and then Scope_Depth (Nested_Inst) >=
5636 Scope_Depth (Inst))
5637 then
5638 E := E2;
5639 goto Found;
5640 end if;
5642 E2 := Homonym (E2);
5643 end loop;
5645 Nvis_Messages;
5646 goto Done;
5648 elsif Is_Predefined_Unit (Current_Sem_Unit) then
5649 -- A use clause in the body of a system file creates conflict
5650 -- with some entity in a user scope, while rtsfind is active.
5651 -- Keep only the entity coming from another predefined unit.
5653 E2 := E;
5654 while Present (E2) loop
5655 if In_Predefined_Unit (E2) then
5656 E := E2;
5657 goto Found;
5658 end if;
5660 E2 := Homonym (E2);
5661 end loop;
5663 -- Entity must exist because predefined unit is correct
5665 raise Program_Error;
5667 else
5668 Nvis_Messages;
5669 goto Done;
5670 end if;
5671 end if;
5672 end;
5674 -- Come here with E set to the first immediately visible entity on
5675 -- the homonym chain. This is the one we want unless there is another
5676 -- immediately visible entity further on in the chain for an inner
5677 -- scope (RM 8.3(8)).
5679 <<Immediately_Visible_Entity>> declare
5680 Level : Int;
5681 Scop : Entity_Id;
5683 begin
5684 -- Find scope level of initial entity. When compiling through
5685 -- Rtsfind, the previous context is not completely invisible, and
5686 -- an outer entity may appear on the chain, whose scope is below
5687 -- the entry for Standard that delimits the current scope stack.
5688 -- Indicate that the level for this spurious entry is outside of
5689 -- the current scope stack.
5691 Level := Scope_Stack.Last;
5692 loop
5693 Scop := Scope_Stack.Table (Level).Entity;
5694 exit when Scop = Scope (E);
5695 Level := Level - 1;
5696 exit when Scop = Standard_Standard;
5697 end loop;
5699 -- Now search remainder of homonym chain for more inner entry
5700 -- If the entity is Standard itself, it has no scope, and we
5701 -- compare it with the stack entry directly.
5703 E2 := Homonym (E);
5704 while Present (E2) loop
5705 if Is_Immediately_Visible (E2) then
5707 -- If a generic package contains a local declaration that
5708 -- has the same name as the generic, there may be a visibility
5709 -- conflict in an instance, where the local declaration must
5710 -- also hide the name of the corresponding package renaming.
5711 -- We check explicitly for a package declared by a renaming,
5712 -- whose renamed entity is an instance that is on the scope
5713 -- stack, and that contains a homonym in the same scope. Once
5714 -- we have found it, we know that the package renaming is not
5715 -- immediately visible, and that the identifier denotes the
5716 -- other entity (and its homonyms if overloaded).
5718 if Scope (E) = Scope (E2)
5719 and then Ekind (E) = E_Package
5720 and then Present (Renamed_Object (E))
5721 and then Is_Generic_Instance (Renamed_Object (E))
5722 and then In_Open_Scopes (Renamed_Object (E))
5723 and then Comes_From_Source (N)
5724 then
5725 Set_Is_Immediately_Visible (E, False);
5726 E := E2;
5728 else
5729 for J in Level + 1 .. Scope_Stack.Last loop
5730 if Scope_Stack.Table (J).Entity = Scope (E2)
5731 or else Scope_Stack.Table (J).Entity = E2
5732 then
5733 Level := J;
5734 E := E2;
5735 exit;
5736 end if;
5737 end loop;
5738 end if;
5739 end if;
5741 E2 := Homonym (E2);
5742 end loop;
5744 -- At the end of that loop, E is the innermost immediately
5745 -- visible entity, so we are all set.
5746 end;
5748 -- Come here with entity found, and stored in E
5750 <<Found>> begin
5752 -- Check violation of No_Wide_Characters restriction
5754 Check_Wide_Character_Restriction (E, N);
5756 -- When distribution features are available (Get_PCS_Name /=
5757 -- Name_No_DSA), a remote access-to-subprogram type is converted
5758 -- into a record type holding whatever information is needed to
5759 -- perform a remote call on an RCI subprogram. In that case we
5760 -- rewrite any occurrence of the RAS type into the equivalent record
5761 -- type here. 'Access attribute references and RAS dereferences are
5762 -- then implemented using specific TSSs. However when distribution is
5763 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5764 -- generation of these TSSs, and we must keep the RAS type in its
5765 -- original access-to-subprogram form (since all calls through a
5766 -- value of such type will be local anyway in the absence of a PCS).
5768 if Comes_From_Source (N)
5769 and then Is_Remote_Access_To_Subprogram_Type (E)
5770 and then Ekind (E) = E_Access_Subprogram_Type
5771 and then Expander_Active
5772 and then Get_PCS_Name /= Name_No_DSA
5773 then
5774 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5775 goto Done;
5776 end if;
5778 -- Set the entity. Note that the reason we call Set_Entity for the
5779 -- overloadable case, as opposed to Set_Entity_With_Checks is
5780 -- that in the overloaded case, the initial call can set the wrong
5781 -- homonym. The call that sets the right homonym is in Sem_Res and
5782 -- that call does use Set_Entity_With_Checks, so we don't miss
5783 -- a style check.
5785 if Is_Overloadable (E) then
5786 Set_Entity (N, E);
5787 else
5788 Set_Entity_With_Checks (N, E);
5789 end if;
5791 if Is_Type (E) then
5792 Set_Etype (N, E);
5793 else
5794 Set_Etype (N, Get_Full_View (Etype (E)));
5795 end if;
5797 if Debug_Flag_E then
5798 Write_Str (" found ");
5799 Write_Entity_Info (E, " ");
5800 end if;
5802 -- If the Ekind of the entity is Void, it means that all homonyms
5803 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5804 -- test is skipped if the current scope is a record and the name is
5805 -- a pragma argument expression (case of Atomic and Volatile pragmas
5806 -- and possibly other similar pragmas added later, which are allowed
5807 -- to reference components in the current record).
5809 if Ekind (E) = E_Void
5810 and then
5811 (not Is_Record_Type (Current_Scope)
5812 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5813 then
5814 Premature_Usage (N);
5816 -- If the entity is overloadable, collect all interpretations of the
5817 -- name for subsequent overload resolution. We optimize a bit here to
5818 -- do this only if we have an overloadable entity that is not on its
5819 -- own on the homonym chain.
5821 elsif Is_Overloadable (E)
5822 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5823 then
5824 Collect_Interps (N);
5826 -- If no homonyms were visible, the entity is unambiguous
5828 if not Is_Overloaded (N) then
5829 if not Is_Actual_Parameter then
5830 Generate_Reference (E, N);
5831 end if;
5832 end if;
5834 -- Case of non-overloadable entity, set the entity providing that
5835 -- we do not have the case of a discriminant reference within a
5836 -- default expression. Such references are replaced with the
5837 -- corresponding discriminal, which is the formal corresponding to
5838 -- to the discriminant in the initialization procedure.
5840 else
5841 -- Entity is unambiguous, indicate that it is referenced here
5843 -- For a renaming of an object, always generate simple reference,
5844 -- we don't try to keep track of assignments in this case, except
5845 -- in SPARK mode where renamings are traversed for generating
5846 -- local effects of subprograms.
5848 if Is_Object (E)
5849 and then Present (Renamed_Object (E))
5850 and then not GNATprove_Mode
5851 then
5852 Generate_Reference (E, N);
5854 -- If the renamed entity is a private protected component,
5855 -- reference the original component as well. This needs to be
5856 -- done because the private renamings are installed before any
5857 -- analysis has occurred. Reference to a private component will
5858 -- resolve to the renaming and the original component will be
5859 -- left unreferenced, hence the following.
5861 if Is_Prival (E) then
5862 Generate_Reference (Prival_Link (E), N);
5863 end if;
5865 -- One odd case is that we do not want to set the Referenced flag
5866 -- if the entity is a label, and the identifier is the label in
5867 -- the source, since this is not a reference from the point of
5868 -- view of the user.
5870 elsif Nkind (Parent (N)) = N_Label then
5871 declare
5872 R : constant Boolean := Referenced (E);
5874 begin
5875 -- Generate reference unless this is an actual parameter
5876 -- (see comment below)
5878 if Is_Actual_Parameter then
5879 Generate_Reference (E, N);
5880 Set_Referenced (E, R);
5881 end if;
5882 end;
5884 -- Normal case, not a label: generate reference
5886 else
5887 if not Is_Actual_Parameter then
5889 -- Package or generic package is always a simple reference
5891 if Ekind_In (E, E_Package, E_Generic_Package) then
5892 Generate_Reference (E, N, 'r');
5894 -- Else see if we have a left hand side
5896 else
5897 case Is_LHS (N) is
5898 when Yes =>
5899 Generate_Reference (E, N, 'm');
5901 when No =>
5902 Generate_Reference (E, N, 'r');
5904 -- If we don't know now, generate reference later
5906 when Unknown =>
5907 Deferred_References.Append ((E, N));
5908 end case;
5909 end if;
5910 end if;
5911 end if;
5913 Set_Entity_Or_Discriminal (N, E);
5915 -- The name may designate a generalized reference, in which case
5916 -- the dereference interpretation will be included. Context is
5917 -- one in which a name is legal.
5919 if Ada_Version >= Ada_2012
5920 and then
5921 (Nkind (Parent (N)) in N_Subexpr
5922 or else Nkind_In (Parent (N), N_Assignment_Statement,
5923 N_Object_Declaration,
5924 N_Parameter_Association))
5925 then
5926 Check_Implicit_Dereference (N, Etype (E));
5927 end if;
5928 end if;
5929 end;
5931 -- Mark relevant use-type and use-package clauses as effective if the
5932 -- node in question is not overloaded and therefore does not require
5933 -- resolution.
5935 -- Note: Generic actual subprograms do not follow the normal resolution
5936 -- path, so ignore the fact that they are overloaded and mark them
5937 -- anyway.
5939 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
5940 Mark_Use_Clauses (N);
5941 end if;
5943 -- Come here with entity set
5945 <<Done>>
5946 Check_Restriction_No_Use_Of_Entity (N);
5948 -- Annotate the tree by creating a variable reference marker in case the
5949 -- original variable reference is folded or optimized away. The variable
5950 -- reference marker is automatically saved for later examination by the
5951 -- ABE Processing phase. Variable references which act as actuals in a
5952 -- call require special processing and are left to Resolve_Actuals. The
5953 -- reference is a write when it appears on the left hand side of an
5954 -- assignment.
5956 if Needs_Variable_Reference_Marker
5957 (N => N,
5958 Calls_OK => False)
5959 then
5960 declare
5961 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
5963 begin
5964 Build_Variable_Reference_Marker
5965 (N => N,
5966 Read => not Is_Assignment_LHS,
5967 Write => Is_Assignment_LHS);
5968 end;
5969 end if;
5970 end Find_Direct_Name;
5972 ------------------------
5973 -- Find_Expanded_Name --
5974 ------------------------
5976 -- This routine searches the homonym chain of the entity until it finds
5977 -- an entity declared in the scope denoted by the prefix. If the entity
5978 -- is private, it may nevertheless be immediately visible, if we are in
5979 -- the scope of its declaration.
5981 procedure Find_Expanded_Name (N : Node_Id) is
5982 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean;
5983 -- Determine whether expanded name Nod appears within a pragma which is
5984 -- a suitable context for an abstract view of a state or variable. The
5985 -- following pragmas fall in this category:
5986 -- Depends
5987 -- Global
5988 -- Initializes
5989 -- Refined_Depends
5990 -- Refined_Global
5992 -- In addition, pragma Abstract_State is also considered suitable even
5993 -- though it is an illegal context for an abstract view as this allows
5994 -- for proper resolution of abstract views of variables. This illegal
5995 -- context is later flagged in the analysis of indicator Part_Of.
5997 -----------------------------
5998 -- In_Abstract_View_Pragma --
5999 -----------------------------
6001 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean is
6002 Par : Node_Id;
6004 begin
6005 -- Climb the parent chain looking for a pragma
6007 Par := Nod;
6008 while Present (Par) loop
6009 if Nkind (Par) = N_Pragma then
6010 if Nam_In (Pragma_Name_Unmapped (Par),
6011 Name_Abstract_State,
6012 Name_Depends,
6013 Name_Global,
6014 Name_Initializes,
6015 Name_Refined_Depends,
6016 Name_Refined_Global)
6017 then
6018 return True;
6020 -- Otherwise the pragma is not a legal context for an abstract
6021 -- view.
6023 else
6024 exit;
6025 end if;
6027 -- Prevent the search from going too far
6029 elsif Is_Body_Or_Package_Declaration (Par) then
6030 exit;
6031 end if;
6033 Par := Parent (Par);
6034 end loop;
6036 return False;
6037 end In_Abstract_View_Pragma;
6039 -- Local variables
6041 Selector : constant Node_Id := Selector_Name (N);
6043 Candidate : Entity_Id := Empty;
6044 P_Name : Entity_Id;
6045 Id : Entity_Id;
6047 -- Start of processing for Find_Expanded_Name
6049 begin
6050 P_Name := Entity (Prefix (N));
6052 -- If the prefix is a renamed package, look for the entity in the
6053 -- original package.
6055 if Ekind (P_Name) = E_Package
6056 and then Present (Renamed_Object (P_Name))
6057 then
6058 P_Name := Renamed_Object (P_Name);
6060 -- Rewrite node with entity field pointing to renamed object
6062 Rewrite (Prefix (N), New_Copy (Prefix (N)));
6063 Set_Entity (Prefix (N), P_Name);
6065 -- If the prefix is an object of a concurrent type, look for
6066 -- the entity in the associated task or protected type.
6068 elsif Is_Concurrent_Type (Etype (P_Name)) then
6069 P_Name := Etype (P_Name);
6070 end if;
6072 Id := Current_Entity (Selector);
6074 declare
6075 Is_New_Candidate : Boolean;
6077 begin
6078 while Present (Id) loop
6079 if Scope (Id) = P_Name then
6080 Candidate := Id;
6081 Is_New_Candidate := True;
6083 -- Handle abstract views of states and variables. These are
6084 -- acceptable candidates only when the reference to the view
6085 -- appears in certain pragmas.
6087 if Ekind (Id) = E_Abstract_State
6088 and then From_Limited_With (Id)
6089 and then Present (Non_Limited_View (Id))
6090 then
6091 if In_Abstract_View_Pragma (N) then
6092 Candidate := Non_Limited_View (Id);
6093 Is_New_Candidate := True;
6095 -- Hide the candidate because it is not used in a proper
6096 -- context.
6098 else
6099 Candidate := Empty;
6100 Is_New_Candidate := False;
6101 end if;
6102 end if;
6104 -- Ada 2005 (AI-217): Handle shadow entities associated with
6105 -- types declared in limited-withed nested packages. We don't need
6106 -- to handle E_Incomplete_Subtype entities because the entities
6107 -- in the limited view are always E_Incomplete_Type and
6108 -- E_Class_Wide_Type entities (see Build_Limited_Views).
6110 -- Regarding the expression used to evaluate the scope, it
6111 -- is important to note that the limited view also has shadow
6112 -- entities associated nested packages. For this reason the
6113 -- correct scope of the entity is the scope of the real entity.
6114 -- The non-limited view may itself be incomplete, in which case
6115 -- get the full view if available.
6117 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
6118 and then From_Limited_With (Id)
6119 and then Present (Non_Limited_View (Id))
6120 and then Scope (Non_Limited_View (Id)) = P_Name
6121 then
6122 Candidate := Get_Full_View (Non_Limited_View (Id));
6123 Is_New_Candidate := True;
6125 -- An unusual case arises with a fully qualified name for an
6126 -- entity local to a generic child unit package, within an
6127 -- instantiation of that package. The name of the unit now
6128 -- denotes the renaming created within the instance. This is
6129 -- only relevant in an instance body, see below.
6131 elsif Is_Generic_Instance (Scope (Id))
6132 and then In_Open_Scopes (Scope (Id))
6133 and then In_Instance_Body
6134 and then Ekind (Scope (Id)) = E_Package
6135 and then Ekind (Id) = E_Package
6136 and then Renamed_Entity (Id) = Scope (Id)
6137 and then Is_Immediately_Visible (P_Name)
6138 then
6139 Is_New_Candidate := True;
6141 else
6142 Is_New_Candidate := False;
6143 end if;
6145 if Is_New_Candidate then
6147 -- If entity is a child unit, either it is a visible child of
6148 -- the prefix, or we are in the body of a generic prefix, as
6149 -- will happen when a child unit is instantiated in the body
6150 -- of a generic parent. This is because the instance body does
6151 -- not restore the full compilation context, given that all
6152 -- non-local references have been captured.
6154 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
6155 exit when Is_Visible_Lib_Unit (Id)
6156 or else (Is_Child_Unit (Id)
6157 and then In_Open_Scopes (Scope (Id))
6158 and then In_Instance_Body);
6159 else
6160 exit when not Is_Hidden (Id);
6161 end if;
6163 exit when Is_Immediately_Visible (Id);
6164 end if;
6166 Id := Homonym (Id);
6167 end loop;
6168 end;
6170 if No (Id)
6171 and then Ekind_In (P_Name, E_Procedure, E_Function)
6172 and then Is_Generic_Instance (P_Name)
6173 then
6174 -- Expanded name denotes entity in (instance of) generic subprogram.
6175 -- The entity may be in the subprogram instance, or may denote one of
6176 -- the formals, which is declared in the enclosing wrapper package.
6178 P_Name := Scope (P_Name);
6180 Id := Current_Entity (Selector);
6181 while Present (Id) loop
6182 exit when Scope (Id) = P_Name;
6183 Id := Homonym (Id);
6184 end loop;
6185 end if;
6187 if No (Id) or else Chars (Id) /= Chars (Selector) then
6188 Set_Etype (N, Any_Type);
6190 -- If we are looking for an entity defined in System, try to find it
6191 -- in the child package that may have been provided as an extension
6192 -- to System. The Extend_System pragma will have supplied the name of
6193 -- the extension, which may have to be loaded.
6195 if Chars (P_Name) = Name_System
6196 and then Scope (P_Name) = Standard_Standard
6197 and then Present (System_Extend_Unit)
6198 and then Present_System_Aux (N)
6199 then
6200 Set_Entity (Prefix (N), System_Aux_Id);
6201 Find_Expanded_Name (N);
6202 return;
6204 -- There is an implicit instance of the predefined operator in
6205 -- the given scope. The operator entity is defined in Standard.
6206 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6208 elsif Nkind (Selector) = N_Operator_Symbol
6209 and then Has_Implicit_Operator (N)
6210 then
6211 return;
6213 -- If there is no literal defined in the scope denoted by the
6214 -- prefix, the literal may belong to (a type derived from)
6215 -- Standard_Character, for which we have no explicit literals.
6217 elsif Nkind (Selector) = N_Character_Literal
6218 and then Has_Implicit_Character_Literal (N)
6219 then
6220 return;
6222 else
6223 -- If the prefix is a single concurrent object, use its name in
6224 -- the error message, rather than that of the anonymous type.
6226 if Is_Concurrent_Type (P_Name)
6227 and then Is_Internal_Name (Chars (P_Name))
6228 then
6229 Error_Msg_Node_2 := Entity (Prefix (N));
6230 else
6231 Error_Msg_Node_2 := P_Name;
6232 end if;
6234 if P_Name = System_Aux_Id then
6235 P_Name := Scope (P_Name);
6236 Set_Entity (Prefix (N), P_Name);
6237 end if;
6239 if Present (Candidate) then
6241 -- If we know that the unit is a child unit we can give a more
6242 -- accurate error message.
6244 if Is_Child_Unit (Candidate) then
6246 -- If the candidate is a private child unit and we are in
6247 -- the visible part of a public unit, specialize the error
6248 -- message. There might be a private with_clause for it,
6249 -- but it is not currently active.
6251 if Is_Private_Descendant (Candidate)
6252 and then Ekind (Current_Scope) = E_Package
6253 and then not In_Private_Part (Current_Scope)
6254 and then not Is_Private_Descendant (Current_Scope)
6255 then
6256 Error_Msg_N
6257 ("private child unit& is not visible here", Selector);
6259 -- Normal case where we have a missing with for a child unit
6261 else
6262 Error_Msg_Qual_Level := 99;
6263 Error_Msg_NE -- CODEFIX
6264 ("missing `WITH &;`", Selector, Candidate);
6265 Error_Msg_Qual_Level := 0;
6266 end if;
6268 -- Here we don't know that this is a child unit
6270 else
6271 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
6272 end if;
6274 else
6275 -- Within the instantiation of a child unit, the prefix may
6276 -- denote the parent instance, but the selector has the name
6277 -- of the original child. That is to say, when A.B appears
6278 -- within an instantiation of generic child unit B, the scope
6279 -- stack includes an instance of A (P_Name) and an instance
6280 -- of B under some other name. We scan the scope to find this
6281 -- child instance, which is the desired entity.
6282 -- Note that the parent may itself be a child instance, if
6283 -- the reference is of the form A.B.C, in which case A.B has
6284 -- already been rewritten with the proper entity.
6286 if In_Open_Scopes (P_Name)
6287 and then Is_Generic_Instance (P_Name)
6288 then
6289 declare
6290 Gen_Par : constant Entity_Id :=
6291 Generic_Parent (Specification
6292 (Unit_Declaration_Node (P_Name)));
6293 S : Entity_Id := Current_Scope;
6294 P : Entity_Id;
6296 begin
6297 for J in reverse 0 .. Scope_Stack.Last loop
6298 S := Scope_Stack.Table (J).Entity;
6300 exit when S = Standard_Standard;
6302 if Ekind_In (S, E_Function,
6303 E_Package,
6304 E_Procedure)
6305 then
6306 P :=
6307 Generic_Parent (Specification
6308 (Unit_Declaration_Node (S)));
6310 -- Check that P is a generic child of the generic
6311 -- parent of the prefix.
6313 if Present (P)
6314 and then Chars (P) = Chars (Selector)
6315 and then Scope (P) = Gen_Par
6316 then
6317 Id := S;
6318 goto Found;
6319 end if;
6320 end if;
6322 end loop;
6323 end;
6324 end if;
6326 -- If this is a selection from Ada, System or Interfaces, then
6327 -- we assume a missing with for the corresponding package.
6329 if Is_Known_Unit (N)
6330 and then not (Present (Entity (Prefix (N)))
6331 and then Scope (Entity (Prefix (N))) /=
6332 Standard_Standard)
6333 then
6334 if not Error_Posted (N) then
6335 Error_Msg_Node_2 := Selector;
6336 Error_Msg_N -- CODEFIX
6337 ("missing `WITH &.&;`", Prefix (N));
6338 end if;
6340 -- If this is a selection from a dummy package, then suppress
6341 -- the error message, of course the entity is missing if the
6342 -- package is missing.
6344 elsif Sloc (Error_Msg_Node_2) = No_Location then
6345 null;
6347 -- Here we have the case of an undefined component
6349 else
6350 -- The prefix may hide a homonym in the context that
6351 -- declares the desired entity. This error can use a
6352 -- specialized message.
6354 if In_Open_Scopes (P_Name) then
6355 declare
6356 H : constant Entity_Id := Homonym (P_Name);
6358 begin
6359 if Present (H)
6360 and then Is_Compilation_Unit (H)
6361 and then
6362 (Is_Immediately_Visible (H)
6363 or else Is_Visible_Lib_Unit (H))
6364 then
6365 Id := First_Entity (H);
6366 while Present (Id) loop
6367 if Chars (Id) = Chars (Selector) then
6368 Error_Msg_Qual_Level := 99;
6369 Error_Msg_Name_1 := Chars (Selector);
6370 Error_Msg_NE
6371 ("% not declared in&", N, P_Name);
6372 Error_Msg_NE
6373 ("\use fully qualified name starting with "
6374 & "Standard to make& visible", N, H);
6375 Error_Msg_Qual_Level := 0;
6376 goto Done;
6377 end if;
6379 Next_Entity (Id);
6380 end loop;
6381 end if;
6383 -- If not found, standard error message
6385 Error_Msg_NE ("& not declared in&", N, Selector);
6387 <<Done>> null;
6388 end;
6390 else
6391 -- Might be worth specializing the case when the prefix
6392 -- is a limited view.
6393 -- ... not declared in limited view of...
6395 Error_Msg_NE ("& not declared in&", N, Selector);
6396 end if;
6398 -- Check for misspelling of some entity in prefix
6400 Id := First_Entity (P_Name);
6401 while Present (Id) loop
6402 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6403 and then not Is_Internal_Name (Chars (Id))
6404 then
6405 Error_Msg_NE -- CODEFIX
6406 ("possible misspelling of&", Selector, Id);
6407 exit;
6408 end if;
6410 Next_Entity (Id);
6411 end loop;
6413 -- Specialize the message if this may be an instantiation
6414 -- of a child unit that was not mentioned in the context.
6416 if Nkind (Parent (N)) = N_Package_Instantiation
6417 and then Is_Generic_Instance (Entity (Prefix (N)))
6418 and then Is_Compilation_Unit
6419 (Generic_Parent (Parent (Entity (Prefix (N)))))
6420 then
6421 Error_Msg_Node_2 := Selector;
6422 Error_Msg_N -- CODEFIX
6423 ("\missing `WITH &.&;`", Prefix (N));
6424 end if;
6425 end if;
6426 end if;
6428 Id := Any_Id;
6429 end if;
6430 end if;
6432 <<Found>>
6433 if Comes_From_Source (N)
6434 and then Is_Remote_Access_To_Subprogram_Type (Id)
6435 and then Ekind (Id) = E_Access_Subprogram_Type
6436 and then Present (Equivalent_Type (Id))
6437 then
6438 -- If we are not actually generating distribution code (i.e. the
6439 -- current PCS is the dummy non-distributed version), then the
6440 -- Equivalent_Type will be missing, and Id should be treated as
6441 -- a regular access-to-subprogram type.
6443 Id := Equivalent_Type (Id);
6444 Set_Chars (Selector, Chars (Id));
6445 end if;
6447 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6449 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6450 if From_Limited_With (Id)
6451 or else Is_Type (Id)
6452 or else Ekind (Id) = E_Package
6453 then
6454 null;
6455 else
6456 Error_Msg_N
6457 ("limited withed package can only be used to access incomplete "
6458 & "types", N);
6459 end if;
6460 end if;
6462 if Is_Task_Type (P_Name)
6463 and then ((Ekind (Id) = E_Entry
6464 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6465 or else
6466 (Ekind (Id) = E_Entry_Family
6467 and then
6468 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6469 then
6470 -- If both the task type and the entry are in scope, this may still
6471 -- be the expanded name of an entry formal.
6473 if In_Open_Scopes (Id)
6474 and then Nkind (Parent (N)) = N_Selected_Component
6475 then
6476 null;
6478 else
6479 -- It is an entry call after all, either to the current task
6480 -- (which will deadlock) or to an enclosing task.
6482 Analyze_Selected_Component (N);
6483 return;
6484 end if;
6485 end if;
6487 Change_Selected_Component_To_Expanded_Name (N);
6489 -- Preserve relevant elaboration-related attributes of the context which
6490 -- are no longer available or very expensive to recompute once analysis,
6491 -- resolution, and expansion are over.
6493 Mark_Elaboration_Attributes
6494 (N_Id => N,
6495 Modes => True);
6497 -- Set appropriate type
6499 if Is_Type (Id) then
6500 Set_Etype (N, Id);
6501 else
6502 Set_Etype (N, Get_Full_View (Etype (Id)));
6503 end if;
6505 -- Do style check and generate reference, but skip both steps if this
6506 -- entity has homonyms, since we may not have the right homonym set yet.
6507 -- The proper homonym will be set during the resolve phase.
6509 if Has_Homonym (Id) then
6510 Set_Entity (N, Id);
6512 else
6513 Set_Entity_Or_Discriminal (N, Id);
6515 case Is_LHS (N) is
6516 when Yes =>
6517 Generate_Reference (Id, N, 'm');
6519 when No =>
6520 Generate_Reference (Id, N, 'r');
6522 when Unknown =>
6523 Deferred_References.Append ((Id, N));
6524 end case;
6525 end if;
6527 -- Check for violation of No_Wide_Characters
6529 Check_Wide_Character_Restriction (Id, N);
6531 -- If the Ekind of the entity is Void, it means that all homonyms are
6532 -- hidden from all visibility (RM 8.3(5,14-20)).
6534 if Ekind (Id) = E_Void then
6535 Premature_Usage (N);
6537 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6538 declare
6539 H : Entity_Id := Homonym (Id);
6541 begin
6542 while Present (H) loop
6543 if Scope (H) = Scope (Id)
6544 and then (not Is_Hidden (H)
6545 or else Is_Immediately_Visible (H))
6546 then
6547 Collect_Interps (N);
6548 exit;
6549 end if;
6551 H := Homonym (H);
6552 end loop;
6554 -- If an extension of System is present, collect possible explicit
6555 -- overloadings declared in the extension.
6557 if Chars (P_Name) = Name_System
6558 and then Scope (P_Name) = Standard_Standard
6559 and then Present (System_Extend_Unit)
6560 and then Present_System_Aux (N)
6561 then
6562 H := Current_Entity (Id);
6564 while Present (H) loop
6565 if Scope (H) = System_Aux_Id then
6566 Add_One_Interp (N, H, Etype (H));
6567 end if;
6569 H := Homonym (H);
6570 end loop;
6571 end if;
6572 end;
6573 end if;
6575 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6576 and then Scope (Id) /= Standard_Standard
6577 then
6578 -- In addition to user-defined operators in the given scope, there
6579 -- may be an implicit instance of the predefined operator. The
6580 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6581 -- and added to the interpretations. Procedure Add_One_Interp will
6582 -- determine which hides which.
6584 if Has_Implicit_Operator (N) then
6585 null;
6586 end if;
6587 end if;
6589 -- If there is a single interpretation for N we can generate a
6590 -- reference to the unique entity found.
6592 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6593 Generate_Reference (Id, N);
6594 end if;
6596 -- Mark relevant use-type and use-package clauses as effective if the
6597 -- node in question is not overloaded and therefore does not require
6598 -- resolution.
6600 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
6601 Mark_Use_Clauses (N);
6602 end if;
6604 Check_Restriction_No_Use_Of_Entity (N);
6606 -- Annotate the tree by creating a variable reference marker in case the
6607 -- original variable reference is folded or optimized away. The variable
6608 -- reference marker is automatically saved for later examination by the
6609 -- ABE Processing phase. Variable references which act as actuals in a
6610 -- call require special processing and are left to Resolve_Actuals. The
6611 -- reference is a write when it appears on the left hand side of an
6612 -- assignment.
6614 if Needs_Variable_Reference_Marker
6615 (N => N,
6616 Calls_OK => False)
6617 then
6618 declare
6619 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
6621 begin
6622 Build_Variable_Reference_Marker
6623 (N => N,
6624 Read => not Is_Assignment_LHS,
6625 Write => Is_Assignment_LHS);
6626 end;
6627 end if;
6628 end Find_Expanded_Name;
6630 --------------------
6631 -- Find_Most_Prev --
6632 --------------------
6634 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id is
6635 Curr : Node_Id;
6637 begin
6638 -- Loop through the Prev_Use_Clause chain
6640 Curr := Use_Clause;
6641 while Present (Prev_Use_Clause (Curr)) loop
6642 Curr := Prev_Use_Clause (Curr);
6643 end loop;
6645 return Curr;
6646 end Find_Most_Prev;
6648 -------------------------
6649 -- Find_Renamed_Entity --
6650 -------------------------
6652 function Find_Renamed_Entity
6653 (N : Node_Id;
6654 Nam : Node_Id;
6655 New_S : Entity_Id;
6656 Is_Actual : Boolean := False) return Entity_Id
6658 Ind : Interp_Index;
6659 I1 : Interp_Index := 0; -- Suppress junk warnings
6660 It : Interp;
6661 It1 : Interp;
6662 Old_S : Entity_Id;
6663 Inst : Entity_Id;
6665 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6666 -- If the renamed entity is an implicit operator, check whether it is
6667 -- visible because its operand type is properly visible. This check
6668 -- applies to explicit renamed entities that appear in the source in a
6669 -- renaming declaration or a formal subprogram instance, but not to
6670 -- default generic actuals with a name.
6672 function Report_Overload return Entity_Id;
6673 -- List possible interpretations, and specialize message in the
6674 -- case of a generic actual.
6676 function Within (Inner, Outer : Entity_Id) return Boolean;
6677 -- Determine whether a candidate subprogram is defined within the
6678 -- enclosing instance. If yes, it has precedence over outer candidates.
6680 --------------------------
6681 -- Is_Visible_Operation --
6682 --------------------------
6684 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6685 Scop : Entity_Id;
6686 Typ : Entity_Id;
6687 Btyp : Entity_Id;
6689 begin
6690 if Ekind (Op) /= E_Operator
6691 or else Scope (Op) /= Standard_Standard
6692 or else (In_Instance
6693 and then (not Is_Actual
6694 or else Present (Enclosing_Instance)))
6695 then
6696 return True;
6698 else
6699 -- For a fixed point type operator, check the resulting type,
6700 -- because it may be a mixed mode integer * fixed operation.
6702 if Present (Next_Formal (First_Formal (New_S)))
6703 and then Is_Fixed_Point_Type (Etype (New_S))
6704 then
6705 Typ := Etype (New_S);
6706 else
6707 Typ := Etype (First_Formal (New_S));
6708 end if;
6710 Btyp := Base_Type (Typ);
6712 if Nkind (Nam) /= N_Expanded_Name then
6713 return (In_Open_Scopes (Scope (Btyp))
6714 or else Is_Potentially_Use_Visible (Btyp)
6715 or else In_Use (Btyp)
6716 or else In_Use (Scope (Btyp)));
6718 else
6719 Scop := Entity (Prefix (Nam));
6721 if Ekind (Scop) = E_Package
6722 and then Present (Renamed_Object (Scop))
6723 then
6724 Scop := Renamed_Object (Scop);
6725 end if;
6727 -- Operator is visible if prefix of expanded name denotes
6728 -- scope of type, or else type is defined in System_Aux
6729 -- and the prefix denotes System.
6731 return Scope (Btyp) = Scop
6732 or else (Scope (Btyp) = System_Aux_Id
6733 and then Scope (Scope (Btyp)) = Scop);
6734 end if;
6735 end if;
6736 end Is_Visible_Operation;
6738 ------------
6739 -- Within --
6740 ------------
6742 function Within (Inner, Outer : Entity_Id) return Boolean is
6743 Sc : Entity_Id;
6745 begin
6746 Sc := Scope (Inner);
6747 while Sc /= Standard_Standard loop
6748 if Sc = Outer then
6749 return True;
6750 else
6751 Sc := Scope (Sc);
6752 end if;
6753 end loop;
6755 return False;
6756 end Within;
6758 ---------------------
6759 -- Report_Overload --
6760 ---------------------
6762 function Report_Overload return Entity_Id is
6763 begin
6764 if Is_Actual then
6765 Error_Msg_NE -- CODEFIX
6766 ("ambiguous actual subprogram&, " &
6767 "possible interpretations:", N, Nam);
6768 else
6769 Error_Msg_N -- CODEFIX
6770 ("ambiguous subprogram, " &
6771 "possible interpretations:", N);
6772 end if;
6774 List_Interps (Nam, N);
6775 return Old_S;
6776 end Report_Overload;
6778 -- Start of processing for Find_Renamed_Entity
6780 begin
6781 Old_S := Any_Id;
6782 Candidate_Renaming := Empty;
6784 if Is_Overloaded (Nam) then
6785 Get_First_Interp (Nam, Ind, It);
6786 while Present (It.Nam) loop
6787 if Entity_Matches_Spec (It.Nam, New_S)
6788 and then Is_Visible_Operation (It.Nam)
6789 then
6790 if Old_S /= Any_Id then
6792 -- Note: The call to Disambiguate only happens if a
6793 -- previous interpretation was found, in which case I1
6794 -- has received a value.
6796 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6798 if It1 = No_Interp then
6799 Inst := Enclosing_Instance;
6801 if Present (Inst) then
6802 if Within (It.Nam, Inst) then
6803 if Within (Old_S, Inst) then
6805 -- Choose the innermost subprogram, which would
6806 -- have hidden the outer one in the generic.
6808 if Scope_Depth (It.Nam) <
6809 Scope_Depth (Old_S)
6810 then
6811 return Old_S;
6812 else
6813 return It.Nam;
6814 end if;
6815 end if;
6817 elsif Within (Old_S, Inst) then
6818 return (Old_S);
6820 else
6821 return Report_Overload;
6822 end if;
6824 -- If not within an instance, ambiguity is real
6826 else
6827 return Report_Overload;
6828 end if;
6830 else
6831 Old_S := It1.Nam;
6832 exit;
6833 end if;
6835 else
6836 I1 := Ind;
6837 Old_S := It.Nam;
6838 end if;
6840 elsif
6841 Present (First_Formal (It.Nam))
6842 and then Present (First_Formal (New_S))
6843 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6844 Base_Type (Etype (First_Formal (New_S))))
6845 then
6846 Candidate_Renaming := It.Nam;
6847 end if;
6849 Get_Next_Interp (Ind, It);
6850 end loop;
6852 Set_Entity (Nam, Old_S);
6854 if Old_S /= Any_Id then
6855 Set_Is_Overloaded (Nam, False);
6856 end if;
6858 -- Non-overloaded case
6860 else
6861 if Is_Actual
6862 and then Present (Enclosing_Instance)
6863 and then Entity_Matches_Spec (Entity (Nam), New_S)
6864 then
6865 Old_S := Entity (Nam);
6867 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6868 Candidate_Renaming := New_S;
6870 if Is_Visible_Operation (Entity (Nam)) then
6871 Old_S := Entity (Nam);
6872 end if;
6874 elsif Present (First_Formal (Entity (Nam)))
6875 and then Present (First_Formal (New_S))
6876 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6877 Base_Type (Etype (First_Formal (New_S))))
6878 then
6879 Candidate_Renaming := Entity (Nam);
6880 end if;
6881 end if;
6883 return Old_S;
6884 end Find_Renamed_Entity;
6886 -----------------------------
6887 -- Find_Selected_Component --
6888 -----------------------------
6890 procedure Find_Selected_Component (N : Node_Id) is
6891 P : constant Node_Id := Prefix (N);
6893 P_Name : Entity_Id;
6894 -- Entity denoted by prefix
6896 P_Type : Entity_Id;
6897 -- and its type
6899 Nam : Node_Id;
6901 function Available_Subtype return Boolean;
6902 -- A small optimization: if the prefix is constrained and the component
6903 -- is an array type we may already have a usable subtype for it, so we
6904 -- can use it rather than generating a new one, because the bounds
6905 -- will be the values of the discriminants and not discriminant refs.
6906 -- This simplifies value tracing in GNATProve. For consistency, both
6907 -- the entity name and the subtype come from the constrained component.
6909 -- This is only used in GNATProve mode: when generating code it may be
6910 -- necessary to create an itype in the scope of use of the selected
6911 -- component, e.g. in the context of a expanded record equality.
6913 function Is_Reference_In_Subunit return Boolean;
6914 -- In a subunit, the scope depth is not a proper measure of hiding,
6915 -- because the context of the proper body may itself hide entities in
6916 -- parent units. This rare case requires inspecting the tree directly
6917 -- because the proper body is inserted in the main unit and its context
6918 -- is simply added to that of the parent.
6920 -----------------------
6921 -- Available_Subtype --
6922 -----------------------
6924 function Available_Subtype return Boolean is
6925 Comp : Entity_Id;
6927 begin
6928 if GNATprove_Mode then
6929 Comp := First_Entity (Etype (P));
6930 while Present (Comp) loop
6931 if Chars (Comp) = Chars (Selector_Name (N)) then
6932 Set_Etype (N, Etype (Comp));
6933 Set_Entity (Selector_Name (N), Comp);
6934 Set_Etype (Selector_Name (N), Etype (Comp));
6935 return True;
6936 end if;
6938 Next_Component (Comp);
6939 end loop;
6940 end if;
6942 return False;
6943 end Available_Subtype;
6945 -----------------------------
6946 -- Is_Reference_In_Subunit --
6947 -----------------------------
6949 function Is_Reference_In_Subunit return Boolean is
6950 Clause : Node_Id;
6951 Comp_Unit : Node_Id;
6953 begin
6954 Comp_Unit := N;
6955 while Present (Comp_Unit)
6956 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6957 loop
6958 Comp_Unit := Parent (Comp_Unit);
6959 end loop;
6961 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6962 return False;
6963 end if;
6965 -- Now check whether the package is in the context of the subunit
6967 Clause := First (Context_Items (Comp_Unit));
6968 while Present (Clause) loop
6969 if Nkind (Clause) = N_With_Clause
6970 and then Entity (Name (Clause)) = P_Name
6971 then
6972 return True;
6973 end if;
6975 Clause := Next (Clause);
6976 end loop;
6978 return False;
6979 end Is_Reference_In_Subunit;
6981 -- Start of processing for Find_Selected_Component
6983 begin
6984 Analyze (P);
6986 if Nkind (P) = N_Error then
6987 return;
6988 end if;
6990 -- Selector name cannot be a character literal or an operator symbol in
6991 -- SPARK, except for the operator symbol in a renaming.
6993 if Restriction_Check_Required (SPARK_05) then
6994 if Nkind (Selector_Name (N)) = N_Character_Literal then
6995 Check_SPARK_05_Restriction
6996 ("character literal cannot be prefixed", N);
6997 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6998 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6999 then
7000 Check_SPARK_05_Restriction
7001 ("operator symbol cannot be prefixed", N);
7002 end if;
7003 end if;
7005 -- If the selector already has an entity, the node has been constructed
7006 -- in the course of expansion, and is known to be valid. Do not verify
7007 -- that it is defined for the type (it may be a private component used
7008 -- in the expansion of record equality).
7010 if Present (Entity (Selector_Name (N))) then
7011 if No (Etype (N)) or else Etype (N) = Any_Type then
7012 declare
7013 Sel_Name : constant Node_Id := Selector_Name (N);
7014 Selector : constant Entity_Id := Entity (Sel_Name);
7015 C_Etype : Node_Id;
7017 begin
7018 Set_Etype (Sel_Name, Etype (Selector));
7020 if not Is_Entity_Name (P) then
7021 Resolve (P);
7022 end if;
7024 -- Build an actual subtype except for the first parameter
7025 -- of an init proc, where this actual subtype is by
7026 -- definition incorrect, since the object is uninitialized
7027 -- (and does not even have defined discriminants etc.)
7029 if Is_Entity_Name (P)
7030 and then Ekind (Entity (P)) = E_Function
7031 then
7032 Nam := New_Copy (P);
7034 if Is_Overloaded (P) then
7035 Save_Interps (P, Nam);
7036 end if;
7038 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
7039 Analyze_Call (P);
7040 Analyze_Selected_Component (N);
7041 return;
7043 elsif Ekind (Selector) = E_Component
7044 and then (not Is_Entity_Name (P)
7045 or else Chars (Entity (P)) /= Name_uInit)
7046 then
7047 -- Check if we already have an available subtype we can use
7049 if Ekind (Etype (P)) = E_Record_Subtype
7050 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
7051 and then Is_Array_Type (Etype (Selector))
7052 and then not Is_Packed (Etype (Selector))
7053 and then Available_Subtype
7054 then
7055 return;
7057 -- Do not build the subtype when referencing components of
7058 -- dispatch table wrappers. Required to avoid generating
7059 -- elaboration code with HI runtimes.
7061 elsif RTU_Loaded (Ada_Tags)
7062 and then
7063 ((RTE_Available (RE_Dispatch_Table_Wrapper)
7064 and then Scope (Selector) =
7065 RTE (RE_Dispatch_Table_Wrapper))
7066 or else
7067 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
7068 and then Scope (Selector) =
7069 RTE (RE_No_Dispatch_Table_Wrapper)))
7070 then
7071 C_Etype := Empty;
7072 else
7073 C_Etype :=
7074 Build_Actual_Subtype_Of_Component
7075 (Etype (Selector), N);
7076 end if;
7078 else
7079 C_Etype := Empty;
7080 end if;
7082 if No (C_Etype) then
7083 C_Etype := Etype (Selector);
7084 else
7085 Insert_Action (N, C_Etype);
7086 C_Etype := Defining_Identifier (C_Etype);
7087 end if;
7089 Set_Etype (N, C_Etype);
7090 end;
7092 -- If this is the name of an entry or protected operation, and
7093 -- the prefix is an access type, insert an explicit dereference,
7094 -- so that entry calls are treated uniformly.
7096 if Is_Access_Type (Etype (P))
7097 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
7098 then
7099 declare
7100 New_P : constant Node_Id :=
7101 Make_Explicit_Dereference (Sloc (P),
7102 Prefix => Relocate_Node (P));
7103 begin
7104 Rewrite (P, New_P);
7105 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
7106 end;
7107 end if;
7109 -- If the selected component appears within a default expression
7110 -- and it has an actual subtype, the preanalysis has not yet
7111 -- completed its analysis, because Insert_Actions is disabled in
7112 -- that context. Within the init proc of the enclosing type we
7113 -- must complete this analysis, if an actual subtype was created.
7115 elsif Inside_Init_Proc then
7116 declare
7117 Typ : constant Entity_Id := Etype (N);
7118 Decl : constant Node_Id := Declaration_Node (Typ);
7119 begin
7120 if Nkind (Decl) = N_Subtype_Declaration
7121 and then not Analyzed (Decl)
7122 and then Is_List_Member (Decl)
7123 and then No (Parent (Decl))
7124 then
7125 Remove (Decl);
7126 Insert_Action (N, Decl);
7127 end if;
7128 end;
7129 end if;
7131 return;
7133 elsif Is_Entity_Name (P) then
7134 P_Name := Entity (P);
7136 -- The prefix may denote an enclosing type which is the completion
7137 -- of an incomplete type declaration.
7139 if Is_Type (P_Name) then
7140 Set_Entity (P, Get_Full_View (P_Name));
7141 Set_Etype (P, Entity (P));
7142 P_Name := Entity (P);
7143 end if;
7145 P_Type := Base_Type (Etype (P));
7147 if Debug_Flag_E then
7148 Write_Str ("Found prefix type to be ");
7149 Write_Entity_Info (P_Type, " "); Write_Eol;
7150 end if;
7152 -- The designated type may be a limited view with no components.
7153 -- Check whether the non-limited view is available, because in some
7154 -- cases this will not be set when installing the context. Rewrite
7155 -- the node by introducing an explicit dereference at once, and
7156 -- setting the type of the rewritten prefix to the non-limited view
7157 -- of the original designated type.
7159 if Is_Access_Type (P_Type) then
7160 declare
7161 Desig_Typ : constant Entity_Id :=
7162 Directly_Designated_Type (P_Type);
7164 begin
7165 if Is_Incomplete_Type (Desig_Typ)
7166 and then From_Limited_With (Desig_Typ)
7167 and then Present (Non_Limited_View (Desig_Typ))
7168 then
7169 Rewrite (P,
7170 Make_Explicit_Dereference (Sloc (P),
7171 Prefix => Relocate_Node (P)));
7173 Set_Etype (P, Get_Full_View (Non_Limited_View (Desig_Typ)));
7174 P_Type := Etype (P);
7175 end if;
7176 end;
7177 end if;
7179 -- First check for components of a record object (not the
7180 -- result of a call, which is handled below).
7182 if Is_Appropriate_For_Record (P_Type)
7183 and then not Is_Overloadable (P_Name)
7184 and then not Is_Type (P_Name)
7185 then
7186 -- Selected component of record. Type checking will validate
7187 -- name of selector.
7189 -- ??? Could we rewrite an implicit dereference into an explicit
7190 -- one here?
7192 Analyze_Selected_Component (N);
7194 -- Reference to type name in predicate/invariant expression
7196 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
7197 and then not In_Open_Scopes (P_Name)
7198 and then (not Is_Concurrent_Type (Etype (P_Name))
7199 or else not In_Open_Scopes (Etype (P_Name)))
7200 then
7201 -- Call to protected operation or entry. Type checking is
7202 -- needed on the prefix.
7204 Analyze_Selected_Component (N);
7206 elsif (In_Open_Scopes (P_Name)
7207 and then Ekind (P_Name) /= E_Void
7208 and then not Is_Overloadable (P_Name))
7209 or else (Is_Concurrent_Type (Etype (P_Name))
7210 and then In_Open_Scopes (Etype (P_Name)))
7211 then
7212 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7213 -- enclosing construct that is not a subprogram or accept.
7215 -- A special case: a protected body may call an operation
7216 -- on an external object of the same type, in which case it
7217 -- is not an expanded name. If the prefix is the type itself,
7218 -- or the context is a single synchronized object it can only
7219 -- be interpreted as an expanded name.
7221 if Is_Concurrent_Type (Etype (P_Name)) then
7222 if Is_Type (P_Name)
7223 or else Present (Anonymous_Object (Etype (P_Name)))
7224 then
7225 Find_Expanded_Name (N);
7227 else
7228 Analyze_Selected_Component (N);
7229 return;
7230 end if;
7232 else
7233 Find_Expanded_Name (N);
7234 end if;
7236 elsif Ekind (P_Name) = E_Package then
7237 Find_Expanded_Name (N);
7239 elsif Is_Overloadable (P_Name) then
7241 -- The subprogram may be a renaming (of an enclosing scope) as
7242 -- in the case of the name of the generic within an instantiation.
7244 if Ekind_In (P_Name, E_Procedure, E_Function)
7245 and then Present (Alias (P_Name))
7246 and then Is_Generic_Instance (Alias (P_Name))
7247 then
7248 P_Name := Alias (P_Name);
7249 end if;
7251 if Is_Overloaded (P) then
7253 -- The prefix must resolve to a unique enclosing construct
7255 declare
7256 Found : Boolean := False;
7257 Ind : Interp_Index;
7258 It : Interp;
7260 begin
7261 Get_First_Interp (P, Ind, It);
7262 while Present (It.Nam) loop
7263 if In_Open_Scopes (It.Nam) then
7264 if Found then
7265 Error_Msg_N (
7266 "prefix must be unique enclosing scope", N);
7267 Set_Entity (N, Any_Id);
7268 Set_Etype (N, Any_Type);
7269 return;
7271 else
7272 Found := True;
7273 P_Name := It.Nam;
7274 end if;
7275 end if;
7277 Get_Next_Interp (Ind, It);
7278 end loop;
7279 end;
7280 end if;
7282 if In_Open_Scopes (P_Name) then
7283 Set_Entity (P, P_Name);
7284 Set_Is_Overloaded (P, False);
7285 Find_Expanded_Name (N);
7287 else
7288 -- If no interpretation as an expanded name is possible, it
7289 -- must be a selected component of a record returned by a
7290 -- function call. Reformat prefix as a function call, the rest
7291 -- is done by type resolution.
7293 -- Error if the prefix is procedure or entry, as is P.X
7295 if Ekind (P_Name) /= E_Function
7296 and then
7297 (not Is_Overloaded (P)
7298 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
7299 then
7300 -- Prefix may mention a package that is hidden by a local
7301 -- declaration: let the user know. Scan the full homonym
7302 -- chain, the candidate package may be anywhere on it.
7304 if Present (Homonym (Current_Entity (P_Name))) then
7305 P_Name := Current_Entity (P_Name);
7307 while Present (P_Name) loop
7308 exit when Ekind (P_Name) = E_Package;
7309 P_Name := Homonym (P_Name);
7310 end loop;
7312 if Present (P_Name) then
7313 if not Is_Reference_In_Subunit then
7314 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
7315 Error_Msg_NE
7316 ("package& is hidden by declaration#", N, P_Name);
7317 end if;
7319 Set_Entity (Prefix (N), P_Name);
7320 Find_Expanded_Name (N);
7321 return;
7323 else
7324 P_Name := Entity (Prefix (N));
7325 end if;
7326 end if;
7328 Error_Msg_NE
7329 ("invalid prefix in selected component&", N, P_Name);
7330 Change_Selected_Component_To_Expanded_Name (N);
7331 Set_Entity (N, Any_Id);
7332 Set_Etype (N, Any_Type);
7334 -- Here we have a function call, so do the reformatting
7336 else
7337 Nam := New_Copy (P);
7338 Save_Interps (P, Nam);
7340 -- We use Replace here because this is one of those cases
7341 -- where the parser has missclassified the node, and we fix
7342 -- things up and then do the semantic analysis on the fixed
7343 -- up node. Normally we do this using one of the Sinfo.CN
7344 -- routines, but this is too tricky for that.
7346 -- Note that using Rewrite would be wrong, because we would
7347 -- have a tree where the original node is unanalyzed, and
7348 -- this violates the required interface for ASIS.
7350 Replace (P,
7351 Make_Function_Call (Sloc (P), Name => Nam));
7353 -- Now analyze the reformatted node
7355 Analyze_Call (P);
7357 -- If the prefix is illegal after this transformation, there
7358 -- may be visibility errors on the prefix. The safest is to
7359 -- treat the selected component as an error.
7361 if Error_Posted (P) then
7362 Set_Etype (N, Any_Type);
7363 return;
7365 else
7366 Analyze_Selected_Component (N);
7367 end if;
7368 end if;
7369 end if;
7371 -- Remaining cases generate various error messages
7373 else
7374 -- Format node as expanded name, to avoid cascaded errors
7376 -- If the limited_with transformation was applied earlier, restore
7377 -- source for proper error reporting.
7379 if not Comes_From_Source (P)
7380 and then Nkind (P) = N_Explicit_Dereference
7381 then
7382 Rewrite (P, Prefix (P));
7383 P_Type := Etype (P);
7384 end if;
7386 Change_Selected_Component_To_Expanded_Name (N);
7387 Set_Entity (N, Any_Id);
7388 Set_Etype (N, Any_Type);
7390 -- Issue error message, but avoid this if error issued already.
7391 -- Use identifier of prefix if one is available.
7393 if P_Name = Any_Id then
7394 null;
7396 -- It is not an error if the prefix is the current instance of
7397 -- type name, e.g. the expression of a type aspect, when it is
7398 -- analyzed for ASIS use.
7400 elsif Is_Entity_Name (P) and then Is_Current_Instance (P) then
7401 null;
7403 elsif Ekind (P_Name) = E_Void then
7404 Premature_Usage (P);
7406 elsif Nkind (P) /= N_Attribute_Reference then
7408 -- This may have been meant as a prefixed call to a primitive
7409 -- of an untagged type. If it is a function call check type of
7410 -- its first formal and add explanation.
7412 declare
7413 F : constant Entity_Id :=
7414 Current_Entity (Selector_Name (N));
7415 begin
7416 if Present (F)
7417 and then Is_Overloadable (F)
7418 and then Present (First_Entity (F))
7419 and then not Is_Tagged_Type (Etype (First_Entity (F)))
7420 then
7421 Error_Msg_N
7422 ("prefixed call is only allowed for objects of a "
7423 & "tagged type", N);
7424 end if;
7425 end;
7427 Error_Msg_N ("invalid prefix in selected component&", P);
7429 if Is_Access_Type (P_Type)
7430 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
7431 then
7432 Error_Msg_N
7433 ("\dereference must not be of an incomplete type "
7434 & "(RM 3.10.1)", P);
7435 end if;
7437 else
7438 Error_Msg_N ("invalid prefix in selected component", P);
7439 end if;
7440 end if;
7442 -- Selector name is restricted in SPARK
7444 if Nkind (N) = N_Expanded_Name
7445 and then Restriction_Check_Required (SPARK_05)
7446 then
7447 if Is_Subprogram (P_Name) then
7448 Check_SPARK_05_Restriction
7449 ("prefix of expanded name cannot be a subprogram", P);
7450 elsif Ekind (P_Name) = E_Loop then
7451 Check_SPARK_05_Restriction
7452 ("prefix of expanded name cannot be a loop statement", P);
7453 end if;
7454 end if;
7456 else
7457 -- If prefix is not the name of an entity, it must be an expression,
7458 -- whose type is appropriate for a record. This is determined by
7459 -- type resolution.
7461 Analyze_Selected_Component (N);
7462 end if;
7464 Analyze_Dimension (N);
7465 end Find_Selected_Component;
7467 ---------------
7468 -- Find_Type --
7469 ---------------
7471 procedure Find_Type (N : Node_Id) is
7472 C : Entity_Id;
7473 Typ : Entity_Id;
7474 T : Entity_Id;
7475 T_Name : Entity_Id;
7477 begin
7478 if N = Error then
7479 return;
7481 elsif Nkind (N) = N_Attribute_Reference then
7483 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7484 -- need to enforce that at this point, since the declaration of the
7485 -- tagged type in the prefix would have been flagged already.
7487 if Attribute_Name (N) = Name_Class then
7488 Check_Restriction (No_Dispatch, N);
7489 Find_Type (Prefix (N));
7491 -- Propagate error from bad prefix
7493 if Etype (Prefix (N)) = Any_Type then
7494 Set_Entity (N, Any_Type);
7495 Set_Etype (N, Any_Type);
7496 return;
7497 end if;
7499 T := Base_Type (Entity (Prefix (N)));
7501 -- Case where type is not known to be tagged. Its appearance in
7502 -- the prefix of the 'Class attribute indicates that the full view
7503 -- will be tagged.
7505 if not Is_Tagged_Type (T) then
7506 if Ekind (T) = E_Incomplete_Type then
7508 -- It is legal to denote the class type of an incomplete
7509 -- type. The full type will have to be tagged, of course.
7510 -- In Ada 2005 this usage is declared obsolescent, so we
7511 -- warn accordingly. This usage is only legal if the type
7512 -- is completed in the current scope, and not for a limited
7513 -- view of a type.
7515 if Ada_Version >= Ada_2005 then
7517 -- Test whether the Available_View of a limited type view
7518 -- is tagged, since the limited view may not be marked as
7519 -- tagged if the type itself has an untagged incomplete
7520 -- type view in its package.
7522 if From_Limited_With (T)
7523 and then not Is_Tagged_Type (Available_View (T))
7524 then
7525 Error_Msg_N
7526 ("prefix of Class attribute must be tagged", N);
7527 Set_Etype (N, Any_Type);
7528 Set_Entity (N, Any_Type);
7529 return;
7531 -- ??? This test is temporarily disabled (always
7532 -- False) because it causes an unwanted warning on
7533 -- GNAT sources (built with -gnatg, which includes
7534 -- Warn_On_Obsolescent_ Feature). Once this issue
7535 -- is cleared in the sources, it can be enabled.
7537 elsif Warn_On_Obsolescent_Feature and then False then
7538 Error_Msg_N
7539 ("applying 'Class to an untagged incomplete type"
7540 & " is an obsolescent feature (RM J.11)?r?", N);
7541 end if;
7542 end if;
7544 Set_Is_Tagged_Type (T);
7545 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7546 Make_Class_Wide_Type (T);
7547 Set_Entity (N, Class_Wide_Type (T));
7548 Set_Etype (N, Class_Wide_Type (T));
7550 elsif Ekind (T) = E_Private_Type
7551 and then not Is_Generic_Type (T)
7552 and then In_Private_Part (Scope (T))
7553 then
7554 -- The Class attribute can be applied to an untagged private
7555 -- type fulfilled by a tagged type prior to the full type
7556 -- declaration (but only within the parent package's private
7557 -- part). Create the class-wide type now and check that the
7558 -- full type is tagged later during its analysis. Note that
7559 -- we do not mark the private type as tagged, unlike the
7560 -- case of incomplete types, because the type must still
7561 -- appear untagged to outside units.
7563 if No (Class_Wide_Type (T)) then
7564 Make_Class_Wide_Type (T);
7565 end if;
7567 Set_Entity (N, Class_Wide_Type (T));
7568 Set_Etype (N, Class_Wide_Type (T));
7570 else
7571 -- Should we introduce a type Any_Tagged and use Wrong_Type
7572 -- here, it would be a bit more consistent???
7574 Error_Msg_NE
7575 ("tagged type required, found}",
7576 Prefix (N), First_Subtype (T));
7577 Set_Entity (N, Any_Type);
7578 return;
7579 end if;
7581 -- Case of tagged type
7583 else
7584 if Is_Concurrent_Type (T) then
7585 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7587 -- Previous error. Create a class-wide type for the
7588 -- synchronized type itself, with minimal semantic
7589 -- attributes, to catch other errors in some ACATS tests.
7591 pragma Assert (Serious_Errors_Detected /= 0);
7592 Make_Class_Wide_Type (T);
7593 C := Class_Wide_Type (T);
7594 Set_First_Entity (C, First_Entity (T));
7596 else
7597 C := Class_Wide_Type
7598 (Corresponding_Record_Type (Entity (Prefix (N))));
7599 end if;
7601 else
7602 C := Class_Wide_Type (Entity (Prefix (N)));
7603 end if;
7605 Set_Entity_With_Checks (N, C);
7606 Generate_Reference (C, N);
7607 Set_Etype (N, C);
7608 end if;
7610 -- Base attribute, not allowed in Ada 83
7612 elsif Attribute_Name (N) = Name_Base then
7613 Error_Msg_Name_1 := Name_Base;
7614 Check_SPARK_05_Restriction
7615 ("attribute% is only allowed as prefix of another attribute", N);
7617 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7618 Error_Msg_N
7619 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7621 else
7622 Find_Type (Prefix (N));
7623 Typ := Entity (Prefix (N));
7625 if Ada_Version >= Ada_95
7626 and then not Is_Scalar_Type (Typ)
7627 and then not Is_Generic_Type (Typ)
7628 then
7629 Error_Msg_N
7630 ("prefix of Base attribute must be scalar type",
7631 Prefix (N));
7633 elsif Warn_On_Redundant_Constructs
7634 and then Base_Type (Typ) = Typ
7635 then
7636 Error_Msg_NE -- CODEFIX
7637 ("redundant attribute, & is its own base type?r?", N, Typ);
7638 end if;
7640 T := Base_Type (Typ);
7642 -- Rewrite attribute reference with type itself (see similar
7643 -- processing in Analyze_Attribute, case Base). Preserve prefix
7644 -- if present, for other legality checks.
7646 if Nkind (Prefix (N)) = N_Expanded_Name then
7647 Rewrite (N,
7648 Make_Expanded_Name (Sloc (N),
7649 Chars => Chars (T),
7650 Prefix => New_Copy (Prefix (Prefix (N))),
7651 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7653 else
7654 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7655 end if;
7657 Set_Entity (N, T);
7658 Set_Etype (N, T);
7659 end if;
7661 elsif Attribute_Name (N) = Name_Stub_Type then
7663 -- This is handled in Analyze_Attribute
7665 Analyze (N);
7667 -- All other attributes are invalid in a subtype mark
7669 else
7670 Error_Msg_N ("invalid attribute in subtype mark", N);
7671 end if;
7673 else
7674 Analyze (N);
7676 if Is_Entity_Name (N) then
7677 T_Name := Entity (N);
7678 else
7679 Error_Msg_N ("subtype mark required in this context", N);
7680 Set_Etype (N, Any_Type);
7681 return;
7682 end if;
7684 if T_Name = Any_Id or else Etype (N) = Any_Type then
7686 -- Undefined id. Make it into a valid type
7688 Set_Entity (N, Any_Type);
7690 elsif not Is_Type (T_Name)
7691 and then T_Name /= Standard_Void_Type
7692 then
7693 Error_Msg_Sloc := Sloc (T_Name);
7694 Error_Msg_N ("subtype mark required in this context", N);
7695 Error_Msg_NE ("\\found & declared#", N, T_Name);
7696 Set_Entity (N, Any_Type);
7698 else
7699 -- If the type is an incomplete type created to handle
7700 -- anonymous access components of a record type, then the
7701 -- incomplete type is the visible entity and subsequent
7702 -- references will point to it. Mark the original full
7703 -- type as referenced, to prevent spurious warnings.
7705 if Is_Incomplete_Type (T_Name)
7706 and then Present (Full_View (T_Name))
7707 and then not Comes_From_Source (T_Name)
7708 then
7709 Set_Referenced (Full_View (T_Name));
7710 end if;
7712 T_Name := Get_Full_View (T_Name);
7714 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7715 -- limited-with clauses
7717 if From_Limited_With (T_Name)
7718 and then Ekind (T_Name) in Incomplete_Kind
7719 and then Present (Non_Limited_View (T_Name))
7720 and then Is_Interface (Non_Limited_View (T_Name))
7721 then
7722 T_Name := Non_Limited_View (T_Name);
7723 end if;
7725 if In_Open_Scopes (T_Name) then
7726 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7728 -- In Ada 2005, a task name can be used in an access
7729 -- definition within its own body. It cannot be used
7730 -- in the discriminant part of the task declaration,
7731 -- nor anywhere else in the declaration because entries
7732 -- cannot have access parameters.
7734 if Ada_Version >= Ada_2005
7735 and then Nkind (Parent (N)) = N_Access_Definition
7736 then
7737 Set_Entity (N, T_Name);
7738 Set_Etype (N, T_Name);
7740 if Has_Completion (T_Name) then
7741 return;
7743 else
7744 Error_Msg_N
7745 ("task type cannot be used as type mark " &
7746 "within its own declaration", N);
7747 end if;
7749 else
7750 Error_Msg_N
7751 ("task type cannot be used as type mark " &
7752 "within its own spec or body", N);
7753 end if;
7755 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7757 -- In Ada 2005, a protected name can be used in an access
7758 -- definition within its own body.
7760 if Ada_Version >= Ada_2005
7761 and then Nkind (Parent (N)) = N_Access_Definition
7762 then
7763 Set_Entity (N, T_Name);
7764 Set_Etype (N, T_Name);
7765 return;
7767 else
7768 Error_Msg_N
7769 ("protected type cannot be used as type mark " &
7770 "within its own spec or body", N);
7771 end if;
7773 else
7774 Error_Msg_N ("type declaration cannot refer to itself", N);
7775 end if;
7777 Set_Etype (N, Any_Type);
7778 Set_Entity (N, Any_Type);
7779 Set_Error_Posted (T_Name);
7780 return;
7781 end if;
7783 Set_Entity (N, T_Name);
7784 Set_Etype (N, T_Name);
7785 end if;
7786 end if;
7788 if Present (Etype (N)) and then Comes_From_Source (N) then
7789 if Is_Fixed_Point_Type (Etype (N)) then
7790 Check_Restriction (No_Fixed_Point, N);
7791 elsif Is_Floating_Point_Type (Etype (N)) then
7792 Check_Restriction (No_Floating_Point, N);
7793 end if;
7795 -- A Ghost type must appear in a specific context
7797 if Is_Ghost_Entity (Etype (N)) then
7798 Check_Ghost_Context (Etype (N), N);
7799 end if;
7800 end if;
7801 end Find_Type;
7803 ------------------------------------
7804 -- Has_Implicit_Character_Literal --
7805 ------------------------------------
7807 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7808 Id : Entity_Id;
7809 Found : Boolean := False;
7810 P : constant Entity_Id := Entity (Prefix (N));
7811 Priv_Id : Entity_Id := Empty;
7813 begin
7814 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7815 Priv_Id := First_Private_Entity (P);
7816 end if;
7818 if P = Standard_Standard then
7819 Change_Selected_Component_To_Expanded_Name (N);
7820 Rewrite (N, Selector_Name (N));
7821 Analyze (N);
7822 Set_Etype (Original_Node (N), Standard_Character);
7823 return True;
7824 end if;
7826 Id := First_Entity (P);
7827 while Present (Id) and then Id /= Priv_Id loop
7828 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7830 -- We replace the node with the literal itself, resolve as a
7831 -- character, and set the type correctly.
7833 if not Found then
7834 Change_Selected_Component_To_Expanded_Name (N);
7835 Rewrite (N, Selector_Name (N));
7836 Analyze (N);
7837 Set_Etype (N, Id);
7838 Set_Etype (Original_Node (N), Id);
7839 Found := True;
7841 else
7842 -- More than one type derived from Character in given scope.
7843 -- Collect all possible interpretations.
7845 Add_One_Interp (N, Id, Id);
7846 end if;
7847 end if;
7849 Next_Entity (Id);
7850 end loop;
7852 return Found;
7853 end Has_Implicit_Character_Literal;
7855 ----------------------
7856 -- Has_Private_With --
7857 ----------------------
7859 function Has_Private_With (E : Entity_Id) return Boolean is
7860 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7861 Item : Node_Id;
7863 begin
7864 Item := First (Context_Items (Comp_Unit));
7865 while Present (Item) loop
7866 if Nkind (Item) = N_With_Clause
7867 and then Private_Present (Item)
7868 and then Entity (Name (Item)) = E
7869 then
7870 return True;
7871 end if;
7873 Next (Item);
7874 end loop;
7876 return False;
7877 end Has_Private_With;
7879 ---------------------------
7880 -- Has_Implicit_Operator --
7881 ---------------------------
7883 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7884 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7885 P : constant Entity_Id := Entity (Prefix (N));
7886 Id : Entity_Id;
7887 Priv_Id : Entity_Id := Empty;
7889 procedure Add_Implicit_Operator
7890 (T : Entity_Id;
7891 Op_Type : Entity_Id := Empty);
7892 -- Add implicit interpretation to node N, using the type for which a
7893 -- predefined operator exists. If the operator yields a boolean type,
7894 -- the Operand_Type is implicitly referenced by the operator, and a
7895 -- reference to it must be generated.
7897 ---------------------------
7898 -- Add_Implicit_Operator --
7899 ---------------------------
7901 procedure Add_Implicit_Operator
7902 (T : Entity_Id;
7903 Op_Type : Entity_Id := Empty)
7905 Predef_Op : Entity_Id;
7907 begin
7908 Predef_Op := Current_Entity (Selector_Name (N));
7909 while Present (Predef_Op)
7910 and then Scope (Predef_Op) /= Standard_Standard
7911 loop
7912 Predef_Op := Homonym (Predef_Op);
7913 end loop;
7915 if Nkind (N) = N_Selected_Component then
7916 Change_Selected_Component_To_Expanded_Name (N);
7917 end if;
7919 -- If the context is an unanalyzed function call, determine whether
7920 -- a binary or unary interpretation is required.
7922 if Nkind (Parent (N)) = N_Indexed_Component then
7923 declare
7924 Is_Binary_Call : constant Boolean :=
7925 Present
7926 (Next (First (Expressions (Parent (N)))));
7927 Is_Binary_Op : constant Boolean :=
7928 First_Entity
7929 (Predef_Op) /= Last_Entity (Predef_Op);
7930 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7932 begin
7933 if Is_Binary_Call then
7934 if Is_Binary_Op then
7935 Add_One_Interp (N, Predef_Op, T);
7936 else
7937 Add_One_Interp (N, Predef_Op2, T);
7938 end if;
7940 else
7941 if not Is_Binary_Op then
7942 Add_One_Interp (N, Predef_Op, T);
7943 else
7944 Add_One_Interp (N, Predef_Op2, T);
7945 end if;
7946 end if;
7947 end;
7949 else
7950 Add_One_Interp (N, Predef_Op, T);
7952 -- For operators with unary and binary interpretations, if
7953 -- context is not a call, add both
7955 if Present (Homonym (Predef_Op)) then
7956 Add_One_Interp (N, Homonym (Predef_Op), T);
7957 end if;
7958 end if;
7960 -- The node is a reference to a predefined operator, and
7961 -- an implicit reference to the type of its operands.
7963 if Present (Op_Type) then
7964 Generate_Operator_Reference (N, Op_Type);
7965 else
7966 Generate_Operator_Reference (N, T);
7967 end if;
7968 end Add_Implicit_Operator;
7970 -- Start of processing for Has_Implicit_Operator
7972 begin
7973 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7974 Priv_Id := First_Private_Entity (P);
7975 end if;
7977 Id := First_Entity (P);
7979 case Op_Id is
7981 -- Boolean operators: an implicit declaration exists if the scope
7982 -- contains a declaration for a derived Boolean type, or for an
7983 -- array of Boolean type.
7985 when Name_Op_And
7986 | Name_Op_Not
7987 | Name_Op_Or
7988 | Name_Op_Xor
7990 while Id /= Priv_Id loop
7991 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7992 Add_Implicit_Operator (Id);
7993 return True;
7994 end if;
7996 Next_Entity (Id);
7997 end loop;
7999 -- Equality: look for any non-limited type (result is Boolean)
8001 when Name_Op_Eq
8002 | Name_Op_Ne
8004 while Id /= Priv_Id loop
8005 if Is_Type (Id)
8006 and then not Is_Limited_Type (Id)
8007 and then Is_Base_Type (Id)
8008 then
8009 Add_Implicit_Operator (Standard_Boolean, Id);
8010 return True;
8011 end if;
8013 Next_Entity (Id);
8014 end loop;
8016 -- Comparison operators: scalar type, or array of scalar
8018 when Name_Op_Ge
8019 | Name_Op_Gt
8020 | Name_Op_Le
8021 | Name_Op_Lt
8023 while Id /= Priv_Id loop
8024 if (Is_Scalar_Type (Id)
8025 or else (Is_Array_Type (Id)
8026 and then Is_Scalar_Type (Component_Type (Id))))
8027 and then Is_Base_Type (Id)
8028 then
8029 Add_Implicit_Operator (Standard_Boolean, Id);
8030 return True;
8031 end if;
8033 Next_Entity (Id);
8034 end loop;
8036 -- Arithmetic operators: any numeric type
8038 when Name_Op_Abs
8039 | Name_Op_Add
8040 | Name_Op_Divide
8041 | Name_Op_Expon
8042 | Name_Op_Mod
8043 | Name_Op_Multiply
8044 | Name_Op_Rem
8045 | Name_Op_Subtract
8047 while Id /= Priv_Id loop
8048 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
8049 Add_Implicit_Operator (Id);
8050 return True;
8051 end if;
8053 Next_Entity (Id);
8054 end loop;
8056 -- Concatenation: any one-dimensional array type
8058 when Name_Op_Concat =>
8059 while Id /= Priv_Id loop
8060 if Is_Array_Type (Id)
8061 and then Number_Dimensions (Id) = 1
8062 and then Is_Base_Type (Id)
8063 then
8064 Add_Implicit_Operator (Id);
8065 return True;
8066 end if;
8068 Next_Entity (Id);
8069 end loop;
8071 -- What is the others condition here? Should we be using a
8072 -- subtype of Name_Id that would restrict to operators ???
8074 when others =>
8075 null;
8076 end case;
8078 -- If we fall through, then we do not have an implicit operator
8080 return False;
8081 end Has_Implicit_Operator;
8083 -----------------------------------
8084 -- Has_Loop_In_Inner_Open_Scopes --
8085 -----------------------------------
8087 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
8088 begin
8089 -- Several scope stacks are maintained by Scope_Stack. The base of the
8090 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8091 -- flag in the scope stack entry. Note that the scope stacks used to
8092 -- simply be delimited implicitly by the presence of Standard_Standard
8093 -- at their base, but there now are cases where this is not sufficient
8094 -- because Standard_Standard actually may appear in the middle of the
8095 -- active set of scopes.
8097 for J in reverse 0 .. Scope_Stack.Last loop
8099 -- S was reached without seing a loop scope first
8101 if Scope_Stack.Table (J).Entity = S then
8102 return False;
8104 -- S was not yet reached, so it contains at least one inner loop
8106 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
8107 return True;
8108 end if;
8110 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8111 -- cases where Standard_Standard appears in the middle of the active
8112 -- set of scopes. This affects the declaration and overriding of
8113 -- private inherited operations in instantiations of generic child
8114 -- units.
8116 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
8117 end loop;
8119 raise Program_Error; -- unreachable
8120 end Has_Loop_In_Inner_Open_Scopes;
8122 --------------------
8123 -- In_Open_Scopes --
8124 --------------------
8126 function In_Open_Scopes (S : Entity_Id) return Boolean is
8127 begin
8128 -- Several scope stacks are maintained by Scope_Stack. The base of the
8129 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8130 -- flag in the scope stack entry. Note that the scope stacks used to
8131 -- simply be delimited implicitly by the presence of Standard_Standard
8132 -- at their base, but there now are cases where this is not sufficient
8133 -- because Standard_Standard actually may appear in the middle of the
8134 -- active set of scopes.
8136 for J in reverse 0 .. Scope_Stack.Last loop
8137 if Scope_Stack.Table (J).Entity = S then
8138 return True;
8139 end if;
8141 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8142 -- cases where Standard_Standard appears in the middle of the active
8143 -- set of scopes. This affects the declaration and overriding of
8144 -- private inherited operations in instantiations of generic child
8145 -- units.
8147 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
8148 end loop;
8150 return False;
8151 end In_Open_Scopes;
8153 -----------------------------
8154 -- Inherit_Renamed_Profile --
8155 -----------------------------
8157 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
8158 New_F : Entity_Id;
8159 Old_F : Entity_Id;
8160 Old_T : Entity_Id;
8161 New_T : Entity_Id;
8163 begin
8164 if Ekind (Old_S) = E_Operator then
8165 New_F := First_Formal (New_S);
8167 while Present (New_F) loop
8168 Set_Etype (New_F, Base_Type (Etype (New_F)));
8169 Next_Formal (New_F);
8170 end loop;
8172 Set_Etype (New_S, Base_Type (Etype (New_S)));
8174 else
8175 New_F := First_Formal (New_S);
8176 Old_F := First_Formal (Old_S);
8178 while Present (New_F) loop
8179 New_T := Etype (New_F);
8180 Old_T := Etype (Old_F);
8182 -- If the new type is a renaming of the old one, as is the case
8183 -- for actuals in instances, retain its name, to simplify later
8184 -- disambiguation.
8186 if Nkind (Parent (New_T)) = N_Subtype_Declaration
8187 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
8188 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
8189 then
8190 null;
8191 else
8192 Set_Etype (New_F, Old_T);
8193 end if;
8195 Next_Formal (New_F);
8196 Next_Formal (Old_F);
8197 end loop;
8199 pragma Assert (No (Old_F));
8201 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
8202 Set_Etype (New_S, Etype (Old_S));
8203 end if;
8204 end if;
8205 end Inherit_Renamed_Profile;
8207 ----------------
8208 -- Initialize --
8209 ----------------
8211 procedure Initialize is
8212 begin
8213 Urefs.Init;
8214 end Initialize;
8216 -------------------------
8217 -- Install_Use_Clauses --
8218 -------------------------
8220 procedure Install_Use_Clauses
8221 (Clause : Node_Id;
8222 Force_Installation : Boolean := False)
8224 U : Node_Id;
8226 begin
8227 U := Clause;
8228 while Present (U) loop
8230 -- Case of USE package
8232 if Nkind (U) = N_Use_Package_Clause then
8233 Use_One_Package (U, Name (U), True);
8235 -- Case of USE TYPE
8237 else
8238 Use_One_Type (Subtype_Mark (U), Force => Force_Installation);
8240 end if;
8242 Next_Use_Clause (U);
8243 end loop;
8244 end Install_Use_Clauses;
8246 -------------------------------------
8247 -- Is_Appropriate_For_Entry_Prefix --
8248 -------------------------------------
8250 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
8251 P_Type : Entity_Id := T;
8253 begin
8254 if Is_Access_Type (P_Type) then
8255 P_Type := Designated_Type (P_Type);
8256 end if;
8258 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
8259 end Is_Appropriate_For_Entry_Prefix;
8261 -------------------------------
8262 -- Is_Appropriate_For_Record --
8263 -------------------------------
8265 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
8267 function Has_Components (T1 : Entity_Id) return Boolean;
8268 -- Determine if given type has components (i.e. is either a record
8269 -- type or a type that has discriminants).
8271 --------------------
8272 -- Has_Components --
8273 --------------------
8275 function Has_Components (T1 : Entity_Id) return Boolean is
8276 begin
8277 return Is_Record_Type (T1)
8278 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
8279 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
8280 or else (Is_Incomplete_Type (T1)
8281 and then From_Limited_With (T1)
8282 and then Present (Non_Limited_View (T1))
8283 and then Is_Record_Type
8284 (Get_Full_View (Non_Limited_View (T1))));
8285 end Has_Components;
8287 -- Start of processing for Is_Appropriate_For_Record
8289 begin
8290 return
8291 Present (T)
8292 and then (Has_Components (T)
8293 or else (Is_Access_Type (T)
8294 and then Has_Components (Designated_Type (T))));
8295 end Is_Appropriate_For_Record;
8297 ----------------------
8298 -- Mark_Use_Clauses --
8299 ----------------------
8301 procedure Mark_Use_Clauses (Id : Node_Or_Entity_Id) is
8302 procedure Mark_Parameters (Call : Entity_Id);
8303 -- Perform use_type_clause marking for all parameters in a subprogram
8304 -- or operator call.
8306 procedure Mark_Use_Package (Pak : Entity_Id);
8307 -- Move up the Prev_Use_Clause chain for packages denoted by Pak -
8308 -- marking each clause in the chain as effective in the process.
8310 procedure Mark_Use_Type (E : Entity_Id);
8311 -- Similar to Do_Use_Package_Marking except we move up the
8312 -- Prev_Use_Clause chain for the type denoted by E.
8314 ---------------------
8315 -- Mark_Parameters --
8316 ---------------------
8318 procedure Mark_Parameters (Call : Entity_Id) is
8319 Curr : Node_Id;
8321 begin
8322 -- Move through all of the formals
8324 Curr := First_Formal (Call);
8325 while Present (Curr) loop
8326 Mark_Use_Type (Curr);
8328 Curr := Next_Formal (Curr);
8329 end loop;
8331 -- Handle the return type
8333 Mark_Use_Type (Call);
8334 end Mark_Parameters;
8336 ----------------------
8337 -- Mark_Use_Package --
8338 ----------------------
8340 procedure Mark_Use_Package (Pak : Entity_Id) is
8341 Curr : Node_Id;
8343 begin
8344 -- Ignore cases where the scope of the type is not a package (e.g.
8345 -- Standard_Standard).
8347 if Ekind (Pak) /= E_Package then
8348 return;
8349 end if;
8351 Curr := Current_Use_Clause (Pak);
8352 while Present (Curr)
8353 and then not Is_Effective_Use_Clause (Curr)
8354 loop
8355 -- We need to mark the previous use clauses as effective, but
8356 -- each use clause may in turn render other use_package_clauses
8357 -- effective. Additionally, it is possible to have a parent
8358 -- package renamed as a child of itself so we must check the
8359 -- prefix entity is not the same as the package we are marking.
8361 if Nkind (Name (Curr)) /= N_Identifier
8362 and then Present (Prefix (Name (Curr)))
8363 and then Entity (Prefix (Name (Curr))) /= Pak
8364 then
8365 Mark_Use_Package (Entity (Prefix (Name (Curr))));
8367 -- It is also possible to have a child package without a prefix
8368 -- that relies on a previous use_package_clause.
8370 elsif Nkind (Name (Curr)) = N_Identifier
8371 and then Is_Child_Unit (Entity (Name (Curr)))
8372 then
8373 Mark_Use_Package (Scope (Entity (Name (Curr))));
8374 end if;
8376 -- Mark the use_package_clause as effective and move up the chain
8378 Set_Is_Effective_Use_Clause (Curr);
8380 Curr := Prev_Use_Clause (Curr);
8381 end loop;
8382 end Mark_Use_Package;
8384 -------------------
8385 -- Mark_Use_Type --
8386 -------------------
8388 procedure Mark_Use_Type (E : Entity_Id) is
8389 Curr : Node_Id;
8390 Base : Entity_Id;
8392 begin
8393 -- Ignore void types and unresolved string literals and primitives
8395 if Nkind (E) = N_String_Literal
8396 or else Nkind (Etype (E)) not in N_Entity
8397 or else not Is_Type (Etype (E))
8398 then
8399 return;
8400 end if;
8402 -- Primitives with class-wide operands might additionally render
8403 -- their base type's use_clauses effective - so do a recursive check
8404 -- here.
8406 Base := Base_Type (Etype (E));
8408 if Ekind (Base) = E_Class_Wide_Type then
8409 Mark_Use_Type (Base);
8410 end if;
8412 -- The package containing the type or operator function being used
8413 -- may be in use as well, so mark any use_package_clauses for it as
8414 -- effective. There are also additional sanity checks performed here
8415 -- for ignoring previous errors.
8417 Mark_Use_Package (Scope (Base));
8419 if Nkind (E) in N_Op
8420 and then Present (Entity (E))
8421 and then Present (Scope (Entity (E)))
8422 then
8423 Mark_Use_Package (Scope (Entity (E)));
8424 end if;
8426 Curr := Current_Use_Clause (Base);
8427 while Present (Curr)
8428 and then not Is_Effective_Use_Clause (Curr)
8429 loop
8430 -- Current use_type_clause may render other use_package_clauses
8431 -- effective.
8433 if Nkind (Subtype_Mark (Curr)) /= N_Identifier
8434 and then Present (Prefix (Subtype_Mark (Curr)))
8435 then
8436 Mark_Use_Package (Entity (Prefix (Subtype_Mark (Curr))));
8437 end if;
8439 -- Mark the use_type_clause as effective and move up the chain
8441 Set_Is_Effective_Use_Clause (Curr);
8443 Curr := Prev_Use_Clause (Curr);
8444 end loop;
8445 end Mark_Use_Type;
8447 -- Start of processing for Mark_Use_Clauses
8449 begin
8450 -- Use clauses in and of themselves do not count as a "use" of a
8451 -- package.
8453 if Nkind_In (Parent (Id), N_Use_Package_Clause, N_Use_Type_Clause) then
8454 return;
8455 end if;
8457 -- Handle entities
8459 if Nkind (Id) in N_Entity then
8461 -- Mark the entity's package
8463 if Is_Potentially_Use_Visible (Id) then
8464 Mark_Use_Package (Scope (Id));
8465 end if;
8467 -- Mark enumeration literals
8469 if Ekind (Id) = E_Enumeration_Literal then
8470 Mark_Use_Type (Id);
8472 -- Mark primitives
8474 elsif (Ekind (Id) in Overloadable_Kind
8475 or else Ekind_In (Id, E_Generic_Function,
8476 E_Generic_Procedure))
8477 and then (Is_Potentially_Use_Visible (Id)
8478 or else Is_Intrinsic_Subprogram (Id)
8479 or else (Ekind_In (Id, E_Function, E_Procedure)
8480 and then Is_Generic_Actual_Subprogram (Id)))
8481 then
8482 Mark_Parameters (Id);
8483 end if;
8485 -- Handle nodes
8487 else
8488 -- Mark operators
8490 if Nkind (Id) in N_Op then
8492 -- At this point the left operand may not be resolved if we are
8493 -- encountering multiple operators next to eachother in an
8494 -- expression.
8496 if Nkind (Id) in N_Binary_Op
8497 and then not (Nkind (Left_Opnd (Id)) in N_Op)
8498 then
8499 Mark_Use_Type (Left_Opnd (Id));
8500 end if;
8502 Mark_Use_Type (Right_Opnd (Id));
8503 Mark_Use_Type (Id);
8505 -- Mark entity identifiers
8507 elsif Nkind (Id) in N_Has_Entity
8508 and then (Is_Potentially_Use_Visible (Entity (Id))
8509 or else (Is_Generic_Instance (Entity (Id))
8510 and then Is_Immediately_Visible (Entity (Id))))
8511 then
8512 -- Ignore fully qualified names as they do not count as a "use" of
8513 -- a package.
8515 if Nkind_In (Id, N_Identifier, N_Operator_Symbol)
8516 or else (Present (Prefix (Id))
8517 and then Scope (Entity (Id)) /= Entity (Prefix (Id)))
8518 then
8519 Mark_Use_Clauses (Entity (Id));
8520 end if;
8521 end if;
8522 end if;
8523 end Mark_Use_Clauses;
8525 --------------------------------
8526 -- Most_Descendant_Use_Clause --
8527 --------------------------------
8529 function Most_Descendant_Use_Clause
8530 (Clause1 : Entity_Id;
8531 Clause2 : Entity_Id) return Entity_Id
8533 Scope1 : Entity_Id;
8534 Scope2 : Entity_Id;
8536 begin
8537 if Clause1 = Clause2 then
8538 return Clause1;
8539 end if;
8541 -- We determine which one is the most descendant by the scope distance
8542 -- to the ultimate parent unit.
8544 Scope1 := Entity_Of_Unit (Unit (Parent (Clause1)));
8545 Scope2 := Entity_Of_Unit (Unit (Parent (Clause2)));
8546 while Scope1 /= Standard_Standard
8547 and then Scope2 /= Standard_Standard
8548 loop
8549 Scope1 := Scope (Scope1);
8550 Scope2 := Scope (Scope2);
8552 if not Present (Scope1) then
8553 return Clause1;
8554 elsif not Present (Scope2) then
8555 return Clause2;
8556 end if;
8557 end loop;
8559 if Scope1 = Standard_Standard then
8560 return Clause1;
8561 end if;
8563 return Clause2;
8564 end Most_Descendant_Use_Clause;
8566 ---------------
8567 -- Pop_Scope --
8568 ---------------
8570 procedure Pop_Scope is
8571 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8572 S : constant Entity_Id := SST.Entity;
8574 begin
8575 if Debug_Flag_E then
8576 Write_Info;
8577 end if;
8579 -- Set Default_Storage_Pool field of the library unit if necessary
8581 if Ekind_In (S, E_Package, E_Generic_Package)
8582 and then
8583 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8584 then
8585 declare
8586 Aux : constant Node_Id :=
8587 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8588 begin
8589 if No (Default_Storage_Pool (Aux)) then
8590 Set_Default_Storage_Pool (Aux, Default_Pool);
8591 end if;
8592 end;
8593 end if;
8595 Scope_Suppress := SST.Save_Scope_Suppress;
8596 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8597 Check_Policy_List := SST.Save_Check_Policy_List;
8598 Default_Pool := SST.Save_Default_Storage_Pool;
8599 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8600 SPARK_Mode := SST.Save_SPARK_Mode;
8601 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8602 Default_SSO := SST.Save_Default_SSO;
8603 Uneval_Old := SST.Save_Uneval_Old;
8605 if Debug_Flag_W then
8606 Write_Str ("<-- exiting scope: ");
8607 Write_Name (Chars (Current_Scope));
8608 Write_Str (", Depth=");
8609 Write_Int (Int (Scope_Stack.Last));
8610 Write_Eol;
8611 end if;
8613 End_Use_Clauses (SST.First_Use_Clause);
8615 -- If the actions to be wrapped are still there they will get lost
8616 -- causing incomplete code to be generated. It is better to abort in
8617 -- this case (and we do the abort even with assertions off since the
8618 -- penalty is incorrect code generation).
8620 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8621 raise Program_Error;
8622 end if;
8624 -- Free last subprogram name if allocated, and pop scope
8626 Free (SST.Last_Subprogram_Name);
8627 Scope_Stack.Decrement_Last;
8628 end Pop_Scope;
8630 ----------------
8631 -- Push_Scope --
8632 ----------------
8634 procedure Push_Scope (S : Entity_Id) is
8635 E : constant Entity_Id := Scope (S);
8637 begin
8638 if Ekind (S) = E_Void then
8639 null;
8641 -- Set scope depth if not a non-concurrent type, and we have not yet set
8642 -- the scope depth. This means that we have the first occurrence of the
8643 -- scope, and this is where the depth is set.
8645 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8646 and then not Scope_Depth_Set (S)
8647 then
8648 if S = Standard_Standard then
8649 Set_Scope_Depth_Value (S, Uint_0);
8651 elsif Is_Child_Unit (S) then
8652 Set_Scope_Depth_Value (S, Uint_1);
8654 elsif not Is_Record_Type (Current_Scope) then
8655 if Ekind (S) = E_Loop then
8656 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8657 else
8658 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8659 end if;
8660 end if;
8661 end if;
8663 Scope_Stack.Increment_Last;
8665 declare
8666 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8668 begin
8669 SST.Entity := S;
8670 SST.Save_Scope_Suppress := Scope_Suppress;
8671 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8672 SST.Save_Check_Policy_List := Check_Policy_List;
8673 SST.Save_Default_Storage_Pool := Default_Pool;
8674 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8675 SST.Save_SPARK_Mode := SPARK_Mode;
8676 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8677 SST.Save_Default_SSO := Default_SSO;
8678 SST.Save_Uneval_Old := Uneval_Old;
8680 -- Each new scope pushed onto the scope stack inherits the component
8681 -- alignment of the previous scope. This emulates the "visibility"
8682 -- semantics of pragma Component_Alignment.
8684 if Scope_Stack.Last > Scope_Stack.First then
8685 SST.Component_Alignment_Default :=
8686 Scope_Stack.Table
8687 (Scope_Stack.Last - 1). Component_Alignment_Default;
8689 -- Otherwise, this is the first scope being pushed on the scope
8690 -- stack. Inherit the component alignment from the configuration
8691 -- form of pragma Component_Alignment (if any).
8693 else
8694 SST.Component_Alignment_Default :=
8695 Configuration_Component_Alignment;
8696 end if;
8698 SST.Last_Subprogram_Name := null;
8699 SST.Is_Transient := False;
8700 SST.Node_To_Be_Wrapped := Empty;
8701 SST.Pending_Freeze_Actions := No_List;
8702 SST.Actions_To_Be_Wrapped := (others => No_List);
8703 SST.First_Use_Clause := Empty;
8704 SST.Is_Active_Stack_Base := False;
8705 SST.Previous_Visibility := False;
8706 SST.Locked_Shared_Objects := No_Elist;
8707 end;
8709 if Debug_Flag_W then
8710 Write_Str ("--> new scope: ");
8711 Write_Name (Chars (Current_Scope));
8712 Write_Str (", Id=");
8713 Write_Int (Int (Current_Scope));
8714 Write_Str (", Depth=");
8715 Write_Int (Int (Scope_Stack.Last));
8716 Write_Eol;
8717 end if;
8719 -- Deal with copying flags from the previous scope to this one. This is
8720 -- not necessary if either scope is standard, or if the new scope is a
8721 -- child unit.
8723 if S /= Standard_Standard
8724 and then Scope (S) /= Standard_Standard
8725 and then not Is_Child_Unit (S)
8726 then
8727 if Nkind (E) not in N_Entity then
8728 return;
8729 end if;
8731 -- Copy categorization flags from Scope (S) to S, this is not done
8732 -- when Scope (S) is Standard_Standard since propagation is from
8733 -- library unit entity inwards. Copy other relevant attributes as
8734 -- well (Discard_Names in particular).
8736 -- We only propagate inwards for library level entities,
8737 -- inner level subprograms do not inherit the categorization.
8739 if Is_Library_Level_Entity (S) then
8740 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8741 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8742 Set_Discard_Names (S, Discard_Names (E));
8743 Set_Suppress_Value_Tracking_On_Call
8744 (S, Suppress_Value_Tracking_On_Call (E));
8745 Set_Categorization_From_Scope (E => S, Scop => E);
8746 end if;
8747 end if;
8749 if Is_Child_Unit (S)
8750 and then Present (E)
8751 and then Ekind_In (E, E_Package, E_Generic_Package)
8752 and then
8753 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8754 then
8755 declare
8756 Aux : constant Node_Id :=
8757 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8758 begin
8759 if Present (Default_Storage_Pool (Aux)) then
8760 Default_Pool := Default_Storage_Pool (Aux);
8761 end if;
8762 end;
8763 end if;
8764 end Push_Scope;
8766 ---------------------
8767 -- Premature_Usage --
8768 ---------------------
8770 procedure Premature_Usage (N : Node_Id) is
8771 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8772 E : Entity_Id := Entity (N);
8774 begin
8775 -- Within an instance, the analysis of the actual for a formal object
8776 -- does not see the name of the object itself. This is significant only
8777 -- if the object is an aggregate, where its analysis does not do any
8778 -- name resolution on component associations. (see 4717-008). In such a
8779 -- case, look for the visible homonym on the chain.
8781 if In_Instance and then Present (Homonym (E)) then
8782 E := Homonym (E);
8783 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8784 E := Homonym (E);
8785 end loop;
8787 if Present (E) then
8788 Set_Entity (N, E);
8789 Set_Etype (N, Etype (E));
8790 return;
8791 end if;
8792 end if;
8794 if Kind = N_Component_Declaration then
8795 Error_Msg_N
8796 ("component&! cannot be used before end of record declaration", N);
8798 elsif Kind = N_Parameter_Specification then
8799 Error_Msg_N
8800 ("formal parameter&! cannot be used before end of specification",
8803 elsif Kind = N_Discriminant_Specification then
8804 Error_Msg_N
8805 ("discriminant&! cannot be used before end of discriminant part",
8808 elsif Kind = N_Procedure_Specification
8809 or else Kind = N_Function_Specification
8810 then
8811 Error_Msg_N
8812 ("subprogram&! cannot be used before end of its declaration",
8815 elsif Kind = N_Full_Type_Declaration then
8816 Error_Msg_N
8817 ("type& cannot be used before end of its declaration!", N);
8819 else
8820 Error_Msg_N
8821 ("object& cannot be used before end of its declaration!", N);
8823 -- If the premature reference appears as the expression in its own
8824 -- declaration, rewrite it to prevent compiler loops in subsequent
8825 -- uses of this mangled declaration in address clauses.
8827 if Nkind (Parent (N)) = N_Object_Declaration then
8828 Set_Entity (N, Any_Id);
8829 end if;
8830 end if;
8831 end Premature_Usage;
8833 ------------------------
8834 -- Present_System_Aux --
8835 ------------------------
8837 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8838 Loc : Source_Ptr;
8839 Aux_Name : Unit_Name_Type;
8840 Unum : Unit_Number_Type;
8841 Withn : Node_Id;
8842 With_Sys : Node_Id;
8843 The_Unit : Node_Id;
8845 function Find_System (C_Unit : Node_Id) return Entity_Id;
8846 -- Scan context clause of compilation unit to find with_clause
8847 -- for System.
8849 -----------------
8850 -- Find_System --
8851 -----------------
8853 function Find_System (C_Unit : Node_Id) return Entity_Id is
8854 With_Clause : Node_Id;
8856 begin
8857 With_Clause := First (Context_Items (C_Unit));
8858 while Present (With_Clause) loop
8859 if (Nkind (With_Clause) = N_With_Clause
8860 and then Chars (Name (With_Clause)) = Name_System)
8861 and then Comes_From_Source (With_Clause)
8862 then
8863 return With_Clause;
8864 end if;
8866 Next (With_Clause);
8867 end loop;
8869 return Empty;
8870 end Find_System;
8872 -- Start of processing for Present_System_Aux
8874 begin
8875 -- The child unit may have been loaded and analyzed already
8877 if Present (System_Aux_Id) then
8878 return True;
8880 -- If no previous pragma for System.Aux, nothing to load
8882 elsif No (System_Extend_Unit) then
8883 return False;
8885 -- Use the unit name given in the pragma to retrieve the unit.
8886 -- Verify that System itself appears in the context clause of the
8887 -- current compilation. If System is not present, an error will
8888 -- have been reported already.
8890 else
8891 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8893 The_Unit := Unit (Cunit (Current_Sem_Unit));
8895 if No (With_Sys)
8896 and then
8897 (Nkind (The_Unit) = N_Package_Body
8898 or else (Nkind (The_Unit) = N_Subprogram_Body
8899 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8900 then
8901 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8902 end if;
8904 if No (With_Sys) and then Present (N) then
8906 -- If we are compiling a subunit, we need to examine its
8907 -- context as well (Current_Sem_Unit is the parent unit);
8909 The_Unit := Parent (N);
8910 while Nkind (The_Unit) /= N_Compilation_Unit loop
8911 The_Unit := Parent (The_Unit);
8912 end loop;
8914 if Nkind (Unit (The_Unit)) = N_Subunit then
8915 With_Sys := Find_System (The_Unit);
8916 end if;
8917 end if;
8919 if No (With_Sys) then
8920 return False;
8921 end if;
8923 Loc := Sloc (With_Sys);
8924 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8925 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8926 Name_Buffer (1 .. 7) := "system.";
8927 Name_Buffer (Name_Len + 8) := '%';
8928 Name_Buffer (Name_Len + 9) := 's';
8929 Name_Len := Name_Len + 9;
8930 Aux_Name := Name_Find;
8932 Unum :=
8933 Load_Unit
8934 (Load_Name => Aux_Name,
8935 Required => False,
8936 Subunit => False,
8937 Error_Node => With_Sys);
8939 if Unum /= No_Unit then
8940 Semantics (Cunit (Unum));
8941 System_Aux_Id :=
8942 Defining_Entity (Specification (Unit (Cunit (Unum))));
8944 Withn :=
8945 Make_With_Clause (Loc,
8946 Name =>
8947 Make_Expanded_Name (Loc,
8948 Chars => Chars (System_Aux_Id),
8949 Prefix =>
8950 New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8951 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8953 Set_Entity (Name (Withn), System_Aux_Id);
8955 Set_Corresponding_Spec (Withn, System_Aux_Id);
8956 Set_First_Name (Withn);
8957 Set_Implicit_With (Withn);
8958 Set_Library_Unit (Withn, Cunit (Unum));
8960 Insert_After (With_Sys, Withn);
8961 Mark_Rewrite_Insertion (Withn);
8962 Set_Context_Installed (Withn);
8964 return True;
8966 -- Here if unit load failed
8968 else
8969 Error_Msg_Name_1 := Name_System;
8970 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8971 Error_Msg_N
8972 ("extension package `%.%` does not exist",
8973 Opt.System_Extend_Unit);
8974 return False;
8975 end if;
8976 end if;
8977 end Present_System_Aux;
8979 -------------------------
8980 -- Restore_Scope_Stack --
8981 -------------------------
8983 procedure Restore_Scope_Stack
8984 (List : Elist_Id;
8985 Handle_Use : Boolean := True)
8987 SS_Last : constant Int := Scope_Stack.Last;
8988 Elmt : Elmt_Id;
8990 begin
8991 -- Restore visibility of previous scope stack, if any, using the list
8992 -- we saved (we use Remove, since this list will not be used again).
8994 loop
8995 Elmt := Last_Elmt (List);
8996 exit when Elmt = No_Elmt;
8997 Set_Is_Immediately_Visible (Node (Elmt));
8998 Remove_Last_Elmt (List);
8999 end loop;
9001 -- Restore use clauses
9003 if SS_Last >= Scope_Stack.First
9004 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9005 and then Handle_Use
9006 then
9007 Install_Use_Clauses
9008 (Scope_Stack.Table (SS_Last).First_Use_Clause,
9009 Force_Installation => True);
9010 end if;
9011 end Restore_Scope_Stack;
9013 ----------------------
9014 -- Save_Scope_Stack --
9015 ----------------------
9017 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
9018 -- consuming any memory. That is, Save_Scope_Stack took care of removing
9019 -- from immediate visibility entities and Restore_Scope_Stack took care
9020 -- of restoring their visibility analyzing the context of each entity. The
9021 -- problem of such approach is that it was fragile and caused unexpected
9022 -- visibility problems, and indeed one test was found where there was a
9023 -- real problem.
9025 -- Furthermore, the following experiment was carried out:
9027 -- - Save_Scope_Stack was modified to store in an Elist1 all those
9028 -- entities whose attribute Is_Immediately_Visible is modified
9029 -- from True to False.
9031 -- - Restore_Scope_Stack was modified to store in another Elist2
9032 -- all the entities whose attribute Is_Immediately_Visible is
9033 -- modified from False to True.
9035 -- - Extra code was added to verify that all the elements of Elist1
9036 -- are found in Elist2
9038 -- This test shows that there may be more occurrences of this problem which
9039 -- have not yet been detected. As a result, we replaced that approach by
9040 -- the current one in which Save_Scope_Stack returns the list of entities
9041 -- whose visibility is changed, and that list is passed to Restore_Scope_
9042 -- Stack to undo that change. This approach is simpler and safer, although
9043 -- it consumes more memory.
9045 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
9046 Result : constant Elist_Id := New_Elmt_List;
9047 E : Entity_Id;
9048 S : Entity_Id;
9049 SS_Last : constant Int := Scope_Stack.Last;
9051 procedure Remove_From_Visibility (E : Entity_Id);
9052 -- If E is immediately visible then append it to the result and remove
9053 -- it temporarily from visibility.
9055 ----------------------------
9056 -- Remove_From_Visibility --
9057 ----------------------------
9059 procedure Remove_From_Visibility (E : Entity_Id) is
9060 begin
9061 if Is_Immediately_Visible (E) then
9062 Append_Elmt (E, Result);
9063 Set_Is_Immediately_Visible (E, False);
9064 end if;
9065 end Remove_From_Visibility;
9067 -- Start of processing for Save_Scope_Stack
9069 begin
9070 if SS_Last >= Scope_Stack.First
9071 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9072 then
9073 if Handle_Use then
9074 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
9075 end if;
9077 -- If the call is from within a compilation unit, as when called from
9078 -- Rtsfind, make current entries in scope stack invisible while we
9079 -- analyze the new unit.
9081 for J in reverse 0 .. SS_Last loop
9082 exit when Scope_Stack.Table (J).Entity = Standard_Standard
9083 or else No (Scope_Stack.Table (J).Entity);
9085 S := Scope_Stack.Table (J).Entity;
9087 Remove_From_Visibility (S);
9089 E := First_Entity (S);
9090 while Present (E) loop
9091 Remove_From_Visibility (E);
9092 Next_Entity (E);
9093 end loop;
9094 end loop;
9096 end if;
9098 return Result;
9099 end Save_Scope_Stack;
9101 -------------
9102 -- Set_Use --
9103 -------------
9105 procedure Set_Use (L : List_Id) is
9106 Decl : Node_Id;
9108 begin
9109 if Present (L) then
9110 Decl := First (L);
9111 while Present (Decl) loop
9112 if Nkind (Decl) = N_Use_Package_Clause then
9113 Chain_Use_Clause (Decl);
9114 Use_One_Package (Decl, Name (Decl));
9116 elsif Nkind (Decl) = N_Use_Type_Clause then
9117 Chain_Use_Clause (Decl);
9118 Use_One_Type (Subtype_Mark (Decl));
9120 end if;
9122 Next (Decl);
9123 end loop;
9124 end if;
9125 end Set_Use;
9127 -----------------------------
9128 -- Update_Use_Clause_Chain --
9129 -----------------------------
9131 procedure Update_Use_Clause_Chain is
9133 procedure Update_Chain_In_Scope (Level : Int);
9134 -- Iterate through one level in the scope stack verifying each use-type
9135 -- clause within said level is used then reset the Current_Use_Clause
9136 -- to a redundant use clause outside of the current ending scope if such
9137 -- a clause exists.
9139 ---------------------------
9140 -- Update_Chain_In_Scope --
9141 ---------------------------
9143 procedure Update_Chain_In_Scope (Level : Int) is
9144 Curr : Node_Id;
9145 N : Node_Id;
9147 begin
9148 -- Loop through all use clauses within the scope dictated by Level
9150 Curr := Scope_Stack.Table (Level).First_Use_Clause;
9151 while Present (Curr) loop
9153 -- Retrieve the subtype mark or name within the current current
9154 -- use clause.
9156 if Nkind (Curr) = N_Use_Type_Clause then
9157 N := Subtype_Mark (Curr);
9158 else
9159 N := Name (Curr);
9160 end if;
9162 -- If warnings for unreferenced entities are enabled and the
9163 -- current use clause has not been marked effective.
9165 if Check_Unreferenced
9166 and then Comes_From_Source (Curr)
9167 and then not Is_Effective_Use_Clause (Curr)
9168 and then not In_Instance
9169 and then not In_Inlined_Body
9170 then
9171 -- We are dealing with a potentially unused use_package_clause
9173 if Nkind (Curr) = N_Use_Package_Clause then
9175 -- Renamings and formal subprograms may cause the associated
9176 -- node to be marked as effective instead of the original.
9178 if not (Present (Associated_Node (N))
9179 and then Present
9180 (Current_Use_Clause
9181 (Associated_Node (N)))
9182 and then Is_Effective_Use_Clause
9183 (Current_Use_Clause
9184 (Associated_Node (N))))
9185 then
9186 Error_Msg_Node_1 := Entity (N);
9187 Error_Msg_NE
9188 ("use clause for package & has no effect?u?",
9189 Curr, Entity (N));
9190 end if;
9192 -- We are dealing with an unused use_type_clause
9194 else
9195 Error_Msg_Node_1 := Etype (N);
9196 Error_Msg_NE
9197 ("use clause for } has no effect?u?", Curr, Etype (N));
9198 end if;
9199 end if;
9201 -- Verify that we haven't already processed a redundant
9202 -- use_type_clause within the same scope before we move the
9203 -- current use clause up to a previous one for type T.
9205 if Present (Prev_Use_Clause (Curr)) then
9206 Set_Current_Use_Clause (Entity (N), Prev_Use_Clause (Curr));
9207 end if;
9209 Curr := Next_Use_Clause (Curr);
9210 end loop;
9211 end Update_Chain_In_Scope;
9213 -- Start of processing for Update_Use_Clause_Chain
9215 begin
9216 Update_Chain_In_Scope (Scope_Stack.Last);
9218 -- Deal with use clauses within the context area if the current
9219 -- scope is a compilation unit.
9221 if Is_Compilation_Unit (Current_Scope)
9222 and then Sloc (Scope_Stack.Table
9223 (Scope_Stack.Last - 1).Entity) = Standard_Location
9224 then
9225 Update_Chain_In_Scope (Scope_Stack.Last - 1);
9226 end if;
9227 end Update_Use_Clause_Chain;
9229 ---------------------
9230 -- Use_One_Package --
9231 ---------------------
9233 procedure Use_One_Package
9234 (N : Node_Id;
9235 Pack_Name : Entity_Id := Empty;
9236 Force : Boolean := False)
9238 procedure Note_Redundant_Use (Clause : Node_Id);
9239 -- Mark the name in a use clause as redundant if the corresponding
9240 -- entity is already use-visible. Emit a warning if the use clause comes
9241 -- from source and the proper warnings are enabled.
9243 ------------------------
9244 -- Note_Redundant_Use --
9245 ------------------------
9247 procedure Note_Redundant_Use (Clause : Node_Id) is
9248 Decl : constant Node_Id := Parent (Clause);
9249 Pack_Name : constant Entity_Id := Entity (Clause);
9251 Cur_Use : Node_Id := Current_Use_Clause (Pack_Name);
9252 Prev_Use : Node_Id := Empty;
9253 Redundant : Node_Id := Empty;
9254 -- The Use_Clause which is actually redundant. In the simplest case
9255 -- it is Pack itself, but when we compile a body we install its
9256 -- context before that of its spec, in which case it is the
9257 -- use_clause in the spec that will appear to be redundant, and we
9258 -- want the warning to be placed on the body. Similar complications
9259 -- appear when the redundancy is between a child unit and one of its
9260 -- ancestors.
9262 begin
9263 -- Could be renamed...
9265 if No (Cur_Use) then
9266 Cur_Use := Current_Use_Clause (Renamed_Entity (Pack_Name));
9267 end if;
9269 Set_Redundant_Use (Clause, True);
9271 if not Comes_From_Source (Clause)
9272 or else In_Instance
9273 or else not Warn_On_Redundant_Constructs
9274 then
9275 return;
9276 end if;
9278 if not Is_Compilation_Unit (Current_Scope) then
9280 -- If the use_clause is in an inner scope, it is made redundant by
9281 -- some clause in the current context, with one exception: If we
9282 -- are compiling a nested package body, and the use_clause comes
9283 -- from then corresponding spec, the clause is not necessarily
9284 -- fully redundant, so we should not warn. If a warning was
9285 -- warranted, it would have been given when the spec was
9286 -- processed.
9288 if Nkind (Parent (Decl)) = N_Package_Specification then
9289 declare
9290 Package_Spec_Entity : constant Entity_Id :=
9291 Defining_Unit_Name (Parent (Decl));
9292 begin
9293 if In_Package_Body (Package_Spec_Entity) then
9294 return;
9295 end if;
9296 end;
9297 end if;
9299 Redundant := Clause;
9300 Prev_Use := Cur_Use;
9302 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9303 declare
9304 Cur_Unit : constant Unit_Number_Type :=
9305 Get_Source_Unit (Cur_Use);
9306 New_Unit : constant Unit_Number_Type :=
9307 Get_Source_Unit (Clause);
9309 Scop : Entity_Id;
9311 begin
9312 if Cur_Unit = New_Unit then
9314 -- Redundant clause in same body
9316 Redundant := Clause;
9317 Prev_Use := Cur_Use;
9319 elsif Cur_Unit = Current_Sem_Unit then
9321 -- If the new clause is not in the current unit it has been
9322 -- analyzed first, and it makes the other one redundant.
9323 -- However, if the new clause appears in a subunit, Cur_Unit
9324 -- is still the parent, and in that case the redundant one
9325 -- is the one appearing in the subunit.
9327 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
9328 Redundant := Clause;
9329 Prev_Use := Cur_Use;
9331 -- Most common case: redundant clause in body, original
9332 -- clause in spec. Current scope is spec entity.
9334 elsif Current_Scope = Cunit_Entity (Current_Sem_Unit) then
9335 Redundant := Cur_Use;
9336 Prev_Use := Clause;
9338 else
9339 -- The new clause may appear in an unrelated unit, when
9340 -- the parents of a generic are being installed prior to
9341 -- instantiation. In this case there must be no warning.
9342 -- We detect this case by checking whether the current
9343 -- top of the stack is related to the current
9344 -- compilation.
9346 Scop := Current_Scope;
9347 while Present (Scop)
9348 and then Scop /= Standard_Standard
9349 loop
9350 if Is_Compilation_Unit (Scop)
9351 and then not Is_Child_Unit (Scop)
9352 then
9353 return;
9355 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
9356 exit;
9357 end if;
9359 Scop := Scope (Scop);
9360 end loop;
9362 Redundant := Cur_Use;
9363 Prev_Use := Clause;
9364 end if;
9366 elsif New_Unit = Current_Sem_Unit then
9367 Redundant := Clause;
9368 Prev_Use := Cur_Use;
9370 else
9371 -- Neither is the current unit, so they appear in parent or
9372 -- sibling units. Warning will be emitted elsewhere.
9374 return;
9375 end if;
9376 end;
9378 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
9379 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
9380 then
9381 -- Use_clause is in child unit of current unit, and the child unit
9382 -- appears in the context of the body of the parent, so it has
9383 -- been installed first, even though it is the redundant one.
9384 -- Depending on their placement in the context, the visible or the
9385 -- private parts of the two units, either might appear as
9386 -- redundant, but the message has to be on the current unit.
9388 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
9389 Redundant := Cur_Use;
9390 Prev_Use := Clause;
9391 else
9392 Redundant := Clause;
9393 Prev_Use := Cur_Use;
9394 end if;
9396 -- If the new use clause appears in the private part of a parent
9397 -- unit it may appear to be redundant w.r.t. a use clause in a
9398 -- child unit, but the previous use clause was needed in the
9399 -- visible part of the child, and no warning should be emitted.
9401 if Nkind (Parent (Decl)) = N_Package_Specification
9402 and then List_Containing (Decl) =
9403 Private_Declarations (Parent (Decl))
9404 then
9405 declare
9406 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
9407 Spec : constant Node_Id :=
9408 Specification (Unit (Cunit (Current_Sem_Unit)));
9410 begin
9411 if Is_Compilation_Unit (Par)
9412 and then Par /= Cunit_Entity (Current_Sem_Unit)
9413 and then Parent (Cur_Use) = Spec
9414 and then List_Containing (Cur_Use) =
9415 Visible_Declarations (Spec)
9416 then
9417 return;
9418 end if;
9419 end;
9420 end if;
9422 -- Finally, if the current use clause is in the context then the
9423 -- clause is redundant when it is nested within the unit.
9425 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
9426 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
9427 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
9428 then
9429 Redundant := Clause;
9430 Prev_Use := Cur_Use;
9432 end if;
9434 if Present (Redundant) and then Parent (Redundant) /= Prev_Use then
9436 -- Make sure we are looking at most-descendant use_package_clause
9437 -- by traversing the chain with Find_Most_Prev and then verifying
9438 -- there is no scope manipulation via Most_Descendant_Use_Clause.
9440 if Nkind (Prev_Use) = N_Use_Package_Clause
9441 and then
9442 (Nkind (Parent (Prev_Use)) /= N_Compilation_Unit
9443 or else Most_Descendant_Use_Clause
9444 (Prev_Use, Find_Most_Prev (Prev_Use)) /= Prev_Use)
9445 then
9446 Prev_Use := Find_Most_Prev (Prev_Use);
9447 end if;
9449 Error_Msg_Sloc := Sloc (Prev_Use);
9450 Error_Msg_NE -- CODEFIX
9451 ("& is already use-visible through previous use_clause #??",
9452 Redundant, Pack_Name);
9453 end if;
9454 end Note_Redundant_Use;
9456 -- Local variables
9458 Current_Instance : Entity_Id := Empty;
9459 Id : Entity_Id;
9460 P : Entity_Id;
9461 Prev : Entity_Id;
9462 Private_With_OK : Boolean := False;
9463 Real_P : Entity_Id;
9465 -- Start of processing for Use_One_Package
9467 begin
9468 -- Use_One_Package may have been called recursively to handle an
9469 -- implicit use for a auxiliary system package, so set P accordingly
9470 -- and skip redundancy checks.
9472 if No (Pack_Name) and then Present_System_Aux (N) then
9473 P := System_Aux_Id;
9475 -- Check for redundant use_package_clauses
9477 else
9478 -- Ignore cases where we are dealing with a non user defined package
9479 -- like Standard_Standard or something other than a valid package.
9481 if not Is_Entity_Name (Pack_Name)
9482 or else No (Entity (Pack_Name))
9483 or else Ekind (Entity (Pack_Name)) /= E_Package
9484 then
9485 return;
9486 end if;
9488 -- When a renaming exists we must check it for redundancy. The
9489 -- original package would have already been seen at this point.
9491 if Present (Renamed_Object (Entity (Pack_Name))) then
9492 P := Renamed_Object (Entity (Pack_Name));
9493 else
9494 P := Entity (Pack_Name);
9495 end if;
9497 -- Check for redundant clauses then set the current use clause for
9498 -- P if were are not "forcing" an installation from a scope
9499 -- reinstallation that is done throughout analysis for various
9500 -- reasons.
9502 if In_Use (P) then
9503 Note_Redundant_Use (Pack_Name);
9505 if not Force then
9506 Set_Current_Use_Clause (P, N);
9507 end if;
9509 return;
9511 -- Warn about detected redundant clauses
9513 elsif not Force
9514 and then In_Open_Scopes (P)
9515 and then not Is_Hidden_Open_Scope (P)
9516 then
9517 if Warn_On_Redundant_Constructs and then P = Current_Scope then
9518 Error_Msg_NE -- CODEFIX
9519 ("& is already use-visible within itself?r?",
9520 Pack_Name, P);
9521 end if;
9523 return;
9524 end if;
9526 -- Set P back to the non-renamed package so that visiblilty of the
9527 -- entities within the package can be properly set below.
9529 P := Entity (Pack_Name);
9530 end if;
9532 Set_In_Use (P);
9533 Set_Current_Use_Clause (P, N);
9535 -- Ada 2005 (AI-50217): Check restriction
9537 if From_Limited_With (P) then
9538 Error_Msg_N ("limited withed package cannot appear in use clause", N);
9539 end if;
9541 -- Find enclosing instance, if any
9543 if In_Instance then
9544 Current_Instance := Current_Scope;
9545 while not Is_Generic_Instance (Current_Instance) loop
9546 Current_Instance := Scope (Current_Instance);
9547 end loop;
9549 if No (Hidden_By_Use_Clause (N)) then
9550 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
9551 end if;
9552 end if;
9554 -- If unit is a package renaming, indicate that the renamed package is
9555 -- also in use (the flags on both entities must remain consistent, and a
9556 -- subsequent use of either of them should be recognized as redundant).
9558 if Present (Renamed_Object (P)) then
9559 Set_In_Use (Renamed_Object (P));
9560 Set_Current_Use_Clause (Renamed_Object (P), N);
9561 Real_P := Renamed_Object (P);
9562 else
9563 Real_P := P;
9564 end if;
9566 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
9567 -- found in the private part of a package specification
9569 if In_Private_Part (Current_Scope)
9570 and then Has_Private_With (P)
9571 and then Is_Child_Unit (Current_Scope)
9572 and then Is_Child_Unit (P)
9573 and then Is_Ancestor_Package (Scope (Current_Scope), P)
9574 then
9575 Private_With_OK := True;
9576 end if;
9578 -- Loop through entities in one package making them potentially
9579 -- use-visible.
9581 Id := First_Entity (P);
9582 while Present (Id)
9583 and then (Id /= First_Private_Entity (P)
9584 or else Private_With_OK) -- Ada 2005 (AI-262)
9585 loop
9586 Prev := Current_Entity (Id);
9587 while Present (Prev) loop
9588 if Is_Immediately_Visible (Prev)
9589 and then (not Is_Overloadable (Prev)
9590 or else not Is_Overloadable (Id)
9591 or else (Type_Conformant (Id, Prev)))
9592 then
9593 if No (Current_Instance) then
9595 -- Potentially use-visible entity remains hidden
9597 goto Next_Usable_Entity;
9599 -- A use clause within an instance hides outer global entities,
9600 -- which are not used to resolve local entities in the
9601 -- instance. Note that the predefined entities in Standard
9602 -- could not have been hidden in the generic by a use clause,
9603 -- and therefore remain visible. Other compilation units whose
9604 -- entities appear in Standard must be hidden in an instance.
9606 -- To determine whether an entity is external to the instance
9607 -- we compare the scope depth of its scope with that of the
9608 -- current instance. However, a generic actual of a subprogram
9609 -- instance is declared in the wrapper package but will not be
9610 -- hidden by a use-visible entity. similarly, an entity that is
9611 -- declared in an enclosing instance will not be hidden by an
9612 -- an entity declared in a generic actual, which can only have
9613 -- been use-visible in the generic and will not have hidden the
9614 -- entity in the generic parent.
9616 -- If Id is called Standard, the predefined package with the
9617 -- same name is in the homonym chain. It has to be ignored
9618 -- because it has no defined scope (being the only entity in
9619 -- the system with this mandated behavior).
9621 elsif not Is_Hidden (Id)
9622 and then Present (Scope (Prev))
9623 and then not Is_Wrapper_Package (Scope (Prev))
9624 and then Scope_Depth (Scope (Prev)) <
9625 Scope_Depth (Current_Instance)
9626 and then (Scope (Prev) /= Standard_Standard
9627 or else Sloc (Prev) > Standard_Location)
9628 then
9629 if In_Open_Scopes (Scope (Prev))
9630 and then Is_Generic_Instance (Scope (Prev))
9631 and then Present (Associated_Formal_Package (P))
9632 then
9633 null;
9635 else
9636 Set_Is_Potentially_Use_Visible (Id);
9637 Set_Is_Immediately_Visible (Prev, False);
9638 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9639 end if;
9640 end if;
9642 -- A user-defined operator is not use-visible if the predefined
9643 -- operator for the type is immediately visible, which is the case
9644 -- if the type of the operand is in an open scope. This does not
9645 -- apply to user-defined operators that have operands of different
9646 -- types, because the predefined mixed mode operations (multiply
9647 -- and divide) apply to universal types and do not hide anything.
9649 elsif Ekind (Prev) = E_Operator
9650 and then Operator_Matches_Spec (Prev, Id)
9651 and then In_Open_Scopes
9652 (Scope (Base_Type (Etype (First_Formal (Id)))))
9653 and then (No (Next_Formal (First_Formal (Id)))
9654 or else Etype (First_Formal (Id)) =
9655 Etype (Next_Formal (First_Formal (Id)))
9656 or else Chars (Prev) = Name_Op_Expon)
9657 then
9658 goto Next_Usable_Entity;
9660 -- In an instance, two homonyms may become use_visible through the
9661 -- actuals of distinct formal packages. In the generic, only the
9662 -- current one would have been visible, so make the other one
9663 -- not use_visible.
9665 elsif Present (Current_Instance)
9666 and then Is_Potentially_Use_Visible (Prev)
9667 and then not Is_Overloadable (Prev)
9668 and then Scope (Id) /= Scope (Prev)
9669 and then Used_As_Generic_Actual (Scope (Prev))
9670 and then Used_As_Generic_Actual (Scope (Id))
9671 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9672 Current_Use_Clause (Scope (Id)))
9673 then
9674 Set_Is_Potentially_Use_Visible (Prev, False);
9675 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9676 end if;
9678 Prev := Homonym (Prev);
9679 end loop;
9681 -- On exit, we know entity is not hidden, unless it is private
9683 if not Is_Hidden (Id)
9684 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9685 then
9686 Set_Is_Potentially_Use_Visible (Id);
9688 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9689 Set_Is_Potentially_Use_Visible (Full_View (Id));
9690 end if;
9691 end if;
9693 <<Next_Usable_Entity>>
9694 Next_Entity (Id);
9695 end loop;
9697 -- Child units are also made use-visible by a use clause, but they may
9698 -- appear after all visible declarations in the parent entity list.
9700 while Present (Id) loop
9701 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9702 Set_Is_Potentially_Use_Visible (Id);
9703 end if;
9705 Next_Entity (Id);
9706 end loop;
9708 if Chars (Real_P) = Name_System
9709 and then Scope (Real_P) = Standard_Standard
9710 and then Present_System_Aux (N)
9711 then
9712 Use_One_Package (N);
9713 end if;
9714 end Use_One_Package;
9716 ------------------
9717 -- Use_One_Type --
9718 ------------------
9720 procedure Use_One_Type
9721 (Id : Node_Id;
9722 Installed : Boolean := False;
9723 Force : Boolean := False)
9725 function Spec_Reloaded_For_Body return Boolean;
9726 -- Determine whether the compilation unit is a package body and the use
9727 -- type clause is in the spec of the same package. Even though the spec
9728 -- was analyzed first, its context is reloaded when analysing the body.
9730 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9731 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9732 -- class-wide operations of ancestor types are use-visible if the
9733 -- ancestor type is visible.
9735 ----------------------------
9736 -- Spec_Reloaded_For_Body --
9737 ----------------------------
9739 function Spec_Reloaded_For_Body return Boolean is
9740 begin
9741 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9742 declare
9743 Spec : constant Node_Id :=
9744 Parent (List_Containing (Parent (Id)));
9746 begin
9747 -- Check whether type is declared in a package specification,
9748 -- and current unit is the corresponding package body. The
9749 -- use clauses themselves may be within a nested package.
9751 return
9752 Nkind (Spec) = N_Package_Specification
9753 and then In_Same_Source_Unit
9754 (Corresponding_Body (Parent (Spec)),
9755 Cunit_Entity (Current_Sem_Unit));
9756 end;
9757 end if;
9759 return False;
9760 end Spec_Reloaded_For_Body;
9762 -------------------------------
9763 -- Use_Class_Wide_Operations --
9764 -------------------------------
9766 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9767 function Is_Class_Wide_Operation_Of
9768 (Op : Entity_Id;
9769 T : Entity_Id) return Boolean;
9770 -- Determine whether a subprogram has a class-wide parameter or
9771 -- result that is T'Class.
9773 ---------------------------------
9774 -- Is_Class_Wide_Operation_Of --
9775 ---------------------------------
9777 function Is_Class_Wide_Operation_Of
9778 (Op : Entity_Id;
9779 T : Entity_Id) return Boolean
9781 Formal : Entity_Id;
9783 begin
9784 Formal := First_Formal (Op);
9785 while Present (Formal) loop
9786 if Etype (Formal) = Class_Wide_Type (T) then
9787 return True;
9788 end if;
9790 Next_Formal (Formal);
9791 end loop;
9793 if Etype (Op) = Class_Wide_Type (T) then
9794 return True;
9795 end if;
9797 return False;
9798 end Is_Class_Wide_Operation_Of;
9800 -- Local variables
9802 Ent : Entity_Id;
9803 Scop : Entity_Id;
9805 -- Start of processing for Use_Class_Wide_Operations
9807 begin
9808 Scop := Scope (Typ);
9809 if not Is_Hidden (Scop) then
9810 Ent := First_Entity (Scop);
9811 while Present (Ent) loop
9812 if Is_Overloadable (Ent)
9813 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9814 and then not Is_Potentially_Use_Visible (Ent)
9815 then
9816 Set_Is_Potentially_Use_Visible (Ent);
9817 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9818 end if;
9820 Next_Entity (Ent);
9821 end loop;
9822 end if;
9824 if Is_Derived_Type (Typ) then
9825 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9826 end if;
9827 end Use_Class_Wide_Operations;
9829 -- Local variables
9831 Elmt : Elmt_Id;
9832 Is_Known_Used : Boolean;
9833 Op_List : Elist_Id;
9834 T : Entity_Id;
9836 -- Start of processing for Use_One_Type
9838 begin
9839 if Entity (Id) = Any_Type then
9840 return;
9841 end if;
9843 -- It is the type determined by the subtype mark (8.4(8)) whose
9844 -- operations become potentially use-visible.
9846 T := Base_Type (Entity (Id));
9848 -- Either the type itself is used, the package where it is declared is
9849 -- in use or the entity is declared in the current package, thus
9850 -- use-visible.
9852 Is_Known_Used :=
9853 (In_Use (T)
9854 and then ((Present (Current_Use_Clause (T))
9855 and then All_Present (Current_Use_Clause (T)))
9856 or else not All_Present (Parent (Id))))
9857 or else In_Use (Scope (T))
9858 or else Scope (T) = Current_Scope;
9860 Set_Redundant_Use (Id,
9861 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9863 if Ekind (T) = E_Incomplete_Type then
9864 Error_Msg_N ("premature usage of incomplete type", Id);
9866 elsif In_Open_Scopes (Scope (T)) then
9867 null;
9869 -- A limited view cannot appear in a use_type_clause. However, an access
9870 -- type whose designated type is limited has the flag but is not itself
9871 -- a limited view unless we only have a limited view of its enclosing
9872 -- package.
9874 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9875 Error_Msg_N
9876 ("incomplete type from limited view cannot appear in use clause",
9877 Id);
9879 -- If the use clause is redundant, Used_Operations will usually be
9880 -- empty, but we need to set it to empty here in one case: If we are
9881 -- instantiating a generic library unit, then we install the ancestors
9882 -- of that unit in the scope stack, which involves reprocessing use
9883 -- clauses in those ancestors. Such a use clause will typically have a
9884 -- nonempty Used_Operations unless it was redundant in the generic unit,
9885 -- even if it is redundant at the place of the instantiation.
9887 elsif Redundant_Use (Id) then
9889 -- We must avoid incorrectly setting the Current_Use_Clause when we
9890 -- are working with a redundant clause that has already been linked
9891 -- in the Prev_Use_Clause chain, otherwise the chain will break.
9893 if Present (Current_Use_Clause (T))
9894 and then Present (Prev_Use_Clause (Current_Use_Clause (T)))
9895 and then Parent (Id) = Prev_Use_Clause (Current_Use_Clause (T))
9896 then
9897 null;
9898 else
9899 Set_Current_Use_Clause (T, Parent (Id));
9900 end if;
9902 Set_Used_Operations (Parent (Id), New_Elmt_List);
9904 -- If the subtype mark designates a subtype in a different package,
9905 -- we have to check that the parent type is visible, otherwise the
9906 -- use_type_clause is a no-op. Not clear how to do that???
9908 else
9909 Set_Current_Use_Clause (T, Parent (Id));
9910 Set_In_Use (T);
9912 -- If T is tagged, primitive operators on class-wide operands are
9913 -- also available.
9915 if Is_Tagged_Type (T) then
9916 Set_In_Use (Class_Wide_Type (T));
9917 end if;
9919 -- Iterate over primitive operations of the type. If an operation is
9920 -- already use_visible, it is the result of a previous use_clause,
9921 -- and already appears on the corresponding entity chain. If the
9922 -- clause is being reinstalled, operations are already use-visible.
9924 if Installed then
9925 null;
9927 else
9928 Op_List := Collect_Primitive_Operations (T);
9929 Elmt := First_Elmt (Op_List);
9930 while Present (Elmt) loop
9931 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9932 or else Chars (Node (Elmt)) in Any_Operator_Name)
9933 and then not Is_Hidden (Node (Elmt))
9934 and then not Is_Potentially_Use_Visible (Node (Elmt))
9935 then
9936 Set_Is_Potentially_Use_Visible (Node (Elmt));
9937 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9939 elsif Ada_Version >= Ada_2012
9940 and then All_Present (Parent (Id))
9941 and then not Is_Hidden (Node (Elmt))
9942 and then not Is_Potentially_Use_Visible (Node (Elmt))
9943 then
9944 Set_Is_Potentially_Use_Visible (Node (Elmt));
9945 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9946 end if;
9948 Next_Elmt (Elmt);
9949 end loop;
9950 end if;
9952 if Ada_Version >= Ada_2012
9953 and then All_Present (Parent (Id))
9954 and then Is_Tagged_Type (T)
9955 then
9956 Use_Class_Wide_Operations (T);
9957 end if;
9958 end if;
9960 -- If warning on redundant constructs, check for unnecessary WITH
9962 if not Force
9963 and then Warn_On_Redundant_Constructs
9964 and then Is_Known_Used
9966 -- with P; with P; use P;
9967 -- package P is package X is package body X is
9968 -- type T ... use P.T;
9970 -- The compilation unit is the body of X. GNAT first compiles the
9971 -- spec of X, then proceeds to the body. At that point P is marked
9972 -- as use visible. The analysis then reinstalls the spec along with
9973 -- its context. The use clause P.T is now recognized as redundant,
9974 -- but in the wrong context. Do not emit a warning in such cases.
9975 -- Do not emit a warning either if we are in an instance, there is
9976 -- no redundancy between an outer use_clause and one that appears
9977 -- within the generic.
9979 and then not Spec_Reloaded_For_Body
9980 and then not In_Instance
9981 and then not In_Inlined_Body
9982 then
9983 -- The type already has a use clause
9985 if In_Use (T) then
9987 -- Case where we know the current use clause for the type
9989 if Present (Current_Use_Clause (T)) then
9990 Use_Clause_Known : declare
9991 Clause1 : constant Node_Id :=
9992 Find_Most_Prev (Current_Use_Clause (T));
9993 Clause2 : constant Node_Id := Parent (Id);
9994 Ent1 : Entity_Id;
9995 Ent2 : Entity_Id;
9996 Err_No : Node_Id;
9997 Unit1 : Node_Id;
9998 Unit2 : Node_Id;
10000 -- Start of processing for Use_Clause_Known
10002 begin
10003 -- If both current use_type_clause and the use_type_clause
10004 -- for the type are at the compilation unit level, one of
10005 -- the units must be an ancestor of the other, and the
10006 -- warning belongs on the descendant.
10008 if Nkind (Parent (Clause1)) = N_Compilation_Unit
10009 and then
10010 Nkind (Parent (Clause2)) = N_Compilation_Unit
10011 then
10012 -- If the unit is a subprogram body that acts as spec,
10013 -- the context clause is shared with the constructed
10014 -- subprogram spec. Clearly there is no redundancy.
10016 if Clause1 = Clause2 then
10017 return;
10018 end if;
10020 Unit1 := Unit (Parent (Clause1));
10021 Unit2 := Unit (Parent (Clause2));
10023 -- If both clauses are on same unit, or one is the body
10024 -- of the other, or one of them is in a subunit, report
10025 -- redundancy on the later one.
10027 if Unit1 = Unit2 or else Nkind (Unit1) = N_Subunit then
10028 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10029 Error_Msg_NE -- CODEFIX
10030 ("& is already use-visible through previous "
10031 & "use_type_clause #??", Clause1, T);
10032 return;
10034 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
10035 and then Nkind (Unit1) /= Nkind (Unit2)
10036 and then Nkind (Unit1) /= N_Subunit
10037 then
10038 Error_Msg_Sloc := Sloc (Clause1);
10039 Error_Msg_NE -- CODEFIX
10040 ("& is already use-visible through previous "
10041 & "use_type_clause #??", Current_Use_Clause (T), T);
10042 return;
10043 end if;
10045 -- There is a redundant use_type_clause in a child unit.
10046 -- Determine which of the units is more deeply nested.
10047 -- If a unit is a package instance, retrieve the entity
10048 -- and its scope from the instance spec.
10050 Ent1 := Entity_Of_Unit (Unit1);
10051 Ent2 := Entity_Of_Unit (Unit2);
10053 if Scope (Ent2) = Standard_Standard then
10054 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10055 Err_No := Clause1;
10057 elsif Scope (Ent1) = Standard_Standard then
10058 Error_Msg_Sloc := Sloc (Id);
10059 Err_No := Clause2;
10061 -- If both units are child units, we determine which one
10062 -- is the descendant by the scope distance to the
10063 -- ultimate parent unit.
10065 else
10066 declare
10067 S1 : Entity_Id;
10068 S2 : Entity_Id;
10070 begin
10071 S1 := Scope (Ent1);
10072 S2 := Scope (Ent2);
10073 while Present (S1)
10074 and then Present (S2)
10075 and then S1 /= Standard_Standard
10076 and then S2 /= Standard_Standard
10077 loop
10078 S1 := Scope (S1);
10079 S2 := Scope (S2);
10080 end loop;
10082 if S1 = Standard_Standard then
10083 Error_Msg_Sloc := Sloc (Id);
10084 Err_No := Clause2;
10085 else
10086 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10087 Err_No := Clause1;
10088 end if;
10089 end;
10090 end if;
10092 if Parent (Id) /= Err_No then
10093 if Most_Descendant_Use_Clause
10094 (Err_No, Parent (Id)) = Parent (Id)
10095 then
10096 Error_Msg_Sloc := Sloc (Err_No);
10097 Err_No := Parent (Id);
10098 end if;
10100 Error_Msg_NE -- CODEFIX
10101 ("& is already use-visible through previous "
10102 & "use_type_clause #??", Err_No, Id);
10103 end if;
10105 -- Case where current use_type_clause and use_type_clause
10106 -- for the type are not both at the compilation unit level.
10107 -- In this case we don't have location information.
10109 else
10110 Error_Msg_NE -- CODEFIX
10111 ("& is already use-visible through previous "
10112 & "use_type_clause??", Id, T);
10113 end if;
10114 end Use_Clause_Known;
10116 -- Here if Current_Use_Clause is not set for T, another case where
10117 -- we do not have the location information available.
10119 else
10120 Error_Msg_NE -- CODEFIX
10121 ("& is already use-visible through previous "
10122 & "use_type_clause??", Id, T);
10123 end if;
10125 -- The package where T is declared is already used
10127 elsif In_Use (Scope (T)) then
10128 Error_Msg_Sloc :=
10129 Sloc (Find_Most_Prev (Current_Use_Clause (Scope (T))));
10130 Error_Msg_NE -- CODEFIX
10131 ("& is already use-visible through package use clause #??",
10132 Id, T);
10134 -- The current scope is the package where T is declared
10136 else
10137 Error_Msg_Node_2 := Scope (T);
10138 Error_Msg_NE -- CODEFIX
10139 ("& is already use-visible inside package &??", Id, T);
10140 end if;
10141 end if;
10142 end Use_One_Type;
10144 ----------------
10145 -- Write_Info --
10146 ----------------
10148 procedure Write_Info is
10149 Id : Entity_Id := First_Entity (Current_Scope);
10151 begin
10152 -- No point in dumping standard entities
10154 if Current_Scope = Standard_Standard then
10155 return;
10156 end if;
10158 Write_Str ("========================================================");
10159 Write_Eol;
10160 Write_Str (" Defined Entities in ");
10161 Write_Name (Chars (Current_Scope));
10162 Write_Eol;
10163 Write_Str ("========================================================");
10164 Write_Eol;
10166 if No (Id) then
10167 Write_Str ("-- none --");
10168 Write_Eol;
10170 else
10171 while Present (Id) loop
10172 Write_Entity_Info (Id, " ");
10173 Next_Entity (Id);
10174 end loop;
10175 end if;
10177 if Scope (Current_Scope) = Standard_Standard then
10179 -- Print information on the current unit itself
10181 Write_Entity_Info (Current_Scope, " ");
10182 end if;
10184 Write_Eol;
10185 end Write_Info;
10187 --------
10188 -- ws --
10189 --------
10191 procedure ws is
10192 S : Entity_Id;
10193 begin
10194 for J in reverse 1 .. Scope_Stack.Last loop
10195 S := Scope_Stack.Table (J).Entity;
10196 Write_Int (Int (S));
10197 Write_Str (" === ");
10198 Write_Name (Chars (S));
10199 Write_Eol;
10200 end loop;
10201 end ws;
10203 --------
10204 -- we --
10205 --------
10207 procedure we (S : Entity_Id) is
10208 E : Entity_Id;
10209 begin
10210 E := First_Entity (S);
10211 while Present (E) loop
10212 Write_Int (Int (E));
10213 Write_Str (" === ");
10214 Write_Name (Chars (E));
10215 Write_Eol;
10216 Next_Entity (E);
10217 end loop;
10218 end we;
10219 end Sem_Ch8;