* c-cppbuiltin.c (c_cpp_builtins): Use ggc_strdup for the fp_suffix
[official-gcc.git] / gcc / ada / exp_util.adb
blob64dcb1161b630ac77935b245f9001c0945992c13
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Casing; use Casing;
29 with Checks; use Checks;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Aggr; use Exp_Aggr;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Ch11; use Exp_Ch11;
38 with Ghost; use Ghost;
39 with Inline; use Inline;
40 with Itypes; use Itypes;
41 with Lib; use Lib;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Sem; use Sem;
48 with Sem_Aux; use Sem_Aux;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Ch12; use Sem_Ch12;
53 with Sem_Ch13; use Sem_Ch13;
54 with Sem_Disp; use Sem_Disp;
55 with Sem_Elab; use Sem_Elab;
56 with Sem_Eval; use Sem_Eval;
57 with Sem_Res; use Sem_Res;
58 with Sem_Type; use Sem_Type;
59 with Sem_Util; use Sem_Util;
60 with Snames; use Snames;
61 with Stand; use Stand;
62 with Stringt; use Stringt;
63 with Targparm; use Targparm;
64 with Tbuild; use Tbuild;
65 with Ttypes; use Ttypes;
66 with Urealp; use Urealp;
67 with Validsw; use Validsw;
69 with GNAT.HTable;
70 package body Exp_Util is
72 ---------------------------------------------------------
73 -- Handling of inherited class-wide pre/postconditions --
74 ---------------------------------------------------------
76 -- Following AI12-0113, the expression for a class-wide condition is
77 -- transformed for a subprogram that inherits it, by replacing calls
78 -- to primitive operations of the original controlling type into the
79 -- corresponding overriding operations of the derived type. The following
80 -- hash table manages this mapping, and is expanded on demand whenever
81 -- such inherited expression needs to be constructed.
83 -- The mapping is also used to check whether an inherited operation has
84 -- a condition that depends on overridden operations. For such an
85 -- operation we must create a wrapper that is then treated as a normal
86 -- overriding. In SPARK mode such operations are illegal.
88 -- For a given root type there may be several type extensions with their
89 -- own overriding operations, so at various times a given operation of
90 -- the root will be mapped into different overridings. The root type is
91 -- also mapped into the current type extension to indicate that its
92 -- operations are mapped into the overriding operations of that current
93 -- type extension.
95 -- The contents of the map are as follows:
97 -- Key Value
99 -- Discriminant (Entity_Id) Discriminant (Entity_Id)
100 -- Discriminant (Entity_Id) Non-discriminant name (Entity_Id)
101 -- Discriminant (Entity_Id) Expression (Node_Id)
102 -- Primitive subprogram (Entity_Id) Primitive subprogram (Entity_Id)
103 -- Type (Entity_Id) Type (Entity_Id)
105 Type_Map_Size : constant := 511;
107 subtype Type_Map_Header is Integer range 0 .. Type_Map_Size - 1;
108 function Type_Map_Hash (Id : Entity_Id) return Type_Map_Header;
110 package Type_Map is new GNAT.HTable.Simple_HTable
111 (Header_Num => Type_Map_Header,
112 Key => Entity_Id,
113 Element => Node_Or_Entity_Id,
114 No_element => Empty,
115 Hash => Type_Map_Hash,
116 Equal => "=");
118 -----------------------
119 -- Local Subprograms --
120 -----------------------
122 function Build_Task_Array_Image
123 (Loc : Source_Ptr;
124 Id_Ref : Node_Id;
125 A_Type : Entity_Id;
126 Dyn : Boolean := False) return Node_Id;
127 -- Build function to generate the image string for a task that is an array
128 -- component, concatenating the images of each index. To avoid storage
129 -- leaks, the string is built with successive slice assignments. The flag
130 -- Dyn indicates whether this is called for the initialization procedure of
131 -- an array of tasks, or for the name of a dynamically created task that is
132 -- assigned to an indexed component.
134 function Build_Task_Image_Function
135 (Loc : Source_Ptr;
136 Decls : List_Id;
137 Stats : List_Id;
138 Res : Entity_Id) return Node_Id;
139 -- Common processing for Task_Array_Image and Task_Record_Image. Build
140 -- function body that computes image.
142 procedure Build_Task_Image_Prefix
143 (Loc : Source_Ptr;
144 Len : out Entity_Id;
145 Res : out Entity_Id;
146 Pos : out Entity_Id;
147 Prefix : Entity_Id;
148 Sum : Node_Id;
149 Decls : List_Id;
150 Stats : List_Id);
151 -- Common processing for Task_Array_Image and Task_Record_Image. Create
152 -- local variables and assign prefix of name to result string.
154 function Build_Task_Record_Image
155 (Loc : Source_Ptr;
156 Id_Ref : Node_Id;
157 Dyn : Boolean := False) return Node_Id;
158 -- Build function to generate the image string for a task that is a record
159 -- component. Concatenate name of variable with that of selector. The flag
160 -- Dyn indicates whether this is called for the initialization procedure of
161 -- record with task components, or for a dynamically created task that is
162 -- assigned to a selected component.
164 procedure Evaluate_Slice_Bounds (Slice : Node_Id);
165 -- Force evaluation of bounds of a slice, which may be given by a range
166 -- or by a subtype indication with or without a constraint.
168 function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean;
169 -- Determine whether pragma Default_Initial_Condition denoted by Prag has
170 -- an assertion expression that should be verified at run time.
172 function Make_CW_Equivalent_Type
173 (T : Entity_Id;
174 E : Node_Id) return Entity_Id;
175 -- T is a class-wide type entity, E is the initial expression node that
176 -- constrains T in case such as: " X: T := E" or "new T'(E)". This function
177 -- returns the entity of the Equivalent type and inserts on the fly the
178 -- necessary declaration such as:
180 -- type anon is record
181 -- _parent : Root_Type (T); constrained with E discriminants (if any)
182 -- Extension : String (1 .. expr to match size of E);
183 -- end record;
185 -- This record is compatible with any object of the class of T thanks to
186 -- the first field and has the same size as E thanks to the second.
188 function Make_Literal_Range
189 (Loc : Source_Ptr;
190 Literal_Typ : Entity_Id) return Node_Id;
191 -- Produce a Range node whose bounds are:
192 -- Low_Bound (Literal_Type) ..
193 -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
194 -- this is used for expanding declarations like X : String := "sdfgdfg";
196 -- If the index type of the target array is not integer, we generate:
197 -- Low_Bound (Literal_Type) ..
198 -- Literal_Type'Val
199 -- (Literal_Type'Pos (Low_Bound (Literal_Type))
200 -- + (Length (Literal_Typ) -1))
202 function Make_Non_Empty_Check
203 (Loc : Source_Ptr;
204 N : Node_Id) return Node_Id;
205 -- Produce a boolean expression checking that the unidimensional array
206 -- node N is not empty.
208 function New_Class_Wide_Subtype
209 (CW_Typ : Entity_Id;
210 N : Node_Id) return Entity_Id;
211 -- Create an implicit subtype of CW_Typ attached to node N
213 function Requires_Cleanup_Actions
214 (L : List_Id;
215 Lib_Level : Boolean;
216 Nested_Constructs : Boolean) return Boolean;
217 -- Given a list L, determine whether it contains one of the following:
219 -- 1) controlled objects
220 -- 2) library-level tagged types
222 -- Lib_Level is True when the list comes from a construct at the library
223 -- level, and False otherwise. Nested_Constructs is True when any nested
224 -- packages declared in L must be processed, and False otherwise.
226 -------------------------------------
227 -- Activate_Atomic_Synchronization --
228 -------------------------------------
230 procedure Activate_Atomic_Synchronization (N : Node_Id) is
231 Msg_Node : Node_Id;
233 begin
234 case Nkind (Parent (N)) is
236 -- Check for cases of appearing in the prefix of a construct where we
237 -- don't need atomic synchronization for this kind of usage.
239 when
240 -- Nothing to do if we are the prefix of an attribute, since we
241 -- do not want an atomic sync operation for things like 'Size.
243 N_Attribute_Reference
245 -- The N_Reference node is like an attribute
247 | N_Reference
249 -- Nothing to do for a reference to a component (or components)
250 -- of a composite object. Only reads and updates of the object
251 -- as a whole require atomic synchronization (RM C.6 (15)).
253 | N_Indexed_Component
254 | N_Selected_Component
255 | N_Slice
257 -- For all the above cases, nothing to do if we are the prefix
259 if Prefix (Parent (N)) = N then
260 return;
261 end if;
263 when others =>
264 null;
265 end case;
267 -- Nothing to do for the identifier in an object renaming declaration,
268 -- the renaming itself does not need atomic synchronization.
270 if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
271 return;
272 end if;
274 -- Go ahead and set the flag
276 Set_Atomic_Sync_Required (N);
278 -- Generate info message if requested
280 if Warn_On_Atomic_Synchronization then
281 case Nkind (N) is
282 when N_Identifier =>
283 Msg_Node := N;
285 when N_Expanded_Name
286 | N_Selected_Component
288 Msg_Node := Selector_Name (N);
290 when N_Explicit_Dereference
291 | N_Indexed_Component
293 Msg_Node := Empty;
295 when others =>
296 pragma Assert (False);
297 return;
298 end case;
300 if Present (Msg_Node) then
301 Error_Msg_N
302 ("info: atomic synchronization set for &?N?", Msg_Node);
303 else
304 Error_Msg_N
305 ("info: atomic synchronization set?N?", N);
306 end if;
307 end if;
308 end Activate_Atomic_Synchronization;
310 ----------------------
311 -- Adjust_Condition --
312 ----------------------
314 procedure Adjust_Condition (N : Node_Id) is
315 begin
316 if No (N) then
317 return;
318 end if;
320 declare
321 Loc : constant Source_Ptr := Sloc (N);
322 T : constant Entity_Id := Etype (N);
323 Ti : Entity_Id;
325 begin
326 -- Defend against a call where the argument has no type, or has a
327 -- type that is not Boolean. This can occur because of prior errors.
329 if No (T) or else not Is_Boolean_Type (T) then
330 return;
331 end if;
333 -- Apply validity checking if needed
335 if Validity_Checks_On and Validity_Check_Tests then
336 Ensure_Valid (N);
337 end if;
339 -- Immediate return if standard boolean, the most common case,
340 -- where nothing needs to be done.
342 if Base_Type (T) = Standard_Boolean then
343 return;
344 end if;
346 -- Case of zero/non-zero semantics or non-standard enumeration
347 -- representation. In each case, we rewrite the node as:
349 -- ityp!(N) /= False'Enum_Rep
351 -- where ityp is an integer type with large enough size to hold any
352 -- value of type T.
354 if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
355 if Esize (T) <= Esize (Standard_Integer) then
356 Ti := Standard_Integer;
357 else
358 Ti := Standard_Long_Long_Integer;
359 end if;
361 Rewrite (N,
362 Make_Op_Ne (Loc,
363 Left_Opnd => Unchecked_Convert_To (Ti, N),
364 Right_Opnd =>
365 Make_Attribute_Reference (Loc,
366 Attribute_Name => Name_Enum_Rep,
367 Prefix =>
368 New_Occurrence_Of (First_Literal (T), Loc))));
369 Analyze_And_Resolve (N, Standard_Boolean);
371 else
372 Rewrite (N, Convert_To (Standard_Boolean, N));
373 Analyze_And_Resolve (N, Standard_Boolean);
374 end if;
375 end;
376 end Adjust_Condition;
378 ------------------------
379 -- Adjust_Result_Type --
380 ------------------------
382 procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
383 begin
384 -- Ignore call if current type is not Standard.Boolean
386 if Etype (N) /= Standard_Boolean then
387 return;
388 end if;
390 -- If result is already of correct type, nothing to do. Note that
391 -- this will get the most common case where everything has a type
392 -- of Standard.Boolean.
394 if Base_Type (T) = Standard_Boolean then
395 return;
397 else
398 declare
399 KP : constant Node_Kind := Nkind (Parent (N));
401 begin
402 -- If result is to be used as a Condition in the syntax, no need
403 -- to convert it back, since if it was changed to Standard.Boolean
404 -- using Adjust_Condition, that is just fine for this usage.
406 if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
407 return;
409 -- If result is an operand of another logical operation, no need
410 -- to reset its type, since Standard.Boolean is just fine, and
411 -- such operations always do Adjust_Condition on their operands.
413 elsif KP in N_Op_Boolean
414 or else KP in N_Short_Circuit
415 or else KP = N_Op_Not
416 then
417 return;
419 -- Otherwise we perform a conversion from the current type, which
420 -- must be Standard.Boolean, to the desired type. Use the base
421 -- type to prevent spurious constraint checks that are extraneous
422 -- to the transformation. The type and its base have the same
423 -- representation, standard or otherwise.
425 else
426 Set_Analyzed (N);
427 Rewrite (N, Convert_To (Base_Type (T), N));
428 Analyze_And_Resolve (N, Base_Type (T));
429 end if;
430 end;
431 end if;
432 end Adjust_Result_Type;
434 --------------------------
435 -- Append_Freeze_Action --
436 --------------------------
438 procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
439 Fnode : Node_Id;
441 begin
442 Ensure_Freeze_Node (T);
443 Fnode := Freeze_Node (T);
445 if No (Actions (Fnode)) then
446 Set_Actions (Fnode, New_List (N));
447 else
448 Append (N, Actions (Fnode));
449 end if;
451 end Append_Freeze_Action;
453 ---------------------------
454 -- Append_Freeze_Actions --
455 ---------------------------
457 procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
458 Fnode : Node_Id;
460 begin
461 if No (L) then
462 return;
463 end if;
465 Ensure_Freeze_Node (T);
466 Fnode := Freeze_Node (T);
468 if No (Actions (Fnode)) then
469 Set_Actions (Fnode, L);
470 else
471 Append_List (L, Actions (Fnode));
472 end if;
473 end Append_Freeze_Actions;
475 ------------------------------------
476 -- Build_Allocate_Deallocate_Proc --
477 ------------------------------------
479 procedure Build_Allocate_Deallocate_Proc
480 (N : Node_Id;
481 Is_Allocate : Boolean)
483 function Find_Object (E : Node_Id) return Node_Id;
484 -- Given an arbitrary expression of an allocator, try to find an object
485 -- reference in it, otherwise return the original expression.
487 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
488 -- Determine whether subprogram Subp denotes a custom allocate or
489 -- deallocate.
491 -----------------
492 -- Find_Object --
493 -----------------
495 function Find_Object (E : Node_Id) return Node_Id is
496 Expr : Node_Id;
498 begin
499 pragma Assert (Is_Allocate);
501 Expr := E;
502 loop
503 if Nkind (Expr) = N_Explicit_Dereference then
504 Expr := Prefix (Expr);
506 elsif Nkind (Expr) = N_Qualified_Expression then
507 Expr := Expression (Expr);
509 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
511 -- When interface class-wide types are involved in allocation,
512 -- the expander introduces several levels of address arithmetic
513 -- to perform dispatch table displacement. In this scenario the
514 -- object appears as:
516 -- Tag_Ptr (Base_Address (<object>'Address))
518 -- Detect this case and utilize the whole expression as the
519 -- "object" since it now points to the proper dispatch table.
521 if Is_RTE (Etype (Expr), RE_Tag_Ptr) then
522 exit;
524 -- Continue to strip the object
526 else
527 Expr := Expression (Expr);
528 end if;
530 else
531 exit;
532 end if;
533 end loop;
535 return Expr;
536 end Find_Object;
538 ---------------------------------
539 -- Is_Allocate_Deallocate_Proc --
540 ---------------------------------
542 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
543 begin
544 -- Look for a subprogram body with only one statement which is a
545 -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
547 if Ekind (Subp) = E_Procedure
548 and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
549 then
550 declare
551 HSS : constant Node_Id :=
552 Handled_Statement_Sequence (Parent (Parent (Subp)));
553 Proc : Entity_Id;
555 begin
556 if Present (Statements (HSS))
557 and then Nkind (First (Statements (HSS))) =
558 N_Procedure_Call_Statement
559 then
560 Proc := Entity (Name (First (Statements (HSS))));
562 return
563 Is_RTE (Proc, RE_Allocate_Any_Controlled)
564 or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
565 end if;
566 end;
567 end if;
569 return False;
570 end Is_Allocate_Deallocate_Proc;
572 -- Local variables
574 Desig_Typ : Entity_Id;
575 Expr : Node_Id;
576 Needs_Fin : Boolean;
577 Pool_Id : Entity_Id;
578 Proc_To_Call : Node_Id := Empty;
579 Ptr_Typ : Entity_Id;
581 -- Start of processing for Build_Allocate_Deallocate_Proc
583 begin
584 -- Obtain the attributes of the allocation / deallocation
586 if Nkind (N) = N_Free_Statement then
587 Expr := Expression (N);
588 Ptr_Typ := Base_Type (Etype (Expr));
589 Proc_To_Call := Procedure_To_Call (N);
591 else
592 if Nkind (N) = N_Object_Declaration then
593 Expr := Expression (N);
594 else
595 Expr := N;
596 end if;
598 -- In certain cases an allocator with a qualified expression may
599 -- be relocated and used as the initialization expression of a
600 -- temporary:
602 -- before:
603 -- Obj : Ptr_Typ := new Desig_Typ'(...);
605 -- after:
606 -- Tmp : Ptr_Typ := new Desig_Typ'(...);
607 -- Obj : Ptr_Typ := Tmp;
609 -- Since the allocator is always marked as analyzed to avoid infinite
610 -- expansion, it will never be processed by this routine given that
611 -- the designated type needs finalization actions. Detect this case
612 -- and complete the expansion of the allocator.
614 if Nkind (Expr) = N_Identifier
615 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
616 and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator
617 then
618 Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True);
619 return;
620 end if;
622 -- The allocator may have been rewritten into something else in which
623 -- case the expansion performed by this routine does not apply.
625 if Nkind (Expr) /= N_Allocator then
626 return;
627 end if;
629 Ptr_Typ := Base_Type (Etype (Expr));
630 Proc_To_Call := Procedure_To_Call (Expr);
631 end if;
633 Pool_Id := Associated_Storage_Pool (Ptr_Typ);
634 Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
636 -- Handle concurrent types
638 if Is_Concurrent_Type (Desig_Typ)
639 and then Present (Corresponding_Record_Type (Desig_Typ))
640 then
641 Desig_Typ := Corresponding_Record_Type (Desig_Typ);
642 end if;
644 -- Do not process allocations / deallocations without a pool
646 if No (Pool_Id) then
647 return;
649 -- Do not process allocations on / deallocations from the secondary
650 -- stack.
652 elsif Is_RTE (Pool_Id, RE_SS_Pool)
653 or else (Nkind (Expr) = N_Allocator
654 and then Is_RTE (Storage_Pool (Expr), RE_SS_Pool))
655 then
656 return;
658 -- Optimize the case where we are using the default Global_Pool_Object,
659 -- and we don't need the heavy finalization machinery.
661 elsif Pool_Id = RTE (RE_Global_Pool_Object)
662 and then not Needs_Finalization (Desig_Typ)
663 then
664 return;
666 -- Do not replicate the machinery if the allocator / free has already
667 -- been expanded and has a custom Allocate / Deallocate.
669 elsif Present (Proc_To_Call)
670 and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
671 then
672 return;
673 end if;
675 -- Finalization actions are required when the object to be allocated or
676 -- deallocated needs these actions and the associated access type is not
677 -- subject to pragma No_Heap_Finalization.
679 Needs_Fin :=
680 Needs_Finalization (Desig_Typ)
681 and then not No_Heap_Finalization (Ptr_Typ);
683 if Needs_Fin then
685 -- Certain run-time configurations and targets do not provide support
686 -- for controlled types.
688 if Restriction_Active (No_Finalization) then
689 return;
691 -- Do nothing if the access type may never allocate / deallocate
692 -- objects.
694 elsif No_Pool_Assigned (Ptr_Typ) then
695 return;
696 end if;
698 -- The allocation / deallocation of a controlled object must be
699 -- chained on / detached from a finalization master.
701 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
703 -- The only other kind of allocation / deallocation supported by this
704 -- routine is on / from a subpool.
706 elsif Nkind (Expr) = N_Allocator
707 and then No (Subpool_Handle_Name (Expr))
708 then
709 return;
710 end if;
712 declare
713 Loc : constant Source_Ptr := Sloc (N);
714 Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
715 Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
716 Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
717 Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
719 Actuals : List_Id;
720 Fin_Addr_Id : Entity_Id;
721 Fin_Mas_Act : Node_Id;
722 Fin_Mas_Id : Entity_Id;
723 Proc_To_Call : Entity_Id;
724 Subpool : Node_Id := Empty;
726 begin
727 -- Step 1: Construct all the actuals for the call to library routine
728 -- Allocate_Any_Controlled / Deallocate_Any_Controlled.
730 -- a) Storage pool
732 Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc));
734 if Is_Allocate then
736 -- b) Subpool
738 if Nkind (Expr) = N_Allocator then
739 Subpool := Subpool_Handle_Name (Expr);
740 end if;
742 -- If a subpool is present it can be an arbitrary name, so make
743 -- the actual by copying the tree.
745 if Present (Subpool) then
746 Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc));
747 else
748 Append_To (Actuals, Make_Null (Loc));
749 end if;
751 -- c) Finalization master
753 if Needs_Fin then
754 Fin_Mas_Id := Finalization_Master (Ptr_Typ);
755 Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc);
757 -- Handle the case where the master is actually a pointer to a
758 -- master. This case arises in build-in-place functions.
760 if Is_Access_Type (Etype (Fin_Mas_Id)) then
761 Append_To (Actuals, Fin_Mas_Act);
762 else
763 Append_To (Actuals,
764 Make_Attribute_Reference (Loc,
765 Prefix => Fin_Mas_Act,
766 Attribute_Name => Name_Unrestricted_Access));
767 end if;
768 else
769 Append_To (Actuals, Make_Null (Loc));
770 end if;
772 -- d) Finalize_Address
774 -- Primitive Finalize_Address is never generated in CodePeer mode
775 -- since it contains an Unchecked_Conversion.
777 if Needs_Fin and then not CodePeer_Mode then
778 Fin_Addr_Id := Finalize_Address (Desig_Typ);
779 pragma Assert (Present (Fin_Addr_Id));
781 Append_To (Actuals,
782 Make_Attribute_Reference (Loc,
783 Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc),
784 Attribute_Name => Name_Unrestricted_Access));
785 else
786 Append_To (Actuals, Make_Null (Loc));
787 end if;
788 end if;
790 -- e) Address
791 -- f) Storage_Size
792 -- g) Alignment
794 Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc));
795 Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc));
797 if Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ) then
798 Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc));
800 -- For deallocation of class-wide types we obtain the value of
801 -- alignment from the Type Specific Record of the deallocated object.
802 -- This is needed because the frontend expansion of class-wide types
803 -- into equivalent types confuses the back end.
805 else
806 -- Generate:
807 -- Obj.all'Alignment
809 -- ... because 'Alignment applied to class-wide types is expanded
810 -- into the code that reads the value of alignment from the TSD
811 -- (see Expand_N_Attribute_Reference)
813 Append_To (Actuals,
814 Unchecked_Convert_To (RTE (RE_Storage_Offset),
815 Make_Attribute_Reference (Loc,
816 Prefix =>
817 Make_Explicit_Dereference (Loc, Relocate_Node (Expr)),
818 Attribute_Name => Name_Alignment)));
819 end if;
821 -- h) Is_Controlled
823 if Needs_Fin then
824 Is_Controlled : declare
825 Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
826 Flag_Expr : Node_Id;
827 Param : Node_Id;
828 Pref : Node_Id;
829 Temp : Node_Id;
831 begin
832 if Is_Allocate then
833 Temp := Find_Object (Expression (Expr));
834 else
835 Temp := Expr;
836 end if;
838 -- Processing for allocations where the expression is a subtype
839 -- indication.
841 if Is_Allocate
842 and then Is_Entity_Name (Temp)
843 and then Is_Type (Entity (Temp))
844 then
845 Flag_Expr :=
846 New_Occurrence_Of
847 (Boolean_Literals
848 (Needs_Finalization (Entity (Temp))), Loc);
850 -- The allocation / deallocation of a class-wide object relies
851 -- on a runtime check to determine whether the object is truly
852 -- controlled or not. Depending on this check, the finalization
853 -- machinery will request or reclaim extra storage reserved for
854 -- a list header.
856 elsif Is_Class_Wide_Type (Desig_Typ) then
858 -- Detect a special case where interface class-wide types
859 -- are involved as the object appears as:
861 -- Tag_Ptr (Base_Address (<object>'Address))
863 -- The expression already yields the proper tag, generate:
865 -- Temp.all
867 if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
868 Param :=
869 Make_Explicit_Dereference (Loc,
870 Prefix => Relocate_Node (Temp));
872 -- In the default case, obtain the tag of the object about
873 -- to be allocated / deallocated. Generate:
875 -- Temp'Tag
877 -- If the object is an unchecked conversion (typically to
878 -- an access to class-wide type), we must preserve the
879 -- conversion to ensure that the object is seen as tagged
880 -- in the code that follows.
882 else
883 Pref := Temp;
885 if Nkind (Parent (Pref)) = N_Unchecked_Type_Conversion
886 then
887 Pref := Parent (Pref);
888 end if;
890 Param :=
891 Make_Attribute_Reference (Loc,
892 Prefix => Relocate_Node (Pref),
893 Attribute_Name => Name_Tag);
894 end if;
896 -- Generate:
897 -- Needs_Finalization (<Param>)
899 Flag_Expr :=
900 Make_Function_Call (Loc,
901 Name =>
902 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
903 Parameter_Associations => New_List (Param));
905 -- Processing for generic actuals
907 elsif Is_Generic_Actual_Type (Desig_Typ) then
908 Flag_Expr :=
909 New_Occurrence_Of (Boolean_Literals
910 (Needs_Finalization (Base_Type (Desig_Typ))), Loc);
912 -- The object does not require any specialized checks, it is
913 -- known to be controlled.
915 else
916 Flag_Expr := New_Occurrence_Of (Standard_True, Loc);
917 end if;
919 -- Create the temporary which represents the finalization state
920 -- of the expression. Generate:
922 -- F : constant Boolean := <Flag_Expr>;
924 Insert_Action (N,
925 Make_Object_Declaration (Loc,
926 Defining_Identifier => Flag_Id,
927 Constant_Present => True,
928 Object_Definition =>
929 New_Occurrence_Of (Standard_Boolean, Loc),
930 Expression => Flag_Expr));
932 Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc));
933 end Is_Controlled;
935 -- The object is not controlled
937 else
938 Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc));
939 end if;
941 -- i) On_Subpool
943 if Is_Allocate then
944 Append_To (Actuals,
945 New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc));
946 end if;
948 -- Step 2: Build a wrapper Allocate / Deallocate which internally
949 -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
951 -- Select the proper routine to call
953 if Is_Allocate then
954 Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
955 else
956 Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
957 end if;
959 -- Create a custom Allocate / Deallocate routine which has identical
960 -- profile to that of System.Storage_Pools.
962 Insert_Action (N,
963 Make_Subprogram_Body (Loc,
964 Specification =>
966 -- procedure Pnn
968 Make_Procedure_Specification (Loc,
969 Defining_Unit_Name => Proc_Id,
970 Parameter_Specifications => New_List (
972 -- P : Root_Storage_Pool
974 Make_Parameter_Specification (Loc,
975 Defining_Identifier => Make_Temporary (Loc, 'P'),
976 Parameter_Type =>
977 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)),
979 -- A : [out] Address
981 Make_Parameter_Specification (Loc,
982 Defining_Identifier => Addr_Id,
983 Out_Present => Is_Allocate,
984 Parameter_Type =>
985 New_Occurrence_Of (RTE (RE_Address), Loc)),
987 -- S : Storage_Count
989 Make_Parameter_Specification (Loc,
990 Defining_Identifier => Size_Id,
991 Parameter_Type =>
992 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)),
994 -- L : Storage_Count
996 Make_Parameter_Specification (Loc,
997 Defining_Identifier => Alig_Id,
998 Parameter_Type =>
999 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)))),
1001 Declarations => No_List,
1003 Handled_Statement_Sequence =>
1004 Make_Handled_Sequence_Of_Statements (Loc,
1005 Statements => New_List (
1006 Make_Procedure_Call_Statement (Loc,
1007 Name =>
1008 New_Occurrence_Of (Proc_To_Call, Loc),
1009 Parameter_Associations => Actuals)))),
1010 Suppress => All_Checks);
1012 -- The newly generated Allocate / Deallocate becomes the default
1013 -- procedure to call when the back end processes the allocation /
1014 -- deallocation.
1016 if Is_Allocate then
1017 Set_Procedure_To_Call (Expr, Proc_Id);
1018 else
1019 Set_Procedure_To_Call (N, Proc_Id);
1020 end if;
1021 end;
1022 end Build_Allocate_Deallocate_Proc;
1024 -------------------------------
1025 -- Build_Abort_Undefer_Block --
1026 -------------------------------
1028 function Build_Abort_Undefer_Block
1029 (Loc : Source_Ptr;
1030 Stmts : List_Id;
1031 Context : Node_Id) return Node_Id
1033 Exceptions_OK : constant Boolean :=
1034 not Restriction_Active (No_Exception_Propagation);
1036 AUD : Entity_Id;
1037 Blk : Node_Id;
1038 Blk_Id : Entity_Id;
1039 HSS : Node_Id;
1041 begin
1042 -- The block should be generated only when undeferring abort in the
1043 -- context of a potential exception.
1045 pragma Assert (Abort_Allowed and Exceptions_OK);
1047 -- Generate:
1048 -- begin
1049 -- <Stmts>
1050 -- at end
1051 -- Abort_Undefer_Direct;
1052 -- end;
1054 AUD := RTE (RE_Abort_Undefer_Direct);
1056 HSS :=
1057 Make_Handled_Sequence_Of_Statements (Loc,
1058 Statements => Stmts,
1059 At_End_Proc => New_Occurrence_Of (AUD, Loc));
1061 Blk :=
1062 Make_Block_Statement (Loc,
1063 Handled_Statement_Sequence => HSS);
1064 Set_Is_Abort_Block (Blk);
1066 Add_Block_Identifier (Blk, Blk_Id);
1067 Expand_At_End_Handler (HSS, Blk_Id);
1069 -- Present the Abort_Undefer_Direct function to the back end to inline
1070 -- the call to the routine.
1072 Add_Inlined_Body (AUD, Context);
1074 return Blk;
1075 end Build_Abort_Undefer_Block;
1077 ---------------------------------
1078 -- Build_Class_Wide_Expression --
1079 ---------------------------------
1081 procedure Build_Class_Wide_Expression
1082 (Prag : Node_Id;
1083 Subp : Entity_Id;
1084 Par_Subp : Entity_Id;
1085 Adjust_Sloc : Boolean;
1086 Needs_Wrapper : out Boolean)
1088 function Replace_Entity (N : Node_Id) return Traverse_Result;
1089 -- Replace reference to formal of inherited operation or to primitive
1090 -- operation of root type, with corresponding entity for derived type,
1091 -- when constructing the class-wide condition of an overriding
1092 -- subprogram.
1094 --------------------
1095 -- Replace_Entity --
1096 --------------------
1098 function Replace_Entity (N : Node_Id) return Traverse_Result is
1099 New_E : Entity_Id;
1101 begin
1102 if Adjust_Sloc then
1103 Adjust_Inherited_Pragma_Sloc (N);
1104 end if;
1106 if Nkind (N) = N_Identifier
1107 and then Present (Entity (N))
1108 and then
1109 (Is_Formal (Entity (N)) or else Is_Subprogram (Entity (N)))
1110 and then
1111 (Nkind (Parent (N)) /= N_Attribute_Reference
1112 or else Attribute_Name (Parent (N)) /= Name_Class)
1113 then
1114 -- The replacement does not apply to dispatching calls within the
1115 -- condition, but only to calls whose static tag is that of the
1116 -- parent type.
1118 if Is_Subprogram (Entity (N))
1119 and then Nkind (Parent (N)) = N_Function_Call
1120 and then Present (Controlling_Argument (Parent (N)))
1121 then
1122 return OK;
1123 end if;
1125 -- Determine whether entity has a renaming
1127 New_E := Type_Map.Get (Entity (N));
1129 if Present (New_E) then
1130 Rewrite (N, New_Occurrence_Of (New_E, Sloc (N)));
1132 -- AI12-0166: a precondition for a protected operation
1133 -- cannot include an internal call to a protected function
1134 -- of the type. In the case of an inherited condition for an
1135 -- overriding operation, both the operation and the function
1136 -- are given by primitive wrappers.
1138 if Ekind (New_E) = E_Function
1139 and then Is_Primitive_Wrapper (New_E)
1140 and then Is_Primitive_Wrapper (Subp)
1141 and then Scope (Subp) = Scope (New_E)
1142 then
1143 Error_Msg_Node_2 := Wrapped_Entity (Subp);
1144 Error_Msg_NE
1145 ("internal call to& cannot appear in inherited "
1146 & "precondition of protected operation&",
1147 N, Wrapped_Entity (New_E));
1148 end if;
1150 -- If the entity is an overridden primitive and we are not
1151 -- in GNATprove mode, we must build a wrapper for the current
1152 -- inherited operation. If the reference is the prefix of an
1153 -- attribute such as 'Result (or others ???) there is no need
1154 -- for a wrapper: the condition is just rewritten in terms of
1155 -- the inherited subprogram.
1157 if Is_Subprogram (New_E)
1158 and then Nkind (Parent (N)) /= N_Attribute_Reference
1159 and then not GNATprove_Mode
1160 then
1161 Needs_Wrapper := True;
1162 end if;
1163 end if;
1165 -- Check that there are no calls left to abstract operations if
1166 -- the current subprogram is not abstract.
1168 if Nkind (Parent (N)) = N_Function_Call
1169 and then N = Name (Parent (N))
1170 then
1171 if not Is_Abstract_Subprogram (Subp)
1172 and then Is_Abstract_Subprogram (Entity (N))
1173 then
1174 Error_Msg_Sloc := Sloc (Current_Scope);
1175 Error_Msg_Node_2 := Subp;
1176 if Comes_From_Source (Subp) then
1177 Error_Msg_NE
1178 ("cannot call abstract subprogram & in inherited "
1179 & "condition for&#", Subp, Entity (N));
1180 else
1181 Error_Msg_NE
1182 ("cannot call abstract subprogram & in inherited "
1183 & "condition for inherited&#", Subp, Entity (N));
1184 end if;
1186 -- In SPARK mode, reject an inherited condition for an
1187 -- inherited operation if it contains a call to an overriding
1188 -- operation, because this implies that the pre/postconditions
1189 -- of the inherited operation have changed silently.
1191 elsif SPARK_Mode = On
1192 and then Warn_On_Suspicious_Contract
1193 and then Present (Alias (Subp))
1194 and then Present (New_E)
1195 and then Comes_From_Source (New_E)
1196 then
1197 Error_Msg_N
1198 ("cannot modify inherited condition (SPARK RM 6.1.1(1))",
1199 Parent (Subp));
1200 Error_Msg_Sloc := Sloc (New_E);
1201 Error_Msg_Node_2 := Subp;
1202 Error_Msg_NE
1203 ("\overriding of&# forces overriding of&",
1204 Parent (Subp), New_E);
1205 end if;
1206 end if;
1208 -- Update type of function call node, which should be the same as
1209 -- the function's return type.
1211 if Is_Subprogram (Entity (N))
1212 and then Nkind (Parent (N)) = N_Function_Call
1213 then
1214 Set_Etype (Parent (N), Etype (Entity (N)));
1215 end if;
1217 -- The whole expression will be reanalyzed
1219 elsif Nkind (N) in N_Has_Etype then
1220 Set_Analyzed (N, False);
1221 end if;
1223 return OK;
1224 end Replace_Entity;
1226 procedure Replace_Condition_Entities is
1227 new Traverse_Proc (Replace_Entity);
1229 -- Local variables
1231 Par_Formal : Entity_Id;
1232 Subp_Formal : Entity_Id;
1234 -- Start of processing for Build_Class_Wide_Expression
1236 begin
1237 Needs_Wrapper := False;
1239 -- Add mapping from old formals to new formals
1241 Par_Formal := First_Formal (Par_Subp);
1242 Subp_Formal := First_Formal (Subp);
1244 while Present (Par_Formal) and then Present (Subp_Formal) loop
1245 Type_Map.Set (Par_Formal, Subp_Formal);
1246 Next_Formal (Par_Formal);
1247 Next_Formal (Subp_Formal);
1248 end loop;
1250 Replace_Condition_Entities (Prag);
1251 end Build_Class_Wide_Expression;
1253 --------------------
1254 -- Build_DIC_Call --
1255 --------------------
1257 function Build_DIC_Call
1258 (Loc : Source_Ptr;
1259 Obj_Id : Entity_Id;
1260 Typ : Entity_Id) return Node_Id
1262 Proc_Id : constant Entity_Id := DIC_Procedure (Typ);
1263 Formal_Typ : constant Entity_Id := Etype (First_Formal (Proc_Id));
1265 begin
1266 return
1267 Make_Procedure_Call_Statement (Loc,
1268 Name => New_Occurrence_Of (Proc_Id, Loc),
1269 Parameter_Associations => New_List (
1270 Make_Unchecked_Type_Conversion (Loc,
1271 Subtype_Mark => New_Occurrence_Of (Formal_Typ, Loc),
1272 Expression => New_Occurrence_Of (Obj_Id, Loc))));
1273 end Build_DIC_Call;
1275 ------------------------------
1276 -- Build_DIC_Procedure_Body --
1277 ------------------------------
1279 -- WARNING: This routine manages Ghost regions. Return statements must be
1280 -- replaced by gotos which jump to the end of the routine and restore the
1281 -- Ghost mode.
1283 procedure Build_DIC_Procedure_Body
1284 (Typ : Entity_Id;
1285 For_Freeze : Boolean := False)
1287 procedure Add_DIC_Check
1288 (DIC_Prag : Node_Id;
1289 DIC_Expr : Node_Id;
1290 Stmts : in out List_Id);
1291 -- Subsidiary to all Add_xxx_DIC routines. Add a runtime check to verify
1292 -- assertion expression DIC_Expr of pragma DIC_Prag. All generated code
1293 -- is added to list Stmts.
1295 procedure Add_Inherited_DIC
1296 (DIC_Prag : Node_Id;
1297 Par_Typ : Entity_Id;
1298 Deriv_Typ : Entity_Id;
1299 Stmts : in out List_Id);
1300 -- Add a runtime check to verify the assertion expression of inherited
1301 -- pragma DIC_Prag. Par_Typ is parent type, which is also the owner of
1302 -- the DIC pragma. Deriv_Typ is the derived type inheriting the DIC
1303 -- pragma. All generated code is added to list Stmts.
1305 procedure Add_Inherited_Tagged_DIC
1306 (DIC_Prag : Node_Id;
1307 Par_Typ : Entity_Id;
1308 Deriv_Typ : Entity_Id;
1309 Stmts : in out List_Id);
1310 -- Add a runtime check to verify assertion expression DIC_Expr of
1311 -- inherited pragma DIC_Prag. This routine applies class-wide pre- and
1312 -- postcondition-like runtime semantics to the check. Par_Typ is the
1313 -- parent type whose DIC pragma is being inherited. Deriv_Typ is the
1314 -- derived type inheriting the DIC pragma. All generated code is added
1315 -- to list Stmts.
1317 procedure Add_Own_DIC
1318 (DIC_Prag : Node_Id;
1319 DIC_Typ : Entity_Id;
1320 Stmts : in out List_Id);
1321 -- Add a runtime check to verify the assertion expression of pragma
1322 -- DIC_Prag. DIC_Typ is the owner of the DIC pragma. All generated code
1323 -- is added to list Stmts.
1325 -------------------
1326 -- Add_DIC_Check --
1327 -------------------
1329 procedure Add_DIC_Check
1330 (DIC_Prag : Node_Id;
1331 DIC_Expr : Node_Id;
1332 Stmts : in out List_Id)
1334 Loc : constant Source_Ptr := Sloc (DIC_Prag);
1335 Nam : constant Name_Id := Original_Aspect_Pragma_Name (DIC_Prag);
1337 begin
1338 -- The DIC pragma is ignored, nothing left to do
1340 if Is_Ignored (DIC_Prag) then
1341 null;
1343 -- Otherwise the DIC expression must be checked at run time.
1344 -- Generate:
1346 -- pragma Check (<Nam>, <DIC_Expr>);
1348 else
1349 Append_New_To (Stmts,
1350 Make_Pragma (Loc,
1351 Pragma_Identifier =>
1352 Make_Identifier (Loc, Name_Check),
1354 Pragma_Argument_Associations => New_List (
1355 Make_Pragma_Argument_Association (Loc,
1356 Expression => Make_Identifier (Loc, Nam)),
1358 Make_Pragma_Argument_Association (Loc,
1359 Expression => DIC_Expr))));
1360 end if;
1361 end Add_DIC_Check;
1363 -----------------------
1364 -- Add_Inherited_DIC --
1365 -----------------------
1367 procedure Add_Inherited_DIC
1368 (DIC_Prag : Node_Id;
1369 Par_Typ : Entity_Id;
1370 Deriv_Typ : Entity_Id;
1371 Stmts : in out List_Id)
1373 Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ);
1374 Deriv_Obj : constant Entity_Id := First_Entity (Deriv_Proc);
1375 Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ);
1376 Par_Obj : constant Entity_Id := First_Entity (Par_Proc);
1377 Loc : constant Source_Ptr := Sloc (DIC_Prag);
1379 begin
1380 pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc));
1382 -- Verify the inherited DIC assertion expression by calling the DIC
1383 -- procedure of the parent type.
1385 -- Generate:
1386 -- <Par_Typ>DIC (Par_Typ (_object));
1388 Append_New_To (Stmts,
1389 Make_Procedure_Call_Statement (Loc,
1390 Name => New_Occurrence_Of (Par_Proc, Loc),
1391 Parameter_Associations => New_List (
1392 Convert_To
1393 (Typ => Etype (Par_Obj),
1394 Expr => New_Occurrence_Of (Deriv_Obj, Loc)))));
1395 end Add_Inherited_DIC;
1397 ------------------------------
1398 -- Add_Inherited_Tagged_DIC --
1399 ------------------------------
1401 procedure Add_Inherited_Tagged_DIC
1402 (DIC_Prag : Node_Id;
1403 Par_Typ : Entity_Id;
1404 Deriv_Typ : Entity_Id;
1405 Stmts : in out List_Id)
1407 Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ);
1408 DIC_Args : constant List_Id :=
1409 Pragma_Argument_Associations (DIC_Prag);
1410 DIC_Arg : constant Node_Id := First (DIC_Args);
1411 DIC_Expr : constant Node_Id := Expression_Copy (DIC_Arg);
1412 Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ);
1414 Expr : Node_Id;
1416 begin
1417 -- The processing of an inherited DIC assertion expression starts off
1418 -- with a copy of the original parent expression where all references
1419 -- to the parent type have already been replaced with references to
1420 -- the _object formal parameter of the parent type's DIC procedure.
1422 pragma Assert (Present (DIC_Expr));
1423 Expr := New_Copy_Tree (DIC_Expr);
1425 -- Perform the following substitutions:
1427 -- * Replace a reference to the _object parameter of the parent
1428 -- type's DIC procedure with a reference to the _object parameter
1429 -- of the derived types' DIC procedure.
1431 -- * Replace a reference to a discriminant of the parent type with
1432 -- a suitable value from the point of view of the derived type.
1434 -- * Replace a call to an overridden parent primitive with a call
1435 -- to the overriding derived type primitive.
1437 -- * Replace a call to an inherited parent primitive with a call to
1438 -- the internally-generated inherited derived type primitive.
1440 -- Note that primitives defined in the private part are automatically
1441 -- handled by the overriding/inheritance mechanism and do not require
1442 -- an extra replacement pass.
1444 pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc));
1446 Replace_References
1447 (Expr => Expr,
1448 Par_Typ => Par_Typ,
1449 Deriv_Typ => Deriv_Typ,
1450 Par_Obj => First_Formal (Par_Proc),
1451 Deriv_Obj => First_Formal (Deriv_Proc));
1453 -- Once the DIC assertion expression is fully processed, add a check
1454 -- to the statements of the DIC procedure.
1456 Add_DIC_Check
1457 (DIC_Prag => DIC_Prag,
1458 DIC_Expr => Expr,
1459 Stmts => Stmts);
1460 end Add_Inherited_Tagged_DIC;
1462 -----------------
1463 -- Add_Own_DIC --
1464 -----------------
1466 procedure Add_Own_DIC
1467 (DIC_Prag : Node_Id;
1468 DIC_Typ : Entity_Id;
1469 Stmts : in out List_Id)
1471 DIC_Args : constant List_Id :=
1472 Pragma_Argument_Associations (DIC_Prag);
1473 DIC_Arg : constant Node_Id := First (DIC_Args);
1474 DIC_Asp : constant Node_Id := Corresponding_Aspect (DIC_Prag);
1475 DIC_Expr : constant Node_Id := Get_Pragma_Arg (DIC_Arg);
1476 DIC_Proc : constant Entity_Id := DIC_Procedure (DIC_Typ);
1477 Obj_Id : constant Entity_Id := First_Formal (DIC_Proc);
1479 procedure Preanalyze_Own_DIC_For_ASIS;
1480 -- Preanalyze the original DIC expression of an aspect or a source
1481 -- pragma for ASIS.
1483 ---------------------------------
1484 -- Preanalyze_Own_DIC_For_ASIS --
1485 ---------------------------------
1487 procedure Preanalyze_Own_DIC_For_ASIS is
1488 Expr : Node_Id := Empty;
1490 begin
1491 -- The DIC pragma is a source construct, preanalyze the original
1492 -- expression of the pragma.
1494 if Comes_From_Source (DIC_Prag) then
1495 Expr := DIC_Expr;
1497 -- Otherwise preanalyze the expression of the corresponding aspect
1499 elsif Present (DIC_Asp) then
1500 Expr := Expression (DIC_Asp);
1501 end if;
1503 -- The expression must be subjected to the same substitutions as
1504 -- the copy used in the generation of the runtime check.
1506 if Present (Expr) then
1507 Replace_Type_References
1508 (Expr => Expr,
1509 Typ => DIC_Typ,
1510 Obj_Id => Obj_Id);
1512 Preanalyze_Assert_Expression (Expr, Any_Boolean);
1513 end if;
1514 end Preanalyze_Own_DIC_For_ASIS;
1516 -- Local variables
1518 Typ_Decl : constant Node_Id := Declaration_Node (DIC_Typ);
1520 Expr : Node_Id;
1522 -- Start of processing for Add_Own_DIC
1524 begin
1525 pragma Assert (Present (DIC_Expr));
1526 Expr := New_Copy_Tree (DIC_Expr);
1528 -- Perform the following substitution:
1530 -- * Replace the current instance of DIC_Typ with a reference to
1531 -- the _object formal parameter of the DIC procedure.
1533 Replace_Type_References
1534 (Expr => Expr,
1535 Typ => DIC_Typ,
1536 Obj_Id => Obj_Id);
1538 -- Preanalyze the DIC expression to detect errors and at the same
1539 -- time capture the visibility of the proper package part.
1541 Set_Parent (Expr, Typ_Decl);
1542 Preanalyze_Assert_Expression (Expr, Any_Boolean);
1544 -- Save a copy of the expression with all replacements and analysis
1545 -- already taken place in case a derived type inherits the pragma.
1546 -- The copy will be used as the foundation of the derived type's own
1547 -- version of the DIC assertion expression.
1549 if Is_Tagged_Type (DIC_Typ) then
1550 Set_Expression_Copy (DIC_Arg, New_Copy_Tree (Expr));
1551 end if;
1553 -- If the pragma comes from an aspect specification, replace the
1554 -- saved expression because all type references must be substituted
1555 -- for the call to Preanalyze_Spec_Expression in Check_Aspect_At_xxx
1556 -- routines.
1558 if Present (DIC_Asp) then
1559 Set_Entity (Identifier (DIC_Asp), New_Copy_Tree (Expr));
1560 end if;
1562 -- Preanalyze the original DIC expression for ASIS
1564 if ASIS_Mode then
1565 Preanalyze_Own_DIC_For_ASIS;
1566 end if;
1568 -- Once the DIC assertion expression is fully processed, add a check
1569 -- to the statements of the DIC procedure.
1571 Add_DIC_Check
1572 (DIC_Prag => DIC_Prag,
1573 DIC_Expr => Expr,
1574 Stmts => Stmts);
1575 end Add_Own_DIC;
1577 -- Local variables
1579 Loc : constant Source_Ptr := Sloc (Typ);
1581 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1582 -- Save the Ghost mode to restore on exit
1584 DIC_Prag : Node_Id;
1585 DIC_Typ : Entity_Id;
1586 Dummy_1 : Entity_Id;
1587 Dummy_2 : Entity_Id;
1588 Proc_Body : Node_Id;
1589 Proc_Body_Id : Entity_Id;
1590 Proc_Decl : Node_Id;
1591 Proc_Id : Entity_Id;
1592 Stmts : List_Id := No_List;
1594 Build_Body : Boolean := False;
1595 -- Flag set when the type requires a DIC procedure body to be built
1597 Work_Typ : Entity_Id;
1598 -- The working type
1600 -- Start of processing for Build_DIC_Procedure_Body
1602 begin
1603 Work_Typ := Base_Type (Typ);
1605 -- Do not process class-wide types as these are Itypes, but lack a first
1606 -- subtype (see below).
1608 if Is_Class_Wide_Type (Work_Typ) then
1609 return;
1611 -- Do not process the underlying full view of a private type. There is
1612 -- no way to get back to the partial view, plus the body will be built
1613 -- by the full view or the base type.
1615 elsif Is_Underlying_Full_View (Work_Typ) then
1616 return;
1618 -- Use the first subtype when dealing with various base types
1620 elsif Is_Itype (Work_Typ) then
1621 Work_Typ := First_Subtype (Work_Typ);
1623 -- The input denotes the corresponding record type of a protected or a
1624 -- task type. Work with the concurrent type because the corresponding
1625 -- record type may not be visible to clients of the type.
1627 elsif Ekind (Work_Typ) = E_Record_Type
1628 and then Is_Concurrent_Record_Type (Work_Typ)
1629 then
1630 Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
1631 end if;
1633 -- The working type may be subject to pragma Ghost. Set the mode now to
1634 -- ensure that the DIC procedure is properly marked as Ghost.
1636 Set_Ghost_Mode (Work_Typ);
1638 -- The working type must be either define a DIC pragma of its own or
1639 -- inherit one from a parent type.
1641 pragma Assert (Has_DIC (Work_Typ));
1643 -- Recover the type which defines the DIC pragma. This is either the
1644 -- working type itself or a parent type when the pragma is inherited.
1646 DIC_Typ := Find_DIC_Type (Work_Typ);
1647 pragma Assert (Present (DIC_Typ));
1649 DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition);
1650 pragma Assert (Present (DIC_Prag));
1652 -- Nothing to do if pragma DIC appears without an argument or its sole
1653 -- argument is "null".
1655 if not Is_Verifiable_DIC_Pragma (DIC_Prag) then
1656 goto Leave;
1657 end if;
1659 -- The working type may lack a DIC procedure declaration. This may be
1660 -- due to several reasons:
1662 -- * The working type's own DIC pragma does not contain a verifiable
1663 -- assertion expression. In this case there is no need to build a
1664 -- DIC procedure because there is nothing to check.
1666 -- * The working type derives from a parent type. In this case a DIC
1667 -- procedure should be built only when the inherited DIC pragma has
1668 -- a verifiable assertion expression.
1670 Proc_Id := DIC_Procedure (Work_Typ);
1672 -- Build a DIC procedure declaration when the working type derives from
1673 -- a parent type.
1675 if No (Proc_Id) then
1676 Build_DIC_Procedure_Declaration (Work_Typ);
1677 Proc_Id := DIC_Procedure (Work_Typ);
1678 end if;
1680 -- At this point there should be a DIC procedure declaration
1682 pragma Assert (Present (Proc_Id));
1683 Proc_Decl := Unit_Declaration_Node (Proc_Id);
1685 -- Nothing to do if the DIC procedure already has a body
1687 if Present (Corresponding_Body (Proc_Decl)) then
1688 goto Leave;
1689 end if;
1691 -- Emulate the environment of the DIC procedure by installing its scope
1692 -- and formal parameters.
1694 Push_Scope (Proc_Id);
1695 Install_Formals (Proc_Id);
1697 -- The working type defines its own DIC pragma. Replace the current
1698 -- instance of the working type with the formal of the DIC procedure.
1699 -- Note that there is no need to consider inherited DIC pragmas from
1700 -- parent types because the working type's DIC pragma "hides" all
1701 -- inherited DIC pragmas.
1703 if Has_Own_DIC (Work_Typ) then
1704 pragma Assert (DIC_Typ = Work_Typ);
1706 Add_Own_DIC
1707 (DIC_Prag => DIC_Prag,
1708 DIC_Typ => DIC_Typ,
1709 Stmts => Stmts);
1711 Build_Body := True;
1713 -- Otherwise the working type inherits a DIC pragma from a parent type.
1714 -- This processing is carried out when the type is frozen because the
1715 -- state of all parent discriminants is known at that point. Note that
1716 -- it is semantically sound to delay the creation of the DIC procedure
1717 -- body till the freeze point. If the type has a DIC pragma of its own,
1718 -- then the DIC procedure body would have already been constructed at
1719 -- the end of the visible declarations and all parent DIC pragmas are
1720 -- effectively "hidden" and irrelevant.
1722 elsif For_Freeze then
1723 pragma Assert (Has_Inherited_DIC (Work_Typ));
1724 pragma Assert (DIC_Typ /= Work_Typ);
1726 -- The working type is tagged. The verification of the assertion
1727 -- expression is subject to the same semantics as class-wide pre-
1728 -- and postconditions.
1730 if Is_Tagged_Type (Work_Typ) then
1731 Add_Inherited_Tagged_DIC
1732 (DIC_Prag => DIC_Prag,
1733 Par_Typ => DIC_Typ,
1734 Deriv_Typ => Work_Typ,
1735 Stmts => Stmts);
1737 -- Otherwise the working type is not tagged. Verify the assertion
1738 -- expression of the inherited DIC pragma by directly calling the
1739 -- DIC procedure of the parent type.
1741 else
1742 Add_Inherited_DIC
1743 (DIC_Prag => DIC_Prag,
1744 Par_Typ => DIC_Typ,
1745 Deriv_Typ => Work_Typ,
1746 Stmts => Stmts);
1747 end if;
1749 Build_Body := True;
1750 end if;
1752 End_Scope;
1754 if Build_Body then
1756 -- Produce an empty completing body in the following cases:
1757 -- * Assertions are disabled
1758 -- * The DIC Assertion_Policy is Ignore
1760 if No (Stmts) then
1761 Stmts := New_List (Make_Null_Statement (Loc));
1762 end if;
1764 -- Generate:
1765 -- procedure <Work_Typ>DIC (_object : <Work_Typ>) is
1766 -- begin
1767 -- <Stmts>
1768 -- end <Work_Typ>DIC;
1770 Proc_Body :=
1771 Make_Subprogram_Body (Loc,
1772 Specification =>
1773 Copy_Subprogram_Spec (Parent (Proc_Id)),
1774 Declarations => Empty_List,
1775 Handled_Statement_Sequence =>
1776 Make_Handled_Sequence_Of_Statements (Loc,
1777 Statements => Stmts));
1778 Proc_Body_Id := Defining_Entity (Proc_Body);
1780 -- Perform minor decoration in case the body is not analyzed
1782 Set_Ekind (Proc_Body_Id, E_Subprogram_Body);
1783 Set_Etype (Proc_Body_Id, Standard_Void_Type);
1784 Set_Scope (Proc_Body_Id, Current_Scope);
1785 Set_SPARK_Pragma (Proc_Body_Id, SPARK_Pragma (Proc_Id));
1786 Set_SPARK_Pragma_Inherited
1787 (Proc_Body_Id, SPARK_Pragma_Inherited (Proc_Id));
1789 -- Link both spec and body to avoid generating duplicates
1791 Set_Corresponding_Body (Proc_Decl, Proc_Body_Id);
1792 Set_Corresponding_Spec (Proc_Body, Proc_Id);
1794 -- The body should not be inserted into the tree when the context
1795 -- is ASIS or a generic unit because it is not part of the template.
1796 -- Note that the body must still be generated in order to resolve the
1797 -- DIC assertion expression.
1799 if ASIS_Mode or Inside_A_Generic then
1800 null;
1802 -- Semi-insert the body into the tree for GNATprove by setting its
1803 -- Parent field. This allows for proper upstream tree traversals.
1805 elsif GNATprove_Mode then
1806 Set_Parent (Proc_Body, Parent (Declaration_Node (Work_Typ)));
1808 -- Otherwise the body is part of the freezing actions of the working
1809 -- type.
1811 else
1812 Append_Freeze_Action (Work_Typ, Proc_Body);
1813 end if;
1814 end if;
1816 <<Leave>>
1817 Restore_Ghost_Mode (Saved_GM);
1818 end Build_DIC_Procedure_Body;
1820 -------------------------------------
1821 -- Build_DIC_Procedure_Declaration --
1822 -------------------------------------
1824 -- WARNING: This routine manages Ghost regions. Return statements must be
1825 -- replaced by gotos which jump to the end of the routine and restore the
1826 -- Ghost mode.
1828 procedure Build_DIC_Procedure_Declaration (Typ : Entity_Id) is
1829 Loc : constant Source_Ptr := Sloc (Typ);
1831 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1832 -- Save the Ghost mode to restore on exit
1834 DIC_Prag : Node_Id;
1835 DIC_Typ : Entity_Id;
1836 Proc_Decl : Node_Id;
1837 Proc_Id : Entity_Id;
1838 Typ_Decl : Node_Id;
1840 CRec_Typ : Entity_Id;
1841 -- The corresponding record type of Full_Typ
1843 Full_Base : Entity_Id;
1844 -- The base type of Full_Typ
1846 Full_Typ : Entity_Id;
1847 -- The full view of working type
1849 Obj_Id : Entity_Id;
1850 -- The _object formal parameter of the DIC procedure
1852 Priv_Typ : Entity_Id;
1853 -- The partial view of working type
1855 Work_Typ : Entity_Id;
1856 -- The working type
1858 begin
1859 Work_Typ := Base_Type (Typ);
1861 -- Do not process class-wide types as these are Itypes, but lack a first
1862 -- subtype (see below).
1864 if Is_Class_Wide_Type (Work_Typ) then
1865 return;
1867 -- Do not process the underlying full view of a private type. There is
1868 -- no way to get back to the partial view, plus the body will be built
1869 -- by the full view or the base type.
1871 elsif Is_Underlying_Full_View (Work_Typ) then
1872 return;
1874 -- Use the first subtype when dealing with various base types
1876 elsif Is_Itype (Work_Typ) then
1877 Work_Typ := First_Subtype (Work_Typ);
1879 -- The input denotes the corresponding record type of a protected or a
1880 -- task type. Work with the concurrent type because the corresponding
1881 -- record type may not be visible to clients of the type.
1883 elsif Ekind (Work_Typ) = E_Record_Type
1884 and then Is_Concurrent_Record_Type (Work_Typ)
1885 then
1886 Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
1887 end if;
1889 -- The working type may be subject to pragma Ghost. Set the mode now to
1890 -- ensure that the DIC procedure is properly marked as Ghost.
1892 Set_Ghost_Mode (Work_Typ);
1894 -- The type must be either subject to a DIC pragma or inherit one from a
1895 -- parent type.
1897 pragma Assert (Has_DIC (Work_Typ));
1899 -- Recover the type which defines the DIC pragma. This is either the
1900 -- working type itself or a parent type when the pragma is inherited.
1902 DIC_Typ := Find_DIC_Type (Work_Typ);
1903 pragma Assert (Present (DIC_Typ));
1905 DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition);
1906 pragma Assert (Present (DIC_Prag));
1908 -- Nothing to do if pragma DIC appears without an argument or its sole
1909 -- argument is "null".
1911 if not Is_Verifiable_DIC_Pragma (DIC_Prag) then
1912 goto Leave;
1914 -- Nothing to do if the type already has a DIC procedure
1916 elsif Present (DIC_Procedure (Work_Typ)) then
1917 goto Leave;
1918 end if;
1920 Proc_Id :=
1921 Make_Defining_Identifier (Loc,
1922 Chars =>
1923 New_External_Name (Chars (Work_Typ), "Default_Initial_Condition"));
1925 -- Perform minor decoration in case the declaration is not analyzed
1927 Set_Ekind (Proc_Id, E_Procedure);
1928 Set_Etype (Proc_Id, Standard_Void_Type);
1929 Set_Is_DIC_Procedure (Proc_Id);
1930 Set_Scope (Proc_Id, Current_Scope);
1931 Set_SPARK_Pragma (Proc_Id, SPARK_Mode_Pragma);
1932 Set_SPARK_Pragma_Inherited (Proc_Id);
1934 Set_DIC_Procedure (Work_Typ, Proc_Id);
1936 -- The DIC procedure requires debug info when the assertion expression
1937 -- is subject to Source Coverage Obligations.
1939 if Generate_SCO then
1940 Set_Needs_Debug_Info (Proc_Id);
1941 end if;
1943 -- Obtain all views of the input type
1945 Get_Views (Work_Typ, Priv_Typ, Full_Typ, Full_Base, CRec_Typ);
1947 -- Associate the DIC procedure and various relevant flags with all views
1949 Propagate_DIC_Attributes (Priv_Typ, From_Typ => Work_Typ);
1950 Propagate_DIC_Attributes (Full_Typ, From_Typ => Work_Typ);
1951 Propagate_DIC_Attributes (Full_Base, From_Typ => Work_Typ);
1952 Propagate_DIC_Attributes (CRec_Typ, From_Typ => Work_Typ);
1954 -- The declaration of the DIC procedure must be inserted after the
1955 -- declaration of the partial view as this allows for proper external
1956 -- visibility.
1958 if Present (Priv_Typ) then
1959 Typ_Decl := Declaration_Node (Priv_Typ);
1961 -- Derived types with the full view as parent do not have a partial
1962 -- view. Insert the DIC procedure after the derived type.
1964 else
1965 Typ_Decl := Declaration_Node (Full_Typ);
1966 end if;
1968 -- The type should have a declarative node
1970 pragma Assert (Present (Typ_Decl));
1972 -- Create the formal parameter which emulates the variable-like behavior
1973 -- of the type's current instance.
1975 Obj_Id := Make_Defining_Identifier (Loc, Chars => Name_uObject);
1977 -- Perform minor decoration in case the declaration is not analyzed
1979 Set_Ekind (Obj_Id, E_In_Parameter);
1980 Set_Etype (Obj_Id, Work_Typ);
1981 Set_Scope (Obj_Id, Proc_Id);
1983 Set_First_Entity (Proc_Id, Obj_Id);
1985 -- Generate:
1986 -- procedure <Work_Typ>DIC (_object : <Work_Typ>);
1988 Proc_Decl :=
1989 Make_Subprogram_Declaration (Loc,
1990 Specification =>
1991 Make_Procedure_Specification (Loc,
1992 Defining_Unit_Name => Proc_Id,
1993 Parameter_Specifications => New_List (
1994 Make_Parameter_Specification (Loc,
1995 Defining_Identifier => Obj_Id,
1996 Parameter_Type =>
1997 New_Occurrence_Of (Work_Typ, Loc)))));
1999 -- The declaration should not be inserted into the tree when the context
2000 -- is ASIS or a generic unit because it is not part of the template.
2002 if ASIS_Mode or Inside_A_Generic then
2003 null;
2005 -- Semi-insert the declaration into the tree for GNATprove by setting
2006 -- its Parent field. This allows for proper upstream tree traversals.
2008 elsif GNATprove_Mode then
2009 Set_Parent (Proc_Decl, Parent (Typ_Decl));
2011 -- Otherwise insert the declaration
2013 else
2014 Insert_After_And_Analyze (Typ_Decl, Proc_Decl);
2015 end if;
2017 <<Leave>>
2018 Restore_Ghost_Mode (Saved_GM);
2019 end Build_DIC_Procedure_Declaration;
2021 ------------------------------------
2022 -- Build_Invariant_Procedure_Body --
2023 ------------------------------------
2025 -- WARNING: This routine manages Ghost regions. Return statements must be
2026 -- replaced by gotos which jump to the end of the routine and restore the
2027 -- Ghost mode.
2029 procedure Build_Invariant_Procedure_Body
2030 (Typ : Entity_Id;
2031 Partial_Invariant : Boolean := False)
2033 Loc : constant Source_Ptr := Sloc (Typ);
2035 Pragmas_Seen : Elist_Id := No_Elist;
2036 -- This list contains all invariant pragmas processed so far. The list
2037 -- is used to avoid generating redundant invariant checks.
2039 Produced_Check : Boolean := False;
2040 -- This flag tracks whether the type has produced at least one invariant
2041 -- check. The flag is used as a sanity check at the end of the routine.
2043 -- NOTE: most of the routines in Build_Invariant_Procedure_Body are
2044 -- intentionally unnested to avoid deep indentation of code.
2046 -- NOTE: all Add_xxx_Invariants routines are reactive. In other words
2047 -- they emit checks, loops (for arrays) and case statements (for record
2048 -- variant parts) only when there are invariants to verify. This keeps
2049 -- the body of the invariant procedure free of useless code.
2051 procedure Add_Array_Component_Invariants
2052 (T : Entity_Id;
2053 Obj_Id : Entity_Id;
2054 Checks : in out List_Id);
2055 -- Generate an invariant check for each component of array type T.
2056 -- Obj_Id denotes the entity of the _object formal parameter of the
2057 -- invariant procedure. All created checks are added to list Checks.
2059 procedure Add_Inherited_Invariants
2060 (T : Entity_Id;
2061 Priv_Typ : Entity_Id;
2062 Full_Typ : Entity_Id;
2063 Obj_Id : Entity_Id;
2064 Checks : in out List_Id);
2065 -- Generate an invariant check for each inherited class-wide invariant
2066 -- coming from all parent types of type T. Priv_Typ and Full_Typ denote
2067 -- the partial and full view of the parent type. Obj_Id denotes the
2068 -- entity of the _object formal parameter of the invariant procedure.
2069 -- All created checks are added to list Checks.
2071 procedure Add_Interface_Invariants
2072 (T : Entity_Id;
2073 Obj_Id : Entity_Id;
2074 Checks : in out List_Id);
2075 -- Generate an invariant check for each inherited class-wide invariant
2076 -- coming from all interfaces implemented by type T. Obj_Id denotes the
2077 -- entity of the _object formal parameter of the invariant procedure.
2078 -- All created checks are added to list Checks.
2080 procedure Add_Invariant_Check
2081 (Prag : Node_Id;
2082 Expr : Node_Id;
2083 Checks : in out List_Id;
2084 Inherited : Boolean := False);
2085 -- Subsidiary to all Add_xxx_Invariant routines. Add a runtime check to
2086 -- verify assertion expression Expr of pragma Prag. All generated code
2087 -- is added to list Checks. Flag Inherited should be set when the pragma
2088 -- is inherited from a parent or interface type.
2090 procedure Add_Own_Invariants
2091 (T : Entity_Id;
2092 Obj_Id : Entity_Id;
2093 Checks : in out List_Id;
2094 Priv_Item : Node_Id := Empty);
2095 -- Generate an invariant check for each invariant found for type T.
2096 -- Obj_Id denotes the entity of the _object formal parameter of the
2097 -- invariant procedure. All created checks are added to list Checks.
2098 -- Priv_Item denotes the first rep item of the private type.
2100 procedure Add_Parent_Invariants
2101 (T : Entity_Id;
2102 Obj_Id : Entity_Id;
2103 Checks : in out List_Id);
2104 -- Generate an invariant check for each inherited class-wide invariant
2105 -- coming from all parent types of type T. Obj_Id denotes the entity of
2106 -- the _object formal parameter of the invariant procedure. All created
2107 -- checks are added to list Checks.
2109 procedure Add_Record_Component_Invariants
2110 (T : Entity_Id;
2111 Obj_Id : Entity_Id;
2112 Checks : in out List_Id);
2113 -- Generate an invariant check for each component of record type T.
2114 -- Obj_Id denotes the entity of the _object formal parameter of the
2115 -- invariant procedure. All created checks are added to list Checks.
2117 ------------------------------------
2118 -- Add_Array_Component_Invariants --
2119 ------------------------------------
2121 procedure Add_Array_Component_Invariants
2122 (T : Entity_Id;
2123 Obj_Id : Entity_Id;
2124 Checks : in out List_Id)
2126 Comp_Typ : constant Entity_Id := Component_Type (T);
2127 Dims : constant Pos := Number_Dimensions (T);
2129 procedure Process_Array_Component
2130 (Indices : List_Id;
2131 Comp_Checks : in out List_Id);
2132 -- Generate an invariant check for an array component identified by
2133 -- the indices in list Indices. All created checks are added to list
2134 -- Comp_Checks.
2136 procedure Process_One_Dimension
2137 (Dim : Pos;
2138 Indices : List_Id;
2139 Dim_Checks : in out List_Id);
2140 -- Generate a loop over the Nth dimension Dim of an array type. List
2141 -- Indices contains all array indices for the dimension. All created
2142 -- checks are added to list Dim_Checks.
2144 -----------------------------
2145 -- Process_Array_Component --
2146 -----------------------------
2148 procedure Process_Array_Component
2149 (Indices : List_Id;
2150 Comp_Checks : in out List_Id)
2152 Proc_Id : Entity_Id;
2154 begin
2155 if Has_Invariants (Comp_Typ) then
2157 -- In GNATprove mode, the component invariants are checked by
2158 -- other means. They should not be added to the array type
2159 -- invariant procedure, so that the procedure can be used to
2160 -- check the array type invariants if any.
2162 if GNATprove_Mode then
2163 null;
2165 else
2166 Proc_Id := Invariant_Procedure (Base_Type (Comp_Typ));
2168 -- The component type should have an invariant procedure
2169 -- if it has invariants of its own or inherits class-wide
2170 -- invariants from parent or interface types.
2172 pragma Assert (Present (Proc_Id));
2174 -- Generate:
2175 -- <Comp_Typ>Invariant (_object (<Indices>));
2177 -- Note that the invariant procedure may have a null body if
2178 -- assertions are disabled or Assertion_Policy Ignore is in
2179 -- effect.
2181 if not Has_Null_Body (Proc_Id) then
2182 Append_New_To (Comp_Checks,
2183 Make_Procedure_Call_Statement (Loc,
2184 Name =>
2185 New_Occurrence_Of (Proc_Id, Loc),
2186 Parameter_Associations => New_List (
2187 Make_Indexed_Component (Loc,
2188 Prefix => New_Occurrence_Of (Obj_Id, Loc),
2189 Expressions => New_Copy_List (Indices)))));
2190 end if;
2191 end if;
2193 Produced_Check := True;
2194 end if;
2195 end Process_Array_Component;
2197 ---------------------------
2198 -- Process_One_Dimension --
2199 ---------------------------
2201 procedure Process_One_Dimension
2202 (Dim : Pos;
2203 Indices : List_Id;
2204 Dim_Checks : in out List_Id)
2206 Comp_Checks : List_Id := No_List;
2207 Index : Entity_Id;
2209 begin
2210 -- Generate the invariant checks for the array component after all
2211 -- dimensions have produced their respective loops.
2213 if Dim > Dims then
2214 Process_Array_Component
2215 (Indices => Indices,
2216 Comp_Checks => Dim_Checks);
2218 -- Otherwise create a loop for the current dimension
2220 else
2221 -- Create a new loop variable for each dimension
2223 Index :=
2224 Make_Defining_Identifier (Loc,
2225 Chars => New_External_Name ('I', Dim));
2226 Append_To (Indices, New_Occurrence_Of (Index, Loc));
2228 Process_One_Dimension
2229 (Dim => Dim + 1,
2230 Indices => Indices,
2231 Dim_Checks => Comp_Checks);
2233 -- Generate:
2234 -- for I<Dim> in _object'Range (<Dim>) loop
2235 -- <Comp_Checks>
2236 -- end loop;
2238 -- Note that the invariant procedure may have a null body if
2239 -- assertions are disabled or Assertion_Policy Ignore is in
2240 -- effect.
2242 if Present (Comp_Checks) then
2243 Append_New_To (Dim_Checks,
2244 Make_Implicit_Loop_Statement (T,
2245 Identifier => Empty,
2246 Iteration_Scheme =>
2247 Make_Iteration_Scheme (Loc,
2248 Loop_Parameter_Specification =>
2249 Make_Loop_Parameter_Specification (Loc,
2250 Defining_Identifier => Index,
2251 Discrete_Subtype_Definition =>
2252 Make_Attribute_Reference (Loc,
2253 Prefix =>
2254 New_Occurrence_Of (Obj_Id, Loc),
2255 Attribute_Name => Name_Range,
2256 Expressions => New_List (
2257 Make_Integer_Literal (Loc, Dim))))),
2258 Statements => Comp_Checks));
2259 end if;
2260 end if;
2261 end Process_One_Dimension;
2263 -- Start of processing for Add_Array_Component_Invariants
2265 begin
2266 Process_One_Dimension
2267 (Dim => 1,
2268 Indices => New_List,
2269 Dim_Checks => Checks);
2270 end Add_Array_Component_Invariants;
2272 ------------------------------
2273 -- Add_Inherited_Invariants --
2274 ------------------------------
2276 procedure Add_Inherited_Invariants
2277 (T : Entity_Id;
2278 Priv_Typ : Entity_Id;
2279 Full_Typ : Entity_Id;
2280 Obj_Id : Entity_Id;
2281 Checks : in out List_Id)
2283 Deriv_Typ : Entity_Id;
2284 Expr : Node_Id;
2285 Prag : Node_Id;
2286 Prag_Expr : Node_Id;
2287 Prag_Expr_Arg : Node_Id;
2288 Prag_Typ : Node_Id;
2289 Prag_Typ_Arg : Node_Id;
2291 Par_Proc : Entity_Id;
2292 -- The "partial" invariant procedure of Par_Typ
2294 Par_Typ : Entity_Id;
2295 -- The suitable view of the parent type used in the substitution of
2296 -- type attributes.
2298 begin
2299 if not Present (Priv_Typ) and then not Present (Full_Typ) then
2300 return;
2301 end if;
2303 -- When the type inheriting the class-wide invariant is a concurrent
2304 -- type, use the corresponding record type because it contains all
2305 -- primitive operations of the concurrent type and allows for proper
2306 -- substitution.
2308 if Is_Concurrent_Type (T) then
2309 Deriv_Typ := Corresponding_Record_Type (T);
2310 else
2311 Deriv_Typ := T;
2312 end if;
2314 pragma Assert (Present (Deriv_Typ));
2316 -- Determine which rep item chain to use. Precedence is given to that
2317 -- of the parent type's partial view since it usually carries all the
2318 -- class-wide invariants.
2320 if Present (Priv_Typ) then
2321 Prag := First_Rep_Item (Priv_Typ);
2322 else
2323 Prag := First_Rep_Item (Full_Typ);
2324 end if;
2326 while Present (Prag) loop
2327 if Nkind (Prag) = N_Pragma
2328 and then Pragma_Name (Prag) = Name_Invariant
2329 then
2330 -- Nothing to do if the pragma was already processed
2332 if Contains (Pragmas_Seen, Prag) then
2333 return;
2335 -- Nothing to do when the caller requests the processing of all
2336 -- inherited class-wide invariants, but the pragma does not
2337 -- fall in this category.
2339 elsif not Class_Present (Prag) then
2340 return;
2341 end if;
2343 -- Extract the arguments of the invariant pragma
2345 Prag_Typ_Arg := First (Pragma_Argument_Associations (Prag));
2346 Prag_Expr_Arg := Next (Prag_Typ_Arg);
2347 Prag_Expr := Expression_Copy (Prag_Expr_Arg);
2348 Prag_Typ := Get_Pragma_Arg (Prag_Typ_Arg);
2350 -- The pragma applies to the partial view of the parent type
2352 if Present (Priv_Typ)
2353 and then Entity (Prag_Typ) = Priv_Typ
2354 then
2355 Par_Typ := Priv_Typ;
2357 -- The pragma applies to the full view of the parent type
2359 elsif Present (Full_Typ)
2360 and then Entity (Prag_Typ) = Full_Typ
2361 then
2362 Par_Typ := Full_Typ;
2364 -- Otherwise the pragma does not belong to the parent type and
2365 -- should not be considered.
2367 else
2368 return;
2369 end if;
2371 -- Perform the following substitutions:
2373 -- * Replace a reference to the _object parameter of the
2374 -- parent type's partial invariant procedure with a
2375 -- reference to the _object parameter of the derived
2376 -- type's full invariant procedure.
2378 -- * Replace a reference to a discriminant of the parent type
2379 -- with a suitable value from the point of view of the
2380 -- derived type.
2382 -- * Replace a call to an overridden parent primitive with a
2383 -- call to the overriding derived type primitive.
2385 -- * Replace a call to an inherited parent primitive with a
2386 -- call to the internally-generated inherited derived type
2387 -- primitive.
2389 Expr := New_Copy_Tree (Prag_Expr);
2391 -- The parent type must have a "partial" invariant procedure
2392 -- because class-wide invariants are captured exclusively by
2393 -- it.
2395 Par_Proc := Partial_Invariant_Procedure (Par_Typ);
2396 pragma Assert (Present (Par_Proc));
2398 Replace_References
2399 (Expr => Expr,
2400 Par_Typ => Par_Typ,
2401 Deriv_Typ => Deriv_Typ,
2402 Par_Obj => First_Formal (Par_Proc),
2403 Deriv_Obj => Obj_Id);
2405 Add_Invariant_Check (Prag, Expr, Checks, Inherited => True);
2406 end if;
2408 Next_Rep_Item (Prag);
2409 end loop;
2410 end Add_Inherited_Invariants;
2412 ------------------------------
2413 -- Add_Interface_Invariants --
2414 ------------------------------
2416 procedure Add_Interface_Invariants
2417 (T : Entity_Id;
2418 Obj_Id : Entity_Id;
2419 Checks : in out List_Id)
2421 Iface_Elmt : Elmt_Id;
2422 Ifaces : Elist_Id;
2424 begin
2425 -- Generate an invariant check for each class-wide invariant coming
2426 -- from all interfaces implemented by type T.
2428 if Is_Tagged_Type (T) then
2429 Collect_Interfaces (T, Ifaces);
2431 -- Process the class-wide invariants of all implemented interfaces
2433 Iface_Elmt := First_Elmt (Ifaces);
2434 while Present (Iface_Elmt) loop
2436 -- The Full_Typ parameter is intentionally left Empty because
2437 -- interfaces are treated as the partial view of a private type
2438 -- in order to achieve uniformity with the general case.
2440 Add_Inherited_Invariants
2441 (T => T,
2442 Priv_Typ => Node (Iface_Elmt),
2443 Full_Typ => Empty,
2444 Obj_Id => Obj_Id,
2445 Checks => Checks);
2447 Next_Elmt (Iface_Elmt);
2448 end loop;
2449 end if;
2450 end Add_Interface_Invariants;
2452 -------------------------
2453 -- Add_Invariant_Check --
2454 -------------------------
2456 procedure Add_Invariant_Check
2457 (Prag : Node_Id;
2458 Expr : Node_Id;
2459 Checks : in out List_Id;
2460 Inherited : Boolean := False)
2462 Args : constant List_Id := Pragma_Argument_Associations (Prag);
2463 Nam : constant Name_Id := Original_Aspect_Pragma_Name (Prag);
2464 Ploc : constant Source_Ptr := Sloc (Prag);
2465 Str_Arg : constant Node_Id := Next (Next (First (Args)));
2467 Assoc : List_Id;
2468 Str : String_Id;
2470 begin
2471 -- The invariant is ignored, nothing left to do
2473 if Is_Ignored (Prag) then
2474 null;
2476 -- Otherwise the invariant is checked. Build a pragma Check to verify
2477 -- the expression at run time.
2479 else
2480 Assoc := New_List (
2481 Make_Pragma_Argument_Association (Ploc,
2482 Expression => Make_Identifier (Ploc, Nam)),
2483 Make_Pragma_Argument_Association (Ploc,
2484 Expression => Expr));
2486 -- Handle the String argument (if any)
2488 if Present (Str_Arg) then
2489 Str := Strval (Get_Pragma_Arg (Str_Arg));
2491 -- When inheriting an invariant, modify the message from
2492 -- "failed invariant" to "failed inherited invariant".
2494 if Inherited then
2495 String_To_Name_Buffer (Str);
2497 if Name_Buffer (1 .. 16) = "failed invariant" then
2498 Insert_Str_In_Name_Buffer ("inherited ", 8);
2499 Str := String_From_Name_Buffer;
2500 end if;
2501 end if;
2503 Append_To (Assoc,
2504 Make_Pragma_Argument_Association (Ploc,
2505 Expression => Make_String_Literal (Ploc, Str)));
2506 end if;
2508 -- Generate:
2509 -- pragma Check (<Nam>, <Expr>, <Str>);
2511 Append_New_To (Checks,
2512 Make_Pragma (Ploc,
2513 Chars => Name_Check,
2514 Pragma_Argument_Associations => Assoc));
2515 end if;
2517 -- Output an info message when inheriting an invariant and the
2518 -- listing option is enabled.
2520 if Inherited and Opt.List_Inherited_Aspects then
2521 Error_Msg_Sloc := Sloc (Prag);
2522 Error_Msg_N
2523 ("info: & inherits `Invariant''Class` aspect from #?L?", Typ);
2524 end if;
2526 -- Add the pragma to the list of processed pragmas
2528 Append_New_Elmt (Prag, Pragmas_Seen);
2529 Produced_Check := True;
2530 end Add_Invariant_Check;
2532 ---------------------------
2533 -- Add_Parent_Invariants --
2534 ---------------------------
2536 procedure Add_Parent_Invariants
2537 (T : Entity_Id;
2538 Obj_Id : Entity_Id;
2539 Checks : in out List_Id)
2541 Dummy_1 : Entity_Id;
2542 Dummy_2 : Entity_Id;
2544 Curr_Typ : Entity_Id;
2545 -- The entity of the current type being examined
2547 Full_Typ : Entity_Id;
2548 -- The full view of Par_Typ
2550 Par_Typ : Entity_Id;
2551 -- The entity of the parent type
2553 Priv_Typ : Entity_Id;
2554 -- The partial view of Par_Typ
2556 begin
2557 -- Do not process array types because they cannot have true parent
2558 -- types. This also prevents the generation of a duplicate invariant
2559 -- check when the input type is an array base type because its Etype
2560 -- denotes the first subtype, both of which share the same component
2561 -- type.
2563 if Is_Array_Type (T) then
2564 return;
2565 end if;
2567 -- Climb the parent type chain
2569 Curr_Typ := T;
2570 loop
2571 -- Do not consider subtypes as they inherit the invariants
2572 -- from their base types.
2574 Par_Typ := Base_Type (Etype (Curr_Typ));
2576 -- Stop the climb once the root of the parent chain is
2577 -- reached.
2579 exit when Curr_Typ = Par_Typ;
2581 -- Process the class-wide invariants of the parent type
2583 Get_Views (Par_Typ, Priv_Typ, Full_Typ, Dummy_1, Dummy_2);
2585 -- Process the elements of an array type
2587 if Is_Array_Type (Full_Typ) then
2588 Add_Array_Component_Invariants (Full_Typ, Obj_Id, Checks);
2590 -- Process the components of a record type
2592 elsif Ekind (Full_Typ) = E_Record_Type then
2593 Add_Record_Component_Invariants (Full_Typ, Obj_Id, Checks);
2594 end if;
2596 Add_Inherited_Invariants
2597 (T => T,
2598 Priv_Typ => Priv_Typ,
2599 Full_Typ => Full_Typ,
2600 Obj_Id => Obj_Id,
2601 Checks => Checks);
2603 Curr_Typ := Par_Typ;
2604 end loop;
2605 end Add_Parent_Invariants;
2607 ------------------------
2608 -- Add_Own_Invariants --
2609 ------------------------
2611 procedure Add_Own_Invariants
2612 (T : Entity_Id;
2613 Obj_Id : Entity_Id;
2614 Checks : in out List_Id;
2615 Priv_Item : Node_Id := Empty)
2617 ASIS_Expr : Node_Id;
2618 Expr : Node_Id;
2619 Prag : Node_Id;
2620 Prag_Asp : Node_Id;
2621 Prag_Expr : Node_Id;
2622 Prag_Expr_Arg : Node_Id;
2623 Prag_Typ : Node_Id;
2624 Prag_Typ_Arg : Node_Id;
2626 begin
2627 if not Present (T) then
2628 return;
2629 end if;
2631 Prag := First_Rep_Item (T);
2632 while Present (Prag) loop
2633 if Nkind (Prag) = N_Pragma
2634 and then Pragma_Name (Prag) = Name_Invariant
2635 then
2636 -- Stop the traversal of the rep item chain once a specific
2637 -- item is encountered.
2639 if Present (Priv_Item) and then Prag = Priv_Item then
2640 exit;
2641 end if;
2643 -- Nothing to do if the pragma was already processed
2645 if Contains (Pragmas_Seen, Prag) then
2646 return;
2647 end if;
2649 -- Extract the arguments of the invariant pragma
2651 Prag_Typ_Arg := First (Pragma_Argument_Associations (Prag));
2652 Prag_Expr_Arg := Next (Prag_Typ_Arg);
2653 Prag_Expr := Get_Pragma_Arg (Prag_Expr_Arg);
2654 Prag_Typ := Get_Pragma_Arg (Prag_Typ_Arg);
2655 Prag_Asp := Corresponding_Aspect (Prag);
2657 -- Verify the pragma belongs to T, otherwise the pragma applies
2658 -- to a parent type in which case it will be processed later by
2659 -- Add_Parent_Invariants or Add_Interface_Invariants.
2661 if Entity (Prag_Typ) /= T then
2662 return;
2663 end if;
2665 Expr := New_Copy_Tree (Prag_Expr);
2667 -- Substitute all references to type T with references to the
2668 -- _object formal parameter.
2670 Replace_Type_References (Expr, T, Obj_Id);
2672 -- Preanalyze the invariant expression to detect errors and at
2673 -- the same time capture the visibility of the proper package
2674 -- part.
2676 Set_Parent (Expr, Parent (Prag_Expr));
2677 Preanalyze_Assert_Expression (Expr, Any_Boolean);
2679 -- Save a copy of the expression when T is tagged to detect
2680 -- errors and capture the visibility of the proper package part
2681 -- for the generation of inherited type invariants.
2683 if Is_Tagged_Type (T) then
2684 Set_Expression_Copy (Prag_Expr_Arg, New_Copy_Tree (Expr));
2685 end if;
2687 -- If the pragma comes from an aspect specification, replace
2688 -- the saved expression because all type references must be
2689 -- substituted for the call to Preanalyze_Spec_Expression in
2690 -- Check_Aspect_At_xxx routines.
2692 if Present (Prag_Asp) then
2693 Set_Entity (Identifier (Prag_Asp), New_Copy_Tree (Expr));
2694 end if;
2696 -- Analyze the original invariant expression for ASIS
2698 if ASIS_Mode then
2699 ASIS_Expr := Empty;
2701 if Comes_From_Source (Prag) then
2702 ASIS_Expr := Prag_Expr;
2703 elsif Present (Prag_Asp) then
2704 ASIS_Expr := Expression (Prag_Asp);
2705 end if;
2707 if Present (ASIS_Expr) then
2708 Replace_Type_References (ASIS_Expr, T, Obj_Id);
2709 Preanalyze_Assert_Expression (ASIS_Expr, Any_Boolean);
2710 end if;
2711 end if;
2713 Add_Invariant_Check (Prag, Expr, Checks);
2714 end if;
2716 Next_Rep_Item (Prag);
2717 end loop;
2718 end Add_Own_Invariants;
2720 -------------------------------------
2721 -- Add_Record_Component_Invariants --
2722 -------------------------------------
2724 procedure Add_Record_Component_Invariants
2725 (T : Entity_Id;
2726 Obj_Id : Entity_Id;
2727 Checks : in out List_Id)
2729 procedure Process_Component_List
2730 (Comp_List : Node_Id;
2731 CL_Checks : in out List_Id);
2732 -- Generate invariant checks for all record components found in
2733 -- component list Comp_List, including variant parts. All created
2734 -- checks are added to list CL_Checks.
2736 procedure Process_Record_Component
2737 (Comp_Id : Entity_Id;
2738 Comp_Checks : in out List_Id);
2739 -- Generate an invariant check for a record component identified by
2740 -- Comp_Id. All created checks are added to list Comp_Checks.
2742 ----------------------------
2743 -- Process_Component_List --
2744 ----------------------------
2746 procedure Process_Component_List
2747 (Comp_List : Node_Id;
2748 CL_Checks : in out List_Id)
2750 Comp : Node_Id;
2751 Var : Node_Id;
2752 Var_Alts : List_Id := No_List;
2753 Var_Checks : List_Id := No_List;
2754 Var_Stmts : List_Id;
2756 Produced_Variant_Check : Boolean := False;
2757 -- This flag tracks whether the component has produced at least
2758 -- one invariant check.
2760 begin
2761 -- Traverse the component items
2763 Comp := First (Component_Items (Comp_List));
2764 while Present (Comp) loop
2765 if Nkind (Comp) = N_Component_Declaration then
2767 -- Generate the component invariant check
2769 Process_Record_Component
2770 (Comp_Id => Defining_Entity (Comp),
2771 Comp_Checks => CL_Checks);
2772 end if;
2774 Next (Comp);
2775 end loop;
2777 -- Traverse the variant part
2779 if Present (Variant_Part (Comp_List)) then
2780 Var := First (Variants (Variant_Part (Comp_List)));
2781 while Present (Var) loop
2782 Var_Checks := No_List;
2784 -- Generate invariant checks for all components and variant
2785 -- parts that qualify.
2787 Process_Component_List
2788 (Comp_List => Component_List (Var),
2789 CL_Checks => Var_Checks);
2791 -- The components of the current variant produced at least
2792 -- one invariant check.
2794 if Present (Var_Checks) then
2795 Var_Stmts := Var_Checks;
2796 Produced_Variant_Check := True;
2798 -- Otherwise there are either no components with invariants,
2799 -- assertions are disabled, or Assertion_Policy Ignore is in
2800 -- effect.
2802 else
2803 Var_Stmts := New_List (Make_Null_Statement (Loc));
2804 end if;
2806 Append_New_To (Var_Alts,
2807 Make_Case_Statement_Alternative (Loc,
2808 Discrete_Choices =>
2809 New_Copy_List (Discrete_Choices (Var)),
2810 Statements => Var_Stmts));
2812 Next (Var);
2813 end loop;
2815 -- Create a case statement which verifies the invariant checks
2816 -- of a particular component list depending on the discriminant
2817 -- values only when there is at least one real invariant check.
2819 if Produced_Variant_Check then
2820 Append_New_To (CL_Checks,
2821 Make_Case_Statement (Loc,
2822 Expression =>
2823 Make_Selected_Component (Loc,
2824 Prefix => New_Occurrence_Of (Obj_Id, Loc),
2825 Selector_Name =>
2826 New_Occurrence_Of
2827 (Entity (Name (Variant_Part (Comp_List))), Loc)),
2828 Alternatives => Var_Alts));
2829 end if;
2830 end if;
2831 end Process_Component_List;
2833 ------------------------------
2834 -- Process_Record_Component --
2835 ------------------------------
2837 procedure Process_Record_Component
2838 (Comp_Id : Entity_Id;
2839 Comp_Checks : in out List_Id)
2841 Comp_Typ : constant Entity_Id := Etype (Comp_Id);
2842 Proc_Id : Entity_Id;
2844 Produced_Component_Check : Boolean := False;
2845 -- This flag tracks whether the component has produced at least
2846 -- one invariant check.
2848 begin
2849 -- Nothing to do for internal component _parent. Note that it is
2850 -- not desirable to check whether the component comes from source
2851 -- because protected type components are relocated to an internal
2852 -- corresponding record, but still need processing.
2854 if Chars (Comp_Id) = Name_uParent then
2855 return;
2856 end if;
2858 -- Verify the invariant of the component. Note that an access
2859 -- type may have an invariant when it acts as the full view of a
2860 -- private type and the invariant appears on the partial view. In
2861 -- this case verify the access value itself.
2863 if Has_Invariants (Comp_Typ) then
2865 -- In GNATprove mode, the component invariants are checked by
2866 -- other means. They should not be added to the record type
2867 -- invariant procedure, so that the procedure can be used to
2868 -- check the record type invariants if any.
2870 if GNATprove_Mode then
2871 null;
2873 else
2874 Proc_Id := Invariant_Procedure (Base_Type (Comp_Typ));
2876 -- The component type should have an invariant procedure
2877 -- if it has invariants of its own or inherits class-wide
2878 -- invariants from parent or interface types.
2880 pragma Assert (Present (Proc_Id));
2882 -- Generate:
2883 -- <Comp_Typ>Invariant (T (_object).<Comp_Id>);
2885 -- Note that the invariant procedure may have a null body if
2886 -- assertions are disabled or Assertion_Policy Ignore is in
2887 -- effect.
2889 if not Has_Null_Body (Proc_Id) then
2890 Append_New_To (Comp_Checks,
2891 Make_Procedure_Call_Statement (Loc,
2892 Name =>
2893 New_Occurrence_Of (Proc_Id, Loc),
2894 Parameter_Associations => New_List (
2895 Make_Selected_Component (Loc,
2896 Prefix =>
2897 Unchecked_Convert_To
2898 (T, New_Occurrence_Of (Obj_Id, Loc)),
2899 Selector_Name =>
2900 New_Occurrence_Of (Comp_Id, Loc)))));
2901 end if;
2902 end if;
2904 Produced_Check := True;
2905 Produced_Component_Check := True;
2906 end if;
2908 if Produced_Component_Check and then Has_Unchecked_Union (T) then
2909 Error_Msg_NE
2910 ("invariants cannot be checked on components of "
2911 & "unchecked_union type &?", Comp_Id, T);
2912 end if;
2913 end Process_Record_Component;
2915 -- Local variables
2917 Comps : Node_Id;
2918 Def : Node_Id;
2920 -- Start of processing for Add_Record_Component_Invariants
2922 begin
2923 -- An untagged derived type inherits the components of its parent
2924 -- type. In order to avoid creating redundant invariant checks, do
2925 -- not process the components now. Instead wait until the ultimate
2926 -- parent of the untagged derivation chain is reached.
2928 if not Is_Untagged_Derivation (T) then
2929 Def := Type_Definition (Parent (T));
2931 if Nkind (Def) = N_Derived_Type_Definition then
2932 Def := Record_Extension_Part (Def);
2933 end if;
2935 pragma Assert (Nkind (Def) = N_Record_Definition);
2936 Comps := Component_List (Def);
2938 if Present (Comps) then
2939 Process_Component_List
2940 (Comp_List => Comps,
2941 CL_Checks => Checks);
2942 end if;
2943 end if;
2944 end Add_Record_Component_Invariants;
2946 -- Local variables
2948 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
2949 -- Save the Ghost mode to restore on exit
2951 Dummy : Entity_Id;
2952 Priv_Item : Node_Id;
2953 Proc_Body : Node_Id;
2954 Proc_Body_Id : Entity_Id;
2955 Proc_Decl : Node_Id;
2956 Proc_Id : Entity_Id;
2957 Stmts : List_Id := No_List;
2959 CRec_Typ : Entity_Id := Empty;
2960 -- The corresponding record type of Full_Typ
2962 Full_Proc : Entity_Id := Empty;
2963 -- The entity of the "full" invariant procedure
2965 Full_Typ : Entity_Id := Empty;
2966 -- The full view of the working type
2968 Obj_Id : Entity_Id := Empty;
2969 -- The _object formal parameter of the invariant procedure
2971 Part_Proc : Entity_Id := Empty;
2972 -- The entity of the "partial" invariant procedure
2974 Priv_Typ : Entity_Id := Empty;
2975 -- The partial view of the working type
2977 Work_Typ : Entity_Id := Empty;
2978 -- The working type
2980 -- Start of processing for Build_Invariant_Procedure_Body
2982 begin
2983 Work_Typ := Typ;
2985 -- The input type denotes the implementation base type of a constrained
2986 -- array type. Work with the first subtype as all invariant pragmas are
2987 -- on its rep item chain.
2989 if Ekind (Work_Typ) = E_Array_Type and then Is_Itype (Work_Typ) then
2990 Work_Typ := First_Subtype (Work_Typ);
2992 -- The input type denotes the corresponding record type of a protected
2993 -- or task type. Work with the concurrent type because the corresponding
2994 -- record type may not be visible to clients of the type.
2996 elsif Ekind (Work_Typ) = E_Record_Type
2997 and then Is_Concurrent_Record_Type (Work_Typ)
2998 then
2999 Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
3000 end if;
3002 -- The working type may be subject to pragma Ghost. Set the mode now to
3003 -- ensure that the invariant procedure is properly marked as Ghost.
3005 Set_Ghost_Mode (Work_Typ);
3007 -- The type must either have invariants of its own, inherit class-wide
3008 -- invariants from parent types or interfaces, or be an array or record
3009 -- type whose components have invariants.
3011 pragma Assert (Has_Invariants (Work_Typ));
3013 -- Interfaces are treated as the partial view of a private type in order
3014 -- to achieve uniformity with the general case.
3016 if Is_Interface (Work_Typ) then
3017 Priv_Typ := Work_Typ;
3019 -- Otherwise obtain both views of the type
3021 else
3022 Get_Views (Work_Typ, Priv_Typ, Full_Typ, Dummy, CRec_Typ);
3023 end if;
3025 -- The caller requests a body for the partial invariant procedure
3027 if Partial_Invariant then
3028 Full_Proc := Invariant_Procedure (Work_Typ);
3029 Proc_Id := Partial_Invariant_Procedure (Work_Typ);
3031 -- The "full" invariant procedure body was already created
3033 if Present (Full_Proc)
3034 and then Present
3035 (Corresponding_Body (Unit_Declaration_Node (Full_Proc)))
3036 then
3037 -- This scenario happens only when the type is an untagged
3038 -- derivation from a private parent and the underlying full
3039 -- view was processed before the partial view.
3041 pragma Assert
3042 (Is_Untagged_Private_Derivation (Priv_Typ, Full_Typ));
3044 -- Nothing to do because the processing of the underlying full
3045 -- view already checked the invariants of the partial view.
3047 goto Leave;
3048 end if;
3050 -- Create a declaration for the "partial" invariant procedure if it
3051 -- is not available.
3053 if No (Proc_Id) then
3054 Build_Invariant_Procedure_Declaration
3055 (Typ => Work_Typ,
3056 Partial_Invariant => True);
3058 Proc_Id := Partial_Invariant_Procedure (Work_Typ);
3059 end if;
3061 -- The caller requests a body for the "full" invariant procedure
3063 else
3064 Proc_Id := Invariant_Procedure (Work_Typ);
3065 Part_Proc := Partial_Invariant_Procedure (Work_Typ);
3067 -- Create a declaration for the "full" invariant procedure if it is
3068 -- not available.
3070 if No (Proc_Id) then
3071 Build_Invariant_Procedure_Declaration (Work_Typ);
3072 Proc_Id := Invariant_Procedure (Work_Typ);
3073 end if;
3074 end if;
3076 -- At this point there should be an invariant procedure declaration
3078 pragma Assert (Present (Proc_Id));
3079 Proc_Decl := Unit_Declaration_Node (Proc_Id);
3081 -- Nothing to do if the invariant procedure already has a body
3083 if Present (Corresponding_Body (Proc_Decl)) then
3084 goto Leave;
3085 end if;
3087 -- Emulate the environment of the invariant procedure by installing its
3088 -- scope and formal parameters. Note that this is not needed, but having
3089 -- the scope installed helps with the detection of invariant-related
3090 -- errors.
3092 Push_Scope (Proc_Id);
3093 Install_Formals (Proc_Id);
3095 Obj_Id := First_Formal (Proc_Id);
3096 pragma Assert (Present (Obj_Id));
3098 -- The "partial" invariant procedure verifies the invariants of the
3099 -- partial view only.
3101 if Partial_Invariant then
3102 pragma Assert (Present (Priv_Typ));
3104 Add_Own_Invariants
3105 (T => Priv_Typ,
3106 Obj_Id => Obj_Id,
3107 Checks => Stmts);
3109 -- Otherwise the "full" invariant procedure verifies the invariants of
3110 -- the full view, all array or record components, as well as class-wide
3111 -- invariants inherited from parent types or interfaces. In addition, it
3112 -- indirectly verifies the invariants of the partial view by calling the
3113 -- "partial" invariant procedure.
3115 else
3116 pragma Assert (Present (Full_Typ));
3118 -- Check the invariants of the partial view by calling the "partial"
3119 -- invariant procedure. Generate:
3121 -- <Work_Typ>Partial_Invariant (_object);
3123 if Present (Part_Proc) then
3124 Append_New_To (Stmts,
3125 Make_Procedure_Call_Statement (Loc,
3126 Name => New_Occurrence_Of (Part_Proc, Loc),
3127 Parameter_Associations => New_List (
3128 New_Occurrence_Of (Obj_Id, Loc))));
3130 Produced_Check := True;
3131 end if;
3133 Priv_Item := Empty;
3135 -- Derived subtypes do not have a partial view
3137 if Present (Priv_Typ) then
3139 -- The processing of the "full" invariant procedure intentionally
3140 -- skips the partial view because a) this may result in changes of
3141 -- visibility and b) lead to duplicate checks. However, when the
3142 -- full view is the underlying full view of an untagged derived
3143 -- type whose parent type is private, partial invariants appear on
3144 -- the rep item chain of the partial view only.
3146 -- package Pack_1 is
3147 -- type Root ... is private;
3148 -- private
3149 -- <full view of Root>
3150 -- end Pack_1;
3152 -- with Pack_1;
3153 -- package Pack_2 is
3154 -- type Child is new Pack_1.Root with Type_Invariant => ...;
3155 -- <underlying full view of Child>
3156 -- end Pack_2;
3158 -- As a result, the processing of the full view must also consider
3159 -- all invariants of the partial view.
3161 if Is_Untagged_Private_Derivation (Priv_Typ, Full_Typ) then
3162 null;
3164 -- Otherwise the invariants of the partial view are ignored
3166 else
3167 -- Note that the rep item chain is shared between the partial
3168 -- and full views of a type. To avoid processing the invariants
3169 -- of the partial view, signal the logic to stop when the first
3170 -- rep item of the partial view has been reached.
3172 Priv_Item := First_Rep_Item (Priv_Typ);
3174 -- Ignore the invariants of the partial view by eliminating the
3175 -- view.
3177 Priv_Typ := Empty;
3178 end if;
3179 end if;
3181 -- Process the invariants of the full view and in certain cases those
3182 -- of the partial view. This also handles any invariants on array or
3183 -- record components.
3185 Add_Own_Invariants
3186 (T => Priv_Typ,
3187 Obj_Id => Obj_Id,
3188 Checks => Stmts,
3189 Priv_Item => Priv_Item);
3191 Add_Own_Invariants
3192 (T => Full_Typ,
3193 Obj_Id => Obj_Id,
3194 Checks => Stmts,
3195 Priv_Item => Priv_Item);
3197 -- Process the elements of an array type
3199 if Is_Array_Type (Full_Typ) then
3200 Add_Array_Component_Invariants (Full_Typ, Obj_Id, Stmts);
3202 -- Process the components of a record type
3204 elsif Ekind (Full_Typ) = E_Record_Type then
3205 Add_Record_Component_Invariants (Full_Typ, Obj_Id, Stmts);
3207 -- Process the components of a corresponding record
3209 elsif Present (CRec_Typ) then
3210 Add_Record_Component_Invariants (CRec_Typ, Obj_Id, Stmts);
3211 end if;
3213 -- Process the inherited class-wide invariants of all parent types.
3214 -- This also handles any invariants on record components.
3216 Add_Parent_Invariants (Full_Typ, Obj_Id, Stmts);
3218 -- Process the inherited class-wide invariants of all implemented
3219 -- interface types.
3221 Add_Interface_Invariants (Full_Typ, Obj_Id, Stmts);
3222 end if;
3224 End_Scope;
3226 -- At this point there should be at least one invariant check. If this
3227 -- is not the case, then the invariant-related flags were not properly
3228 -- set, or there is a missing invariant procedure on one of the array
3229 -- or record components.
3231 pragma Assert (Produced_Check);
3233 -- Account for the case where assertions are disabled or all invariant
3234 -- checks are subject to Assertion_Policy Ignore. Produce a completing
3235 -- empty body.
3237 if No (Stmts) then
3238 Stmts := New_List (Make_Null_Statement (Loc));
3239 end if;
3241 -- Generate:
3242 -- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>) is
3243 -- begin
3244 -- <Stmts>
3245 -- end <Work_Typ>[Partial_]Invariant;
3247 Proc_Body :=
3248 Make_Subprogram_Body (Loc,
3249 Specification =>
3250 Copy_Subprogram_Spec (Parent (Proc_Id)),
3251 Declarations => Empty_List,
3252 Handled_Statement_Sequence =>
3253 Make_Handled_Sequence_Of_Statements (Loc,
3254 Statements => Stmts));
3255 Proc_Body_Id := Defining_Entity (Proc_Body);
3257 -- Perform minor decoration in case the body is not analyzed
3259 Set_Ekind (Proc_Body_Id, E_Subprogram_Body);
3260 Set_Etype (Proc_Body_Id, Standard_Void_Type);
3261 Set_Scope (Proc_Body_Id, Current_Scope);
3263 -- Link both spec and body to avoid generating duplicates
3265 Set_Corresponding_Body (Proc_Decl, Proc_Body_Id);
3266 Set_Corresponding_Spec (Proc_Body, Proc_Id);
3268 -- The body should not be inserted into the tree when the context is
3269 -- ASIS or a generic unit because it is not part of the template. Note
3270 -- that the body must still be generated in order to resolve the
3271 -- invariants.
3273 if ASIS_Mode or Inside_A_Generic then
3274 null;
3276 -- Semi-insert the body into the tree for GNATprove by setting its
3277 -- Parent field. This allows for proper upstream tree traversals.
3279 elsif GNATprove_Mode then
3280 Set_Parent (Proc_Body, Parent (Declaration_Node (Work_Typ)));
3282 -- Otherwise the body is part of the freezing actions of the type
3284 else
3285 Append_Freeze_Action (Work_Typ, Proc_Body);
3286 end if;
3288 <<Leave>>
3289 Restore_Ghost_Mode (Saved_GM);
3290 end Build_Invariant_Procedure_Body;
3292 -------------------------------------------
3293 -- Build_Invariant_Procedure_Declaration --
3294 -------------------------------------------
3296 -- WARNING: This routine manages Ghost regions. Return statements must be
3297 -- replaced by gotos which jump to the end of the routine and restore the
3298 -- Ghost mode.
3300 procedure Build_Invariant_Procedure_Declaration
3301 (Typ : Entity_Id;
3302 Partial_Invariant : Boolean := False)
3304 Loc : constant Source_Ptr := Sloc (Typ);
3306 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3307 -- Save the Ghost mode to restore on exit
3309 Proc_Decl : Node_Id;
3310 Proc_Id : Entity_Id;
3311 Proc_Nam : Name_Id;
3312 Typ_Decl : Node_Id;
3314 CRec_Typ : Entity_Id;
3315 -- The corresponding record type of Full_Typ
3317 Full_Base : Entity_Id;
3318 -- The base type of Full_Typ
3320 Full_Typ : Entity_Id;
3321 -- The full view of working type
3323 Obj_Id : Entity_Id;
3324 -- The _object formal parameter of the invariant procedure
3326 Obj_Typ : Entity_Id;
3327 -- The type of the _object formal parameter
3329 Priv_Typ : Entity_Id;
3330 -- The partial view of working type
3332 Work_Typ : Entity_Id;
3333 -- The working type
3335 begin
3336 Work_Typ := Typ;
3338 -- The input type denotes the implementation base type of a constrained
3339 -- array type. Work with the first subtype as all invariant pragmas are
3340 -- on its rep item chain.
3342 if Ekind (Work_Typ) = E_Array_Type and then Is_Itype (Work_Typ) then
3343 Work_Typ := First_Subtype (Work_Typ);
3345 -- The input denotes the corresponding record type of a protected or a
3346 -- task type. Work with the concurrent type because the corresponding
3347 -- record type may not be visible to clients of the type.
3349 elsif Ekind (Work_Typ) = E_Record_Type
3350 and then Is_Concurrent_Record_Type (Work_Typ)
3351 then
3352 Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
3353 end if;
3355 -- The working type may be subject to pragma Ghost. Set the mode now to
3356 -- ensure that the invariant procedure is properly marked as Ghost.
3358 Set_Ghost_Mode (Work_Typ);
3360 -- The type must either have invariants of its own, inherit class-wide
3361 -- invariants from parent or interface types, or be an array or record
3362 -- type whose components have invariants.
3364 pragma Assert (Has_Invariants (Work_Typ));
3366 -- Nothing to do if the type already has a "partial" invariant procedure
3368 if Partial_Invariant then
3369 if Present (Partial_Invariant_Procedure (Work_Typ)) then
3370 goto Leave;
3371 end if;
3373 -- Nothing to do if the type already has a "full" invariant procedure
3375 elsif Present (Invariant_Procedure (Work_Typ)) then
3376 goto Leave;
3377 end if;
3379 -- The caller requests the declaration of the "partial" invariant
3380 -- procedure.
3382 if Partial_Invariant then
3383 Proc_Nam := New_External_Name (Chars (Work_Typ), "Partial_Invariant");
3385 -- Otherwise the caller requests the declaration of the "full" invariant
3386 -- procedure.
3388 else
3389 Proc_Nam := New_External_Name (Chars (Work_Typ), "Invariant");
3390 end if;
3392 Proc_Id := Make_Defining_Identifier (Loc, Chars => Proc_Nam);
3394 -- Perform minor decoration in case the declaration is not analyzed
3396 Set_Ekind (Proc_Id, E_Procedure);
3397 Set_Etype (Proc_Id, Standard_Void_Type);
3398 Set_Scope (Proc_Id, Current_Scope);
3400 if Partial_Invariant then
3401 Set_Is_Partial_Invariant_Procedure (Proc_Id);
3402 Set_Partial_Invariant_Procedure (Work_Typ, Proc_Id);
3403 else
3404 Set_Is_Invariant_Procedure (Proc_Id);
3405 Set_Invariant_Procedure (Work_Typ, Proc_Id);
3406 end if;
3408 -- The invariant procedure requires debug info when the invariants are
3409 -- subject to Source Coverage Obligations.
3411 if Generate_SCO then
3412 Set_Needs_Debug_Info (Proc_Id);
3413 end if;
3415 -- Obtain all views of the input type
3417 Get_Views (Work_Typ, Priv_Typ, Full_Typ, Full_Base, CRec_Typ);
3419 -- Associate the invariant procedure with all views
3421 Propagate_Invariant_Attributes (Priv_Typ, From_Typ => Work_Typ);
3422 Propagate_Invariant_Attributes (Full_Typ, From_Typ => Work_Typ);
3423 Propagate_Invariant_Attributes (Full_Base, From_Typ => Work_Typ);
3424 Propagate_Invariant_Attributes (CRec_Typ, From_Typ => Work_Typ);
3426 -- The declaration of the invariant procedure is inserted after the
3427 -- declaration of the partial view as this allows for proper external
3428 -- visibility.
3430 if Present (Priv_Typ) then
3431 Typ_Decl := Declaration_Node (Priv_Typ);
3433 -- Anonymous arrays in object declarations have no explicit declaration
3434 -- so use the related object declaration as the insertion point.
3436 elsif Is_Itype (Work_Typ) and then Is_Array_Type (Work_Typ) then
3437 Typ_Decl := Associated_Node_For_Itype (Work_Typ);
3439 -- Derived types with the full view as parent do not have a partial
3440 -- view. Insert the invariant procedure after the derived type.
3442 else
3443 Typ_Decl := Declaration_Node (Full_Typ);
3444 end if;
3446 -- The type should have a declarative node
3448 pragma Assert (Present (Typ_Decl));
3450 -- Create the formal parameter which emulates the variable-like behavior
3451 -- of the current type instance.
3453 Obj_Id := Make_Defining_Identifier (Loc, Chars => Name_uObject);
3455 -- When generating an invariant procedure declaration for an abstract
3456 -- type (including interfaces), use the class-wide type as the _object
3457 -- type. This has several desirable effects:
3459 -- * The invariant procedure does not become a primitive of the type.
3460 -- This eliminates the need to either special case the treatment of
3461 -- invariant procedures, or to make it a predefined primitive and
3462 -- force every derived type to potentially provide an empty body.
3464 -- * The invariant procedure does not need to be declared as abstract.
3465 -- This allows for a proper body, which in turn avoids redundant
3466 -- processing of the same invariants for types with multiple views.
3468 -- * The class-wide type allows for calls to abstract primitives
3469 -- within a nonabstract subprogram. The calls are treated as
3470 -- dispatching and require additional processing when they are
3471 -- remapped to call primitives of derived types. See routine
3472 -- Replace_References for details.
3474 if Is_Abstract_Type (Work_Typ) then
3475 Obj_Typ := Class_Wide_Type (Work_Typ);
3476 else
3477 Obj_Typ := Work_Typ;
3478 end if;
3480 -- Perform minor decoration in case the declaration is not analyzed
3482 Set_Ekind (Obj_Id, E_In_Parameter);
3483 Set_Etype (Obj_Id, Obj_Typ);
3484 Set_Scope (Obj_Id, Proc_Id);
3486 Set_First_Entity (Proc_Id, Obj_Id);
3487 Set_Last_Entity (Proc_Id, Obj_Id);
3489 -- Generate:
3490 -- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>);
3492 Proc_Decl :=
3493 Make_Subprogram_Declaration (Loc,
3494 Specification =>
3495 Make_Procedure_Specification (Loc,
3496 Defining_Unit_Name => Proc_Id,
3497 Parameter_Specifications => New_List (
3498 Make_Parameter_Specification (Loc,
3499 Defining_Identifier => Obj_Id,
3500 Parameter_Type => New_Occurrence_Of (Obj_Typ, Loc)))));
3502 -- The declaration should not be inserted into the tree when the context
3503 -- is ASIS or a generic unit because it is not part of the template.
3505 if ASIS_Mode or Inside_A_Generic then
3506 null;
3508 -- Semi-insert the declaration into the tree for GNATprove by setting
3509 -- its Parent field. This allows for proper upstream tree traversals.
3511 elsif GNATprove_Mode then
3512 Set_Parent (Proc_Decl, Parent (Typ_Decl));
3514 -- Otherwise insert the declaration
3516 else
3517 pragma Assert (Present (Typ_Decl));
3518 Insert_After_And_Analyze (Typ_Decl, Proc_Decl);
3519 end if;
3521 <<Leave>>
3522 Restore_Ghost_Mode (Saved_GM);
3523 end Build_Invariant_Procedure_Declaration;
3525 --------------------------
3526 -- Build_Procedure_Form --
3527 --------------------------
3529 procedure Build_Procedure_Form (N : Node_Id) is
3530 Loc : constant Source_Ptr := Sloc (N);
3531 Subp : constant Entity_Id := Defining_Entity (N);
3533 Func_Formal : Entity_Id;
3534 Proc_Formals : List_Id;
3535 Proc_Decl : Node_Id;
3537 begin
3538 -- No action needed if this transformation was already done, or in case
3539 -- of subprogram renaming declarations.
3541 if Nkind (Specification (N)) = N_Procedure_Specification
3542 or else Nkind (N) = N_Subprogram_Renaming_Declaration
3543 then
3544 return;
3545 end if;
3547 -- Ditto when dealing with an expression function, where both the
3548 -- original expression and the generated declaration end up being
3549 -- expanded here.
3551 if Rewritten_For_C (Subp) then
3552 return;
3553 end if;
3555 Proc_Formals := New_List;
3557 -- Create a list of formal parameters with the same types as the
3558 -- function.
3560 Func_Formal := First_Formal (Subp);
3561 while Present (Func_Formal) loop
3562 Append_To (Proc_Formals,
3563 Make_Parameter_Specification (Loc,
3564 Defining_Identifier =>
3565 Make_Defining_Identifier (Loc, Chars (Func_Formal)),
3566 Parameter_Type =>
3567 New_Occurrence_Of (Etype (Func_Formal), Loc)));
3569 Next_Formal (Func_Formal);
3570 end loop;
3572 -- Add an extra out parameter to carry the function result
3574 Name_Len := 6;
3575 Name_Buffer (1 .. Name_Len) := "RESULT";
3576 Append_To (Proc_Formals,
3577 Make_Parameter_Specification (Loc,
3578 Defining_Identifier =>
3579 Make_Defining_Identifier (Loc, Chars => Name_Find),
3580 Out_Present => True,
3581 Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
3583 -- The new procedure declaration is inserted immediately after the
3584 -- function declaration. The processing in Build_Procedure_Body_Form
3585 -- relies on this order.
3587 Proc_Decl :=
3588 Make_Subprogram_Declaration (Loc,
3589 Specification =>
3590 Make_Procedure_Specification (Loc,
3591 Defining_Unit_Name =>
3592 Make_Defining_Identifier (Loc, Chars (Subp)),
3593 Parameter_Specifications => Proc_Formals));
3595 Insert_After_And_Analyze (Unit_Declaration_Node (Subp), Proc_Decl);
3597 -- Entity of procedure must remain invisible so that it does not
3598 -- overload subsequent references to the original function.
3600 Set_Is_Immediately_Visible (Defining_Entity (Proc_Decl), False);
3602 -- Mark the function as having a procedure form and link the function
3603 -- and its internally built procedure.
3605 Set_Rewritten_For_C (Subp);
3606 Set_Corresponding_Procedure (Subp, Defining_Entity (Proc_Decl));
3607 Set_Corresponding_Function (Defining_Entity (Proc_Decl), Subp);
3608 end Build_Procedure_Form;
3610 ------------------------
3611 -- Build_Runtime_Call --
3612 ------------------------
3614 function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
3615 begin
3616 -- If entity is not available, we can skip making the call (this avoids
3617 -- junk duplicated error messages in a number of cases).
3619 if not RTE_Available (RE) then
3620 return Make_Null_Statement (Loc);
3621 else
3622 return
3623 Make_Procedure_Call_Statement (Loc,
3624 Name => New_Occurrence_Of (RTE (RE), Loc));
3625 end if;
3626 end Build_Runtime_Call;
3628 ------------------------
3629 -- Build_SS_Mark_Call --
3630 ------------------------
3632 function Build_SS_Mark_Call
3633 (Loc : Source_Ptr;
3634 Mark : Entity_Id) return Node_Id
3636 begin
3637 -- Generate:
3638 -- Mark : constant Mark_Id := SS_Mark;
3640 return
3641 Make_Object_Declaration (Loc,
3642 Defining_Identifier => Mark,
3643 Constant_Present => True,
3644 Object_Definition =>
3645 New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
3646 Expression =>
3647 Make_Function_Call (Loc,
3648 Name => New_Occurrence_Of (RTE (RE_SS_Mark), Loc)));
3649 end Build_SS_Mark_Call;
3651 ---------------------------
3652 -- Build_SS_Release_Call --
3653 ---------------------------
3655 function Build_SS_Release_Call
3656 (Loc : Source_Ptr;
3657 Mark : Entity_Id) return Node_Id
3659 begin
3660 -- Generate:
3661 -- SS_Release (Mark);
3663 return
3664 Make_Procedure_Call_Statement (Loc,
3665 Name =>
3666 New_Occurrence_Of (RTE (RE_SS_Release), Loc),
3667 Parameter_Associations => New_List (
3668 New_Occurrence_Of (Mark, Loc)));
3669 end Build_SS_Release_Call;
3671 ----------------------------
3672 -- Build_Task_Array_Image --
3673 ----------------------------
3675 -- This function generates the body for a function that constructs the
3676 -- image string for a task that is an array component. The function is
3677 -- local to the init proc for the array type, and is called for each one
3678 -- of the components. The constructed image has the form of an indexed
3679 -- component, whose prefix is the outer variable of the array type.
3680 -- The n-dimensional array type has known indexes Index, Index2...
3682 -- Id_Ref is an indexed component form created by the enclosing init proc.
3683 -- Its successive indexes are Val1, Val2, ... which are the loop variables
3684 -- in the loops that call the individual task init proc on each component.
3686 -- The generated function has the following structure:
3688 -- function F return String is
3689 -- Pref : string renames Task_Name;
3690 -- T1 : String := Index1'Image (Val1);
3691 -- ...
3692 -- Tn : String := indexn'image (Valn);
3693 -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
3694 -- -- Len includes commas and the end parentheses.
3695 -- Res : String (1..Len);
3696 -- Pos : Integer := Pref'Length;
3698 -- begin
3699 -- Res (1 .. Pos) := Pref;
3700 -- Pos := Pos + 1;
3701 -- Res (Pos) := '(';
3702 -- Pos := Pos + 1;
3703 -- Res (Pos .. Pos + T1'Length - 1) := T1;
3704 -- Pos := Pos + T1'Length;
3705 -- Res (Pos) := '.';
3706 -- Pos := Pos + 1;
3707 -- ...
3708 -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
3709 -- Res (Len) := ')';
3711 -- return Res;
3712 -- end F;
3714 -- Needless to say, multidimensional arrays of tasks are rare enough that
3715 -- the bulkiness of this code is not really a concern.
3717 function Build_Task_Array_Image
3718 (Loc : Source_Ptr;
3719 Id_Ref : Node_Id;
3720 A_Type : Entity_Id;
3721 Dyn : Boolean := False) return Node_Id
3723 Dims : constant Nat := Number_Dimensions (A_Type);
3724 -- Number of dimensions for array of tasks
3726 Temps : array (1 .. Dims) of Entity_Id;
3727 -- Array of temporaries to hold string for each index
3729 Indx : Node_Id;
3730 -- Index expression
3732 Len : Entity_Id;
3733 -- Total length of generated name
3735 Pos : Entity_Id;
3736 -- Running index for substring assignments
3738 Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
3739 -- Name of enclosing variable, prefix of resulting name
3741 Res : Entity_Id;
3742 -- String to hold result
3744 Val : Node_Id;
3745 -- Value of successive indexes
3747 Sum : Node_Id;
3748 -- Expression to compute total size of string
3750 T : Entity_Id;
3751 -- Entity for name at one index position
3753 Decls : constant List_Id := New_List;
3754 Stats : constant List_Id := New_List;
3756 begin
3757 -- For a dynamic task, the name comes from the target variable. For a
3758 -- static one it is a formal of the enclosing init proc.
3760 if Dyn then
3761 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
3762 Append_To (Decls,
3763 Make_Object_Declaration (Loc,
3764 Defining_Identifier => Pref,
3765 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
3766 Expression =>
3767 Make_String_Literal (Loc,
3768 Strval => String_From_Name_Buffer)));
3770 else
3771 Append_To (Decls,
3772 Make_Object_Renaming_Declaration (Loc,
3773 Defining_Identifier => Pref,
3774 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
3775 Name => Make_Identifier (Loc, Name_uTask_Name)));
3776 end if;
3778 Indx := First_Index (A_Type);
3779 Val := First (Expressions (Id_Ref));
3781 for J in 1 .. Dims loop
3782 T := Make_Temporary (Loc, 'T');
3783 Temps (J) := T;
3785 Append_To (Decls,
3786 Make_Object_Declaration (Loc,
3787 Defining_Identifier => T,
3788 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
3789 Expression =>
3790 Make_Attribute_Reference (Loc,
3791 Attribute_Name => Name_Image,
3792 Prefix => New_Occurrence_Of (Etype (Indx), Loc),
3793 Expressions => New_List (New_Copy_Tree (Val)))));
3795 Next_Index (Indx);
3796 Next (Val);
3797 end loop;
3799 Sum := Make_Integer_Literal (Loc, Dims + 1);
3801 Sum :=
3802 Make_Op_Add (Loc,
3803 Left_Opnd => Sum,
3804 Right_Opnd =>
3805 Make_Attribute_Reference (Loc,
3806 Attribute_Name => Name_Length,
3807 Prefix => New_Occurrence_Of (Pref, Loc),
3808 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
3810 for J in 1 .. Dims loop
3811 Sum :=
3812 Make_Op_Add (Loc,
3813 Left_Opnd => Sum,
3814 Right_Opnd =>
3815 Make_Attribute_Reference (Loc,
3816 Attribute_Name => Name_Length,
3817 Prefix =>
3818 New_Occurrence_Of (Temps (J), Loc),
3819 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
3820 end loop;
3822 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
3824 Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
3826 Append_To (Stats,
3827 Make_Assignment_Statement (Loc,
3828 Name =>
3829 Make_Indexed_Component (Loc,
3830 Prefix => New_Occurrence_Of (Res, Loc),
3831 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
3832 Expression =>
3833 Make_Character_Literal (Loc,
3834 Chars => Name_Find,
3835 Char_Literal_Value => UI_From_Int (Character'Pos ('(')))));
3837 Append_To (Stats,
3838 Make_Assignment_Statement (Loc,
3839 Name => New_Occurrence_Of (Pos, Loc),
3840 Expression =>
3841 Make_Op_Add (Loc,
3842 Left_Opnd => New_Occurrence_Of (Pos, Loc),
3843 Right_Opnd => Make_Integer_Literal (Loc, 1))));
3845 for J in 1 .. Dims loop
3847 Append_To (Stats,
3848 Make_Assignment_Statement (Loc,
3849 Name =>
3850 Make_Slice (Loc,
3851 Prefix => New_Occurrence_Of (Res, Loc),
3852 Discrete_Range =>
3853 Make_Range (Loc,
3854 Low_Bound => New_Occurrence_Of (Pos, Loc),
3855 High_Bound =>
3856 Make_Op_Subtract (Loc,
3857 Left_Opnd =>
3858 Make_Op_Add (Loc,
3859 Left_Opnd => New_Occurrence_Of (Pos, Loc),
3860 Right_Opnd =>
3861 Make_Attribute_Reference (Loc,
3862 Attribute_Name => Name_Length,
3863 Prefix =>
3864 New_Occurrence_Of (Temps (J), Loc),
3865 Expressions =>
3866 New_List (Make_Integer_Literal (Loc, 1)))),
3867 Right_Opnd => Make_Integer_Literal (Loc, 1)))),
3869 Expression => New_Occurrence_Of (Temps (J), Loc)));
3871 if J < Dims then
3872 Append_To (Stats,
3873 Make_Assignment_Statement (Loc,
3874 Name => New_Occurrence_Of (Pos, Loc),
3875 Expression =>
3876 Make_Op_Add (Loc,
3877 Left_Opnd => New_Occurrence_Of (Pos, Loc),
3878 Right_Opnd =>
3879 Make_Attribute_Reference (Loc,
3880 Attribute_Name => Name_Length,
3881 Prefix => New_Occurrence_Of (Temps (J), Loc),
3882 Expressions =>
3883 New_List (Make_Integer_Literal (Loc, 1))))));
3885 Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
3887 Append_To (Stats,
3888 Make_Assignment_Statement (Loc,
3889 Name => Make_Indexed_Component (Loc,
3890 Prefix => New_Occurrence_Of (Res, Loc),
3891 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
3892 Expression =>
3893 Make_Character_Literal (Loc,
3894 Chars => Name_Find,
3895 Char_Literal_Value => UI_From_Int (Character'Pos (',')))));
3897 Append_To (Stats,
3898 Make_Assignment_Statement (Loc,
3899 Name => New_Occurrence_Of (Pos, Loc),
3900 Expression =>
3901 Make_Op_Add (Loc,
3902 Left_Opnd => New_Occurrence_Of (Pos, Loc),
3903 Right_Opnd => Make_Integer_Literal (Loc, 1))));
3904 end if;
3905 end loop;
3907 Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
3909 Append_To (Stats,
3910 Make_Assignment_Statement (Loc,
3911 Name =>
3912 Make_Indexed_Component (Loc,
3913 Prefix => New_Occurrence_Of (Res, Loc),
3914 Expressions => New_List (New_Occurrence_Of (Len, Loc))),
3915 Expression =>
3916 Make_Character_Literal (Loc,
3917 Chars => Name_Find,
3918 Char_Literal_Value => UI_From_Int (Character'Pos (')')))));
3919 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
3920 end Build_Task_Array_Image;
3922 ----------------------------
3923 -- Build_Task_Image_Decls --
3924 ----------------------------
3926 function Build_Task_Image_Decls
3927 (Loc : Source_Ptr;
3928 Id_Ref : Node_Id;
3929 A_Type : Entity_Id;
3930 In_Init_Proc : Boolean := False) return List_Id
3932 Decls : constant List_Id := New_List;
3933 T_Id : Entity_Id := Empty;
3934 Decl : Node_Id;
3935 Expr : Node_Id := Empty;
3936 Fun : Node_Id := Empty;
3937 Is_Dyn : constant Boolean :=
3938 Nkind (Parent (Id_Ref)) = N_Assignment_Statement
3939 and then
3940 Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
3942 begin
3943 -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
3944 -- generate a dummy declaration only.
3946 if Restriction_Active (No_Implicit_Heap_Allocations)
3947 or else Global_Discard_Names
3948 then
3949 T_Id := Make_Temporary (Loc, 'J');
3950 Name_Len := 0;
3952 return
3953 New_List (
3954 Make_Object_Declaration (Loc,
3955 Defining_Identifier => T_Id,
3956 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
3957 Expression =>
3958 Make_String_Literal (Loc,
3959 Strval => String_From_Name_Buffer)));
3961 else
3962 if Nkind (Id_Ref) = N_Identifier
3963 or else Nkind (Id_Ref) = N_Defining_Identifier
3964 then
3965 -- For a simple variable, the image of the task is built from
3966 -- the name of the variable. To avoid possible conflict with the
3967 -- anonymous type created for a single protected object, add a
3968 -- numeric suffix.
3970 T_Id :=
3971 Make_Defining_Identifier (Loc,
3972 New_External_Name (Chars (Id_Ref), 'T', 1));
3974 Get_Name_String (Chars (Id_Ref));
3976 Expr :=
3977 Make_String_Literal (Loc,
3978 Strval => String_From_Name_Buffer);
3980 elsif Nkind (Id_Ref) = N_Selected_Component then
3981 T_Id :=
3982 Make_Defining_Identifier (Loc,
3983 New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
3984 Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
3986 elsif Nkind (Id_Ref) = N_Indexed_Component then
3987 T_Id :=
3988 Make_Defining_Identifier (Loc,
3989 New_External_Name (Chars (A_Type), 'N'));
3991 Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
3992 end if;
3993 end if;
3995 if Present (Fun) then
3996 Append (Fun, Decls);
3997 Expr := Make_Function_Call (Loc,
3998 Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
4000 if not In_Init_Proc then
4001 Set_Uses_Sec_Stack (Defining_Entity (Fun));
4002 end if;
4003 end if;
4005 Decl := Make_Object_Declaration (Loc,
4006 Defining_Identifier => T_Id,
4007 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
4008 Constant_Present => True,
4009 Expression => Expr);
4011 Append (Decl, Decls);
4012 return Decls;
4013 end Build_Task_Image_Decls;
4015 -------------------------------
4016 -- Build_Task_Image_Function --
4017 -------------------------------
4019 function Build_Task_Image_Function
4020 (Loc : Source_Ptr;
4021 Decls : List_Id;
4022 Stats : List_Id;
4023 Res : Entity_Id) return Node_Id
4025 Spec : Node_Id;
4027 begin
4028 Append_To (Stats,
4029 Make_Simple_Return_Statement (Loc,
4030 Expression => New_Occurrence_Of (Res, Loc)));
4032 Spec := Make_Function_Specification (Loc,
4033 Defining_Unit_Name => Make_Temporary (Loc, 'F'),
4034 Result_Definition => New_Occurrence_Of (Standard_String, Loc));
4036 -- Calls to 'Image use the secondary stack, which must be cleaned up
4037 -- after the task name is built.
4039 return Make_Subprogram_Body (Loc,
4040 Specification => Spec,
4041 Declarations => Decls,
4042 Handled_Statement_Sequence =>
4043 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
4044 end Build_Task_Image_Function;
4046 -----------------------------
4047 -- Build_Task_Image_Prefix --
4048 -----------------------------
4050 procedure Build_Task_Image_Prefix
4051 (Loc : Source_Ptr;
4052 Len : out Entity_Id;
4053 Res : out Entity_Id;
4054 Pos : out Entity_Id;
4055 Prefix : Entity_Id;
4056 Sum : Node_Id;
4057 Decls : List_Id;
4058 Stats : List_Id)
4060 begin
4061 Len := Make_Temporary (Loc, 'L', Sum);
4063 Append_To (Decls,
4064 Make_Object_Declaration (Loc,
4065 Defining_Identifier => Len,
4066 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
4067 Expression => Sum));
4069 Res := Make_Temporary (Loc, 'R');
4071 Append_To (Decls,
4072 Make_Object_Declaration (Loc,
4073 Defining_Identifier => Res,
4074 Object_Definition =>
4075 Make_Subtype_Indication (Loc,
4076 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
4077 Constraint =>
4078 Make_Index_Or_Discriminant_Constraint (Loc,
4079 Constraints =>
4080 New_List (
4081 Make_Range (Loc,
4082 Low_Bound => Make_Integer_Literal (Loc, 1),
4083 High_Bound => New_Occurrence_Of (Len, Loc)))))));
4085 -- Indicate that the result is an internal temporary, so it does not
4086 -- receive a bogus initialization when declaration is expanded. This
4087 -- is both efficient, and prevents anomalies in the handling of
4088 -- dynamic objects on the secondary stack.
4090 Set_Is_Internal (Res);
4091 Pos := Make_Temporary (Loc, 'P');
4093 Append_To (Decls,
4094 Make_Object_Declaration (Loc,
4095 Defining_Identifier => Pos,
4096 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
4098 -- Pos := Prefix'Length;
4100 Append_To (Stats,
4101 Make_Assignment_Statement (Loc,
4102 Name => New_Occurrence_Of (Pos, Loc),
4103 Expression =>
4104 Make_Attribute_Reference (Loc,
4105 Attribute_Name => Name_Length,
4106 Prefix => New_Occurrence_Of (Prefix, Loc),
4107 Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
4109 -- Res (1 .. Pos) := Prefix;
4111 Append_To (Stats,
4112 Make_Assignment_Statement (Loc,
4113 Name =>
4114 Make_Slice (Loc,
4115 Prefix => New_Occurrence_Of (Res, Loc),
4116 Discrete_Range =>
4117 Make_Range (Loc,
4118 Low_Bound => Make_Integer_Literal (Loc, 1),
4119 High_Bound => New_Occurrence_Of (Pos, Loc))),
4121 Expression => New_Occurrence_Of (Prefix, Loc)));
4123 Append_To (Stats,
4124 Make_Assignment_Statement (Loc,
4125 Name => New_Occurrence_Of (Pos, Loc),
4126 Expression =>
4127 Make_Op_Add (Loc,
4128 Left_Opnd => New_Occurrence_Of (Pos, Loc),
4129 Right_Opnd => Make_Integer_Literal (Loc, 1))));
4130 end Build_Task_Image_Prefix;
4132 -----------------------------
4133 -- Build_Task_Record_Image --
4134 -----------------------------
4136 function Build_Task_Record_Image
4137 (Loc : Source_Ptr;
4138 Id_Ref : Node_Id;
4139 Dyn : Boolean := False) return Node_Id
4141 Len : Entity_Id;
4142 -- Total length of generated name
4144 Pos : Entity_Id;
4145 -- Index into result
4147 Res : Entity_Id;
4148 -- String to hold result
4150 Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
4151 -- Name of enclosing variable, prefix of resulting name
4153 Sum : Node_Id;
4154 -- Expression to compute total size of string
4156 Sel : Entity_Id;
4157 -- Entity for selector name
4159 Decls : constant List_Id := New_List;
4160 Stats : constant List_Id := New_List;
4162 begin
4163 -- For a dynamic task, the name comes from the target variable. For a
4164 -- static one it is a formal of the enclosing init proc.
4166 if Dyn then
4167 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
4168 Append_To (Decls,
4169 Make_Object_Declaration (Loc,
4170 Defining_Identifier => Pref,
4171 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
4172 Expression =>
4173 Make_String_Literal (Loc,
4174 Strval => String_From_Name_Buffer)));
4176 else
4177 Append_To (Decls,
4178 Make_Object_Renaming_Declaration (Loc,
4179 Defining_Identifier => Pref,
4180 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
4181 Name => Make_Identifier (Loc, Name_uTask_Name)));
4182 end if;
4184 Sel := Make_Temporary (Loc, 'S');
4186 Get_Name_String (Chars (Selector_Name (Id_Ref)));
4188 Append_To (Decls,
4189 Make_Object_Declaration (Loc,
4190 Defining_Identifier => Sel,
4191 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
4192 Expression =>
4193 Make_String_Literal (Loc,
4194 Strval => String_From_Name_Buffer)));
4196 Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
4198 Sum :=
4199 Make_Op_Add (Loc,
4200 Left_Opnd => Sum,
4201 Right_Opnd =>
4202 Make_Attribute_Reference (Loc,
4203 Attribute_Name => Name_Length,
4204 Prefix =>
4205 New_Occurrence_Of (Pref, Loc),
4206 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
4208 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
4210 Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
4212 -- Res (Pos) := '.';
4214 Append_To (Stats,
4215 Make_Assignment_Statement (Loc,
4216 Name => Make_Indexed_Component (Loc,
4217 Prefix => New_Occurrence_Of (Res, Loc),
4218 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
4219 Expression =>
4220 Make_Character_Literal (Loc,
4221 Chars => Name_Find,
4222 Char_Literal_Value =>
4223 UI_From_Int (Character'Pos ('.')))));
4225 Append_To (Stats,
4226 Make_Assignment_Statement (Loc,
4227 Name => New_Occurrence_Of (Pos, Loc),
4228 Expression =>
4229 Make_Op_Add (Loc,
4230 Left_Opnd => New_Occurrence_Of (Pos, Loc),
4231 Right_Opnd => Make_Integer_Literal (Loc, 1))));
4233 -- Res (Pos .. Len) := Selector;
4235 Append_To (Stats,
4236 Make_Assignment_Statement (Loc,
4237 Name => Make_Slice (Loc,
4238 Prefix => New_Occurrence_Of (Res, Loc),
4239 Discrete_Range =>
4240 Make_Range (Loc,
4241 Low_Bound => New_Occurrence_Of (Pos, Loc),
4242 High_Bound => New_Occurrence_Of (Len, Loc))),
4243 Expression => New_Occurrence_Of (Sel, Loc)));
4245 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
4246 end Build_Task_Record_Image;
4248 ---------------------------------------
4249 -- Build_Transient_Object_Statements --
4250 ---------------------------------------
4252 procedure Build_Transient_Object_Statements
4253 (Obj_Decl : Node_Id;
4254 Fin_Call : out Node_Id;
4255 Hook_Assign : out Node_Id;
4256 Hook_Clear : out Node_Id;
4257 Hook_Decl : out Node_Id;
4258 Ptr_Decl : out Node_Id;
4259 Finalize_Obj : Boolean := True)
4261 Loc : constant Source_Ptr := Sloc (Obj_Decl);
4262 Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
4263 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
4265 Desig_Typ : Entity_Id;
4266 Hook_Expr : Node_Id;
4267 Hook_Id : Entity_Id;
4268 Obj_Ref : Node_Id;
4269 Ptr_Typ : Entity_Id;
4271 begin
4272 -- Recover the type of the object
4274 Desig_Typ := Obj_Typ;
4276 if Is_Access_Type (Desig_Typ) then
4277 Desig_Typ := Available_View (Designated_Type (Desig_Typ));
4278 end if;
4280 -- Create an access type which provides a reference to the transient
4281 -- object. Generate:
4283 -- type Ptr_Typ is access all Desig_Typ;
4285 Ptr_Typ := Make_Temporary (Loc, 'A');
4286 Set_Ekind (Ptr_Typ, E_General_Access_Type);
4287 Set_Directly_Designated_Type (Ptr_Typ, Desig_Typ);
4289 Ptr_Decl :=
4290 Make_Full_Type_Declaration (Loc,
4291 Defining_Identifier => Ptr_Typ,
4292 Type_Definition =>
4293 Make_Access_To_Object_Definition (Loc,
4294 All_Present => True,
4295 Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc)));
4297 -- Create a temporary check which acts as a hook to the transient
4298 -- object. Generate:
4300 -- Hook : Ptr_Typ := null;
4302 Hook_Id := Make_Temporary (Loc, 'T');
4303 Set_Ekind (Hook_Id, E_Variable);
4304 Set_Etype (Hook_Id, Ptr_Typ);
4306 Hook_Decl :=
4307 Make_Object_Declaration (Loc,
4308 Defining_Identifier => Hook_Id,
4309 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
4310 Expression => Make_Null (Loc));
4312 -- Mark the temporary as a hook. This signals the machinery in
4313 -- Build_Finalizer to recognize this special case.
4315 Set_Status_Flag_Or_Transient_Decl (Hook_Id, Obj_Decl);
4317 -- Hook the transient object to the temporary. Generate:
4319 -- Hook := Ptr_Typ (Obj_Id);
4320 -- <or>
4321 -- Hool := Obj_Id'Unrestricted_Access;
4323 if Is_Access_Type (Obj_Typ) then
4324 Hook_Expr :=
4325 Unchecked_Convert_To (Ptr_Typ, New_Occurrence_Of (Obj_Id, Loc));
4326 else
4327 Hook_Expr :=
4328 Make_Attribute_Reference (Loc,
4329 Prefix => New_Occurrence_Of (Obj_Id, Loc),
4330 Attribute_Name => Name_Unrestricted_Access);
4331 end if;
4333 Hook_Assign :=
4334 Make_Assignment_Statement (Loc,
4335 Name => New_Occurrence_Of (Hook_Id, Loc),
4336 Expression => Hook_Expr);
4338 -- Crear the hook prior to finalizing the object. Generate:
4340 -- Hook := null;
4342 Hook_Clear :=
4343 Make_Assignment_Statement (Loc,
4344 Name => New_Occurrence_Of (Hook_Id, Loc),
4345 Expression => Make_Null (Loc));
4347 -- Finalize the object. Generate:
4349 -- [Deep_]Finalize (Obj_Ref[.all]);
4351 if Finalize_Obj then
4352 Obj_Ref := New_Occurrence_Of (Obj_Id, Loc);
4354 if Is_Access_Type (Obj_Typ) then
4355 Obj_Ref := Make_Explicit_Dereference (Loc, Obj_Ref);
4356 Set_Etype (Obj_Ref, Desig_Typ);
4357 end if;
4359 Fin_Call :=
4360 Make_Final_Call
4361 (Obj_Ref => Obj_Ref,
4362 Typ => Desig_Typ);
4364 -- Otherwise finalize the hook. Generate:
4366 -- [Deep_]Finalize (Hook.all);
4368 else
4369 Fin_Call :=
4370 Make_Final_Call (
4371 Obj_Ref =>
4372 Make_Explicit_Dereference (Loc,
4373 Prefix => New_Occurrence_Of (Hook_Id, Loc)),
4374 Typ => Desig_Typ);
4375 end if;
4376 end Build_Transient_Object_Statements;
4378 -----------------------------
4379 -- Check_Float_Op_Overflow --
4380 -----------------------------
4382 procedure Check_Float_Op_Overflow (N : Node_Id) is
4383 begin
4384 -- Return if no check needed
4386 if not Is_Floating_Point_Type (Etype (N))
4387 or else not (Do_Overflow_Check (N) and then Check_Float_Overflow)
4389 -- In CodePeer_Mode, rely on the overflow check flag being set instead
4390 -- and do not expand the code for float overflow checking.
4392 or else CodePeer_Mode
4393 then
4394 return;
4395 end if;
4397 -- Otherwise we replace the expression by
4399 -- do Tnn : constant ftype := expression;
4400 -- constraint_error when not Tnn'Valid;
4401 -- in Tnn;
4403 declare
4404 Loc : constant Source_Ptr := Sloc (N);
4405 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
4406 Typ : constant Entity_Id := Etype (N);
4408 begin
4409 -- Turn off the Do_Overflow_Check flag, since we are doing that work
4410 -- right here. We also set the node as analyzed to prevent infinite
4411 -- recursion from repeating the operation in the expansion.
4413 Set_Do_Overflow_Check (N, False);
4414 Set_Analyzed (N, True);
4416 -- Do the rewrite to include the check
4418 Rewrite (N,
4419 Make_Expression_With_Actions (Loc,
4420 Actions => New_List (
4421 Make_Object_Declaration (Loc,
4422 Defining_Identifier => Tnn,
4423 Object_Definition => New_Occurrence_Of (Typ, Loc),
4424 Constant_Present => True,
4425 Expression => Relocate_Node (N)),
4426 Make_Raise_Constraint_Error (Loc,
4427 Condition =>
4428 Make_Op_Not (Loc,
4429 Right_Opnd =>
4430 Make_Attribute_Reference (Loc,
4431 Prefix => New_Occurrence_Of (Tnn, Loc),
4432 Attribute_Name => Name_Valid)),
4433 Reason => CE_Overflow_Check_Failed)),
4434 Expression => New_Occurrence_Of (Tnn, Loc)));
4436 Analyze_And_Resolve (N, Typ);
4437 end;
4438 end Check_Float_Op_Overflow;
4440 ----------------------------------
4441 -- Component_May_Be_Bit_Aligned --
4442 ----------------------------------
4444 function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
4445 UT : Entity_Id;
4447 begin
4448 -- If no component clause, then everything is fine, since the back end
4449 -- never bit-misaligns by default, even if there is a pragma Packed for
4450 -- the record.
4452 if No (Comp) or else No (Component_Clause (Comp)) then
4453 return False;
4454 end if;
4456 UT := Underlying_Type (Etype (Comp));
4458 -- It is only array and record types that cause trouble
4460 if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then
4461 return False;
4463 -- If we know that we have a small (64 bits or less) record or small
4464 -- bit-packed array, then everything is fine, since the back end can
4465 -- handle these cases correctly.
4467 elsif Esize (Comp) <= 64
4468 and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT))
4469 then
4470 return False;
4472 -- Otherwise if the component is not byte aligned, we know we have the
4473 -- nasty unaligned case.
4475 elsif Normalized_First_Bit (Comp) /= Uint_0
4476 or else Esize (Comp) mod System_Storage_Unit /= Uint_0
4477 then
4478 return True;
4480 -- If we are large and byte aligned, then OK at this level
4482 else
4483 return False;
4484 end if;
4485 end Component_May_Be_Bit_Aligned;
4487 ----------------------------------------
4488 -- Containing_Package_With_Ext_Axioms --
4489 ----------------------------------------
4491 function Containing_Package_With_Ext_Axioms
4492 (E : Entity_Id) return Entity_Id
4494 begin
4495 -- E is the package or generic package which is externally axiomatized
4497 if Ekind_In (E, E_Generic_Package, E_Package)
4498 and then Has_Annotate_Pragma_For_External_Axiomatization (E)
4499 then
4500 return E;
4501 end if;
4503 -- If E's scope is axiomatized, E is axiomatized
4505 if Present (Scope (E)) then
4506 declare
4507 First_Ax_Parent_Scope : constant Entity_Id :=
4508 Containing_Package_With_Ext_Axioms (Scope (E));
4509 begin
4510 if Present (First_Ax_Parent_Scope) then
4511 return First_Ax_Parent_Scope;
4512 end if;
4513 end;
4514 end if;
4516 -- Otherwise, if E is a package instance, it is axiomatized if the
4517 -- corresponding generic package is axiomatized.
4519 if Ekind (E) = E_Package then
4520 declare
4521 Par : constant Node_Id := Parent (E);
4522 Decl : Node_Id;
4524 begin
4525 if Nkind (Par) = N_Defining_Program_Unit_Name then
4526 Decl := Parent (Par);
4527 else
4528 Decl := Par;
4529 end if;
4531 if Present (Generic_Parent (Decl)) then
4532 return
4533 Containing_Package_With_Ext_Axioms (Generic_Parent (Decl));
4534 end if;
4535 end;
4536 end if;
4538 return Empty;
4539 end Containing_Package_With_Ext_Axioms;
4541 -------------------------------
4542 -- Convert_To_Actual_Subtype --
4543 -------------------------------
4545 procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
4546 Act_ST : Entity_Id;
4548 begin
4549 Act_ST := Get_Actual_Subtype (Exp);
4551 if Act_ST = Etype (Exp) then
4552 return;
4553 else
4554 Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp)));
4555 Analyze_And_Resolve (Exp, Act_ST);
4556 end if;
4557 end Convert_To_Actual_Subtype;
4559 -----------------------------------
4560 -- Corresponding_Runtime_Package --
4561 -----------------------------------
4563 function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
4564 function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean;
4565 -- Return True if protected type T has one entry and the maximum queue
4566 -- length is one.
4568 --------------------------------
4569 -- Has_One_Entry_And_No_Queue --
4570 --------------------------------
4572 function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean is
4573 Item : Entity_Id;
4574 Is_First : Boolean := True;
4576 begin
4577 Item := First_Entity (T);
4578 while Present (Item) loop
4579 if Is_Entry (Item) then
4581 -- The protected type has more than one entry
4583 if not Is_First then
4584 return False;
4585 end if;
4587 -- The queue length is not one
4589 if not Restriction_Active (No_Entry_Queue)
4590 and then Get_Max_Queue_Length (Item) /= Uint_1
4591 then
4592 return False;
4593 end if;
4595 Is_First := False;
4596 end if;
4598 Next_Entity (Item);
4599 end loop;
4601 return True;
4602 end Has_One_Entry_And_No_Queue;
4604 -- Local variables
4606 Pkg_Id : RTU_Id := RTU_Null;
4608 -- Start of processing for Corresponding_Runtime_Package
4610 begin
4611 pragma Assert (Is_Concurrent_Type (Typ));
4613 if Ekind (Typ) in Protected_Kind then
4614 if Has_Entries (Typ)
4616 -- A protected type without entries that covers an interface and
4617 -- overrides the abstract routines with protected procedures is
4618 -- considered equivalent to a protected type with entries in the
4619 -- context of dispatching select statements. It is sufficient to
4620 -- check for the presence of an interface list in the declaration
4621 -- node to recognize this case.
4623 or else Present (Interface_List (Parent (Typ)))
4625 -- Protected types with interrupt handlers (when not using a
4626 -- restricted profile) are also considered equivalent to
4627 -- protected types with entries. The types which are used
4628 -- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
4629 -- are derived from Protection_Entries.
4631 or else (Has_Attach_Handler (Typ) and then not Restricted_Profile)
4632 or else Has_Interrupt_Handler (Typ)
4633 then
4634 if Abort_Allowed
4635 or else Restriction_Active (No_Select_Statements) = False
4636 or else not Has_One_Entry_And_No_Queue (Typ)
4637 or else (Has_Attach_Handler (Typ)
4638 and then not Restricted_Profile)
4639 then
4640 Pkg_Id := System_Tasking_Protected_Objects_Entries;
4641 else
4642 Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
4643 end if;
4645 else
4646 Pkg_Id := System_Tasking_Protected_Objects;
4647 end if;
4648 end if;
4650 return Pkg_Id;
4651 end Corresponding_Runtime_Package;
4653 -----------------------------------
4654 -- Current_Sem_Unit_Declarations --
4655 -----------------------------------
4657 function Current_Sem_Unit_Declarations return List_Id is
4658 U : Node_Id := Unit (Cunit (Current_Sem_Unit));
4659 Decls : List_Id;
4661 begin
4662 -- If the current unit is a package body, locate the visible
4663 -- declarations of the package spec.
4665 if Nkind (U) = N_Package_Body then
4666 U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
4667 end if;
4669 if Nkind (U) = N_Package_Declaration then
4670 U := Specification (U);
4671 Decls := Visible_Declarations (U);
4673 if No (Decls) then
4674 Decls := New_List;
4675 Set_Visible_Declarations (U, Decls);
4676 end if;
4678 else
4679 Decls := Declarations (U);
4681 if No (Decls) then
4682 Decls := New_List;
4683 Set_Declarations (U, Decls);
4684 end if;
4685 end if;
4687 return Decls;
4688 end Current_Sem_Unit_Declarations;
4690 -----------------------
4691 -- Duplicate_Subexpr --
4692 -----------------------
4694 function Duplicate_Subexpr
4695 (Exp : Node_Id;
4696 Name_Req : Boolean := False;
4697 Renaming_Req : Boolean := False) return Node_Id
4699 begin
4700 Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
4701 return New_Copy_Tree (Exp);
4702 end Duplicate_Subexpr;
4704 ---------------------------------
4705 -- Duplicate_Subexpr_No_Checks --
4706 ---------------------------------
4708 function Duplicate_Subexpr_No_Checks
4709 (Exp : Node_Id;
4710 Name_Req : Boolean := False;
4711 Renaming_Req : Boolean := False;
4712 Related_Id : Entity_Id := Empty;
4713 Is_Low_Bound : Boolean := False;
4714 Is_High_Bound : Boolean := False) return Node_Id
4716 New_Exp : Node_Id;
4718 begin
4719 Remove_Side_Effects
4720 (Exp => Exp,
4721 Name_Req => Name_Req,
4722 Renaming_Req => Renaming_Req,
4723 Related_Id => Related_Id,
4724 Is_Low_Bound => Is_Low_Bound,
4725 Is_High_Bound => Is_High_Bound);
4727 New_Exp := New_Copy_Tree (Exp);
4728 Remove_Checks (New_Exp);
4729 return New_Exp;
4730 end Duplicate_Subexpr_No_Checks;
4732 -----------------------------------
4733 -- Duplicate_Subexpr_Move_Checks --
4734 -----------------------------------
4736 function Duplicate_Subexpr_Move_Checks
4737 (Exp : Node_Id;
4738 Name_Req : Boolean := False;
4739 Renaming_Req : Boolean := False) return Node_Id
4741 New_Exp : Node_Id;
4743 begin
4744 Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
4745 New_Exp := New_Copy_Tree (Exp);
4746 Remove_Checks (Exp);
4747 return New_Exp;
4748 end Duplicate_Subexpr_Move_Checks;
4750 --------------------
4751 -- Ensure_Defined --
4752 --------------------
4754 procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
4755 IR : Node_Id;
4757 begin
4758 -- An itype reference must only be created if this is a local itype, so
4759 -- that gigi can elaborate it on the proper objstack.
4761 if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then
4762 IR := Make_Itype_Reference (Sloc (N));
4763 Set_Itype (IR, Typ);
4764 Insert_Action (N, IR);
4765 end if;
4766 end Ensure_Defined;
4768 --------------------
4769 -- Entry_Names_OK --
4770 --------------------
4772 function Entry_Names_OK return Boolean is
4773 begin
4774 return
4775 not Restricted_Profile
4776 and then not Global_Discard_Names
4777 and then not Restriction_Active (No_Implicit_Heap_Allocations)
4778 and then not Restriction_Active (No_Local_Allocators);
4779 end Entry_Names_OK;
4781 -------------------
4782 -- Evaluate_Name --
4783 -------------------
4785 procedure Evaluate_Name (Nam : Node_Id) is
4786 begin
4787 -- For an attribute reference or an indexed component, evaluate the
4788 -- prefix, which is itself a name, recursively, and then force the
4789 -- evaluation of all the subscripts (or attribute expressions).
4791 case Nkind (Nam) is
4792 when N_Attribute_Reference
4793 | N_Indexed_Component
4795 Evaluate_Name (Prefix (Nam));
4797 declare
4798 E : Node_Id;
4800 begin
4801 E := First (Expressions (Nam));
4802 while Present (E) loop
4803 Force_Evaluation (E);
4805 if Original_Node (E) /= E then
4806 Set_Do_Range_Check
4807 (E, Do_Range_Check (Original_Node (E)));
4808 end if;
4810 Next (E);
4811 end loop;
4812 end;
4814 -- For an explicit dereference, we simply force the evaluation of
4815 -- the name expression. The dereference provides a value that is the
4816 -- address for the renamed object, and it is precisely this value
4817 -- that we want to preserve.
4819 when N_Explicit_Dereference =>
4820 Force_Evaluation (Prefix (Nam));
4822 -- For a function call, we evaluate the call
4824 when N_Function_Call =>
4825 Force_Evaluation (Nam);
4827 -- For a qualified expression, we evaluate the underlying object
4828 -- name if any, otherwise we force the evaluation of the underlying
4829 -- expression.
4831 when N_Qualified_Expression =>
4832 if Is_Object_Reference (Expression (Nam)) then
4833 Evaluate_Name (Expression (Nam));
4834 else
4835 Force_Evaluation (Expression (Nam));
4836 end if;
4838 -- For a selected component, we simply evaluate the prefix
4840 when N_Selected_Component =>
4841 Evaluate_Name (Prefix (Nam));
4843 -- For a slice, we evaluate the prefix, as for the indexed component
4844 -- case and then, if there is a range present, either directly or as
4845 -- the constraint of a discrete subtype indication, we evaluate the
4846 -- two bounds of this range.
4848 when N_Slice =>
4849 Evaluate_Name (Prefix (Nam));
4850 Evaluate_Slice_Bounds (Nam);
4852 -- For a type conversion, the expression of the conversion must be
4853 -- the name of an object, and we simply need to evaluate this name.
4855 when N_Type_Conversion =>
4856 Evaluate_Name (Expression (Nam));
4858 -- The remaining cases are direct name, operator symbol and character
4859 -- literal. In all these cases, we do nothing, since we want to
4860 -- reevaluate each time the renamed object is used.
4862 when others =>
4863 null;
4864 end case;
4865 end Evaluate_Name;
4867 ---------------------------
4868 -- Evaluate_Slice_Bounds --
4869 ---------------------------
4871 procedure Evaluate_Slice_Bounds (Slice : Node_Id) is
4872 DR : constant Node_Id := Discrete_Range (Slice);
4873 Constr : Node_Id;
4874 Rexpr : Node_Id;
4876 begin
4877 if Nkind (DR) = N_Range then
4878 Force_Evaluation (Low_Bound (DR));
4879 Force_Evaluation (High_Bound (DR));
4881 elsif Nkind (DR) = N_Subtype_Indication then
4882 Constr := Constraint (DR);
4884 if Nkind (Constr) = N_Range_Constraint then
4885 Rexpr := Range_Expression (Constr);
4887 Force_Evaluation (Low_Bound (Rexpr));
4888 Force_Evaluation (High_Bound (Rexpr));
4889 end if;
4890 end if;
4891 end Evaluate_Slice_Bounds;
4893 ---------------------
4894 -- Evolve_And_Then --
4895 ---------------------
4897 procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
4898 begin
4899 if No (Cond) then
4900 Cond := Cond1;
4901 else
4902 Cond :=
4903 Make_And_Then (Sloc (Cond1),
4904 Left_Opnd => Cond,
4905 Right_Opnd => Cond1);
4906 end if;
4907 end Evolve_And_Then;
4909 --------------------
4910 -- Evolve_Or_Else --
4911 --------------------
4913 procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
4914 begin
4915 if No (Cond) then
4916 Cond := Cond1;
4917 else
4918 Cond :=
4919 Make_Or_Else (Sloc (Cond1),
4920 Left_Opnd => Cond,
4921 Right_Opnd => Cond1);
4922 end if;
4923 end Evolve_Or_Else;
4925 -----------------------------------
4926 -- Exceptions_In_Finalization_OK --
4927 -----------------------------------
4929 function Exceptions_In_Finalization_OK return Boolean is
4930 begin
4931 return
4932 not (Restriction_Active (No_Exception_Handlers) or else
4933 Restriction_Active (No_Exception_Propagation) or else
4934 Restriction_Active (No_Exceptions));
4935 end Exceptions_In_Finalization_OK;
4937 -----------------------------------------
4938 -- Expand_Static_Predicates_In_Choices --
4939 -----------------------------------------
4941 procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is
4942 pragma Assert (Nkind_In (N, N_Case_Statement_Alternative, N_Variant));
4944 Choices : constant List_Id := Discrete_Choices (N);
4946 Choice : Node_Id;
4947 Next_C : Node_Id;
4948 P : Node_Id;
4949 C : Node_Id;
4951 begin
4952 Choice := First (Choices);
4953 while Present (Choice) loop
4954 Next_C := Next (Choice);
4956 -- Check for name of subtype with static predicate
4958 if Is_Entity_Name (Choice)
4959 and then Is_Type (Entity (Choice))
4960 and then Has_Predicates (Entity (Choice))
4961 then
4962 -- Loop through entries in predicate list, converting to choices
4963 -- and inserting in the list before the current choice. Note that
4964 -- if the list is empty, corresponding to a False predicate, then
4965 -- no choices are inserted.
4967 P := First (Static_Discrete_Predicate (Entity (Choice)));
4968 while Present (P) loop
4970 -- If low bound and high bounds are equal, copy simple choice
4972 if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then
4973 C := New_Copy (Low_Bound (P));
4975 -- Otherwise copy a range
4977 else
4978 C := New_Copy (P);
4979 end if;
4981 -- Change Sloc to referencing choice (rather than the Sloc of
4982 -- the predicate declaration element itself).
4984 Set_Sloc (C, Sloc (Choice));
4985 Insert_Before (Choice, C);
4986 Next (P);
4987 end loop;
4989 -- Delete the predicated entry
4991 Remove (Choice);
4992 end if;
4994 -- Move to next choice to check
4996 Choice := Next_C;
4997 end loop;
4998 end Expand_Static_Predicates_In_Choices;
5000 ------------------------------
5001 -- Expand_Subtype_From_Expr --
5002 ------------------------------
5004 -- This function is applicable for both static and dynamic allocation of
5005 -- objects which are constrained by an initial expression. Basically it
5006 -- transforms an unconstrained subtype indication into a constrained one.
5008 -- The expression may also be transformed in certain cases in order to
5009 -- avoid multiple evaluation. In the static allocation case, the general
5010 -- scheme is:
5012 -- Val : T := Expr;
5014 -- is transformed into
5016 -- Val : Constrained_Subtype_Of_T := Maybe_Modified_Expr;
5018 -- Here are the main cases :
5020 -- <if Expr is a Slice>
5021 -- Val : T ([Index_Subtype (Expr)]) := Expr;
5023 -- <elsif Expr is a String Literal>
5024 -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
5026 -- <elsif Expr is Constrained>
5027 -- subtype T is Type_Of_Expr
5028 -- Val : T := Expr;
5030 -- <elsif Expr is an entity_name>
5031 -- Val : T (constraints taken from Expr) := Expr;
5033 -- <else>
5034 -- type Axxx is access all T;
5035 -- Rval : Axxx := Expr'ref;
5036 -- Val : T (constraints taken from Rval) := Rval.all;
5038 -- ??? note: when the Expression is allocated in the secondary stack
5039 -- we could use it directly instead of copying it by declaring
5040 -- Val : T (...) renames Rval.all
5042 procedure Expand_Subtype_From_Expr
5043 (N : Node_Id;
5044 Unc_Type : Entity_Id;
5045 Subtype_Indic : Node_Id;
5046 Exp : Node_Id;
5047 Related_Id : Entity_Id := Empty)
5049 Loc : constant Source_Ptr := Sloc (N);
5050 Exp_Typ : constant Entity_Id := Etype (Exp);
5051 T : Entity_Id;
5053 begin
5054 -- In general we cannot build the subtype if expansion is disabled,
5055 -- because internal entities may not have been defined. However, to
5056 -- avoid some cascaded errors, we try to continue when the expression is
5057 -- an array (or string), because it is safe to compute the bounds. It is
5058 -- in fact required to do so even in a generic context, because there
5059 -- may be constants that depend on the bounds of a string literal, both
5060 -- standard string types and more generally arrays of characters.
5062 -- In GNATprove mode, these extra subtypes are not needed
5064 if GNATprove_Mode then
5065 return;
5066 end if;
5068 if not Expander_Active
5069 and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp)))
5070 then
5071 return;
5072 end if;
5074 if Nkind (Exp) = N_Slice then
5075 declare
5076 Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
5078 begin
5079 Rewrite (Subtype_Indic,
5080 Make_Subtype_Indication (Loc,
5081 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
5082 Constraint =>
5083 Make_Index_Or_Discriminant_Constraint (Loc,
5084 Constraints => New_List
5085 (New_Occurrence_Of (Slice_Type, Loc)))));
5087 -- This subtype indication may be used later for constraint checks
5088 -- we better make sure that if a variable was used as a bound of
5089 -- of the original slice, its value is frozen.
5091 Evaluate_Slice_Bounds (Exp);
5092 end;
5094 elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
5095 Rewrite (Subtype_Indic,
5096 Make_Subtype_Indication (Loc,
5097 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
5098 Constraint =>
5099 Make_Index_Or_Discriminant_Constraint (Loc,
5100 Constraints => New_List (
5101 Make_Literal_Range (Loc,
5102 Literal_Typ => Exp_Typ)))));
5104 -- If the type of the expression is an internally generated type it
5105 -- may not be necessary to create a new subtype. However there are two
5106 -- exceptions: references to the current instances, and aliased array
5107 -- object declarations for which the back end has to create a template.
5109 elsif Is_Constrained (Exp_Typ)
5110 and then not Is_Class_Wide_Type (Unc_Type)
5111 and then
5112 (Nkind (N) /= N_Object_Declaration
5113 or else not Is_Entity_Name (Expression (N))
5114 or else not Comes_From_Source (Entity (Expression (N)))
5115 or else not Is_Array_Type (Exp_Typ)
5116 or else not Aliased_Present (N))
5117 then
5118 if Is_Itype (Exp_Typ) then
5120 -- Within an initialization procedure, a selected component
5121 -- denotes a component of the enclosing record, and it appears as
5122 -- an actual in a call to its own initialization procedure. If
5123 -- this component depends on the outer discriminant, we must
5124 -- generate the proper actual subtype for it.
5126 if Nkind (Exp) = N_Selected_Component
5127 and then Within_Init_Proc
5128 then
5129 declare
5130 Decl : constant Node_Id :=
5131 Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
5132 begin
5133 if Present (Decl) then
5134 Insert_Action (N, Decl);
5135 T := Defining_Identifier (Decl);
5136 else
5137 T := Exp_Typ;
5138 end if;
5139 end;
5141 -- No need to generate a new subtype
5143 else
5144 T := Exp_Typ;
5145 end if;
5147 else
5148 T := Make_Temporary (Loc, 'T');
5150 Insert_Action (N,
5151 Make_Subtype_Declaration (Loc,
5152 Defining_Identifier => T,
5153 Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc)));
5155 -- This type is marked as an itype even though it has an explicit
5156 -- declaration since otherwise Is_Generic_Actual_Type can get
5157 -- set, resulting in the generation of spurious errors. (See
5158 -- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
5160 Set_Is_Itype (T);
5161 Set_Associated_Node_For_Itype (T, Exp);
5162 end if;
5164 Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc));
5166 -- Nothing needs to be done for private types with unknown discriminants
5167 -- if the underlying type is not an unconstrained composite type or it
5168 -- is an unchecked union.
5170 elsif Is_Private_Type (Unc_Type)
5171 and then Has_Unknown_Discriminants (Unc_Type)
5172 and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
5173 or else Is_Constrained (Underlying_Type (Unc_Type))
5174 or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
5175 then
5176 null;
5178 -- Case of derived type with unknown discriminants where the parent type
5179 -- also has unknown discriminants.
5181 elsif Is_Record_Type (Unc_Type)
5182 and then not Is_Class_Wide_Type (Unc_Type)
5183 and then Has_Unknown_Discriminants (Unc_Type)
5184 and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
5185 then
5186 -- Nothing to be done if no underlying record view available
5188 -- If this is a limited type derived from a type with unknown
5189 -- discriminants, do not expand either, so that subsequent expansion
5190 -- of the call can add build-in-place parameters to call.
5192 if No (Underlying_Record_View (Unc_Type))
5193 or else Is_Limited_Type (Unc_Type)
5194 then
5195 null;
5197 -- Otherwise use the Underlying_Record_View to create the proper
5198 -- constrained subtype for an object of a derived type with unknown
5199 -- discriminants.
5201 else
5202 Remove_Side_Effects (Exp);
5203 Rewrite (Subtype_Indic,
5204 Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
5205 end if;
5207 -- Renamings of class-wide interface types require no equivalent
5208 -- constrained type declarations because we only need to reference
5209 -- the tag component associated with the interface. The same is
5210 -- presumably true for class-wide types in general, so this test
5211 -- is broadened to include all class-wide renamings, which also
5212 -- avoids cases of unbounded recursion in Remove_Side_Effects.
5213 -- (Is this really correct, or are there some cases of class-wide
5214 -- renamings that require action in this procedure???)
5216 elsif Present (N)
5217 and then Nkind (N) = N_Object_Renaming_Declaration
5218 and then Is_Class_Wide_Type (Unc_Type)
5219 then
5220 null;
5222 -- In Ada 95 nothing to be done if the type of the expression is limited
5223 -- because in this case the expression cannot be copied, and its use can
5224 -- only be by reference.
5226 -- In Ada 2005 the context can be an object declaration whose expression
5227 -- is a function that returns in place. If the nominal subtype has
5228 -- unknown discriminants, the call still provides constraints on the
5229 -- object, and we have to create an actual subtype from it.
5231 -- If the type is class-wide, the expression is dynamically tagged and
5232 -- we do not create an actual subtype either. Ditto for an interface.
5233 -- For now this applies only if the type is immutably limited, and the
5234 -- function being called is build-in-place. This will have to be revised
5235 -- when build-in-place functions are generalized to other types.
5237 elsif Is_Limited_View (Exp_Typ)
5238 and then
5239 (Is_Class_Wide_Type (Exp_Typ)
5240 or else Is_Interface (Exp_Typ)
5241 or else not Has_Unknown_Discriminants (Exp_Typ)
5242 or else not Is_Composite_Type (Unc_Type))
5243 then
5244 null;
5246 -- For limited objects initialized with build in place function calls,
5247 -- nothing to be done; otherwise we prematurely introduce an N_Reference
5248 -- node in the expression initializing the object, which breaks the
5249 -- circuitry that detects and adds the additional arguments to the
5250 -- called function.
5252 elsif Is_Build_In_Place_Function_Call (Exp) then
5253 null;
5255 else
5256 Remove_Side_Effects (Exp);
5257 Rewrite (Subtype_Indic,
5258 Make_Subtype_From_Expr (Exp, Unc_Type, Related_Id));
5259 end if;
5260 end Expand_Subtype_From_Expr;
5262 ---------------------------------------------
5263 -- Expression_Contains_Primitives_Calls_Of --
5264 ---------------------------------------------
5266 function Expression_Contains_Primitives_Calls_Of
5267 (Expr : Node_Id;
5268 Typ : Entity_Id) return Boolean
5270 U_Typ : constant Entity_Id := Unique_Entity (Typ);
5272 Calls_OK : Boolean := False;
5273 -- This flag is set to True when expression Expr contains at least one
5274 -- call to a nondispatching primitive function of Typ.
5276 function Search_Primitive_Calls (N : Node_Id) return Traverse_Result;
5277 -- Search for nondispatching calls to primitive functions of type Typ
5279 ----------------------------
5280 -- Search_Primitive_Calls --
5281 ----------------------------
5283 function Search_Primitive_Calls (N : Node_Id) return Traverse_Result is
5284 Disp_Typ : Entity_Id;
5285 Subp : Entity_Id;
5287 begin
5288 -- Detect a function call that could denote a nondispatching
5289 -- primitive of the input type.
5291 if Nkind (N) = N_Function_Call
5292 and then Is_Entity_Name (Name (N))
5293 then
5294 Subp := Entity (Name (N));
5296 -- Do not consider function calls with a controlling argument, as
5297 -- those are always dispatching calls.
5299 if Is_Dispatching_Operation (Subp)
5300 and then No (Controlling_Argument (N))
5301 then
5302 Disp_Typ := Find_Dispatching_Type (Subp);
5304 -- To qualify as a suitable primitive, the dispatching type of
5305 -- the function must be the input type.
5307 if Present (Disp_Typ)
5308 and then Unique_Entity (Disp_Typ) = U_Typ
5309 then
5310 Calls_OK := True;
5312 -- There is no need to continue the traversal, as one such
5313 -- call suffices.
5315 return Abandon;
5316 end if;
5317 end if;
5318 end if;
5320 return OK;
5321 end Search_Primitive_Calls;
5323 procedure Search_Calls is new Traverse_Proc (Search_Primitive_Calls);
5325 -- Start of processing for Expression_Contains_Primitives_Calls_Of_Type
5327 begin
5328 Search_Calls (Expr);
5329 return Calls_OK;
5330 end Expression_Contains_Primitives_Calls_Of;
5332 ----------------------
5333 -- Finalize_Address --
5334 ----------------------
5336 function Finalize_Address (Typ : Entity_Id) return Entity_Id is
5337 Utyp : Entity_Id := Typ;
5339 begin
5340 -- Handle protected class-wide or task class-wide types
5342 if Is_Class_Wide_Type (Utyp) then
5343 if Is_Concurrent_Type (Root_Type (Utyp)) then
5344 Utyp := Root_Type (Utyp);
5346 elsif Is_Private_Type (Root_Type (Utyp))
5347 and then Present (Full_View (Root_Type (Utyp)))
5348 and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
5349 then
5350 Utyp := Full_View (Root_Type (Utyp));
5351 end if;
5352 end if;
5354 -- Handle private types
5356 if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then
5357 Utyp := Full_View (Utyp);
5358 end if;
5360 -- Handle protected and task types
5362 if Is_Concurrent_Type (Utyp)
5363 and then Present (Corresponding_Record_Type (Utyp))
5364 then
5365 Utyp := Corresponding_Record_Type (Utyp);
5366 end if;
5368 Utyp := Underlying_Type (Base_Type (Utyp));
5370 -- Deal with untagged derivation of private views. If the parent is
5371 -- now known to be protected, the finalization routine is the one
5372 -- defined on the corresponding record of the ancestor (corresponding
5373 -- records do not automatically inherit operations, but maybe they
5374 -- should???)
5376 if Is_Untagged_Derivation (Typ) then
5377 if Is_Protected_Type (Typ) then
5378 Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ)));
5380 else
5381 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
5383 if Is_Protected_Type (Utyp) then
5384 Utyp := Corresponding_Record_Type (Utyp);
5385 end if;
5386 end if;
5387 end if;
5389 -- If the underlying_type is a subtype, we are dealing with the
5390 -- completion of a private type. We need to access the base type and
5391 -- generate a conversion to it.
5393 if Utyp /= Base_Type (Utyp) then
5394 pragma Assert (Is_Private_Type (Typ));
5396 Utyp := Base_Type (Utyp);
5397 end if;
5399 -- When dealing with an internally built full view for a type with
5400 -- unknown discriminants, use the original record type.
5402 if Is_Underlying_Record_View (Utyp) then
5403 Utyp := Etype (Utyp);
5404 end if;
5406 return TSS (Utyp, TSS_Finalize_Address);
5407 end Finalize_Address;
5409 ------------------------
5410 -- Find_Interface_ADT --
5411 ------------------------
5413 function Find_Interface_ADT
5414 (T : Entity_Id;
5415 Iface : Entity_Id) return Elmt_Id
5417 ADT : Elmt_Id;
5418 Typ : Entity_Id := T;
5420 begin
5421 pragma Assert (Is_Interface (Iface));
5423 -- Handle private types
5425 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
5426 Typ := Full_View (Typ);
5427 end if;
5429 -- Handle access types
5431 if Is_Access_Type (Typ) then
5432 Typ := Designated_Type (Typ);
5433 end if;
5435 -- Handle task and protected types implementing interfaces
5437 if Is_Concurrent_Type (Typ) then
5438 Typ := Corresponding_Record_Type (Typ);
5439 end if;
5441 pragma Assert
5442 (not Is_Class_Wide_Type (Typ)
5443 and then Ekind (Typ) /= E_Incomplete_Type);
5445 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
5446 return First_Elmt (Access_Disp_Table (Typ));
5448 else
5449 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
5450 while Present (ADT)
5451 and then Present (Related_Type (Node (ADT)))
5452 and then Related_Type (Node (ADT)) /= Iface
5453 and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
5454 Use_Full_View => True)
5455 loop
5456 Next_Elmt (ADT);
5457 end loop;
5459 pragma Assert (Present (Related_Type (Node (ADT))));
5460 return ADT;
5461 end if;
5462 end Find_Interface_ADT;
5464 ------------------------
5465 -- Find_Interface_Tag --
5466 ------------------------
5468 function Find_Interface_Tag
5469 (T : Entity_Id;
5470 Iface : Entity_Id) return Entity_Id
5472 AI_Tag : Entity_Id := Empty;
5473 Found : Boolean := False;
5474 Typ : Entity_Id := T;
5476 procedure Find_Tag (Typ : Entity_Id);
5477 -- Internal subprogram used to recursively climb to the ancestors
5479 --------------
5480 -- Find_Tag --
5481 --------------
5483 procedure Find_Tag (Typ : Entity_Id) is
5484 AI_Elmt : Elmt_Id;
5485 AI : Node_Id;
5487 begin
5488 -- This routine does not handle the case in which the interface is an
5489 -- ancestor of Typ. That case is handled by the enclosing subprogram.
5491 pragma Assert (Typ /= Iface);
5493 -- Climb to the root type handling private types
5495 if Present (Full_View (Etype (Typ))) then
5496 if Full_View (Etype (Typ)) /= Typ then
5497 Find_Tag (Full_View (Etype (Typ)));
5498 end if;
5500 elsif Etype (Typ) /= Typ then
5501 Find_Tag (Etype (Typ));
5502 end if;
5504 -- Traverse the list of interfaces implemented by the type
5506 if not Found
5507 and then Present (Interfaces (Typ))
5508 and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
5509 then
5510 -- Skip the tag associated with the primary table
5512 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
5513 AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
5514 pragma Assert (Present (AI_Tag));
5516 AI_Elmt := First_Elmt (Interfaces (Typ));
5517 while Present (AI_Elmt) loop
5518 AI := Node (AI_Elmt);
5520 if AI = Iface
5521 or else Is_Ancestor (Iface, AI, Use_Full_View => True)
5522 then
5523 Found := True;
5524 return;
5525 end if;
5527 AI_Tag := Next_Tag_Component (AI_Tag);
5528 Next_Elmt (AI_Elmt);
5529 end loop;
5530 end if;
5531 end Find_Tag;
5533 -- Start of processing for Find_Interface_Tag
5535 begin
5536 pragma Assert (Is_Interface (Iface));
5538 -- Handle access types
5540 if Is_Access_Type (Typ) then
5541 Typ := Designated_Type (Typ);
5542 end if;
5544 -- Handle class-wide types
5546 if Is_Class_Wide_Type (Typ) then
5547 Typ := Root_Type (Typ);
5548 end if;
5550 -- Handle private types
5552 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
5553 Typ := Full_View (Typ);
5554 end if;
5556 -- Handle entities from the limited view
5558 if Ekind (Typ) = E_Incomplete_Type then
5559 pragma Assert (Present (Non_Limited_View (Typ)));
5560 Typ := Non_Limited_View (Typ);
5561 end if;
5563 -- Handle task and protected types implementing interfaces
5565 if Is_Concurrent_Type (Typ) then
5566 Typ := Corresponding_Record_Type (Typ);
5567 end if;
5569 -- If the interface is an ancestor of the type, then it shared the
5570 -- primary dispatch table.
5572 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
5573 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
5574 return First_Tag_Component (Typ);
5576 -- Otherwise we need to search for its associated tag component
5578 else
5579 Find_Tag (Typ);
5580 pragma Assert (Found);
5581 return AI_Tag;
5582 end if;
5583 end Find_Interface_Tag;
5585 ---------------------------
5586 -- Find_Optional_Prim_Op --
5587 ---------------------------
5589 function Find_Optional_Prim_Op
5590 (T : Entity_Id; Name : Name_Id) return Entity_Id
5592 Prim : Elmt_Id;
5593 Typ : Entity_Id := T;
5594 Op : Entity_Id;
5596 begin
5597 if Is_Class_Wide_Type (Typ) then
5598 Typ := Root_Type (Typ);
5599 end if;
5601 Typ := Underlying_Type (Typ);
5603 -- Loop through primitive operations
5605 Prim := First_Elmt (Primitive_Operations (Typ));
5606 while Present (Prim) loop
5607 Op := Node (Prim);
5609 -- We can retrieve primitive operations by name if it is an internal
5610 -- name. For equality we must check that both of its operands have
5611 -- the same type, to avoid confusion with user-defined equalities
5612 -- than may have a non-symmetric signature.
5614 exit when Chars (Op) = Name
5615 and then
5616 (Name /= Name_Op_Eq
5617 or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
5619 Next_Elmt (Prim);
5620 end loop;
5622 return Node (Prim); -- Empty if not found
5623 end Find_Optional_Prim_Op;
5625 ---------------------------
5626 -- Find_Optional_Prim_Op --
5627 ---------------------------
5629 function Find_Optional_Prim_Op
5630 (T : Entity_Id;
5631 Name : TSS_Name_Type) return Entity_Id
5633 Inher_Op : Entity_Id := Empty;
5634 Own_Op : Entity_Id := Empty;
5635 Prim_Elmt : Elmt_Id;
5636 Prim_Id : Entity_Id;
5637 Typ : Entity_Id := T;
5639 begin
5640 if Is_Class_Wide_Type (Typ) then
5641 Typ := Root_Type (Typ);
5642 end if;
5644 Typ := Underlying_Type (Typ);
5646 -- This search is based on the assertion that the dispatching version
5647 -- of the TSS routine always precedes the real primitive.
5649 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
5650 while Present (Prim_Elmt) loop
5651 Prim_Id := Node (Prim_Elmt);
5653 if Is_TSS (Prim_Id, Name) then
5654 if Present (Alias (Prim_Id)) then
5655 Inher_Op := Prim_Id;
5656 else
5657 Own_Op := Prim_Id;
5658 end if;
5659 end if;
5661 Next_Elmt (Prim_Elmt);
5662 end loop;
5664 if Present (Own_Op) then
5665 return Own_Op;
5666 elsif Present (Inher_Op) then
5667 return Inher_Op;
5668 else
5669 return Empty;
5670 end if;
5671 end Find_Optional_Prim_Op;
5673 ------------------
5674 -- Find_Prim_Op --
5675 ------------------
5677 function Find_Prim_Op
5678 (T : Entity_Id; Name : Name_Id) return Entity_Id
5680 Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name);
5681 begin
5682 if No (Result) then
5683 raise Program_Error;
5684 end if;
5686 return Result;
5687 end Find_Prim_Op;
5689 ------------------
5690 -- Find_Prim_Op --
5691 ------------------
5693 function Find_Prim_Op
5694 (T : Entity_Id;
5695 Name : TSS_Name_Type) return Entity_Id
5697 Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name);
5698 begin
5699 if No (Result) then
5700 raise Program_Error;
5701 end if;
5703 return Result;
5704 end Find_Prim_Op;
5706 ----------------------------
5707 -- Find_Protection_Object --
5708 ----------------------------
5710 function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
5711 S : Entity_Id;
5713 begin
5714 S := Scop;
5715 while Present (S) loop
5716 if Ekind_In (S, E_Entry, E_Entry_Family, E_Function, E_Procedure)
5717 and then Present (Protection_Object (S))
5718 then
5719 return Protection_Object (S);
5720 end if;
5722 S := Scope (S);
5723 end loop;
5725 -- If we do not find a Protection object in the scope chain, then
5726 -- something has gone wrong, most likely the object was never created.
5728 raise Program_Error;
5729 end Find_Protection_Object;
5731 --------------------------
5732 -- Find_Protection_Type --
5733 --------------------------
5735 function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
5736 Comp : Entity_Id;
5737 Typ : Entity_Id := Conc_Typ;
5739 begin
5740 if Is_Concurrent_Type (Typ) then
5741 Typ := Corresponding_Record_Type (Typ);
5742 end if;
5744 -- Since restriction violations are not considered serious errors, the
5745 -- expander remains active, but may leave the corresponding record type
5746 -- malformed. In such cases, component _object is not available so do
5747 -- not look for it.
5749 if not Analyzed (Typ) then
5750 return Empty;
5751 end if;
5753 Comp := First_Component (Typ);
5754 while Present (Comp) loop
5755 if Chars (Comp) = Name_uObject then
5756 return Base_Type (Etype (Comp));
5757 end if;
5759 Next_Component (Comp);
5760 end loop;
5762 -- The corresponding record of a protected type should always have an
5763 -- _object field.
5765 raise Program_Error;
5766 end Find_Protection_Type;
5768 -----------------------
5769 -- Find_Hook_Context --
5770 -----------------------
5772 function Find_Hook_Context (N : Node_Id) return Node_Id is
5773 Par : Node_Id;
5774 Top : Node_Id;
5776 Wrapped_Node : Node_Id;
5777 -- Note: if we are in a transient scope, we want to reuse it as
5778 -- the context for actions insertion, if possible. But if N is itself
5779 -- part of the stored actions for the current transient scope,
5780 -- then we need to insert at the appropriate (inner) location in
5781 -- the not as an action on Node_To_Be_Wrapped.
5783 In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
5785 begin
5786 -- When the node is inside a case/if expression, the lifetime of any
5787 -- temporary controlled object is extended. Find a suitable insertion
5788 -- node by locating the topmost case or if expressions.
5790 if In_Cond_Expr then
5791 Par := N;
5792 Top := N;
5793 while Present (Par) loop
5794 if Nkind_In (Original_Node (Par), N_Case_Expression,
5795 N_If_Expression)
5796 then
5797 Top := Par;
5799 -- Prevent the search from going too far
5801 elsif Is_Body_Or_Package_Declaration (Par) then
5802 exit;
5803 end if;
5805 Par := Parent (Par);
5806 end loop;
5808 -- The topmost case or if expression is now recovered, but it may
5809 -- still not be the correct place to add generated code. Climb to
5810 -- find a parent that is part of a declarative or statement list,
5811 -- and is not a list of actuals in a call.
5813 Par := Top;
5814 while Present (Par) loop
5815 if Is_List_Member (Par)
5816 and then not Nkind_In (Par, N_Component_Association,
5817 N_Discriminant_Association,
5818 N_Parameter_Association,
5819 N_Pragma_Argument_Association)
5820 and then not Nkind_In (Parent (Par), N_Function_Call,
5821 N_Procedure_Call_Statement,
5822 N_Entry_Call_Statement)
5824 then
5825 return Par;
5827 -- Prevent the search from going too far
5829 elsif Is_Body_Or_Package_Declaration (Par) then
5830 exit;
5831 end if;
5833 Par := Parent (Par);
5834 end loop;
5836 return Par;
5838 else
5839 Par := N;
5840 while Present (Par) loop
5842 -- Keep climbing past various operators
5844 if Nkind (Parent (Par)) in N_Op
5845 or else Nkind_In (Parent (Par), N_And_Then, N_Or_Else)
5846 then
5847 Par := Parent (Par);
5848 else
5849 exit;
5850 end if;
5851 end loop;
5853 Top := Par;
5855 -- The node may be located in a pragma in which case return the
5856 -- pragma itself:
5858 -- pragma Precondition (... and then Ctrl_Func_Call ...);
5860 -- Similar case occurs when the node is related to an object
5861 -- declaration or assignment:
5863 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
5865 -- Another case to consider is when the node is part of a return
5866 -- statement:
5868 -- return ... and then Ctrl_Func_Call ...;
5870 -- Another case is when the node acts as a formal in a procedure
5871 -- call statement:
5873 -- Proc (... and then Ctrl_Func_Call ...);
5875 if Scope_Is_Transient then
5876 Wrapped_Node := Node_To_Be_Wrapped;
5877 else
5878 Wrapped_Node := Empty;
5879 end if;
5881 while Present (Par) loop
5882 if Par = Wrapped_Node
5883 or else Nkind_In (Par, N_Assignment_Statement,
5884 N_Object_Declaration,
5885 N_Pragma,
5886 N_Procedure_Call_Statement,
5887 N_Simple_Return_Statement)
5888 then
5889 return Par;
5891 -- Prevent the search from going too far
5893 elsif Is_Body_Or_Package_Declaration (Par) then
5894 exit;
5895 end if;
5897 Par := Parent (Par);
5898 end loop;
5900 -- Return the topmost short circuit operator
5902 return Top;
5903 end if;
5904 end Find_Hook_Context;
5906 ------------------------------
5907 -- Following_Address_Clause --
5908 ------------------------------
5910 function Following_Address_Clause (D : Node_Id) return Node_Id is
5911 Id : constant Entity_Id := Defining_Identifier (D);
5912 Result : Node_Id;
5913 Par : Node_Id;
5915 function Check_Decls (D : Node_Id) return Node_Id;
5916 -- This internal function differs from the main function in that it
5917 -- gets called to deal with a following package private part, and
5918 -- it checks declarations starting with D (the main function checks
5919 -- declarations following D). If D is Empty, then Empty is returned.
5921 -----------------
5922 -- Check_Decls --
5923 -----------------
5925 function Check_Decls (D : Node_Id) return Node_Id is
5926 Decl : Node_Id;
5928 begin
5929 Decl := D;
5930 while Present (Decl) loop
5931 if Nkind (Decl) = N_At_Clause
5932 and then Chars (Identifier (Decl)) = Chars (Id)
5933 then
5934 return Decl;
5936 elsif Nkind (Decl) = N_Attribute_Definition_Clause
5937 and then Chars (Decl) = Name_Address
5938 and then Chars (Name (Decl)) = Chars (Id)
5939 then
5940 return Decl;
5941 end if;
5943 Next (Decl);
5944 end loop;
5946 -- Otherwise not found, return Empty
5948 return Empty;
5949 end Check_Decls;
5951 -- Start of processing for Following_Address_Clause
5953 begin
5954 -- If parser detected no address clause for the identifier in question,
5955 -- then the answer is a quick NO, without the need for a search.
5957 if not Get_Name_Table_Boolean1 (Chars (Id)) then
5958 return Empty;
5959 end if;
5961 -- Otherwise search current declarative unit
5963 Result := Check_Decls (Next (D));
5965 if Present (Result) then
5966 return Result;
5967 end if;
5969 -- Check for possible package private part following
5971 Par := Parent (D);
5973 if Nkind (Par) = N_Package_Specification
5974 and then Visible_Declarations (Par) = List_Containing (D)
5975 and then Present (Private_Declarations (Par))
5976 then
5977 -- Private part present, check declarations there
5979 return Check_Decls (First (Private_Declarations (Par)));
5981 else
5982 -- No private part, clause not found, return Empty
5984 return Empty;
5985 end if;
5986 end Following_Address_Clause;
5988 ----------------------
5989 -- Force_Evaluation --
5990 ----------------------
5992 procedure Force_Evaluation
5993 (Exp : Node_Id;
5994 Name_Req : Boolean := False;
5995 Related_Id : Entity_Id := Empty;
5996 Is_Low_Bound : Boolean := False;
5997 Is_High_Bound : Boolean := False;
5998 Mode : Force_Evaluation_Mode := Relaxed)
6000 begin
6001 Remove_Side_Effects
6002 (Exp => Exp,
6003 Name_Req => Name_Req,
6004 Variable_Ref => True,
6005 Renaming_Req => False,
6006 Related_Id => Related_Id,
6007 Is_Low_Bound => Is_Low_Bound,
6008 Is_High_Bound => Is_High_Bound,
6009 Check_Side_Effects =>
6010 Is_Static_Expression (Exp)
6011 or else Mode = Relaxed);
6012 end Force_Evaluation;
6014 ---------------------------------
6015 -- Fully_Qualified_Name_String --
6016 ---------------------------------
6018 function Fully_Qualified_Name_String
6019 (E : Entity_Id;
6020 Append_NUL : Boolean := True) return String_Id
6022 procedure Internal_Full_Qualified_Name (E : Entity_Id);
6023 -- Compute recursively the qualified name without NUL at the end, adding
6024 -- it to the currently started string being generated
6026 ----------------------------------
6027 -- Internal_Full_Qualified_Name --
6028 ----------------------------------
6030 procedure Internal_Full_Qualified_Name (E : Entity_Id) is
6031 Ent : Entity_Id;
6033 begin
6034 -- Deal properly with child units
6036 if Nkind (E) = N_Defining_Program_Unit_Name then
6037 Ent := Defining_Identifier (E);
6038 else
6039 Ent := E;
6040 end if;
6042 -- Compute qualification recursively (only "Standard" has no scope)
6044 if Present (Scope (Scope (Ent))) then
6045 Internal_Full_Qualified_Name (Scope (Ent));
6046 Store_String_Char (Get_Char_Code ('.'));
6047 end if;
6049 -- Every entity should have a name except some expanded blocks
6050 -- don't bother about those.
6052 if Chars (Ent) = No_Name then
6053 return;
6054 end if;
6056 -- Generates the entity name in upper case
6058 Get_Decoded_Name_String (Chars (Ent));
6059 Set_All_Upper_Case;
6060 Store_String_Chars (Name_Buffer (1 .. Name_Len));
6061 return;
6062 end Internal_Full_Qualified_Name;
6064 -- Start of processing for Full_Qualified_Name
6066 begin
6067 Start_String;
6068 Internal_Full_Qualified_Name (E);
6070 if Append_NUL then
6071 Store_String_Char (Get_Char_Code (ASCII.NUL));
6072 end if;
6074 return End_String;
6075 end Fully_Qualified_Name_String;
6077 ------------------------
6078 -- Generate_Poll_Call --
6079 ------------------------
6081 procedure Generate_Poll_Call (N : Node_Id) is
6082 begin
6083 -- No poll call if polling not active
6085 if not Polling_Required then
6086 return;
6088 -- Otherwise generate require poll call
6090 else
6091 Insert_Before_And_Analyze (N,
6092 Make_Procedure_Call_Statement (Sloc (N),
6093 Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
6094 end if;
6095 end Generate_Poll_Call;
6097 ---------------------------------
6098 -- Get_Current_Value_Condition --
6099 ---------------------------------
6101 -- Note: the implementation of this procedure is very closely tied to the
6102 -- implementation of Set_Current_Value_Condition. In the Get procedure, we
6103 -- interpret Current_Value fields set by the Set procedure, so the two
6104 -- procedures need to be closely coordinated.
6106 procedure Get_Current_Value_Condition
6107 (Var : Node_Id;
6108 Op : out Node_Kind;
6109 Val : out Node_Id)
6111 Loc : constant Source_Ptr := Sloc (Var);
6112 Ent : constant Entity_Id := Entity (Var);
6114 procedure Process_Current_Value_Condition
6115 (N : Node_Id;
6116 S : Boolean);
6117 -- N is an expression which holds either True (S = True) or False (S =
6118 -- False) in the condition. This procedure digs out the expression and
6119 -- if it refers to Ent, sets Op and Val appropriately.
6121 -------------------------------------
6122 -- Process_Current_Value_Condition --
6123 -------------------------------------
6125 procedure Process_Current_Value_Condition
6126 (N : Node_Id;
6127 S : Boolean)
6129 Cond : Node_Id;
6130 Prev_Cond : Node_Id;
6131 Sens : Boolean;
6133 begin
6134 Cond := N;
6135 Sens := S;
6137 loop
6138 Prev_Cond := Cond;
6140 -- Deal with NOT operators, inverting sense
6142 while Nkind (Cond) = N_Op_Not loop
6143 Cond := Right_Opnd (Cond);
6144 Sens := not Sens;
6145 end loop;
6147 -- Deal with conversions, qualifications, and expressions with
6148 -- actions.
6150 while Nkind_In (Cond,
6151 N_Type_Conversion,
6152 N_Qualified_Expression,
6153 N_Expression_With_Actions)
6154 loop
6155 Cond := Expression (Cond);
6156 end loop;
6158 exit when Cond = Prev_Cond;
6159 end loop;
6161 -- Deal with AND THEN and AND cases
6163 if Nkind_In (Cond, N_And_Then, N_Op_And) then
6165 -- Don't ever try to invert a condition that is of the form of an
6166 -- AND or AND THEN (since we are not doing sufficiently general
6167 -- processing to allow this).
6169 if Sens = False then
6170 Op := N_Empty;
6171 Val := Empty;
6172 return;
6173 end if;
6175 -- Recursively process AND and AND THEN branches
6177 Process_Current_Value_Condition (Left_Opnd (Cond), True);
6179 if Op /= N_Empty then
6180 return;
6181 end if;
6183 Process_Current_Value_Condition (Right_Opnd (Cond), True);
6184 return;
6186 -- Case of relational operator
6188 elsif Nkind (Cond) in N_Op_Compare then
6189 Op := Nkind (Cond);
6191 -- Invert sense of test if inverted test
6193 if Sens = False then
6194 case Op is
6195 when N_Op_Eq => Op := N_Op_Ne;
6196 when N_Op_Ne => Op := N_Op_Eq;
6197 when N_Op_Lt => Op := N_Op_Ge;
6198 when N_Op_Gt => Op := N_Op_Le;
6199 when N_Op_Le => Op := N_Op_Gt;
6200 when N_Op_Ge => Op := N_Op_Lt;
6201 when others => raise Program_Error;
6202 end case;
6203 end if;
6205 -- Case of entity op value
6207 if Is_Entity_Name (Left_Opnd (Cond))
6208 and then Ent = Entity (Left_Opnd (Cond))
6209 and then Compile_Time_Known_Value (Right_Opnd (Cond))
6210 then
6211 Val := Right_Opnd (Cond);
6213 -- Case of value op entity
6215 elsif Is_Entity_Name (Right_Opnd (Cond))
6216 and then Ent = Entity (Right_Opnd (Cond))
6217 and then Compile_Time_Known_Value (Left_Opnd (Cond))
6218 then
6219 Val := Left_Opnd (Cond);
6221 -- We are effectively swapping operands
6223 case Op is
6224 when N_Op_Eq => null;
6225 when N_Op_Ne => null;
6226 when N_Op_Lt => Op := N_Op_Gt;
6227 when N_Op_Gt => Op := N_Op_Lt;
6228 when N_Op_Le => Op := N_Op_Ge;
6229 when N_Op_Ge => Op := N_Op_Le;
6230 when others => raise Program_Error;
6231 end case;
6233 else
6234 Op := N_Empty;
6235 end if;
6237 return;
6239 elsif Nkind_In (Cond,
6240 N_Type_Conversion,
6241 N_Qualified_Expression,
6242 N_Expression_With_Actions)
6243 then
6244 Cond := Expression (Cond);
6246 -- Case of Boolean variable reference, return as though the
6247 -- reference had said var = True.
6249 else
6250 if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then
6251 Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
6253 if Sens = False then
6254 Op := N_Op_Ne;
6255 else
6256 Op := N_Op_Eq;
6257 end if;
6258 end if;
6259 end if;
6260 end Process_Current_Value_Condition;
6262 -- Start of processing for Get_Current_Value_Condition
6264 begin
6265 Op := N_Empty;
6266 Val := Empty;
6268 -- Immediate return, nothing doing, if this is not an object
6270 if Ekind (Ent) not in Object_Kind then
6271 return;
6272 end if;
6274 -- Otherwise examine current value
6276 declare
6277 CV : constant Node_Id := Current_Value (Ent);
6278 Sens : Boolean;
6279 Stm : Node_Id;
6281 begin
6282 -- If statement. Condition is known true in THEN section, known False
6283 -- in any ELSIF or ELSE part, and unknown outside the IF statement.
6285 if Nkind (CV) = N_If_Statement then
6287 -- Before start of IF statement
6289 if Loc < Sloc (CV) then
6290 return;
6292 -- After end of IF statement
6294 elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
6295 return;
6296 end if;
6298 -- At this stage we know that we are within the IF statement, but
6299 -- unfortunately, the tree does not record the SLOC of the ELSE so
6300 -- we cannot use a simple SLOC comparison to distinguish between
6301 -- the then/else statements, so we have to climb the tree.
6303 declare
6304 N : Node_Id;
6306 begin
6307 N := Parent (Var);
6308 while Parent (N) /= CV loop
6309 N := Parent (N);
6311 -- If we fall off the top of the tree, then that's odd, but
6312 -- perhaps it could occur in some error situation, and the
6313 -- safest response is simply to assume that the outcome of
6314 -- the condition is unknown. No point in bombing during an
6315 -- attempt to optimize things.
6317 if No (N) then
6318 return;
6319 end if;
6320 end loop;
6322 -- Now we have N pointing to a node whose parent is the IF
6323 -- statement in question, so now we can tell if we are within
6324 -- the THEN statements.
6326 if Is_List_Member (N)
6327 and then List_Containing (N) = Then_Statements (CV)
6328 then
6329 Sens := True;
6331 -- If the variable reference does not come from source, we
6332 -- cannot reliably tell whether it appears in the else part.
6333 -- In particular, if it appears in generated code for a node
6334 -- that requires finalization, it may be attached to a list
6335 -- that has not been yet inserted into the code. For now,
6336 -- treat it as unknown.
6338 elsif not Comes_From_Source (N) then
6339 return;
6341 -- Otherwise we must be in ELSIF or ELSE part
6343 else
6344 Sens := False;
6345 end if;
6346 end;
6348 -- ELSIF part. Condition is known true within the referenced
6349 -- ELSIF, known False in any subsequent ELSIF or ELSE part,
6350 -- and unknown before the ELSE part or after the IF statement.
6352 elsif Nkind (CV) = N_Elsif_Part then
6354 -- if the Elsif_Part had condition_actions, the elsif has been
6355 -- rewritten as a nested if, and the original elsif_part is
6356 -- detached from the tree, so there is no way to obtain useful
6357 -- information on the current value of the variable.
6358 -- Can this be improved ???
6360 if No (Parent (CV)) then
6361 return;
6362 end if;
6364 Stm := Parent (CV);
6366 -- If the tree has been otherwise rewritten there is nothing
6367 -- else to be done either.
6369 if Nkind (Stm) /= N_If_Statement then
6370 return;
6371 end if;
6373 -- Before start of ELSIF part
6375 if Loc < Sloc (CV) then
6376 return;
6378 -- After end of IF statement
6380 elsif Loc >= Sloc (Stm) +
6381 Text_Ptr (UI_To_Int (End_Span (Stm)))
6382 then
6383 return;
6384 end if;
6386 -- Again we lack the SLOC of the ELSE, so we need to climb the
6387 -- tree to see if we are within the ELSIF part in question.
6389 declare
6390 N : Node_Id;
6392 begin
6393 N := Parent (Var);
6394 while Parent (N) /= Stm loop
6395 N := Parent (N);
6397 -- If we fall off the top of the tree, then that's odd, but
6398 -- perhaps it could occur in some error situation, and the
6399 -- safest response is simply to assume that the outcome of
6400 -- the condition is unknown. No point in bombing during an
6401 -- attempt to optimize things.
6403 if No (N) then
6404 return;
6405 end if;
6406 end loop;
6408 -- Now we have N pointing to a node whose parent is the IF
6409 -- statement in question, so see if is the ELSIF part we want.
6410 -- the THEN statements.
6412 if N = CV then
6413 Sens := True;
6415 -- Otherwise we must be in subsequent ELSIF or ELSE part
6417 else
6418 Sens := False;
6419 end if;
6420 end;
6422 -- Iteration scheme of while loop. The condition is known to be
6423 -- true within the body of the loop.
6425 elsif Nkind (CV) = N_Iteration_Scheme then
6426 declare
6427 Loop_Stmt : constant Node_Id := Parent (CV);
6429 begin
6430 -- Before start of body of loop
6432 if Loc < Sloc (Loop_Stmt) then
6433 return;
6435 -- After end of LOOP statement
6437 elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
6438 return;
6440 -- We are within the body of the loop
6442 else
6443 Sens := True;
6444 end if;
6445 end;
6447 -- All other cases of Current_Value settings
6449 else
6450 return;
6451 end if;
6453 -- If we fall through here, then we have a reportable condition, Sens
6454 -- is True if the condition is true and False if it needs inverting.
6456 Process_Current_Value_Condition (Condition (CV), Sens);
6457 end;
6458 end Get_Current_Value_Condition;
6460 ---------------------
6461 -- Get_Stream_Size --
6462 ---------------------
6464 function Get_Stream_Size (E : Entity_Id) return Uint is
6465 begin
6466 -- If we have a Stream_Size clause for this type use it
6468 if Has_Stream_Size_Clause (E) then
6469 return Static_Integer (Expression (Stream_Size_Clause (E)));
6471 -- Otherwise the Stream_Size if the size of the type
6473 else
6474 return Esize (E);
6475 end if;
6476 end Get_Stream_Size;
6478 ---------------------------
6479 -- Has_Access_Constraint --
6480 ---------------------------
6482 function Has_Access_Constraint (E : Entity_Id) return Boolean is
6483 Disc : Entity_Id;
6484 T : constant Entity_Id := Etype (E);
6486 begin
6487 if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then
6488 Disc := First_Discriminant (T);
6489 while Present (Disc) loop
6490 if Is_Access_Type (Etype (Disc)) then
6491 return True;
6492 end if;
6494 Next_Discriminant (Disc);
6495 end loop;
6497 return False;
6498 else
6499 return False;
6500 end if;
6501 end Has_Access_Constraint;
6503 -----------------------------------------------------
6504 -- Has_Annotate_Pragma_For_External_Axiomatization --
6505 -----------------------------------------------------
6507 function Has_Annotate_Pragma_For_External_Axiomatization
6508 (E : Entity_Id) return Boolean
6510 function Is_Annotate_Pragma_For_External_Axiomatization
6511 (N : Node_Id) return Boolean;
6512 -- Returns whether N is
6513 -- pragma Annotate (GNATprove, External_Axiomatization);
6515 ----------------------------------------------------
6516 -- Is_Annotate_Pragma_For_External_Axiomatization --
6517 ----------------------------------------------------
6519 -- The general form of pragma Annotate is
6521 -- pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}]);
6522 -- ARG ::= NAME | EXPRESSION
6524 -- The first two arguments are by convention intended to refer to an
6525 -- external tool and a tool-specific function. These arguments are
6526 -- not analyzed.
6528 -- The following is used to annotate a package specification which
6529 -- GNATprove should treat specially, because the axiomatization of
6530 -- this unit is given by the user instead of being automatically
6531 -- generated.
6533 -- pragma Annotate (GNATprove, External_Axiomatization);
6535 function Is_Annotate_Pragma_For_External_Axiomatization
6536 (N : Node_Id) return Boolean
6538 Name_GNATprove : constant String :=
6539 "gnatprove";
6540 Name_External_Axiomatization : constant String :=
6541 "external_axiomatization";
6542 -- Special names
6544 begin
6545 if Nkind (N) = N_Pragma
6546 and then Get_Pragma_Id (N) = Pragma_Annotate
6547 and then List_Length (Pragma_Argument_Associations (N)) = 2
6548 then
6549 declare
6550 Arg1 : constant Node_Id :=
6551 First (Pragma_Argument_Associations (N));
6552 Arg2 : constant Node_Id := Next (Arg1);
6553 Nam1 : Name_Id;
6554 Nam2 : Name_Id;
6556 begin
6557 -- Fill in Name_Buffer with Name_GNATprove first, and then with
6558 -- Name_External_Axiomatization so that Name_Find returns the
6559 -- corresponding name. This takes care of all possible casings.
6561 Name_Len := 0;
6562 Add_Str_To_Name_Buffer (Name_GNATprove);
6563 Nam1 := Name_Find;
6565 Name_Len := 0;
6566 Add_Str_To_Name_Buffer (Name_External_Axiomatization);
6567 Nam2 := Name_Find;
6569 return Chars (Get_Pragma_Arg (Arg1)) = Nam1
6570 and then
6571 Chars (Get_Pragma_Arg (Arg2)) = Nam2;
6572 end;
6574 else
6575 return False;
6576 end if;
6577 end Is_Annotate_Pragma_For_External_Axiomatization;
6579 -- Local variables
6581 Decl : Node_Id;
6582 Vis_Decls : List_Id;
6583 N : Node_Id;
6585 -- Start of processing for Has_Annotate_Pragma_For_External_Axiomatization
6587 begin
6588 if Nkind (Parent (E)) = N_Defining_Program_Unit_Name then
6589 Decl := Parent (Parent (E));
6590 else
6591 Decl := Parent (E);
6592 end if;
6594 Vis_Decls := Visible_Declarations (Decl);
6596 N := First (Vis_Decls);
6597 while Present (N) loop
6599 -- Skip declarations generated by the frontend. Skip all pragmas
6600 -- that are not the desired Annotate pragma. Stop the search on
6601 -- the first non-pragma source declaration.
6603 if Comes_From_Source (N) then
6604 if Nkind (N) = N_Pragma then
6605 if Is_Annotate_Pragma_For_External_Axiomatization (N) then
6606 return True;
6607 end if;
6608 else
6609 return False;
6610 end if;
6611 end if;
6613 Next (N);
6614 end loop;
6616 return False;
6617 end Has_Annotate_Pragma_For_External_Axiomatization;
6619 --------------------
6620 -- Homonym_Number --
6621 --------------------
6623 function Homonym_Number (Subp : Entity_Id) return Nat is
6624 Count : Nat;
6625 Hom : Entity_Id;
6627 begin
6628 Count := 1;
6629 Hom := Homonym (Subp);
6630 while Present (Hom) loop
6631 if Scope (Hom) = Scope (Subp) then
6632 Count := Count + 1;
6633 end if;
6635 Hom := Homonym (Hom);
6636 end loop;
6638 return Count;
6639 end Homonym_Number;
6641 -----------------------------------
6642 -- In_Library_Level_Package_Body --
6643 -----------------------------------
6645 function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
6646 begin
6647 -- First determine whether the entity appears at the library level, then
6648 -- look at the containing unit.
6650 if Is_Library_Level_Entity (Id) then
6651 declare
6652 Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
6654 begin
6655 return Nkind (Unit (Container)) = N_Package_Body;
6656 end;
6657 end if;
6659 return False;
6660 end In_Library_Level_Package_Body;
6662 ------------------------------
6663 -- In_Unconditional_Context --
6664 ------------------------------
6666 function In_Unconditional_Context (Node : Node_Id) return Boolean is
6667 P : Node_Id;
6669 begin
6670 P := Node;
6671 while Present (P) loop
6672 case Nkind (P) is
6673 when N_Subprogram_Body => return True;
6674 when N_If_Statement => return False;
6675 when N_Loop_Statement => return False;
6676 when N_Case_Statement => return False;
6677 when others => P := Parent (P);
6678 end case;
6679 end loop;
6681 return False;
6682 end In_Unconditional_Context;
6684 -------------------
6685 -- Insert_Action --
6686 -------------------
6688 procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
6689 begin
6690 if Present (Ins_Action) then
6691 Insert_Actions (Assoc_Node, New_List (Ins_Action));
6692 end if;
6693 end Insert_Action;
6695 -- Version with check(s) suppressed
6697 procedure Insert_Action
6698 (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
6700 begin
6701 Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
6702 end Insert_Action;
6704 -------------------------
6705 -- Insert_Action_After --
6706 -------------------------
6708 procedure Insert_Action_After
6709 (Assoc_Node : Node_Id;
6710 Ins_Action : Node_Id)
6712 begin
6713 Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
6714 end Insert_Action_After;
6716 --------------------
6717 -- Insert_Actions --
6718 --------------------
6720 procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
6721 N : Node_Id;
6722 P : Node_Id;
6724 Wrapped_Node : Node_Id := Empty;
6726 begin
6727 if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
6728 return;
6729 end if;
6731 -- Ignore insert of actions from inside default expression (or other
6732 -- similar "spec expression") in the special spec-expression analyze
6733 -- mode. Any insertions at this point have no relevance, since we are
6734 -- only doing the analyze to freeze the types of any static expressions.
6735 -- See section "Handling of Default Expressions" in the spec of package
6736 -- Sem for further details.
6738 if In_Spec_Expression then
6739 return;
6740 end if;
6742 -- If the action derives from stuff inside a record, then the actions
6743 -- are attached to the current scope, to be inserted and analyzed on
6744 -- exit from the scope. The reason for this is that we may also be
6745 -- generating freeze actions at the same time, and they must eventually
6746 -- be elaborated in the correct order.
6748 if Is_Record_Type (Current_Scope)
6749 and then not Is_Frozen (Current_Scope)
6750 then
6751 if No (Scope_Stack.Table
6752 (Scope_Stack.Last).Pending_Freeze_Actions)
6753 then
6754 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
6755 Ins_Actions;
6756 else
6757 Append_List
6758 (Ins_Actions,
6759 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
6760 end if;
6762 return;
6763 end if;
6765 -- We now intend to climb up the tree to find the right point to
6766 -- insert the actions. We start at Assoc_Node, unless this node is a
6767 -- subexpression in which case we start with its parent. We do this for
6768 -- two reasons. First it speeds things up. Second, if Assoc_Node is
6769 -- itself one of the special nodes like N_And_Then, then we assume that
6770 -- an initial request to insert actions for such a node does not expect
6771 -- the actions to get deposited in the node for later handling when the
6772 -- node is expanded, since clearly the node is being dealt with by the
6773 -- caller. Note that in the subexpression case, N is always the child we
6774 -- came from.
6776 -- N_Raise_xxx_Error is an annoying special case, it is a statement
6777 -- if it has type Standard_Void_Type, and a subexpression otherwise.
6778 -- Procedure calls, and similarly procedure attribute references, are
6779 -- also statements.
6781 if Nkind (Assoc_Node) in N_Subexpr
6782 and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error
6783 or else Etype (Assoc_Node) /= Standard_Void_Type)
6784 and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement
6785 and then (Nkind (Assoc_Node) /= N_Attribute_Reference
6786 or else not Is_Procedure_Attribute_Name
6787 (Attribute_Name (Assoc_Node)))
6788 then
6789 N := Assoc_Node;
6790 P := Parent (Assoc_Node);
6792 -- Non-subexpression case. Note that N is initially Empty in this case
6793 -- (N is only guaranteed Non-Empty in the subexpr case).
6795 else
6796 N := Empty;
6797 P := Assoc_Node;
6798 end if;
6800 -- Capture root of the transient scope
6802 if Scope_Is_Transient then
6803 Wrapped_Node := Node_To_Be_Wrapped;
6804 end if;
6806 loop
6807 pragma Assert (Present (P));
6809 -- Make sure that inserted actions stay in the transient scope
6811 if Present (Wrapped_Node) and then N = Wrapped_Node then
6812 Store_Before_Actions_In_Scope (Ins_Actions);
6813 return;
6814 end if;
6816 case Nkind (P) is
6818 -- Case of right operand of AND THEN or OR ELSE. Put the actions
6819 -- in the Actions field of the right operand. They will be moved
6820 -- out further when the AND THEN or OR ELSE operator is expanded.
6821 -- Nothing special needs to be done for the left operand since
6822 -- in that case the actions are executed unconditionally.
6824 when N_Short_Circuit =>
6825 if N = Right_Opnd (P) then
6827 -- We are now going to either append the actions to the
6828 -- actions field of the short-circuit operation. We will
6829 -- also analyze the actions now.
6831 -- This analysis is really too early, the proper thing would
6832 -- be to just park them there now, and only analyze them if
6833 -- we find we really need them, and to it at the proper
6834 -- final insertion point. However attempting to this proved
6835 -- tricky, so for now we just kill current values before and
6836 -- after the analyze call to make sure we avoid peculiar
6837 -- optimizations from this out of order insertion.
6839 Kill_Current_Values;
6841 -- If P has already been expanded, we can't park new actions
6842 -- on it, so we need to expand them immediately, introducing
6843 -- an Expression_With_Actions. N can't be an expression
6844 -- with actions, or else then the actions would have been
6845 -- inserted at an inner level.
6847 if Analyzed (P) then
6848 pragma Assert (Nkind (N) /= N_Expression_With_Actions);
6849 Rewrite (N,
6850 Make_Expression_With_Actions (Sloc (N),
6851 Actions => Ins_Actions,
6852 Expression => Relocate_Node (N)));
6853 Analyze_And_Resolve (N);
6855 elsif Present (Actions (P)) then
6856 Insert_List_After_And_Analyze
6857 (Last (Actions (P)), Ins_Actions);
6858 else
6859 Set_Actions (P, Ins_Actions);
6860 Analyze_List (Actions (P));
6861 end if;
6863 Kill_Current_Values;
6865 return;
6866 end if;
6868 -- Then or Else dependent expression of an if expression. Add
6869 -- actions to Then_Actions or Else_Actions field as appropriate.
6870 -- The actions will be moved further out when the if is expanded.
6872 when N_If_Expression =>
6873 declare
6874 ThenX : constant Node_Id := Next (First (Expressions (P)));
6875 ElseX : constant Node_Id := Next (ThenX);
6877 begin
6878 -- If the enclosing expression is already analyzed, as
6879 -- is the case for nested elaboration checks, insert the
6880 -- conditional further out.
6882 if Analyzed (P) then
6883 null;
6885 -- Actions belong to the then expression, temporarily place
6886 -- them as Then_Actions of the if expression. They will be
6887 -- moved to the proper place later when the if expression
6888 -- is expanded.
6890 elsif N = ThenX then
6891 if Present (Then_Actions (P)) then
6892 Insert_List_After_And_Analyze
6893 (Last (Then_Actions (P)), Ins_Actions);
6894 else
6895 Set_Then_Actions (P, Ins_Actions);
6896 Analyze_List (Then_Actions (P));
6897 end if;
6899 return;
6901 -- Actions belong to the else expression, temporarily place
6902 -- them as Else_Actions of the if expression. They will be
6903 -- moved to the proper place later when the if expression
6904 -- is expanded.
6906 elsif N = ElseX then
6907 if Present (Else_Actions (P)) then
6908 Insert_List_After_And_Analyze
6909 (Last (Else_Actions (P)), Ins_Actions);
6910 else
6911 Set_Else_Actions (P, Ins_Actions);
6912 Analyze_List (Else_Actions (P));
6913 end if;
6915 return;
6917 -- Actions belong to the condition. In this case they are
6918 -- unconditionally executed, and so we can continue the
6919 -- search for the proper insert point.
6921 else
6922 null;
6923 end if;
6924 end;
6926 -- Alternative of case expression, we place the action in the
6927 -- Actions field of the case expression alternative, this will
6928 -- be handled when the case expression is expanded.
6930 when N_Case_Expression_Alternative =>
6931 if Present (Actions (P)) then
6932 Insert_List_After_And_Analyze
6933 (Last (Actions (P)), Ins_Actions);
6934 else
6935 Set_Actions (P, Ins_Actions);
6936 Analyze_List (Actions (P));
6937 end if;
6939 return;
6941 -- Case of appearing within an Expressions_With_Actions node. When
6942 -- the new actions come from the expression of the expression with
6943 -- actions, they must be added to the existing actions. The other
6944 -- alternative is when the new actions are related to one of the
6945 -- existing actions of the expression with actions, and should
6946 -- never reach here: if actions are inserted on a statement
6947 -- within the Actions of an expression with actions, or on some
6948 -- subexpression of such a statement, then the outermost proper
6949 -- insertion point is right before the statement, and we should
6950 -- never climb up as far as the N_Expression_With_Actions itself.
6952 when N_Expression_With_Actions =>
6953 if N = Expression (P) then
6954 if Is_Empty_List (Actions (P)) then
6955 Append_List_To (Actions (P), Ins_Actions);
6956 Analyze_List (Actions (P));
6957 else
6958 Insert_List_After_And_Analyze
6959 (Last (Actions (P)), Ins_Actions);
6960 end if;
6962 return;
6964 else
6965 raise Program_Error;
6966 end if;
6968 -- Case of appearing in the condition of a while expression or
6969 -- elsif. We insert the actions into the Condition_Actions field.
6970 -- They will be moved further out when the while loop or elsif
6971 -- is analyzed.
6973 when N_Elsif_Part
6974 | N_Iteration_Scheme
6976 if N = Condition (P) then
6977 if Present (Condition_Actions (P)) then
6978 Insert_List_After_And_Analyze
6979 (Last (Condition_Actions (P)), Ins_Actions);
6980 else
6981 Set_Condition_Actions (P, Ins_Actions);
6983 -- Set the parent of the insert actions explicitly. This
6984 -- is not a syntactic field, but we need the parent field
6985 -- set, in particular so that freeze can understand that
6986 -- it is dealing with condition actions, and properly
6987 -- insert the freezing actions.
6989 Set_Parent (Ins_Actions, P);
6990 Analyze_List (Condition_Actions (P));
6991 end if;
6993 return;
6994 end if;
6996 -- Statements, declarations, pragmas, representation clauses
6998 when
6999 -- Statements
7001 N_Procedure_Call_Statement
7002 | N_Statement_Other_Than_Procedure_Call
7004 -- Pragmas
7006 | N_Pragma
7008 -- Representation_Clause
7010 | N_At_Clause
7011 | N_Attribute_Definition_Clause
7012 | N_Enumeration_Representation_Clause
7013 | N_Record_Representation_Clause
7015 -- Declarations
7017 | N_Abstract_Subprogram_Declaration
7018 | N_Entry_Body
7019 | N_Exception_Declaration
7020 | N_Exception_Renaming_Declaration
7021 | N_Expression_Function
7022 | N_Formal_Abstract_Subprogram_Declaration
7023 | N_Formal_Concrete_Subprogram_Declaration
7024 | N_Formal_Object_Declaration
7025 | N_Formal_Type_Declaration
7026 | N_Full_Type_Declaration
7027 | N_Function_Instantiation
7028 | N_Generic_Function_Renaming_Declaration
7029 | N_Generic_Package_Declaration
7030 | N_Generic_Package_Renaming_Declaration
7031 | N_Generic_Procedure_Renaming_Declaration
7032 | N_Generic_Subprogram_Declaration
7033 | N_Implicit_Label_Declaration
7034 | N_Incomplete_Type_Declaration
7035 | N_Number_Declaration
7036 | N_Object_Declaration
7037 | N_Object_Renaming_Declaration
7038 | N_Package_Body
7039 | N_Package_Body_Stub
7040 | N_Package_Declaration
7041 | N_Package_Instantiation
7042 | N_Package_Renaming_Declaration
7043 | N_Private_Extension_Declaration
7044 | N_Private_Type_Declaration
7045 | N_Procedure_Instantiation
7046 | N_Protected_Body
7047 | N_Protected_Body_Stub
7048 | N_Protected_Type_Declaration
7049 | N_Single_Task_Declaration
7050 | N_Subprogram_Body
7051 | N_Subprogram_Body_Stub
7052 | N_Subprogram_Declaration
7053 | N_Subprogram_Renaming_Declaration
7054 | N_Subtype_Declaration
7055 | N_Task_Body
7056 | N_Task_Body_Stub
7057 | N_Task_Type_Declaration
7059 -- Use clauses can appear in lists of declarations
7061 | N_Use_Package_Clause
7062 | N_Use_Type_Clause
7064 -- Freeze entity behaves like a declaration or statement
7066 | N_Freeze_Entity
7067 | N_Freeze_Generic_Entity
7069 -- Do not insert here if the item is not a list member (this
7070 -- happens for example with a triggering statement, and the
7071 -- proper approach is to insert before the entire select).
7073 if not Is_List_Member (P) then
7074 null;
7076 -- Do not insert if parent of P is an N_Component_Association
7077 -- node (i.e. we are in the context of an N_Aggregate or
7078 -- N_Extension_Aggregate node. In this case we want to insert
7079 -- before the entire aggregate.
7081 elsif Nkind (Parent (P)) = N_Component_Association then
7082 null;
7084 -- Do not insert if the parent of P is either an N_Variant node
7085 -- or an N_Record_Definition node, meaning in either case that
7086 -- P is a member of a component list, and that therefore the
7087 -- actions should be inserted outside the complete record
7088 -- declaration.
7090 elsif Nkind_In (Parent (P), N_Variant, N_Record_Definition) then
7091 null;
7093 -- Do not insert freeze nodes within the loop generated for
7094 -- an aggregate, because they may be elaborated too late for
7095 -- subsequent use in the back end: within a package spec the
7096 -- loop is part of the elaboration procedure and is only
7097 -- elaborated during the second pass.
7099 -- If the loop comes from source, or the entity is local to the
7100 -- loop itself it must remain within.
7102 elsif Nkind (Parent (P)) = N_Loop_Statement
7103 and then not Comes_From_Source (Parent (P))
7104 and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
7105 and then
7106 Scope (Entity (First (Ins_Actions))) /= Current_Scope
7107 then
7108 null;
7110 -- Otherwise we can go ahead and do the insertion
7112 elsif P = Wrapped_Node then
7113 Store_Before_Actions_In_Scope (Ins_Actions);
7114 return;
7116 else
7117 Insert_List_Before_And_Analyze (P, Ins_Actions);
7118 return;
7119 end if;
7121 -- A special case, N_Raise_xxx_Error can act either as a statement
7122 -- or a subexpression. We tell the difference by looking at the
7123 -- Etype. It is set to Standard_Void_Type in the statement case.
7125 when N_Raise_xxx_Error =>
7126 if Etype (P) = Standard_Void_Type then
7127 if P = Wrapped_Node then
7128 Store_Before_Actions_In_Scope (Ins_Actions);
7129 else
7130 Insert_List_Before_And_Analyze (P, Ins_Actions);
7131 end if;
7133 return;
7135 -- In the subexpression case, keep climbing
7137 else
7138 null;
7139 end if;
7141 -- If a component association appears within a loop created for
7142 -- an array aggregate, attach the actions to the association so
7143 -- they can be subsequently inserted within the loop. For other
7144 -- component associations insert outside of the aggregate. For
7145 -- an association that will generate a loop, its Loop_Actions
7146 -- attribute is already initialized (see exp_aggr.adb).
7148 -- The list of Loop_Actions can in turn generate additional ones,
7149 -- that are inserted before the associated node. If the associated
7150 -- node is outside the aggregate, the new actions are collected
7151 -- at the end of the Loop_Actions, to respect the order in which
7152 -- they are to be elaborated.
7154 when N_Component_Association
7155 | N_Iterated_Component_Association
7157 if Nkind (Parent (P)) = N_Aggregate
7158 and then Present (Loop_Actions (P))
7159 then
7160 if Is_Empty_List (Loop_Actions (P)) then
7161 Set_Loop_Actions (P, Ins_Actions);
7162 Analyze_List (Ins_Actions);
7163 else
7164 declare
7165 Decl : Node_Id;
7167 begin
7168 -- Check whether these actions were generated by a
7169 -- declaration that is part of the Loop_Actions for
7170 -- the component_association.
7172 Decl := Assoc_Node;
7173 while Present (Decl) loop
7174 exit when Parent (Decl) = P
7175 and then Is_List_Member (Decl)
7176 and then
7177 List_Containing (Decl) = Loop_Actions (P);
7178 Decl := Parent (Decl);
7179 end loop;
7181 if Present (Decl) then
7182 Insert_List_Before_And_Analyze
7183 (Decl, Ins_Actions);
7184 else
7185 Insert_List_After_And_Analyze
7186 (Last (Loop_Actions (P)), Ins_Actions);
7187 end if;
7188 end;
7189 end if;
7191 return;
7193 else
7194 null;
7195 end if;
7197 -- Special case: an attribute denoting a procedure call
7199 when N_Attribute_Reference =>
7200 if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
7201 if P = Wrapped_Node then
7202 Store_Before_Actions_In_Scope (Ins_Actions);
7203 else
7204 Insert_List_Before_And_Analyze (P, Ins_Actions);
7205 end if;
7207 return;
7209 -- In the subexpression case, keep climbing
7211 else
7212 null;
7213 end if;
7215 -- Special case: a marker
7217 when N_Call_Marker
7218 | N_Variable_Reference_Marker
7220 if Is_List_Member (P) then
7221 Insert_List_Before_And_Analyze (P, Ins_Actions);
7222 return;
7223 end if;
7225 -- A contract node should not belong to the tree
7227 when N_Contract =>
7228 raise Program_Error;
7230 -- For all other node types, keep climbing tree
7232 when N_Abortable_Part
7233 | N_Accept_Alternative
7234 | N_Access_Definition
7235 | N_Access_Function_Definition
7236 | N_Access_Procedure_Definition
7237 | N_Access_To_Object_Definition
7238 | N_Aggregate
7239 | N_Allocator
7240 | N_Aspect_Specification
7241 | N_Case_Expression
7242 | N_Case_Statement_Alternative
7243 | N_Character_Literal
7244 | N_Compilation_Unit
7245 | N_Compilation_Unit_Aux
7246 | N_Component_Clause
7247 | N_Component_Declaration
7248 | N_Component_Definition
7249 | N_Component_List
7250 | N_Constrained_Array_Definition
7251 | N_Decimal_Fixed_Point_Definition
7252 | N_Defining_Character_Literal
7253 | N_Defining_Identifier
7254 | N_Defining_Operator_Symbol
7255 | N_Defining_Program_Unit_Name
7256 | N_Delay_Alternative
7257 | N_Delta_Aggregate
7258 | N_Delta_Constraint
7259 | N_Derived_Type_Definition
7260 | N_Designator
7261 | N_Digits_Constraint
7262 | N_Discriminant_Association
7263 | N_Discriminant_Specification
7264 | N_Empty
7265 | N_Entry_Body_Formal_Part
7266 | N_Entry_Call_Alternative
7267 | N_Entry_Declaration
7268 | N_Entry_Index_Specification
7269 | N_Enumeration_Type_Definition
7270 | N_Error
7271 | N_Exception_Handler
7272 | N_Expanded_Name
7273 | N_Explicit_Dereference
7274 | N_Extension_Aggregate
7275 | N_Floating_Point_Definition
7276 | N_Formal_Decimal_Fixed_Point_Definition
7277 | N_Formal_Derived_Type_Definition
7278 | N_Formal_Discrete_Type_Definition
7279 | N_Formal_Floating_Point_Definition
7280 | N_Formal_Modular_Type_Definition
7281 | N_Formal_Ordinary_Fixed_Point_Definition
7282 | N_Formal_Package_Declaration
7283 | N_Formal_Private_Type_Definition
7284 | N_Formal_Incomplete_Type_Definition
7285 | N_Formal_Signed_Integer_Type_Definition
7286 | N_Function_Call
7287 | N_Function_Specification
7288 | N_Generic_Association
7289 | N_Handled_Sequence_Of_Statements
7290 | N_Identifier
7291 | N_In
7292 | N_Index_Or_Discriminant_Constraint
7293 | N_Indexed_Component
7294 | N_Integer_Literal
7295 | N_Iterator_Specification
7296 | N_Itype_Reference
7297 | N_Label
7298 | N_Loop_Parameter_Specification
7299 | N_Mod_Clause
7300 | N_Modular_Type_Definition
7301 | N_Not_In
7302 | N_Null
7303 | N_Op_Abs
7304 | N_Op_Add
7305 | N_Op_And
7306 | N_Op_Concat
7307 | N_Op_Divide
7308 | N_Op_Eq
7309 | N_Op_Expon
7310 | N_Op_Ge
7311 | N_Op_Gt
7312 | N_Op_Le
7313 | N_Op_Lt
7314 | N_Op_Minus
7315 | N_Op_Mod
7316 | N_Op_Multiply
7317 | N_Op_Ne
7318 | N_Op_Not
7319 | N_Op_Or
7320 | N_Op_Plus
7321 | N_Op_Rem
7322 | N_Op_Rotate_Left
7323 | N_Op_Rotate_Right
7324 | N_Op_Shift_Left
7325 | N_Op_Shift_Right
7326 | N_Op_Shift_Right_Arithmetic
7327 | N_Op_Subtract
7328 | N_Op_Xor
7329 | N_Operator_Symbol
7330 | N_Ordinary_Fixed_Point_Definition
7331 | N_Others_Choice
7332 | N_Package_Specification
7333 | N_Parameter_Association
7334 | N_Parameter_Specification
7335 | N_Pop_Constraint_Error_Label
7336 | N_Pop_Program_Error_Label
7337 | N_Pop_Storage_Error_Label
7338 | N_Pragma_Argument_Association
7339 | N_Procedure_Specification
7340 | N_Protected_Definition
7341 | N_Push_Constraint_Error_Label
7342 | N_Push_Program_Error_Label
7343 | N_Push_Storage_Error_Label
7344 | N_Qualified_Expression
7345 | N_Quantified_Expression
7346 | N_Raise_Expression
7347 | N_Range
7348 | N_Range_Constraint
7349 | N_Real_Literal
7350 | N_Real_Range_Specification
7351 | N_Record_Definition
7352 | N_Reduction_Expression
7353 | N_Reduction_Expression_Parameter
7354 | N_Reference
7355 | N_SCIL_Dispatch_Table_Tag_Init
7356 | N_SCIL_Dispatching_Call
7357 | N_SCIL_Membership_Test
7358 | N_Selected_Component
7359 | N_Signed_Integer_Type_Definition
7360 | N_Single_Protected_Declaration
7361 | N_Slice
7362 | N_String_Literal
7363 | N_Subtype_Indication
7364 | N_Subunit
7365 | N_Target_Name
7366 | N_Task_Definition
7367 | N_Terminate_Alternative
7368 | N_Triggering_Alternative
7369 | N_Type_Conversion
7370 | N_Unchecked_Expression
7371 | N_Unchecked_Type_Conversion
7372 | N_Unconstrained_Array_Definition
7373 | N_Unused_At_End
7374 | N_Unused_At_Start
7375 | N_Variant
7376 | N_Variant_Part
7377 | N_Validate_Unchecked_Conversion
7378 | N_With_Clause
7380 null;
7381 end case;
7383 -- If we fall through above tests, keep climbing tree
7385 N := P;
7387 if Nkind (Parent (N)) = N_Subunit then
7389 -- This is the proper body corresponding to a stub. Insertion must
7390 -- be done at the point of the stub, which is in the declarative
7391 -- part of the parent unit.
7393 P := Corresponding_Stub (Parent (N));
7395 else
7396 P := Parent (N);
7397 end if;
7398 end loop;
7399 end Insert_Actions;
7401 -- Version with check(s) suppressed
7403 procedure Insert_Actions
7404 (Assoc_Node : Node_Id;
7405 Ins_Actions : List_Id;
7406 Suppress : Check_Id)
7408 begin
7409 if Suppress = All_Checks then
7410 declare
7411 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
7412 begin
7413 Scope_Suppress.Suppress := (others => True);
7414 Insert_Actions (Assoc_Node, Ins_Actions);
7415 Scope_Suppress.Suppress := Sva;
7416 end;
7418 else
7419 declare
7420 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
7421 begin
7422 Scope_Suppress.Suppress (Suppress) := True;
7423 Insert_Actions (Assoc_Node, Ins_Actions);
7424 Scope_Suppress.Suppress (Suppress) := Svg;
7425 end;
7426 end if;
7427 end Insert_Actions;
7429 --------------------------
7430 -- Insert_Actions_After --
7431 --------------------------
7433 procedure Insert_Actions_After
7434 (Assoc_Node : Node_Id;
7435 Ins_Actions : List_Id)
7437 begin
7438 if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then
7439 Store_After_Actions_In_Scope (Ins_Actions);
7440 else
7441 Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
7442 end if;
7443 end Insert_Actions_After;
7445 ------------------------
7446 -- Insert_Declaration --
7447 ------------------------
7449 procedure Insert_Declaration (N : Node_Id; Decl : Node_Id) is
7450 P : Node_Id;
7452 begin
7453 pragma Assert (Nkind (N) in N_Subexpr);
7455 -- Climb until we find a procedure or a package
7457 P := N;
7458 loop
7459 pragma Assert (Present (Parent (P)));
7460 P := Parent (P);
7462 if Is_List_Member (P) then
7463 exit when Nkind_In (Parent (P), N_Package_Specification,
7464 N_Subprogram_Body);
7466 -- Special handling for handled sequence of statements, we must
7467 -- insert in the statements not the exception handlers!
7469 if Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements then
7470 P := First (Statements (Parent (P)));
7471 exit;
7472 end if;
7473 end if;
7474 end loop;
7476 -- Now do the insertion
7478 Insert_Before (P, Decl);
7479 Analyze (Decl);
7480 end Insert_Declaration;
7482 ---------------------------------
7483 -- Insert_Library_Level_Action --
7484 ---------------------------------
7486 procedure Insert_Library_Level_Action (N : Node_Id) is
7487 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
7489 begin
7490 Push_Scope (Cunit_Entity (Current_Sem_Unit));
7491 -- And not Main_Unit as previously. If the main unit is a body,
7492 -- the scope needed to analyze the actions is the entity of the
7493 -- corresponding declaration.
7495 if No (Actions (Aux)) then
7496 Set_Actions (Aux, New_List (N));
7497 else
7498 Append (N, Actions (Aux));
7499 end if;
7501 Analyze (N);
7502 Pop_Scope;
7503 end Insert_Library_Level_Action;
7505 ----------------------------------
7506 -- Insert_Library_Level_Actions --
7507 ----------------------------------
7509 procedure Insert_Library_Level_Actions (L : List_Id) is
7510 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
7512 begin
7513 if Is_Non_Empty_List (L) then
7514 Push_Scope (Cunit_Entity (Main_Unit));
7515 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
7517 if No (Actions (Aux)) then
7518 Set_Actions (Aux, L);
7519 Analyze_List (L);
7520 else
7521 Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
7522 end if;
7524 Pop_Scope;
7525 end if;
7526 end Insert_Library_Level_Actions;
7528 ----------------------
7529 -- Inside_Init_Proc --
7530 ----------------------
7532 function Inside_Init_Proc return Boolean is
7533 S : Entity_Id;
7535 begin
7536 S := Current_Scope;
7537 while Present (S) and then S /= Standard_Standard loop
7538 if Is_Init_Proc (S) then
7539 return True;
7540 else
7541 S := Scope (S);
7542 end if;
7543 end loop;
7545 return False;
7546 end Inside_Init_Proc;
7548 ----------------------------
7549 -- Is_All_Null_Statements --
7550 ----------------------------
7552 function Is_All_Null_Statements (L : List_Id) return Boolean is
7553 Stm : Node_Id;
7555 begin
7556 Stm := First (L);
7557 while Present (Stm) loop
7558 if Nkind (Stm) /= N_Null_Statement then
7559 return False;
7560 end if;
7562 Next (Stm);
7563 end loop;
7565 return True;
7566 end Is_All_Null_Statements;
7568 --------------------------------------------------
7569 -- Is_Displacement_Of_Object_Or_Function_Result --
7570 --------------------------------------------------
7572 function Is_Displacement_Of_Object_Or_Function_Result
7573 (Obj_Id : Entity_Id) return Boolean
7575 function Is_Controlled_Function_Call (N : Node_Id) return Boolean;
7576 -- Determine whether node N denotes a controlled function call
7578 function Is_Controlled_Indexing (N : Node_Id) return Boolean;
7579 -- Determine whether node N denotes a generalized indexing form which
7580 -- involves a controlled result.
7582 function Is_Displace_Call (N : Node_Id) return Boolean;
7583 -- Determine whether node N denotes a call to Ada.Tags.Displace
7585 function Is_Source_Object (N : Node_Id) return Boolean;
7586 -- Determine whether a particular node denotes a source object
7588 function Strip (N : Node_Id) return Node_Id;
7589 -- Examine arbitrary node N by stripping various indirections and return
7590 -- the "real" node.
7592 ---------------------------------
7593 -- Is_Controlled_Function_Call --
7594 ---------------------------------
7596 function Is_Controlled_Function_Call (N : Node_Id) return Boolean is
7597 Expr : Node_Id;
7599 begin
7600 -- When a function call appears in Object.Operation format, the
7601 -- original representation has several possible forms depending on
7602 -- the availability and form of actual parameters:
7604 -- Obj.Func N_Selected_Component
7605 -- Obj.Func (Actual) N_Indexed_Component
7606 -- Obj.Func (Formal => Actual) N_Function_Call, whose Name is an
7607 -- N_Selected_Component
7609 Expr := Original_Node (N);
7610 loop
7611 if Nkind (Expr) = N_Function_Call then
7612 Expr := Name (Expr);
7614 -- "Obj.Func (Actual)" case
7616 elsif Nkind (Expr) = N_Indexed_Component then
7617 Expr := Prefix (Expr);
7619 -- "Obj.Func" or "Obj.Func (Formal => Actual) case
7621 elsif Nkind (Expr) = N_Selected_Component then
7622 Expr := Selector_Name (Expr);
7624 else
7625 exit;
7626 end if;
7627 end loop;
7629 return
7630 Nkind (Expr) in N_Has_Entity
7631 and then Present (Entity (Expr))
7632 and then Ekind (Entity (Expr)) = E_Function
7633 and then Needs_Finalization (Etype (Entity (Expr)));
7634 end Is_Controlled_Function_Call;
7636 ----------------------------
7637 -- Is_Controlled_Indexing --
7638 ----------------------------
7640 function Is_Controlled_Indexing (N : Node_Id) return Boolean is
7641 Expr : constant Node_Id := Original_Node (N);
7643 begin
7644 return
7645 Nkind (Expr) = N_Indexed_Component
7646 and then Present (Generalized_Indexing (Expr))
7647 and then Needs_Finalization (Etype (Expr));
7648 end Is_Controlled_Indexing;
7650 ----------------------
7651 -- Is_Displace_Call --
7652 ----------------------
7654 function Is_Displace_Call (N : Node_Id) return Boolean is
7655 Call : constant Node_Id := Strip (N);
7657 begin
7658 return
7659 Present (Call)
7660 and then Nkind (Call) = N_Function_Call
7661 and then Nkind (Name (Call)) in N_Has_Entity
7662 and then Is_RTE (Entity (Name (Call)), RE_Displace);
7663 end Is_Displace_Call;
7665 ----------------------
7666 -- Is_Source_Object --
7667 ----------------------
7669 function Is_Source_Object (N : Node_Id) return Boolean is
7670 Obj : constant Node_Id := Strip (N);
7672 begin
7673 return
7674 Present (Obj)
7675 and then Comes_From_Source (Obj)
7676 and then Nkind (Obj) in N_Has_Entity
7677 and then Is_Object (Entity (Obj));
7678 end Is_Source_Object;
7680 -----------
7681 -- Strip --
7682 -----------
7684 function Strip (N : Node_Id) return Node_Id is
7685 Result : Node_Id;
7687 begin
7688 Result := N;
7689 loop
7690 if Nkind (Result) = N_Explicit_Dereference then
7691 Result := Prefix (Result);
7693 elsif Nkind_In (Result, N_Type_Conversion,
7694 N_Unchecked_Type_Conversion)
7695 then
7696 Result := Expression (Result);
7698 else
7699 exit;
7700 end if;
7701 end loop;
7703 return Result;
7704 end Strip;
7706 -- Local variables
7708 Obj_Decl : constant Node_Id := Declaration_Node (Obj_Id);
7709 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
7710 Orig_Decl : constant Node_Id := Original_Node (Obj_Decl);
7711 Orig_Expr : Node_Id;
7713 -- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
7715 begin
7716 -- Case 1:
7718 -- Obj : CW_Type := Function_Call (...);
7720 -- is rewritten into:
7722 -- Temp : ... := Function_Call (...)'reference;
7723 -- Obj : CW_Type renames (... Ada.Tags.Displace (Temp));
7725 -- where the return type of the function and the class-wide type require
7726 -- dispatch table pointer displacement.
7728 -- Case 2:
7730 -- Obj : CW_Type := Container (...);
7732 -- is rewritten into:
7734 -- Temp : ... := Function_Call (Container, ...)'reference;
7735 -- Obj : CW_Type renames (... Ada.Tags.Displace (Temp));
7737 -- where the container element type and the class-wide type require
7738 -- dispatch table pointer dispacement.
7740 -- Case 3:
7742 -- Obj : CW_Type := Src_Obj;
7744 -- is rewritten into:
7746 -- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
7748 -- where the type of the source object and the class-wide type require
7749 -- dispatch table pointer displacement.
7751 if Nkind (Obj_Decl) = N_Object_Renaming_Declaration
7752 and then Is_Class_Wide_Type (Obj_Typ)
7753 and then Is_Displace_Call (Renamed_Object (Obj_Id))
7754 and then Nkind (Orig_Decl) = N_Object_Declaration
7755 and then Comes_From_Source (Orig_Decl)
7756 then
7757 Orig_Expr := Expression (Orig_Decl);
7759 return
7760 Is_Controlled_Function_Call (Orig_Expr)
7761 or else Is_Controlled_Indexing (Orig_Expr)
7762 or else Is_Source_Object (Orig_Expr);
7763 end if;
7765 return False;
7766 end Is_Displacement_Of_Object_Or_Function_Result;
7768 ------------------------------
7769 -- Is_Finalizable_Transient --
7770 ------------------------------
7772 function Is_Finalizable_Transient
7773 (Decl : Node_Id;
7774 Rel_Node : Node_Id) return Boolean
7776 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
7777 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
7779 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
7780 -- Determine whether transient object Trans_Id is initialized either
7781 -- by a function call which returns an access type or simply renames
7782 -- another pointer.
7784 function Initialized_By_Aliased_BIP_Func_Call
7785 (Trans_Id : Entity_Id) return Boolean;
7786 -- Determine whether transient object Trans_Id is initialized by a
7787 -- build-in-place function call where the BIPalloc parameter is of
7788 -- value 1 and BIPaccess is not null. This case creates an aliasing
7789 -- between the returned value and the value denoted by BIPaccess.
7791 function Is_Aliased
7792 (Trans_Id : Entity_Id;
7793 First_Stmt : Node_Id) return Boolean;
7794 -- Determine whether transient object Trans_Id has been renamed or
7795 -- aliased through 'reference in the statement list starting from
7796 -- First_Stmt.
7798 function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
7799 -- Determine whether transient object Trans_Id is allocated on the heap
7801 function Is_Iterated_Container
7802 (Trans_Id : Entity_Id;
7803 First_Stmt : Node_Id) return Boolean;
7804 -- Determine whether transient object Trans_Id denotes a container which
7805 -- is in the process of being iterated in the statement list starting
7806 -- from First_Stmt.
7808 ---------------------------
7809 -- Initialized_By_Access --
7810 ---------------------------
7812 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
7813 Expr : constant Node_Id := Expression (Parent (Trans_Id));
7815 begin
7816 return
7817 Present (Expr)
7818 and then Nkind (Expr) /= N_Reference
7819 and then Is_Access_Type (Etype (Expr));
7820 end Initialized_By_Access;
7822 ------------------------------------------
7823 -- Initialized_By_Aliased_BIP_Func_Call --
7824 ------------------------------------------
7826 function Initialized_By_Aliased_BIP_Func_Call
7827 (Trans_Id : Entity_Id) return Boolean
7829 Call : Node_Id := Expression (Parent (Trans_Id));
7831 begin
7832 -- Build-in-place calls usually appear in 'reference format
7834 if Nkind (Call) = N_Reference then
7835 Call := Prefix (Call);
7836 end if;
7838 Call := Unqual_Conv (Call);
7840 if Is_Build_In_Place_Function_Call (Call) then
7841 declare
7842 Access_Nam : Name_Id := No_Name;
7843 Access_OK : Boolean := False;
7844 Actual : Node_Id;
7845 Alloc_Nam : Name_Id := No_Name;
7846 Alloc_OK : Boolean := False;
7847 Formal : Node_Id;
7848 Func_Id : Entity_Id;
7849 Param : Node_Id;
7851 begin
7852 -- Examine all parameter associations of the function call
7854 Param := First (Parameter_Associations (Call));
7855 while Present (Param) loop
7856 if Nkind (Param) = N_Parameter_Association
7857 and then Nkind (Selector_Name (Param)) = N_Identifier
7858 then
7859 Actual := Explicit_Actual_Parameter (Param);
7860 Formal := Selector_Name (Param);
7862 -- Construct the names of formals BIPaccess and BIPalloc
7863 -- using the function name retrieved from an arbitrary
7864 -- formal.
7866 if Access_Nam = No_Name
7867 and then Alloc_Nam = No_Name
7868 and then Present (Entity (Formal))
7869 then
7870 Func_Id := Scope (Entity (Formal));
7872 Access_Nam :=
7873 New_External_Name (Chars (Func_Id),
7874 BIP_Formal_Suffix (BIP_Object_Access));
7876 Alloc_Nam :=
7877 New_External_Name (Chars (Func_Id),
7878 BIP_Formal_Suffix (BIP_Alloc_Form));
7879 end if;
7881 -- A match for BIPaccess => Temp has been found
7883 if Chars (Formal) = Access_Nam
7884 and then Nkind (Actual) /= N_Null
7885 then
7886 Access_OK := True;
7887 end if;
7889 -- A match for BIPalloc => 1 has been found
7891 if Chars (Formal) = Alloc_Nam
7892 and then Nkind (Actual) = N_Integer_Literal
7893 and then Intval (Actual) = Uint_1
7894 then
7895 Alloc_OK := True;
7896 end if;
7897 end if;
7899 Next (Param);
7900 end loop;
7902 return Access_OK and Alloc_OK;
7903 end;
7904 end if;
7906 return False;
7907 end Initialized_By_Aliased_BIP_Func_Call;
7909 ----------------
7910 -- Is_Aliased --
7911 ----------------
7913 function Is_Aliased
7914 (Trans_Id : Entity_Id;
7915 First_Stmt : Node_Id) return Boolean
7917 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id;
7918 -- Given an object renaming declaration, retrieve the entity of the
7919 -- renamed name. Return Empty if the renamed name is anything other
7920 -- than a variable or a constant.
7922 -------------------------
7923 -- Find_Renamed_Object --
7924 -------------------------
7926 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is
7927 Ren_Obj : Node_Id := Empty;
7929 function Find_Object (N : Node_Id) return Traverse_Result;
7930 -- Try to detect an object which is either a constant or a
7931 -- variable.
7933 -----------------
7934 -- Find_Object --
7935 -----------------
7937 function Find_Object (N : Node_Id) return Traverse_Result is
7938 begin
7939 -- Stop the search once a constant or a variable has been
7940 -- detected.
7942 if Nkind (N) = N_Identifier
7943 and then Present (Entity (N))
7944 and then Ekind_In (Entity (N), E_Constant, E_Variable)
7945 then
7946 Ren_Obj := Entity (N);
7947 return Abandon;
7948 end if;
7950 return OK;
7951 end Find_Object;
7953 procedure Search is new Traverse_Proc (Find_Object);
7955 -- Local variables
7957 Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl));
7959 -- Start of processing for Find_Renamed_Object
7961 begin
7962 -- Actions related to dispatching calls may appear as renamings of
7963 -- tags. Do not process this type of renaming because it does not
7964 -- use the actual value of the object.
7966 if not Is_RTE (Typ, RE_Tag_Ptr) then
7967 Search (Name (Ren_Decl));
7968 end if;
7970 return Ren_Obj;
7971 end Find_Renamed_Object;
7973 -- Local variables
7975 Expr : Node_Id;
7976 Ren_Obj : Entity_Id;
7977 Stmt : Node_Id;
7979 -- Start of processing for Is_Aliased
7981 begin
7982 -- A controlled transient object is not considered aliased when it
7983 -- appears inside an expression_with_actions node even when there are
7984 -- explicit aliases of it:
7986 -- do
7987 -- Trans_Id : Ctrl_Typ ...; -- transient object
7988 -- Alias : ... := Trans_Id; -- object is aliased
7989 -- Val : constant Boolean :=
7990 -- ... Alias ...; -- aliasing ends
7991 -- <finalize Trans_Id> -- object safe to finalize
7992 -- in Val end;
7994 -- Expansion ensures that all aliases are encapsulated in the actions
7995 -- list and do not leak to the expression by forcing the evaluation
7996 -- of the expression.
7998 if Nkind (Rel_Node) = N_Expression_With_Actions then
7999 return False;
8001 -- Otherwise examine the statements after the controlled transient
8002 -- object and look for various forms of aliasing.
8004 else
8005 Stmt := First_Stmt;
8006 while Present (Stmt) loop
8007 if Nkind (Stmt) = N_Object_Declaration then
8008 Expr := Expression (Stmt);
8010 -- Aliasing of the form:
8011 -- Obj : ... := Trans_Id'reference;
8013 if Present (Expr)
8014 and then Nkind (Expr) = N_Reference
8015 and then Nkind (Prefix (Expr)) = N_Identifier
8016 and then Entity (Prefix (Expr)) = Trans_Id
8017 then
8018 return True;
8019 end if;
8021 elsif Nkind (Stmt) = N_Object_Renaming_Declaration then
8022 Ren_Obj := Find_Renamed_Object (Stmt);
8024 -- Aliasing of the form:
8025 -- Obj : ... renames ... Trans_Id ...;
8027 if Present (Ren_Obj) and then Ren_Obj = Trans_Id then
8028 return True;
8029 end if;
8030 end if;
8032 Next (Stmt);
8033 end loop;
8035 return False;
8036 end if;
8037 end Is_Aliased;
8039 ------------------
8040 -- Is_Allocated --
8041 ------------------
8043 function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
8044 Expr : constant Node_Id := Expression (Parent (Trans_Id));
8045 begin
8046 return
8047 Is_Access_Type (Etype (Trans_Id))
8048 and then Present (Expr)
8049 and then Nkind (Expr) = N_Allocator;
8050 end Is_Allocated;
8052 ---------------------------
8053 -- Is_Iterated_Container --
8054 ---------------------------
8056 function Is_Iterated_Container
8057 (Trans_Id : Entity_Id;
8058 First_Stmt : Node_Id) return Boolean
8060 Aspect : Node_Id;
8061 Call : Node_Id;
8062 Iter : Entity_Id;
8063 Param : Node_Id;
8064 Stmt : Node_Id;
8065 Typ : Entity_Id;
8067 begin
8068 -- It is not possible to iterate over containers in non-Ada 2012 code
8070 if Ada_Version < Ada_2012 then
8071 return False;
8072 end if;
8074 Typ := Etype (Trans_Id);
8076 -- Handle access type created for secondary stack use
8078 if Is_Access_Type (Typ) then
8079 Typ := Designated_Type (Typ);
8080 end if;
8082 -- Look for aspect Default_Iterator. It may be part of a type
8083 -- declaration for a container, or inherited from a base type
8084 -- or parent type.
8086 Aspect := Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
8088 if Present (Aspect) then
8089 Iter := Entity (Aspect);
8091 -- Examine the statements following the container object and
8092 -- look for a call to the default iterate routine where the
8093 -- first parameter is the transient. Such a call appears as:
8095 -- It : Access_To_CW_Iterator :=
8096 -- Iterate (Tran_Id.all, ...)'reference;
8098 Stmt := First_Stmt;
8099 while Present (Stmt) loop
8101 -- Detect an object declaration which is initialized by a
8102 -- secondary stack function call.
8104 if Nkind (Stmt) = N_Object_Declaration
8105 and then Present (Expression (Stmt))
8106 and then Nkind (Expression (Stmt)) = N_Reference
8107 and then Nkind (Prefix (Expression (Stmt))) = N_Function_Call
8108 then
8109 Call := Prefix (Expression (Stmt));
8111 -- The call must invoke the default iterate routine of
8112 -- the container and the transient object must appear as
8113 -- the first actual parameter. Skip any calls whose names
8114 -- are not entities.
8116 if Is_Entity_Name (Name (Call))
8117 and then Entity (Name (Call)) = Iter
8118 and then Present (Parameter_Associations (Call))
8119 then
8120 Param := First (Parameter_Associations (Call));
8122 if Nkind (Param) = N_Explicit_Dereference
8123 and then Entity (Prefix (Param)) = Trans_Id
8124 then
8125 return True;
8126 end if;
8127 end if;
8128 end if;
8130 Next (Stmt);
8131 end loop;
8132 end if;
8134 return False;
8135 end Is_Iterated_Container;
8137 -- Local variables
8139 Desig : Entity_Id := Obj_Typ;
8141 -- Start of processing for Is_Finalizable_Transient
8143 begin
8144 -- Handle access types
8146 if Is_Access_Type (Desig) then
8147 Desig := Available_View (Designated_Type (Desig));
8148 end if;
8150 return
8151 Ekind_In (Obj_Id, E_Constant, E_Variable)
8152 and then Needs_Finalization (Desig)
8153 and then Requires_Transient_Scope (Desig)
8154 and then Nkind (Rel_Node) /= N_Simple_Return_Statement
8156 -- Do not consider a transient object that was already processed
8158 and then not Is_Finalized_Transient (Obj_Id)
8160 -- Do not consider renamed or 'reference-d transient objects because
8161 -- the act of renaming extends the object's lifetime.
8163 and then not Is_Aliased (Obj_Id, Decl)
8165 -- Do not consider transient objects allocated on the heap since
8166 -- they are attached to a finalization master.
8168 and then not Is_Allocated (Obj_Id)
8170 -- If the transient object is a pointer, check that it is not
8171 -- initialized by a function that returns a pointer or acts as a
8172 -- renaming of another pointer.
8174 and then
8175 (not Is_Access_Type (Obj_Typ)
8176 or else not Initialized_By_Access (Obj_Id))
8178 -- Do not consider transient objects which act as indirect aliases
8179 -- of build-in-place function results.
8181 and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
8183 -- Do not consider conversions of tags to class-wide types
8185 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
8187 -- Do not consider iterators because those are treated as normal
8188 -- controlled objects and are processed by the usual finalization
8189 -- machinery. This avoids the double finalization of an iterator.
8191 and then not Is_Iterator (Desig)
8193 -- Do not consider containers in the context of iterator loops. Such
8194 -- transient objects must exist for as long as the loop is around,
8195 -- otherwise any operation carried out by the iterator will fail.
8197 and then not Is_Iterated_Container (Obj_Id, Decl);
8198 end Is_Finalizable_Transient;
8200 ---------------------------------
8201 -- Is_Fully_Repped_Tagged_Type --
8202 ---------------------------------
8204 function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
8205 U : constant Entity_Id := Underlying_Type (T);
8206 Comp : Entity_Id;
8208 begin
8209 if No (U) or else not Is_Tagged_Type (U) then
8210 return False;
8211 elsif Has_Discriminants (U) then
8212 return False;
8213 elsif not Has_Specified_Layout (U) then
8214 return False;
8215 end if;
8217 -- Here we have a tagged type, see if it has any unlayed out fields
8218 -- other than a possible tag and parent fields. If so, we return False.
8220 Comp := First_Component (U);
8221 while Present (Comp) loop
8222 if not Is_Tag (Comp)
8223 and then Chars (Comp) /= Name_uParent
8224 and then No (Component_Clause (Comp))
8225 then
8226 return False;
8227 else
8228 Next_Component (Comp);
8229 end if;
8230 end loop;
8232 -- All components are layed out
8234 return True;
8235 end Is_Fully_Repped_Tagged_Type;
8237 ----------------------------------
8238 -- Is_Library_Level_Tagged_Type --
8239 ----------------------------------
8241 function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
8242 begin
8243 return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ);
8244 end Is_Library_Level_Tagged_Type;
8246 --------------------------
8247 -- Is_Non_BIP_Func_Call --
8248 --------------------------
8250 function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
8251 begin
8252 -- The expected call is of the format
8254 -- Func_Call'reference
8256 return
8257 Nkind (Expr) = N_Reference
8258 and then Nkind (Prefix (Expr)) = N_Function_Call
8259 and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
8260 end Is_Non_BIP_Func_Call;
8262 ----------------------------------
8263 -- Is_Possibly_Unaligned_Object --
8264 ----------------------------------
8266 function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
8267 T : constant Entity_Id := Etype (N);
8269 begin
8270 -- If renamed object, apply test to underlying object
8272 if Is_Entity_Name (N)
8273 and then Is_Object (Entity (N))
8274 and then Present (Renamed_Object (Entity (N)))
8275 then
8276 return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
8277 end if;
8279 -- Tagged and controlled types and aliased types are always aligned, as
8280 -- are concurrent types.
8282 if Is_Aliased (T)
8283 or else Has_Controlled_Component (T)
8284 or else Is_Concurrent_Type (T)
8285 or else Is_Tagged_Type (T)
8286 or else Is_Controlled (T)
8287 then
8288 return False;
8289 end if;
8291 -- If this is an element of a packed array, may be unaligned
8293 if Is_Ref_To_Bit_Packed_Array (N) then
8294 return True;
8295 end if;
8297 -- Case of indexed component reference: test whether prefix is unaligned
8299 if Nkind (N) = N_Indexed_Component then
8300 return Is_Possibly_Unaligned_Object (Prefix (N));
8302 -- Case of selected component reference
8304 elsif Nkind (N) = N_Selected_Component then
8305 declare
8306 P : constant Node_Id := Prefix (N);
8307 C : constant Entity_Id := Entity (Selector_Name (N));
8308 M : Nat;
8309 S : Nat;
8311 begin
8312 -- If component reference is for an array with non-static bounds,
8313 -- then it is always aligned: we can only process unaligned arrays
8314 -- with static bounds (more precisely compile time known bounds).
8316 if Is_Array_Type (T)
8317 and then not Compile_Time_Known_Bounds (T)
8318 then
8319 return False;
8320 end if;
8322 -- If component is aliased, it is definitely properly aligned
8324 if Is_Aliased (C) then
8325 return False;
8326 end if;
8328 -- If component is for a type implemented as a scalar, and the
8329 -- record is packed, and the component is other than the first
8330 -- component of the record, then the component may be unaligned.
8332 if Is_Packed (Etype (P))
8333 and then Represented_As_Scalar (Etype (C))
8334 and then First_Entity (Scope (C)) /= C
8335 then
8336 return True;
8337 end if;
8339 -- Compute maximum possible alignment for T
8341 -- If alignment is known, then that settles things
8343 if Known_Alignment (T) then
8344 M := UI_To_Int (Alignment (T));
8346 -- If alignment is not known, tentatively set max alignment
8348 else
8349 M := Ttypes.Maximum_Alignment;
8351 -- We can reduce this if the Esize is known since the default
8352 -- alignment will never be more than the smallest power of 2
8353 -- that does not exceed this Esize value.
8355 if Known_Esize (T) then
8356 S := UI_To_Int (Esize (T));
8358 while (M / 2) >= S loop
8359 M := M / 2;
8360 end loop;
8361 end if;
8362 end if;
8364 -- The following code is historical, it used to be present but it
8365 -- is too cautious, because the front-end does not know the proper
8366 -- default alignments for the target. Also, if the alignment is
8367 -- not known, the front end can't know in any case. If a copy is
8368 -- needed, the back-end will take care of it. This whole section
8369 -- including this comment can be removed later ???
8371 -- If the component reference is for a record that has a specified
8372 -- alignment, and we either know it is too small, or cannot tell,
8373 -- then the component may be unaligned.
8375 -- What is the following commented out code ???
8377 -- if Known_Alignment (Etype (P))
8378 -- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
8379 -- and then M > Alignment (Etype (P))
8380 -- then
8381 -- return True;
8382 -- end if;
8384 -- Case of component clause present which may specify an
8385 -- unaligned position.
8387 if Present (Component_Clause (C)) then
8389 -- Otherwise we can do a test to make sure that the actual
8390 -- start position in the record, and the length, are both
8391 -- consistent with the required alignment. If not, we know
8392 -- that we are unaligned.
8394 declare
8395 Align_In_Bits : constant Nat := M * System_Storage_Unit;
8396 begin
8397 if Component_Bit_Offset (C) mod Align_In_Bits /= 0
8398 or else Esize (C) mod Align_In_Bits /= 0
8399 then
8400 return True;
8401 end if;
8402 end;
8403 end if;
8405 -- Otherwise, for a component reference, test prefix
8407 return Is_Possibly_Unaligned_Object (P);
8408 end;
8410 -- If not a component reference, must be aligned
8412 else
8413 return False;
8414 end if;
8415 end Is_Possibly_Unaligned_Object;
8417 ---------------------------------
8418 -- Is_Possibly_Unaligned_Slice --
8419 ---------------------------------
8421 function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
8422 begin
8423 -- Go to renamed object
8425 if Is_Entity_Name (N)
8426 and then Is_Object (Entity (N))
8427 and then Present (Renamed_Object (Entity (N)))
8428 then
8429 return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
8430 end if;
8432 -- The reference must be a slice
8434 if Nkind (N) /= N_Slice then
8435 return False;
8436 end if;
8438 -- We only need to worry if the target has strict alignment
8440 if not Target_Strict_Alignment then
8441 return False;
8442 end if;
8444 -- If it is a slice, then look at the array type being sliced
8446 declare
8447 Sarr : constant Node_Id := Prefix (N);
8448 -- Prefix of the slice, i.e. the array being sliced
8450 Styp : constant Entity_Id := Etype (Prefix (N));
8451 -- Type of the array being sliced
8453 Pref : Node_Id;
8454 Ptyp : Entity_Id;
8456 begin
8457 -- The problems arise if the array object that is being sliced
8458 -- is a component of a record or array, and we cannot guarantee
8459 -- the alignment of the array within its containing object.
8461 -- To investigate this, we look at successive prefixes to see
8462 -- if we have a worrisome indexed or selected component.
8464 Pref := Sarr;
8465 loop
8466 -- Case of array is part of an indexed component reference
8468 if Nkind (Pref) = N_Indexed_Component then
8469 Ptyp := Etype (Prefix (Pref));
8471 -- The only problematic case is when the array is packed, in
8472 -- which case we really know nothing about the alignment of
8473 -- individual components.
8475 if Is_Bit_Packed_Array (Ptyp) then
8476 return True;
8477 end if;
8479 -- Case of array is part of a selected component reference
8481 elsif Nkind (Pref) = N_Selected_Component then
8482 Ptyp := Etype (Prefix (Pref));
8484 -- We are definitely in trouble if the record in question
8485 -- has an alignment, and either we know this alignment is
8486 -- inconsistent with the alignment of the slice, or we don't
8487 -- know what the alignment of the slice should be.
8489 if Known_Alignment (Ptyp)
8490 and then (Unknown_Alignment (Styp)
8491 or else Alignment (Styp) > Alignment (Ptyp))
8492 then
8493 return True;
8494 end if;
8496 -- We are in potential trouble if the record type is packed.
8497 -- We could special case when we know that the array is the
8498 -- first component, but that's not such a simple case ???
8500 if Is_Packed (Ptyp) then
8501 return True;
8502 end if;
8504 -- We are in trouble if there is a component clause, and
8505 -- either we do not know the alignment of the slice, or
8506 -- the alignment of the slice is inconsistent with the
8507 -- bit position specified by the component clause.
8509 declare
8510 Field : constant Entity_Id := Entity (Selector_Name (Pref));
8511 begin
8512 if Present (Component_Clause (Field))
8513 and then
8514 (Unknown_Alignment (Styp)
8515 or else
8516 (Component_Bit_Offset (Field) mod
8517 (System_Storage_Unit * Alignment (Styp))) /= 0)
8518 then
8519 return True;
8520 end if;
8521 end;
8523 -- For cases other than selected or indexed components we know we
8524 -- are OK, since no issues arise over alignment.
8526 else
8527 return False;
8528 end if;
8530 -- We processed an indexed component or selected component
8531 -- reference that looked safe, so keep checking prefixes.
8533 Pref := Prefix (Pref);
8534 end loop;
8535 end;
8536 end Is_Possibly_Unaligned_Slice;
8538 -------------------------------
8539 -- Is_Related_To_Func_Return --
8540 -------------------------------
8542 function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
8543 Expr : constant Node_Id := Related_Expression (Id);
8544 begin
8545 return
8546 Present (Expr)
8547 and then Nkind (Expr) = N_Explicit_Dereference
8548 and then Nkind (Parent (Expr)) = N_Simple_Return_Statement;
8549 end Is_Related_To_Func_Return;
8551 --------------------------------
8552 -- Is_Ref_To_Bit_Packed_Array --
8553 --------------------------------
8555 function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
8556 Result : Boolean;
8557 Expr : Node_Id;
8559 begin
8560 if Is_Entity_Name (N)
8561 and then Is_Object (Entity (N))
8562 and then Present (Renamed_Object (Entity (N)))
8563 then
8564 return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
8565 end if;
8567 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
8568 if Is_Bit_Packed_Array (Etype (Prefix (N))) then
8569 Result := True;
8570 else
8571 Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
8572 end if;
8574 if Result and then Nkind (N) = N_Indexed_Component then
8575 Expr := First (Expressions (N));
8576 while Present (Expr) loop
8577 Force_Evaluation (Expr);
8578 Next (Expr);
8579 end loop;
8580 end if;
8582 return Result;
8584 else
8585 return False;
8586 end if;
8587 end Is_Ref_To_Bit_Packed_Array;
8589 --------------------------------
8590 -- Is_Ref_To_Bit_Packed_Slice --
8591 --------------------------------
8593 function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
8594 begin
8595 if Nkind (N) = N_Type_Conversion then
8596 return Is_Ref_To_Bit_Packed_Slice (Expression (N));
8598 elsif Is_Entity_Name (N)
8599 and then Is_Object (Entity (N))
8600 and then Present (Renamed_Object (Entity (N)))
8601 then
8602 return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
8604 elsif Nkind (N) = N_Slice
8605 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
8606 then
8607 return True;
8609 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
8610 return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
8612 else
8613 return False;
8614 end if;
8615 end Is_Ref_To_Bit_Packed_Slice;
8617 -----------------------
8618 -- Is_Renamed_Object --
8619 -----------------------
8621 function Is_Renamed_Object (N : Node_Id) return Boolean is
8622 Pnod : constant Node_Id := Parent (N);
8623 Kind : constant Node_Kind := Nkind (Pnod);
8624 begin
8625 if Kind = N_Object_Renaming_Declaration then
8626 return True;
8627 elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
8628 return Is_Renamed_Object (Pnod);
8629 else
8630 return False;
8631 end if;
8632 end Is_Renamed_Object;
8634 --------------------------------------
8635 -- Is_Secondary_Stack_BIP_Func_Call --
8636 --------------------------------------
8638 function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is
8639 Alloc_Nam : Name_Id := No_Name;
8640 Actual : Node_Id;
8641 Call : Node_Id := Expr;
8642 Formal : Node_Id;
8643 Param : Node_Id;
8645 begin
8646 -- Build-in-place calls usually appear in 'reference format. Note that
8647 -- the accessibility check machinery may add an extra 'reference due to
8648 -- side effect removal.
8650 while Nkind (Call) = N_Reference loop
8651 Call := Prefix (Call);
8652 end loop;
8654 Call := Unqual_Conv (Call);
8656 if Is_Build_In_Place_Function_Call (Call) then
8658 -- Examine all parameter associations of the function call
8660 Param := First (Parameter_Associations (Call));
8661 while Present (Param) loop
8662 if Nkind (Param) = N_Parameter_Association then
8663 Formal := Selector_Name (Param);
8664 Actual := Explicit_Actual_Parameter (Param);
8666 -- Construct the name of formal BIPalloc. It is much easier to
8667 -- extract the name of the function using an arbitrary formal's
8668 -- scope rather than the Name field of Call.
8670 if Alloc_Nam = No_Name and then Present (Entity (Formal)) then
8671 Alloc_Nam :=
8672 New_External_Name
8673 (Chars (Scope (Entity (Formal))),
8674 BIP_Formal_Suffix (BIP_Alloc_Form));
8675 end if;
8677 -- A match for BIPalloc => 2 has been found
8679 if Chars (Formal) = Alloc_Nam
8680 and then Nkind (Actual) = N_Integer_Literal
8681 and then Intval (Actual) = Uint_2
8682 then
8683 return True;
8684 end if;
8685 end if;
8687 Next (Param);
8688 end loop;
8689 end if;
8691 return False;
8692 end Is_Secondary_Stack_BIP_Func_Call;
8694 -------------------------------------
8695 -- Is_Tag_To_Class_Wide_Conversion --
8696 -------------------------------------
8698 function Is_Tag_To_Class_Wide_Conversion
8699 (Obj_Id : Entity_Id) return Boolean
8701 Expr : constant Node_Id := Expression (Parent (Obj_Id));
8703 begin
8704 return
8705 Is_Class_Wide_Type (Etype (Obj_Id))
8706 and then Present (Expr)
8707 and then Nkind (Expr) = N_Unchecked_Type_Conversion
8708 and then Etype (Expression (Expr)) = RTE (RE_Tag);
8709 end Is_Tag_To_Class_Wide_Conversion;
8711 ----------------------------
8712 -- Is_Untagged_Derivation --
8713 ----------------------------
8715 function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
8716 begin
8717 return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
8718 or else
8719 (Is_Private_Type (T) and then Present (Full_View (T))
8720 and then not Is_Tagged_Type (Full_View (T))
8721 and then Is_Derived_Type (Full_View (T))
8722 and then Etype (Full_View (T)) /= T);
8723 end Is_Untagged_Derivation;
8725 ------------------------------------
8726 -- Is_Untagged_Private_Derivation --
8727 ------------------------------------
8729 function Is_Untagged_Private_Derivation
8730 (Priv_Typ : Entity_Id;
8731 Full_Typ : Entity_Id) return Boolean
8733 begin
8734 return
8735 Present (Priv_Typ)
8736 and then Is_Untagged_Derivation (Priv_Typ)
8737 and then Is_Private_Type (Etype (Priv_Typ))
8738 and then Present (Full_Typ)
8739 and then Is_Itype (Full_Typ);
8740 end Is_Untagged_Private_Derivation;
8742 ------------------------------
8743 -- Is_Verifiable_DIC_Pragma --
8744 ------------------------------
8746 function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean is
8747 Args : constant List_Id := Pragma_Argument_Associations (Prag);
8749 begin
8750 -- To qualify as verifiable, a DIC pragma must have a non-null argument
8752 return
8753 Present (Args)
8754 and then Nkind (Get_Pragma_Arg (First (Args))) /= N_Null;
8755 end Is_Verifiable_DIC_Pragma;
8757 ---------------------------
8758 -- Is_Volatile_Reference --
8759 ---------------------------
8761 function Is_Volatile_Reference (N : Node_Id) return Boolean is
8762 begin
8763 -- Only source references are to be treated as volatile, internally
8764 -- generated stuff cannot have volatile external effects.
8766 if not Comes_From_Source (N) then
8767 return False;
8769 -- Never true for reference to a type
8771 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
8772 return False;
8774 -- Never true for a compile time known constant
8776 elsif Compile_Time_Known_Value (N) then
8777 return False;
8779 -- True if object reference with volatile type
8781 elsif Is_Volatile_Object (N) then
8782 return True;
8784 -- True if reference to volatile entity
8786 elsif Is_Entity_Name (N) then
8787 return Treat_As_Volatile (Entity (N));
8789 -- True for slice of volatile array
8791 elsif Nkind (N) = N_Slice then
8792 return Is_Volatile_Reference (Prefix (N));
8794 -- True if volatile component
8796 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
8797 if (Is_Entity_Name (Prefix (N))
8798 and then Has_Volatile_Components (Entity (Prefix (N))))
8799 or else (Present (Etype (Prefix (N)))
8800 and then Has_Volatile_Components (Etype (Prefix (N))))
8801 then
8802 return True;
8803 else
8804 return Is_Volatile_Reference (Prefix (N));
8805 end if;
8807 -- Otherwise false
8809 else
8810 return False;
8811 end if;
8812 end Is_Volatile_Reference;
8814 --------------------
8815 -- Kill_Dead_Code --
8816 --------------------
8818 procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
8819 W : Boolean := Warn;
8820 -- Set False if warnings suppressed
8822 begin
8823 if Present (N) then
8824 Remove_Warning_Messages (N);
8826 -- Update the internal structures of the ABE mechanism in case the
8827 -- dead node is an elaboration scenario.
8829 Kill_Elaboration_Scenario (N);
8831 -- Generate warning if appropriate
8833 if W then
8835 -- We suppress the warning if this code is under control of an
8836 -- if statement, whose condition is a simple identifier, and
8837 -- either we are in an instance, or warnings off is set for this
8838 -- identifier. The reason for killing it in the instance case is
8839 -- that it is common and reasonable for code to be deleted in
8840 -- instances for various reasons.
8842 -- Could we use Is_Statically_Unevaluated here???
8844 if Nkind (Parent (N)) = N_If_Statement then
8845 declare
8846 C : constant Node_Id := Condition (Parent (N));
8847 begin
8848 if Nkind (C) = N_Identifier
8849 and then
8850 (In_Instance
8851 or else (Present (Entity (C))
8852 and then Has_Warnings_Off (Entity (C))))
8853 then
8854 W := False;
8855 end if;
8856 end;
8857 end if;
8859 -- Generate warning if not suppressed
8861 if W then
8862 Error_Msg_F
8863 ("?t?this code can never be executed and has been deleted!",
8865 end if;
8866 end if;
8868 -- Recurse into block statements and bodies to process declarations
8869 -- and statements.
8871 if Nkind (N) = N_Block_Statement
8872 or else Nkind (N) = N_Subprogram_Body
8873 or else Nkind (N) = N_Package_Body
8874 then
8875 Kill_Dead_Code (Declarations (N), False);
8876 Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
8878 if Nkind (N) = N_Subprogram_Body then
8879 Set_Is_Eliminated (Defining_Entity (N));
8880 end if;
8882 elsif Nkind (N) = N_Package_Declaration then
8883 Kill_Dead_Code (Visible_Declarations (Specification (N)));
8884 Kill_Dead_Code (Private_Declarations (Specification (N)));
8886 -- ??? After this point, Delete_Tree has been called on all
8887 -- declarations in Specification (N), so references to entities
8888 -- therein look suspicious.
8890 declare
8891 E : Entity_Id := First_Entity (Defining_Entity (N));
8893 begin
8894 while Present (E) loop
8895 if Ekind (E) = E_Operator then
8896 Set_Is_Eliminated (E);
8897 end if;
8899 Next_Entity (E);
8900 end loop;
8901 end;
8903 -- Recurse into composite statement to kill individual statements in
8904 -- particular instantiations.
8906 elsif Nkind (N) = N_If_Statement then
8907 Kill_Dead_Code (Then_Statements (N));
8908 Kill_Dead_Code (Elsif_Parts (N));
8909 Kill_Dead_Code (Else_Statements (N));
8911 elsif Nkind (N) = N_Loop_Statement then
8912 Kill_Dead_Code (Statements (N));
8914 elsif Nkind (N) = N_Case_Statement then
8915 declare
8916 Alt : Node_Id;
8917 begin
8918 Alt := First (Alternatives (N));
8919 while Present (Alt) loop
8920 Kill_Dead_Code (Statements (Alt));
8921 Next (Alt);
8922 end loop;
8923 end;
8925 elsif Nkind (N) = N_Case_Statement_Alternative then
8926 Kill_Dead_Code (Statements (N));
8928 -- Deal with dead instances caused by deleting instantiations
8930 elsif Nkind (N) in N_Generic_Instantiation then
8931 Remove_Dead_Instance (N);
8932 end if;
8933 end if;
8934 end Kill_Dead_Code;
8936 -- Case where argument is a list of nodes to be killed
8938 procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
8939 N : Node_Id;
8940 W : Boolean;
8942 begin
8943 W := Warn;
8945 if Is_Non_Empty_List (L) then
8946 N := First (L);
8947 while Present (N) loop
8948 Kill_Dead_Code (N, W);
8949 W := False;
8950 Next (N);
8951 end loop;
8952 end if;
8953 end Kill_Dead_Code;
8955 ------------------------
8956 -- Known_Non_Negative --
8957 ------------------------
8959 function Known_Non_Negative (Opnd : Node_Id) return Boolean is
8960 begin
8961 if Is_OK_Static_Expression (Opnd) and then Expr_Value (Opnd) >= 0 then
8962 return True;
8964 else
8965 declare
8966 Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
8967 begin
8968 return
8969 Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
8970 end;
8971 end if;
8972 end Known_Non_Negative;
8974 -----------------------------
8975 -- Make_CW_Equivalent_Type --
8976 -----------------------------
8978 -- Create a record type used as an equivalent of any member of the class
8979 -- which takes its size from exp.
8981 -- Generate the following code:
8983 -- type Equiv_T is record
8984 -- _parent : T (List of discriminant constraints taken from Exp);
8985 -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
8986 -- end Equiv_T;
8988 -- ??? Note that this type does not guarantee same alignment as all
8989 -- derived types
8991 function Make_CW_Equivalent_Type
8992 (T : Entity_Id;
8993 E : Node_Id) return Entity_Id
8995 Loc : constant Source_Ptr := Sloc (E);
8996 Root_Typ : constant Entity_Id := Root_Type (T);
8997 List_Def : constant List_Id := Empty_List;
8998 Comp_List : constant List_Id := New_List;
8999 Equiv_Type : Entity_Id;
9000 Range_Type : Entity_Id;
9001 Str_Type : Entity_Id;
9002 Constr_Root : Entity_Id;
9003 Sizexpr : Node_Id;
9005 begin
9006 -- If the root type is already constrained, there are no discriminants
9007 -- in the expression.
9009 if not Has_Discriminants (Root_Typ)
9010 or else Is_Constrained (Root_Typ)
9011 then
9012 Constr_Root := Root_Typ;
9014 -- At this point in the expansion, non-limited view of the type
9015 -- must be available, otherwise the error will be reported later.
9017 if From_Limited_With (Constr_Root)
9018 and then Present (Non_Limited_View (Constr_Root))
9019 then
9020 Constr_Root := Non_Limited_View (Constr_Root);
9021 end if;
9023 else
9024 Constr_Root := Make_Temporary (Loc, 'R');
9026 -- subtype cstr__n is T (List of discr constraints taken from Exp)
9028 Append_To (List_Def,
9029 Make_Subtype_Declaration (Loc,
9030 Defining_Identifier => Constr_Root,
9031 Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
9032 end if;
9034 -- Generate the range subtype declaration
9036 Range_Type := Make_Temporary (Loc, 'G');
9038 if not Is_Interface (Root_Typ) then
9040 -- subtype rg__xx is
9041 -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
9043 Sizexpr :=
9044 Make_Op_Subtract (Loc,
9045 Left_Opnd =>
9046 Make_Attribute_Reference (Loc,
9047 Prefix =>
9048 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
9049 Attribute_Name => Name_Size),
9050 Right_Opnd =>
9051 Make_Attribute_Reference (Loc,
9052 Prefix => New_Occurrence_Of (Constr_Root, Loc),
9053 Attribute_Name => Name_Object_Size));
9054 else
9055 -- subtype rg__xx is
9056 -- Storage_Offset range 1 .. Expr'size / Storage_Unit
9058 Sizexpr :=
9059 Make_Attribute_Reference (Loc,
9060 Prefix =>
9061 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
9062 Attribute_Name => Name_Size);
9063 end if;
9065 Set_Paren_Count (Sizexpr, 1);
9067 Append_To (List_Def,
9068 Make_Subtype_Declaration (Loc,
9069 Defining_Identifier => Range_Type,
9070 Subtype_Indication =>
9071 Make_Subtype_Indication (Loc,
9072 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Offset), Loc),
9073 Constraint => Make_Range_Constraint (Loc,
9074 Range_Expression =>
9075 Make_Range (Loc,
9076 Low_Bound => Make_Integer_Literal (Loc, 1),
9077 High_Bound =>
9078 Make_Op_Divide (Loc,
9079 Left_Opnd => Sizexpr,
9080 Right_Opnd => Make_Integer_Literal (Loc,
9081 Intval => System_Storage_Unit)))))));
9083 -- subtype str__nn is Storage_Array (rg__x);
9085 Str_Type := Make_Temporary (Loc, 'S');
9086 Append_To (List_Def,
9087 Make_Subtype_Declaration (Loc,
9088 Defining_Identifier => Str_Type,
9089 Subtype_Indication =>
9090 Make_Subtype_Indication (Loc,
9091 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
9092 Constraint =>
9093 Make_Index_Or_Discriminant_Constraint (Loc,
9094 Constraints =>
9095 New_List (New_Occurrence_Of (Range_Type, Loc))))));
9097 -- type Equiv_T is record
9098 -- [ _parent : Tnn; ]
9099 -- E : Str_Type;
9100 -- end Equiv_T;
9102 Equiv_Type := Make_Temporary (Loc, 'T');
9103 Set_Ekind (Equiv_Type, E_Record_Type);
9104 Set_Parent_Subtype (Equiv_Type, Constr_Root);
9106 -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
9107 -- treatment for this type. In particular, even though _parent's type
9108 -- is a controlled type or contains controlled components, we do not
9109 -- want to set Has_Controlled_Component on it to avoid making it gain
9110 -- an unwanted _controller component.
9112 Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
9114 -- A class-wide equivalent type does not require initialization
9116 Set_Suppress_Initialization (Equiv_Type);
9118 if not Is_Interface (Root_Typ) then
9119 Append_To (Comp_List,
9120 Make_Component_Declaration (Loc,
9121 Defining_Identifier =>
9122 Make_Defining_Identifier (Loc, Name_uParent),
9123 Component_Definition =>
9124 Make_Component_Definition (Loc,
9125 Aliased_Present => False,
9126 Subtype_Indication => New_Occurrence_Of (Constr_Root, Loc))));
9127 end if;
9129 Append_To (Comp_List,
9130 Make_Component_Declaration (Loc,
9131 Defining_Identifier => Make_Temporary (Loc, 'C'),
9132 Component_Definition =>
9133 Make_Component_Definition (Loc,
9134 Aliased_Present => False,
9135 Subtype_Indication => New_Occurrence_Of (Str_Type, Loc))));
9137 Append_To (List_Def,
9138 Make_Full_Type_Declaration (Loc,
9139 Defining_Identifier => Equiv_Type,
9140 Type_Definition =>
9141 Make_Record_Definition (Loc,
9142 Component_List =>
9143 Make_Component_List (Loc,
9144 Component_Items => Comp_List,
9145 Variant_Part => Empty))));
9147 -- Suppress all checks during the analysis of the expanded code to avoid
9148 -- the generation of spurious warnings under ZFP run-time.
9150 Insert_Actions (E, List_Def, Suppress => All_Checks);
9151 return Equiv_Type;
9152 end Make_CW_Equivalent_Type;
9154 -------------------------
9155 -- Make_Invariant_Call --
9156 -------------------------
9158 function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
9159 Loc : constant Source_Ptr := Sloc (Expr);
9160 Typ : constant Entity_Id := Base_Type (Etype (Expr));
9162 Proc_Id : Entity_Id;
9164 begin
9165 pragma Assert (Has_Invariants (Typ));
9167 Proc_Id := Invariant_Procedure (Typ);
9168 pragma Assert (Present (Proc_Id));
9170 return
9171 Make_Procedure_Call_Statement (Loc,
9172 Name => New_Occurrence_Of (Proc_Id, Loc),
9173 Parameter_Associations => New_List (Relocate_Node (Expr)));
9174 end Make_Invariant_Call;
9176 ------------------------
9177 -- Make_Literal_Range --
9178 ------------------------
9180 function Make_Literal_Range
9181 (Loc : Source_Ptr;
9182 Literal_Typ : Entity_Id) return Node_Id
9184 Lo : constant Node_Id :=
9185 New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
9186 Index : constant Entity_Id := Etype (Lo);
9187 Length_Expr : constant Node_Id :=
9188 Make_Op_Subtract (Loc,
9189 Left_Opnd =>
9190 Make_Integer_Literal (Loc,
9191 Intval => String_Literal_Length (Literal_Typ)),
9192 Right_Opnd => Make_Integer_Literal (Loc, 1));
9194 Hi : Node_Id;
9196 begin
9197 Set_Analyzed (Lo, False);
9199 if Is_Integer_Type (Index) then
9200 Hi :=
9201 Make_Op_Add (Loc,
9202 Left_Opnd => New_Copy_Tree (Lo),
9203 Right_Opnd => Length_Expr);
9204 else
9205 Hi :=
9206 Make_Attribute_Reference (Loc,
9207 Attribute_Name => Name_Val,
9208 Prefix => New_Occurrence_Of (Index, Loc),
9209 Expressions => New_List (
9210 Make_Op_Add (Loc,
9211 Left_Opnd =>
9212 Make_Attribute_Reference (Loc,
9213 Attribute_Name => Name_Pos,
9214 Prefix => New_Occurrence_Of (Index, Loc),
9215 Expressions => New_List (New_Copy_Tree (Lo))),
9216 Right_Opnd => Length_Expr)));
9217 end if;
9219 return
9220 Make_Range (Loc,
9221 Low_Bound => Lo,
9222 High_Bound => Hi);
9223 end Make_Literal_Range;
9225 --------------------------
9226 -- Make_Non_Empty_Check --
9227 --------------------------
9229 function Make_Non_Empty_Check
9230 (Loc : Source_Ptr;
9231 N : Node_Id) return Node_Id
9233 begin
9234 return
9235 Make_Op_Ne (Loc,
9236 Left_Opnd =>
9237 Make_Attribute_Reference (Loc,
9238 Attribute_Name => Name_Length,
9239 Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
9240 Right_Opnd =>
9241 Make_Integer_Literal (Loc, 0));
9242 end Make_Non_Empty_Check;
9244 -------------------------
9245 -- Make_Predicate_Call --
9246 -------------------------
9248 -- WARNING: This routine manages Ghost regions. Return statements must be
9249 -- replaced by gotos which jump to the end of the routine and restore the
9250 -- Ghost mode.
9252 function Make_Predicate_Call
9253 (Typ : Entity_Id;
9254 Expr : Node_Id;
9255 Mem : Boolean := False) return Node_Id
9257 Loc : constant Source_Ptr := Sloc (Expr);
9259 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
9260 -- Save the Ghost mode to restore on exit
9262 Call : Node_Id;
9263 Func_Id : Entity_Id;
9265 begin
9266 pragma Assert (Present (Predicate_Function (Typ)));
9268 -- The related type may be subject to pragma Ghost. Set the mode now to
9269 -- ensure that the call is properly marked as Ghost.
9271 Set_Ghost_Mode (Typ);
9273 -- Call special membership version if requested and available
9275 if Mem and then Present (Predicate_Function_M (Typ)) then
9276 Func_Id := Predicate_Function_M (Typ);
9277 else
9278 Func_Id := Predicate_Function (Typ);
9279 end if;
9281 -- Case of calling normal predicate function
9283 -- If the type is tagged, the expression may be class-wide, in which
9284 -- case it has to be converted to its root type, given that the
9285 -- generated predicate function is not dispatching.
9287 if Is_Tagged_Type (Typ) then
9288 Call :=
9289 Make_Function_Call (Loc,
9290 Name => New_Occurrence_Of (Func_Id, Loc),
9291 Parameter_Associations =>
9292 New_List (Convert_To (Typ, Relocate_Node (Expr))));
9293 else
9294 Call :=
9295 Make_Function_Call (Loc,
9296 Name => New_Occurrence_Of (Func_Id, Loc),
9297 Parameter_Associations => New_List (Relocate_Node (Expr)));
9298 end if;
9300 Restore_Ghost_Mode (Saved_GM);
9302 return Call;
9303 end Make_Predicate_Call;
9305 --------------------------
9306 -- Make_Predicate_Check --
9307 --------------------------
9309 function Make_Predicate_Check
9310 (Typ : Entity_Id;
9311 Expr : Node_Id) return Node_Id
9313 Loc : constant Source_Ptr := Sloc (Expr);
9315 procedure Add_Failure_Expression (Args : List_Id);
9316 -- Add the failure expression of pragma Predicate_Failure (if any) to
9317 -- list Args.
9319 ----------------------------
9320 -- Add_Failure_Expression --
9321 ----------------------------
9323 procedure Add_Failure_Expression (Args : List_Id) is
9324 function Failure_Expression return Node_Id;
9325 pragma Inline (Failure_Expression);
9326 -- Find aspect or pragma Predicate_Failure that applies to type Typ
9327 -- and return its expression. Return Empty if no such annotation is
9328 -- available.
9330 function Is_OK_PF_Aspect (Asp : Node_Id) return Boolean;
9331 pragma Inline (Is_OK_PF_Aspect);
9332 -- Determine whether aspect Asp is a suitable Predicate_Failure
9333 -- aspect that applies to type Typ.
9335 function Is_OK_PF_Pragma (Prag : Node_Id) return Boolean;
9336 pragma Inline (Is_OK_PF_Pragma);
9337 -- Determine whether pragma Prag is a suitable Predicate_Failure
9338 -- pragma that applies to type Typ.
9340 procedure Replace_Subtype_Reference (N : Node_Id);
9341 -- Replace the current instance of type Typ denoted by N with
9342 -- expression Expr.
9344 ------------------------
9345 -- Failure_Expression --
9346 ------------------------
9348 function Failure_Expression return Node_Id is
9349 Item : Node_Id;
9351 begin
9352 -- The management of the rep item chain involves "inheritance" of
9353 -- parent type chains. If a parent [sub]type is already subject to
9354 -- pragma Predicate_Failure, then the pragma will also appear in
9355 -- the chain of the child [sub]type, which in turn may possess a
9356 -- pragma of its own. Avoid order-dependent issues by inspecting
9357 -- the rep item chain directly. Note that routine Get_Pragma may
9358 -- return a parent pragma.
9360 Item := First_Rep_Item (Typ);
9361 while Present (Item) loop
9363 -- Predicate_Failure appears as an aspect
9365 if Nkind (Item) = N_Aspect_Specification
9366 and then Is_OK_PF_Aspect (Item)
9367 then
9368 return Expression (Item);
9370 -- Predicate_Failure appears as a pragma
9372 elsif Nkind (Item) = N_Pragma
9373 and then Is_OK_PF_Pragma (Item)
9374 then
9375 return
9376 Get_Pragma_Arg
9377 (Next (First (Pragma_Argument_Associations (Item))));
9378 end if;
9380 Item := Next_Rep_Item (Item);
9381 end loop;
9383 return Empty;
9384 end Failure_Expression;
9386 ---------------------
9387 -- Is_OK_PF_Aspect --
9388 ---------------------
9390 function Is_OK_PF_Aspect (Asp : Node_Id) return Boolean is
9391 begin
9392 -- To qualify, the aspect must apply to the type subjected to the
9393 -- predicate check.
9395 return
9396 Chars (Identifier (Asp)) = Name_Predicate_Failure
9397 and then Present (Entity (Asp))
9398 and then Entity (Asp) = Typ;
9399 end Is_OK_PF_Aspect;
9401 ---------------------
9402 -- Is_OK_PF_Pragma --
9403 ---------------------
9405 function Is_OK_PF_Pragma (Prag : Node_Id) return Boolean is
9406 Args : constant List_Id := Pragma_Argument_Associations (Prag);
9407 Typ_Arg : Node_Id;
9409 begin
9410 -- Nothing to do when the pragma does not denote Predicate_Failure
9412 if Pragma_Name (Prag) /= Name_Predicate_Failure then
9413 return False;
9415 -- Nothing to do when the pragma lacks arguments, in which case it
9416 -- is illegal.
9418 elsif No (Args) or else Is_Empty_List (Args) then
9419 return False;
9420 end if;
9422 Typ_Arg := Get_Pragma_Arg (First (Args));
9424 -- To qualify, the local name argument of the pragma must denote
9425 -- the type subjected to the predicate check.
9427 return
9428 Is_Entity_Name (Typ_Arg)
9429 and then Present (Entity (Typ_Arg))
9430 and then Entity (Typ_Arg) = Typ;
9431 end Is_OK_PF_Pragma;
9433 --------------------------------
9434 -- Replace_Subtype_Reference --
9435 --------------------------------
9437 procedure Replace_Subtype_Reference (N : Node_Id) is
9438 begin
9439 Rewrite (N, New_Copy_Tree (Expr));
9441 -- We want to treat the node as if it comes from source, so that
9442 -- ASIS will not ignore it.
9444 Set_Comes_From_Source (N, True);
9445 end Replace_Subtype_Reference;
9447 procedure Replace_Subtype_References is
9448 new Replace_Type_References_Generic (Replace_Subtype_Reference);
9450 -- Local variables
9452 PF_Expr : constant Node_Id := Failure_Expression;
9453 Expr : Node_Id;
9455 -- Start of processing for Add_Failure_Expression
9457 begin
9458 if Present (PF_Expr) then
9460 -- Replace any occurrences of the current instance of the type
9461 -- with the object subjected to the predicate check.
9463 Expr := New_Copy_Tree (PF_Expr);
9464 Replace_Subtype_References (Expr, Typ);
9466 -- The failure expression appears as the third argument of the
9467 -- Check pragma.
9469 Append_To (Args,
9470 Make_Pragma_Argument_Association (Loc,
9471 Expression => Expr));
9472 end if;
9473 end Add_Failure_Expression;
9475 -- Local variables
9477 Args : List_Id;
9478 Nam : Name_Id;
9480 -- Start of processing for Make_Predicate_Check
9482 begin
9483 -- If predicate checks are suppressed, then return a null statement. For
9484 -- this call, we check only the scope setting. If the caller wants to
9485 -- check a specific entity's setting, they must do it manually.
9487 if Predicate_Checks_Suppressed (Empty) then
9488 return Make_Null_Statement (Loc);
9489 end if;
9491 -- Do not generate a check within an internal subprogram (stream
9492 -- functions and the like, including including predicate functions).
9494 if Within_Internal_Subprogram then
9495 return Make_Null_Statement (Loc);
9496 end if;
9498 -- Compute proper name to use, we need to get this right so that the
9499 -- right set of check policies apply to the Check pragma we are making.
9501 if Has_Dynamic_Predicate_Aspect (Typ) then
9502 Nam := Name_Dynamic_Predicate;
9503 elsif Has_Static_Predicate_Aspect (Typ) then
9504 Nam := Name_Static_Predicate;
9505 else
9506 Nam := Name_Predicate;
9507 end if;
9509 Args := New_List (
9510 Make_Pragma_Argument_Association (Loc,
9511 Expression => Make_Identifier (Loc, Nam)),
9512 Make_Pragma_Argument_Association (Loc,
9513 Expression => Make_Predicate_Call (Typ, Expr)));
9515 -- If the subtype is subject to pragma Predicate_Failure, add the
9516 -- failure expression as an additional parameter.
9518 Add_Failure_Expression (Args);
9520 return
9521 Make_Pragma (Loc,
9522 Chars => Name_Check,
9523 Pragma_Argument_Associations => Args);
9524 end Make_Predicate_Check;
9526 ----------------------------
9527 -- Make_Subtype_From_Expr --
9528 ----------------------------
9530 -- 1. If Expr is an unconstrained array expression, creates
9531 -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
9533 -- 2. If Expr is a unconstrained discriminated type expression, creates
9534 -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
9536 -- 3. If Expr is class-wide, creates an implicit class-wide subtype
9538 function Make_Subtype_From_Expr
9539 (E : Node_Id;
9540 Unc_Typ : Entity_Id;
9541 Related_Id : Entity_Id := Empty) return Node_Id
9543 List_Constr : constant List_Id := New_List;
9544 Loc : constant Source_Ptr := Sloc (E);
9545 D : Entity_Id;
9546 Full_Exp : Node_Id;
9547 Full_Subtyp : Entity_Id;
9548 High_Bound : Entity_Id;
9549 Index_Typ : Entity_Id;
9550 Low_Bound : Entity_Id;
9551 Priv_Subtyp : Entity_Id;
9552 Utyp : Entity_Id;
9554 begin
9555 if Is_Private_Type (Unc_Typ)
9556 and then Has_Unknown_Discriminants (Unc_Typ)
9557 then
9558 -- The caller requests a unique external name for both the private
9559 -- and the full subtype.
9561 if Present (Related_Id) then
9562 Full_Subtyp :=
9563 Make_Defining_Identifier (Loc,
9564 Chars => New_External_Name (Chars (Related_Id), 'C'));
9565 Priv_Subtyp :=
9566 Make_Defining_Identifier (Loc,
9567 Chars => New_External_Name (Chars (Related_Id), 'P'));
9569 else
9570 Full_Subtyp := Make_Temporary (Loc, 'C');
9571 Priv_Subtyp := Make_Temporary (Loc, 'P');
9572 end if;
9574 -- Prepare the subtype completion. Use the base type to find the
9575 -- underlying type because the type may be a generic actual or an
9576 -- explicit subtype.
9578 Utyp := Underlying_Type (Base_Type (Unc_Typ));
9580 Full_Exp :=
9581 Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
9582 Set_Parent (Full_Exp, Parent (E));
9584 Insert_Action (E,
9585 Make_Subtype_Declaration (Loc,
9586 Defining_Identifier => Full_Subtyp,
9587 Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
9589 -- Define the dummy private subtype
9591 Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
9592 Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
9593 Set_Scope (Priv_Subtyp, Full_Subtyp);
9594 Set_Is_Constrained (Priv_Subtyp);
9595 Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
9596 Set_Is_Itype (Priv_Subtyp);
9597 Set_Associated_Node_For_Itype (Priv_Subtyp, E);
9599 if Is_Tagged_Type (Priv_Subtyp) then
9600 Set_Class_Wide_Type
9601 (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
9602 Set_Direct_Primitive_Operations (Priv_Subtyp,
9603 Direct_Primitive_Operations (Unc_Typ));
9604 end if;
9606 Set_Full_View (Priv_Subtyp, Full_Subtyp);
9608 return New_Occurrence_Of (Priv_Subtyp, Loc);
9610 elsif Is_Array_Type (Unc_Typ) then
9611 Index_Typ := First_Index (Unc_Typ);
9612 for J in 1 .. Number_Dimensions (Unc_Typ) loop
9614 -- Capture the bounds of each index constraint in case the context
9615 -- is an object declaration of an unconstrained type initialized
9616 -- by a function call:
9618 -- Obj : Unconstr_Typ := Func_Call;
9620 -- This scenario requires secondary scope management and the index
9621 -- constraint cannot depend on the temporary used to capture the
9622 -- result of the function call.
9624 -- SS_Mark;
9625 -- Temp : Unconstr_Typ_Ptr := Func_Call'reference;
9626 -- subtype S is Unconstr_Typ (Temp.all'First .. Temp.all'Last);
9627 -- Obj : S := Temp.all;
9628 -- SS_Release; -- Temp is gone at this point, bounds of S are
9629 -- -- non existent.
9631 -- Generate:
9632 -- Low_Bound : constant Base_Type (Index_Typ) := E'First (J);
9634 Low_Bound := Make_Temporary (Loc, 'B');
9635 Insert_Action (E,
9636 Make_Object_Declaration (Loc,
9637 Defining_Identifier => Low_Bound,
9638 Object_Definition =>
9639 New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
9640 Constant_Present => True,
9641 Expression =>
9642 Make_Attribute_Reference (Loc,
9643 Prefix => Duplicate_Subexpr_No_Checks (E),
9644 Attribute_Name => Name_First,
9645 Expressions => New_List (
9646 Make_Integer_Literal (Loc, J)))));
9648 -- Generate:
9649 -- High_Bound : constant Base_Type (Index_Typ) := E'Last (J);
9651 High_Bound := Make_Temporary (Loc, 'B');
9652 Insert_Action (E,
9653 Make_Object_Declaration (Loc,
9654 Defining_Identifier => High_Bound,
9655 Object_Definition =>
9656 New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
9657 Constant_Present => True,
9658 Expression =>
9659 Make_Attribute_Reference (Loc,
9660 Prefix => Duplicate_Subexpr_No_Checks (E),
9661 Attribute_Name => Name_Last,
9662 Expressions => New_List (
9663 Make_Integer_Literal (Loc, J)))));
9665 Append_To (List_Constr,
9666 Make_Range (Loc,
9667 Low_Bound => New_Occurrence_Of (Low_Bound, Loc),
9668 High_Bound => New_Occurrence_Of (High_Bound, Loc)));
9670 Index_Typ := Next_Index (Index_Typ);
9671 end loop;
9673 elsif Is_Class_Wide_Type (Unc_Typ) then
9674 declare
9675 CW_Subtype : Entity_Id;
9676 EQ_Typ : Entity_Id := Empty;
9678 begin
9679 -- A class-wide equivalent type is not needed on VM targets
9680 -- because the VM back-ends handle the class-wide object
9681 -- initialization itself (and doesn't need or want the
9682 -- additional intermediate type to handle the assignment).
9684 if Expander_Active and then Tagged_Type_Expansion then
9686 -- If this is the class-wide type of a completion that is a
9687 -- record subtype, set the type of the class-wide type to be
9688 -- the full base type, for use in the expanded code for the
9689 -- equivalent type. Should this be done earlier when the
9690 -- completion is analyzed ???
9692 if Is_Private_Type (Etype (Unc_Typ))
9693 and then
9694 Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
9695 then
9696 Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
9697 end if;
9699 EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
9700 end if;
9702 CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
9703 Set_Equivalent_Type (CW_Subtype, EQ_Typ);
9704 Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
9706 return New_Occurrence_Of (CW_Subtype, Loc);
9707 end;
9709 -- Indefinite record type with discriminants
9711 else
9712 D := First_Discriminant (Unc_Typ);
9713 while Present (D) loop
9714 Append_To (List_Constr,
9715 Make_Selected_Component (Loc,
9716 Prefix => Duplicate_Subexpr_No_Checks (E),
9717 Selector_Name => New_Occurrence_Of (D, Loc)));
9719 Next_Discriminant (D);
9720 end loop;
9721 end if;
9723 return
9724 Make_Subtype_Indication (Loc,
9725 Subtype_Mark => New_Occurrence_Of (Unc_Typ, Loc),
9726 Constraint =>
9727 Make_Index_Or_Discriminant_Constraint (Loc,
9728 Constraints => List_Constr));
9729 end Make_Subtype_From_Expr;
9731 ---------------
9732 -- Map_Types --
9733 ---------------
9735 procedure Map_Types (Parent_Type : Entity_Id; Derived_Type : Entity_Id) is
9737 -- NOTE: Most of the routines in Map_Types are intentionally unnested to
9738 -- avoid deep indentation of code.
9740 -- NOTE: Routines which deal with discriminant mapping operate on the
9741 -- [underlying/record] full view of various types because those views
9742 -- contain all discriminants and stored constraints.
9744 procedure Add_Primitive (Prim : Entity_Id; Par_Typ : Entity_Id);
9745 -- Subsidiary to Map_Primitives. Find a primitive in the inheritance or
9746 -- overriding chain starting from Prim whose dispatching type is parent
9747 -- type Par_Typ and add a mapping between the result and primitive Prim.
9749 function Ancestor_Primitive (Subp : Entity_Id) return Entity_Id;
9750 -- Subsidiary to Map_Primitives. Return the next ancestor primitive in
9751 -- the inheritance or overriding chain of subprogram Subp. Return Empty
9752 -- if no such primitive is available.
9754 function Build_Chain
9755 (Par_Typ : Entity_Id;
9756 Deriv_Typ : Entity_Id) return Elist_Id;
9757 -- Subsidiary to Map_Discriminants. Recreate the derivation chain from
9758 -- parent type Par_Typ leading down towards derived type Deriv_Typ. The
9759 -- list has the form:
9761 -- head tail
9762 -- v v
9763 -- <Ancestor_N> -> <Ancestor_N-1> -> <Ancestor_1> -> Deriv_Typ
9765 -- Note that Par_Typ is not part of the resulting derivation chain
9767 function Discriminated_View (Typ : Entity_Id) return Entity_Id;
9768 -- Return the view of type Typ which could potentially contains either
9769 -- the discriminants or stored constraints of the type.
9771 function Find_Discriminant_Value
9772 (Discr : Entity_Id;
9773 Par_Typ : Entity_Id;
9774 Deriv_Typ : Entity_Id;
9775 Typ_Elmt : Elmt_Id) return Node_Or_Entity_Id;
9776 -- Subsidiary to Map_Discriminants. Find the value of discriminant Discr
9777 -- in the derivation chain starting from parent type Par_Typ leading to
9778 -- derived type Deriv_Typ. The returned value is one of the following:
9780 -- * An entity which is either a discriminant or a non-discriminant
9781 -- name, and renames/constraints Discr.
9783 -- * An expression which constraints Discr
9785 -- Typ_Elmt is an element of the derivation chain created by routine
9786 -- Build_Chain and denotes the current ancestor being examined.
9788 procedure Map_Discriminants
9789 (Par_Typ : Entity_Id;
9790 Deriv_Typ : Entity_Id);
9791 -- Map each discriminant of type Par_Typ to a meaningful constraint
9792 -- from the point of view of type Deriv_Typ.
9794 procedure Map_Primitives (Par_Typ : Entity_Id; Deriv_Typ : Entity_Id);
9795 -- Map each primitive of type Par_Typ to a corresponding primitive of
9796 -- type Deriv_Typ.
9798 -------------------
9799 -- Add_Primitive --
9800 -------------------
9802 procedure Add_Primitive (Prim : Entity_Id; Par_Typ : Entity_Id) is
9803 Par_Prim : Entity_Id;
9805 begin
9806 -- Inspect the inheritance chain through the Alias attribute and the
9807 -- overriding chain through the Overridden_Operation looking for an
9808 -- ancestor primitive with the appropriate dispatching type.
9810 Par_Prim := Prim;
9811 while Present (Par_Prim) loop
9812 exit when Find_Dispatching_Type (Par_Prim) = Par_Typ;
9813 Par_Prim := Ancestor_Primitive (Par_Prim);
9814 end loop;
9816 -- Create a mapping of the form:
9818 -- parent type primitive -> derived type primitive
9820 if Present (Par_Prim) then
9821 Type_Map.Set (Par_Prim, Prim);
9822 end if;
9823 end Add_Primitive;
9825 ------------------------
9826 -- Ancestor_Primitive --
9827 ------------------------
9829 function Ancestor_Primitive (Subp : Entity_Id) return Entity_Id is
9830 Inher_Prim : constant Entity_Id := Alias (Subp);
9831 Over_Prim : constant Entity_Id := Overridden_Operation (Subp);
9833 begin
9834 -- The current subprogram overrides an ancestor primitive
9836 if Present (Over_Prim) then
9837 return Over_Prim;
9839 -- The current subprogram is an internally generated alias of an
9840 -- inherited ancestor primitive.
9842 elsif Present (Inher_Prim) then
9843 return Inher_Prim;
9845 -- Otherwise the current subprogram is the root of the inheritance or
9846 -- overriding chain.
9848 else
9849 return Empty;
9850 end if;
9851 end Ancestor_Primitive;
9853 -----------------
9854 -- Build_Chain --
9855 -----------------
9857 function Build_Chain
9858 (Par_Typ : Entity_Id;
9859 Deriv_Typ : Entity_Id) return Elist_Id
9861 Anc_Typ : Entity_Id;
9862 Chain : Elist_Id;
9863 Curr_Typ : Entity_Id;
9865 begin
9866 Chain := New_Elmt_List;
9868 -- Add the derived type to the derivation chain
9870 Prepend_Elmt (Deriv_Typ, Chain);
9872 -- Examine all ancestors starting from the derived type climbing
9873 -- towards parent type Par_Typ.
9875 Curr_Typ := Deriv_Typ;
9876 loop
9877 -- Handle the case where the current type is a record which
9878 -- derives from a subtype.
9880 -- subtype Sub_Typ is Par_Typ ...
9881 -- type Deriv_Typ is Sub_Typ ...
9883 if Ekind (Curr_Typ) = E_Record_Type
9884 and then Present (Parent_Subtype (Curr_Typ))
9885 then
9886 Anc_Typ := Parent_Subtype (Curr_Typ);
9888 -- Handle the case where the current type is a record subtype of
9889 -- another subtype.
9891 -- subtype Sub_Typ1 is Par_Typ ...
9892 -- subtype Sub_Typ2 is Sub_Typ1 ...
9894 elsif Ekind (Curr_Typ) = E_Record_Subtype
9895 and then Present (Cloned_Subtype (Curr_Typ))
9896 then
9897 Anc_Typ := Cloned_Subtype (Curr_Typ);
9899 -- Otherwise use the direct parent type
9901 else
9902 Anc_Typ := Etype (Curr_Typ);
9903 end if;
9905 -- Use the first subtype when dealing with itypes
9907 if Is_Itype (Anc_Typ) then
9908 Anc_Typ := First_Subtype (Anc_Typ);
9909 end if;
9911 -- Work with the view which contains the discriminants and stored
9912 -- constraints.
9914 Anc_Typ := Discriminated_View (Anc_Typ);
9916 -- Stop the climb when either the parent type has been reached or
9917 -- there are no more ancestors left to examine.
9919 exit when Anc_Typ = Curr_Typ or else Anc_Typ = Par_Typ;
9921 Prepend_Unique_Elmt (Anc_Typ, Chain);
9922 Curr_Typ := Anc_Typ;
9923 end loop;
9925 return Chain;
9926 end Build_Chain;
9928 ------------------------
9929 -- Discriminated_View --
9930 ------------------------
9932 function Discriminated_View (Typ : Entity_Id) return Entity_Id is
9933 T : Entity_Id;
9935 begin
9936 T := Typ;
9938 -- Use the [underlying] full view when dealing with private types
9939 -- because the view contains all inherited discriminants or stored
9940 -- constraints.
9942 if Is_Private_Type (T) then
9943 if Present (Underlying_Full_View (T)) then
9944 T := Underlying_Full_View (T);
9946 elsif Present (Full_View (T)) then
9947 T := Full_View (T);
9948 end if;
9949 end if;
9951 -- Use the underlying record view when the type is an extenstion of
9952 -- a parent type with unknown discriminants because the view contains
9953 -- all inherited discriminants or stored constraints.
9955 if Ekind (T) = E_Record_Type
9956 and then Present (Underlying_Record_View (T))
9957 then
9958 T := Underlying_Record_View (T);
9959 end if;
9961 return T;
9962 end Discriminated_View;
9964 -----------------------------
9965 -- Find_Discriminant_Value --
9966 -----------------------------
9968 function Find_Discriminant_Value
9969 (Discr : Entity_Id;
9970 Par_Typ : Entity_Id;
9971 Deriv_Typ : Entity_Id;
9972 Typ_Elmt : Elmt_Id) return Node_Or_Entity_Id
9974 Discr_Pos : constant Uint := Discriminant_Number (Discr);
9975 Typ : constant Entity_Id := Node (Typ_Elmt);
9977 function Find_Constraint_Value
9978 (Constr : Node_Or_Entity_Id) return Node_Or_Entity_Id;
9979 -- Given constraint Constr, find what it denotes. This is either:
9981 -- * An entity which is either a discriminant or a name
9983 -- * An expression
9985 ---------------------------
9986 -- Find_Constraint_Value --
9987 ---------------------------
9989 function Find_Constraint_Value
9990 (Constr : Node_Or_Entity_Id) return Node_Or_Entity_Id
9992 begin
9993 if Nkind (Constr) in N_Entity then
9995 -- The constraint denotes a discriminant of the curren type
9996 -- which renames the ancestor discriminant:
9998 -- vv
9999 -- type Typ (D1 : ...; DN : ...) is
10000 -- new Anc (Discr => D1) with ...
10001 -- ^^
10003 if Ekind (Constr) = E_Discriminant then
10005 -- The discriminant belongs to derived type Deriv_Typ. This
10006 -- is the final value for the ancestor discriminant as the
10007 -- derivations chain has been fully exhausted.
10009 if Typ = Deriv_Typ then
10010 return Constr;
10012 -- Otherwise the discriminant may be renamed or constrained
10013 -- at a lower level. Continue looking down the derivation
10014 -- chain.
10016 else
10017 return
10018 Find_Discriminant_Value
10019 (Discr => Constr,
10020 Par_Typ => Par_Typ,
10021 Deriv_Typ => Deriv_Typ,
10022 Typ_Elmt => Next_Elmt (Typ_Elmt));
10023 end if;
10025 -- Otherwise the constraint denotes a reference to some name
10026 -- which results in a Girder discriminant:
10028 -- vvvv
10029 -- Name : ...;
10030 -- type Typ (D1 : ...; DN : ...) is
10031 -- new Anc (Discr => Name) with ...
10032 -- ^^^^
10034 -- Return the name as this is the proper constraint of the
10035 -- discriminant.
10037 else
10038 return Constr;
10039 end if;
10041 -- The constraint denotes a reference to a name
10043 elsif Is_Entity_Name (Constr) then
10044 return Find_Constraint_Value (Entity (Constr));
10046 -- Otherwise the current constraint is an expression which yields
10047 -- a Girder discriminant:
10049 -- type Typ (D1 : ...; DN : ...) is
10050 -- new Anc (Discr => <expression>) with ...
10051 -- ^^^^^^^^^^
10053 -- Return the expression as this is the proper constraint of the
10054 -- discriminant.
10056 else
10057 return Constr;
10058 end if;
10059 end Find_Constraint_Value;
10061 -- Local variables
10063 Constrs : constant Elist_Id := Stored_Constraint (Typ);
10065 Constr_Elmt : Elmt_Id;
10066 Pos : Uint;
10067 Typ_Discr : Entity_Id;
10069 -- Start of processing for Find_Discriminant_Value
10071 begin
10072 -- The algorithm for finding the value of a discriminant works as
10073 -- follows. First, it recreates the derivation chain from Par_Typ
10074 -- to Deriv_Typ as a list:
10076 -- Par_Typ (shown for completeness)
10077 -- v
10078 -- Ancestor_N <-- head of chain
10079 -- v
10080 -- Ancestor_1
10081 -- v
10082 -- Deriv_Typ <-- tail of chain
10084 -- The algorithm then traces the fate of a parent discriminant down
10085 -- the derivation chain. At each derivation level, the discriminant
10086 -- may be either inherited or constrained.
10088 -- 1) Discriminant is inherited: there are two cases, depending on
10089 -- which type is inheriting.
10091 -- 1.1) Deriv_Typ is inheriting:
10093 -- type Ancestor (D_1 : ...) is tagged ...
10094 -- type Deriv_Typ is new Ancestor ...
10096 -- In this case the inherited discriminant is the final value of
10097 -- the parent discriminant because the end of the derivation chain
10098 -- has been reached.
10100 -- 1.2) Some other type is inheriting:
10102 -- type Ancestor_1 (D_1 : ...) is tagged ...
10103 -- type Ancestor_2 is new Ancestor_1 ...
10105 -- In this case the algorithm continues to trace the fate of the
10106 -- inherited discriminant down the derivation chain because it may
10107 -- be further inherited or constrained.
10109 -- 2) Discriminant is constrained: there are three cases, depending
10110 -- on what the constraint is.
10112 -- 2.1) The constraint is another discriminant (aka renaming):
10114 -- type Ancestor_1 (D_1 : ...) is tagged ...
10115 -- type Ancestor_2 (D_2 : ...) is new Ancestor_1 (D_1 => D_2) ...
10117 -- In this case the constraining discriminant becomes the one to
10118 -- track down the derivation chain. The algorithm already knows
10119 -- that D_2 constrains D_1, therefore if the algorithm finds the
10120 -- value of D_2, then this would also be the value for D_1.
10122 -- 2.2) The constraint is a name (aka Girder):
10124 -- Name : ...
10125 -- type Ancestor_1 (D_1 : ...) is tagged ...
10126 -- type Ancestor_2 is new Ancestor_1 (D_1 => Name) ...
10128 -- In this case the name is the final value of D_1 because the
10129 -- discriminant cannot be further constrained.
10131 -- 2.3) The constraint is an expression (aka Girder):
10133 -- type Ancestor_1 (D_1 : ...) is tagged ...
10134 -- type Ancestor_2 is new Ancestor_1 (D_1 => 1 + 2) ...
10136 -- Similar to 2.2, the expression is the final value of D_1
10138 Pos := Uint_1;
10140 -- When a derived type constrains its parent type, all constaints
10141 -- appear in the Stored_Constraint list. Examine the list looking
10142 -- for a positional match.
10144 if Present (Constrs) then
10145 Constr_Elmt := First_Elmt (Constrs);
10146 while Present (Constr_Elmt) loop
10148 -- The position of the current constraint matches that of the
10149 -- ancestor discriminant.
10151 if Pos = Discr_Pos then
10152 return Find_Constraint_Value (Node (Constr_Elmt));
10153 end if;
10155 Next_Elmt (Constr_Elmt);
10156 Pos := Pos + 1;
10157 end loop;
10159 -- Otherwise the derived type does not constraint its parent type in
10160 -- which case it inherits the parent discriminants.
10162 else
10163 Typ_Discr := First_Discriminant (Typ);
10164 while Present (Typ_Discr) loop
10166 -- The position of the current discriminant matches that of the
10167 -- ancestor discriminant.
10169 if Pos = Discr_Pos then
10170 return Find_Constraint_Value (Typ_Discr);
10171 end if;
10173 Next_Discriminant (Typ_Discr);
10174 Pos := Pos + 1;
10175 end loop;
10176 end if;
10178 -- A discriminant must always have a corresponding value. This is
10179 -- either another discriminant, a name, or an expression. If this
10180 -- point is reached, them most likely the derivation chain employs
10181 -- the wrong views of types.
10183 pragma Assert (False);
10185 return Empty;
10186 end Find_Discriminant_Value;
10188 -----------------------
10189 -- Map_Discriminants --
10190 -----------------------
10192 procedure Map_Discriminants
10193 (Par_Typ : Entity_Id;
10194 Deriv_Typ : Entity_Id)
10196 Deriv_Chain : constant Elist_Id := Build_Chain (Par_Typ, Deriv_Typ);
10198 Discr : Entity_Id;
10199 Discr_Val : Node_Or_Entity_Id;
10201 begin
10202 -- Examine each discriminant of parent type Par_Typ and find a
10203 -- suitable value for it from the point of view of derived type
10204 -- Deriv_Typ.
10206 if Has_Discriminants (Par_Typ) then
10207 Discr := First_Discriminant (Par_Typ);
10208 while Present (Discr) loop
10209 Discr_Val :=
10210 Find_Discriminant_Value
10211 (Discr => Discr,
10212 Par_Typ => Par_Typ,
10213 Deriv_Typ => Deriv_Typ,
10214 Typ_Elmt => First_Elmt (Deriv_Chain));
10216 -- Create a mapping of the form:
10218 -- parent type discriminant -> value
10220 Type_Map.Set (Discr, Discr_Val);
10222 Next_Discriminant (Discr);
10223 end loop;
10224 end if;
10225 end Map_Discriminants;
10227 --------------------
10228 -- Map_Primitives --
10229 --------------------
10231 procedure Map_Primitives (Par_Typ : Entity_Id; Deriv_Typ : Entity_Id) is
10232 Deriv_Prim : Entity_Id;
10233 Par_Prim : Entity_Id;
10234 Par_Prims : Elist_Id;
10235 Prim_Elmt : Elmt_Id;
10237 begin
10238 -- Inspect the primitives of the derived type and determine whether
10239 -- they relate to the primitives of the parent type. If there is a
10240 -- meaningful relation, create a mapping of the form:
10242 -- parent type primitive -> perived type primitive
10244 if Present (Direct_Primitive_Operations (Deriv_Typ)) then
10245 Prim_Elmt := First_Elmt (Direct_Primitive_Operations (Deriv_Typ));
10246 while Present (Prim_Elmt) loop
10247 Deriv_Prim := Node (Prim_Elmt);
10249 if Is_Subprogram (Deriv_Prim)
10250 and then Find_Dispatching_Type (Deriv_Prim) = Deriv_Typ
10251 then
10252 Add_Primitive (Deriv_Prim, Par_Typ);
10253 end if;
10255 Next_Elmt (Prim_Elmt);
10256 end loop;
10257 end if;
10259 -- If the parent operation is an interface operation, the overriding
10260 -- indicator is not present. Instead, we get from the interface
10261 -- operation the primitive of the current type that implements it.
10263 if Is_Interface (Par_Typ) then
10264 Par_Prims := Collect_Primitive_Operations (Par_Typ);
10266 if Present (Par_Prims) then
10267 Prim_Elmt := First_Elmt (Par_Prims);
10269 while Present (Prim_Elmt) loop
10270 Par_Prim := Node (Prim_Elmt);
10271 Deriv_Prim :=
10272 Find_Primitive_Covering_Interface (Deriv_Typ, Par_Prim);
10274 if Present (Deriv_Prim) then
10275 Type_Map.Set (Par_Prim, Deriv_Prim);
10276 end if;
10278 Next_Elmt (Prim_Elmt);
10279 end loop;
10280 end if;
10281 end if;
10282 end Map_Primitives;
10284 -- Start of processing for Map_Types
10286 begin
10287 -- Nothing to do if there are no types to work with
10289 if No (Parent_Type) or else No (Derived_Type) then
10290 return;
10292 -- Nothing to do if the mapping already exists
10294 elsif Type_Map.Get (Parent_Type) = Derived_Type then
10295 return;
10297 -- Nothing to do if both types are not tagged. Note that untagged types
10298 -- do not have primitive operations and their discriminants are already
10299 -- handled by gigi.
10301 elsif not Is_Tagged_Type (Parent_Type)
10302 or else not Is_Tagged_Type (Derived_Type)
10303 then
10304 return;
10305 end if;
10307 -- Create a mapping of the form
10309 -- parent type -> derived type
10311 -- to prevent any subsequent attempts to produce the same relations
10313 Type_Map.Set (Parent_Type, Derived_Type);
10315 -- Create mappings of the form
10317 -- parent type discriminant -> derived type discriminant
10318 -- <or>
10319 -- parent type discriminant -> constraint
10321 -- Note that mapping of discriminants breaks privacy because it needs to
10322 -- work with those views which contains the discriminants and any stored
10323 -- constraints.
10325 Map_Discriminants
10326 (Par_Typ => Discriminated_View (Parent_Type),
10327 Deriv_Typ => Discriminated_View (Derived_Type));
10329 -- Create mappings of the form
10331 -- parent type primitive -> derived type primitive
10333 Map_Primitives
10334 (Par_Typ => Parent_Type,
10335 Deriv_Typ => Derived_Type);
10336 end Map_Types;
10338 ----------------------------
10339 -- Matching_Standard_Type --
10340 ----------------------------
10342 function Matching_Standard_Type (Typ : Entity_Id) return Entity_Id is
10343 pragma Assert (Is_Scalar_Type (Typ));
10344 Siz : constant Uint := Esize (Typ);
10346 begin
10347 -- Floating-point cases
10349 if Is_Floating_Point_Type (Typ) then
10350 if Siz <= Esize (Standard_Short_Float) then
10351 return Standard_Short_Float;
10352 elsif Siz <= Esize (Standard_Float) then
10353 return Standard_Float;
10354 elsif Siz <= Esize (Standard_Long_Float) then
10355 return Standard_Long_Float;
10356 elsif Siz <= Esize (Standard_Long_Long_Float) then
10357 return Standard_Long_Long_Float;
10358 else
10359 raise Program_Error;
10360 end if;
10362 -- Integer cases (includes fixed-point types)
10364 -- Unsigned integer cases (includes normal enumeration types)
10366 elsif Is_Unsigned_Type (Typ) then
10367 if Siz <= Esize (Standard_Short_Short_Unsigned) then
10368 return Standard_Short_Short_Unsigned;
10369 elsif Siz <= Esize (Standard_Short_Unsigned) then
10370 return Standard_Short_Unsigned;
10371 elsif Siz <= Esize (Standard_Unsigned) then
10372 return Standard_Unsigned;
10373 elsif Siz <= Esize (Standard_Long_Unsigned) then
10374 return Standard_Long_Unsigned;
10375 elsif Siz <= Esize (Standard_Long_Long_Unsigned) then
10376 return Standard_Long_Long_Unsigned;
10377 else
10378 raise Program_Error;
10379 end if;
10381 -- Signed integer cases
10383 else
10384 if Siz <= Esize (Standard_Short_Short_Integer) then
10385 return Standard_Short_Short_Integer;
10386 elsif Siz <= Esize (Standard_Short_Integer) then
10387 return Standard_Short_Integer;
10388 elsif Siz <= Esize (Standard_Integer) then
10389 return Standard_Integer;
10390 elsif Siz <= Esize (Standard_Long_Integer) then
10391 return Standard_Long_Integer;
10392 elsif Siz <= Esize (Standard_Long_Long_Integer) then
10393 return Standard_Long_Long_Integer;
10394 else
10395 raise Program_Error;
10396 end if;
10397 end if;
10398 end Matching_Standard_Type;
10400 -----------------------------
10401 -- May_Generate_Large_Temp --
10402 -----------------------------
10404 -- At the current time, the only types that we return False for (i.e. where
10405 -- we decide we know they cannot generate large temps) are ones where we
10406 -- know the size is 256 bits or less at compile time, and we are still not
10407 -- doing a thorough job on arrays and records ???
10409 function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
10410 begin
10411 if not Size_Known_At_Compile_Time (Typ) then
10412 return False;
10414 elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
10415 return False;
10417 elsif Is_Array_Type (Typ)
10418 and then Present (Packed_Array_Impl_Type (Typ))
10419 then
10420 return May_Generate_Large_Temp (Packed_Array_Impl_Type (Typ));
10422 -- We could do more here to find other small types ???
10424 else
10425 return True;
10426 end if;
10427 end May_Generate_Large_Temp;
10429 ------------------------
10430 -- Needs_Finalization --
10431 ------------------------
10433 function Needs_Finalization (Typ : Entity_Id) return Boolean is
10434 function Has_Some_Controlled_Component
10435 (Input_Typ : Entity_Id) return Boolean;
10436 -- Determine whether type Input_Typ has at least one controlled
10437 -- component.
10439 -----------------------------------
10440 -- Has_Some_Controlled_Component --
10441 -----------------------------------
10443 function Has_Some_Controlled_Component
10444 (Input_Typ : Entity_Id) return Boolean
10446 Comp : Entity_Id;
10448 begin
10449 -- When a type is already frozen and has at least one controlled
10450 -- component, or is manually decorated, it is sufficient to inspect
10451 -- flag Has_Controlled_Component.
10453 if Has_Controlled_Component (Input_Typ) then
10454 return True;
10456 -- Otherwise inspect the internals of the type
10458 elsif not Is_Frozen (Input_Typ) then
10459 if Is_Array_Type (Input_Typ) then
10460 return Needs_Finalization (Component_Type (Input_Typ));
10462 elsif Is_Record_Type (Input_Typ) then
10463 Comp := First_Component (Input_Typ);
10464 while Present (Comp) loop
10465 if Needs_Finalization (Etype (Comp)) then
10466 return True;
10467 end if;
10469 Next_Component (Comp);
10470 end loop;
10471 end if;
10472 end if;
10474 return False;
10475 end Has_Some_Controlled_Component;
10477 -- Start of processing for Needs_Finalization
10479 begin
10480 -- Certain run-time configurations and targets do not provide support
10481 -- for controlled types.
10483 if Restriction_Active (No_Finalization) then
10484 return False;
10486 -- C++ types are not considered controlled. It is assumed that the non-
10487 -- Ada side will handle their clean up.
10489 elsif Convention (Typ) = Convention_CPP then
10490 return False;
10492 -- Class-wide types are treated as controlled because derivations from
10493 -- the root type may introduce controlled components.
10495 elsif Is_Class_Wide_Type (Typ) then
10496 return True;
10498 -- Concurrent types are controlled as long as their corresponding record
10499 -- is controlled.
10501 elsif Is_Concurrent_Type (Typ)
10502 and then Present (Corresponding_Record_Type (Typ))
10503 and then Needs_Finalization (Corresponding_Record_Type (Typ))
10504 then
10505 return True;
10507 -- Otherwise the type is controlled when it is either derived from type
10508 -- [Limited_]Controlled and not subject to aspect Disable_Controlled, or
10509 -- contains at least one controlled component.
10511 else
10512 return
10513 Is_Controlled (Typ) or else Has_Some_Controlled_Component (Typ);
10514 end if;
10515 end Needs_Finalization;
10517 ----------------------------
10518 -- Needs_Constant_Address --
10519 ----------------------------
10521 function Needs_Constant_Address
10522 (Decl : Node_Id;
10523 Typ : Entity_Id) return Boolean
10525 begin
10526 -- If we have no initialization of any kind, then we don't need to place
10527 -- any restrictions on the address clause, because the object will be
10528 -- elaborated after the address clause is evaluated. This happens if the
10529 -- declaration has no initial expression, or the type has no implicit
10530 -- initialization, or the object is imported.
10532 -- The same holds for all initialized scalar types and all access types.
10533 -- Packed bit arrays of size up to 64 are represented using a modular
10534 -- type with an initialization (to zero) and can be processed like other
10535 -- initialized scalar types.
10537 -- If the type is controlled, code to attach the object to a
10538 -- finalization chain is generated at the point of declaration, and
10539 -- therefore the elaboration of the object cannot be delayed: the
10540 -- address expression must be a constant.
10542 if No (Expression (Decl))
10543 and then not Needs_Finalization (Typ)
10544 and then
10545 (not Has_Non_Null_Base_Init_Proc (Typ)
10546 or else Is_Imported (Defining_Identifier (Decl)))
10547 then
10548 return False;
10550 elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
10551 or else Is_Access_Type (Typ)
10552 or else
10553 (Is_Bit_Packed_Array (Typ)
10554 and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)))
10555 then
10556 return False;
10558 else
10560 -- Otherwise, we require the address clause to be constant because
10561 -- the call to the initialization procedure (or the attach code) has
10562 -- to happen at the point of the declaration.
10564 -- Actually the IP call has been moved to the freeze actions anyway,
10565 -- so maybe we can relax this restriction???
10567 return True;
10568 end if;
10569 end Needs_Constant_Address;
10571 ----------------------------
10572 -- New_Class_Wide_Subtype --
10573 ----------------------------
10575 function New_Class_Wide_Subtype
10576 (CW_Typ : Entity_Id;
10577 N : Node_Id) return Entity_Id
10579 Res : constant Entity_Id := Create_Itype (E_Void, N);
10580 Res_Name : constant Name_Id := Chars (Res);
10581 Res_Scope : constant Entity_Id := Scope (Res);
10583 begin
10584 Copy_Node (CW_Typ, Res);
10585 Set_Comes_From_Source (Res, False);
10586 Set_Sloc (Res, Sloc (N));
10587 Set_Is_Itype (Res);
10588 Set_Associated_Node_For_Itype (Res, N);
10589 Set_Is_Public (Res, False); -- By default, may be changed below.
10590 Set_Public_Status (Res);
10591 Set_Chars (Res, Res_Name);
10592 Set_Scope (Res, Res_Scope);
10593 Set_Ekind (Res, E_Class_Wide_Subtype);
10594 Set_Next_Entity (Res, Empty);
10595 Set_Etype (Res, Base_Type (CW_Typ));
10596 Set_Is_Frozen (Res, False);
10597 Set_Freeze_Node (Res, Empty);
10598 return (Res);
10599 end New_Class_Wide_Subtype;
10601 --------------------------------
10602 -- Non_Limited_Designated_Type --
10603 ---------------------------------
10605 function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
10606 Desig : constant Entity_Id := Designated_Type (T);
10607 begin
10608 if Has_Non_Limited_View (Desig) then
10609 return Non_Limited_View (Desig);
10610 else
10611 return Desig;
10612 end if;
10613 end Non_Limited_Designated_Type;
10615 -----------------------------------
10616 -- OK_To_Do_Constant_Replacement --
10617 -----------------------------------
10619 function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
10620 ES : constant Entity_Id := Scope (E);
10621 CS : Entity_Id;
10623 begin
10624 -- Do not replace statically allocated objects, because they may be
10625 -- modified outside the current scope.
10627 if Is_Statically_Allocated (E) then
10628 return False;
10630 -- Do not replace aliased or volatile objects, since we don't know what
10631 -- else might change the value.
10633 elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
10634 return False;
10636 -- Debug flag -gnatdM disconnects this optimization
10638 elsif Debug_Flag_MM then
10639 return False;
10641 -- Otherwise check scopes
10643 else
10644 CS := Current_Scope;
10646 loop
10647 -- If we are in right scope, replacement is safe
10649 if CS = ES then
10650 return True;
10652 -- Packages do not affect the determination of safety
10654 elsif Ekind (CS) = E_Package then
10655 exit when CS = Standard_Standard;
10656 CS := Scope (CS);
10658 -- Blocks do not affect the determination of safety
10660 elsif Ekind (CS) = E_Block then
10661 CS := Scope (CS);
10663 -- Loops do not affect the determination of safety. Note that we
10664 -- kill all current values on entry to a loop, so we are just
10665 -- talking about processing within a loop here.
10667 elsif Ekind (CS) = E_Loop then
10668 CS := Scope (CS);
10670 -- Otherwise, the reference is dubious, and we cannot be sure that
10671 -- it is safe to do the replacement.
10673 else
10674 exit;
10675 end if;
10676 end loop;
10678 return False;
10679 end if;
10680 end OK_To_Do_Constant_Replacement;
10682 ------------------------------------
10683 -- Possible_Bit_Aligned_Component --
10684 ------------------------------------
10686 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
10687 begin
10688 -- Do not process an unanalyzed node because it is not yet decorated and
10689 -- most checks performed below will fail.
10691 if not Analyzed (N) then
10692 return False;
10693 end if;
10695 case Nkind (N) is
10697 -- Case of indexed component
10699 when N_Indexed_Component =>
10700 declare
10701 P : constant Node_Id := Prefix (N);
10702 Ptyp : constant Entity_Id := Etype (P);
10704 begin
10705 -- If we know the component size and it is less than 64, then
10706 -- we are definitely OK. The back end always does assignment of
10707 -- misaligned small objects correctly.
10709 if Known_Static_Component_Size (Ptyp)
10710 and then Component_Size (Ptyp) <= 64
10711 then
10712 return False;
10714 -- Otherwise, we need to test the prefix, to see if we are
10715 -- indexing from a possibly unaligned component.
10717 else
10718 return Possible_Bit_Aligned_Component (P);
10719 end if;
10720 end;
10722 -- Case of selected component
10724 when N_Selected_Component =>
10725 declare
10726 P : constant Node_Id := Prefix (N);
10727 Comp : constant Entity_Id := Entity (Selector_Name (N));
10729 begin
10730 -- If there is no component clause, then we are in the clear
10731 -- since the back end will never misalign a large component
10732 -- unless it is forced to do so. In the clear means we need
10733 -- only the recursive test on the prefix.
10735 if Component_May_Be_Bit_Aligned (Comp) then
10736 return True;
10737 else
10738 return Possible_Bit_Aligned_Component (P);
10739 end if;
10740 end;
10742 -- For a slice, test the prefix, if that is possibly misaligned,
10743 -- then for sure the slice is.
10745 when N_Slice =>
10746 return Possible_Bit_Aligned_Component (Prefix (N));
10748 -- For an unchecked conversion, check whether the expression may
10749 -- be bit-aligned.
10751 when N_Unchecked_Type_Conversion =>
10752 return Possible_Bit_Aligned_Component (Expression (N));
10754 -- If we have none of the above, it means that we have fallen off the
10755 -- top testing prefixes recursively, and we now have a stand alone
10756 -- object, where we don't have a problem, unless this is a renaming,
10757 -- in which case we need to look into the renamed object.
10759 when others =>
10760 if Is_Entity_Name (N)
10761 and then Present (Renamed_Object (Entity (N)))
10762 then
10763 return
10764 Possible_Bit_Aligned_Component (Renamed_Object (Entity (N)));
10765 else
10766 return False;
10767 end if;
10768 end case;
10769 end Possible_Bit_Aligned_Component;
10771 -----------------------------------------------
10772 -- Process_Statements_For_Controlled_Objects --
10773 -----------------------------------------------
10775 procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
10776 Loc : constant Source_Ptr := Sloc (N);
10778 function Are_Wrapped (L : List_Id) return Boolean;
10779 -- Determine whether list L contains only one statement which is a block
10781 function Wrap_Statements_In_Block
10782 (L : List_Id;
10783 Scop : Entity_Id := Current_Scope) return Node_Id;
10784 -- Given a list of statements L, wrap it in a block statement and return
10785 -- the generated node. Scop is either the current scope or the scope of
10786 -- the context (if applicable).
10788 -----------------
10789 -- Are_Wrapped --
10790 -----------------
10792 function Are_Wrapped (L : List_Id) return Boolean is
10793 Stmt : constant Node_Id := First (L);
10794 begin
10795 return
10796 Present (Stmt)
10797 and then No (Next (Stmt))
10798 and then Nkind (Stmt) = N_Block_Statement;
10799 end Are_Wrapped;
10801 ------------------------------
10802 -- Wrap_Statements_In_Block --
10803 ------------------------------
10805 function Wrap_Statements_In_Block
10806 (L : List_Id;
10807 Scop : Entity_Id := Current_Scope) return Node_Id
10809 Block_Id : Entity_Id;
10810 Block_Nod : Node_Id;
10811 Iter_Loop : Entity_Id;
10813 begin
10814 Block_Nod :=
10815 Make_Block_Statement (Loc,
10816 Declarations => No_List,
10817 Handled_Statement_Sequence =>
10818 Make_Handled_Sequence_Of_Statements (Loc,
10819 Statements => L));
10821 -- Create a label for the block in case the block needs to manage the
10822 -- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
10824 Add_Block_Identifier (Block_Nod, Block_Id);
10826 -- When wrapping the statements of an iterator loop, check whether
10827 -- the loop requires secondary stack management and if so, propagate
10828 -- the appropriate flags to the block. This ensures that the cursor
10829 -- is properly cleaned up at each iteration of the loop.
10831 Iter_Loop := Find_Enclosing_Iterator_Loop (Scop);
10833 if Present (Iter_Loop) then
10834 Set_Uses_Sec_Stack (Block_Id, Uses_Sec_Stack (Iter_Loop));
10836 -- Secondary stack reclamation is suppressed when the associated
10837 -- iterator loop contains a return statement which uses the stack.
10839 Set_Sec_Stack_Needed_For_Return
10840 (Block_Id, Sec_Stack_Needed_For_Return (Iter_Loop));
10841 end if;
10843 return Block_Nod;
10844 end Wrap_Statements_In_Block;
10846 -- Local variables
10848 Block : Node_Id;
10850 -- Start of processing for Process_Statements_For_Controlled_Objects
10852 begin
10853 -- Whenever a non-handled statement list is wrapped in a block, the
10854 -- block must be explicitly analyzed to redecorate all entities in the
10855 -- list and ensure that a finalizer is properly built.
10857 case Nkind (N) is
10858 when N_Conditional_Entry_Call
10859 | N_Elsif_Part
10860 | N_If_Statement
10861 | N_Selective_Accept
10863 -- Check the "then statements" for elsif parts and if statements
10865 if Nkind_In (N, N_Elsif_Part, N_If_Statement)
10866 and then not Is_Empty_List (Then_Statements (N))
10867 and then not Are_Wrapped (Then_Statements (N))
10868 and then Requires_Cleanup_Actions
10869 (L => Then_Statements (N),
10870 Lib_Level => False,
10871 Nested_Constructs => False)
10872 then
10873 Block := Wrap_Statements_In_Block (Then_Statements (N));
10874 Set_Then_Statements (N, New_List (Block));
10876 Analyze (Block);
10877 end if;
10879 -- Check the "else statements" for conditional entry calls, if
10880 -- statements and selective accepts.
10882 if Nkind_In (N, N_Conditional_Entry_Call,
10883 N_If_Statement,
10884 N_Selective_Accept)
10885 and then not Is_Empty_List (Else_Statements (N))
10886 and then not Are_Wrapped (Else_Statements (N))
10887 and then Requires_Cleanup_Actions
10888 (L => Else_Statements (N),
10889 Lib_Level => False,
10890 Nested_Constructs => False)
10891 then
10892 Block := Wrap_Statements_In_Block (Else_Statements (N));
10893 Set_Else_Statements (N, New_List (Block));
10895 Analyze (Block);
10896 end if;
10898 when N_Abortable_Part
10899 | N_Accept_Alternative
10900 | N_Case_Statement_Alternative
10901 | N_Delay_Alternative
10902 | N_Entry_Call_Alternative
10903 | N_Exception_Handler
10904 | N_Loop_Statement
10905 | N_Triggering_Alternative
10907 if not Is_Empty_List (Statements (N))
10908 and then not Are_Wrapped (Statements (N))
10909 and then Requires_Cleanup_Actions
10910 (L => Statements (N),
10911 Lib_Level => False,
10912 Nested_Constructs => False)
10913 then
10914 if Nkind (N) = N_Loop_Statement
10915 and then Present (Identifier (N))
10916 then
10917 Block :=
10918 Wrap_Statements_In_Block
10919 (L => Statements (N),
10920 Scop => Entity (Identifier (N)));
10921 else
10922 Block := Wrap_Statements_In_Block (Statements (N));
10923 end if;
10925 Set_Statements (N, New_List (Block));
10926 Analyze (Block);
10927 end if;
10929 -- Could be e.g. a loop that was transformed into a block or null
10930 -- statement. Do nothing for terminate alternatives.
10932 when N_Block_Statement
10933 | N_Null_Statement
10934 | N_Terminate_Alternative
10936 null;
10938 when others =>
10939 raise Program_Error;
10940 end case;
10941 end Process_Statements_For_Controlled_Objects;
10943 ------------------
10944 -- Power_Of_Two --
10945 ------------------
10947 function Power_Of_Two (N : Node_Id) return Nat is
10948 Typ : constant Entity_Id := Etype (N);
10949 pragma Assert (Is_Integer_Type (Typ));
10951 Siz : constant Nat := UI_To_Int (Esize (Typ));
10952 Val : Uint;
10954 begin
10955 if not Compile_Time_Known_Value (N) then
10956 return 0;
10958 else
10959 Val := Expr_Value (N);
10960 for J in 1 .. Siz - 1 loop
10961 if Val = Uint_2 ** J then
10962 return J;
10963 end if;
10964 end loop;
10966 return 0;
10967 end if;
10968 end Power_Of_Two;
10970 ----------------------
10971 -- Remove_Init_Call --
10972 ----------------------
10974 function Remove_Init_Call
10975 (Var : Entity_Id;
10976 Rep_Clause : Node_Id) return Node_Id
10978 Par : constant Node_Id := Parent (Var);
10979 Typ : constant Entity_Id := Etype (Var);
10981 Init_Proc : Entity_Id;
10982 -- Initialization procedure for Typ
10984 function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
10985 -- Look for init call for Var starting at From and scanning the
10986 -- enclosing list until Rep_Clause or the end of the list is reached.
10988 ----------------------------
10989 -- Find_Init_Call_In_List --
10990 ----------------------------
10992 function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
10993 Init_Call : Node_Id;
10995 begin
10996 Init_Call := From;
10997 while Present (Init_Call) and then Init_Call /= Rep_Clause loop
10998 if Nkind (Init_Call) = N_Procedure_Call_Statement
10999 and then Is_Entity_Name (Name (Init_Call))
11000 and then Entity (Name (Init_Call)) = Init_Proc
11001 then
11002 return Init_Call;
11003 end if;
11005 Next (Init_Call);
11006 end loop;
11008 return Empty;
11009 end Find_Init_Call_In_List;
11011 Init_Call : Node_Id;
11013 -- Start of processing for Find_Init_Call
11015 begin
11016 if Present (Initialization_Statements (Var)) then
11017 Init_Call := Initialization_Statements (Var);
11018 Set_Initialization_Statements (Var, Empty);
11020 elsif not Has_Non_Null_Base_Init_Proc (Typ) then
11022 -- No init proc for the type, so obviously no call to be found
11024 return Empty;
11026 else
11027 -- We might be able to handle other cases below by just properly
11028 -- setting Initialization_Statements at the point where the init proc
11029 -- call is generated???
11031 Init_Proc := Base_Init_Proc (Typ);
11033 -- First scan the list containing the declaration of Var
11035 Init_Call := Find_Init_Call_In_List (From => Next (Par));
11037 -- If not found, also look on Var's freeze actions list, if any,
11038 -- since the init call may have been moved there (case of an address
11039 -- clause applying to Var).
11041 if No (Init_Call) and then Present (Freeze_Node (Var)) then
11042 Init_Call :=
11043 Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
11044 end if;
11046 -- If the initialization call has actuals that use the secondary
11047 -- stack, the call may have been wrapped into a temporary block, in
11048 -- which case the block itself has to be removed.
11050 if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then
11051 declare
11052 Blk : constant Node_Id := Next (Par);
11053 begin
11054 if Present
11055 (Find_Init_Call_In_List
11056 (First (Statements (Handled_Statement_Sequence (Blk)))))
11057 then
11058 Init_Call := Blk;
11059 end if;
11060 end;
11061 end if;
11062 end if;
11064 if Present (Init_Call) then
11065 Remove (Init_Call);
11066 end if;
11067 return Init_Call;
11068 end Remove_Init_Call;
11070 -------------------------
11071 -- Remove_Side_Effects --
11072 -------------------------
11074 procedure Remove_Side_Effects
11075 (Exp : Node_Id;
11076 Name_Req : Boolean := False;
11077 Renaming_Req : Boolean := False;
11078 Variable_Ref : Boolean := False;
11079 Related_Id : Entity_Id := Empty;
11080 Is_Low_Bound : Boolean := False;
11081 Is_High_Bound : Boolean := False;
11082 Check_Side_Effects : Boolean := True)
11084 function Build_Temporary
11085 (Loc : Source_Ptr;
11086 Id : Character;
11087 Related_Nod : Node_Id := Empty) return Entity_Id;
11088 -- Create an external symbol of the form xxx_FIRST/_LAST if Related_Nod
11089 -- is present (xxx is taken from the Chars field of Related_Nod),
11090 -- otherwise it generates an internal temporary. The created temporary
11091 -- entity is marked as internal.
11093 ---------------------
11094 -- Build_Temporary --
11095 ---------------------
11097 function Build_Temporary
11098 (Loc : Source_Ptr;
11099 Id : Character;
11100 Related_Nod : Node_Id := Empty) return Entity_Id
11102 Temp_Id : Entity_Id;
11103 Temp_Nam : Name_Id;
11105 begin
11106 -- The context requires an external symbol
11108 if Present (Related_Id) then
11109 if Is_Low_Bound then
11110 Temp_Nam := New_External_Name (Chars (Related_Id), "_FIRST");
11111 else pragma Assert (Is_High_Bound);
11112 Temp_Nam := New_External_Name (Chars (Related_Id), "_LAST");
11113 end if;
11115 Temp_Id := Make_Defining_Identifier (Loc, Temp_Nam);
11117 -- Otherwise generate an internal temporary
11119 else
11120 Temp_Id := Make_Temporary (Loc, Id, Related_Nod);
11121 end if;
11123 Set_Is_Internal (Temp_Id);
11125 return Temp_Id;
11126 end Build_Temporary;
11128 -- Local variables
11130 Loc : constant Source_Ptr := Sloc (Exp);
11131 Exp_Type : constant Entity_Id := Etype (Exp);
11132 Svg_Suppress : constant Suppress_Record := Scope_Suppress;
11133 Def_Id : Entity_Id;
11134 E : Node_Id;
11135 New_Exp : Node_Id;
11136 Ptr_Typ_Decl : Node_Id;
11137 Ref_Type : Entity_Id;
11138 Res : Node_Id;
11140 -- Start of processing for Remove_Side_Effects
11142 begin
11143 -- Handle cases in which there is nothing to do. In GNATprove mode,
11144 -- removal of side effects is useful for the light expansion of
11145 -- renamings. This removal should only occur when not inside a
11146 -- generic and not doing a pre-analysis.
11148 if not Expander_Active
11149 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
11150 then
11151 return;
11153 -- Cannot generate temporaries if the invocation to remove side effects
11154 -- was issued too early and the type of the expression is not resolved
11155 -- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
11156 -- Remove_Side_Effects).
11158 elsif No (Exp_Type)
11159 or else Ekind (Exp_Type) = E_Access_Attribute_Type
11160 then
11161 return;
11163 -- Nothing to do if prior expansion determined that a function call does
11164 -- not require side effect removal.
11166 elsif Nkind (Exp) = N_Function_Call
11167 and then No_Side_Effect_Removal (Exp)
11168 then
11169 return;
11171 -- No action needed for side-effect free expressions
11173 elsif Check_Side_Effects
11174 and then Side_Effect_Free (Exp, Name_Req, Variable_Ref)
11175 then
11176 return;
11178 -- Generating C code we cannot remove side effect of function returning
11179 -- class-wide types since there is no secondary stack (required to use
11180 -- 'reference).
11182 elsif Modify_Tree_For_C
11183 and then Nkind (Exp) = N_Function_Call
11184 and then Is_Class_Wide_Type (Etype (Exp))
11185 then
11186 return;
11187 end if;
11189 -- The remaining processing is done with all checks suppressed
11191 -- Note: from now on, don't use return statements, instead do a goto
11192 -- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
11194 Scope_Suppress.Suppress := (others => True);
11196 -- If this is an elementary or a small not-by-reference record type, and
11197 -- we need to capture the value, just make a constant; this is cheap and
11198 -- objects of both kinds of types can be bit aligned, so it might not be
11199 -- possible to generate a reference to them. Likewise if this is not a
11200 -- name reference, except for a type conversion, because we would enter
11201 -- an infinite recursion with Checks.Apply_Predicate_Check if the target
11202 -- type has predicates (and type conversions need a specific treatment
11203 -- anyway, see below). Also do it if we have a volatile reference and
11204 -- Name_Req is not set (see comments for Side_Effect_Free).
11206 if (Is_Elementary_Type (Exp_Type)
11207 or else (Is_Record_Type (Exp_Type)
11208 and then Known_Static_RM_Size (Exp_Type)
11209 and then RM_Size (Exp_Type) <= 64
11210 and then not Has_Discriminants (Exp_Type)
11211 and then not Is_By_Reference_Type (Exp_Type)))
11212 and then (Variable_Ref
11213 or else (not Is_Name_Reference (Exp)
11214 and then Nkind (Exp) /= N_Type_Conversion)
11215 or else (not Name_Req
11216 and then Is_Volatile_Reference (Exp)))
11217 then
11218 Def_Id := Build_Temporary (Loc, 'R', Exp);
11219 Set_Etype (Def_Id, Exp_Type);
11220 Res := New_Occurrence_Of (Def_Id, Loc);
11222 -- If the expression is a packed reference, it must be reanalyzed and
11223 -- expanded, depending on context. This is the case for actuals where
11224 -- a constraint check may capture the actual before expansion of the
11225 -- call is complete.
11227 if Nkind (Exp) = N_Indexed_Component
11228 and then Is_Packed (Etype (Prefix (Exp)))
11229 then
11230 Set_Analyzed (Exp, False);
11231 Set_Analyzed (Prefix (Exp), False);
11232 end if;
11234 -- Generate:
11235 -- Rnn : Exp_Type renames Expr;
11237 if Renaming_Req then
11238 E :=
11239 Make_Object_Renaming_Declaration (Loc,
11240 Defining_Identifier => Def_Id,
11241 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
11242 Name => Relocate_Node (Exp));
11244 -- Generate:
11245 -- Rnn : constant Exp_Type := Expr;
11247 else
11248 E :=
11249 Make_Object_Declaration (Loc,
11250 Defining_Identifier => Def_Id,
11251 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
11252 Constant_Present => True,
11253 Expression => Relocate_Node (Exp));
11255 Set_Assignment_OK (E);
11256 end if;
11258 Insert_Action (Exp, E);
11260 -- If the expression has the form v.all then we can just capture the
11261 -- pointer, and then do an explicit dereference on the result, but
11262 -- this is not right if this is a volatile reference.
11264 elsif Nkind (Exp) = N_Explicit_Dereference
11265 and then not Is_Volatile_Reference (Exp)
11266 then
11267 Def_Id := Build_Temporary (Loc, 'R', Exp);
11268 Res :=
11269 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Def_Id, Loc));
11271 Insert_Action (Exp,
11272 Make_Object_Declaration (Loc,
11273 Defining_Identifier => Def_Id,
11274 Object_Definition =>
11275 New_Occurrence_Of (Etype (Prefix (Exp)), Loc),
11276 Constant_Present => True,
11277 Expression => Relocate_Node (Prefix (Exp))));
11279 -- Similar processing for an unchecked conversion of an expression of
11280 -- the form v.all, where we want the same kind of treatment.
11282 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
11283 and then Nkind (Expression (Exp)) = N_Explicit_Dereference
11284 then
11285 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
11286 goto Leave;
11288 -- If this is a type conversion, leave the type conversion and remove
11289 -- the side effects in the expression. This is important in several
11290 -- circumstances: for change of representations, and also when this is a
11291 -- view conversion to a smaller object, where gigi can end up creating
11292 -- its own temporary of the wrong size.
11294 elsif Nkind (Exp) = N_Type_Conversion then
11295 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
11297 -- Generating C code the type conversion of an access to constrained
11298 -- array type into an access to unconstrained array type involves
11299 -- initializing a fat pointer and the expression must be free of
11300 -- side effects to safely compute its bounds.
11302 if Modify_Tree_For_C
11303 and then Is_Access_Type (Etype (Exp))
11304 and then Is_Array_Type (Designated_Type (Etype (Exp)))
11305 and then not Is_Constrained (Designated_Type (Etype (Exp)))
11306 then
11307 Def_Id := Build_Temporary (Loc, 'R', Exp);
11308 Set_Etype (Def_Id, Exp_Type);
11309 Res := New_Occurrence_Of (Def_Id, Loc);
11311 Insert_Action (Exp,
11312 Make_Object_Declaration (Loc,
11313 Defining_Identifier => Def_Id,
11314 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
11315 Constant_Present => True,
11316 Expression => Relocate_Node (Exp)));
11317 else
11318 goto Leave;
11319 end if;
11321 -- If this is an unchecked conversion that Gigi can't handle, make
11322 -- a copy or a use a renaming to capture the value.
11324 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
11325 and then not Safe_Unchecked_Type_Conversion (Exp)
11326 then
11327 if CW_Or_Has_Controlled_Part (Exp_Type) then
11329 -- Use a renaming to capture the expression, rather than create
11330 -- a controlled temporary.
11332 Def_Id := Build_Temporary (Loc, 'R', Exp);
11333 Res := New_Occurrence_Of (Def_Id, Loc);
11335 Insert_Action (Exp,
11336 Make_Object_Renaming_Declaration (Loc,
11337 Defining_Identifier => Def_Id,
11338 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
11339 Name => Relocate_Node (Exp)));
11341 else
11342 Def_Id := Build_Temporary (Loc, 'R', Exp);
11343 Set_Etype (Def_Id, Exp_Type);
11344 Res := New_Occurrence_Of (Def_Id, Loc);
11346 E :=
11347 Make_Object_Declaration (Loc,
11348 Defining_Identifier => Def_Id,
11349 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
11350 Constant_Present => not Is_Variable (Exp),
11351 Expression => Relocate_Node (Exp));
11353 Set_Assignment_OK (E);
11354 Insert_Action (Exp, E);
11355 end if;
11357 -- For expressions that denote names, we can use a renaming scheme.
11358 -- This is needed for correctness in the case of a volatile object of
11359 -- a non-volatile type because the Make_Reference call of the "default"
11360 -- approach would generate an illegal access value (an access value
11361 -- cannot designate such an object - see Analyze_Reference).
11363 elsif Is_Name_Reference (Exp)
11365 -- We skip using this scheme if we have an object of a volatile
11366 -- type and we do not have Name_Req set true (see comments for
11367 -- Side_Effect_Free).
11369 and then (Name_Req or else not Treat_As_Volatile (Exp_Type))
11370 then
11371 Def_Id := Build_Temporary (Loc, 'R', Exp);
11372 Res := New_Occurrence_Of (Def_Id, Loc);
11374 Insert_Action (Exp,
11375 Make_Object_Renaming_Declaration (Loc,
11376 Defining_Identifier => Def_Id,
11377 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
11378 Name => Relocate_Node (Exp)));
11380 -- If this is a packed reference, or a selected component with
11381 -- a non-standard representation, a reference to the temporary
11382 -- will be replaced by a copy of the original expression (see
11383 -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
11384 -- elaborated by gigi, and is of course not to be replaced in-line
11385 -- by the expression it renames, which would defeat the purpose of
11386 -- removing the side effect.
11388 if Nkind_In (Exp, N_Selected_Component, N_Indexed_Component)
11389 and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
11390 then
11391 null;
11392 else
11393 Set_Is_Renaming_Of_Object (Def_Id, False);
11394 end if;
11396 -- Avoid generating a variable-sized temporary, by generating the
11397 -- reference just for the function call. The transformation could be
11398 -- refined to apply only when the array component is constrained by a
11399 -- discriminant???
11401 elsif Nkind (Exp) = N_Selected_Component
11402 and then Nkind (Prefix (Exp)) = N_Function_Call
11403 and then Is_Array_Type (Exp_Type)
11404 then
11405 Remove_Side_Effects (Prefix (Exp), Name_Req, Variable_Ref);
11406 goto Leave;
11408 -- Otherwise we generate a reference to the expression
11410 else
11411 -- An expression which is in SPARK mode is considered side effect
11412 -- free if the resulting value is captured by a variable or a
11413 -- constant.
11415 if GNATprove_Mode
11416 and then Nkind (Parent (Exp)) = N_Object_Declaration
11417 then
11418 goto Leave;
11420 -- When generating C code we cannot consider side effect free object
11421 -- declarations that have discriminants and are initialized by means
11422 -- of a function call since on this target there is no secondary
11423 -- stack to store the return value and the expander may generate an
11424 -- extra call to the function to compute the discriminant value. In
11425 -- addition, for targets that have secondary stack, the expansion of
11426 -- functions with side effects involves the generation of an access
11427 -- type to capture the return value stored in the secondary stack;
11428 -- by contrast when generating C code such expansion generates an
11429 -- internal object declaration (no access type involved) which must
11430 -- be identified here to avoid entering into a never-ending loop
11431 -- generating internal object declarations.
11433 elsif Modify_Tree_For_C
11434 and then Nkind (Parent (Exp)) = N_Object_Declaration
11435 and then
11436 (Nkind (Exp) /= N_Function_Call
11437 or else not Has_Discriminants (Exp_Type)
11438 or else Is_Internal_Name
11439 (Chars (Defining_Identifier (Parent (Exp)))))
11440 then
11441 goto Leave;
11442 end if;
11444 -- Special processing for function calls that return a limited type.
11445 -- We need to build a declaration that will enable build-in-place
11446 -- expansion of the call. This is not done if the context is already
11447 -- an object declaration, to prevent infinite recursion.
11449 -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
11450 -- to accommodate functions returning limited objects by reference.
11452 if Ada_Version >= Ada_2005
11453 and then Nkind (Exp) = N_Function_Call
11454 and then Is_Limited_View (Etype (Exp))
11455 and then Nkind (Parent (Exp)) /= N_Object_Declaration
11456 then
11457 declare
11458 Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
11459 Decl : Node_Id;
11461 begin
11462 Decl :=
11463 Make_Object_Declaration (Loc,
11464 Defining_Identifier => Obj,
11465 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
11466 Expression => Relocate_Node (Exp));
11468 Insert_Action (Exp, Decl);
11469 Set_Etype (Obj, Exp_Type);
11470 Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
11471 goto Leave;
11472 end;
11473 end if;
11475 Def_Id := Build_Temporary (Loc, 'R', Exp);
11477 -- The regular expansion of functions with side effects involves the
11478 -- generation of an access type to capture the return value found on
11479 -- the secondary stack. Since SPARK (and why) cannot process access
11480 -- types, use a different approach which ignores the secondary stack
11481 -- and "copies" the returned object.
11482 -- When generating C code, no need for a 'reference since the
11483 -- secondary stack is not supported.
11485 if GNATprove_Mode or Modify_Tree_For_C then
11486 Res := New_Occurrence_Of (Def_Id, Loc);
11487 Ref_Type := Exp_Type;
11489 -- Regular expansion utilizing an access type and 'reference
11491 else
11492 Res :=
11493 Make_Explicit_Dereference (Loc,
11494 Prefix => New_Occurrence_Of (Def_Id, Loc));
11496 -- Generate:
11497 -- type Ann is access all <Exp_Type>;
11499 Ref_Type := Make_Temporary (Loc, 'A');
11501 Ptr_Typ_Decl :=
11502 Make_Full_Type_Declaration (Loc,
11503 Defining_Identifier => Ref_Type,
11504 Type_Definition =>
11505 Make_Access_To_Object_Definition (Loc,
11506 All_Present => True,
11507 Subtype_Indication =>
11508 New_Occurrence_Of (Exp_Type, Loc)));
11510 Insert_Action (Exp, Ptr_Typ_Decl);
11511 end if;
11513 E := Exp;
11514 if Nkind (E) = N_Explicit_Dereference then
11515 New_Exp := Relocate_Node (Prefix (E));
11517 else
11518 E := Relocate_Node (E);
11520 -- Do not generate a 'reference in SPARK mode or C generation
11521 -- since the access type is not created in the first place.
11523 if GNATprove_Mode or Modify_Tree_For_C then
11524 New_Exp := E;
11526 -- Otherwise generate reference, marking the value as non-null
11527 -- since we know it cannot be null and we don't want a check.
11529 else
11530 New_Exp := Make_Reference (Loc, E);
11531 Set_Is_Known_Non_Null (Def_Id);
11532 end if;
11533 end if;
11535 if Is_Delayed_Aggregate (E) then
11537 -- The expansion of nested aggregates is delayed until the
11538 -- enclosing aggregate is expanded. As aggregates are often
11539 -- qualified, the predicate applies to qualified expressions as
11540 -- well, indicating that the enclosing aggregate has not been
11541 -- expanded yet. At this point the aggregate is part of a
11542 -- stand-alone declaration, and must be fully expanded.
11544 if Nkind (E) = N_Qualified_Expression then
11545 Set_Expansion_Delayed (Expression (E), False);
11546 Set_Analyzed (Expression (E), False);
11547 else
11548 Set_Expansion_Delayed (E, False);
11549 end if;
11551 Set_Analyzed (E, False);
11552 end if;
11554 -- Generating C code of object declarations that have discriminants
11555 -- and are initialized by means of a function call we propagate the
11556 -- discriminants of the parent type to the internally built object.
11557 -- This is needed to avoid generating an extra call to the called
11558 -- function.
11560 -- For example, if we generate here the following declaration, it
11561 -- will be expanded later adding an extra call to evaluate the value
11562 -- of the discriminant (needed to compute the size of the object).
11564 -- type Rec (D : Integer) is ...
11565 -- Obj : constant Rec := SomeFunc;
11567 if Modify_Tree_For_C
11568 and then Nkind (Parent (Exp)) = N_Object_Declaration
11569 and then Has_Discriminants (Exp_Type)
11570 and then Nkind (Exp) = N_Function_Call
11571 then
11572 Insert_Action (Exp,
11573 Make_Object_Declaration (Loc,
11574 Defining_Identifier => Def_Id,
11575 Object_Definition => New_Copy_Tree
11576 (Object_Definition (Parent (Exp))),
11577 Constant_Present => True,
11578 Expression => New_Exp));
11579 else
11580 Insert_Action (Exp,
11581 Make_Object_Declaration (Loc,
11582 Defining_Identifier => Def_Id,
11583 Object_Definition => New_Occurrence_Of (Ref_Type, Loc),
11584 Constant_Present => True,
11585 Expression => New_Exp));
11586 end if;
11587 end if;
11589 -- Preserve the Assignment_OK flag in all copies, since at least one
11590 -- copy may be used in a context where this flag must be set (otherwise
11591 -- why would the flag be set in the first place).
11593 Set_Assignment_OK (Res, Assignment_OK (Exp));
11595 -- Finally rewrite the original expression and we are done
11597 Rewrite (Exp, Res);
11598 Analyze_And_Resolve (Exp, Exp_Type);
11600 <<Leave>>
11601 Scope_Suppress := Svg_Suppress;
11602 end Remove_Side_Effects;
11604 ------------------------
11605 -- Replace_References --
11606 ------------------------
11608 procedure Replace_References
11609 (Expr : Node_Id;
11610 Par_Typ : Entity_Id;
11611 Deriv_Typ : Entity_Id;
11612 Par_Obj : Entity_Id := Empty;
11613 Deriv_Obj : Entity_Id := Empty)
11615 function Is_Deriv_Obj_Ref (Ref : Node_Id) return Boolean;
11616 -- Determine whether node Ref denotes some component of Deriv_Obj
11618 function Replace_Ref (Ref : Node_Id) return Traverse_Result;
11619 -- Substitute a reference to an entity with the corresponding value
11620 -- stored in table Type_Map.
11622 function Type_Of_Formal
11623 (Call : Node_Id;
11624 Actual : Node_Id) return Entity_Id;
11625 -- Find the type of the formal parameter which corresponds to actual
11626 -- parameter Actual in subprogram call Call.
11628 ----------------------
11629 -- Is_Deriv_Obj_Ref --
11630 ----------------------
11632 function Is_Deriv_Obj_Ref (Ref : Node_Id) return Boolean is
11633 Par : constant Node_Id := Parent (Ref);
11635 begin
11636 -- Detect the folowing selected component form:
11638 -- Deriv_Obj.(something)
11640 return
11641 Nkind (Par) = N_Selected_Component
11642 and then Is_Entity_Name (Prefix (Par))
11643 and then Entity (Prefix (Par)) = Deriv_Obj;
11644 end Is_Deriv_Obj_Ref;
11646 -----------------
11647 -- Replace_Ref --
11648 -----------------
11650 function Replace_Ref (Ref : Node_Id) return Traverse_Result is
11651 procedure Remove_Controlling_Arguments (From_Arg : Node_Id);
11652 -- Reset the Controlling_Argument of all function calls that
11653 -- encapsulate node From_Arg.
11655 ----------------------------------
11656 -- Remove_Controlling_Arguments --
11657 ----------------------------------
11659 procedure Remove_Controlling_Arguments (From_Arg : Node_Id) is
11660 Par : Node_Id;
11662 begin
11663 Par := From_Arg;
11664 while Present (Par) loop
11665 if Nkind (Par) = N_Function_Call
11666 and then Present (Controlling_Argument (Par))
11667 then
11668 Set_Controlling_Argument (Par, Empty);
11670 -- Prevent the search from going too far
11672 elsif Is_Body_Or_Package_Declaration (Par) then
11673 exit;
11674 end if;
11676 Par := Parent (Par);
11677 end loop;
11678 end Remove_Controlling_Arguments;
11680 -- Local variables
11682 Context : constant Node_Id := Parent (Ref);
11683 Loc : constant Source_Ptr := Sloc (Ref);
11684 Ref_Id : Entity_Id;
11685 Result : Traverse_Result;
11687 New_Ref : Node_Id;
11688 -- The new reference which is intended to substitute the old one
11690 Old_Ref : Node_Id;
11691 -- The reference designated for replacement. In certain cases this
11692 -- may be a node other than Ref.
11694 Val : Node_Or_Entity_Id;
11695 -- The corresponding value of Ref from the type map
11697 -- Start of processing for Replace_Ref
11699 begin
11700 -- Assume that the input reference is to be replaced and that the
11701 -- traversal should examine the children of the reference.
11703 Old_Ref := Ref;
11704 Result := OK;
11706 -- The input denotes a meaningful reference
11708 if Nkind (Ref) in N_Has_Entity and then Present (Entity (Ref)) then
11709 Ref_Id := Entity (Ref);
11710 Val := Type_Map.Get (Ref_Id);
11712 -- The reference has a corresponding value in the type map, a
11713 -- substitution is possible.
11715 if Present (Val) then
11717 -- The reference denotes a discriminant
11719 if Ekind (Ref_Id) = E_Discriminant then
11720 if Nkind (Val) in N_Entity then
11722 -- The value denotes another discriminant. Replace as
11723 -- follows:
11725 -- _object.Discr -> _object.Val
11727 if Ekind (Val) = E_Discriminant then
11728 New_Ref := New_Occurrence_Of (Val, Loc);
11730 -- Otherwise the value denotes the entity of a name which
11731 -- constraints the discriminant. Replace as follows:
11733 -- _object.Discr -> Val
11735 else
11736 pragma Assert (Is_Deriv_Obj_Ref (Old_Ref));
11738 New_Ref := New_Occurrence_Of (Val, Loc);
11739 Old_Ref := Parent (Old_Ref);
11740 end if;
11742 -- Otherwise the value denotes an arbitrary expression which
11743 -- constraints the discriminant. Replace as follows:
11745 -- _object.Discr -> Val
11747 else
11748 pragma Assert (Is_Deriv_Obj_Ref (Old_Ref));
11750 New_Ref := New_Copy_Tree (Val);
11751 Old_Ref := Parent (Old_Ref);
11752 end if;
11754 -- Otherwise the reference denotes a primitive. Replace as
11755 -- follows:
11757 -- Primitive -> Val
11759 else
11760 pragma Assert (Nkind (Val) in N_Entity);
11761 New_Ref := New_Occurrence_Of (Val, Loc);
11762 end if;
11764 -- The reference mentions the _object parameter of the parent
11765 -- type's DIC or type invariant procedure. Replace as follows:
11767 -- _object -> _object
11769 elsif Present (Par_Obj)
11770 and then Present (Deriv_Obj)
11771 and then Ref_Id = Par_Obj
11772 then
11773 New_Ref := New_Occurrence_Of (Deriv_Obj, Loc);
11775 -- The type of the _object parameter is class-wide when the
11776 -- expression comes from an assertion pragma that applies to
11777 -- an abstract parent type or an interface. The class-wide type
11778 -- facilitates the preanalysis of the expression by treating
11779 -- calls to abstract primitives that mention the current
11780 -- instance of the type as dispatching. Once the calls are
11781 -- remapped to invoke overriding or inherited primitives, the
11782 -- calls no longer need to be dispatching. Examine all function
11783 -- calls that encapsulate the _object parameter and reset their
11784 -- Controlling_Argument attribute.
11786 if Is_Class_Wide_Type (Etype (Par_Obj))
11787 and then Is_Abstract_Type (Root_Type (Etype (Par_Obj)))
11788 then
11789 Remove_Controlling_Arguments (Old_Ref);
11790 end if;
11792 -- The reference to _object acts as an actual parameter in a
11793 -- subprogram call which may be invoking a primitive of the
11794 -- parent type:
11796 -- Primitive (... _object ...);
11798 -- The parent type primitive may not be overridden nor
11799 -- inherited when it is declared after the derived type
11800 -- definition:
11802 -- type Parent is tagged private;
11803 -- type Child is new Parent with private;
11804 -- procedure Primitive (Obj : Parent);
11806 -- In this scenario the _object parameter is converted to the
11807 -- parent type. Due to complications with partial/full views
11808 -- and view swaps, the parent type is taken from the formal
11809 -- parameter of the subprogram being called.
11811 if Nkind_In (Context, N_Function_Call,
11812 N_Procedure_Call_Statement)
11813 and then No (Type_Map.Get (Entity (Name (Context))))
11814 then
11815 New_Ref :=
11816 Convert_To (Type_Of_Formal (Context, Old_Ref), New_Ref);
11818 -- Do not process the generated type conversion because
11819 -- both the parent type and the derived type are in the
11820 -- Type_Map table. This will clobber the type conversion
11821 -- by resetting its subtype mark.
11823 Result := Skip;
11824 end if;
11826 -- Otherwise there is nothing to replace
11828 else
11829 New_Ref := Empty;
11830 end if;
11832 if Present (New_Ref) then
11833 Rewrite (Old_Ref, New_Ref);
11835 -- Update the return type when the context of the reference
11836 -- acts as the name of a function call. Note that the update
11837 -- should not be performed when the reference appears as an
11838 -- actual in the call.
11840 if Nkind (Context) = N_Function_Call
11841 and then Name (Context) = Old_Ref
11842 then
11843 Set_Etype (Context, Etype (Val));
11844 end if;
11845 end if;
11846 end if;
11848 -- Reanalyze the reference due to potential replacements
11850 if Nkind (Old_Ref) in N_Has_Etype then
11851 Set_Analyzed (Old_Ref, False);
11852 end if;
11854 return Result;
11855 end Replace_Ref;
11857 procedure Replace_Refs is new Traverse_Proc (Replace_Ref);
11859 --------------------
11860 -- Type_Of_Formal --
11861 --------------------
11863 function Type_Of_Formal
11864 (Call : Node_Id;
11865 Actual : Node_Id) return Entity_Id
11867 A : Node_Id;
11868 F : Entity_Id;
11870 begin
11871 -- Examine the list of actual and formal parameters in parallel
11873 A := First (Parameter_Associations (Call));
11874 F := First_Formal (Entity (Name (Call)));
11875 while Present (A) and then Present (F) loop
11876 if A = Actual then
11877 return Etype (F);
11878 end if;
11880 Next (A);
11881 Next_Formal (F);
11882 end loop;
11884 -- The actual parameter must always have a corresponding formal
11886 pragma Assert (False);
11888 return Empty;
11889 end Type_Of_Formal;
11891 -- Start of processing for Replace_References
11893 begin
11894 -- Map the attributes of the parent type to the proper corresponding
11895 -- attributes of the derived type.
11897 Map_Types
11898 (Parent_Type => Par_Typ,
11899 Derived_Type => Deriv_Typ);
11901 -- Inspect the input expression and perform substitutions where
11902 -- necessary.
11904 Replace_Refs (Expr);
11905 end Replace_References;
11907 -----------------------------
11908 -- Replace_Type_References --
11909 -----------------------------
11911 procedure Replace_Type_References
11912 (Expr : Node_Id;
11913 Typ : Entity_Id;
11914 Obj_Id : Entity_Id)
11916 procedure Replace_Type_Ref (N : Node_Id);
11917 -- Substitute a single reference of the current instance of type Typ
11918 -- with a reference to Obj_Id.
11920 ----------------------
11921 -- Replace_Type_Ref --
11922 ----------------------
11924 procedure Replace_Type_Ref (N : Node_Id) is
11925 begin
11926 -- Decorate the reference to Typ even though it may be rewritten
11927 -- further down. This is done for two reasons:
11929 -- * ASIS has all necessary semantic information in the original
11930 -- tree.
11932 -- * Routines which examine properties of the Original_Node have
11933 -- some semantic information.
11935 if Nkind (N) = N_Identifier then
11936 Set_Entity (N, Typ);
11937 Set_Etype (N, Typ);
11939 elsif Nkind (N) = N_Selected_Component then
11940 Analyze (Prefix (N));
11941 Set_Entity (Selector_Name (N), Typ);
11942 Set_Etype (Selector_Name (N), Typ);
11943 end if;
11945 -- Perform the following substitution:
11947 -- Typ --> _object
11949 Rewrite (N, New_Occurrence_Of (Obj_Id, Sloc (N)));
11950 Set_Comes_From_Source (N, True);
11951 end Replace_Type_Ref;
11953 procedure Replace_Type_Refs is
11954 new Replace_Type_References_Generic (Replace_Type_Ref);
11956 -- Start of processing for Replace_Type_References
11958 begin
11959 Replace_Type_Refs (Expr, Typ);
11960 end Replace_Type_References;
11962 ---------------------------
11963 -- Represented_As_Scalar --
11964 ---------------------------
11966 function Represented_As_Scalar (T : Entity_Id) return Boolean is
11967 UT : constant Entity_Id := Underlying_Type (T);
11968 begin
11969 return Is_Scalar_Type (UT)
11970 or else (Is_Bit_Packed_Array (UT)
11971 and then Is_Scalar_Type (Packed_Array_Impl_Type (UT)));
11972 end Represented_As_Scalar;
11974 ------------------------------
11975 -- Requires_Cleanup_Actions --
11976 ------------------------------
11978 function Requires_Cleanup_Actions
11979 (N : Node_Id;
11980 Lib_Level : Boolean) return Boolean
11982 At_Lib_Level : constant Boolean :=
11983 Lib_Level
11984 and then Nkind_In (N, N_Package_Body,
11985 N_Package_Specification);
11986 -- N is at the library level if the top-most context is a package and
11987 -- the path taken to reach N does not inlcude non-package constructs.
11989 begin
11990 case Nkind (N) is
11991 when N_Accept_Statement
11992 | N_Block_Statement
11993 | N_Entry_Body
11994 | N_Package_Body
11995 | N_Protected_Body
11996 | N_Subprogram_Body
11997 | N_Task_Body
11999 return
12000 Requires_Cleanup_Actions
12001 (L => Declarations (N),
12002 Lib_Level => At_Lib_Level,
12003 Nested_Constructs => True)
12004 or else
12005 (Present (Handled_Statement_Sequence (N))
12006 and then
12007 Requires_Cleanup_Actions
12008 (L =>
12009 Statements (Handled_Statement_Sequence (N)),
12010 Lib_Level => At_Lib_Level,
12011 Nested_Constructs => True));
12013 -- Extended return statements are the same as the above, except that
12014 -- there is no Declarations field. We do not want to clean up the
12015 -- Return_Object_Declarations.
12017 when N_Extended_Return_Statement =>
12018 return
12019 Present (Handled_Statement_Sequence (N))
12020 and then Requires_Cleanup_Actions
12021 (L =>
12022 Statements (Handled_Statement_Sequence (N)),
12023 Lib_Level => At_Lib_Level,
12024 Nested_Constructs => True);
12026 when N_Package_Specification =>
12027 return
12028 Requires_Cleanup_Actions
12029 (L => Visible_Declarations (N),
12030 Lib_Level => At_Lib_Level,
12031 Nested_Constructs => True)
12032 or else
12033 Requires_Cleanup_Actions
12034 (L => Private_Declarations (N),
12035 Lib_Level => At_Lib_Level,
12036 Nested_Constructs => True);
12038 when others =>
12039 raise Program_Error;
12040 end case;
12041 end Requires_Cleanup_Actions;
12043 ------------------------------
12044 -- Requires_Cleanup_Actions --
12045 ------------------------------
12047 function Requires_Cleanup_Actions
12048 (L : List_Id;
12049 Lib_Level : Boolean;
12050 Nested_Constructs : Boolean) return Boolean
12052 Decl : Node_Id;
12053 Expr : Node_Id;
12054 Obj_Id : Entity_Id;
12055 Obj_Typ : Entity_Id;
12056 Pack_Id : Entity_Id;
12057 Typ : Entity_Id;
12059 begin
12060 if No (L)
12061 or else Is_Empty_List (L)
12062 then
12063 return False;
12064 end if;
12066 Decl := First (L);
12067 while Present (Decl) loop
12069 -- Library-level tagged types
12071 if Nkind (Decl) = N_Full_Type_Declaration then
12072 Typ := Defining_Identifier (Decl);
12074 -- Ignored Ghost types do not need any cleanup actions because
12075 -- they will not appear in the final tree.
12077 if Is_Ignored_Ghost_Entity (Typ) then
12078 null;
12080 elsif Is_Tagged_Type (Typ)
12081 and then Is_Library_Level_Entity (Typ)
12082 and then Convention (Typ) = Convention_Ada
12083 and then Present (Access_Disp_Table (Typ))
12084 and then RTE_Available (RE_Unregister_Tag)
12085 and then not Is_Abstract_Type (Typ)
12086 and then not No_Run_Time_Mode
12087 then
12088 return True;
12089 end if;
12091 -- Regular object declarations
12093 elsif Nkind (Decl) = N_Object_Declaration then
12094 Obj_Id := Defining_Identifier (Decl);
12095 Obj_Typ := Base_Type (Etype (Obj_Id));
12096 Expr := Expression (Decl);
12098 -- Bypass any form of processing for objects which have their
12099 -- finalization disabled. This applies only to objects at the
12100 -- library level.
12102 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
12103 null;
12105 -- Finalization of transient objects are treated separately in
12106 -- order to handle sensitive cases. These include:
12108 -- * Aggregate expansion
12109 -- * If, case, and expression with actions expansion
12110 -- * Transient scopes
12112 -- If one of those contexts has marked the transient object as
12113 -- ignored, do not generate finalization actions for it.
12115 elsif Is_Finalized_Transient (Obj_Id)
12116 or else Is_Ignored_Transient (Obj_Id)
12117 then
12118 null;
12120 -- Ignored Ghost objects do not need any cleanup actions because
12121 -- they will not appear in the final tree.
12123 elsif Is_Ignored_Ghost_Entity (Obj_Id) then
12124 null;
12126 -- The object is of the form:
12127 -- Obj : [constant] Typ [:= Expr];
12129 -- Do not process tag-to-class-wide conversions because they do
12130 -- not yield an object. Do not process the incomplete view of a
12131 -- deferred constant. Note that an object initialized by means
12132 -- of a build-in-place function call may appear as a deferred
12133 -- constant after expansion activities. These kinds of objects
12134 -- must be finalized.
12136 elsif not Is_Imported (Obj_Id)
12137 and then Needs_Finalization (Obj_Typ)
12138 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
12139 and then not (Ekind (Obj_Id) = E_Constant
12140 and then not Has_Completion (Obj_Id)
12141 and then No (BIP_Initialization_Call (Obj_Id)))
12142 then
12143 return True;
12145 -- The object is of the form:
12146 -- Obj : Access_Typ := Non_BIP_Function_Call'reference;
12148 -- Obj : Access_Typ :=
12149 -- BIP_Function_Call (BIPalloc => 2, ...)'reference;
12151 elsif Is_Access_Type (Obj_Typ)
12152 and then Needs_Finalization
12153 (Available_View (Designated_Type (Obj_Typ)))
12154 and then Present (Expr)
12155 and then
12156 (Is_Secondary_Stack_BIP_Func_Call (Expr)
12157 or else
12158 (Is_Non_BIP_Func_Call (Expr)
12159 and then not Is_Related_To_Func_Return (Obj_Id)))
12160 then
12161 return True;
12163 -- Processing for "hook" objects generated for transient objects
12164 -- declared inside an Expression_With_Actions.
12166 elsif Is_Access_Type (Obj_Typ)
12167 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
12168 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
12169 N_Object_Declaration
12170 then
12171 return True;
12173 -- Processing for intermediate results of if expressions where
12174 -- one of the alternatives uses a controlled function call.
12176 elsif Is_Access_Type (Obj_Typ)
12177 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
12178 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
12179 N_Defining_Identifier
12180 and then Present (Expr)
12181 and then Nkind (Expr) = N_Null
12182 then
12183 return True;
12185 -- Simple protected objects which use type System.Tasking.
12186 -- Protected_Objects.Protection to manage their locks should be
12187 -- treated as controlled since they require manual cleanup.
12189 elsif Ekind (Obj_Id) = E_Variable
12190 and then (Is_Simple_Protected_Type (Obj_Typ)
12191 or else Has_Simple_Protected_Object (Obj_Typ))
12192 then
12193 return True;
12194 end if;
12196 -- Specific cases of object renamings
12198 elsif Nkind (Decl) = N_Object_Renaming_Declaration then
12199 Obj_Id := Defining_Identifier (Decl);
12200 Obj_Typ := Base_Type (Etype (Obj_Id));
12202 -- Bypass any form of processing for objects which have their
12203 -- finalization disabled. This applies only to objects at the
12204 -- library level.
12206 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
12207 null;
12209 -- Ignored Ghost object renamings do not need any cleanup actions
12210 -- because they will not appear in the final tree.
12212 elsif Is_Ignored_Ghost_Entity (Obj_Id) then
12213 null;
12215 -- Return object of a build-in-place function. This case is
12216 -- recognized and marked by the expansion of an extended return
12217 -- statement (see Expand_N_Extended_Return_Statement).
12219 elsif Needs_Finalization (Obj_Typ)
12220 and then Is_Return_Object (Obj_Id)
12221 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
12222 then
12223 return True;
12225 -- Detect a case where a source object has been initialized by
12226 -- a controlled function call or another object which was later
12227 -- rewritten as a class-wide conversion of Ada.Tags.Displace.
12229 -- Obj1 : CW_Type := Src_Obj;
12230 -- Obj2 : CW_Type := Function_Call (...);
12232 -- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
12233 -- Tmp : ... := Function_Call (...)'reference;
12234 -- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
12236 elsif Is_Displacement_Of_Object_Or_Function_Result (Obj_Id) then
12237 return True;
12238 end if;
12240 -- Inspect the freeze node of an access-to-controlled type and look
12241 -- for a delayed finalization master. This case arises when the
12242 -- freeze actions are inserted at a later time than the expansion of
12243 -- the context. Since Build_Finalizer is never called on a single
12244 -- construct twice, the master will be ultimately left out and never
12245 -- finalized. This is also needed for freeze actions of designated
12246 -- types themselves, since in some cases the finalization master is
12247 -- associated with a designated type's freeze node rather than that
12248 -- of the access type (see handling for freeze actions in
12249 -- Build_Finalization_Master).
12251 elsif Nkind (Decl) = N_Freeze_Entity
12252 and then Present (Actions (Decl))
12253 then
12254 Typ := Entity (Decl);
12256 -- Freeze nodes for ignored Ghost types do not need cleanup
12257 -- actions because they will never appear in the final tree.
12259 if Is_Ignored_Ghost_Entity (Typ) then
12260 null;
12262 elsif ((Is_Access_Type (Typ)
12263 and then not Is_Access_Subprogram_Type (Typ)
12264 and then Needs_Finalization
12265 (Available_View (Designated_Type (Typ))))
12266 or else (Is_Type (Typ) and then Needs_Finalization (Typ)))
12267 and then Requires_Cleanup_Actions
12268 (Actions (Decl), Lib_Level, Nested_Constructs)
12269 then
12270 return True;
12271 end if;
12273 -- Nested package declarations
12275 elsif Nested_Constructs
12276 and then Nkind (Decl) = N_Package_Declaration
12277 then
12278 Pack_Id := Defining_Entity (Decl);
12280 -- Do not inspect an ignored Ghost package because all code found
12281 -- within will not appear in the final tree.
12283 if Is_Ignored_Ghost_Entity (Pack_Id) then
12284 null;
12286 elsif Ekind (Pack_Id) /= E_Generic_Package
12287 and then Requires_Cleanup_Actions
12288 (Specification (Decl), Lib_Level)
12289 then
12290 return True;
12291 end if;
12293 -- Nested package bodies
12295 elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then
12297 -- Do not inspect an ignored Ghost package body because all code
12298 -- found within will not appear in the final tree.
12300 if Is_Ignored_Ghost_Entity (Defining_Entity (Decl)) then
12301 null;
12303 elsif Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package
12304 and then Requires_Cleanup_Actions (Decl, Lib_Level)
12305 then
12306 return True;
12307 end if;
12309 elsif Nkind (Decl) = N_Block_Statement
12310 and then
12312 -- Handle a rare case caused by a controlled transient object
12313 -- created as part of a record init proc. The variable is wrapped
12314 -- in a block, but the block is not associated with a transient
12315 -- scope.
12317 (Inside_Init_Proc
12319 -- Handle the case where the original context has been wrapped in
12320 -- a block to avoid interference between exception handlers and
12321 -- At_End handlers. Treat the block as transparent and process its
12322 -- contents.
12324 or else Is_Finalization_Wrapper (Decl))
12325 then
12326 if Requires_Cleanup_Actions (Decl, Lib_Level) then
12327 return True;
12328 end if;
12329 end if;
12331 Next (Decl);
12332 end loop;
12334 return False;
12335 end Requires_Cleanup_Actions;
12337 ------------------------------------
12338 -- Safe_Unchecked_Type_Conversion --
12339 ------------------------------------
12341 -- Note: this function knows quite a bit about the exact requirements of
12342 -- Gigi with respect to unchecked type conversions, and its code must be
12343 -- coordinated with any changes in Gigi in this area.
12345 -- The above requirements should be documented in Sinfo ???
12347 function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
12348 Otyp : Entity_Id;
12349 Ityp : Entity_Id;
12350 Oalign : Uint;
12351 Ialign : Uint;
12352 Pexp : constant Node_Id := Parent (Exp);
12354 begin
12355 -- If the expression is the RHS of an assignment or object declaration
12356 -- we are always OK because there will always be a target.
12358 -- Object renaming declarations, (generated for view conversions of
12359 -- actuals in inlined calls), like object declarations, provide an
12360 -- explicit type, and are safe as well.
12362 if (Nkind (Pexp) = N_Assignment_Statement
12363 and then Expression (Pexp) = Exp)
12364 or else Nkind_In (Pexp, N_Object_Declaration,
12365 N_Object_Renaming_Declaration)
12366 then
12367 return True;
12369 -- If the expression is the prefix of an N_Selected_Component we should
12370 -- also be OK because GCC knows to look inside the conversion except if
12371 -- the type is discriminated. We assume that we are OK anyway if the
12372 -- type is not set yet or if it is controlled since we can't afford to
12373 -- introduce a temporary in this case.
12375 elsif Nkind (Pexp) = N_Selected_Component
12376 and then Prefix (Pexp) = Exp
12377 then
12378 if No (Etype (Pexp)) then
12379 return True;
12380 else
12381 return
12382 not Has_Discriminants (Etype (Pexp))
12383 or else Is_Constrained (Etype (Pexp));
12384 end if;
12385 end if;
12387 -- Set the output type, this comes from Etype if it is set, otherwise we
12388 -- take it from the subtype mark, which we assume was already fully
12389 -- analyzed.
12391 if Present (Etype (Exp)) then
12392 Otyp := Etype (Exp);
12393 else
12394 Otyp := Entity (Subtype_Mark (Exp));
12395 end if;
12397 -- The input type always comes from the expression, and we assume this
12398 -- is indeed always analyzed, so we can simply get the Etype.
12400 Ityp := Etype (Expression (Exp));
12402 -- Initialize alignments to unknown so far
12404 Oalign := No_Uint;
12405 Ialign := No_Uint;
12407 -- Replace a concurrent type by its corresponding record type and each
12408 -- type by its underlying type and do the tests on those. The original
12409 -- type may be a private type whose completion is a concurrent type, so
12410 -- find the underlying type first.
12412 if Present (Underlying_Type (Otyp)) then
12413 Otyp := Underlying_Type (Otyp);
12414 end if;
12416 if Present (Underlying_Type (Ityp)) then
12417 Ityp := Underlying_Type (Ityp);
12418 end if;
12420 if Is_Concurrent_Type (Otyp) then
12421 Otyp := Corresponding_Record_Type (Otyp);
12422 end if;
12424 if Is_Concurrent_Type (Ityp) then
12425 Ityp := Corresponding_Record_Type (Ityp);
12426 end if;
12428 -- If the base types are the same, we know there is no problem since
12429 -- this conversion will be a noop.
12431 if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
12432 return True;
12434 -- Same if this is an upwards conversion of an untagged type, and there
12435 -- are no constraints involved (could be more general???)
12437 elsif Etype (Ityp) = Otyp
12438 and then not Is_Tagged_Type (Ityp)
12439 and then not Has_Discriminants (Ityp)
12440 and then No (First_Rep_Item (Base_Type (Ityp)))
12441 then
12442 return True;
12444 -- If the expression has an access type (object or subprogram) we assume
12445 -- that the conversion is safe, because the size of the target is safe,
12446 -- even if it is a record (which might be treated as having unknown size
12447 -- at this point).
12449 elsif Is_Access_Type (Ityp) then
12450 return True;
12452 -- If the size of output type is known at compile time, there is never
12453 -- a problem. Note that unconstrained records are considered to be of
12454 -- known size, but we can't consider them that way here, because we are
12455 -- talking about the actual size of the object.
12457 -- We also make sure that in addition to the size being known, we do not
12458 -- have a case which might generate an embarrassingly large temp in
12459 -- stack checking mode.
12461 elsif Size_Known_At_Compile_Time (Otyp)
12462 and then
12463 (not Stack_Checking_Enabled
12464 or else not May_Generate_Large_Temp (Otyp))
12465 and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
12466 then
12467 return True;
12469 -- If either type is tagged, then we know the alignment is OK so Gigi
12470 -- will be able to use pointer punning.
12472 elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
12473 return True;
12475 -- If either type is a limited record type, we cannot do a copy, so say
12476 -- safe since there's nothing else we can do.
12478 elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
12479 return True;
12481 -- Conversions to and from packed array types are always ignored and
12482 -- hence are safe.
12484 elsif Is_Packed_Array_Impl_Type (Otyp)
12485 or else Is_Packed_Array_Impl_Type (Ityp)
12486 then
12487 return True;
12488 end if;
12490 -- The only other cases known to be safe is if the input type's
12491 -- alignment is known to be at least the maximum alignment for the
12492 -- target or if both alignments are known and the output type's
12493 -- alignment is no stricter than the input's. We can use the component
12494 -- type alignment for an array if a type is an unpacked array type.
12496 if Present (Alignment_Clause (Otyp)) then
12497 Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
12499 elsif Is_Array_Type (Otyp)
12500 and then Present (Alignment_Clause (Component_Type (Otyp)))
12501 then
12502 Oalign := Expr_Value (Expression (Alignment_Clause
12503 (Component_Type (Otyp))));
12504 end if;
12506 if Present (Alignment_Clause (Ityp)) then
12507 Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
12509 elsif Is_Array_Type (Ityp)
12510 and then Present (Alignment_Clause (Component_Type (Ityp)))
12511 then
12512 Ialign := Expr_Value (Expression (Alignment_Clause
12513 (Component_Type (Ityp))));
12514 end if;
12516 if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
12517 return True;
12519 elsif Ialign /= No_Uint
12520 and then Oalign /= No_Uint
12521 and then Ialign <= Oalign
12522 then
12523 return True;
12525 -- Otherwise, Gigi cannot handle this and we must make a temporary
12527 else
12528 return False;
12529 end if;
12530 end Safe_Unchecked_Type_Conversion;
12532 ---------------------------------
12533 -- Set_Current_Value_Condition --
12534 ---------------------------------
12536 -- Note: the implementation of this procedure is very closely tied to the
12537 -- implementation of Get_Current_Value_Condition. Here we set required
12538 -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
12539 -- them, so they must have a consistent view.
12541 procedure Set_Current_Value_Condition (Cnode : Node_Id) is
12543 procedure Set_Entity_Current_Value (N : Node_Id);
12544 -- If N is an entity reference, where the entity is of an appropriate
12545 -- kind, then set the current value of this entity to Cnode, unless
12546 -- there is already a definite value set there.
12548 procedure Set_Expression_Current_Value (N : Node_Id);
12549 -- If N is of an appropriate form, sets an appropriate entry in current
12550 -- value fields of relevant entities. Multiple entities can be affected
12551 -- in the case of an AND or AND THEN.
12553 ------------------------------
12554 -- Set_Entity_Current_Value --
12555 ------------------------------
12557 procedure Set_Entity_Current_Value (N : Node_Id) is
12558 begin
12559 if Is_Entity_Name (N) then
12560 declare
12561 Ent : constant Entity_Id := Entity (N);
12563 begin
12564 -- Don't capture if not safe to do so
12566 if not Safe_To_Capture_Value (N, Ent, Cond => True) then
12567 return;
12568 end if;
12570 -- Here we have a case where the Current_Value field may need
12571 -- to be set. We set it if it is not already set to a compile
12572 -- time expression value.
12574 -- Note that this represents a decision that one condition
12575 -- blots out another previous one. That's certainly right if
12576 -- they occur at the same level. If the second one is nested,
12577 -- then the decision is neither right nor wrong (it would be
12578 -- equally OK to leave the outer one in place, or take the new
12579 -- inner one. Really we should record both, but our data
12580 -- structures are not that elaborate.
12582 if Nkind (Current_Value (Ent)) not in N_Subexpr then
12583 Set_Current_Value (Ent, Cnode);
12584 end if;
12585 end;
12586 end if;
12587 end Set_Entity_Current_Value;
12589 ----------------------------------
12590 -- Set_Expression_Current_Value --
12591 ----------------------------------
12593 procedure Set_Expression_Current_Value (N : Node_Id) is
12594 Cond : Node_Id;
12596 begin
12597 Cond := N;
12599 -- Loop to deal with (ignore for now) any NOT operators present. The
12600 -- presence of NOT operators will be handled properly when we call
12601 -- Get_Current_Value_Condition.
12603 while Nkind (Cond) = N_Op_Not loop
12604 Cond := Right_Opnd (Cond);
12605 end loop;
12607 -- For an AND or AND THEN, recursively process operands
12609 if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
12610 Set_Expression_Current_Value (Left_Opnd (Cond));
12611 Set_Expression_Current_Value (Right_Opnd (Cond));
12612 return;
12613 end if;
12615 -- Check possible relational operator
12617 if Nkind (Cond) in N_Op_Compare then
12618 if Compile_Time_Known_Value (Right_Opnd (Cond)) then
12619 Set_Entity_Current_Value (Left_Opnd (Cond));
12620 elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
12621 Set_Entity_Current_Value (Right_Opnd (Cond));
12622 end if;
12624 elsif Nkind_In (Cond,
12625 N_Type_Conversion,
12626 N_Qualified_Expression,
12627 N_Expression_With_Actions)
12628 then
12629 Set_Expression_Current_Value (Expression (Cond));
12631 -- Check possible boolean variable reference
12633 else
12634 Set_Entity_Current_Value (Cond);
12635 end if;
12636 end Set_Expression_Current_Value;
12638 -- Start of processing for Set_Current_Value_Condition
12640 begin
12641 Set_Expression_Current_Value (Condition (Cnode));
12642 end Set_Current_Value_Condition;
12644 --------------------------
12645 -- Set_Elaboration_Flag --
12646 --------------------------
12648 procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
12649 Loc : constant Source_Ptr := Sloc (N);
12650 Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
12651 Asn : Node_Id;
12653 begin
12654 if Present (Ent) then
12656 -- Nothing to do if at the compilation unit level, because in this
12657 -- case the flag is set by the binder generated elaboration routine.
12659 if Nkind (Parent (N)) = N_Compilation_Unit then
12660 null;
12662 -- Here we do need to generate an assignment statement
12664 else
12665 Check_Restriction (No_Elaboration_Code, N);
12667 Asn :=
12668 Make_Assignment_Statement (Loc,
12669 Name => New_Occurrence_Of (Ent, Loc),
12670 Expression => Make_Integer_Literal (Loc, Uint_1));
12672 -- Mark the assignment statement as elaboration code. This allows
12673 -- the early call region mechanism (see Sem_Elab) to properly
12674 -- ignore such assignments even though they are non-preelaborable
12675 -- code.
12677 Set_Is_Elaboration_Code (Asn);
12679 if Nkind (Parent (N)) = N_Subunit then
12680 Insert_After (Corresponding_Stub (Parent (N)), Asn);
12681 else
12682 Insert_After (N, Asn);
12683 end if;
12685 Analyze (Asn);
12687 -- Kill current value indication. This is necessary because the
12688 -- tests of this flag are inserted out of sequence and must not
12689 -- pick up bogus indications of the wrong constant value.
12691 Set_Current_Value (Ent, Empty);
12693 -- If the subprogram is in the current declarative part and
12694 -- 'access has been applied to it, generate an elaboration
12695 -- check at the beginning of the declarations of the body.
12697 if Nkind (N) = N_Subprogram_Body
12698 and then Address_Taken (Spec_Id)
12699 and then
12700 Ekind_In (Scope (Spec_Id), E_Block, E_Procedure, E_Function)
12701 then
12702 declare
12703 Loc : constant Source_Ptr := Sloc (N);
12704 Decls : constant List_Id := Declarations (N);
12705 Chk : Node_Id;
12707 begin
12708 -- No need to generate this check if first entry in the
12709 -- declaration list is a raise of Program_Error now.
12711 if Present (Decls)
12712 and then Nkind (First (Decls)) = N_Raise_Program_Error
12713 then
12714 return;
12715 end if;
12717 -- Otherwise generate the check
12719 Chk :=
12720 Make_Raise_Program_Error (Loc,
12721 Condition =>
12722 Make_Op_Eq (Loc,
12723 Left_Opnd => New_Occurrence_Of (Ent, Loc),
12724 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
12725 Reason => PE_Access_Before_Elaboration);
12727 if No (Decls) then
12728 Set_Declarations (N, New_List (Chk));
12729 else
12730 Prepend (Chk, Decls);
12731 end if;
12733 Analyze (Chk);
12734 end;
12735 end if;
12736 end if;
12737 end if;
12738 end Set_Elaboration_Flag;
12740 ----------------------------
12741 -- Set_Renamed_Subprogram --
12742 ----------------------------
12744 procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
12745 begin
12746 -- If input node is an identifier, we can just reset it
12748 if Nkind (N) = N_Identifier then
12749 Set_Chars (N, Chars (E));
12750 Set_Entity (N, E);
12752 -- Otherwise we have to do a rewrite, preserving Comes_From_Source
12754 else
12755 declare
12756 CS : constant Boolean := Comes_From_Source (N);
12757 begin
12758 Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
12759 Set_Entity (N, E);
12760 Set_Comes_From_Source (N, CS);
12761 Set_Analyzed (N, True);
12762 end;
12763 end if;
12764 end Set_Renamed_Subprogram;
12766 ----------------------
12767 -- Side_Effect_Free --
12768 ----------------------
12770 function Side_Effect_Free
12771 (N : Node_Id;
12772 Name_Req : Boolean := False;
12773 Variable_Ref : Boolean := False) return Boolean
12775 Typ : constant Entity_Id := Etype (N);
12776 -- Result type of the expression
12778 function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
12779 -- The argument N is a construct where the Prefix is dereferenced if it
12780 -- is an access type and the result is a variable. The call returns True
12781 -- if the construct is side effect free (not considering side effects in
12782 -- other than the prefix which are to be tested by the caller).
12784 function Within_In_Parameter (N : Node_Id) return Boolean;
12785 -- Determines if N is a subcomponent of a composite in-parameter. If so,
12786 -- N is not side-effect free when the actual is global and modifiable
12787 -- indirectly from within a subprogram, because it may be passed by
12788 -- reference. The front-end must be conservative here and assume that
12789 -- this may happen with any array or record type. On the other hand, we
12790 -- cannot create temporaries for all expressions for which this
12791 -- condition is true, for various reasons that might require clearing up
12792 -- ??? For example, discriminant references that appear out of place, or
12793 -- spurious type errors with class-wide expressions. As a result, we
12794 -- limit the transformation to loop bounds, which is so far the only
12795 -- case that requires it.
12797 -----------------------------
12798 -- Safe_Prefixed_Reference --
12799 -----------------------------
12801 function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
12802 begin
12803 -- If prefix is not side effect free, definitely not safe
12805 if not Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref) then
12806 return False;
12808 -- If the prefix is of an access type that is not access-to-constant,
12809 -- then this construct is a variable reference, which means it is to
12810 -- be considered to have side effects if Variable_Ref is set True.
12812 elsif Is_Access_Type (Etype (Prefix (N)))
12813 and then not Is_Access_Constant (Etype (Prefix (N)))
12814 and then Variable_Ref
12815 then
12816 -- Exception is a prefix that is the result of a previous removal
12817 -- of side effects.
12819 return Is_Entity_Name (Prefix (N))
12820 and then not Comes_From_Source (Prefix (N))
12821 and then Ekind (Entity (Prefix (N))) = E_Constant
12822 and then Is_Internal_Name (Chars (Entity (Prefix (N))));
12824 -- If the prefix is an explicit dereference then this construct is a
12825 -- variable reference, which means it is to be considered to have
12826 -- side effects if Variable_Ref is True.
12828 -- We do NOT exclude dereferences of access-to-constant types because
12829 -- we handle them as constant view of variables.
12831 elsif Nkind (Prefix (N)) = N_Explicit_Dereference
12832 and then Variable_Ref
12833 then
12834 return False;
12836 -- Note: The following test is the simplest way of solving a complex
12837 -- problem uncovered by the following test (Side effect on loop bound
12838 -- that is a subcomponent of a global variable:
12840 -- with Text_Io; use Text_Io;
12841 -- procedure Tloop is
12842 -- type X is
12843 -- record
12844 -- V : Natural := 4;
12845 -- S : String (1..5) := (others => 'a');
12846 -- end record;
12847 -- X1 : X;
12849 -- procedure Modi;
12851 -- generic
12852 -- with procedure Action;
12853 -- procedure Loop_G (Arg : X; Msg : String)
12855 -- procedure Loop_G (Arg : X; Msg : String) is
12856 -- begin
12857 -- Put_Line ("begin loop_g " & Msg & " will loop till: "
12858 -- & Natural'Image (Arg.V));
12859 -- for Index in 1 .. Arg.V loop
12860 -- Text_Io.Put_Line
12861 -- (Natural'Image (Index) & " " & Arg.S (Index));
12862 -- if Index > 2 then
12863 -- Modi;
12864 -- end if;
12865 -- end loop;
12866 -- Put_Line ("end loop_g " & Msg);
12867 -- end;
12869 -- procedure Loop1 is new Loop_G (Modi);
12870 -- procedure Modi is
12871 -- begin
12872 -- X1.V := 1;
12873 -- Loop1 (X1, "from modi");
12874 -- end;
12876 -- begin
12877 -- Loop1 (X1, "initial");
12878 -- end;
12880 -- The output of the above program should be:
12882 -- begin loop_g initial will loop till: 4
12883 -- 1 a
12884 -- 2 a
12885 -- 3 a
12886 -- begin loop_g from modi will loop till: 1
12887 -- 1 a
12888 -- end loop_g from modi
12889 -- 4 a
12890 -- begin loop_g from modi will loop till: 1
12891 -- 1 a
12892 -- end loop_g from modi
12893 -- end loop_g initial
12895 -- If a loop bound is a subcomponent of a global variable, a
12896 -- modification of that variable within the loop may incorrectly
12897 -- affect the execution of the loop.
12899 elsif Nkind (Parent (Parent (N))) = N_Loop_Parameter_Specification
12900 and then Within_In_Parameter (Prefix (N))
12901 and then Variable_Ref
12902 then
12903 return False;
12905 -- All other cases are side effect free
12907 else
12908 return True;
12909 end if;
12910 end Safe_Prefixed_Reference;
12912 -------------------------
12913 -- Within_In_Parameter --
12914 -------------------------
12916 function Within_In_Parameter (N : Node_Id) return Boolean is
12917 begin
12918 if not Comes_From_Source (N) then
12919 return False;
12921 elsif Is_Entity_Name (N) then
12922 return Ekind (Entity (N)) = E_In_Parameter;
12924 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
12925 return Within_In_Parameter (Prefix (N));
12927 else
12928 return False;
12929 end if;
12930 end Within_In_Parameter;
12932 -- Start of processing for Side_Effect_Free
12934 begin
12935 -- If volatile reference, always consider it to have side effects
12937 if Is_Volatile_Reference (N) then
12938 return False;
12939 end if;
12941 -- Note on checks that could raise Constraint_Error. Strictly, if we
12942 -- take advantage of 11.6, these checks do not count as side effects.
12943 -- However, we would prefer to consider that they are side effects,
12944 -- since the back end CSE does not work very well on expressions which
12945 -- can raise Constraint_Error. On the other hand if we don't consider
12946 -- them to be side effect free, then we get some awkward expansions
12947 -- in -gnato mode, resulting in code insertions at a point where we
12948 -- do not have a clear model for performing the insertions.
12950 -- Special handling for entity names
12952 if Is_Entity_Name (N) then
12954 -- A type reference is always side effect free
12956 if Is_Type (Entity (N)) then
12957 return True;
12959 -- Variables are considered to be a side effect if Variable_Ref
12960 -- is set or if we have a volatile reference and Name_Req is off.
12961 -- If Name_Req is True then we can't help returning a name which
12962 -- effectively allows multiple references in any case.
12964 elsif Is_Variable (N, Use_Original_Node => False) then
12965 return not Variable_Ref
12966 and then (not Is_Volatile_Reference (N) or else Name_Req);
12968 -- Any other entity (e.g. a subtype name) is definitely side
12969 -- effect free.
12971 else
12972 return True;
12973 end if;
12975 -- A value known at compile time is always side effect free
12977 elsif Compile_Time_Known_Value (N) then
12978 return True;
12980 -- A variable renaming is not side-effect free, because the renaming
12981 -- will function like a macro in the front-end in some cases, and an
12982 -- assignment can modify the component designated by N, so we need to
12983 -- create a temporary for it.
12985 -- The guard testing for Entity being present is needed at least in
12986 -- the case of rewritten predicate expressions, and may well also be
12987 -- appropriate elsewhere. Obviously we can't go testing the entity
12988 -- field if it does not exist, so it's reasonable to say that this is
12989 -- not the renaming case if it does not exist.
12991 elsif Is_Entity_Name (Original_Node (N))
12992 and then Present (Entity (Original_Node (N)))
12993 and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
12994 and then Ekind (Entity (Original_Node (N))) /= E_Constant
12995 then
12996 declare
12997 RO : constant Node_Id :=
12998 Renamed_Object (Entity (Original_Node (N)));
13000 begin
13001 -- If the renamed object is an indexed component, or an
13002 -- explicit dereference, then the designated object could
13003 -- be modified by an assignment.
13005 if Nkind_In (RO, N_Indexed_Component,
13006 N_Explicit_Dereference)
13007 then
13008 return False;
13010 -- A selected component must have a safe prefix
13012 elsif Nkind (RO) = N_Selected_Component then
13013 return Safe_Prefixed_Reference (RO);
13015 -- In all other cases, designated object cannot be changed so
13016 -- we are side effect free.
13018 else
13019 return True;
13020 end if;
13021 end;
13023 -- Remove_Side_Effects generates an object renaming declaration to
13024 -- capture the expression of a class-wide expression. In VM targets
13025 -- the frontend performs no expansion for dispatching calls to
13026 -- class- wide types since they are handled by the VM. Hence, we must
13027 -- locate here if this node corresponds to a previous invocation of
13028 -- Remove_Side_Effects to avoid a never ending loop in the frontend.
13030 elsif not Tagged_Type_Expansion
13031 and then not Comes_From_Source (N)
13032 and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
13033 and then Is_Class_Wide_Type (Typ)
13034 then
13035 return True;
13037 -- Generating C the type conversion of an access to constrained array
13038 -- type into an access to unconstrained array type involves initializing
13039 -- a fat pointer and the expression cannot be assumed to be free of side
13040 -- effects since it must referenced several times to compute its bounds.
13042 elsif Modify_Tree_For_C
13043 and then Nkind (N) = N_Type_Conversion
13044 and then Is_Access_Type (Typ)
13045 and then Is_Array_Type (Designated_Type (Typ))
13046 and then not Is_Constrained (Designated_Type (Typ))
13047 then
13048 return False;
13049 end if;
13051 -- For other than entity names and compile time known values,
13052 -- check the node kind for special processing.
13054 case Nkind (N) is
13056 -- An attribute reference is side effect free if its expressions
13057 -- are side effect free and its prefix is side effect free or
13058 -- is an entity reference.
13060 -- Is this right? what about x'first where x is a variable???
13062 when N_Attribute_Reference =>
13063 Attribute_Reference : declare
13065 function Side_Effect_Free_Attribute
13066 (Attribute_Name : Name_Id) return Boolean;
13067 -- Returns True if evaluation of the given attribute is
13068 -- considered side-effect free (independent of prefix and
13069 -- arguments).
13071 --------------------------------
13072 -- Side_Effect_Free_Attribute --
13073 --------------------------------
13075 function Side_Effect_Free_Attribute
13076 (Attribute_Name : Name_Id) return Boolean
13078 begin
13079 case Attribute_Name is
13080 when Name_Input =>
13081 return False;
13083 when Name_Image
13084 | Name_Img
13085 | Name_Wide_Image
13086 | Name_Wide_Wide_Image
13088 -- CodePeer doesn't want to see replicated copies of
13089 -- 'Image calls.
13091 return not CodePeer_Mode;
13093 when others =>
13094 return True;
13095 end case;
13096 end Side_Effect_Free_Attribute;
13098 -- Start of processing for Attribute_Reference
13100 begin
13101 return
13102 Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
13103 and then Side_Effect_Free_Attribute (Attribute_Name (N))
13104 and then (Is_Entity_Name (Prefix (N))
13105 or else Side_Effect_Free
13106 (Prefix (N), Name_Req, Variable_Ref));
13107 end Attribute_Reference;
13109 -- A binary operator is side effect free if and both operands are
13110 -- side effect free. For this purpose binary operators include
13111 -- membership tests and short circuit forms.
13113 when N_Binary_Op
13114 | N_Membership_Test
13115 | N_Short_Circuit
13117 return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref)
13118 and then
13119 Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
13121 -- An explicit dereference is side effect free only if it is
13122 -- a side effect free prefixed reference.
13124 when N_Explicit_Dereference =>
13125 return Safe_Prefixed_Reference (N);
13127 -- An expression with action is side effect free if its expression
13128 -- is side effect free and it has no actions.
13130 when N_Expression_With_Actions =>
13131 return
13132 Is_Empty_List (Actions (N))
13133 and then Side_Effect_Free
13134 (Expression (N), Name_Req, Variable_Ref);
13136 -- A call to _rep_to_pos is side effect free, since we generate
13137 -- this pure function call ourselves. Moreover it is critically
13138 -- important to make this exception, since otherwise we can have
13139 -- discriminants in array components which don't look side effect
13140 -- free in the case of an array whose index type is an enumeration
13141 -- type with an enumeration rep clause.
13143 -- All other function calls are not side effect free
13145 when N_Function_Call =>
13146 return
13147 Nkind (Name (N)) = N_Identifier
13148 and then Is_TSS (Name (N), TSS_Rep_To_Pos)
13149 and then Side_Effect_Free
13150 (First (Parameter_Associations (N)),
13151 Name_Req, Variable_Ref);
13153 -- An IF expression is side effect free if it's of a scalar type, and
13154 -- all its components are all side effect free (conditions and then
13155 -- actions and else actions). We restrict to scalar types, since it
13156 -- is annoying to deal with things like (if A then B else C)'First
13157 -- where the type involved is a string type.
13159 when N_If_Expression =>
13160 return
13161 Is_Scalar_Type (Typ)
13162 and then Side_Effect_Free
13163 (Expressions (N), Name_Req, Variable_Ref);
13165 -- An indexed component is side effect free if it is a side
13166 -- effect free prefixed reference and all the indexing
13167 -- expressions are side effect free.
13169 when N_Indexed_Component =>
13170 return
13171 Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
13172 and then Safe_Prefixed_Reference (N);
13174 -- A type qualification, type conversion, or unchecked expression is
13175 -- side effect free if the expression is side effect free.
13177 when N_Qualified_Expression
13178 | N_Type_Conversion
13179 | N_Unchecked_Expression
13181 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
13183 -- A selected component is side effect free only if it is a side
13184 -- effect free prefixed reference.
13186 when N_Selected_Component =>
13187 return Safe_Prefixed_Reference (N);
13189 -- A range is side effect free if the bounds are side effect free
13191 when N_Range =>
13192 return Side_Effect_Free (Low_Bound (N), Name_Req, Variable_Ref)
13193 and then
13194 Side_Effect_Free (High_Bound (N), Name_Req, Variable_Ref);
13196 -- A slice is side effect free if it is a side effect free
13197 -- prefixed reference and the bounds are side effect free.
13199 when N_Slice =>
13200 return
13201 Side_Effect_Free (Discrete_Range (N), Name_Req, Variable_Ref)
13202 and then Safe_Prefixed_Reference (N);
13204 -- A unary operator is side effect free if the operand
13205 -- is side effect free.
13207 when N_Unary_Op =>
13208 return Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
13210 -- An unchecked type conversion is side effect free only if it
13211 -- is safe and its argument is side effect free.
13213 when N_Unchecked_Type_Conversion =>
13214 return
13215 Safe_Unchecked_Type_Conversion (N)
13216 and then Side_Effect_Free
13217 (Expression (N), Name_Req, Variable_Ref);
13219 -- A literal is side effect free
13221 when N_Character_Literal
13222 | N_Integer_Literal
13223 | N_Real_Literal
13224 | N_String_Literal
13226 return True;
13228 -- We consider that anything else has side effects. This is a bit
13229 -- crude, but we are pretty close for most common cases, and we
13230 -- are certainly correct (i.e. we never return True when the
13231 -- answer should be False).
13233 when others =>
13234 return False;
13235 end case;
13236 end Side_Effect_Free;
13238 -- A list is side effect free if all elements of the list are side
13239 -- effect free.
13241 function Side_Effect_Free
13242 (L : List_Id;
13243 Name_Req : Boolean := False;
13244 Variable_Ref : Boolean := False) return Boolean
13246 N : Node_Id;
13248 begin
13249 if L = No_List or else L = Error_List then
13250 return True;
13252 else
13253 N := First (L);
13254 while Present (N) loop
13255 if not Side_Effect_Free (N, Name_Req, Variable_Ref) then
13256 return False;
13257 else
13258 Next (N);
13259 end if;
13260 end loop;
13262 return True;
13263 end if;
13264 end Side_Effect_Free;
13266 ----------------------------------
13267 -- Silly_Boolean_Array_Not_Test --
13268 ----------------------------------
13270 -- This procedure implements an odd and silly test. We explicitly check
13271 -- for the case where the 'First of the component type is equal to the
13272 -- 'Last of this component type, and if this is the case, we make sure
13273 -- that constraint error is raised. The reason is that the NOT is bound
13274 -- to cause CE in this case, and we will not otherwise catch it.
13276 -- No such check is required for AND and OR, since for both these cases
13277 -- False op False = False, and True op True = True. For the XOR case,
13278 -- see Silly_Boolean_Array_Xor_Test.
13280 -- Believe it or not, this was reported as a bug. Note that nearly always,
13281 -- the test will evaluate statically to False, so the code will be
13282 -- statically removed, and no extra overhead caused.
13284 procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
13285 Loc : constant Source_Ptr := Sloc (N);
13286 CT : constant Entity_Id := Component_Type (T);
13288 begin
13289 -- The check we install is
13291 -- constraint_error when
13292 -- component_type'first = component_type'last
13293 -- and then array_type'Length /= 0)
13295 -- We need the last guard because we don't want to raise CE for empty
13296 -- arrays since no out of range values result. (Empty arrays with a
13297 -- component type of True .. True -- very useful -- even the ACATS
13298 -- does not test that marginal case).
13300 Insert_Action (N,
13301 Make_Raise_Constraint_Error (Loc,
13302 Condition =>
13303 Make_And_Then (Loc,
13304 Left_Opnd =>
13305 Make_Op_Eq (Loc,
13306 Left_Opnd =>
13307 Make_Attribute_Reference (Loc,
13308 Prefix => New_Occurrence_Of (CT, Loc),
13309 Attribute_Name => Name_First),
13311 Right_Opnd =>
13312 Make_Attribute_Reference (Loc,
13313 Prefix => New_Occurrence_Of (CT, Loc),
13314 Attribute_Name => Name_Last)),
13316 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
13317 Reason => CE_Range_Check_Failed));
13318 end Silly_Boolean_Array_Not_Test;
13320 ----------------------------------
13321 -- Silly_Boolean_Array_Xor_Test --
13322 ----------------------------------
13324 -- This procedure implements an odd and silly test. We explicitly check
13325 -- for the XOR case where the component type is True .. True, since this
13326 -- will raise constraint error. A special check is required since CE
13327 -- will not be generated otherwise (cf Expand_Packed_Not).
13329 -- No such check is required for AND and OR, since for both these cases
13330 -- False op False = False, and True op True = True, and no check is
13331 -- required for the case of False .. False, since False xor False = False.
13332 -- See also Silly_Boolean_Array_Not_Test
13334 procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
13335 Loc : constant Source_Ptr := Sloc (N);
13336 CT : constant Entity_Id := Component_Type (T);
13338 begin
13339 -- The check we install is
13341 -- constraint_error when
13342 -- Boolean (component_type'First)
13343 -- and then Boolean (component_type'Last)
13344 -- and then array_type'Length /= 0)
13346 -- We need the last guard because we don't want to raise CE for empty
13347 -- arrays since no out of range values result (Empty arrays with a
13348 -- component type of True .. True -- very useful -- even the ACATS
13349 -- does not test that marginal case).
13351 Insert_Action (N,
13352 Make_Raise_Constraint_Error (Loc,
13353 Condition =>
13354 Make_And_Then (Loc,
13355 Left_Opnd =>
13356 Make_And_Then (Loc,
13357 Left_Opnd =>
13358 Convert_To (Standard_Boolean,
13359 Make_Attribute_Reference (Loc,
13360 Prefix => New_Occurrence_Of (CT, Loc),
13361 Attribute_Name => Name_First)),
13363 Right_Opnd =>
13364 Convert_To (Standard_Boolean,
13365 Make_Attribute_Reference (Loc,
13366 Prefix => New_Occurrence_Of (CT, Loc),
13367 Attribute_Name => Name_Last))),
13369 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
13370 Reason => CE_Range_Check_Failed));
13371 end Silly_Boolean_Array_Xor_Test;
13373 --------------------------
13374 -- Target_Has_Fixed_Ops --
13375 --------------------------
13377 Integer_Sized_Small : Ureal;
13378 -- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
13379 -- called (we don't want to compute it more than once).
13381 Long_Integer_Sized_Small : Ureal;
13382 -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
13383 -- is called (we don't want to compute it more than once)
13385 First_Time_For_THFO : Boolean := True;
13386 -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
13388 function Target_Has_Fixed_Ops
13389 (Left_Typ : Entity_Id;
13390 Right_Typ : Entity_Id;
13391 Result_Typ : Entity_Id) return Boolean
13393 function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
13394 -- Return True if the given type is a fixed-point type with a small
13395 -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
13396 -- an absolute value less than 1.0. This is currently limited to
13397 -- fixed-point types that map to Integer or Long_Integer.
13399 ------------------------
13400 -- Is_Fractional_Type --
13401 ------------------------
13403 function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
13404 begin
13405 if Esize (Typ) = Standard_Integer_Size then
13406 return Small_Value (Typ) = Integer_Sized_Small;
13408 elsif Esize (Typ) = Standard_Long_Integer_Size then
13409 return Small_Value (Typ) = Long_Integer_Sized_Small;
13411 else
13412 return False;
13413 end if;
13414 end Is_Fractional_Type;
13416 -- Start of processing for Target_Has_Fixed_Ops
13418 begin
13419 -- Return False if Fractional_Fixed_Ops_On_Target is false
13421 if not Fractional_Fixed_Ops_On_Target then
13422 return False;
13423 end if;
13425 -- Here the target has Fractional_Fixed_Ops, if first time, compute
13426 -- standard constants used by Is_Fractional_Type.
13428 if First_Time_For_THFO then
13429 First_Time_For_THFO := False;
13431 Integer_Sized_Small :=
13432 UR_From_Components
13433 (Num => Uint_1,
13434 Den => UI_From_Int (Standard_Integer_Size - 1),
13435 Rbase => 2);
13437 Long_Integer_Sized_Small :=
13438 UR_From_Components
13439 (Num => Uint_1,
13440 Den => UI_From_Int (Standard_Long_Integer_Size - 1),
13441 Rbase => 2);
13442 end if;
13444 -- Return True if target supports fixed-by-fixed multiply/divide for
13445 -- fractional fixed-point types (see Is_Fractional_Type) and the operand
13446 -- and result types are equivalent fractional types.
13448 return Is_Fractional_Type (Base_Type (Left_Typ))
13449 and then Is_Fractional_Type (Base_Type (Right_Typ))
13450 and then Is_Fractional_Type (Base_Type (Result_Typ))
13451 and then Esize (Left_Typ) = Esize (Right_Typ)
13452 and then Esize (Left_Typ) = Esize (Result_Typ);
13453 end Target_Has_Fixed_Ops;
13455 -------------------
13456 -- Type_Map_Hash --
13457 -------------------
13459 function Type_Map_Hash (Id : Entity_Id) return Type_Map_Header is
13460 begin
13461 return Type_Map_Header (Id mod Type_Map_Size);
13462 end Type_Map_Hash;
13464 ------------------------------------------
13465 -- Type_May_Have_Bit_Aligned_Components --
13466 ------------------------------------------
13468 function Type_May_Have_Bit_Aligned_Components
13469 (Typ : Entity_Id) return Boolean
13471 begin
13472 -- Array type, check component type
13474 if Is_Array_Type (Typ) then
13475 return
13476 Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
13478 -- Record type, check components
13480 elsif Is_Record_Type (Typ) then
13481 declare
13482 E : Entity_Id;
13484 begin
13485 E := First_Component_Or_Discriminant (Typ);
13486 while Present (E) loop
13487 if Component_May_Be_Bit_Aligned (E)
13488 or else Type_May_Have_Bit_Aligned_Components (Etype (E))
13489 then
13490 return True;
13491 end if;
13493 Next_Component_Or_Discriminant (E);
13494 end loop;
13496 return False;
13497 end;
13499 -- Type other than array or record is always OK
13501 else
13502 return False;
13503 end if;
13504 end Type_May_Have_Bit_Aligned_Components;
13506 -------------------------------
13507 -- Update_Primitives_Mapping --
13508 -------------------------------
13510 procedure Update_Primitives_Mapping
13511 (Inher_Id : Entity_Id;
13512 Subp_Id : Entity_Id)
13514 begin
13515 Map_Types
13516 (Parent_Type => Find_Dispatching_Type (Inher_Id),
13517 Derived_Type => Find_Dispatching_Type (Subp_Id));
13518 end Update_Primitives_Mapping;
13520 ----------------------------------
13521 -- Within_Case_Or_If_Expression --
13522 ----------------------------------
13524 function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is
13525 Par : Node_Id;
13527 begin
13528 -- Locate an enclosing case or if expression. Note that these constructs
13529 -- can be expanded into Expression_With_Actions, hence the test of the
13530 -- original node.
13532 Par := Parent (N);
13533 while Present (Par) loop
13534 if Nkind_In (Original_Node (Par), N_Case_Expression,
13535 N_If_Expression)
13536 then
13537 return True;
13539 -- Prevent the search from going too far
13541 elsif Is_Body_Or_Package_Declaration (Par) then
13542 return False;
13543 end if;
13545 Par := Parent (Par);
13546 end loop;
13548 return False;
13549 end Within_Case_Or_If_Expression;
13551 --------------------------------
13552 -- Within_Internal_Subprogram --
13553 --------------------------------
13555 function Within_Internal_Subprogram return Boolean is
13556 S : Entity_Id;
13558 begin
13559 S := Current_Scope;
13560 while Present (S) and then not Is_Subprogram (S) loop
13561 S := Scope (S);
13562 end loop;
13564 return Present (S)
13565 and then Get_TSS_Name (S) /= TSS_Null
13566 and then not Is_Predicate_Function (S)
13567 and then not Is_Predicate_Function_M (S);
13568 end Within_Internal_Subprogram;
13570 end Exp_Util;