PR debug/66535
[official-gcc.git] / gcc / var-tracking.c
blobc3adf51d1341b06377a962975a89e733c4bddf6d
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "input.h"
94 #include "alias.h"
95 #include "symtab.h"
96 #include "tree.h"
97 #include "varasm.h"
98 #include "stor-layout.h"
99 #include "predict.h"
100 #include "hard-reg-set.h"
101 #include "function.h"
102 #include "dominance.h"
103 #include "cfg.h"
104 #include "cfgrtl.h"
105 #include "cfganal.h"
106 #include "basic-block.h"
107 #include "tm_p.h"
108 #include "flags.h"
109 #include "insn-config.h"
110 #include "reload.h"
111 #include "sbitmap.h"
112 #include "alloc-pool.h"
113 #include "regs.h"
114 #include "expmed.h"
115 #include "dojump.h"
116 #include "explow.h"
117 #include "calls.h"
118 #include "emit-rtl.h"
119 #include "stmt.h"
120 #include "expr.h"
121 #include "tree-pass.h"
122 #include "bitmap.h"
123 #include "tree-dfa.h"
124 #include "tree-ssa.h"
125 #include "cselib.h"
126 #include "target.h"
127 #include "params.h"
128 #include "diagnostic.h"
129 #include "tree-pretty-print.h"
130 #include "recog.h"
131 #include "rtl-iter.h"
132 #include "fibonacci_heap.h"
134 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
135 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
137 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
138 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
139 Currently the value is the same as IDENTIFIER_NODE, which has such
140 a property. If this compile time assertion ever fails, make sure that
141 the new tree code that equals (int) VALUE has the same property. */
142 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
144 /* Type of micro operation. */
145 enum micro_operation_type
147 MO_USE, /* Use location (REG or MEM). */
148 MO_USE_NO_VAR,/* Use location which is not associated with a variable
149 or the variable is not trackable. */
150 MO_VAL_USE, /* Use location which is associated with a value. */
151 MO_VAL_LOC, /* Use location which appears in a debug insn. */
152 MO_VAL_SET, /* Set location associated with a value. */
153 MO_SET, /* Set location. */
154 MO_COPY, /* Copy the same portion of a variable from one
155 location to another. */
156 MO_CLOBBER, /* Clobber location. */
157 MO_CALL, /* Call insn. */
158 MO_ADJUST /* Adjust stack pointer. */
162 static const char * const ATTRIBUTE_UNUSED
163 micro_operation_type_name[] = {
164 "MO_USE",
165 "MO_USE_NO_VAR",
166 "MO_VAL_USE",
167 "MO_VAL_LOC",
168 "MO_VAL_SET",
169 "MO_SET",
170 "MO_COPY",
171 "MO_CLOBBER",
172 "MO_CALL",
173 "MO_ADJUST"
176 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
177 Notes emitted as AFTER_CALL are to take effect during the call,
178 rather than after the call. */
179 enum emit_note_where
181 EMIT_NOTE_BEFORE_INSN,
182 EMIT_NOTE_AFTER_INSN,
183 EMIT_NOTE_AFTER_CALL_INSN
186 /* Structure holding information about micro operation. */
187 typedef struct micro_operation_def
189 /* Type of micro operation. */
190 enum micro_operation_type type;
192 /* The instruction which the micro operation is in, for MO_USE,
193 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
194 instruction or note in the original flow (before any var-tracking
195 notes are inserted, to simplify emission of notes), for MO_SET
196 and MO_CLOBBER. */
197 rtx_insn *insn;
199 union {
200 /* Location. For MO_SET and MO_COPY, this is the SET that
201 performs the assignment, if known, otherwise it is the target
202 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
203 CONCAT of the VALUE and the LOC associated with it. For
204 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
205 associated with it. */
206 rtx loc;
208 /* Stack adjustment. */
209 HOST_WIDE_INT adjust;
210 } u;
211 } micro_operation;
214 /* A declaration of a variable, or an RTL value being handled like a
215 declaration. */
216 typedef void *decl_or_value;
218 /* Return true if a decl_or_value DV is a DECL or NULL. */
219 static inline bool
220 dv_is_decl_p (decl_or_value dv)
222 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
225 /* Return true if a decl_or_value is a VALUE rtl. */
226 static inline bool
227 dv_is_value_p (decl_or_value dv)
229 return dv && !dv_is_decl_p (dv);
232 /* Return the decl in the decl_or_value. */
233 static inline tree
234 dv_as_decl (decl_or_value dv)
236 gcc_checking_assert (dv_is_decl_p (dv));
237 return (tree) dv;
240 /* Return the value in the decl_or_value. */
241 static inline rtx
242 dv_as_value (decl_or_value dv)
244 gcc_checking_assert (dv_is_value_p (dv));
245 return (rtx)dv;
248 /* Return the opaque pointer in the decl_or_value. */
249 static inline void *
250 dv_as_opaque (decl_or_value dv)
252 return dv;
256 /* Description of location of a part of a variable. The content of a physical
257 register is described by a chain of these structures.
258 The chains are pretty short (usually 1 or 2 elements) and thus
259 chain is the best data structure. */
260 typedef struct attrs_def
262 /* Pointer to next member of the list. */
263 struct attrs_def *next;
265 /* The rtx of register. */
266 rtx loc;
268 /* The declaration corresponding to LOC. */
269 decl_or_value dv;
271 /* Offset from start of DECL. */
272 HOST_WIDE_INT offset;
274 /* Pool allocation new operator. */
275 inline void *operator new (size_t)
277 return pool.allocate ();
280 /* Delete operator utilizing pool allocation. */
281 inline void operator delete (void *ptr)
283 pool.remove ((attrs_def *) ptr);
286 /* Memory allocation pool. */
287 static pool_allocator<attrs_def> pool;
288 } *attrs;
290 /* Structure for chaining the locations. */
291 typedef struct location_chain_def
293 /* Next element in the chain. */
294 struct location_chain_def *next;
296 /* The location (REG, MEM or VALUE). */
297 rtx loc;
299 /* The "value" stored in this location. */
300 rtx set_src;
302 /* Initialized? */
303 enum var_init_status init;
305 /* Pool allocation new operator. */
306 inline void *operator new (size_t)
308 return pool.allocate ();
311 /* Delete operator utilizing pool allocation. */
312 inline void operator delete (void *ptr)
314 pool.remove ((location_chain_def *) ptr);
317 /* Memory allocation pool. */
318 static pool_allocator<location_chain_def> pool;
319 } *location_chain;
321 /* A vector of loc_exp_dep holds the active dependencies of a one-part
322 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
323 location of DV. Each entry is also part of VALUE' s linked-list of
324 backlinks back to DV. */
325 typedef struct loc_exp_dep_s
327 /* The dependent DV. */
328 decl_or_value dv;
329 /* The dependency VALUE or DECL_DEBUG. */
330 rtx value;
331 /* The next entry in VALUE's backlinks list. */
332 struct loc_exp_dep_s *next;
333 /* A pointer to the pointer to this entry (head or prev's next) in
334 the doubly-linked list. */
335 struct loc_exp_dep_s **pprev;
337 /* Pool allocation new operator. */
338 inline void *operator new (size_t)
340 return pool.allocate ();
343 /* Delete operator utilizing pool allocation. */
344 inline void operator delete (void *ptr)
346 pool.remove ((loc_exp_dep_s *) ptr);
349 /* Memory allocation pool. */
350 static pool_allocator<loc_exp_dep_s> pool;
351 } loc_exp_dep;
354 /* This data structure holds information about the depth of a variable
355 expansion. */
356 typedef struct expand_depth_struct
358 /* This measures the complexity of the expanded expression. It
359 grows by one for each level of expansion that adds more than one
360 operand. */
361 int complexity;
362 /* This counts the number of ENTRY_VALUE expressions in an
363 expansion. We want to minimize their use. */
364 int entryvals;
365 } expand_depth;
367 /* This data structure is allocated for one-part variables at the time
368 of emitting notes. */
369 struct onepart_aux
371 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
372 computation used the expansion of this variable, and that ought
373 to be notified should this variable change. If the DV's cur_loc
374 expanded to NULL, all components of the loc list are regarded as
375 active, so that any changes in them give us a chance to get a
376 location. Otherwise, only components of the loc that expanded to
377 non-NULL are regarded as active dependencies. */
378 loc_exp_dep *backlinks;
379 /* This holds the LOC that was expanded into cur_loc. We need only
380 mark a one-part variable as changed if the FROM loc is removed,
381 or if it has no known location and a loc is added, or if it gets
382 a change notification from any of its active dependencies. */
383 rtx from;
384 /* The depth of the cur_loc expression. */
385 expand_depth depth;
386 /* Dependencies actively used when expand FROM into cur_loc. */
387 vec<loc_exp_dep, va_heap, vl_embed> deps;
390 /* Structure describing one part of variable. */
391 typedef struct variable_part_def
393 /* Chain of locations of the part. */
394 location_chain loc_chain;
396 /* Location which was last emitted to location list. */
397 rtx cur_loc;
399 union variable_aux
401 /* The offset in the variable, if !var->onepart. */
402 HOST_WIDE_INT offset;
404 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
405 struct onepart_aux *onepaux;
406 } aux;
407 } variable_part;
409 /* Maximum number of location parts. */
410 #define MAX_VAR_PARTS 16
412 /* Enumeration type used to discriminate various types of one-part
413 variables. */
414 typedef enum onepart_enum
416 /* Not a one-part variable. */
417 NOT_ONEPART = 0,
418 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
419 ONEPART_VDECL = 1,
420 /* A DEBUG_EXPR_DECL. */
421 ONEPART_DEXPR = 2,
422 /* A VALUE. */
423 ONEPART_VALUE = 3
424 } onepart_enum_t;
426 /* Structure describing where the variable is located. */
427 typedef struct variable_def
429 /* The declaration of the variable, or an RTL value being handled
430 like a declaration. */
431 decl_or_value dv;
433 /* Reference count. */
434 int refcount;
436 /* Number of variable parts. */
437 char n_var_parts;
439 /* What type of DV this is, according to enum onepart_enum. */
440 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
442 /* True if this variable_def struct is currently in the
443 changed_variables hash table. */
444 bool in_changed_variables;
446 /* The variable parts. */
447 variable_part var_part[1];
448 } *variable;
449 typedef const struct variable_def *const_variable;
451 /* Pointer to the BB's information specific to variable tracking pass. */
452 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
454 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
455 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
457 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
459 /* Access VAR's Ith part's offset, checking that it's not a one-part
460 variable. */
461 #define VAR_PART_OFFSET(var, i) __extension__ \
462 (*({ variable const __v = (var); \
463 gcc_checking_assert (!__v->onepart); \
464 &__v->var_part[(i)].aux.offset; }))
466 /* Access VAR's one-part auxiliary data, checking that it is a
467 one-part variable. */
468 #define VAR_LOC_1PAUX(var) __extension__ \
469 (*({ variable const __v = (var); \
470 gcc_checking_assert (__v->onepart); \
471 &__v->var_part[0].aux.onepaux; }))
473 #else
474 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
475 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
476 #endif
478 /* These are accessor macros for the one-part auxiliary data. When
479 convenient for users, they're guarded by tests that the data was
480 allocated. */
481 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
482 ? VAR_LOC_1PAUX (var)->backlinks \
483 : NULL)
484 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
485 ? &VAR_LOC_1PAUX (var)->backlinks \
486 : NULL)
487 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
488 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
489 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
490 ? &VAR_LOC_1PAUX (var)->deps \
491 : NULL)
495 typedef unsigned int dvuid;
497 /* Return the uid of DV. */
499 static inline dvuid
500 dv_uid (decl_or_value dv)
502 if (dv_is_value_p (dv))
503 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
504 else
505 return DECL_UID (dv_as_decl (dv));
508 /* Compute the hash from the uid. */
510 static inline hashval_t
511 dv_uid2hash (dvuid uid)
513 return uid;
516 /* The hash function for a mask table in a shared_htab chain. */
518 static inline hashval_t
519 dv_htab_hash (decl_or_value dv)
521 return dv_uid2hash (dv_uid (dv));
524 static void variable_htab_free (void *);
526 /* Variable hashtable helpers. */
528 struct variable_hasher
530 typedef variable_def *value_type;
531 typedef void *compare_type;
532 static inline hashval_t hash (const variable_def *);
533 static inline bool equal (const variable_def *, const void *);
534 static inline void remove (variable_def *);
537 /* The hash function for variable_htab, computes the hash value
538 from the declaration of variable X. */
540 inline hashval_t
541 variable_hasher::hash (const variable_def *v)
543 return dv_htab_hash (v->dv);
546 /* Compare the declaration of variable X with declaration Y. */
548 inline bool
549 variable_hasher::equal (const variable_def *v, const void *y)
551 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
553 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
556 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
558 inline void
559 variable_hasher::remove (variable_def *var)
561 variable_htab_free (var);
564 typedef hash_table<variable_hasher> variable_table_type;
565 typedef variable_table_type::iterator variable_iterator_type;
567 /* Structure for passing some other parameters to function
568 emit_note_insn_var_location. */
569 typedef struct emit_note_data_def
571 /* The instruction which the note will be emitted before/after. */
572 rtx_insn *insn;
574 /* Where the note will be emitted (before/after insn)? */
575 enum emit_note_where where;
577 /* The variables and values active at this point. */
578 variable_table_type *vars;
579 } emit_note_data;
581 /* Structure holding a refcounted hash table. If refcount > 1,
582 it must be first unshared before modified. */
583 typedef struct shared_hash_def
585 /* Reference count. */
586 int refcount;
588 /* Actual hash table. */
589 variable_table_type *htab;
591 /* Pool allocation new operator. */
592 inline void *operator new (size_t)
594 return pool.allocate ();
597 /* Delete operator utilizing pool allocation. */
598 inline void operator delete (void *ptr)
600 pool.remove ((shared_hash_def *) ptr);
603 /* Memory allocation pool. */
604 static pool_allocator<shared_hash_def> pool;
605 } *shared_hash;
607 /* Structure holding the IN or OUT set for a basic block. */
608 typedef struct dataflow_set_def
610 /* Adjustment of stack offset. */
611 HOST_WIDE_INT stack_adjust;
613 /* Attributes for registers (lists of attrs). */
614 attrs regs[FIRST_PSEUDO_REGISTER];
616 /* Variable locations. */
617 shared_hash vars;
619 /* Vars that is being traversed. */
620 shared_hash traversed_vars;
621 } dataflow_set;
623 /* The structure (one for each basic block) containing the information
624 needed for variable tracking. */
625 typedef struct variable_tracking_info_def
627 /* The vector of micro operations. */
628 vec<micro_operation> mos;
630 /* The IN and OUT set for dataflow analysis. */
631 dataflow_set in;
632 dataflow_set out;
634 /* The permanent-in dataflow set for this block. This is used to
635 hold values for which we had to compute entry values. ??? This
636 should probably be dynamically allocated, to avoid using more
637 memory in non-debug builds. */
638 dataflow_set *permp;
640 /* Has the block been visited in DFS? */
641 bool visited;
643 /* Has the block been flooded in VTA? */
644 bool flooded;
646 } *variable_tracking_info;
648 /* Alloc pool for struct attrs_def. */
649 pool_allocator<attrs_def> attrs_def::pool ("attrs_def pool", 1024);
651 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
653 static pool_allocator<variable_def> var_pool
654 ("variable_def pool", 64,
655 (MAX_VAR_PARTS - 1) * sizeof (((variable)NULL)->var_part[0]));
657 /* Alloc pool for struct variable_def with a single var_part entry. */
658 static pool_allocator<variable_def> valvar_pool
659 ("small variable_def pool", 256);
661 /* Alloc pool for struct location_chain_def. */
662 pool_allocator<location_chain_def> location_chain_def::pool
663 ("location_chain_def pool", 1024);
665 /* Alloc pool for struct shared_hash_def. */
666 pool_allocator<shared_hash_def> shared_hash_def::pool
667 ("shared_hash_def pool", 256);
669 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
670 pool_allocator<loc_exp_dep> loc_exp_dep::pool ("loc_exp_dep pool", 64);
672 /* Changed variables, notes will be emitted for them. */
673 static variable_table_type *changed_variables;
675 /* Shall notes be emitted? */
676 static bool emit_notes;
678 /* Values whose dynamic location lists have gone empty, but whose
679 cselib location lists are still usable. Use this to hold the
680 current location, the backlinks, etc, during emit_notes. */
681 static variable_table_type *dropped_values;
683 /* Empty shared hashtable. */
684 static shared_hash empty_shared_hash;
686 /* Scratch register bitmap used by cselib_expand_value_rtx. */
687 static bitmap scratch_regs = NULL;
689 #ifdef HAVE_window_save
690 typedef struct GTY(()) parm_reg {
691 rtx outgoing;
692 rtx incoming;
693 } parm_reg_t;
696 /* Vector of windowed parameter registers, if any. */
697 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
698 #endif
700 /* Variable used to tell whether cselib_process_insn called our hook. */
701 static bool cselib_hook_called;
703 /* Local function prototypes. */
704 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
705 HOST_WIDE_INT *);
706 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
707 HOST_WIDE_INT *);
708 static bool vt_stack_adjustments (void);
710 static void init_attrs_list_set (attrs *);
711 static void attrs_list_clear (attrs *);
712 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
713 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
714 static void attrs_list_copy (attrs *, attrs);
715 static void attrs_list_union (attrs *, attrs);
717 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
718 variable var, enum var_init_status);
719 static void vars_copy (variable_table_type *, variable_table_type *);
720 static tree var_debug_decl (tree);
721 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
722 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
723 enum var_init_status, rtx);
724 static void var_reg_delete (dataflow_set *, rtx, bool);
725 static void var_regno_delete (dataflow_set *, int);
726 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
727 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
728 enum var_init_status, rtx);
729 static void var_mem_delete (dataflow_set *, rtx, bool);
731 static void dataflow_set_init (dataflow_set *);
732 static void dataflow_set_clear (dataflow_set *);
733 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
734 static int variable_union_info_cmp_pos (const void *, const void *);
735 static void dataflow_set_union (dataflow_set *, dataflow_set *);
736 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
737 static bool canon_value_cmp (rtx, rtx);
738 static int loc_cmp (rtx, rtx);
739 static bool variable_part_different_p (variable_part *, variable_part *);
740 static bool onepart_variable_different_p (variable, variable);
741 static bool variable_different_p (variable, variable);
742 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
743 static void dataflow_set_destroy (dataflow_set *);
745 static bool contains_symbol_ref (rtx);
746 static bool track_expr_p (tree, bool);
747 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
748 static void add_uses_1 (rtx *, void *);
749 static void add_stores (rtx, const_rtx, void *);
750 static bool compute_bb_dataflow (basic_block);
751 static bool vt_find_locations (void);
753 static void dump_attrs_list (attrs);
754 static void dump_var (variable);
755 static void dump_vars (variable_table_type *);
756 static void dump_dataflow_set (dataflow_set *);
757 static void dump_dataflow_sets (void);
759 static void set_dv_changed (decl_or_value, bool);
760 static void variable_was_changed (variable, dataflow_set *);
761 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
762 decl_or_value, HOST_WIDE_INT,
763 enum var_init_status, rtx);
764 static void set_variable_part (dataflow_set *, rtx,
765 decl_or_value, HOST_WIDE_INT,
766 enum var_init_status, rtx, enum insert_option);
767 static variable_def **clobber_slot_part (dataflow_set *, rtx,
768 variable_def **, HOST_WIDE_INT, rtx);
769 static void clobber_variable_part (dataflow_set *, rtx,
770 decl_or_value, HOST_WIDE_INT, rtx);
771 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
772 HOST_WIDE_INT);
773 static void delete_variable_part (dataflow_set *, rtx,
774 decl_or_value, HOST_WIDE_INT);
775 static void emit_notes_in_bb (basic_block, dataflow_set *);
776 static void vt_emit_notes (void);
778 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
779 static void vt_add_function_parameters (void);
780 static bool vt_initialize (void);
781 static void vt_finalize (void);
783 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
785 static int
786 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
787 void *arg)
789 if (dest != stack_pointer_rtx)
790 return 0;
792 switch (GET_CODE (op))
794 case PRE_INC:
795 case PRE_DEC:
796 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
797 return 0;
798 case POST_INC:
799 case POST_DEC:
800 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
801 return 0;
802 case PRE_MODIFY:
803 case POST_MODIFY:
804 /* We handle only adjustments by constant amount. */
805 gcc_assert (GET_CODE (src) == PLUS
806 && CONST_INT_P (XEXP (src, 1))
807 && XEXP (src, 0) == stack_pointer_rtx);
808 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
809 -= INTVAL (XEXP (src, 1));
810 return 0;
811 default:
812 gcc_unreachable ();
816 /* Given a SET, calculate the amount of stack adjustment it contains
817 PRE- and POST-modifying stack pointer.
818 This function is similar to stack_adjust_offset. */
820 static void
821 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
822 HOST_WIDE_INT *post)
824 rtx src = SET_SRC (pattern);
825 rtx dest = SET_DEST (pattern);
826 enum rtx_code code;
828 if (dest == stack_pointer_rtx)
830 /* (set (reg sp) (plus (reg sp) (const_int))) */
831 code = GET_CODE (src);
832 if (! (code == PLUS || code == MINUS)
833 || XEXP (src, 0) != stack_pointer_rtx
834 || !CONST_INT_P (XEXP (src, 1)))
835 return;
837 if (code == MINUS)
838 *post += INTVAL (XEXP (src, 1));
839 else
840 *post -= INTVAL (XEXP (src, 1));
841 return;
843 HOST_WIDE_INT res[2] = { 0, 0 };
844 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
845 *pre += res[0];
846 *post += res[1];
849 /* Given an INSN, calculate the amount of stack adjustment it contains
850 PRE- and POST-modifying stack pointer. */
852 static void
853 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
854 HOST_WIDE_INT *post)
856 rtx pattern;
858 *pre = 0;
859 *post = 0;
861 pattern = PATTERN (insn);
862 if (RTX_FRAME_RELATED_P (insn))
864 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
865 if (expr)
866 pattern = XEXP (expr, 0);
869 if (GET_CODE (pattern) == SET)
870 stack_adjust_offset_pre_post (pattern, pre, post);
871 else if (GET_CODE (pattern) == PARALLEL
872 || GET_CODE (pattern) == SEQUENCE)
874 int i;
876 /* There may be stack adjustments inside compound insns. Search
877 for them. */
878 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
879 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
880 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
884 /* Compute stack adjustments for all blocks by traversing DFS tree.
885 Return true when the adjustments on all incoming edges are consistent.
886 Heavily borrowed from pre_and_rev_post_order_compute. */
888 static bool
889 vt_stack_adjustments (void)
891 edge_iterator *stack;
892 int sp;
894 /* Initialize entry block. */
895 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
896 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
897 = INCOMING_FRAME_SP_OFFSET;
898 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
899 = INCOMING_FRAME_SP_OFFSET;
901 /* Allocate stack for back-tracking up CFG. */
902 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
903 sp = 0;
905 /* Push the first edge on to the stack. */
906 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
908 while (sp)
910 edge_iterator ei;
911 basic_block src;
912 basic_block dest;
914 /* Look at the edge on the top of the stack. */
915 ei = stack[sp - 1];
916 src = ei_edge (ei)->src;
917 dest = ei_edge (ei)->dest;
919 /* Check if the edge destination has been visited yet. */
920 if (!VTI (dest)->visited)
922 rtx_insn *insn;
923 HOST_WIDE_INT pre, post, offset;
924 VTI (dest)->visited = true;
925 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
927 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
928 for (insn = BB_HEAD (dest);
929 insn != NEXT_INSN (BB_END (dest));
930 insn = NEXT_INSN (insn))
931 if (INSN_P (insn))
933 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
934 offset += pre + post;
937 VTI (dest)->out.stack_adjust = offset;
939 if (EDGE_COUNT (dest->succs) > 0)
940 /* Since the DEST node has been visited for the first
941 time, check its successors. */
942 stack[sp++] = ei_start (dest->succs);
944 else
946 /* We can end up with different stack adjustments for the exit block
947 of a shrink-wrapped function if stack_adjust_offset_pre_post
948 doesn't understand the rtx pattern used to restore the stack
949 pointer in the epilogue. For example, on s390(x), the stack
950 pointer is often restored via a load-multiple instruction
951 and so no stack_adjust offset is recorded for it. This means
952 that the stack offset at the end of the epilogue block is the
953 the same as the offset before the epilogue, whereas other paths
954 to the exit block will have the correct stack_adjust.
956 It is safe to ignore these differences because (a) we never
957 use the stack_adjust for the exit block in this pass and
958 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
959 function are correct.
961 We must check whether the adjustments on other edges are
962 the same though. */
963 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
964 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
966 free (stack);
967 return false;
970 if (! ei_one_before_end_p (ei))
971 /* Go to the next edge. */
972 ei_next (&stack[sp - 1]);
973 else
974 /* Return to previous level if there are no more edges. */
975 sp--;
979 free (stack);
980 return true;
983 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
984 hard_frame_pointer_rtx is being mapped to it and offset for it. */
985 static rtx cfa_base_rtx;
986 static HOST_WIDE_INT cfa_base_offset;
988 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
989 or hard_frame_pointer_rtx. */
991 static inline rtx
992 compute_cfa_pointer (HOST_WIDE_INT adjustment)
994 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
997 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
998 or -1 if the replacement shouldn't be done. */
999 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
1001 /* Data for adjust_mems callback. */
1003 struct adjust_mem_data
1005 bool store;
1006 machine_mode mem_mode;
1007 HOST_WIDE_INT stack_adjust;
1008 rtx_expr_list *side_effects;
1011 /* Helper for adjust_mems. Return true if X is suitable for
1012 transformation of wider mode arithmetics to narrower mode. */
1014 static bool
1015 use_narrower_mode_test (rtx x, const_rtx subreg)
1017 subrtx_var_iterator::array_type array;
1018 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
1020 rtx x = *iter;
1021 if (CONSTANT_P (x))
1022 iter.skip_subrtxes ();
1023 else
1024 switch (GET_CODE (x))
1026 case REG:
1027 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
1028 return false;
1029 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
1030 subreg_lowpart_offset (GET_MODE (subreg),
1031 GET_MODE (x))))
1032 return false;
1033 break;
1034 case PLUS:
1035 case MINUS:
1036 case MULT:
1037 break;
1038 case ASHIFT:
1039 iter.substitute (XEXP (x, 0));
1040 break;
1041 default:
1042 return false;
1045 return true;
1048 /* Transform X into narrower mode MODE from wider mode WMODE. */
1050 static rtx
1051 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
1053 rtx op0, op1;
1054 if (CONSTANT_P (x))
1055 return lowpart_subreg (mode, x, wmode);
1056 switch (GET_CODE (x))
1058 case REG:
1059 return lowpart_subreg (mode, x, wmode);
1060 case PLUS:
1061 case MINUS:
1062 case MULT:
1063 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1064 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1065 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1066 case ASHIFT:
1067 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1068 op1 = XEXP (x, 1);
1069 /* Ensure shift amount is not wider than mode. */
1070 if (GET_MODE (op1) == VOIDmode)
1071 op1 = lowpart_subreg (mode, op1, wmode);
1072 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
1073 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1074 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1075 default:
1076 gcc_unreachable ();
1080 /* Helper function for adjusting used MEMs. */
1082 static rtx
1083 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1085 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1086 rtx mem, addr = loc, tem;
1087 machine_mode mem_mode_save;
1088 bool store_save;
1089 switch (GET_CODE (loc))
1091 case REG:
1092 /* Don't do any sp or fp replacements outside of MEM addresses
1093 on the LHS. */
1094 if (amd->mem_mode == VOIDmode && amd->store)
1095 return loc;
1096 if (loc == stack_pointer_rtx
1097 && !frame_pointer_needed
1098 && cfa_base_rtx)
1099 return compute_cfa_pointer (amd->stack_adjust);
1100 else if (loc == hard_frame_pointer_rtx
1101 && frame_pointer_needed
1102 && hard_frame_pointer_adjustment != -1
1103 && cfa_base_rtx)
1104 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1105 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1106 return loc;
1107 case MEM:
1108 mem = loc;
1109 if (!amd->store)
1111 mem = targetm.delegitimize_address (mem);
1112 if (mem != loc && !MEM_P (mem))
1113 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1116 addr = XEXP (mem, 0);
1117 mem_mode_save = amd->mem_mode;
1118 amd->mem_mode = GET_MODE (mem);
1119 store_save = amd->store;
1120 amd->store = false;
1121 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1122 amd->store = store_save;
1123 amd->mem_mode = mem_mode_save;
1124 if (mem == loc)
1125 addr = targetm.delegitimize_address (addr);
1126 if (addr != XEXP (mem, 0))
1127 mem = replace_equiv_address_nv (mem, addr);
1128 if (!amd->store)
1129 mem = avoid_constant_pool_reference (mem);
1130 return mem;
1131 case PRE_INC:
1132 case PRE_DEC:
1133 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1134 gen_int_mode (GET_CODE (loc) == PRE_INC
1135 ? GET_MODE_SIZE (amd->mem_mode)
1136 : -GET_MODE_SIZE (amd->mem_mode),
1137 GET_MODE (loc)));
1138 case POST_INC:
1139 case POST_DEC:
1140 if (addr == loc)
1141 addr = XEXP (loc, 0);
1142 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1143 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1144 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1145 gen_int_mode ((GET_CODE (loc) == PRE_INC
1146 || GET_CODE (loc) == POST_INC)
1147 ? GET_MODE_SIZE (amd->mem_mode)
1148 : -GET_MODE_SIZE (amd->mem_mode),
1149 GET_MODE (loc)));
1150 store_save = amd->store;
1151 amd->store = false;
1152 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1153 amd->store = store_save;
1154 amd->side_effects = alloc_EXPR_LIST (0,
1155 gen_rtx_SET (XEXP (loc, 0), tem),
1156 amd->side_effects);
1157 return addr;
1158 case PRE_MODIFY:
1159 addr = XEXP (loc, 1);
1160 case POST_MODIFY:
1161 if (addr == loc)
1162 addr = XEXP (loc, 0);
1163 gcc_assert (amd->mem_mode != VOIDmode);
1164 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1165 store_save = amd->store;
1166 amd->store = false;
1167 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1168 adjust_mems, data);
1169 amd->store = store_save;
1170 amd->side_effects = alloc_EXPR_LIST (0,
1171 gen_rtx_SET (XEXP (loc, 0), tem),
1172 amd->side_effects);
1173 return addr;
1174 case SUBREG:
1175 /* First try without delegitimization of whole MEMs and
1176 avoid_constant_pool_reference, which is more likely to succeed. */
1177 store_save = amd->store;
1178 amd->store = true;
1179 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1180 data);
1181 amd->store = store_save;
1182 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1183 if (mem == SUBREG_REG (loc))
1185 tem = loc;
1186 goto finish_subreg;
1188 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1189 GET_MODE (SUBREG_REG (loc)),
1190 SUBREG_BYTE (loc));
1191 if (tem)
1192 goto finish_subreg;
1193 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1194 GET_MODE (SUBREG_REG (loc)),
1195 SUBREG_BYTE (loc));
1196 if (tem == NULL_RTX)
1197 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1198 finish_subreg:
1199 if (MAY_HAVE_DEBUG_INSNS
1200 && GET_CODE (tem) == SUBREG
1201 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1202 || GET_CODE (SUBREG_REG (tem)) == MINUS
1203 || GET_CODE (SUBREG_REG (tem)) == MULT
1204 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1205 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1206 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1207 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1208 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1209 && GET_MODE_PRECISION (GET_MODE (tem))
1210 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1211 && subreg_lowpart_p (tem)
1212 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1213 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1214 GET_MODE (SUBREG_REG (tem)));
1215 return tem;
1216 case ASM_OPERANDS:
1217 /* Don't do any replacements in second and following
1218 ASM_OPERANDS of inline-asm with multiple sets.
1219 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1220 and ASM_OPERANDS_LABEL_VEC need to be equal between
1221 all the ASM_OPERANDs in the insn and adjust_insn will
1222 fix this up. */
1223 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1224 return loc;
1225 break;
1226 default:
1227 break;
1229 return NULL_RTX;
1232 /* Helper function for replacement of uses. */
1234 static void
1235 adjust_mem_uses (rtx *x, void *data)
1237 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1238 if (new_x != *x)
1239 validate_change (NULL_RTX, x, new_x, true);
1242 /* Helper function for replacement of stores. */
1244 static void
1245 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1247 if (MEM_P (loc))
1249 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1250 adjust_mems, data);
1251 if (new_dest != SET_DEST (expr))
1253 rtx xexpr = CONST_CAST_RTX (expr);
1254 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1259 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1260 replace them with their value in the insn and add the side-effects
1261 as other sets to the insn. */
1263 static void
1264 adjust_insn (basic_block bb, rtx_insn *insn)
1266 struct adjust_mem_data amd;
1267 rtx set;
1269 #ifdef HAVE_window_save
1270 /* If the target machine has an explicit window save instruction, the
1271 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1272 if (RTX_FRAME_RELATED_P (insn)
1273 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1275 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1276 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1277 parm_reg_t *p;
1279 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1281 XVECEXP (rtl, 0, i * 2)
1282 = gen_rtx_SET (p->incoming, p->outgoing);
1283 /* Do not clobber the attached DECL, but only the REG. */
1284 XVECEXP (rtl, 0, i * 2 + 1)
1285 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1286 gen_raw_REG (GET_MODE (p->outgoing),
1287 REGNO (p->outgoing)));
1290 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1291 return;
1293 #endif
1295 amd.mem_mode = VOIDmode;
1296 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1297 amd.side_effects = NULL;
1299 amd.store = true;
1300 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1302 amd.store = false;
1303 if (GET_CODE (PATTERN (insn)) == PARALLEL
1304 && asm_noperands (PATTERN (insn)) > 0
1305 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1307 rtx body, set0;
1308 int i;
1310 /* inline-asm with multiple sets is tiny bit more complicated,
1311 because the 3 vectors in ASM_OPERANDS need to be shared between
1312 all ASM_OPERANDS in the instruction. adjust_mems will
1313 not touch ASM_OPERANDS other than the first one, asm_noperands
1314 test above needs to be called before that (otherwise it would fail)
1315 and afterwards this code fixes it up. */
1316 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1317 body = PATTERN (insn);
1318 set0 = XVECEXP (body, 0, 0);
1319 gcc_checking_assert (GET_CODE (set0) == SET
1320 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1321 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1322 for (i = 1; i < XVECLEN (body, 0); i++)
1323 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1324 break;
1325 else
1327 set = XVECEXP (body, 0, i);
1328 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1329 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1330 == i);
1331 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1332 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1333 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1334 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1335 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1336 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1338 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1339 ASM_OPERANDS_INPUT_VEC (newsrc)
1340 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1341 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1342 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1343 ASM_OPERANDS_LABEL_VEC (newsrc)
1344 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1345 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1349 else
1350 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1352 /* For read-only MEMs containing some constant, prefer those
1353 constants. */
1354 set = single_set (insn);
1355 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1357 rtx note = find_reg_equal_equiv_note (insn);
1359 if (note && CONSTANT_P (XEXP (note, 0)))
1360 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1363 if (amd.side_effects)
1365 rtx *pat, new_pat, s;
1366 int i, oldn, newn;
1368 pat = &PATTERN (insn);
1369 if (GET_CODE (*pat) == COND_EXEC)
1370 pat = &COND_EXEC_CODE (*pat);
1371 if (GET_CODE (*pat) == PARALLEL)
1372 oldn = XVECLEN (*pat, 0);
1373 else
1374 oldn = 1;
1375 for (s = amd.side_effects, newn = 0; s; newn++)
1376 s = XEXP (s, 1);
1377 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1378 if (GET_CODE (*pat) == PARALLEL)
1379 for (i = 0; i < oldn; i++)
1380 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1381 else
1382 XVECEXP (new_pat, 0, 0) = *pat;
1383 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1384 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1385 free_EXPR_LIST_list (&amd.side_effects);
1386 validate_change (NULL_RTX, pat, new_pat, true);
1390 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1391 static inline rtx
1392 dv_as_rtx (decl_or_value dv)
1394 tree decl;
1396 if (dv_is_value_p (dv))
1397 return dv_as_value (dv);
1399 decl = dv_as_decl (dv);
1401 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1402 return DECL_RTL_KNOWN_SET (decl);
1405 /* Return nonzero if a decl_or_value must not have more than one
1406 variable part. The returned value discriminates among various
1407 kinds of one-part DVs ccording to enum onepart_enum. */
1408 static inline onepart_enum_t
1409 dv_onepart_p (decl_or_value dv)
1411 tree decl;
1413 if (!MAY_HAVE_DEBUG_INSNS)
1414 return NOT_ONEPART;
1416 if (dv_is_value_p (dv))
1417 return ONEPART_VALUE;
1419 decl = dv_as_decl (dv);
1421 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1422 return ONEPART_DEXPR;
1424 if (target_for_debug_bind (decl) != NULL_TREE)
1425 return ONEPART_VDECL;
1427 return NOT_ONEPART;
1430 /* Return the variable pool to be used for a dv of type ONEPART. */
1431 static inline pool_allocator <variable_def> &
1432 onepart_pool (onepart_enum_t onepart)
1434 return onepart ? valvar_pool : var_pool;
1437 /* Build a decl_or_value out of a decl. */
1438 static inline decl_or_value
1439 dv_from_decl (tree decl)
1441 decl_or_value dv;
1442 dv = decl;
1443 gcc_checking_assert (dv_is_decl_p (dv));
1444 return dv;
1447 /* Build a decl_or_value out of a value. */
1448 static inline decl_or_value
1449 dv_from_value (rtx value)
1451 decl_or_value dv;
1452 dv = value;
1453 gcc_checking_assert (dv_is_value_p (dv));
1454 return dv;
1457 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1458 static inline decl_or_value
1459 dv_from_rtx (rtx x)
1461 decl_or_value dv;
1463 switch (GET_CODE (x))
1465 case DEBUG_EXPR:
1466 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1467 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1468 break;
1470 case VALUE:
1471 dv = dv_from_value (x);
1472 break;
1474 default:
1475 gcc_unreachable ();
1478 return dv;
1481 extern void debug_dv (decl_or_value dv);
1483 DEBUG_FUNCTION void
1484 debug_dv (decl_or_value dv)
1486 if (dv_is_value_p (dv))
1487 debug_rtx (dv_as_value (dv));
1488 else
1489 debug_generic_stmt (dv_as_decl (dv));
1492 static void loc_exp_dep_clear (variable var);
1494 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1496 static void
1497 variable_htab_free (void *elem)
1499 int i;
1500 variable var = (variable) elem;
1501 location_chain node, next;
1503 gcc_checking_assert (var->refcount > 0);
1505 var->refcount--;
1506 if (var->refcount > 0)
1507 return;
1509 for (i = 0; i < var->n_var_parts; i++)
1511 for (node = var->var_part[i].loc_chain; node; node = next)
1513 next = node->next;
1514 delete node;
1516 var->var_part[i].loc_chain = NULL;
1518 if (var->onepart && VAR_LOC_1PAUX (var))
1520 loc_exp_dep_clear (var);
1521 if (VAR_LOC_DEP_LST (var))
1522 VAR_LOC_DEP_LST (var)->pprev = NULL;
1523 XDELETE (VAR_LOC_1PAUX (var));
1524 /* These may be reused across functions, so reset
1525 e.g. NO_LOC_P. */
1526 if (var->onepart == ONEPART_DEXPR)
1527 set_dv_changed (var->dv, true);
1529 onepart_pool (var->onepart).remove (var);
1532 /* Initialize the set (array) SET of attrs to empty lists. */
1534 static void
1535 init_attrs_list_set (attrs *set)
1537 int i;
1539 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1540 set[i] = NULL;
1543 /* Make the list *LISTP empty. */
1545 static void
1546 attrs_list_clear (attrs *listp)
1548 attrs list, next;
1550 for (list = *listp; list; list = next)
1552 next = list->next;
1553 delete list;
1555 *listp = NULL;
1558 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1560 static attrs
1561 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1563 for (; list; list = list->next)
1564 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1565 return list;
1566 return NULL;
1569 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1571 static void
1572 attrs_list_insert (attrs *listp, decl_or_value dv,
1573 HOST_WIDE_INT offset, rtx loc)
1575 attrs list = new attrs_def;
1576 list->loc = loc;
1577 list->dv = dv;
1578 list->offset = offset;
1579 list->next = *listp;
1580 *listp = list;
1583 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1585 static void
1586 attrs_list_copy (attrs *dstp, attrs src)
1588 attrs_list_clear (dstp);
1589 for (; src; src = src->next)
1591 attrs n = new attrs_def;
1592 n->loc = src->loc;
1593 n->dv = src->dv;
1594 n->offset = src->offset;
1595 n->next = *dstp;
1596 *dstp = n;
1600 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1602 static void
1603 attrs_list_union (attrs *dstp, attrs src)
1605 for (; src; src = src->next)
1607 if (!attrs_list_member (*dstp, src->dv, src->offset))
1608 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1612 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1613 *DSTP. */
1615 static void
1616 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1618 gcc_assert (!*dstp);
1619 for (; src; src = src->next)
1621 if (!dv_onepart_p (src->dv))
1622 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1624 for (src = src2; src; src = src->next)
1626 if (!dv_onepart_p (src->dv)
1627 && !attrs_list_member (*dstp, src->dv, src->offset))
1628 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1632 /* Shared hashtable support. */
1634 /* Return true if VARS is shared. */
1636 static inline bool
1637 shared_hash_shared (shared_hash vars)
1639 return vars->refcount > 1;
1642 /* Return the hash table for VARS. */
1644 static inline variable_table_type *
1645 shared_hash_htab (shared_hash vars)
1647 return vars->htab;
1650 /* Return true if VAR is shared, or maybe because VARS is shared. */
1652 static inline bool
1653 shared_var_p (variable var, shared_hash vars)
1655 /* Don't count an entry in the changed_variables table as a duplicate. */
1656 return ((var->refcount > 1 + (int) var->in_changed_variables)
1657 || shared_hash_shared (vars));
1660 /* Copy variables into a new hash table. */
1662 static shared_hash
1663 shared_hash_unshare (shared_hash vars)
1665 shared_hash new_vars = new shared_hash_def;
1666 gcc_assert (vars->refcount > 1);
1667 new_vars->refcount = 1;
1668 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1669 vars_copy (new_vars->htab, vars->htab);
1670 vars->refcount--;
1671 return new_vars;
1674 /* Increment reference counter on VARS and return it. */
1676 static inline shared_hash
1677 shared_hash_copy (shared_hash vars)
1679 vars->refcount++;
1680 return vars;
1683 /* Decrement reference counter and destroy hash table if not shared
1684 anymore. */
1686 static void
1687 shared_hash_destroy (shared_hash vars)
1689 gcc_checking_assert (vars->refcount > 0);
1690 if (--vars->refcount == 0)
1692 delete vars->htab;
1693 delete vars;
1697 /* Unshare *PVARS if shared and return slot for DV. If INS is
1698 INSERT, insert it if not already present. */
1700 static inline variable_def **
1701 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1702 hashval_t dvhash, enum insert_option ins)
1704 if (shared_hash_shared (*pvars))
1705 *pvars = shared_hash_unshare (*pvars);
1706 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1709 static inline variable_def **
1710 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1711 enum insert_option ins)
1713 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1716 /* Return slot for DV, if it is already present in the hash table.
1717 If it is not present, insert it only VARS is not shared, otherwise
1718 return NULL. */
1720 static inline variable_def **
1721 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1723 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1724 shared_hash_shared (vars)
1725 ? NO_INSERT : INSERT);
1728 static inline variable_def **
1729 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1731 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1734 /* Return slot for DV only if it is already present in the hash table. */
1736 static inline variable_def **
1737 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1738 hashval_t dvhash)
1740 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1743 static inline variable_def **
1744 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1746 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1749 /* Return variable for DV or NULL if not already present in the hash
1750 table. */
1752 static inline variable
1753 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1755 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1758 static inline variable
1759 shared_hash_find (shared_hash vars, decl_or_value dv)
1761 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1764 /* Return true if TVAL is better than CVAL as a canonival value. We
1765 choose lowest-numbered VALUEs, using the RTX address as a
1766 tie-breaker. The idea is to arrange them into a star topology,
1767 such that all of them are at most one step away from the canonical
1768 value, and the canonical value has backlinks to all of them, in
1769 addition to all the actual locations. We don't enforce this
1770 topology throughout the entire dataflow analysis, though.
1773 static inline bool
1774 canon_value_cmp (rtx tval, rtx cval)
1776 return !cval
1777 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1780 static bool dst_can_be_shared;
1782 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1784 static variable_def **
1785 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1786 enum var_init_status initialized)
1788 variable new_var;
1789 int i;
1791 new_var = onepart_pool (var->onepart).allocate ();
1792 new_var->dv = var->dv;
1793 new_var->refcount = 1;
1794 var->refcount--;
1795 new_var->n_var_parts = var->n_var_parts;
1796 new_var->onepart = var->onepart;
1797 new_var->in_changed_variables = false;
1799 if (! flag_var_tracking_uninit)
1800 initialized = VAR_INIT_STATUS_INITIALIZED;
1802 for (i = 0; i < var->n_var_parts; i++)
1804 location_chain node;
1805 location_chain *nextp;
1807 if (i == 0 && var->onepart)
1809 /* One-part auxiliary data is only used while emitting
1810 notes, so propagate it to the new variable in the active
1811 dataflow set. If we're not emitting notes, this will be
1812 a no-op. */
1813 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1814 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1815 VAR_LOC_1PAUX (var) = NULL;
1817 else
1818 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1819 nextp = &new_var->var_part[i].loc_chain;
1820 for (node = var->var_part[i].loc_chain; node; node = node->next)
1822 location_chain new_lc;
1824 new_lc = new location_chain_def;
1825 new_lc->next = NULL;
1826 if (node->init > initialized)
1827 new_lc->init = node->init;
1828 else
1829 new_lc->init = initialized;
1830 if (node->set_src && !(MEM_P (node->set_src)))
1831 new_lc->set_src = node->set_src;
1832 else
1833 new_lc->set_src = NULL;
1834 new_lc->loc = node->loc;
1836 *nextp = new_lc;
1837 nextp = &new_lc->next;
1840 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1843 dst_can_be_shared = false;
1844 if (shared_hash_shared (set->vars))
1845 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1846 else if (set->traversed_vars && set->vars != set->traversed_vars)
1847 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1848 *slot = new_var;
1849 if (var->in_changed_variables)
1851 variable_def **cslot
1852 = changed_variables->find_slot_with_hash (var->dv,
1853 dv_htab_hash (var->dv),
1854 NO_INSERT);
1855 gcc_assert (*cslot == (void *) var);
1856 var->in_changed_variables = false;
1857 variable_htab_free (var);
1858 *cslot = new_var;
1859 new_var->in_changed_variables = true;
1861 return slot;
1864 /* Copy all variables from hash table SRC to hash table DST. */
1866 static void
1867 vars_copy (variable_table_type *dst, variable_table_type *src)
1869 variable_iterator_type hi;
1870 variable var;
1872 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1874 variable_def **dstp;
1875 var->refcount++;
1876 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1877 INSERT);
1878 *dstp = var;
1882 /* Map a decl to its main debug decl. */
1884 static inline tree
1885 var_debug_decl (tree decl)
1887 if (decl && TREE_CODE (decl) == VAR_DECL
1888 && DECL_HAS_DEBUG_EXPR_P (decl))
1890 tree debugdecl = DECL_DEBUG_EXPR (decl);
1891 if (DECL_P (debugdecl))
1892 decl = debugdecl;
1895 return decl;
1898 /* Set the register LOC to contain DV, OFFSET. */
1900 static void
1901 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1902 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1903 enum insert_option iopt)
1905 attrs node;
1906 bool decl_p = dv_is_decl_p (dv);
1908 if (decl_p)
1909 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1911 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1912 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1913 && node->offset == offset)
1914 break;
1915 if (!node)
1916 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1917 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1920 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1922 static void
1923 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1924 rtx set_src)
1926 tree decl = REG_EXPR (loc);
1927 HOST_WIDE_INT offset = REG_OFFSET (loc);
1929 var_reg_decl_set (set, loc, initialized,
1930 dv_from_decl (decl), offset, set_src, INSERT);
1933 static enum var_init_status
1934 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1936 variable var;
1937 int i;
1938 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1940 if (! flag_var_tracking_uninit)
1941 return VAR_INIT_STATUS_INITIALIZED;
1943 var = shared_hash_find (set->vars, dv);
1944 if (var)
1946 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1948 location_chain nextp;
1949 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1950 if (rtx_equal_p (nextp->loc, loc))
1952 ret_val = nextp->init;
1953 break;
1958 return ret_val;
1961 /* Delete current content of register LOC in dataflow set SET and set
1962 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1963 MODIFY is true, any other live copies of the same variable part are
1964 also deleted from the dataflow set, otherwise the variable part is
1965 assumed to be copied from another location holding the same
1966 part. */
1968 static void
1969 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1970 enum var_init_status initialized, rtx set_src)
1972 tree decl = REG_EXPR (loc);
1973 HOST_WIDE_INT offset = REG_OFFSET (loc);
1974 attrs node, next;
1975 attrs *nextp;
1977 decl = var_debug_decl (decl);
1979 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1980 initialized = get_init_value (set, loc, dv_from_decl (decl));
1982 nextp = &set->regs[REGNO (loc)];
1983 for (node = *nextp; node; node = next)
1985 next = node->next;
1986 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1988 delete_variable_part (set, node->loc, node->dv, node->offset);
1989 delete node;
1990 *nextp = next;
1992 else
1994 node->loc = loc;
1995 nextp = &node->next;
1998 if (modify)
1999 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
2000 var_reg_set (set, loc, initialized, set_src);
2003 /* Delete the association of register LOC in dataflow set SET with any
2004 variables that aren't onepart. If CLOBBER is true, also delete any
2005 other live copies of the same variable part, and delete the
2006 association with onepart dvs too. */
2008 static void
2009 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
2011 attrs *nextp = &set->regs[REGNO (loc)];
2012 attrs node, next;
2014 if (clobber)
2016 tree decl = REG_EXPR (loc);
2017 HOST_WIDE_INT offset = REG_OFFSET (loc);
2019 decl = var_debug_decl (decl);
2021 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2024 for (node = *nextp; node; node = next)
2026 next = node->next;
2027 if (clobber || !dv_onepart_p (node->dv))
2029 delete_variable_part (set, node->loc, node->dv, node->offset);
2030 delete node;
2031 *nextp = next;
2033 else
2034 nextp = &node->next;
2038 /* Delete content of register with number REGNO in dataflow set SET. */
2040 static void
2041 var_regno_delete (dataflow_set *set, int regno)
2043 attrs *reg = &set->regs[regno];
2044 attrs node, next;
2046 for (node = *reg; node; node = next)
2048 next = node->next;
2049 delete_variable_part (set, node->loc, node->dv, node->offset);
2050 delete node;
2052 *reg = NULL;
2055 /* Return true if I is the negated value of a power of two. */
2056 static bool
2057 negative_power_of_two_p (HOST_WIDE_INT i)
2059 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2060 return x == (x & -x);
2063 /* Strip constant offsets and alignments off of LOC. Return the base
2064 expression. */
2066 static rtx
2067 vt_get_canonicalize_base (rtx loc)
2069 while ((GET_CODE (loc) == PLUS
2070 || GET_CODE (loc) == AND)
2071 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2072 && (GET_CODE (loc) != AND
2073 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2074 loc = XEXP (loc, 0);
2076 return loc;
2079 /* This caches canonicalized addresses for VALUEs, computed using
2080 information in the global cselib table. */
2081 static hash_map<rtx, rtx> *global_get_addr_cache;
2083 /* This caches canonicalized addresses for VALUEs, computed using
2084 information from the global cache and information pertaining to a
2085 basic block being analyzed. */
2086 static hash_map<rtx, rtx> *local_get_addr_cache;
2088 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2090 /* Return the canonical address for LOC, that must be a VALUE, using a
2091 cached global equivalence or computing it and storing it in the
2092 global cache. */
2094 static rtx
2095 get_addr_from_global_cache (rtx const loc)
2097 rtx x;
2099 gcc_checking_assert (GET_CODE (loc) == VALUE);
2101 bool existed;
2102 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2103 if (existed)
2104 return *slot;
2106 x = canon_rtx (get_addr (loc));
2108 /* Tentative, avoiding infinite recursion. */
2109 *slot = x;
2111 if (x != loc)
2113 rtx nx = vt_canonicalize_addr (NULL, x);
2114 if (nx != x)
2116 /* The table may have moved during recursion, recompute
2117 SLOT. */
2118 *global_get_addr_cache->get (loc) = x = nx;
2122 return x;
2125 /* Return the canonical address for LOC, that must be a VALUE, using a
2126 cached local equivalence or computing it and storing it in the
2127 local cache. */
2129 static rtx
2130 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2132 rtx x;
2133 decl_or_value dv;
2134 variable var;
2135 location_chain l;
2137 gcc_checking_assert (GET_CODE (loc) == VALUE);
2139 bool existed;
2140 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2141 if (existed)
2142 return *slot;
2144 x = get_addr_from_global_cache (loc);
2146 /* Tentative, avoiding infinite recursion. */
2147 *slot = x;
2149 /* Recurse to cache local expansion of X, or if we need to search
2150 for a VALUE in the expansion. */
2151 if (x != loc)
2153 rtx nx = vt_canonicalize_addr (set, x);
2154 if (nx != x)
2156 slot = local_get_addr_cache->get (loc);
2157 *slot = x = nx;
2159 return x;
2162 dv = dv_from_rtx (x);
2163 var = shared_hash_find (set->vars, dv);
2164 if (!var)
2165 return x;
2167 /* Look for an improved equivalent expression. */
2168 for (l = var->var_part[0].loc_chain; l; l = l->next)
2170 rtx base = vt_get_canonicalize_base (l->loc);
2171 if (GET_CODE (base) == VALUE
2172 && canon_value_cmp (base, loc))
2174 rtx nx = vt_canonicalize_addr (set, l->loc);
2175 if (x != nx)
2177 slot = local_get_addr_cache->get (loc);
2178 *slot = x = nx;
2180 break;
2184 return x;
2187 /* Canonicalize LOC using equivalences from SET in addition to those
2188 in the cselib static table. It expects a VALUE-based expression,
2189 and it will only substitute VALUEs with other VALUEs or
2190 function-global equivalences, so that, if two addresses have base
2191 VALUEs that are locally or globally related in ways that
2192 memrefs_conflict_p cares about, they will both canonicalize to
2193 expressions that have the same base VALUE.
2195 The use of VALUEs as canonical base addresses enables the canonical
2196 RTXs to remain unchanged globally, if they resolve to a constant,
2197 or throughout a basic block otherwise, so that they can be cached
2198 and the cache needs not be invalidated when REGs, MEMs or such
2199 change. */
2201 static rtx
2202 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2204 HOST_WIDE_INT ofst = 0;
2205 machine_mode mode = GET_MODE (oloc);
2206 rtx loc = oloc;
2207 rtx x;
2208 bool retry = true;
2210 while (retry)
2212 while (GET_CODE (loc) == PLUS
2213 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2215 ofst += INTVAL (XEXP (loc, 1));
2216 loc = XEXP (loc, 0);
2219 /* Alignment operations can't normally be combined, so just
2220 canonicalize the base and we're done. We'll normally have
2221 only one stack alignment anyway. */
2222 if (GET_CODE (loc) == AND
2223 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2224 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2226 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2227 if (x != XEXP (loc, 0))
2228 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2229 retry = false;
2232 if (GET_CODE (loc) == VALUE)
2234 if (set)
2235 loc = get_addr_from_local_cache (set, loc);
2236 else
2237 loc = get_addr_from_global_cache (loc);
2239 /* Consolidate plus_constants. */
2240 while (ofst && GET_CODE (loc) == PLUS
2241 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2243 ofst += INTVAL (XEXP (loc, 1));
2244 loc = XEXP (loc, 0);
2247 retry = false;
2249 else
2251 x = canon_rtx (loc);
2252 if (retry)
2253 retry = (x != loc);
2254 loc = x;
2258 /* Add OFST back in. */
2259 if (ofst)
2261 /* Don't build new RTL if we can help it. */
2262 if (GET_CODE (oloc) == PLUS
2263 && XEXP (oloc, 0) == loc
2264 && INTVAL (XEXP (oloc, 1)) == ofst)
2265 return oloc;
2267 loc = plus_constant (mode, loc, ofst);
2270 return loc;
2273 /* Return true iff there's a true dependence between MLOC and LOC.
2274 MADDR must be a canonicalized version of MLOC's address. */
2276 static inline bool
2277 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2279 if (GET_CODE (loc) != MEM)
2280 return false;
2282 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2283 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2284 return false;
2286 return true;
2289 /* Hold parameters for the hashtab traversal function
2290 drop_overlapping_mem_locs, see below. */
2292 struct overlapping_mems
2294 dataflow_set *set;
2295 rtx loc, addr;
2298 /* Remove all MEMs that overlap with COMS->LOC from the location list
2299 of a hash table entry for a value. COMS->ADDR must be a
2300 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2301 canonicalized itself. */
2304 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2306 dataflow_set *set = coms->set;
2307 rtx mloc = coms->loc, addr = coms->addr;
2308 variable var = *slot;
2310 if (var->onepart == ONEPART_VALUE)
2312 location_chain loc, *locp;
2313 bool changed = false;
2314 rtx cur_loc;
2316 gcc_assert (var->n_var_parts == 1);
2318 if (shared_var_p (var, set->vars))
2320 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2321 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2322 break;
2324 if (!loc)
2325 return 1;
2327 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2328 var = *slot;
2329 gcc_assert (var->n_var_parts == 1);
2332 if (VAR_LOC_1PAUX (var))
2333 cur_loc = VAR_LOC_FROM (var);
2334 else
2335 cur_loc = var->var_part[0].cur_loc;
2337 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2338 loc; loc = *locp)
2340 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2342 locp = &loc->next;
2343 continue;
2346 *locp = loc->next;
2347 /* If we have deleted the location which was last emitted
2348 we have to emit new location so add the variable to set
2349 of changed variables. */
2350 if (cur_loc == loc->loc)
2352 changed = true;
2353 var->var_part[0].cur_loc = NULL;
2354 if (VAR_LOC_1PAUX (var))
2355 VAR_LOC_FROM (var) = NULL;
2357 delete loc;
2360 if (!var->var_part[0].loc_chain)
2362 var->n_var_parts--;
2363 changed = true;
2365 if (changed)
2366 variable_was_changed (var, set);
2369 return 1;
2372 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2374 static void
2375 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2377 struct overlapping_mems coms;
2379 gcc_checking_assert (GET_CODE (loc) == MEM);
2381 coms.set = set;
2382 coms.loc = canon_rtx (loc);
2383 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2385 set->traversed_vars = set->vars;
2386 shared_hash_htab (set->vars)
2387 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2388 set->traversed_vars = NULL;
2391 /* Set the location of DV, OFFSET as the MEM LOC. */
2393 static void
2394 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2395 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2396 enum insert_option iopt)
2398 if (dv_is_decl_p (dv))
2399 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2401 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2404 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2405 SET to LOC.
2406 Adjust the address first if it is stack pointer based. */
2408 static void
2409 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2410 rtx set_src)
2412 tree decl = MEM_EXPR (loc);
2413 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2415 var_mem_decl_set (set, loc, initialized,
2416 dv_from_decl (decl), offset, set_src, INSERT);
2419 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2420 dataflow set SET to LOC. If MODIFY is true, any other live copies
2421 of the same variable part are also deleted from the dataflow set,
2422 otherwise the variable part is assumed to be copied from another
2423 location holding the same part.
2424 Adjust the address first if it is stack pointer based. */
2426 static void
2427 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2428 enum var_init_status initialized, rtx set_src)
2430 tree decl = MEM_EXPR (loc);
2431 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2433 clobber_overlapping_mems (set, loc);
2434 decl = var_debug_decl (decl);
2436 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2437 initialized = get_init_value (set, loc, dv_from_decl (decl));
2439 if (modify)
2440 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2441 var_mem_set (set, loc, initialized, set_src);
2444 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2445 true, also delete any other live copies of the same variable part.
2446 Adjust the address first if it is stack pointer based. */
2448 static void
2449 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2451 tree decl = MEM_EXPR (loc);
2452 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2454 clobber_overlapping_mems (set, loc);
2455 decl = var_debug_decl (decl);
2456 if (clobber)
2457 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2458 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2461 /* Return true if LOC should not be expanded for location expressions,
2462 or used in them. */
2464 static inline bool
2465 unsuitable_loc (rtx loc)
2467 switch (GET_CODE (loc))
2469 case PC:
2470 case SCRATCH:
2471 case CC0:
2472 case ASM_INPUT:
2473 case ASM_OPERANDS:
2474 return true;
2476 default:
2477 return false;
2481 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2482 bound to it. */
2484 static inline void
2485 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2487 if (REG_P (loc))
2489 if (modified)
2490 var_regno_delete (set, REGNO (loc));
2491 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2492 dv_from_value (val), 0, NULL_RTX, INSERT);
2494 else if (MEM_P (loc))
2496 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2498 if (modified)
2499 clobber_overlapping_mems (set, loc);
2501 if (l && GET_CODE (l->loc) == VALUE)
2502 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2504 /* If this MEM is a global constant, we don't need it in the
2505 dynamic tables. ??? We should test this before emitting the
2506 micro-op in the first place. */
2507 while (l)
2508 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2509 break;
2510 else
2511 l = l->next;
2513 if (!l)
2514 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2515 dv_from_value (val), 0, NULL_RTX, INSERT);
2517 else
2519 /* Other kinds of equivalences are necessarily static, at least
2520 so long as we do not perform substitutions while merging
2521 expressions. */
2522 gcc_unreachable ();
2523 set_variable_part (set, loc, dv_from_value (val), 0,
2524 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2528 /* Bind a value to a location it was just stored in. If MODIFIED
2529 holds, assume the location was modified, detaching it from any
2530 values bound to it. */
2532 static void
2533 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2534 bool modified)
2536 cselib_val *v = CSELIB_VAL_PTR (val);
2538 gcc_assert (cselib_preserved_value_p (v));
2540 if (dump_file)
2542 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2543 print_inline_rtx (dump_file, loc, 0);
2544 fprintf (dump_file, " evaluates to ");
2545 print_inline_rtx (dump_file, val, 0);
2546 if (v->locs)
2548 struct elt_loc_list *l;
2549 for (l = v->locs; l; l = l->next)
2551 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2552 print_inline_rtx (dump_file, l->loc, 0);
2555 fprintf (dump_file, "\n");
2558 gcc_checking_assert (!unsuitable_loc (loc));
2560 val_bind (set, val, loc, modified);
2563 /* Clear (canonical address) slots that reference X. */
2565 bool
2566 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2568 if (vt_get_canonicalize_base (*slot) == x)
2569 *slot = NULL;
2570 return true;
2573 /* Reset this node, detaching all its equivalences. Return the slot
2574 in the variable hash table that holds dv, if there is one. */
2576 static void
2577 val_reset (dataflow_set *set, decl_or_value dv)
2579 variable var = shared_hash_find (set->vars, dv) ;
2580 location_chain node;
2581 rtx cval;
2583 if (!var || !var->n_var_parts)
2584 return;
2586 gcc_assert (var->n_var_parts == 1);
2588 if (var->onepart == ONEPART_VALUE)
2590 rtx x = dv_as_value (dv);
2592 /* Relationships in the global cache don't change, so reset the
2593 local cache entry only. */
2594 rtx *slot = local_get_addr_cache->get (x);
2595 if (slot)
2597 /* If the value resolved back to itself, odds are that other
2598 values may have cached it too. These entries now refer
2599 to the old X, so detach them too. Entries that used the
2600 old X but resolved to something else remain ok as long as
2601 that something else isn't also reset. */
2602 if (*slot == x)
2603 local_get_addr_cache
2604 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2605 *slot = NULL;
2609 cval = NULL;
2610 for (node = var->var_part[0].loc_chain; node; node = node->next)
2611 if (GET_CODE (node->loc) == VALUE
2612 && canon_value_cmp (node->loc, cval))
2613 cval = node->loc;
2615 for (node = var->var_part[0].loc_chain; node; node = node->next)
2616 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2618 /* Redirect the equivalence link to the new canonical
2619 value, or simply remove it if it would point at
2620 itself. */
2621 if (cval)
2622 set_variable_part (set, cval, dv_from_value (node->loc),
2623 0, node->init, node->set_src, NO_INSERT);
2624 delete_variable_part (set, dv_as_value (dv),
2625 dv_from_value (node->loc), 0);
2628 if (cval)
2630 decl_or_value cdv = dv_from_value (cval);
2632 /* Keep the remaining values connected, accummulating links
2633 in the canonical value. */
2634 for (node = var->var_part[0].loc_chain; node; node = node->next)
2636 if (node->loc == cval)
2637 continue;
2638 else if (GET_CODE (node->loc) == REG)
2639 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2640 node->set_src, NO_INSERT);
2641 else if (GET_CODE (node->loc) == MEM)
2642 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2643 node->set_src, NO_INSERT);
2644 else
2645 set_variable_part (set, node->loc, cdv, 0,
2646 node->init, node->set_src, NO_INSERT);
2650 /* We remove this last, to make sure that the canonical value is not
2651 removed to the point of requiring reinsertion. */
2652 if (cval)
2653 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2655 clobber_variable_part (set, NULL, dv, 0, NULL);
2658 /* Find the values in a given location and map the val to another
2659 value, if it is unique, or add the location as one holding the
2660 value. */
2662 static void
2663 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2665 decl_or_value dv = dv_from_value (val);
2667 if (dump_file && (dump_flags & TDF_DETAILS))
2669 if (insn)
2670 fprintf (dump_file, "%i: ", INSN_UID (insn));
2671 else
2672 fprintf (dump_file, "head: ");
2673 print_inline_rtx (dump_file, val, 0);
2674 fputs (" is at ", dump_file);
2675 print_inline_rtx (dump_file, loc, 0);
2676 fputc ('\n', dump_file);
2679 val_reset (set, dv);
2681 gcc_checking_assert (!unsuitable_loc (loc));
2683 if (REG_P (loc))
2685 attrs node, found = NULL;
2687 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2688 if (dv_is_value_p (node->dv)
2689 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2691 found = node;
2693 /* Map incoming equivalences. ??? Wouldn't it be nice if
2694 we just started sharing the location lists? Maybe a
2695 circular list ending at the value itself or some
2696 such. */
2697 set_variable_part (set, dv_as_value (node->dv),
2698 dv_from_value (val), node->offset,
2699 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2700 set_variable_part (set, val, node->dv, node->offset,
2701 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2704 /* If we didn't find any equivalence, we need to remember that
2705 this value is held in the named register. */
2706 if (found)
2707 return;
2709 /* ??? Attempt to find and merge equivalent MEMs or other
2710 expressions too. */
2712 val_bind (set, val, loc, false);
2715 /* Initialize dataflow set SET to be empty.
2716 VARS_SIZE is the initial size of hash table VARS. */
2718 static void
2719 dataflow_set_init (dataflow_set *set)
2721 init_attrs_list_set (set->regs);
2722 set->vars = shared_hash_copy (empty_shared_hash);
2723 set->stack_adjust = 0;
2724 set->traversed_vars = NULL;
2727 /* Delete the contents of dataflow set SET. */
2729 static void
2730 dataflow_set_clear (dataflow_set *set)
2732 int i;
2734 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2735 attrs_list_clear (&set->regs[i]);
2737 shared_hash_destroy (set->vars);
2738 set->vars = shared_hash_copy (empty_shared_hash);
2741 /* Copy the contents of dataflow set SRC to DST. */
2743 static void
2744 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2746 int i;
2748 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2749 attrs_list_copy (&dst->regs[i], src->regs[i]);
2751 shared_hash_destroy (dst->vars);
2752 dst->vars = shared_hash_copy (src->vars);
2753 dst->stack_adjust = src->stack_adjust;
2756 /* Information for merging lists of locations for a given offset of variable.
2758 struct variable_union_info
2760 /* Node of the location chain. */
2761 location_chain lc;
2763 /* The sum of positions in the input chains. */
2764 int pos;
2766 /* The position in the chain of DST dataflow set. */
2767 int pos_dst;
2770 /* Buffer for location list sorting and its allocated size. */
2771 static struct variable_union_info *vui_vec;
2772 static int vui_allocated;
2774 /* Compare function for qsort, order the structures by POS element. */
2776 static int
2777 variable_union_info_cmp_pos (const void *n1, const void *n2)
2779 const struct variable_union_info *const i1 =
2780 (const struct variable_union_info *) n1;
2781 const struct variable_union_info *const i2 =
2782 ( const struct variable_union_info *) n2;
2784 if (i1->pos != i2->pos)
2785 return i1->pos - i2->pos;
2787 return (i1->pos_dst - i2->pos_dst);
2790 /* Compute union of location parts of variable *SLOT and the same variable
2791 from hash table DATA. Compute "sorted" union of the location chains
2792 for common offsets, i.e. the locations of a variable part are sorted by
2793 a priority where the priority is the sum of the positions in the 2 chains
2794 (if a location is only in one list the position in the second list is
2795 defined to be larger than the length of the chains).
2796 When we are updating the location parts the newest location is in the
2797 beginning of the chain, so when we do the described "sorted" union
2798 we keep the newest locations in the beginning. */
2800 static int
2801 variable_union (variable src, dataflow_set *set)
2803 variable dst;
2804 variable_def **dstp;
2805 int i, j, k;
2807 dstp = shared_hash_find_slot (set->vars, src->dv);
2808 if (!dstp || !*dstp)
2810 src->refcount++;
2812 dst_can_be_shared = false;
2813 if (!dstp)
2814 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2816 *dstp = src;
2818 /* Continue traversing the hash table. */
2819 return 1;
2821 else
2822 dst = *dstp;
2824 gcc_assert (src->n_var_parts);
2825 gcc_checking_assert (src->onepart == dst->onepart);
2827 /* We can combine one-part variables very efficiently, because their
2828 entries are in canonical order. */
2829 if (src->onepart)
2831 location_chain *nodep, dnode, snode;
2833 gcc_assert (src->n_var_parts == 1
2834 && dst->n_var_parts == 1);
2836 snode = src->var_part[0].loc_chain;
2837 gcc_assert (snode);
2839 restart_onepart_unshared:
2840 nodep = &dst->var_part[0].loc_chain;
2841 dnode = *nodep;
2842 gcc_assert (dnode);
2844 while (snode)
2846 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2848 if (r > 0)
2850 location_chain nnode;
2852 if (shared_var_p (dst, set->vars))
2854 dstp = unshare_variable (set, dstp, dst,
2855 VAR_INIT_STATUS_INITIALIZED);
2856 dst = *dstp;
2857 goto restart_onepart_unshared;
2860 *nodep = nnode = new location_chain_def;
2861 nnode->loc = snode->loc;
2862 nnode->init = snode->init;
2863 if (!snode->set_src || MEM_P (snode->set_src))
2864 nnode->set_src = NULL;
2865 else
2866 nnode->set_src = snode->set_src;
2867 nnode->next = dnode;
2868 dnode = nnode;
2870 else if (r == 0)
2871 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2873 if (r >= 0)
2874 snode = snode->next;
2876 nodep = &dnode->next;
2877 dnode = *nodep;
2880 return 1;
2883 gcc_checking_assert (!src->onepart);
2885 /* Count the number of location parts, result is K. */
2886 for (i = 0, j = 0, k = 0;
2887 i < src->n_var_parts && j < dst->n_var_parts; k++)
2889 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2891 i++;
2892 j++;
2894 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2895 i++;
2896 else
2897 j++;
2899 k += src->n_var_parts - i;
2900 k += dst->n_var_parts - j;
2902 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2903 thus there are at most MAX_VAR_PARTS different offsets. */
2904 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2906 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2908 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2909 dst = *dstp;
2912 i = src->n_var_parts - 1;
2913 j = dst->n_var_parts - 1;
2914 dst->n_var_parts = k;
2916 for (k--; k >= 0; k--)
2918 location_chain node, node2;
2920 if (i >= 0 && j >= 0
2921 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2923 /* Compute the "sorted" union of the chains, i.e. the locations which
2924 are in both chains go first, they are sorted by the sum of
2925 positions in the chains. */
2926 int dst_l, src_l;
2927 int ii, jj, n;
2928 struct variable_union_info *vui;
2930 /* If DST is shared compare the location chains.
2931 If they are different we will modify the chain in DST with
2932 high probability so make a copy of DST. */
2933 if (shared_var_p (dst, set->vars))
2935 for (node = src->var_part[i].loc_chain,
2936 node2 = dst->var_part[j].loc_chain; node && node2;
2937 node = node->next, node2 = node2->next)
2939 if (!((REG_P (node2->loc)
2940 && REG_P (node->loc)
2941 && REGNO (node2->loc) == REGNO (node->loc))
2942 || rtx_equal_p (node2->loc, node->loc)))
2944 if (node2->init < node->init)
2945 node2->init = node->init;
2946 break;
2949 if (node || node2)
2951 dstp = unshare_variable (set, dstp, dst,
2952 VAR_INIT_STATUS_UNKNOWN);
2953 dst = (variable)*dstp;
2957 src_l = 0;
2958 for (node = src->var_part[i].loc_chain; node; node = node->next)
2959 src_l++;
2960 dst_l = 0;
2961 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2962 dst_l++;
2964 if (dst_l == 1)
2966 /* The most common case, much simpler, no qsort is needed. */
2967 location_chain dstnode = dst->var_part[j].loc_chain;
2968 dst->var_part[k].loc_chain = dstnode;
2969 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2970 node2 = dstnode;
2971 for (node = src->var_part[i].loc_chain; node; node = node->next)
2972 if (!((REG_P (dstnode->loc)
2973 && REG_P (node->loc)
2974 && REGNO (dstnode->loc) == REGNO (node->loc))
2975 || rtx_equal_p (dstnode->loc, node->loc)))
2977 location_chain new_node;
2979 /* Copy the location from SRC. */
2980 new_node = new location_chain_def;
2981 new_node->loc = node->loc;
2982 new_node->init = node->init;
2983 if (!node->set_src || MEM_P (node->set_src))
2984 new_node->set_src = NULL;
2985 else
2986 new_node->set_src = node->set_src;
2987 node2->next = new_node;
2988 node2 = new_node;
2990 node2->next = NULL;
2992 else
2994 if (src_l + dst_l > vui_allocated)
2996 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2997 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2998 vui_allocated);
3000 vui = vui_vec;
3002 /* Fill in the locations from DST. */
3003 for (node = dst->var_part[j].loc_chain, jj = 0; node;
3004 node = node->next, jj++)
3006 vui[jj].lc = node;
3007 vui[jj].pos_dst = jj;
3009 /* Pos plus value larger than a sum of 2 valid positions. */
3010 vui[jj].pos = jj + src_l + dst_l;
3013 /* Fill in the locations from SRC. */
3014 n = dst_l;
3015 for (node = src->var_part[i].loc_chain, ii = 0; node;
3016 node = node->next, ii++)
3018 /* Find location from NODE. */
3019 for (jj = 0; jj < dst_l; jj++)
3021 if ((REG_P (vui[jj].lc->loc)
3022 && REG_P (node->loc)
3023 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
3024 || rtx_equal_p (vui[jj].lc->loc, node->loc))
3026 vui[jj].pos = jj + ii;
3027 break;
3030 if (jj >= dst_l) /* The location has not been found. */
3032 location_chain new_node;
3034 /* Copy the location from SRC. */
3035 new_node = new location_chain_def;
3036 new_node->loc = node->loc;
3037 new_node->init = node->init;
3038 if (!node->set_src || MEM_P (node->set_src))
3039 new_node->set_src = NULL;
3040 else
3041 new_node->set_src = node->set_src;
3042 vui[n].lc = new_node;
3043 vui[n].pos_dst = src_l + dst_l;
3044 vui[n].pos = ii + src_l + dst_l;
3045 n++;
3049 if (dst_l == 2)
3051 /* Special case still very common case. For dst_l == 2
3052 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3053 vui[i].pos == i + src_l + dst_l. */
3054 if (vui[0].pos > vui[1].pos)
3056 /* Order should be 1, 0, 2... */
3057 dst->var_part[k].loc_chain = vui[1].lc;
3058 vui[1].lc->next = vui[0].lc;
3059 if (n >= 3)
3061 vui[0].lc->next = vui[2].lc;
3062 vui[n - 1].lc->next = NULL;
3064 else
3065 vui[0].lc->next = NULL;
3066 ii = 3;
3068 else
3070 dst->var_part[k].loc_chain = vui[0].lc;
3071 if (n >= 3 && vui[2].pos < vui[1].pos)
3073 /* Order should be 0, 2, 1, 3... */
3074 vui[0].lc->next = vui[2].lc;
3075 vui[2].lc->next = vui[1].lc;
3076 if (n >= 4)
3078 vui[1].lc->next = vui[3].lc;
3079 vui[n - 1].lc->next = NULL;
3081 else
3082 vui[1].lc->next = NULL;
3083 ii = 4;
3085 else
3087 /* Order should be 0, 1, 2... */
3088 ii = 1;
3089 vui[n - 1].lc->next = NULL;
3092 for (; ii < n; ii++)
3093 vui[ii - 1].lc->next = vui[ii].lc;
3095 else
3097 qsort (vui, n, sizeof (struct variable_union_info),
3098 variable_union_info_cmp_pos);
3100 /* Reconnect the nodes in sorted order. */
3101 for (ii = 1; ii < n; ii++)
3102 vui[ii - 1].lc->next = vui[ii].lc;
3103 vui[n - 1].lc->next = NULL;
3104 dst->var_part[k].loc_chain = vui[0].lc;
3107 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3109 i--;
3110 j--;
3112 else if ((i >= 0 && j >= 0
3113 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3114 || i < 0)
3116 dst->var_part[k] = dst->var_part[j];
3117 j--;
3119 else if ((i >= 0 && j >= 0
3120 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3121 || j < 0)
3123 location_chain *nextp;
3125 /* Copy the chain from SRC. */
3126 nextp = &dst->var_part[k].loc_chain;
3127 for (node = src->var_part[i].loc_chain; node; node = node->next)
3129 location_chain new_lc;
3131 new_lc = new location_chain_def;
3132 new_lc->next = NULL;
3133 new_lc->init = node->init;
3134 if (!node->set_src || MEM_P (node->set_src))
3135 new_lc->set_src = NULL;
3136 else
3137 new_lc->set_src = node->set_src;
3138 new_lc->loc = node->loc;
3140 *nextp = new_lc;
3141 nextp = &new_lc->next;
3144 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3145 i--;
3147 dst->var_part[k].cur_loc = NULL;
3150 if (flag_var_tracking_uninit)
3151 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3153 location_chain node, node2;
3154 for (node = src->var_part[i].loc_chain; node; node = node->next)
3155 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3156 if (rtx_equal_p (node->loc, node2->loc))
3158 if (node->init > node2->init)
3159 node2->init = node->init;
3163 /* Continue traversing the hash table. */
3164 return 1;
3167 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3169 static void
3170 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3172 int i;
3174 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3175 attrs_list_union (&dst->regs[i], src->regs[i]);
3177 if (dst->vars == empty_shared_hash)
3179 shared_hash_destroy (dst->vars);
3180 dst->vars = shared_hash_copy (src->vars);
3182 else
3184 variable_iterator_type hi;
3185 variable var;
3187 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3188 var, variable, hi)
3189 variable_union (var, dst);
3193 /* Whether the value is currently being expanded. */
3194 #define VALUE_RECURSED_INTO(x) \
3195 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3197 /* Whether no expansion was found, saving useless lookups.
3198 It must only be set when VALUE_CHANGED is clear. */
3199 #define NO_LOC_P(x) \
3200 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3202 /* Whether cur_loc in the value needs to be (re)computed. */
3203 #define VALUE_CHANGED(x) \
3204 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3205 /* Whether cur_loc in the decl needs to be (re)computed. */
3206 #define DECL_CHANGED(x) TREE_VISITED (x)
3208 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3209 user DECLs, this means they're in changed_variables. Values and
3210 debug exprs may be left with this flag set if no user variable
3211 requires them to be evaluated. */
3213 static inline void
3214 set_dv_changed (decl_or_value dv, bool newv)
3216 switch (dv_onepart_p (dv))
3218 case ONEPART_VALUE:
3219 if (newv)
3220 NO_LOC_P (dv_as_value (dv)) = false;
3221 VALUE_CHANGED (dv_as_value (dv)) = newv;
3222 break;
3224 case ONEPART_DEXPR:
3225 if (newv)
3226 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3227 /* Fall through... */
3229 default:
3230 DECL_CHANGED (dv_as_decl (dv)) = newv;
3231 break;
3235 /* Return true if DV needs to have its cur_loc recomputed. */
3237 static inline bool
3238 dv_changed_p (decl_or_value dv)
3240 return (dv_is_value_p (dv)
3241 ? VALUE_CHANGED (dv_as_value (dv))
3242 : DECL_CHANGED (dv_as_decl (dv)));
3245 /* Return a location list node whose loc is rtx_equal to LOC, in the
3246 location list of a one-part variable or value VAR, or in that of
3247 any values recursively mentioned in the location lists. VARS must
3248 be in star-canonical form. */
3250 static location_chain
3251 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3253 location_chain node;
3254 enum rtx_code loc_code;
3256 if (!var)
3257 return NULL;
3259 gcc_checking_assert (var->onepart);
3261 if (!var->n_var_parts)
3262 return NULL;
3264 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3266 loc_code = GET_CODE (loc);
3267 for (node = var->var_part[0].loc_chain; node; node = node->next)
3269 decl_or_value dv;
3270 variable rvar;
3272 if (GET_CODE (node->loc) != loc_code)
3274 if (GET_CODE (node->loc) != VALUE)
3275 continue;
3277 else if (loc == node->loc)
3278 return node;
3279 else if (loc_code != VALUE)
3281 if (rtx_equal_p (loc, node->loc))
3282 return node;
3283 continue;
3286 /* Since we're in star-canonical form, we don't need to visit
3287 non-canonical nodes: one-part variables and non-canonical
3288 values would only point back to the canonical node. */
3289 if (dv_is_value_p (var->dv)
3290 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3292 /* Skip all subsequent VALUEs. */
3293 while (node->next && GET_CODE (node->next->loc) == VALUE)
3295 node = node->next;
3296 gcc_checking_assert (!canon_value_cmp (node->loc,
3297 dv_as_value (var->dv)));
3298 if (loc == node->loc)
3299 return node;
3301 continue;
3304 gcc_checking_assert (node == var->var_part[0].loc_chain);
3305 gcc_checking_assert (!node->next);
3307 dv = dv_from_value (node->loc);
3308 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3309 return find_loc_in_1pdv (loc, rvar, vars);
3312 /* ??? Gotta look in cselib_val locations too. */
3314 return NULL;
3317 /* Hash table iteration argument passed to variable_merge. */
3318 struct dfset_merge
3320 /* The set in which the merge is to be inserted. */
3321 dataflow_set *dst;
3322 /* The set that we're iterating in. */
3323 dataflow_set *cur;
3324 /* The set that may contain the other dv we are to merge with. */
3325 dataflow_set *src;
3326 /* Number of onepart dvs in src. */
3327 int src_onepart_cnt;
3330 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3331 loc_cmp order, and it is maintained as such. */
3333 static void
3334 insert_into_intersection (location_chain *nodep, rtx loc,
3335 enum var_init_status status)
3337 location_chain node;
3338 int r;
3340 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3341 if ((r = loc_cmp (node->loc, loc)) == 0)
3343 node->init = MIN (node->init, status);
3344 return;
3346 else if (r > 0)
3347 break;
3349 node = new location_chain_def;
3351 node->loc = loc;
3352 node->set_src = NULL;
3353 node->init = status;
3354 node->next = *nodep;
3355 *nodep = node;
3358 /* Insert in DEST the intersection of the locations present in both
3359 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3360 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3361 DSM->dst. */
3363 static void
3364 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3365 location_chain s1node, variable s2var)
3367 dataflow_set *s1set = dsm->cur;
3368 dataflow_set *s2set = dsm->src;
3369 location_chain found;
3371 if (s2var)
3373 location_chain s2node;
3375 gcc_checking_assert (s2var->onepart);
3377 if (s2var->n_var_parts)
3379 s2node = s2var->var_part[0].loc_chain;
3381 for (; s1node && s2node;
3382 s1node = s1node->next, s2node = s2node->next)
3383 if (s1node->loc != s2node->loc)
3384 break;
3385 else if (s1node->loc == val)
3386 continue;
3387 else
3388 insert_into_intersection (dest, s1node->loc,
3389 MIN (s1node->init, s2node->init));
3393 for (; s1node; s1node = s1node->next)
3395 if (s1node->loc == val)
3396 continue;
3398 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3399 shared_hash_htab (s2set->vars))))
3401 insert_into_intersection (dest, s1node->loc,
3402 MIN (s1node->init, found->init));
3403 continue;
3406 if (GET_CODE (s1node->loc) == VALUE
3407 && !VALUE_RECURSED_INTO (s1node->loc))
3409 decl_or_value dv = dv_from_value (s1node->loc);
3410 variable svar = shared_hash_find (s1set->vars, dv);
3411 if (svar)
3413 if (svar->n_var_parts == 1)
3415 VALUE_RECURSED_INTO (s1node->loc) = true;
3416 intersect_loc_chains (val, dest, dsm,
3417 svar->var_part[0].loc_chain,
3418 s2var);
3419 VALUE_RECURSED_INTO (s1node->loc) = false;
3424 /* ??? gotta look in cselib_val locations too. */
3426 /* ??? if the location is equivalent to any location in src,
3427 searched recursively
3429 add to dst the values needed to represent the equivalence
3431 telling whether locations S is equivalent to another dv's
3432 location list:
3434 for each location D in the list
3436 if S and D satisfy rtx_equal_p, then it is present
3438 else if D is a value, recurse without cycles
3440 else if S and D have the same CODE and MODE
3442 for each operand oS and the corresponding oD
3444 if oS and oD are not equivalent, then S an D are not equivalent
3446 else if they are RTX vectors
3448 if any vector oS element is not equivalent to its respective oD,
3449 then S and D are not equivalent
3457 /* Return -1 if X should be before Y in a location list for a 1-part
3458 variable, 1 if Y should be before X, and 0 if they're equivalent
3459 and should not appear in the list. */
3461 static int
3462 loc_cmp (rtx x, rtx y)
3464 int i, j, r;
3465 RTX_CODE code = GET_CODE (x);
3466 const char *fmt;
3468 if (x == y)
3469 return 0;
3471 if (REG_P (x))
3473 if (!REG_P (y))
3474 return -1;
3475 gcc_assert (GET_MODE (x) == GET_MODE (y));
3476 if (REGNO (x) == REGNO (y))
3477 return 0;
3478 else if (REGNO (x) < REGNO (y))
3479 return -1;
3480 else
3481 return 1;
3484 if (REG_P (y))
3485 return 1;
3487 if (MEM_P (x))
3489 if (!MEM_P (y))
3490 return -1;
3491 gcc_assert (GET_MODE (x) == GET_MODE (y));
3492 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3495 if (MEM_P (y))
3496 return 1;
3498 if (GET_CODE (x) == VALUE)
3500 if (GET_CODE (y) != VALUE)
3501 return -1;
3502 /* Don't assert the modes are the same, that is true only
3503 when not recursing. (subreg:QI (value:SI 1:1) 0)
3504 and (subreg:QI (value:DI 2:2) 0) can be compared,
3505 even when the modes are different. */
3506 if (canon_value_cmp (x, y))
3507 return -1;
3508 else
3509 return 1;
3512 if (GET_CODE (y) == VALUE)
3513 return 1;
3515 /* Entry value is the least preferable kind of expression. */
3516 if (GET_CODE (x) == ENTRY_VALUE)
3518 if (GET_CODE (y) != ENTRY_VALUE)
3519 return 1;
3520 gcc_assert (GET_MODE (x) == GET_MODE (y));
3521 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3524 if (GET_CODE (y) == ENTRY_VALUE)
3525 return -1;
3527 if (GET_CODE (x) == GET_CODE (y))
3528 /* Compare operands below. */;
3529 else if (GET_CODE (x) < GET_CODE (y))
3530 return -1;
3531 else
3532 return 1;
3534 gcc_assert (GET_MODE (x) == GET_MODE (y));
3536 if (GET_CODE (x) == DEBUG_EXPR)
3538 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3539 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3540 return -1;
3541 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3542 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3543 return 1;
3546 fmt = GET_RTX_FORMAT (code);
3547 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3548 switch (fmt[i])
3550 case 'w':
3551 if (XWINT (x, i) == XWINT (y, i))
3552 break;
3553 else if (XWINT (x, i) < XWINT (y, i))
3554 return -1;
3555 else
3556 return 1;
3558 case 'n':
3559 case 'i':
3560 if (XINT (x, i) == XINT (y, i))
3561 break;
3562 else if (XINT (x, i) < XINT (y, i))
3563 return -1;
3564 else
3565 return 1;
3567 case 'V':
3568 case 'E':
3569 /* Compare the vector length first. */
3570 if (XVECLEN (x, i) == XVECLEN (y, i))
3571 /* Compare the vectors elements. */;
3572 else if (XVECLEN (x, i) < XVECLEN (y, i))
3573 return -1;
3574 else
3575 return 1;
3577 for (j = 0; j < XVECLEN (x, i); j++)
3578 if ((r = loc_cmp (XVECEXP (x, i, j),
3579 XVECEXP (y, i, j))))
3580 return r;
3581 break;
3583 case 'e':
3584 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3585 return r;
3586 break;
3588 case 'S':
3589 case 's':
3590 if (XSTR (x, i) == XSTR (y, i))
3591 break;
3592 if (!XSTR (x, i))
3593 return -1;
3594 if (!XSTR (y, i))
3595 return 1;
3596 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3597 break;
3598 else if (r < 0)
3599 return -1;
3600 else
3601 return 1;
3603 case 'u':
3604 /* These are just backpointers, so they don't matter. */
3605 break;
3607 case '0':
3608 case 't':
3609 break;
3611 /* It is believed that rtx's at this level will never
3612 contain anything but integers and other rtx's,
3613 except for within LABEL_REFs and SYMBOL_REFs. */
3614 default:
3615 gcc_unreachable ();
3617 if (CONST_WIDE_INT_P (x))
3619 /* Compare the vector length first. */
3620 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3621 return 1;
3622 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3623 return -1;
3625 /* Compare the vectors elements. */;
3626 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3628 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3629 return -1;
3630 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3631 return 1;
3635 return 0;
3638 #if ENABLE_CHECKING
3639 /* Check the order of entries in one-part variables. */
3642 canonicalize_loc_order_check (variable_def **slot,
3643 dataflow_set *data ATTRIBUTE_UNUSED)
3645 variable var = *slot;
3646 location_chain node, next;
3648 #ifdef ENABLE_RTL_CHECKING
3649 int i;
3650 for (i = 0; i < var->n_var_parts; i++)
3651 gcc_assert (var->var_part[0].cur_loc == NULL);
3652 gcc_assert (!var->in_changed_variables);
3653 #endif
3655 if (!var->onepart)
3656 return 1;
3658 gcc_assert (var->n_var_parts == 1);
3659 node = var->var_part[0].loc_chain;
3660 gcc_assert (node);
3662 while ((next = node->next))
3664 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3665 node = next;
3668 return 1;
3670 #endif
3672 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3673 more likely to be chosen as canonical for an equivalence set.
3674 Ensure less likely values can reach more likely neighbors, making
3675 the connections bidirectional. */
3678 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3680 variable var = *slot;
3681 decl_or_value dv = var->dv;
3682 rtx val;
3683 location_chain node;
3685 if (!dv_is_value_p (dv))
3686 return 1;
3688 gcc_checking_assert (var->n_var_parts == 1);
3690 val = dv_as_value (dv);
3692 for (node = var->var_part[0].loc_chain; node; node = node->next)
3693 if (GET_CODE (node->loc) == VALUE)
3695 if (canon_value_cmp (node->loc, val))
3696 VALUE_RECURSED_INTO (val) = true;
3697 else
3699 decl_or_value odv = dv_from_value (node->loc);
3700 variable_def **oslot;
3701 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3703 set_slot_part (set, val, oslot, odv, 0,
3704 node->init, NULL_RTX);
3706 VALUE_RECURSED_INTO (node->loc) = true;
3710 return 1;
3713 /* Remove redundant entries from equivalence lists in onepart
3714 variables, canonicalizing equivalence sets into star shapes. */
3717 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3719 variable var = *slot;
3720 decl_or_value dv = var->dv;
3721 location_chain node;
3722 decl_or_value cdv;
3723 rtx val, cval;
3724 variable_def **cslot;
3725 bool has_value;
3726 bool has_marks;
3728 if (!var->onepart)
3729 return 1;
3731 gcc_checking_assert (var->n_var_parts == 1);
3733 if (dv_is_value_p (dv))
3735 cval = dv_as_value (dv);
3736 if (!VALUE_RECURSED_INTO (cval))
3737 return 1;
3738 VALUE_RECURSED_INTO (cval) = false;
3740 else
3741 cval = NULL_RTX;
3743 restart:
3744 val = cval;
3745 has_value = false;
3746 has_marks = false;
3748 gcc_assert (var->n_var_parts == 1);
3750 for (node = var->var_part[0].loc_chain; node; node = node->next)
3751 if (GET_CODE (node->loc) == VALUE)
3753 has_value = true;
3754 if (VALUE_RECURSED_INTO (node->loc))
3755 has_marks = true;
3756 if (canon_value_cmp (node->loc, cval))
3757 cval = node->loc;
3760 if (!has_value)
3761 return 1;
3763 if (cval == val)
3765 if (!has_marks || dv_is_decl_p (dv))
3766 return 1;
3768 /* Keep it marked so that we revisit it, either after visiting a
3769 child node, or after visiting a new parent that might be
3770 found out. */
3771 VALUE_RECURSED_INTO (val) = true;
3773 for (node = var->var_part[0].loc_chain; node; node = node->next)
3774 if (GET_CODE (node->loc) == VALUE
3775 && VALUE_RECURSED_INTO (node->loc))
3777 cval = node->loc;
3778 restart_with_cval:
3779 VALUE_RECURSED_INTO (cval) = false;
3780 dv = dv_from_value (cval);
3781 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3782 if (!slot)
3784 gcc_assert (dv_is_decl_p (var->dv));
3785 /* The canonical value was reset and dropped.
3786 Remove it. */
3787 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3788 return 1;
3790 var = *slot;
3791 gcc_assert (dv_is_value_p (var->dv));
3792 if (var->n_var_parts == 0)
3793 return 1;
3794 gcc_assert (var->n_var_parts == 1);
3795 goto restart;
3798 VALUE_RECURSED_INTO (val) = false;
3800 return 1;
3803 /* Push values to the canonical one. */
3804 cdv = dv_from_value (cval);
3805 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3807 for (node = var->var_part[0].loc_chain; node; node = node->next)
3808 if (node->loc != cval)
3810 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3811 node->init, NULL_RTX);
3812 if (GET_CODE (node->loc) == VALUE)
3814 decl_or_value ndv = dv_from_value (node->loc);
3816 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3817 NO_INSERT);
3819 if (canon_value_cmp (node->loc, val))
3821 /* If it could have been a local minimum, it's not any more,
3822 since it's now neighbor to cval, so it may have to push
3823 to it. Conversely, if it wouldn't have prevailed over
3824 val, then whatever mark it has is fine: if it was to
3825 push, it will now push to a more canonical node, but if
3826 it wasn't, then it has already pushed any values it might
3827 have to. */
3828 VALUE_RECURSED_INTO (node->loc) = true;
3829 /* Make sure we visit node->loc by ensuring we cval is
3830 visited too. */
3831 VALUE_RECURSED_INTO (cval) = true;
3833 else if (!VALUE_RECURSED_INTO (node->loc))
3834 /* If we have no need to "recurse" into this node, it's
3835 already "canonicalized", so drop the link to the old
3836 parent. */
3837 clobber_variable_part (set, cval, ndv, 0, NULL);
3839 else if (GET_CODE (node->loc) == REG)
3841 attrs list = set->regs[REGNO (node->loc)], *listp;
3843 /* Change an existing attribute referring to dv so that it
3844 refers to cdv, removing any duplicate this might
3845 introduce, and checking that no previous duplicates
3846 existed, all in a single pass. */
3848 while (list)
3850 if (list->offset == 0
3851 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3852 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3853 break;
3855 list = list->next;
3858 gcc_assert (list);
3859 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3861 list->dv = cdv;
3862 for (listp = &list->next; (list = *listp); listp = &list->next)
3864 if (list->offset)
3865 continue;
3867 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3869 *listp = list->next;
3870 delete list;
3871 list = *listp;
3872 break;
3875 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3878 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3880 for (listp = &list->next; (list = *listp); listp = &list->next)
3882 if (list->offset)
3883 continue;
3885 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3887 *listp = list->next;
3888 delete list;
3889 list = *listp;
3890 break;
3893 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3896 else
3897 gcc_unreachable ();
3899 #if ENABLE_CHECKING
3900 while (list)
3902 if (list->offset == 0
3903 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3904 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3905 gcc_unreachable ();
3907 list = list->next;
3909 #endif
3913 if (val)
3914 set_slot_part (set, val, cslot, cdv, 0,
3915 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3917 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3919 /* Variable may have been unshared. */
3920 var = *slot;
3921 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3922 && var->var_part[0].loc_chain->next == NULL);
3924 if (VALUE_RECURSED_INTO (cval))
3925 goto restart_with_cval;
3927 return 1;
3930 /* Bind one-part variables to the canonical value in an equivalence
3931 set. Not doing this causes dataflow convergence failure in rare
3932 circumstances, see PR42873. Unfortunately we can't do this
3933 efficiently as part of canonicalize_values_star, since we may not
3934 have determined or even seen the canonical value of a set when we
3935 get to a variable that references another member of the set. */
3938 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3940 variable var = *slot;
3941 decl_or_value dv = var->dv;
3942 location_chain node;
3943 rtx cval;
3944 decl_or_value cdv;
3945 variable_def **cslot;
3946 variable cvar;
3947 location_chain cnode;
3949 if (!var->onepart || var->onepart == ONEPART_VALUE)
3950 return 1;
3952 gcc_assert (var->n_var_parts == 1);
3954 node = var->var_part[0].loc_chain;
3956 if (GET_CODE (node->loc) != VALUE)
3957 return 1;
3959 gcc_assert (!node->next);
3960 cval = node->loc;
3962 /* Push values to the canonical one. */
3963 cdv = dv_from_value (cval);
3964 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3965 if (!cslot)
3966 return 1;
3967 cvar = *cslot;
3968 gcc_assert (cvar->n_var_parts == 1);
3970 cnode = cvar->var_part[0].loc_chain;
3972 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3973 that are not “more canonical” than it. */
3974 if (GET_CODE (cnode->loc) != VALUE
3975 || !canon_value_cmp (cnode->loc, cval))
3976 return 1;
3978 /* CVAL was found to be non-canonical. Change the variable to point
3979 to the canonical VALUE. */
3980 gcc_assert (!cnode->next);
3981 cval = cnode->loc;
3983 slot = set_slot_part (set, cval, slot, dv, 0,
3984 node->init, node->set_src);
3985 clobber_slot_part (set, cval, slot, 0, node->set_src);
3987 return 1;
3990 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3991 corresponding entry in DSM->src. Multi-part variables are combined
3992 with variable_union, whereas onepart dvs are combined with
3993 intersection. */
3995 static int
3996 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3998 dataflow_set *dst = dsm->dst;
3999 variable_def **dstslot;
4000 variable s2var, dvar = NULL;
4001 decl_or_value dv = s1var->dv;
4002 onepart_enum_t onepart = s1var->onepart;
4003 rtx val;
4004 hashval_t dvhash;
4005 location_chain node, *nodep;
4007 /* If the incoming onepart variable has an empty location list, then
4008 the intersection will be just as empty. For other variables,
4009 it's always union. */
4010 gcc_checking_assert (s1var->n_var_parts
4011 && s1var->var_part[0].loc_chain);
4013 if (!onepart)
4014 return variable_union (s1var, dst);
4016 gcc_checking_assert (s1var->n_var_parts == 1);
4018 dvhash = dv_htab_hash (dv);
4019 if (dv_is_value_p (dv))
4020 val = dv_as_value (dv);
4021 else
4022 val = NULL;
4024 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
4025 if (!s2var)
4027 dst_can_be_shared = false;
4028 return 1;
4031 dsm->src_onepart_cnt--;
4032 gcc_assert (s2var->var_part[0].loc_chain
4033 && s2var->onepart == onepart
4034 && s2var->n_var_parts == 1);
4036 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4037 if (dstslot)
4039 dvar = *dstslot;
4040 gcc_assert (dvar->refcount == 1
4041 && dvar->onepart == onepart
4042 && dvar->n_var_parts == 1);
4043 nodep = &dvar->var_part[0].loc_chain;
4045 else
4047 nodep = &node;
4048 node = NULL;
4051 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4053 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4054 dvhash, INSERT);
4055 *dstslot = dvar = s2var;
4056 dvar->refcount++;
4058 else
4060 dst_can_be_shared = false;
4062 intersect_loc_chains (val, nodep, dsm,
4063 s1var->var_part[0].loc_chain, s2var);
4065 if (!dstslot)
4067 if (node)
4069 dvar = onepart_pool (onepart).allocate ();
4070 dvar->dv = dv;
4071 dvar->refcount = 1;
4072 dvar->n_var_parts = 1;
4073 dvar->onepart = onepart;
4074 dvar->in_changed_variables = false;
4075 dvar->var_part[0].loc_chain = node;
4076 dvar->var_part[0].cur_loc = NULL;
4077 if (onepart)
4078 VAR_LOC_1PAUX (dvar) = NULL;
4079 else
4080 VAR_PART_OFFSET (dvar, 0) = 0;
4082 dstslot
4083 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4084 INSERT);
4085 gcc_assert (!*dstslot);
4086 *dstslot = dvar;
4088 else
4089 return 1;
4093 nodep = &dvar->var_part[0].loc_chain;
4094 while ((node = *nodep))
4096 location_chain *nextp = &node->next;
4098 if (GET_CODE (node->loc) == REG)
4100 attrs list;
4102 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4103 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4104 && dv_is_value_p (list->dv))
4105 break;
4107 if (!list)
4108 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4109 dv, 0, node->loc);
4110 /* If this value became canonical for another value that had
4111 this register, we want to leave it alone. */
4112 else if (dv_as_value (list->dv) != val)
4114 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4115 dstslot, dv, 0,
4116 node->init, NULL_RTX);
4117 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4119 /* Since nextp points into the removed node, we can't
4120 use it. The pointer to the next node moved to nodep.
4121 However, if the variable we're walking is unshared
4122 during our walk, we'll keep walking the location list
4123 of the previously-shared variable, in which case the
4124 node won't have been removed, and we'll want to skip
4125 it. That's why we test *nodep here. */
4126 if (*nodep != node)
4127 nextp = nodep;
4130 else
4131 /* Canonicalization puts registers first, so we don't have to
4132 walk it all. */
4133 break;
4134 nodep = nextp;
4137 if (dvar != *dstslot)
4138 dvar = *dstslot;
4139 nodep = &dvar->var_part[0].loc_chain;
4141 if (val)
4143 /* Mark all referenced nodes for canonicalization, and make sure
4144 we have mutual equivalence links. */
4145 VALUE_RECURSED_INTO (val) = true;
4146 for (node = *nodep; node; node = node->next)
4147 if (GET_CODE (node->loc) == VALUE)
4149 VALUE_RECURSED_INTO (node->loc) = true;
4150 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4151 node->init, NULL, INSERT);
4154 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4155 gcc_assert (*dstslot == dvar);
4156 canonicalize_values_star (dstslot, dst);
4157 gcc_checking_assert (dstslot
4158 == shared_hash_find_slot_noinsert_1 (dst->vars,
4159 dv, dvhash));
4160 dvar = *dstslot;
4162 else
4164 bool has_value = false, has_other = false;
4166 /* If we have one value and anything else, we're going to
4167 canonicalize this, so make sure all values have an entry in
4168 the table and are marked for canonicalization. */
4169 for (node = *nodep; node; node = node->next)
4171 if (GET_CODE (node->loc) == VALUE)
4173 /* If this was marked during register canonicalization,
4174 we know we have to canonicalize values. */
4175 if (has_value)
4176 has_other = true;
4177 has_value = true;
4178 if (has_other)
4179 break;
4181 else
4183 has_other = true;
4184 if (has_value)
4185 break;
4189 if (has_value && has_other)
4191 for (node = *nodep; node; node = node->next)
4193 if (GET_CODE (node->loc) == VALUE)
4195 decl_or_value dv = dv_from_value (node->loc);
4196 variable_def **slot = NULL;
4198 if (shared_hash_shared (dst->vars))
4199 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4200 if (!slot)
4201 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4202 INSERT);
4203 if (!*slot)
4205 variable var = onepart_pool (ONEPART_VALUE).allocate ();
4206 var->dv = dv;
4207 var->refcount = 1;
4208 var->n_var_parts = 1;
4209 var->onepart = ONEPART_VALUE;
4210 var->in_changed_variables = false;
4211 var->var_part[0].loc_chain = NULL;
4212 var->var_part[0].cur_loc = NULL;
4213 VAR_LOC_1PAUX (var) = NULL;
4214 *slot = var;
4217 VALUE_RECURSED_INTO (node->loc) = true;
4221 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4222 gcc_assert (*dstslot == dvar);
4223 canonicalize_values_star (dstslot, dst);
4224 gcc_checking_assert (dstslot
4225 == shared_hash_find_slot_noinsert_1 (dst->vars,
4226 dv, dvhash));
4227 dvar = *dstslot;
4231 if (!onepart_variable_different_p (dvar, s2var))
4233 variable_htab_free (dvar);
4234 *dstslot = dvar = s2var;
4235 dvar->refcount++;
4237 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4239 variable_htab_free (dvar);
4240 *dstslot = dvar = s1var;
4241 dvar->refcount++;
4242 dst_can_be_shared = false;
4244 else
4245 dst_can_be_shared = false;
4247 return 1;
4250 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4251 multi-part variable. Unions of multi-part variables and
4252 intersections of one-part ones will be handled in
4253 variable_merge_over_cur(). */
4255 static int
4256 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4258 dataflow_set *dst = dsm->dst;
4259 decl_or_value dv = s2var->dv;
4261 if (!s2var->onepart)
4263 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4264 *dstp = s2var;
4265 s2var->refcount++;
4266 return 1;
4269 dsm->src_onepart_cnt++;
4270 return 1;
4273 /* Combine dataflow set information from SRC2 into DST, using PDST
4274 to carry over information across passes. */
4276 static void
4277 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4279 dataflow_set cur = *dst;
4280 dataflow_set *src1 = &cur;
4281 struct dfset_merge dsm;
4282 int i;
4283 size_t src1_elems, src2_elems;
4284 variable_iterator_type hi;
4285 variable var;
4287 src1_elems = shared_hash_htab (src1->vars)->elements ();
4288 src2_elems = shared_hash_htab (src2->vars)->elements ();
4289 dataflow_set_init (dst);
4290 dst->stack_adjust = cur.stack_adjust;
4291 shared_hash_destroy (dst->vars);
4292 dst->vars = new shared_hash_def;
4293 dst->vars->refcount = 1;
4294 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4296 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4297 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4299 dsm.dst = dst;
4300 dsm.src = src2;
4301 dsm.cur = src1;
4302 dsm.src_onepart_cnt = 0;
4304 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4305 var, variable, hi)
4306 variable_merge_over_src (var, &dsm);
4307 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4308 var, variable, hi)
4309 variable_merge_over_cur (var, &dsm);
4311 if (dsm.src_onepart_cnt)
4312 dst_can_be_shared = false;
4314 dataflow_set_destroy (src1);
4317 /* Mark register equivalences. */
4319 static void
4320 dataflow_set_equiv_regs (dataflow_set *set)
4322 int i;
4323 attrs list, *listp;
4325 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4327 rtx canon[NUM_MACHINE_MODES];
4329 /* If the list is empty or one entry, no need to canonicalize
4330 anything. */
4331 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4332 continue;
4334 memset (canon, 0, sizeof (canon));
4336 for (list = set->regs[i]; list; list = list->next)
4337 if (list->offset == 0 && dv_is_value_p (list->dv))
4339 rtx val = dv_as_value (list->dv);
4340 rtx *cvalp = &canon[(int)GET_MODE (val)];
4341 rtx cval = *cvalp;
4343 if (canon_value_cmp (val, cval))
4344 *cvalp = val;
4347 for (list = set->regs[i]; list; list = list->next)
4348 if (list->offset == 0 && dv_onepart_p (list->dv))
4350 rtx cval = canon[(int)GET_MODE (list->loc)];
4352 if (!cval)
4353 continue;
4355 if (dv_is_value_p (list->dv))
4357 rtx val = dv_as_value (list->dv);
4359 if (val == cval)
4360 continue;
4362 VALUE_RECURSED_INTO (val) = true;
4363 set_variable_part (set, val, dv_from_value (cval), 0,
4364 VAR_INIT_STATUS_INITIALIZED,
4365 NULL, NO_INSERT);
4368 VALUE_RECURSED_INTO (cval) = true;
4369 set_variable_part (set, cval, list->dv, 0,
4370 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4373 for (listp = &set->regs[i]; (list = *listp);
4374 listp = list ? &list->next : listp)
4375 if (list->offset == 0 && dv_onepart_p (list->dv))
4377 rtx cval = canon[(int)GET_MODE (list->loc)];
4378 variable_def **slot;
4380 if (!cval)
4381 continue;
4383 if (dv_is_value_p (list->dv))
4385 rtx val = dv_as_value (list->dv);
4386 if (!VALUE_RECURSED_INTO (val))
4387 continue;
4390 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4391 canonicalize_values_star (slot, set);
4392 if (*listp != list)
4393 list = NULL;
4398 /* Remove any redundant values in the location list of VAR, which must
4399 be unshared and 1-part. */
4401 static void
4402 remove_duplicate_values (variable var)
4404 location_chain node, *nodep;
4406 gcc_assert (var->onepart);
4407 gcc_assert (var->n_var_parts == 1);
4408 gcc_assert (var->refcount == 1);
4410 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4412 if (GET_CODE (node->loc) == VALUE)
4414 if (VALUE_RECURSED_INTO (node->loc))
4416 /* Remove duplicate value node. */
4417 *nodep = node->next;
4418 delete node;
4419 continue;
4421 else
4422 VALUE_RECURSED_INTO (node->loc) = true;
4424 nodep = &node->next;
4427 for (node = var->var_part[0].loc_chain; node; node = node->next)
4428 if (GET_CODE (node->loc) == VALUE)
4430 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4431 VALUE_RECURSED_INTO (node->loc) = false;
4436 /* Hash table iteration argument passed to variable_post_merge. */
4437 struct dfset_post_merge
4439 /* The new input set for the current block. */
4440 dataflow_set *set;
4441 /* Pointer to the permanent input set for the current block, or
4442 NULL. */
4443 dataflow_set **permp;
4446 /* Create values for incoming expressions associated with one-part
4447 variables that don't have value numbers for them. */
4450 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4452 dataflow_set *set = dfpm->set;
4453 variable var = *slot;
4454 location_chain node;
4456 if (!var->onepart || !var->n_var_parts)
4457 return 1;
4459 gcc_assert (var->n_var_parts == 1);
4461 if (dv_is_decl_p (var->dv))
4463 bool check_dupes = false;
4465 restart:
4466 for (node = var->var_part[0].loc_chain; node; node = node->next)
4468 if (GET_CODE (node->loc) == VALUE)
4469 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4470 else if (GET_CODE (node->loc) == REG)
4472 attrs att, *attp, *curp = NULL;
4474 if (var->refcount != 1)
4476 slot = unshare_variable (set, slot, var,
4477 VAR_INIT_STATUS_INITIALIZED);
4478 var = *slot;
4479 goto restart;
4482 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4483 attp = &att->next)
4484 if (att->offset == 0
4485 && GET_MODE (att->loc) == GET_MODE (node->loc))
4487 if (dv_is_value_p (att->dv))
4489 rtx cval = dv_as_value (att->dv);
4490 node->loc = cval;
4491 check_dupes = true;
4492 break;
4494 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4495 curp = attp;
4498 if (!curp)
4500 curp = attp;
4501 while (*curp)
4502 if ((*curp)->offset == 0
4503 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4504 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4505 break;
4506 else
4507 curp = &(*curp)->next;
4508 gcc_assert (*curp);
4511 if (!att)
4513 decl_or_value cdv;
4514 rtx cval;
4516 if (!*dfpm->permp)
4518 *dfpm->permp = XNEW (dataflow_set);
4519 dataflow_set_init (*dfpm->permp);
4522 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4523 att; att = att->next)
4524 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4526 gcc_assert (att->offset == 0
4527 && dv_is_value_p (att->dv));
4528 val_reset (set, att->dv);
4529 break;
4532 if (att)
4534 cdv = att->dv;
4535 cval = dv_as_value (cdv);
4537 else
4539 /* Create a unique value to hold this register,
4540 that ought to be found and reused in
4541 subsequent rounds. */
4542 cselib_val *v;
4543 gcc_assert (!cselib_lookup (node->loc,
4544 GET_MODE (node->loc), 0,
4545 VOIDmode));
4546 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4547 VOIDmode);
4548 cselib_preserve_value (v);
4549 cselib_invalidate_rtx (node->loc);
4550 cval = v->val_rtx;
4551 cdv = dv_from_value (cval);
4552 if (dump_file)
4553 fprintf (dump_file,
4554 "Created new value %u:%u for reg %i\n",
4555 v->uid, v->hash, REGNO (node->loc));
4558 var_reg_decl_set (*dfpm->permp, node->loc,
4559 VAR_INIT_STATUS_INITIALIZED,
4560 cdv, 0, NULL, INSERT);
4562 node->loc = cval;
4563 check_dupes = true;
4566 /* Remove attribute referring to the decl, which now
4567 uses the value for the register, already existing or
4568 to be added when we bring perm in. */
4569 att = *curp;
4570 *curp = att->next;
4571 delete att;
4575 if (check_dupes)
4576 remove_duplicate_values (var);
4579 return 1;
4582 /* Reset values in the permanent set that are not associated with the
4583 chosen expression. */
4586 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4588 dataflow_set *set = dfpm->set;
4589 variable pvar = *pslot, var;
4590 location_chain pnode;
4591 decl_or_value dv;
4592 attrs att;
4594 gcc_assert (dv_is_value_p (pvar->dv)
4595 && pvar->n_var_parts == 1);
4596 pnode = pvar->var_part[0].loc_chain;
4597 gcc_assert (pnode
4598 && !pnode->next
4599 && REG_P (pnode->loc));
4601 dv = pvar->dv;
4603 var = shared_hash_find (set->vars, dv);
4604 if (var)
4606 /* Although variable_post_merge_new_vals may have made decls
4607 non-star-canonical, values that pre-existed in canonical form
4608 remain canonical, and newly-created values reference a single
4609 REG, so they are canonical as well. Since VAR has the
4610 location list for a VALUE, using find_loc_in_1pdv for it is
4611 fine, since VALUEs don't map back to DECLs. */
4612 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4613 return 1;
4614 val_reset (set, dv);
4617 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4618 if (att->offset == 0
4619 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4620 && dv_is_value_p (att->dv))
4621 break;
4623 /* If there is a value associated with this register already, create
4624 an equivalence. */
4625 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4627 rtx cval = dv_as_value (att->dv);
4628 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4629 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4630 NULL, INSERT);
4632 else if (!att)
4634 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4635 dv, 0, pnode->loc);
4636 variable_union (pvar, set);
4639 return 1;
4642 /* Just checking stuff and registering register attributes for
4643 now. */
4645 static void
4646 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4648 struct dfset_post_merge dfpm;
4650 dfpm.set = set;
4651 dfpm.permp = permp;
4653 shared_hash_htab (set->vars)
4654 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4655 if (*permp)
4656 shared_hash_htab ((*permp)->vars)
4657 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4658 shared_hash_htab (set->vars)
4659 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4660 shared_hash_htab (set->vars)
4661 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4664 /* Return a node whose loc is a MEM that refers to EXPR in the
4665 location list of a one-part variable or value VAR, or in that of
4666 any values recursively mentioned in the location lists. */
4668 static location_chain
4669 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4671 location_chain node;
4672 decl_or_value dv;
4673 variable var;
4674 location_chain where = NULL;
4676 if (!val)
4677 return NULL;
4679 gcc_assert (GET_CODE (val) == VALUE
4680 && !VALUE_RECURSED_INTO (val));
4682 dv = dv_from_value (val);
4683 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4685 if (!var)
4686 return NULL;
4688 gcc_assert (var->onepart);
4690 if (!var->n_var_parts)
4691 return NULL;
4693 VALUE_RECURSED_INTO (val) = true;
4695 for (node = var->var_part[0].loc_chain; node; node = node->next)
4696 if (MEM_P (node->loc)
4697 && MEM_EXPR (node->loc) == expr
4698 && INT_MEM_OFFSET (node->loc) == 0)
4700 where = node;
4701 break;
4703 else if (GET_CODE (node->loc) == VALUE
4704 && !VALUE_RECURSED_INTO (node->loc)
4705 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4706 break;
4708 VALUE_RECURSED_INTO (val) = false;
4710 return where;
4713 /* Return TRUE if the value of MEM may vary across a call. */
4715 static bool
4716 mem_dies_at_call (rtx mem)
4718 tree expr = MEM_EXPR (mem);
4719 tree decl;
4721 if (!expr)
4722 return true;
4724 decl = get_base_address (expr);
4726 if (!decl)
4727 return true;
4729 if (!DECL_P (decl))
4730 return true;
4732 return (may_be_aliased (decl)
4733 || (!TREE_READONLY (decl) && is_global_var (decl)));
4736 /* Remove all MEMs from the location list of a hash table entry for a
4737 one-part variable, except those whose MEM attributes map back to
4738 the variable itself, directly or within a VALUE. */
4741 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4743 variable var = *slot;
4745 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4747 tree decl = dv_as_decl (var->dv);
4748 location_chain loc, *locp;
4749 bool changed = false;
4751 if (!var->n_var_parts)
4752 return 1;
4754 gcc_assert (var->n_var_parts == 1);
4756 if (shared_var_p (var, set->vars))
4758 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4760 /* We want to remove dying MEMs that doesn't refer to DECL. */
4761 if (GET_CODE (loc->loc) == MEM
4762 && (MEM_EXPR (loc->loc) != decl
4763 || INT_MEM_OFFSET (loc->loc) != 0)
4764 && !mem_dies_at_call (loc->loc))
4765 break;
4766 /* We want to move here MEMs that do refer to DECL. */
4767 else if (GET_CODE (loc->loc) == VALUE
4768 && find_mem_expr_in_1pdv (decl, loc->loc,
4769 shared_hash_htab (set->vars)))
4770 break;
4773 if (!loc)
4774 return 1;
4776 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4777 var = *slot;
4778 gcc_assert (var->n_var_parts == 1);
4781 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4782 loc; loc = *locp)
4784 rtx old_loc = loc->loc;
4785 if (GET_CODE (old_loc) == VALUE)
4787 location_chain mem_node
4788 = find_mem_expr_in_1pdv (decl, loc->loc,
4789 shared_hash_htab (set->vars));
4791 /* ??? This picks up only one out of multiple MEMs that
4792 refer to the same variable. Do we ever need to be
4793 concerned about dealing with more than one, or, given
4794 that they should all map to the same variable
4795 location, their addresses will have been merged and
4796 they will be regarded as equivalent? */
4797 if (mem_node)
4799 loc->loc = mem_node->loc;
4800 loc->set_src = mem_node->set_src;
4801 loc->init = MIN (loc->init, mem_node->init);
4805 if (GET_CODE (loc->loc) != MEM
4806 || (MEM_EXPR (loc->loc) == decl
4807 && INT_MEM_OFFSET (loc->loc) == 0)
4808 || !mem_dies_at_call (loc->loc))
4810 if (old_loc != loc->loc && emit_notes)
4812 if (old_loc == var->var_part[0].cur_loc)
4814 changed = true;
4815 var->var_part[0].cur_loc = NULL;
4818 locp = &loc->next;
4819 continue;
4822 if (emit_notes)
4824 if (old_loc == var->var_part[0].cur_loc)
4826 changed = true;
4827 var->var_part[0].cur_loc = NULL;
4830 *locp = loc->next;
4831 delete loc;
4834 if (!var->var_part[0].loc_chain)
4836 var->n_var_parts--;
4837 changed = true;
4839 if (changed)
4840 variable_was_changed (var, set);
4843 return 1;
4846 /* Remove all MEMs from the location list of a hash table entry for a
4847 value. */
4850 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4852 variable var = *slot;
4854 if (var->onepart == ONEPART_VALUE)
4856 location_chain loc, *locp;
4857 bool changed = false;
4858 rtx cur_loc;
4860 gcc_assert (var->n_var_parts == 1);
4862 if (shared_var_p (var, set->vars))
4864 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4865 if (GET_CODE (loc->loc) == MEM
4866 && mem_dies_at_call (loc->loc))
4867 break;
4869 if (!loc)
4870 return 1;
4872 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4873 var = *slot;
4874 gcc_assert (var->n_var_parts == 1);
4877 if (VAR_LOC_1PAUX (var))
4878 cur_loc = VAR_LOC_FROM (var);
4879 else
4880 cur_loc = var->var_part[0].cur_loc;
4882 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4883 loc; loc = *locp)
4885 if (GET_CODE (loc->loc) != MEM
4886 || !mem_dies_at_call (loc->loc))
4888 locp = &loc->next;
4889 continue;
4892 *locp = loc->next;
4893 /* If we have deleted the location which was last emitted
4894 we have to emit new location so add the variable to set
4895 of changed variables. */
4896 if (cur_loc == loc->loc)
4898 changed = true;
4899 var->var_part[0].cur_loc = NULL;
4900 if (VAR_LOC_1PAUX (var))
4901 VAR_LOC_FROM (var) = NULL;
4903 delete loc;
4906 if (!var->var_part[0].loc_chain)
4908 var->n_var_parts--;
4909 changed = true;
4911 if (changed)
4912 variable_was_changed (var, set);
4915 return 1;
4918 /* Remove all variable-location information about call-clobbered
4919 registers, as well as associations between MEMs and VALUEs. */
4921 static void
4922 dataflow_set_clear_at_call (dataflow_set *set)
4924 unsigned int r;
4925 hard_reg_set_iterator hrsi;
4927 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4928 var_regno_delete (set, r);
4930 if (MAY_HAVE_DEBUG_INSNS)
4932 set->traversed_vars = set->vars;
4933 shared_hash_htab (set->vars)
4934 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4935 set->traversed_vars = set->vars;
4936 shared_hash_htab (set->vars)
4937 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4938 set->traversed_vars = NULL;
4942 static bool
4943 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4945 location_chain lc1, lc2;
4947 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4949 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4951 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4953 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4954 break;
4956 if (rtx_equal_p (lc1->loc, lc2->loc))
4957 break;
4959 if (!lc2)
4960 return true;
4962 return false;
4965 /* Return true if one-part variables VAR1 and VAR2 are different.
4966 They must be in canonical order. */
4968 static bool
4969 onepart_variable_different_p (variable var1, variable var2)
4971 location_chain lc1, lc2;
4973 if (var1 == var2)
4974 return false;
4976 gcc_assert (var1->n_var_parts == 1
4977 && var2->n_var_parts == 1);
4979 lc1 = var1->var_part[0].loc_chain;
4980 lc2 = var2->var_part[0].loc_chain;
4982 gcc_assert (lc1 && lc2);
4984 while (lc1 && lc2)
4986 if (loc_cmp (lc1->loc, lc2->loc))
4987 return true;
4988 lc1 = lc1->next;
4989 lc2 = lc2->next;
4992 return lc1 != lc2;
4995 /* Return true if variables VAR1 and VAR2 are different. */
4997 static bool
4998 variable_different_p (variable var1, variable var2)
5000 int i;
5002 if (var1 == var2)
5003 return false;
5005 if (var1->onepart != var2->onepart)
5006 return true;
5008 if (var1->n_var_parts != var2->n_var_parts)
5009 return true;
5011 if (var1->onepart && var1->n_var_parts)
5013 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5014 && var1->n_var_parts == 1);
5015 /* One-part values have locations in a canonical order. */
5016 return onepart_variable_different_p (var1, var2);
5019 for (i = 0; i < var1->n_var_parts; i++)
5021 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5022 return true;
5023 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5024 return true;
5025 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5026 return true;
5028 return false;
5031 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5033 static bool
5034 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5036 variable_iterator_type hi;
5037 variable var1;
5039 if (old_set->vars == new_set->vars)
5040 return false;
5042 if (shared_hash_htab (old_set->vars)->elements ()
5043 != shared_hash_htab (new_set->vars)->elements ())
5044 return true;
5046 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5047 var1, variable, hi)
5049 variable_table_type *htab = shared_hash_htab (new_set->vars);
5050 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5051 if (!var2)
5053 if (dump_file && (dump_flags & TDF_DETAILS))
5055 fprintf (dump_file, "dataflow difference found: removal of:\n");
5056 dump_var (var1);
5058 return true;
5061 if (variable_different_p (var1, var2))
5063 if (dump_file && (dump_flags & TDF_DETAILS))
5065 fprintf (dump_file, "dataflow difference found: "
5066 "old and new follow:\n");
5067 dump_var (var1);
5068 dump_var (var2);
5070 return true;
5074 /* No need to traverse the second hashtab, if both have the same number
5075 of elements and the second one had all entries found in the first one,
5076 then it can't have any extra entries. */
5077 return false;
5080 /* Free the contents of dataflow set SET. */
5082 static void
5083 dataflow_set_destroy (dataflow_set *set)
5085 int i;
5087 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5088 attrs_list_clear (&set->regs[i]);
5090 shared_hash_destroy (set->vars);
5091 set->vars = NULL;
5094 /* Return true if RTL X contains a SYMBOL_REF. */
5096 static bool
5097 contains_symbol_ref (rtx x)
5099 const char *fmt;
5100 RTX_CODE code;
5101 int i;
5103 if (!x)
5104 return false;
5106 code = GET_CODE (x);
5107 if (code == SYMBOL_REF)
5108 return true;
5110 fmt = GET_RTX_FORMAT (code);
5111 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5113 if (fmt[i] == 'e')
5115 if (contains_symbol_ref (XEXP (x, i)))
5116 return true;
5118 else if (fmt[i] == 'E')
5120 int j;
5121 for (j = 0; j < XVECLEN (x, i); j++)
5122 if (contains_symbol_ref (XVECEXP (x, i, j)))
5123 return true;
5127 return false;
5130 /* Shall EXPR be tracked? */
5132 static bool
5133 track_expr_p (tree expr, bool need_rtl)
5135 rtx decl_rtl;
5136 tree realdecl;
5138 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5139 return DECL_RTL_SET_P (expr);
5141 /* If EXPR is not a parameter or a variable do not track it. */
5142 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5143 return 0;
5145 /* It also must have a name... */
5146 if (!DECL_NAME (expr) && need_rtl)
5147 return 0;
5149 /* ... and a RTL assigned to it. */
5150 decl_rtl = DECL_RTL_IF_SET (expr);
5151 if (!decl_rtl && need_rtl)
5152 return 0;
5154 /* If this expression is really a debug alias of some other declaration, we
5155 don't need to track this expression if the ultimate declaration is
5156 ignored. */
5157 realdecl = expr;
5158 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5160 realdecl = DECL_DEBUG_EXPR (realdecl);
5161 if (!DECL_P (realdecl))
5163 if (handled_component_p (realdecl)
5164 || (TREE_CODE (realdecl) == MEM_REF
5165 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5167 HOST_WIDE_INT bitsize, bitpos, maxsize;
5168 tree innerdecl
5169 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5170 &maxsize);
5171 if (!DECL_P (innerdecl)
5172 || DECL_IGNORED_P (innerdecl)
5173 /* Do not track declarations for parts of tracked parameters
5174 since we want to track them as a whole instead. */
5175 || (TREE_CODE (innerdecl) == PARM_DECL
5176 && DECL_MODE (innerdecl) != BLKmode
5177 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5178 || TREE_STATIC (innerdecl)
5179 || bitsize <= 0
5180 || bitpos + bitsize > 256
5181 || bitsize != maxsize)
5182 return 0;
5183 else
5184 realdecl = expr;
5186 else
5187 return 0;
5191 /* Do not track EXPR if REALDECL it should be ignored for debugging
5192 purposes. */
5193 if (DECL_IGNORED_P (realdecl))
5194 return 0;
5196 /* Do not track global variables until we are able to emit correct location
5197 list for them. */
5198 if (TREE_STATIC (realdecl))
5199 return 0;
5201 /* When the EXPR is a DECL for alias of some variable (see example)
5202 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5203 DECL_RTL contains SYMBOL_REF.
5205 Example:
5206 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5207 char **_dl_argv;
5209 if (decl_rtl && MEM_P (decl_rtl)
5210 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5211 return 0;
5213 /* If RTX is a memory it should not be very large (because it would be
5214 an array or struct). */
5215 if (decl_rtl && MEM_P (decl_rtl))
5217 /* Do not track structures and arrays. */
5218 if (GET_MODE (decl_rtl) == BLKmode
5219 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5220 return 0;
5221 if (MEM_SIZE_KNOWN_P (decl_rtl)
5222 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5223 return 0;
5226 DECL_CHANGED (expr) = 0;
5227 DECL_CHANGED (realdecl) = 0;
5228 return 1;
5231 /* Determine whether a given LOC refers to the same variable part as
5232 EXPR+OFFSET. */
5234 static bool
5235 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5237 tree expr2;
5238 HOST_WIDE_INT offset2;
5240 if (! DECL_P (expr))
5241 return false;
5243 if (REG_P (loc))
5245 expr2 = REG_EXPR (loc);
5246 offset2 = REG_OFFSET (loc);
5248 else if (MEM_P (loc))
5250 expr2 = MEM_EXPR (loc);
5251 offset2 = INT_MEM_OFFSET (loc);
5253 else
5254 return false;
5256 if (! expr2 || ! DECL_P (expr2))
5257 return false;
5259 expr = var_debug_decl (expr);
5260 expr2 = var_debug_decl (expr2);
5262 return (expr == expr2 && offset == offset2);
5265 /* LOC is a REG or MEM that we would like to track if possible.
5266 If EXPR is null, we don't know what expression LOC refers to,
5267 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5268 LOC is an lvalue register.
5270 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5271 is something we can track. When returning true, store the mode of
5272 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5273 from EXPR in *OFFSET_OUT (if nonnull). */
5275 static bool
5276 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5277 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5279 machine_mode mode;
5281 if (expr == NULL || !track_expr_p (expr, true))
5282 return false;
5284 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5285 whole subreg, but only the old inner part is really relevant. */
5286 mode = GET_MODE (loc);
5287 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5289 machine_mode pseudo_mode;
5291 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5292 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5294 offset += byte_lowpart_offset (pseudo_mode, mode);
5295 mode = pseudo_mode;
5299 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5300 Do the same if we are storing to a register and EXPR occupies
5301 the whole of register LOC; in that case, the whole of EXPR is
5302 being changed. We exclude complex modes from the second case
5303 because the real and imaginary parts are represented as separate
5304 pseudo registers, even if the whole complex value fits into one
5305 hard register. */
5306 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5307 || (store_reg_p
5308 && !COMPLEX_MODE_P (DECL_MODE (expr))
5309 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5310 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5312 mode = DECL_MODE (expr);
5313 offset = 0;
5316 if (offset < 0 || offset >= MAX_VAR_PARTS)
5317 return false;
5319 if (mode_out)
5320 *mode_out = mode;
5321 if (offset_out)
5322 *offset_out = offset;
5323 return true;
5326 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5327 want to track. When returning nonnull, make sure that the attributes
5328 on the returned value are updated. */
5330 static rtx
5331 var_lowpart (machine_mode mode, rtx loc)
5333 unsigned int offset, reg_offset, regno;
5335 if (GET_MODE (loc) == mode)
5336 return loc;
5338 if (!REG_P (loc) && !MEM_P (loc))
5339 return NULL;
5341 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5343 if (MEM_P (loc))
5344 return adjust_address_nv (loc, mode, offset);
5346 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5347 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5348 reg_offset, mode);
5349 return gen_rtx_REG_offset (loc, mode, regno, offset);
5352 /* Carry information about uses and stores while walking rtx. */
5354 struct count_use_info
5356 /* The insn where the RTX is. */
5357 rtx_insn *insn;
5359 /* The basic block where insn is. */
5360 basic_block bb;
5362 /* The array of n_sets sets in the insn, as determined by cselib. */
5363 struct cselib_set *sets;
5364 int n_sets;
5366 /* True if we're counting stores, false otherwise. */
5367 bool store_p;
5370 /* Find a VALUE corresponding to X. */
5372 static inline cselib_val *
5373 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5375 int i;
5377 if (cui->sets)
5379 /* This is called after uses are set up and before stores are
5380 processed by cselib, so it's safe to look up srcs, but not
5381 dsts. So we look up expressions that appear in srcs or in
5382 dest expressions, but we search the sets array for dests of
5383 stores. */
5384 if (cui->store_p)
5386 /* Some targets represent memset and memcpy patterns
5387 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5388 (set (mem:BLK ...) (const_int ...)) or
5389 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5390 in that case, otherwise we end up with mode mismatches. */
5391 if (mode == BLKmode && MEM_P (x))
5392 return NULL;
5393 for (i = 0; i < cui->n_sets; i++)
5394 if (cui->sets[i].dest == x)
5395 return cui->sets[i].src_elt;
5397 else
5398 return cselib_lookup (x, mode, 0, VOIDmode);
5401 return NULL;
5404 /* Replace all registers and addresses in an expression with VALUE
5405 expressions that map back to them, unless the expression is a
5406 register. If no mapping is or can be performed, returns NULL. */
5408 static rtx
5409 replace_expr_with_values (rtx loc)
5411 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5412 return NULL;
5413 else if (MEM_P (loc))
5415 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5416 get_address_mode (loc), 0,
5417 GET_MODE (loc));
5418 if (addr)
5419 return replace_equiv_address_nv (loc, addr->val_rtx);
5420 else
5421 return NULL;
5423 else
5424 return cselib_subst_to_values (loc, VOIDmode);
5427 /* Return true if X contains a DEBUG_EXPR. */
5429 static bool
5430 rtx_debug_expr_p (const_rtx x)
5432 subrtx_iterator::array_type array;
5433 FOR_EACH_SUBRTX (iter, array, x, ALL)
5434 if (GET_CODE (*iter) == DEBUG_EXPR)
5435 return true;
5436 return false;
5439 /* Determine what kind of micro operation to choose for a USE. Return
5440 MO_CLOBBER if no micro operation is to be generated. */
5442 static enum micro_operation_type
5443 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5445 tree expr;
5447 if (cui && cui->sets)
5449 if (GET_CODE (loc) == VAR_LOCATION)
5451 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5453 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5454 if (! VAR_LOC_UNKNOWN_P (ploc))
5456 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5457 VOIDmode);
5459 /* ??? flag_float_store and volatile mems are never
5460 given values, but we could in theory use them for
5461 locations. */
5462 gcc_assert (val || 1);
5464 return MO_VAL_LOC;
5466 else
5467 return MO_CLOBBER;
5470 if (REG_P (loc) || MEM_P (loc))
5472 if (modep)
5473 *modep = GET_MODE (loc);
5474 if (cui->store_p)
5476 if (REG_P (loc)
5477 || (find_use_val (loc, GET_MODE (loc), cui)
5478 && cselib_lookup (XEXP (loc, 0),
5479 get_address_mode (loc), 0,
5480 GET_MODE (loc))))
5481 return MO_VAL_SET;
5483 else
5485 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5487 if (val && !cselib_preserved_value_p (val))
5488 return MO_VAL_USE;
5493 if (REG_P (loc))
5495 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5497 if (loc == cfa_base_rtx)
5498 return MO_CLOBBER;
5499 expr = REG_EXPR (loc);
5501 if (!expr)
5502 return MO_USE_NO_VAR;
5503 else if (target_for_debug_bind (var_debug_decl (expr)))
5504 return MO_CLOBBER;
5505 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5506 false, modep, NULL))
5507 return MO_USE;
5508 else
5509 return MO_USE_NO_VAR;
5511 else if (MEM_P (loc))
5513 expr = MEM_EXPR (loc);
5515 if (!expr)
5516 return MO_CLOBBER;
5517 else if (target_for_debug_bind (var_debug_decl (expr)))
5518 return MO_CLOBBER;
5519 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5520 false, modep, NULL)
5521 /* Multi-part variables shouldn't refer to one-part
5522 variable names such as VALUEs (never happens) or
5523 DEBUG_EXPRs (only happens in the presence of debug
5524 insns). */
5525 && (!MAY_HAVE_DEBUG_INSNS
5526 || !rtx_debug_expr_p (XEXP (loc, 0))))
5527 return MO_USE;
5528 else
5529 return MO_CLOBBER;
5532 return MO_CLOBBER;
5535 /* Log to OUT information about micro-operation MOPT involving X in
5536 INSN of BB. */
5538 static inline void
5539 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5540 enum micro_operation_type mopt, FILE *out)
5542 fprintf (out, "bb %i op %i insn %i %s ",
5543 bb->index, VTI (bb)->mos.length (),
5544 INSN_UID (insn), micro_operation_type_name[mopt]);
5545 print_inline_rtx (out, x, 2);
5546 fputc ('\n', out);
5549 /* Tell whether the CONCAT used to holds a VALUE and its location
5550 needs value resolution, i.e., an attempt of mapping the location
5551 back to other incoming values. */
5552 #define VAL_NEEDS_RESOLUTION(x) \
5553 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5554 /* Whether the location in the CONCAT is a tracked expression, that
5555 should also be handled like a MO_USE. */
5556 #define VAL_HOLDS_TRACK_EXPR(x) \
5557 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5558 /* Whether the location in the CONCAT should be handled like a MO_COPY
5559 as well. */
5560 #define VAL_EXPR_IS_COPIED(x) \
5561 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5562 /* Whether the location in the CONCAT should be handled like a
5563 MO_CLOBBER as well. */
5564 #define VAL_EXPR_IS_CLOBBERED(x) \
5565 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5567 /* All preserved VALUEs. */
5568 static vec<rtx> preserved_values;
5570 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5572 static void
5573 preserve_value (cselib_val *val)
5575 cselib_preserve_value (val);
5576 preserved_values.safe_push (val->val_rtx);
5579 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5580 any rtxes not suitable for CONST use not replaced by VALUEs
5581 are discovered. */
5583 static bool
5584 non_suitable_const (const_rtx x)
5586 subrtx_iterator::array_type array;
5587 FOR_EACH_SUBRTX (iter, array, x, ALL)
5589 const_rtx x = *iter;
5590 switch (GET_CODE (x))
5592 case REG:
5593 case DEBUG_EXPR:
5594 case PC:
5595 case SCRATCH:
5596 case CC0:
5597 case ASM_INPUT:
5598 case ASM_OPERANDS:
5599 return true;
5600 case MEM:
5601 if (!MEM_READONLY_P (x))
5602 return true;
5603 break;
5604 default:
5605 break;
5608 return false;
5611 /* Add uses (register and memory references) LOC which will be tracked
5612 to VTI (bb)->mos. */
5614 static void
5615 add_uses (rtx loc, struct count_use_info *cui)
5617 machine_mode mode = VOIDmode;
5618 enum micro_operation_type type = use_type (loc, cui, &mode);
5620 if (type != MO_CLOBBER)
5622 basic_block bb = cui->bb;
5623 micro_operation mo;
5625 mo.type = type;
5626 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5627 mo.insn = cui->insn;
5629 if (type == MO_VAL_LOC)
5631 rtx oloc = loc;
5632 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5633 cselib_val *val;
5635 gcc_assert (cui->sets);
5637 if (MEM_P (vloc)
5638 && !REG_P (XEXP (vloc, 0))
5639 && !MEM_P (XEXP (vloc, 0)))
5641 rtx mloc = vloc;
5642 machine_mode address_mode = get_address_mode (mloc);
5643 cselib_val *val
5644 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5645 GET_MODE (mloc));
5647 if (val && !cselib_preserved_value_p (val))
5648 preserve_value (val);
5651 if (CONSTANT_P (vloc)
5652 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5653 /* For constants don't look up any value. */;
5654 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5655 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5657 machine_mode mode2;
5658 enum micro_operation_type type2;
5659 rtx nloc = NULL;
5660 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5662 if (resolvable)
5663 nloc = replace_expr_with_values (vloc);
5665 if (nloc)
5667 oloc = shallow_copy_rtx (oloc);
5668 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5671 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5673 type2 = use_type (vloc, 0, &mode2);
5675 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5676 || type2 == MO_CLOBBER);
5678 if (type2 == MO_CLOBBER
5679 && !cselib_preserved_value_p (val))
5681 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5682 preserve_value (val);
5685 else if (!VAR_LOC_UNKNOWN_P (vloc))
5687 oloc = shallow_copy_rtx (oloc);
5688 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5691 mo.u.loc = oloc;
5693 else if (type == MO_VAL_USE)
5695 machine_mode mode2 = VOIDmode;
5696 enum micro_operation_type type2;
5697 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5698 rtx vloc, oloc = loc, nloc;
5700 gcc_assert (cui->sets);
5702 if (MEM_P (oloc)
5703 && !REG_P (XEXP (oloc, 0))
5704 && !MEM_P (XEXP (oloc, 0)))
5706 rtx mloc = oloc;
5707 machine_mode address_mode = get_address_mode (mloc);
5708 cselib_val *val
5709 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5710 GET_MODE (mloc));
5712 if (val && !cselib_preserved_value_p (val))
5713 preserve_value (val);
5716 type2 = use_type (loc, 0, &mode2);
5718 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5719 || type2 == MO_CLOBBER);
5721 if (type2 == MO_USE)
5722 vloc = var_lowpart (mode2, loc);
5723 else
5724 vloc = oloc;
5726 /* The loc of a MO_VAL_USE may have two forms:
5728 (concat val src): val is at src, a value-based
5729 representation.
5731 (concat (concat val use) src): same as above, with use as
5732 the MO_USE tracked value, if it differs from src.
5736 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5737 nloc = replace_expr_with_values (loc);
5738 if (!nloc)
5739 nloc = oloc;
5741 if (vloc != nloc)
5742 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5743 else
5744 oloc = val->val_rtx;
5746 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5748 if (type2 == MO_USE)
5749 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5750 if (!cselib_preserved_value_p (val))
5752 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5753 preserve_value (val);
5756 else
5757 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5759 if (dump_file && (dump_flags & TDF_DETAILS))
5760 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5761 VTI (bb)->mos.safe_push (mo);
5765 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5767 static void
5768 add_uses_1 (rtx *x, void *cui)
5770 subrtx_var_iterator::array_type array;
5771 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5772 add_uses (*iter, (struct count_use_info *) cui);
5775 /* This is the value used during expansion of locations. We want it
5776 to be unbounded, so that variables expanded deep in a recursion
5777 nest are fully evaluated, so that their values are cached
5778 correctly. We avoid recursion cycles through other means, and we
5779 don't unshare RTL, so excess complexity is not a problem. */
5780 #define EXPR_DEPTH (INT_MAX)
5781 /* We use this to keep too-complex expressions from being emitted as
5782 location notes, and then to debug information. Users can trade
5783 compile time for ridiculously complex expressions, although they're
5784 seldom useful, and they may often have to be discarded as not
5785 representable anyway. */
5786 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5788 /* Attempt to reverse the EXPR operation in the debug info and record
5789 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5790 no longer live we can express its value as VAL - 6. */
5792 static void
5793 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5795 rtx src, arg, ret;
5796 cselib_val *v;
5797 struct elt_loc_list *l;
5798 enum rtx_code code;
5799 int count;
5801 if (GET_CODE (expr) != SET)
5802 return;
5804 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5805 return;
5807 src = SET_SRC (expr);
5808 switch (GET_CODE (src))
5810 case PLUS:
5811 case MINUS:
5812 case XOR:
5813 case NOT:
5814 case NEG:
5815 if (!REG_P (XEXP (src, 0)))
5816 return;
5817 break;
5818 case SIGN_EXTEND:
5819 case ZERO_EXTEND:
5820 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5821 return;
5822 break;
5823 default:
5824 return;
5827 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5828 return;
5830 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5831 if (!v || !cselib_preserved_value_p (v))
5832 return;
5834 /* Use canonical V to avoid creating multiple redundant expressions
5835 for different VALUES equivalent to V. */
5836 v = canonical_cselib_val (v);
5838 /* Adding a reverse op isn't useful if V already has an always valid
5839 location. Ignore ENTRY_VALUE, while it is always constant, we should
5840 prefer non-ENTRY_VALUE locations whenever possible. */
5841 for (l = v->locs, count = 0; l; l = l->next, count++)
5842 if (CONSTANT_P (l->loc)
5843 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5844 return;
5845 /* Avoid creating too large locs lists. */
5846 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5847 return;
5849 switch (GET_CODE (src))
5851 case NOT:
5852 case NEG:
5853 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5854 return;
5855 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5856 break;
5857 case SIGN_EXTEND:
5858 case ZERO_EXTEND:
5859 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5860 break;
5861 case XOR:
5862 code = XOR;
5863 goto binary;
5864 case PLUS:
5865 code = MINUS;
5866 goto binary;
5867 case MINUS:
5868 code = PLUS;
5869 goto binary;
5870 binary:
5871 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5872 return;
5873 arg = XEXP (src, 1);
5874 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5876 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5877 if (arg == NULL_RTX)
5878 return;
5879 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5880 return;
5882 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5883 if (ret == val)
5884 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5885 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5886 breaks a lot of routines during var-tracking. */
5887 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5888 break;
5889 default:
5890 gcc_unreachable ();
5893 cselib_add_permanent_equiv (v, ret, insn);
5896 /* Add stores (register and memory references) LOC which will be tracked
5897 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5898 CUIP->insn is instruction which the LOC is part of. */
5900 static void
5901 add_stores (rtx loc, const_rtx expr, void *cuip)
5903 machine_mode mode = VOIDmode, mode2;
5904 struct count_use_info *cui = (struct count_use_info *)cuip;
5905 basic_block bb = cui->bb;
5906 micro_operation mo;
5907 rtx oloc = loc, nloc, src = NULL;
5908 enum micro_operation_type type = use_type (loc, cui, &mode);
5909 bool track_p = false;
5910 cselib_val *v;
5911 bool resolve, preserve;
5913 if (type == MO_CLOBBER)
5914 return;
5916 mode2 = mode;
5918 if (REG_P (loc))
5920 gcc_assert (loc != cfa_base_rtx);
5921 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5922 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5923 || GET_CODE (expr) == CLOBBER)
5925 mo.type = MO_CLOBBER;
5926 mo.u.loc = loc;
5927 if (GET_CODE (expr) == SET
5928 && SET_DEST (expr) == loc
5929 && !unsuitable_loc (SET_SRC (expr))
5930 && find_use_val (loc, mode, cui))
5932 gcc_checking_assert (type == MO_VAL_SET);
5933 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5936 else
5938 if (GET_CODE (expr) == SET
5939 && SET_DEST (expr) == loc
5940 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5941 src = var_lowpart (mode2, SET_SRC (expr));
5942 loc = var_lowpart (mode2, loc);
5944 if (src == NULL)
5946 mo.type = MO_SET;
5947 mo.u.loc = loc;
5949 else
5951 rtx xexpr = gen_rtx_SET (loc, src);
5952 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5954 /* If this is an instruction copying (part of) a parameter
5955 passed by invisible reference to its register location,
5956 pretend it's a SET so that the initial memory location
5957 is discarded, as the parameter register can be reused
5958 for other purposes and we do not track locations based
5959 on generic registers. */
5960 if (MEM_P (src)
5961 && REG_EXPR (loc)
5962 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5963 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5964 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5965 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5966 != arg_pointer_rtx)
5967 mo.type = MO_SET;
5968 else
5969 mo.type = MO_COPY;
5971 else
5972 mo.type = MO_SET;
5973 mo.u.loc = xexpr;
5976 mo.insn = cui->insn;
5978 else if (MEM_P (loc)
5979 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5980 || cui->sets))
5982 if (MEM_P (loc) && type == MO_VAL_SET
5983 && !REG_P (XEXP (loc, 0))
5984 && !MEM_P (XEXP (loc, 0)))
5986 rtx mloc = loc;
5987 machine_mode address_mode = get_address_mode (mloc);
5988 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5989 address_mode, 0,
5990 GET_MODE (mloc));
5992 if (val && !cselib_preserved_value_p (val))
5993 preserve_value (val);
5996 if (GET_CODE (expr) == CLOBBER || !track_p)
5998 mo.type = MO_CLOBBER;
5999 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6001 else
6003 if (GET_CODE (expr) == SET
6004 && SET_DEST (expr) == loc
6005 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6006 src = var_lowpart (mode2, SET_SRC (expr));
6007 loc = var_lowpart (mode2, loc);
6009 if (src == NULL)
6011 mo.type = MO_SET;
6012 mo.u.loc = loc;
6014 else
6016 rtx xexpr = gen_rtx_SET (loc, src);
6017 if (same_variable_part_p (SET_SRC (xexpr),
6018 MEM_EXPR (loc),
6019 INT_MEM_OFFSET (loc)))
6020 mo.type = MO_COPY;
6021 else
6022 mo.type = MO_SET;
6023 mo.u.loc = xexpr;
6026 mo.insn = cui->insn;
6028 else
6029 return;
6031 if (type != MO_VAL_SET)
6032 goto log_and_return;
6034 v = find_use_val (oloc, mode, cui);
6036 if (!v)
6037 goto log_and_return;
6039 resolve = preserve = !cselib_preserved_value_p (v);
6041 /* We cannot track values for multiple-part variables, so we track only
6042 locations for tracked parameters passed either by invisible reference
6043 or directly in multiple locations. */
6044 if (track_p
6045 && REG_P (loc)
6046 && REG_EXPR (loc)
6047 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
6048 && DECL_MODE (REG_EXPR (loc)) != BLKmode
6049 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
6050 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
6051 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
6052 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
6053 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
6055 /* Although we don't use the value here, it could be used later by the
6056 mere virtue of its existence as the operand of the reverse operation
6057 that gave rise to it (typically extension/truncation). Make sure it
6058 is preserved as required by vt_expand_var_loc_chain. */
6059 if (preserve)
6060 preserve_value (v);
6061 goto log_and_return;
6064 if (loc == stack_pointer_rtx
6065 && hard_frame_pointer_adjustment != -1
6066 && preserve)
6067 cselib_set_value_sp_based (v);
6069 nloc = replace_expr_with_values (oloc);
6070 if (nloc)
6071 oloc = nloc;
6073 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6075 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6077 if (oval == v)
6078 return;
6079 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6081 if (oval && !cselib_preserved_value_p (oval))
6083 micro_operation moa;
6085 preserve_value (oval);
6087 moa.type = MO_VAL_USE;
6088 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6089 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6090 moa.insn = cui->insn;
6092 if (dump_file && (dump_flags & TDF_DETAILS))
6093 log_op_type (moa.u.loc, cui->bb, cui->insn,
6094 moa.type, dump_file);
6095 VTI (bb)->mos.safe_push (moa);
6098 resolve = false;
6100 else if (resolve && GET_CODE (mo.u.loc) == SET)
6102 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6103 nloc = replace_expr_with_values (SET_SRC (expr));
6104 else
6105 nloc = NULL_RTX;
6107 /* Avoid the mode mismatch between oexpr and expr. */
6108 if (!nloc && mode != mode2)
6110 nloc = SET_SRC (expr);
6111 gcc_assert (oloc == SET_DEST (expr));
6114 if (nloc && nloc != SET_SRC (mo.u.loc))
6115 oloc = gen_rtx_SET (oloc, nloc);
6116 else
6118 if (oloc == SET_DEST (mo.u.loc))
6119 /* No point in duplicating. */
6120 oloc = mo.u.loc;
6121 if (!REG_P (SET_SRC (mo.u.loc)))
6122 resolve = false;
6125 else if (!resolve)
6127 if (GET_CODE (mo.u.loc) == SET
6128 && oloc == SET_DEST (mo.u.loc))
6129 /* No point in duplicating. */
6130 oloc = mo.u.loc;
6132 else
6133 resolve = false;
6135 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6137 if (mo.u.loc != oloc)
6138 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6140 /* The loc of a MO_VAL_SET may have various forms:
6142 (concat val dst): dst now holds val
6144 (concat val (set dst src)): dst now holds val, copied from src
6146 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6147 after replacing mems and non-top-level regs with values.
6149 (concat (concat val dstv) (set dst src)): dst now holds val,
6150 copied from src. dstv is a value-based representation of dst, if
6151 it differs from dst. If resolution is needed, src is a REG, and
6152 its mode is the same as that of val.
6154 (concat (concat val (set dstv srcv)) (set dst src)): src
6155 copied to dst, holding val. dstv and srcv are value-based
6156 representations of dst and src, respectively.
6160 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6161 reverse_op (v->val_rtx, expr, cui->insn);
6163 mo.u.loc = loc;
6165 if (track_p)
6166 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6167 if (preserve)
6169 VAL_NEEDS_RESOLUTION (loc) = resolve;
6170 preserve_value (v);
6172 if (mo.type == MO_CLOBBER)
6173 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6174 if (mo.type == MO_COPY)
6175 VAL_EXPR_IS_COPIED (loc) = 1;
6177 mo.type = MO_VAL_SET;
6179 log_and_return:
6180 if (dump_file && (dump_flags & TDF_DETAILS))
6181 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6182 VTI (bb)->mos.safe_push (mo);
6185 /* Arguments to the call. */
6186 static rtx call_arguments;
6188 /* Compute call_arguments. */
6190 static void
6191 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6193 rtx link, x, call;
6194 rtx prev, cur, next;
6195 rtx this_arg = NULL_RTX;
6196 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6197 tree obj_type_ref = NULL_TREE;
6198 CUMULATIVE_ARGS args_so_far_v;
6199 cumulative_args_t args_so_far;
6201 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6202 args_so_far = pack_cumulative_args (&args_so_far_v);
6203 call = get_call_rtx_from (insn);
6204 if (call)
6206 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6208 rtx symbol = XEXP (XEXP (call, 0), 0);
6209 if (SYMBOL_REF_DECL (symbol))
6210 fndecl = SYMBOL_REF_DECL (symbol);
6212 if (fndecl == NULL_TREE)
6213 fndecl = MEM_EXPR (XEXP (call, 0));
6214 if (fndecl
6215 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6216 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6217 fndecl = NULL_TREE;
6218 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6219 type = TREE_TYPE (fndecl);
6220 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6222 if (TREE_CODE (fndecl) == INDIRECT_REF
6223 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6224 obj_type_ref = TREE_OPERAND (fndecl, 0);
6225 fndecl = NULL_TREE;
6227 if (type)
6229 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6230 t = TREE_CHAIN (t))
6231 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6232 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6233 break;
6234 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6235 type = NULL;
6236 else
6238 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6239 link = CALL_INSN_FUNCTION_USAGE (insn);
6240 #ifndef PCC_STATIC_STRUCT_RETURN
6241 if (aggregate_value_p (TREE_TYPE (type), type)
6242 && targetm.calls.struct_value_rtx (type, 0) == 0)
6244 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6245 machine_mode mode = TYPE_MODE (struct_addr);
6246 rtx reg;
6247 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6248 nargs + 1);
6249 reg = targetm.calls.function_arg (args_so_far, mode,
6250 struct_addr, true);
6251 targetm.calls.function_arg_advance (args_so_far, mode,
6252 struct_addr, true);
6253 if (reg == NULL_RTX)
6255 for (; link; link = XEXP (link, 1))
6256 if (GET_CODE (XEXP (link, 0)) == USE
6257 && MEM_P (XEXP (XEXP (link, 0), 0)))
6259 link = XEXP (link, 1);
6260 break;
6264 else
6265 #endif
6266 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6267 nargs);
6268 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6270 machine_mode mode;
6271 t = TYPE_ARG_TYPES (type);
6272 mode = TYPE_MODE (TREE_VALUE (t));
6273 this_arg = targetm.calls.function_arg (args_so_far, mode,
6274 TREE_VALUE (t), true);
6275 if (this_arg && !REG_P (this_arg))
6276 this_arg = NULL_RTX;
6277 else if (this_arg == NULL_RTX)
6279 for (; link; link = XEXP (link, 1))
6280 if (GET_CODE (XEXP (link, 0)) == USE
6281 && MEM_P (XEXP (XEXP (link, 0), 0)))
6283 this_arg = XEXP (XEXP (link, 0), 0);
6284 break;
6291 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6293 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6294 if (GET_CODE (XEXP (link, 0)) == USE)
6296 rtx item = NULL_RTX;
6297 x = XEXP (XEXP (link, 0), 0);
6298 if (GET_MODE (link) == VOIDmode
6299 || GET_MODE (link) == BLKmode
6300 || (GET_MODE (link) != GET_MODE (x)
6301 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6302 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6303 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6304 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6305 /* Can't do anything for these, if the original type mode
6306 isn't known or can't be converted. */;
6307 else if (REG_P (x))
6309 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6310 if (val && cselib_preserved_value_p (val))
6311 item = val->val_rtx;
6312 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6313 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6315 machine_mode mode = GET_MODE (x);
6317 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6318 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6320 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6322 if (reg == NULL_RTX || !REG_P (reg))
6323 continue;
6324 val = cselib_lookup (reg, mode, 0, VOIDmode);
6325 if (val && cselib_preserved_value_p (val))
6327 item = val->val_rtx;
6328 break;
6333 else if (MEM_P (x))
6335 rtx mem = x;
6336 cselib_val *val;
6338 if (!frame_pointer_needed)
6340 struct adjust_mem_data amd;
6341 amd.mem_mode = VOIDmode;
6342 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6343 amd.side_effects = NULL;
6344 amd.store = true;
6345 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6346 &amd);
6347 gcc_assert (amd.side_effects == NULL_RTX);
6349 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6350 if (val && cselib_preserved_value_p (val))
6351 item = val->val_rtx;
6352 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6353 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6355 /* For non-integer stack argument see also if they weren't
6356 initialized by integers. */
6357 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6358 if (imode != GET_MODE (mem) && imode != BLKmode)
6360 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6361 imode, 0, VOIDmode);
6362 if (val && cselib_preserved_value_p (val))
6363 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6364 imode);
6368 if (item)
6370 rtx x2 = x;
6371 if (GET_MODE (item) != GET_MODE (link))
6372 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6373 if (GET_MODE (x2) != GET_MODE (link))
6374 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6375 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6376 call_arguments
6377 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6379 if (t && t != void_list_node)
6381 tree argtype = TREE_VALUE (t);
6382 machine_mode mode = TYPE_MODE (argtype);
6383 rtx reg;
6384 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6386 argtype = build_pointer_type (argtype);
6387 mode = TYPE_MODE (argtype);
6389 reg = targetm.calls.function_arg (args_so_far, mode,
6390 argtype, true);
6391 if (TREE_CODE (argtype) == REFERENCE_TYPE
6392 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6393 && reg
6394 && REG_P (reg)
6395 && GET_MODE (reg) == mode
6396 && (GET_MODE_CLASS (mode) == MODE_INT
6397 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6398 && REG_P (x)
6399 && REGNO (x) == REGNO (reg)
6400 && GET_MODE (x) == mode
6401 && item)
6403 machine_mode indmode
6404 = TYPE_MODE (TREE_TYPE (argtype));
6405 rtx mem = gen_rtx_MEM (indmode, x);
6406 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6407 if (val && cselib_preserved_value_p (val))
6409 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6410 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6411 call_arguments);
6413 else
6415 struct elt_loc_list *l;
6416 tree initial;
6418 /* Try harder, when passing address of a constant
6419 pool integer it can be easily read back. */
6420 item = XEXP (item, 1);
6421 if (GET_CODE (item) == SUBREG)
6422 item = SUBREG_REG (item);
6423 gcc_assert (GET_CODE (item) == VALUE);
6424 val = CSELIB_VAL_PTR (item);
6425 for (l = val->locs; l; l = l->next)
6426 if (GET_CODE (l->loc) == SYMBOL_REF
6427 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6428 && SYMBOL_REF_DECL (l->loc)
6429 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6431 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6432 if (tree_fits_shwi_p (initial))
6434 item = GEN_INT (tree_to_shwi (initial));
6435 item = gen_rtx_CONCAT (indmode, mem, item);
6436 call_arguments
6437 = gen_rtx_EXPR_LIST (VOIDmode, item,
6438 call_arguments);
6440 break;
6444 targetm.calls.function_arg_advance (args_so_far, mode,
6445 argtype, true);
6446 t = TREE_CHAIN (t);
6450 /* Add debug arguments. */
6451 if (fndecl
6452 && TREE_CODE (fndecl) == FUNCTION_DECL
6453 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6455 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6456 if (debug_args)
6458 unsigned int ix;
6459 tree param;
6460 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6462 rtx item;
6463 tree dtemp = (**debug_args)[ix + 1];
6464 machine_mode mode = DECL_MODE (dtemp);
6465 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6466 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6467 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6468 call_arguments);
6473 /* Reverse call_arguments chain. */
6474 prev = NULL_RTX;
6475 for (cur = call_arguments; cur; cur = next)
6477 next = XEXP (cur, 1);
6478 XEXP (cur, 1) = prev;
6479 prev = cur;
6481 call_arguments = prev;
6483 x = get_call_rtx_from (insn);
6484 if (x)
6486 x = XEXP (XEXP (x, 0), 0);
6487 if (GET_CODE (x) == SYMBOL_REF)
6488 /* Don't record anything. */;
6489 else if (CONSTANT_P (x))
6491 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6492 pc_rtx, x);
6493 call_arguments
6494 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6496 else
6498 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6499 if (val && cselib_preserved_value_p (val))
6501 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6502 call_arguments
6503 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6507 if (this_arg)
6509 machine_mode mode
6510 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6511 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6512 HOST_WIDE_INT token
6513 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6514 if (token)
6515 clobbered = plus_constant (mode, clobbered,
6516 token * GET_MODE_SIZE (mode));
6517 clobbered = gen_rtx_MEM (mode, clobbered);
6518 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6519 call_arguments
6520 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6524 /* Callback for cselib_record_sets_hook, that records as micro
6525 operations uses and stores in an insn after cselib_record_sets has
6526 analyzed the sets in an insn, but before it modifies the stored
6527 values in the internal tables, unless cselib_record_sets doesn't
6528 call it directly (perhaps because we're not doing cselib in the
6529 first place, in which case sets and n_sets will be 0). */
6531 static void
6532 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6534 basic_block bb = BLOCK_FOR_INSN (insn);
6535 int n1, n2;
6536 struct count_use_info cui;
6537 micro_operation *mos;
6539 cselib_hook_called = true;
6541 cui.insn = insn;
6542 cui.bb = bb;
6543 cui.sets = sets;
6544 cui.n_sets = n_sets;
6546 n1 = VTI (bb)->mos.length ();
6547 cui.store_p = false;
6548 note_uses (&PATTERN (insn), add_uses_1, &cui);
6549 n2 = VTI (bb)->mos.length () - 1;
6550 mos = VTI (bb)->mos.address ();
6552 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6553 MO_VAL_LOC last. */
6554 while (n1 < n2)
6556 while (n1 < n2 && mos[n1].type == MO_USE)
6557 n1++;
6558 while (n1 < n2 && mos[n2].type != MO_USE)
6559 n2--;
6560 if (n1 < n2)
6561 std::swap (mos[n1], mos[n2]);
6564 n2 = VTI (bb)->mos.length () - 1;
6565 while (n1 < n2)
6567 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6568 n1++;
6569 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6570 n2--;
6571 if (n1 < n2)
6572 std::swap (mos[n1], mos[n2]);
6575 if (CALL_P (insn))
6577 micro_operation mo;
6579 mo.type = MO_CALL;
6580 mo.insn = insn;
6581 mo.u.loc = call_arguments;
6582 call_arguments = NULL_RTX;
6584 if (dump_file && (dump_flags & TDF_DETAILS))
6585 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6586 VTI (bb)->mos.safe_push (mo);
6589 n1 = VTI (bb)->mos.length ();
6590 /* This will record NEXT_INSN (insn), such that we can
6591 insert notes before it without worrying about any
6592 notes that MO_USEs might emit after the insn. */
6593 cui.store_p = true;
6594 note_stores (PATTERN (insn), add_stores, &cui);
6595 n2 = VTI (bb)->mos.length () - 1;
6596 mos = VTI (bb)->mos.address ();
6598 /* Order the MO_VAL_USEs first (note_stores does nothing
6599 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6600 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6601 while (n1 < n2)
6603 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6604 n1++;
6605 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6606 n2--;
6607 if (n1 < n2)
6608 std::swap (mos[n1], mos[n2]);
6611 n2 = VTI (bb)->mos.length () - 1;
6612 while (n1 < n2)
6614 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6615 n1++;
6616 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6617 n2--;
6618 if (n1 < n2)
6619 std::swap (mos[n1], mos[n2]);
6623 static enum var_init_status
6624 find_src_status (dataflow_set *in, rtx src)
6626 tree decl = NULL_TREE;
6627 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6629 if (! flag_var_tracking_uninit)
6630 status = VAR_INIT_STATUS_INITIALIZED;
6632 if (src && REG_P (src))
6633 decl = var_debug_decl (REG_EXPR (src));
6634 else if (src && MEM_P (src))
6635 decl = var_debug_decl (MEM_EXPR (src));
6637 if (src && decl)
6638 status = get_init_value (in, src, dv_from_decl (decl));
6640 return status;
6643 /* SRC is the source of an assignment. Use SET to try to find what
6644 was ultimately assigned to SRC. Return that value if known,
6645 otherwise return SRC itself. */
6647 static rtx
6648 find_src_set_src (dataflow_set *set, rtx src)
6650 tree decl = NULL_TREE; /* The variable being copied around. */
6651 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6652 variable var;
6653 location_chain nextp;
6654 int i;
6655 bool found;
6657 if (src && REG_P (src))
6658 decl = var_debug_decl (REG_EXPR (src));
6659 else if (src && MEM_P (src))
6660 decl = var_debug_decl (MEM_EXPR (src));
6662 if (src && decl)
6664 decl_or_value dv = dv_from_decl (decl);
6666 var = shared_hash_find (set->vars, dv);
6667 if (var)
6669 found = false;
6670 for (i = 0; i < var->n_var_parts && !found; i++)
6671 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6672 nextp = nextp->next)
6673 if (rtx_equal_p (nextp->loc, src))
6675 set_src = nextp->set_src;
6676 found = true;
6682 return set_src;
6685 /* Compute the changes of variable locations in the basic block BB. */
6687 static bool
6688 compute_bb_dataflow (basic_block bb)
6690 unsigned int i;
6691 micro_operation *mo;
6692 bool changed;
6693 dataflow_set old_out;
6694 dataflow_set *in = &VTI (bb)->in;
6695 dataflow_set *out = &VTI (bb)->out;
6697 dataflow_set_init (&old_out);
6698 dataflow_set_copy (&old_out, out);
6699 dataflow_set_copy (out, in);
6701 if (MAY_HAVE_DEBUG_INSNS)
6702 local_get_addr_cache = new hash_map<rtx, rtx>;
6704 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6706 rtx_insn *insn = mo->insn;
6708 switch (mo->type)
6710 case MO_CALL:
6711 dataflow_set_clear_at_call (out);
6712 break;
6714 case MO_USE:
6716 rtx loc = mo->u.loc;
6718 if (REG_P (loc))
6719 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6720 else if (MEM_P (loc))
6721 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6723 break;
6725 case MO_VAL_LOC:
6727 rtx loc = mo->u.loc;
6728 rtx val, vloc;
6729 tree var;
6731 if (GET_CODE (loc) == CONCAT)
6733 val = XEXP (loc, 0);
6734 vloc = XEXP (loc, 1);
6736 else
6738 val = NULL_RTX;
6739 vloc = loc;
6742 var = PAT_VAR_LOCATION_DECL (vloc);
6744 clobber_variable_part (out, NULL_RTX,
6745 dv_from_decl (var), 0, NULL_RTX);
6746 if (val)
6748 if (VAL_NEEDS_RESOLUTION (loc))
6749 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6750 set_variable_part (out, val, dv_from_decl (var), 0,
6751 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6752 INSERT);
6754 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6755 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6756 dv_from_decl (var), 0,
6757 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6758 INSERT);
6760 break;
6762 case MO_VAL_USE:
6764 rtx loc = mo->u.loc;
6765 rtx val, vloc, uloc;
6767 vloc = uloc = XEXP (loc, 1);
6768 val = XEXP (loc, 0);
6770 if (GET_CODE (val) == CONCAT)
6772 uloc = XEXP (val, 1);
6773 val = XEXP (val, 0);
6776 if (VAL_NEEDS_RESOLUTION (loc))
6777 val_resolve (out, val, vloc, insn);
6778 else
6779 val_store (out, val, uloc, insn, false);
6781 if (VAL_HOLDS_TRACK_EXPR (loc))
6783 if (GET_CODE (uloc) == REG)
6784 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6785 NULL);
6786 else if (GET_CODE (uloc) == MEM)
6787 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6788 NULL);
6791 break;
6793 case MO_VAL_SET:
6795 rtx loc = mo->u.loc;
6796 rtx val, vloc, uloc;
6797 rtx dstv, srcv;
6799 vloc = loc;
6800 uloc = XEXP (vloc, 1);
6801 val = XEXP (vloc, 0);
6802 vloc = uloc;
6804 if (GET_CODE (uloc) == SET)
6806 dstv = SET_DEST (uloc);
6807 srcv = SET_SRC (uloc);
6809 else
6811 dstv = uloc;
6812 srcv = NULL;
6815 if (GET_CODE (val) == CONCAT)
6817 dstv = vloc = XEXP (val, 1);
6818 val = XEXP (val, 0);
6821 if (GET_CODE (vloc) == SET)
6823 srcv = SET_SRC (vloc);
6825 gcc_assert (val != srcv);
6826 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6828 dstv = vloc = SET_DEST (vloc);
6830 if (VAL_NEEDS_RESOLUTION (loc))
6831 val_resolve (out, val, srcv, insn);
6833 else if (VAL_NEEDS_RESOLUTION (loc))
6835 gcc_assert (GET_CODE (uloc) == SET
6836 && GET_CODE (SET_SRC (uloc)) == REG);
6837 val_resolve (out, val, SET_SRC (uloc), insn);
6840 if (VAL_HOLDS_TRACK_EXPR (loc))
6842 if (VAL_EXPR_IS_CLOBBERED (loc))
6844 if (REG_P (uloc))
6845 var_reg_delete (out, uloc, true);
6846 else if (MEM_P (uloc))
6848 gcc_assert (MEM_P (dstv));
6849 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6850 var_mem_delete (out, dstv, true);
6853 else
6855 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6856 rtx src = NULL, dst = uloc;
6857 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6859 if (GET_CODE (uloc) == SET)
6861 src = SET_SRC (uloc);
6862 dst = SET_DEST (uloc);
6865 if (copied_p)
6867 if (flag_var_tracking_uninit)
6869 status = find_src_status (in, src);
6871 if (status == VAR_INIT_STATUS_UNKNOWN)
6872 status = find_src_status (out, src);
6875 src = find_src_set_src (in, src);
6878 if (REG_P (dst))
6879 var_reg_delete_and_set (out, dst, !copied_p,
6880 status, srcv);
6881 else if (MEM_P (dst))
6883 gcc_assert (MEM_P (dstv));
6884 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6885 var_mem_delete_and_set (out, dstv, !copied_p,
6886 status, srcv);
6890 else if (REG_P (uloc))
6891 var_regno_delete (out, REGNO (uloc));
6892 else if (MEM_P (uloc))
6894 gcc_checking_assert (GET_CODE (vloc) == MEM);
6895 gcc_checking_assert (dstv == vloc);
6896 if (dstv != vloc)
6897 clobber_overlapping_mems (out, vloc);
6900 val_store (out, val, dstv, insn, true);
6902 break;
6904 case MO_SET:
6906 rtx loc = mo->u.loc;
6907 rtx set_src = NULL;
6909 if (GET_CODE (loc) == SET)
6911 set_src = SET_SRC (loc);
6912 loc = SET_DEST (loc);
6915 if (REG_P (loc))
6916 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6917 set_src);
6918 else if (MEM_P (loc))
6919 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6920 set_src);
6922 break;
6924 case MO_COPY:
6926 rtx loc = mo->u.loc;
6927 enum var_init_status src_status;
6928 rtx set_src = NULL;
6930 if (GET_CODE (loc) == SET)
6932 set_src = SET_SRC (loc);
6933 loc = SET_DEST (loc);
6936 if (! flag_var_tracking_uninit)
6937 src_status = VAR_INIT_STATUS_INITIALIZED;
6938 else
6940 src_status = find_src_status (in, set_src);
6942 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6943 src_status = find_src_status (out, set_src);
6946 set_src = find_src_set_src (in, set_src);
6948 if (REG_P (loc))
6949 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6950 else if (MEM_P (loc))
6951 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6953 break;
6955 case MO_USE_NO_VAR:
6957 rtx loc = mo->u.loc;
6959 if (REG_P (loc))
6960 var_reg_delete (out, loc, false);
6961 else if (MEM_P (loc))
6962 var_mem_delete (out, loc, false);
6964 break;
6966 case MO_CLOBBER:
6968 rtx loc = mo->u.loc;
6970 if (REG_P (loc))
6971 var_reg_delete (out, loc, true);
6972 else if (MEM_P (loc))
6973 var_mem_delete (out, loc, true);
6975 break;
6977 case MO_ADJUST:
6978 out->stack_adjust += mo->u.adjust;
6979 break;
6983 if (MAY_HAVE_DEBUG_INSNS)
6985 delete local_get_addr_cache;
6986 local_get_addr_cache = NULL;
6988 dataflow_set_equiv_regs (out);
6989 shared_hash_htab (out->vars)
6990 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6991 shared_hash_htab (out->vars)
6992 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6993 #if ENABLE_CHECKING
6994 shared_hash_htab (out->vars)
6995 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6996 #endif
6998 changed = dataflow_set_different (&old_out, out);
6999 dataflow_set_destroy (&old_out);
7000 return changed;
7003 /* Find the locations of variables in the whole function. */
7005 static bool
7006 vt_find_locations (void)
7008 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7009 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7010 sbitmap visited, in_worklist, in_pending;
7011 basic_block bb;
7012 edge e;
7013 int *bb_order;
7014 int *rc_order;
7015 int i;
7016 int htabsz = 0;
7017 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
7018 bool success = true;
7020 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7021 /* Compute reverse completion order of depth first search of the CFG
7022 so that the data-flow runs faster. */
7023 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7024 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7025 pre_and_rev_post_order_compute (NULL, rc_order, false);
7026 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7027 bb_order[rc_order[i]] = i;
7028 free (rc_order);
7030 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
7031 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7032 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7033 bitmap_clear (in_worklist);
7035 FOR_EACH_BB_FN (bb, cfun)
7036 pending->insert (bb_order[bb->index], bb);
7037 bitmap_ones (in_pending);
7039 while (success && !pending->empty ())
7041 std::swap (worklist, pending);
7042 std::swap (in_worklist, in_pending);
7044 bitmap_clear (visited);
7046 while (!worklist->empty ())
7048 bb = worklist->extract_min ();
7049 bitmap_clear_bit (in_worklist, bb->index);
7050 gcc_assert (!bitmap_bit_p (visited, bb->index));
7051 if (!bitmap_bit_p (visited, bb->index))
7053 bool changed;
7054 edge_iterator ei;
7055 int oldinsz, oldoutsz;
7057 bitmap_set_bit (visited, bb->index);
7059 if (VTI (bb)->in.vars)
7061 htabsz
7062 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7063 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7064 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7065 oldoutsz
7066 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7068 else
7069 oldinsz = oldoutsz = 0;
7071 if (MAY_HAVE_DEBUG_INSNS)
7073 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7074 bool first = true, adjust = false;
7076 /* Calculate the IN set as the intersection of
7077 predecessor OUT sets. */
7079 dataflow_set_clear (in);
7080 dst_can_be_shared = true;
7082 FOR_EACH_EDGE (e, ei, bb->preds)
7083 if (!VTI (e->src)->flooded)
7084 gcc_assert (bb_order[bb->index]
7085 <= bb_order[e->src->index]);
7086 else if (first)
7088 dataflow_set_copy (in, &VTI (e->src)->out);
7089 first_out = &VTI (e->src)->out;
7090 first = false;
7092 else
7094 dataflow_set_merge (in, &VTI (e->src)->out);
7095 adjust = true;
7098 if (adjust)
7100 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7101 #if ENABLE_CHECKING
7102 /* Merge and merge_adjust should keep entries in
7103 canonical order. */
7104 shared_hash_htab (in->vars)
7105 ->traverse <dataflow_set *,
7106 canonicalize_loc_order_check> (in);
7107 #endif
7108 if (dst_can_be_shared)
7110 shared_hash_destroy (in->vars);
7111 in->vars = shared_hash_copy (first_out->vars);
7115 VTI (bb)->flooded = true;
7117 else
7119 /* Calculate the IN set as union of predecessor OUT sets. */
7120 dataflow_set_clear (&VTI (bb)->in);
7121 FOR_EACH_EDGE (e, ei, bb->preds)
7122 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7125 changed = compute_bb_dataflow (bb);
7126 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7127 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7129 if (htabmax && htabsz > htabmax)
7131 if (MAY_HAVE_DEBUG_INSNS)
7132 inform (DECL_SOURCE_LOCATION (cfun->decl),
7133 "variable tracking size limit exceeded with "
7134 "-fvar-tracking-assignments, retrying without");
7135 else
7136 inform (DECL_SOURCE_LOCATION (cfun->decl),
7137 "variable tracking size limit exceeded");
7138 success = false;
7139 break;
7142 if (changed)
7144 FOR_EACH_EDGE (e, ei, bb->succs)
7146 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7147 continue;
7149 if (bitmap_bit_p (visited, e->dest->index))
7151 if (!bitmap_bit_p (in_pending, e->dest->index))
7153 /* Send E->DEST to next round. */
7154 bitmap_set_bit (in_pending, e->dest->index);
7155 pending->insert (bb_order[e->dest->index],
7156 e->dest);
7159 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7161 /* Add E->DEST to current round. */
7162 bitmap_set_bit (in_worklist, e->dest->index);
7163 worklist->insert (bb_order[e->dest->index],
7164 e->dest);
7169 if (dump_file)
7170 fprintf (dump_file,
7171 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7172 bb->index,
7173 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7174 oldinsz,
7175 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7176 oldoutsz,
7177 (int)worklist->nodes (), (int)pending->nodes (),
7178 htabsz);
7180 if (dump_file && (dump_flags & TDF_DETAILS))
7182 fprintf (dump_file, "BB %i IN:\n", bb->index);
7183 dump_dataflow_set (&VTI (bb)->in);
7184 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7185 dump_dataflow_set (&VTI (bb)->out);
7191 if (success && MAY_HAVE_DEBUG_INSNS)
7192 FOR_EACH_BB_FN (bb, cfun)
7193 gcc_assert (VTI (bb)->flooded);
7195 free (bb_order);
7196 delete worklist;
7197 delete pending;
7198 sbitmap_free (visited);
7199 sbitmap_free (in_worklist);
7200 sbitmap_free (in_pending);
7202 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7203 return success;
7206 /* Print the content of the LIST to dump file. */
7208 static void
7209 dump_attrs_list (attrs list)
7211 for (; list; list = list->next)
7213 if (dv_is_decl_p (list->dv))
7214 print_mem_expr (dump_file, dv_as_decl (list->dv));
7215 else
7216 print_rtl_single (dump_file, dv_as_value (list->dv));
7217 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7219 fprintf (dump_file, "\n");
7222 /* Print the information about variable *SLOT to dump file. */
7225 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7227 variable var = *slot;
7229 dump_var (var);
7231 /* Continue traversing the hash table. */
7232 return 1;
7235 /* Print the information about variable VAR to dump file. */
7237 static void
7238 dump_var (variable var)
7240 int i;
7241 location_chain node;
7243 if (dv_is_decl_p (var->dv))
7245 const_tree decl = dv_as_decl (var->dv);
7247 if (DECL_NAME (decl))
7249 fprintf (dump_file, " name: %s",
7250 IDENTIFIER_POINTER (DECL_NAME (decl)));
7251 if (dump_flags & TDF_UID)
7252 fprintf (dump_file, "D.%u", DECL_UID (decl));
7254 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7255 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7256 else
7257 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7258 fprintf (dump_file, "\n");
7260 else
7262 fputc (' ', dump_file);
7263 print_rtl_single (dump_file, dv_as_value (var->dv));
7266 for (i = 0; i < var->n_var_parts; i++)
7268 fprintf (dump_file, " offset %ld\n",
7269 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7270 for (node = var->var_part[i].loc_chain; node; node = node->next)
7272 fprintf (dump_file, " ");
7273 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7274 fprintf (dump_file, "[uninit]");
7275 print_rtl_single (dump_file, node->loc);
7280 /* Print the information about variables from hash table VARS to dump file. */
7282 static void
7283 dump_vars (variable_table_type *vars)
7285 if (vars->elements () > 0)
7287 fprintf (dump_file, "Variables:\n");
7288 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7292 /* Print the dataflow set SET to dump file. */
7294 static void
7295 dump_dataflow_set (dataflow_set *set)
7297 int i;
7299 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7300 set->stack_adjust);
7301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7303 if (set->regs[i])
7305 fprintf (dump_file, "Reg %d:", i);
7306 dump_attrs_list (set->regs[i]);
7309 dump_vars (shared_hash_htab (set->vars));
7310 fprintf (dump_file, "\n");
7313 /* Print the IN and OUT sets for each basic block to dump file. */
7315 static void
7316 dump_dataflow_sets (void)
7318 basic_block bb;
7320 FOR_EACH_BB_FN (bb, cfun)
7322 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7323 fprintf (dump_file, "IN:\n");
7324 dump_dataflow_set (&VTI (bb)->in);
7325 fprintf (dump_file, "OUT:\n");
7326 dump_dataflow_set (&VTI (bb)->out);
7330 /* Return the variable for DV in dropped_values, inserting one if
7331 requested with INSERT. */
7333 static inline variable
7334 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7336 variable_def **slot;
7337 variable empty_var;
7338 onepart_enum_t onepart;
7340 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7342 if (!slot)
7343 return NULL;
7345 if (*slot)
7346 return *slot;
7348 gcc_checking_assert (insert == INSERT);
7350 onepart = dv_onepart_p (dv);
7352 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7354 empty_var = onepart_pool (onepart).allocate ();
7355 empty_var->dv = dv;
7356 empty_var->refcount = 1;
7357 empty_var->n_var_parts = 0;
7358 empty_var->onepart = onepart;
7359 empty_var->in_changed_variables = false;
7360 empty_var->var_part[0].loc_chain = NULL;
7361 empty_var->var_part[0].cur_loc = NULL;
7362 VAR_LOC_1PAUX (empty_var) = NULL;
7363 set_dv_changed (dv, true);
7365 *slot = empty_var;
7367 return empty_var;
7370 /* Recover the one-part aux from dropped_values. */
7372 static struct onepart_aux *
7373 recover_dropped_1paux (variable var)
7375 variable dvar;
7377 gcc_checking_assert (var->onepart);
7379 if (VAR_LOC_1PAUX (var))
7380 return VAR_LOC_1PAUX (var);
7382 if (var->onepart == ONEPART_VDECL)
7383 return NULL;
7385 dvar = variable_from_dropped (var->dv, NO_INSERT);
7387 if (!dvar)
7388 return NULL;
7390 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7391 VAR_LOC_1PAUX (dvar) = NULL;
7393 return VAR_LOC_1PAUX (var);
7396 /* Add variable VAR to the hash table of changed variables and
7397 if it has no locations delete it from SET's hash table. */
7399 static void
7400 variable_was_changed (variable var, dataflow_set *set)
7402 hashval_t hash = dv_htab_hash (var->dv);
7404 if (emit_notes)
7406 variable_def **slot;
7408 /* Remember this decl or VALUE has been added to changed_variables. */
7409 set_dv_changed (var->dv, true);
7411 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7413 if (*slot)
7415 variable old_var = *slot;
7416 gcc_assert (old_var->in_changed_variables);
7417 old_var->in_changed_variables = false;
7418 if (var != old_var && var->onepart)
7420 /* Restore the auxiliary info from an empty variable
7421 previously created for changed_variables, so it is
7422 not lost. */
7423 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7424 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7425 VAR_LOC_1PAUX (old_var) = NULL;
7427 variable_htab_free (*slot);
7430 if (set && var->n_var_parts == 0)
7432 onepart_enum_t onepart = var->onepart;
7433 variable empty_var = NULL;
7434 variable_def **dslot = NULL;
7436 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7438 dslot = dropped_values->find_slot_with_hash (var->dv,
7439 dv_htab_hash (var->dv),
7440 INSERT);
7441 empty_var = *dslot;
7443 if (empty_var)
7445 gcc_checking_assert (!empty_var->in_changed_variables);
7446 if (!VAR_LOC_1PAUX (var))
7448 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7449 VAR_LOC_1PAUX (empty_var) = NULL;
7451 else
7452 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7456 if (!empty_var)
7458 empty_var = onepart_pool (onepart).allocate ();
7459 empty_var->dv = var->dv;
7460 empty_var->refcount = 1;
7461 empty_var->n_var_parts = 0;
7462 empty_var->onepart = onepart;
7463 if (dslot)
7465 empty_var->refcount++;
7466 *dslot = empty_var;
7469 else
7470 empty_var->refcount++;
7471 empty_var->in_changed_variables = true;
7472 *slot = empty_var;
7473 if (onepart)
7475 empty_var->var_part[0].loc_chain = NULL;
7476 empty_var->var_part[0].cur_loc = NULL;
7477 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7478 VAR_LOC_1PAUX (var) = NULL;
7480 goto drop_var;
7482 else
7484 if (var->onepart && !VAR_LOC_1PAUX (var))
7485 recover_dropped_1paux (var);
7486 var->refcount++;
7487 var->in_changed_variables = true;
7488 *slot = var;
7491 else
7493 gcc_assert (set);
7494 if (var->n_var_parts == 0)
7496 variable_def **slot;
7498 drop_var:
7499 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7500 if (slot)
7502 if (shared_hash_shared (set->vars))
7503 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7504 NO_INSERT);
7505 shared_hash_htab (set->vars)->clear_slot (slot);
7511 /* Look for the index in VAR->var_part corresponding to OFFSET.
7512 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7513 referenced int will be set to the index that the part has or should
7514 have, if it should be inserted. */
7516 static inline int
7517 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7518 int *insertion_point)
7520 int pos, low, high;
7522 if (var->onepart)
7524 if (offset != 0)
7525 return -1;
7527 if (insertion_point)
7528 *insertion_point = 0;
7530 return var->n_var_parts - 1;
7533 /* Find the location part. */
7534 low = 0;
7535 high = var->n_var_parts;
7536 while (low != high)
7538 pos = (low + high) / 2;
7539 if (VAR_PART_OFFSET (var, pos) < offset)
7540 low = pos + 1;
7541 else
7542 high = pos;
7544 pos = low;
7546 if (insertion_point)
7547 *insertion_point = pos;
7549 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7550 return pos;
7552 return -1;
7555 static variable_def **
7556 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7557 decl_or_value dv, HOST_WIDE_INT offset,
7558 enum var_init_status initialized, rtx set_src)
7560 int pos;
7561 location_chain node, next;
7562 location_chain *nextp;
7563 variable var;
7564 onepart_enum_t onepart;
7566 var = *slot;
7568 if (var)
7569 onepart = var->onepart;
7570 else
7571 onepart = dv_onepart_p (dv);
7573 gcc_checking_assert (offset == 0 || !onepart);
7574 gcc_checking_assert (loc != dv_as_opaque (dv));
7576 if (! flag_var_tracking_uninit)
7577 initialized = VAR_INIT_STATUS_INITIALIZED;
7579 if (!var)
7581 /* Create new variable information. */
7582 var = onepart_pool (onepart).allocate ();
7583 var->dv = dv;
7584 var->refcount = 1;
7585 var->n_var_parts = 1;
7586 var->onepart = onepart;
7587 var->in_changed_variables = false;
7588 if (var->onepart)
7589 VAR_LOC_1PAUX (var) = NULL;
7590 else
7591 VAR_PART_OFFSET (var, 0) = offset;
7592 var->var_part[0].loc_chain = NULL;
7593 var->var_part[0].cur_loc = NULL;
7594 *slot = var;
7595 pos = 0;
7596 nextp = &var->var_part[0].loc_chain;
7598 else if (onepart)
7600 int r = -1, c = 0;
7602 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7604 pos = 0;
7606 if (GET_CODE (loc) == VALUE)
7608 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7609 nextp = &node->next)
7610 if (GET_CODE (node->loc) == VALUE)
7612 if (node->loc == loc)
7614 r = 0;
7615 break;
7617 if (canon_value_cmp (node->loc, loc))
7618 c++;
7619 else
7621 r = 1;
7622 break;
7625 else if (REG_P (node->loc) || MEM_P (node->loc))
7626 c++;
7627 else
7629 r = 1;
7630 break;
7633 else if (REG_P (loc))
7635 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7636 nextp = &node->next)
7637 if (REG_P (node->loc))
7639 if (REGNO (node->loc) < REGNO (loc))
7640 c++;
7641 else
7643 if (REGNO (node->loc) == REGNO (loc))
7644 r = 0;
7645 else
7646 r = 1;
7647 break;
7650 else
7652 r = 1;
7653 break;
7656 else if (MEM_P (loc))
7658 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7659 nextp = &node->next)
7660 if (REG_P (node->loc))
7661 c++;
7662 else if (MEM_P (node->loc))
7664 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7665 break;
7666 else
7667 c++;
7669 else
7671 r = 1;
7672 break;
7675 else
7676 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7677 nextp = &node->next)
7678 if ((r = loc_cmp (node->loc, loc)) >= 0)
7679 break;
7680 else
7681 c++;
7683 if (r == 0)
7684 return slot;
7686 if (shared_var_p (var, set->vars))
7688 slot = unshare_variable (set, slot, var, initialized);
7689 var = *slot;
7690 for (nextp = &var->var_part[0].loc_chain; c;
7691 nextp = &(*nextp)->next)
7692 c--;
7693 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7696 else
7698 int inspos = 0;
7700 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7702 pos = find_variable_location_part (var, offset, &inspos);
7704 if (pos >= 0)
7706 node = var->var_part[pos].loc_chain;
7708 if (node
7709 && ((REG_P (node->loc) && REG_P (loc)
7710 && REGNO (node->loc) == REGNO (loc))
7711 || rtx_equal_p (node->loc, loc)))
7713 /* LOC is in the beginning of the chain so we have nothing
7714 to do. */
7715 if (node->init < initialized)
7716 node->init = initialized;
7717 if (set_src != NULL)
7718 node->set_src = set_src;
7720 return slot;
7722 else
7724 /* We have to make a copy of a shared variable. */
7725 if (shared_var_p (var, set->vars))
7727 slot = unshare_variable (set, slot, var, initialized);
7728 var = *slot;
7732 else
7734 /* We have not found the location part, new one will be created. */
7736 /* We have to make a copy of the shared variable. */
7737 if (shared_var_p (var, set->vars))
7739 slot = unshare_variable (set, slot, var, initialized);
7740 var = *slot;
7743 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7744 thus there are at most MAX_VAR_PARTS different offsets. */
7745 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7746 && (!var->n_var_parts || !onepart));
7748 /* We have to move the elements of array starting at index
7749 inspos to the next position. */
7750 for (pos = var->n_var_parts; pos > inspos; pos--)
7751 var->var_part[pos] = var->var_part[pos - 1];
7753 var->n_var_parts++;
7754 gcc_checking_assert (!onepart);
7755 VAR_PART_OFFSET (var, pos) = offset;
7756 var->var_part[pos].loc_chain = NULL;
7757 var->var_part[pos].cur_loc = NULL;
7760 /* Delete the location from the list. */
7761 nextp = &var->var_part[pos].loc_chain;
7762 for (node = var->var_part[pos].loc_chain; node; node = next)
7764 next = node->next;
7765 if ((REG_P (node->loc) && REG_P (loc)
7766 && REGNO (node->loc) == REGNO (loc))
7767 || rtx_equal_p (node->loc, loc))
7769 /* Save these values, to assign to the new node, before
7770 deleting this one. */
7771 if (node->init > initialized)
7772 initialized = node->init;
7773 if (node->set_src != NULL && set_src == NULL)
7774 set_src = node->set_src;
7775 if (var->var_part[pos].cur_loc == node->loc)
7776 var->var_part[pos].cur_loc = NULL;
7777 delete node;
7778 *nextp = next;
7779 break;
7781 else
7782 nextp = &node->next;
7785 nextp = &var->var_part[pos].loc_chain;
7788 /* Add the location to the beginning. */
7789 node = new location_chain_def;
7790 node->loc = loc;
7791 node->init = initialized;
7792 node->set_src = set_src;
7793 node->next = *nextp;
7794 *nextp = node;
7796 /* If no location was emitted do so. */
7797 if (var->var_part[pos].cur_loc == NULL)
7798 variable_was_changed (var, set);
7800 return slot;
7803 /* Set the part of variable's location in the dataflow set SET. The
7804 variable part is specified by variable's declaration in DV and
7805 offset OFFSET and the part's location by LOC. IOPT should be
7806 NO_INSERT if the variable is known to be in SET already and the
7807 variable hash table must not be resized, and INSERT otherwise. */
7809 static void
7810 set_variable_part (dataflow_set *set, rtx loc,
7811 decl_or_value dv, HOST_WIDE_INT offset,
7812 enum var_init_status initialized, rtx set_src,
7813 enum insert_option iopt)
7815 variable_def **slot;
7817 if (iopt == NO_INSERT)
7818 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7819 else
7821 slot = shared_hash_find_slot (set->vars, dv);
7822 if (!slot)
7823 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7825 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7828 /* Remove all recorded register locations for the given variable part
7829 from dataflow set SET, except for those that are identical to loc.
7830 The variable part is specified by variable's declaration or value
7831 DV and offset OFFSET. */
7833 static variable_def **
7834 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7835 HOST_WIDE_INT offset, rtx set_src)
7837 variable var = *slot;
7838 int pos = find_variable_location_part (var, offset, NULL);
7840 if (pos >= 0)
7842 location_chain node, next;
7844 /* Remove the register locations from the dataflow set. */
7845 next = var->var_part[pos].loc_chain;
7846 for (node = next; node; node = next)
7848 next = node->next;
7849 if (node->loc != loc
7850 && (!flag_var_tracking_uninit
7851 || !set_src
7852 || MEM_P (set_src)
7853 || !rtx_equal_p (set_src, node->set_src)))
7855 if (REG_P (node->loc))
7857 attrs anode, anext;
7858 attrs *anextp;
7860 /* Remove the variable part from the register's
7861 list, but preserve any other variable parts
7862 that might be regarded as live in that same
7863 register. */
7864 anextp = &set->regs[REGNO (node->loc)];
7865 for (anode = *anextp; anode; anode = anext)
7867 anext = anode->next;
7868 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7869 && anode->offset == offset)
7871 delete anode;
7872 *anextp = anext;
7874 else
7875 anextp = &anode->next;
7879 slot = delete_slot_part (set, node->loc, slot, offset);
7884 return slot;
7887 /* Remove all recorded register locations for the given variable part
7888 from dataflow set SET, except for those that are identical to loc.
7889 The variable part is specified by variable's declaration or value
7890 DV and offset OFFSET. */
7892 static void
7893 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7894 HOST_WIDE_INT offset, rtx set_src)
7896 variable_def **slot;
7898 if (!dv_as_opaque (dv)
7899 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7900 return;
7902 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7903 if (!slot)
7904 return;
7906 clobber_slot_part (set, loc, slot, offset, set_src);
7909 /* Delete the part of variable's location from dataflow set SET. The
7910 variable part is specified by its SET->vars slot SLOT and offset
7911 OFFSET and the part's location by LOC. */
7913 static variable_def **
7914 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7915 HOST_WIDE_INT offset)
7917 variable var = *slot;
7918 int pos = find_variable_location_part (var, offset, NULL);
7920 if (pos >= 0)
7922 location_chain node, next;
7923 location_chain *nextp;
7924 bool changed;
7925 rtx cur_loc;
7927 if (shared_var_p (var, set->vars))
7929 /* If the variable contains the location part we have to
7930 make a copy of the variable. */
7931 for (node = var->var_part[pos].loc_chain; node;
7932 node = node->next)
7934 if ((REG_P (node->loc) && REG_P (loc)
7935 && REGNO (node->loc) == REGNO (loc))
7936 || rtx_equal_p (node->loc, loc))
7938 slot = unshare_variable (set, slot, var,
7939 VAR_INIT_STATUS_UNKNOWN);
7940 var = *slot;
7941 break;
7946 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7947 cur_loc = VAR_LOC_FROM (var);
7948 else
7949 cur_loc = var->var_part[pos].cur_loc;
7951 /* Delete the location part. */
7952 changed = false;
7953 nextp = &var->var_part[pos].loc_chain;
7954 for (node = *nextp; node; node = next)
7956 next = node->next;
7957 if ((REG_P (node->loc) && REG_P (loc)
7958 && REGNO (node->loc) == REGNO (loc))
7959 || rtx_equal_p (node->loc, loc))
7961 /* If we have deleted the location which was last emitted
7962 we have to emit new location so add the variable to set
7963 of changed variables. */
7964 if (cur_loc == node->loc)
7966 changed = true;
7967 var->var_part[pos].cur_loc = NULL;
7968 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7969 VAR_LOC_FROM (var) = NULL;
7971 delete node;
7972 *nextp = next;
7973 break;
7975 else
7976 nextp = &node->next;
7979 if (var->var_part[pos].loc_chain == NULL)
7981 changed = true;
7982 var->n_var_parts--;
7983 while (pos < var->n_var_parts)
7985 var->var_part[pos] = var->var_part[pos + 1];
7986 pos++;
7989 if (changed)
7990 variable_was_changed (var, set);
7993 return slot;
7996 /* Delete the part of variable's location from dataflow set SET. The
7997 variable part is specified by variable's declaration or value DV
7998 and offset OFFSET and the part's location by LOC. */
8000 static void
8001 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
8002 HOST_WIDE_INT offset)
8004 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
8005 if (!slot)
8006 return;
8008 delete_slot_part (set, loc, slot, offset);
8012 /* Structure for passing some other parameters to function
8013 vt_expand_loc_callback. */
8014 struct expand_loc_callback_data
8016 /* The variables and values active at this point. */
8017 variable_table_type *vars;
8019 /* Stack of values and debug_exprs under expansion, and their
8020 children. */
8021 auto_vec<rtx, 4> expanding;
8023 /* Stack of values and debug_exprs whose expansion hit recursion
8024 cycles. They will have VALUE_RECURSED_INTO marked when added to
8025 this list. This flag will be cleared if any of its dependencies
8026 resolves to a valid location. So, if the flag remains set at the
8027 end of the search, we know no valid location for this one can
8028 possibly exist. */
8029 auto_vec<rtx, 4> pending;
8031 /* The maximum depth among the sub-expressions under expansion.
8032 Zero indicates no expansion so far. */
8033 expand_depth depth;
8036 /* Allocate the one-part auxiliary data structure for VAR, with enough
8037 room for COUNT dependencies. */
8039 static void
8040 loc_exp_dep_alloc (variable var, int count)
8042 size_t allocsize;
8044 gcc_checking_assert (var->onepart);
8046 /* We can be called with COUNT == 0 to allocate the data structure
8047 without any dependencies, e.g. for the backlinks only. However,
8048 if we are specifying a COUNT, then the dependency list must have
8049 been emptied before. It would be possible to adjust pointers or
8050 force it empty here, but this is better done at an earlier point
8051 in the algorithm, so we instead leave an assertion to catch
8052 errors. */
8053 gcc_checking_assert (!count
8054 || VAR_LOC_DEP_VEC (var) == NULL
8055 || VAR_LOC_DEP_VEC (var)->is_empty ());
8057 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8058 return;
8060 allocsize = offsetof (struct onepart_aux, deps)
8061 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8063 if (VAR_LOC_1PAUX (var))
8065 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8066 VAR_LOC_1PAUX (var), allocsize);
8067 /* If the reallocation moves the onepaux structure, the
8068 back-pointer to BACKLINKS in the first list member will still
8069 point to its old location. Adjust it. */
8070 if (VAR_LOC_DEP_LST (var))
8071 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8073 else
8075 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8076 *VAR_LOC_DEP_LSTP (var) = NULL;
8077 VAR_LOC_FROM (var) = NULL;
8078 VAR_LOC_DEPTH (var).complexity = 0;
8079 VAR_LOC_DEPTH (var).entryvals = 0;
8081 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8084 /* Remove all entries from the vector of active dependencies of VAR,
8085 removing them from the back-links lists too. */
8087 static void
8088 loc_exp_dep_clear (variable var)
8090 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8092 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8093 if (led->next)
8094 led->next->pprev = led->pprev;
8095 if (led->pprev)
8096 *led->pprev = led->next;
8097 VAR_LOC_DEP_VEC (var)->pop ();
8101 /* Insert an active dependency from VAR on X to the vector of
8102 dependencies, and add the corresponding back-link to X's list of
8103 back-links in VARS. */
8105 static void
8106 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8108 decl_or_value dv;
8109 variable xvar;
8110 loc_exp_dep *led;
8112 dv = dv_from_rtx (x);
8114 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8115 an additional look up? */
8116 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8118 if (!xvar)
8120 xvar = variable_from_dropped (dv, NO_INSERT);
8121 gcc_checking_assert (xvar);
8124 /* No point in adding the same backlink more than once. This may
8125 arise if say the same value appears in two complex expressions in
8126 the same loc_list, or even more than once in a single
8127 expression. */
8128 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8129 return;
8131 if (var->onepart == NOT_ONEPART)
8132 led = new loc_exp_dep;
8133 else
8135 loc_exp_dep empty;
8136 memset (&empty, 0, sizeof (empty));
8137 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8138 led = &VAR_LOC_DEP_VEC (var)->last ();
8140 led->dv = var->dv;
8141 led->value = x;
8143 loc_exp_dep_alloc (xvar, 0);
8144 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8145 led->next = *led->pprev;
8146 if (led->next)
8147 led->next->pprev = &led->next;
8148 *led->pprev = led;
8151 /* Create active dependencies of VAR on COUNT values starting at
8152 VALUE, and corresponding back-links to the entries in VARS. Return
8153 true if we found any pending-recursion results. */
8155 static bool
8156 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8157 variable_table_type *vars)
8159 bool pending_recursion = false;
8161 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8162 || VAR_LOC_DEP_VEC (var)->is_empty ());
8164 /* Set up all dependencies from last_child (as set up at the end of
8165 the loop above) to the end. */
8166 loc_exp_dep_alloc (var, count);
8168 while (count--)
8170 rtx x = *value++;
8172 if (!pending_recursion)
8173 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8175 loc_exp_insert_dep (var, x, vars);
8178 return pending_recursion;
8181 /* Notify the back-links of IVAR that are pending recursion that we
8182 have found a non-NIL value for it, so they are cleared for another
8183 attempt to compute a current location. */
8185 static void
8186 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8188 loc_exp_dep *led, *next;
8190 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8192 decl_or_value dv = led->dv;
8193 variable var;
8195 next = led->next;
8197 if (dv_is_value_p (dv))
8199 rtx value = dv_as_value (dv);
8201 /* If we have already resolved it, leave it alone. */
8202 if (!VALUE_RECURSED_INTO (value))
8203 continue;
8205 /* Check that VALUE_RECURSED_INTO, true from the test above,
8206 implies NO_LOC_P. */
8207 gcc_checking_assert (NO_LOC_P (value));
8209 /* We won't notify variables that are being expanded,
8210 because their dependency list is cleared before
8211 recursing. */
8212 NO_LOC_P (value) = false;
8213 VALUE_RECURSED_INTO (value) = false;
8215 gcc_checking_assert (dv_changed_p (dv));
8217 else
8219 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8220 if (!dv_changed_p (dv))
8221 continue;
8224 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8226 if (!var)
8227 var = variable_from_dropped (dv, NO_INSERT);
8229 if (var)
8230 notify_dependents_of_resolved_value (var, vars);
8232 if (next)
8233 next->pprev = led->pprev;
8234 if (led->pprev)
8235 *led->pprev = next;
8236 led->next = NULL;
8237 led->pprev = NULL;
8241 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8242 int max_depth, void *data);
8244 /* Return the combined depth, when one sub-expression evaluated to
8245 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8247 static inline expand_depth
8248 update_depth (expand_depth saved_depth, expand_depth best_depth)
8250 /* If we didn't find anything, stick with what we had. */
8251 if (!best_depth.complexity)
8252 return saved_depth;
8254 /* If we found hadn't found anything, use the depth of the current
8255 expression. Do NOT add one extra level, we want to compute the
8256 maximum depth among sub-expressions. We'll increment it later,
8257 if appropriate. */
8258 if (!saved_depth.complexity)
8259 return best_depth;
8261 /* Combine the entryval count so that regardless of which one we
8262 return, the entryval count is accurate. */
8263 best_depth.entryvals = saved_depth.entryvals
8264 = best_depth.entryvals + saved_depth.entryvals;
8266 if (saved_depth.complexity < best_depth.complexity)
8267 return best_depth;
8268 else
8269 return saved_depth;
8272 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8273 DATA for cselib expand callback. If PENDRECP is given, indicate in
8274 it whether any sub-expression couldn't be fully evaluated because
8275 it is pending recursion resolution. */
8277 static inline rtx
8278 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8280 struct expand_loc_callback_data *elcd
8281 = (struct expand_loc_callback_data *) data;
8282 location_chain loc, next;
8283 rtx result = NULL;
8284 int first_child, result_first_child, last_child;
8285 bool pending_recursion;
8286 rtx loc_from = NULL;
8287 struct elt_loc_list *cloc = NULL;
8288 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8289 int wanted_entryvals, found_entryvals = 0;
8291 /* Clear all backlinks pointing at this, so that we're not notified
8292 while we're active. */
8293 loc_exp_dep_clear (var);
8295 retry:
8296 if (var->onepart == ONEPART_VALUE)
8298 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8300 gcc_checking_assert (cselib_preserved_value_p (val));
8302 cloc = val->locs;
8305 first_child = result_first_child = last_child
8306 = elcd->expanding.length ();
8308 wanted_entryvals = found_entryvals;
8310 /* Attempt to expand each available location in turn. */
8311 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8312 loc || cloc; loc = next)
8314 result_first_child = last_child;
8316 if (!loc)
8318 loc_from = cloc->loc;
8319 next = loc;
8320 cloc = cloc->next;
8321 if (unsuitable_loc (loc_from))
8322 continue;
8324 else
8326 loc_from = loc->loc;
8327 next = loc->next;
8330 gcc_checking_assert (!unsuitable_loc (loc_from));
8332 elcd->depth.complexity = elcd->depth.entryvals = 0;
8333 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8334 vt_expand_loc_callback, data);
8335 last_child = elcd->expanding.length ();
8337 if (result)
8339 depth = elcd->depth;
8341 gcc_checking_assert (depth.complexity
8342 || result_first_child == last_child);
8344 if (last_child - result_first_child != 1)
8346 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8347 depth.entryvals++;
8348 depth.complexity++;
8351 if (depth.complexity <= EXPR_USE_DEPTH)
8353 if (depth.entryvals <= wanted_entryvals)
8354 break;
8355 else if (!found_entryvals || depth.entryvals < found_entryvals)
8356 found_entryvals = depth.entryvals;
8359 result = NULL;
8362 /* Set it up in case we leave the loop. */
8363 depth.complexity = depth.entryvals = 0;
8364 loc_from = NULL;
8365 result_first_child = first_child;
8368 if (!loc_from && wanted_entryvals < found_entryvals)
8370 /* We found entries with ENTRY_VALUEs and skipped them. Since
8371 we could not find any expansions without ENTRY_VALUEs, but we
8372 found at least one with them, go back and get an entry with
8373 the minimum number ENTRY_VALUE count that we found. We could
8374 avoid looping, but since each sub-loc is already resolved,
8375 the re-expansion should be trivial. ??? Should we record all
8376 attempted locs as dependencies, so that we retry the
8377 expansion should any of them change, in the hope it can give
8378 us a new entry without an ENTRY_VALUE? */
8379 elcd->expanding.truncate (first_child);
8380 goto retry;
8383 /* Register all encountered dependencies as active. */
8384 pending_recursion = loc_exp_dep_set
8385 (var, result, elcd->expanding.address () + result_first_child,
8386 last_child - result_first_child, elcd->vars);
8388 elcd->expanding.truncate (first_child);
8390 /* Record where the expansion came from. */
8391 gcc_checking_assert (!result || !pending_recursion);
8392 VAR_LOC_FROM (var) = loc_from;
8393 VAR_LOC_DEPTH (var) = depth;
8395 gcc_checking_assert (!depth.complexity == !result);
8397 elcd->depth = update_depth (saved_depth, depth);
8399 /* Indicate whether any of the dependencies are pending recursion
8400 resolution. */
8401 if (pendrecp)
8402 *pendrecp = pending_recursion;
8404 if (!pendrecp || !pending_recursion)
8405 var->var_part[0].cur_loc = result;
8407 return result;
8410 /* Callback for cselib_expand_value, that looks for expressions
8411 holding the value in the var-tracking hash tables. Return X for
8412 standard processing, anything else is to be used as-is. */
8414 static rtx
8415 vt_expand_loc_callback (rtx x, bitmap regs,
8416 int max_depth ATTRIBUTE_UNUSED,
8417 void *data)
8419 struct expand_loc_callback_data *elcd
8420 = (struct expand_loc_callback_data *) data;
8421 decl_or_value dv;
8422 variable var;
8423 rtx result, subreg;
8424 bool pending_recursion = false;
8425 bool from_empty = false;
8427 switch (GET_CODE (x))
8429 case SUBREG:
8430 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8431 EXPR_DEPTH,
8432 vt_expand_loc_callback, data);
8434 if (!subreg)
8435 return NULL;
8437 result = simplify_gen_subreg (GET_MODE (x), subreg,
8438 GET_MODE (SUBREG_REG (x)),
8439 SUBREG_BYTE (x));
8441 /* Invalid SUBREGs are ok in debug info. ??? We could try
8442 alternate expansions for the VALUE as well. */
8443 if (!result)
8444 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8446 return result;
8448 case DEBUG_EXPR:
8449 case VALUE:
8450 dv = dv_from_rtx (x);
8451 break;
8453 default:
8454 return x;
8457 elcd->expanding.safe_push (x);
8459 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8460 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8462 if (NO_LOC_P (x))
8464 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8465 return NULL;
8468 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8470 if (!var)
8472 from_empty = true;
8473 var = variable_from_dropped (dv, INSERT);
8476 gcc_checking_assert (var);
8478 if (!dv_changed_p (dv))
8480 gcc_checking_assert (!NO_LOC_P (x));
8481 gcc_checking_assert (var->var_part[0].cur_loc);
8482 gcc_checking_assert (VAR_LOC_1PAUX (var));
8483 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8485 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8487 return var->var_part[0].cur_loc;
8490 VALUE_RECURSED_INTO (x) = true;
8491 /* This is tentative, but it makes some tests simpler. */
8492 NO_LOC_P (x) = true;
8494 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8496 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8498 if (pending_recursion)
8500 gcc_checking_assert (!result);
8501 elcd->pending.safe_push (x);
8503 else
8505 NO_LOC_P (x) = !result;
8506 VALUE_RECURSED_INTO (x) = false;
8507 set_dv_changed (dv, false);
8509 if (result)
8510 notify_dependents_of_resolved_value (var, elcd->vars);
8513 return result;
8516 /* While expanding variables, we may encounter recursion cycles
8517 because of mutual (possibly indirect) dependencies between two
8518 particular variables (or values), say A and B. If we're trying to
8519 expand A when we get to B, which in turn attempts to expand A, if
8520 we can't find any other expansion for B, we'll add B to this
8521 pending-recursion stack, and tentatively return NULL for its
8522 location. This tentative value will be used for any other
8523 occurrences of B, unless A gets some other location, in which case
8524 it will notify B that it is worth another try at computing a
8525 location for it, and it will use the location computed for A then.
8526 At the end of the expansion, the tentative NULL locations become
8527 final for all members of PENDING that didn't get a notification.
8528 This function performs this finalization of NULL locations. */
8530 static void
8531 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8533 while (!pending->is_empty ())
8535 rtx x = pending->pop ();
8536 decl_or_value dv;
8538 if (!VALUE_RECURSED_INTO (x))
8539 continue;
8541 gcc_checking_assert (NO_LOC_P (x));
8542 VALUE_RECURSED_INTO (x) = false;
8543 dv = dv_from_rtx (x);
8544 gcc_checking_assert (dv_changed_p (dv));
8545 set_dv_changed (dv, false);
8549 /* Initialize expand_loc_callback_data D with variable hash table V.
8550 It must be a macro because of alloca (vec stack). */
8551 #define INIT_ELCD(d, v) \
8552 do \
8554 (d).vars = (v); \
8555 (d).depth.complexity = (d).depth.entryvals = 0; \
8557 while (0)
8558 /* Finalize expand_loc_callback_data D, resolved to location L. */
8559 #define FINI_ELCD(d, l) \
8560 do \
8562 resolve_expansions_pending_recursion (&(d).pending); \
8563 (d).pending.release (); \
8564 (d).expanding.release (); \
8566 if ((l) && MEM_P (l)) \
8567 (l) = targetm.delegitimize_address (l); \
8569 while (0)
8571 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8572 equivalences in VARS, updating their CUR_LOCs in the process. */
8574 static rtx
8575 vt_expand_loc (rtx loc, variable_table_type *vars)
8577 struct expand_loc_callback_data data;
8578 rtx result;
8580 if (!MAY_HAVE_DEBUG_INSNS)
8581 return loc;
8583 INIT_ELCD (data, vars);
8585 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8586 vt_expand_loc_callback, &data);
8588 FINI_ELCD (data, result);
8590 return result;
8593 /* Expand the one-part VARiable to a location, using the equivalences
8594 in VARS, updating their CUR_LOCs in the process. */
8596 static rtx
8597 vt_expand_1pvar (variable var, variable_table_type *vars)
8599 struct expand_loc_callback_data data;
8600 rtx loc;
8602 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8604 if (!dv_changed_p (var->dv))
8605 return var->var_part[0].cur_loc;
8607 INIT_ELCD (data, vars);
8609 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8611 gcc_checking_assert (data.expanding.is_empty ());
8613 FINI_ELCD (data, loc);
8615 return loc;
8618 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8619 additional parameters: WHERE specifies whether the note shall be emitted
8620 before or after instruction INSN. */
8623 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8625 variable var = *varp;
8626 rtx_insn *insn = data->insn;
8627 enum emit_note_where where = data->where;
8628 variable_table_type *vars = data->vars;
8629 rtx_note *note;
8630 rtx note_vl;
8631 int i, j, n_var_parts;
8632 bool complete;
8633 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8634 HOST_WIDE_INT last_limit;
8635 tree type_size_unit;
8636 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8637 rtx loc[MAX_VAR_PARTS];
8638 tree decl;
8639 location_chain lc;
8641 gcc_checking_assert (var->onepart == NOT_ONEPART
8642 || var->onepart == ONEPART_VDECL);
8644 decl = dv_as_decl (var->dv);
8646 complete = true;
8647 last_limit = 0;
8648 n_var_parts = 0;
8649 if (!var->onepart)
8650 for (i = 0; i < var->n_var_parts; i++)
8651 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8652 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8653 for (i = 0; i < var->n_var_parts; i++)
8655 machine_mode mode, wider_mode;
8656 rtx loc2;
8657 HOST_WIDE_INT offset;
8659 if (i == 0 && var->onepart)
8661 gcc_checking_assert (var->n_var_parts == 1);
8662 offset = 0;
8663 initialized = VAR_INIT_STATUS_INITIALIZED;
8664 loc2 = vt_expand_1pvar (var, vars);
8666 else
8668 if (last_limit < VAR_PART_OFFSET (var, i))
8670 complete = false;
8671 break;
8673 else if (last_limit > VAR_PART_OFFSET (var, i))
8674 continue;
8675 offset = VAR_PART_OFFSET (var, i);
8676 loc2 = var->var_part[i].cur_loc;
8677 if (loc2 && GET_CODE (loc2) == MEM
8678 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8680 rtx depval = XEXP (loc2, 0);
8682 loc2 = vt_expand_loc (loc2, vars);
8684 if (loc2)
8685 loc_exp_insert_dep (var, depval, vars);
8687 if (!loc2)
8689 complete = false;
8690 continue;
8692 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8693 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8694 if (var->var_part[i].cur_loc == lc->loc)
8696 initialized = lc->init;
8697 break;
8699 gcc_assert (lc);
8702 offsets[n_var_parts] = offset;
8703 if (!loc2)
8705 complete = false;
8706 continue;
8708 loc[n_var_parts] = loc2;
8709 mode = GET_MODE (var->var_part[i].cur_loc);
8710 if (mode == VOIDmode && var->onepart)
8711 mode = DECL_MODE (decl);
8712 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8714 /* Attempt to merge adjacent registers or memory. */
8715 wider_mode = GET_MODE_WIDER_MODE (mode);
8716 for (j = i + 1; j < var->n_var_parts; j++)
8717 if (last_limit <= VAR_PART_OFFSET (var, j))
8718 break;
8719 if (j < var->n_var_parts
8720 && wider_mode != VOIDmode
8721 && var->var_part[j].cur_loc
8722 && mode == GET_MODE (var->var_part[j].cur_loc)
8723 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8724 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8725 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8726 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8728 rtx new_loc = NULL;
8730 if (REG_P (loc[n_var_parts])
8731 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8732 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8733 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8734 == REGNO (loc2))
8736 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8737 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8738 mode, 0);
8739 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8740 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8741 if (new_loc)
8743 if (!REG_P (new_loc)
8744 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8745 new_loc = NULL;
8746 else
8747 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8750 else if (MEM_P (loc[n_var_parts])
8751 && GET_CODE (XEXP (loc2, 0)) == PLUS
8752 && REG_P (XEXP (XEXP (loc2, 0), 0))
8753 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8755 if ((REG_P (XEXP (loc[n_var_parts], 0))
8756 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8757 XEXP (XEXP (loc2, 0), 0))
8758 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8759 == GET_MODE_SIZE (mode))
8760 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8761 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8762 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8763 XEXP (XEXP (loc2, 0), 0))
8764 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8765 + GET_MODE_SIZE (mode)
8766 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8767 new_loc = adjust_address_nv (loc[n_var_parts],
8768 wider_mode, 0);
8771 if (new_loc)
8773 loc[n_var_parts] = new_loc;
8774 mode = wider_mode;
8775 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8776 i = j;
8779 ++n_var_parts;
8781 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8782 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8783 complete = false;
8785 if (! flag_var_tracking_uninit)
8786 initialized = VAR_INIT_STATUS_INITIALIZED;
8788 note_vl = NULL_RTX;
8789 if (!complete)
8790 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8791 else if (n_var_parts == 1)
8793 rtx expr_list;
8795 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8796 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8797 else
8798 expr_list = loc[0];
8800 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8802 else if (n_var_parts)
8804 rtx parallel;
8806 for (i = 0; i < n_var_parts; i++)
8807 loc[i]
8808 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8810 parallel = gen_rtx_PARALLEL (VOIDmode,
8811 gen_rtvec_v (n_var_parts, loc));
8812 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8813 parallel, initialized);
8816 if (where != EMIT_NOTE_BEFORE_INSN)
8818 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8819 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8820 NOTE_DURING_CALL_P (note) = true;
8822 else
8824 /* Make sure that the call related notes come first. */
8825 while (NEXT_INSN (insn)
8826 && NOTE_P (insn)
8827 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8828 && NOTE_DURING_CALL_P (insn))
8829 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8830 insn = NEXT_INSN (insn);
8831 if (NOTE_P (insn)
8832 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8833 && NOTE_DURING_CALL_P (insn))
8834 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8835 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8836 else
8837 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8839 NOTE_VAR_LOCATION (note) = note_vl;
8841 set_dv_changed (var->dv, false);
8842 gcc_assert (var->in_changed_variables);
8843 var->in_changed_variables = false;
8844 changed_variables->clear_slot (varp);
8846 /* Continue traversing the hash table. */
8847 return 1;
8850 /* While traversing changed_variables, push onto DATA (a stack of RTX
8851 values) entries that aren't user variables. */
8854 var_track_values_to_stack (variable_def **slot,
8855 vec<rtx, va_heap> *changed_values_stack)
8857 variable var = *slot;
8859 if (var->onepart == ONEPART_VALUE)
8860 changed_values_stack->safe_push (dv_as_value (var->dv));
8861 else if (var->onepart == ONEPART_DEXPR)
8862 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8864 return 1;
8867 /* Remove from changed_variables the entry whose DV corresponds to
8868 value or debug_expr VAL. */
8869 static void
8870 remove_value_from_changed_variables (rtx val)
8872 decl_or_value dv = dv_from_rtx (val);
8873 variable_def **slot;
8874 variable var;
8876 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8877 NO_INSERT);
8878 var = *slot;
8879 var->in_changed_variables = false;
8880 changed_variables->clear_slot (slot);
8883 /* If VAL (a value or debug_expr) has backlinks to variables actively
8884 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8885 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8886 have dependencies of their own to notify. */
8888 static void
8889 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8890 vec<rtx, va_heap> *changed_values_stack)
8892 variable_def **slot;
8893 variable var;
8894 loc_exp_dep *led;
8895 decl_or_value dv = dv_from_rtx (val);
8897 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8898 NO_INSERT);
8899 if (!slot)
8900 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8901 if (!slot)
8902 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8903 NO_INSERT);
8904 var = *slot;
8906 while ((led = VAR_LOC_DEP_LST (var)))
8908 decl_or_value ldv = led->dv;
8909 variable ivar;
8911 /* Deactivate and remove the backlink, as it was “used up”. It
8912 makes no sense to attempt to notify the same entity again:
8913 either it will be recomputed and re-register an active
8914 dependency, or it will still have the changed mark. */
8915 if (led->next)
8916 led->next->pprev = led->pprev;
8917 if (led->pprev)
8918 *led->pprev = led->next;
8919 led->next = NULL;
8920 led->pprev = NULL;
8922 if (dv_changed_p (ldv))
8923 continue;
8925 switch (dv_onepart_p (ldv))
8927 case ONEPART_VALUE:
8928 case ONEPART_DEXPR:
8929 set_dv_changed (ldv, true);
8930 changed_values_stack->safe_push (dv_as_rtx (ldv));
8931 break;
8933 case ONEPART_VDECL:
8934 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8935 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8936 variable_was_changed (ivar, NULL);
8937 break;
8939 case NOT_ONEPART:
8940 delete led;
8941 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8942 if (ivar)
8944 int i = ivar->n_var_parts;
8945 while (i--)
8947 rtx loc = ivar->var_part[i].cur_loc;
8949 if (loc && GET_CODE (loc) == MEM
8950 && XEXP (loc, 0) == val)
8952 variable_was_changed (ivar, NULL);
8953 break;
8957 break;
8959 default:
8960 gcc_unreachable ();
8965 /* Take out of changed_variables any entries that don't refer to use
8966 variables. Back-propagate change notifications from values and
8967 debug_exprs to their active dependencies in HTAB or in
8968 CHANGED_VARIABLES. */
8970 static void
8971 process_changed_values (variable_table_type *htab)
8973 int i, n;
8974 rtx val;
8975 auto_vec<rtx, 20> changed_values_stack;
8977 /* Move values from changed_variables to changed_values_stack. */
8978 changed_variables
8979 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8980 (&changed_values_stack);
8982 /* Back-propagate change notifications in values while popping
8983 them from the stack. */
8984 for (n = i = changed_values_stack.length ();
8985 i > 0; i = changed_values_stack.length ())
8987 val = changed_values_stack.pop ();
8988 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8990 /* This condition will hold when visiting each of the entries
8991 originally in changed_variables. We can't remove them
8992 earlier because this could drop the backlinks before we got a
8993 chance to use them. */
8994 if (i == n)
8996 remove_value_from_changed_variables (val);
8997 n--;
9002 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9003 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9004 the notes shall be emitted before of after instruction INSN. */
9006 static void
9007 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9008 shared_hash vars)
9010 emit_note_data data;
9011 variable_table_type *htab = shared_hash_htab (vars);
9013 if (!changed_variables->elements ())
9014 return;
9016 if (MAY_HAVE_DEBUG_INSNS)
9017 process_changed_values (htab);
9019 data.insn = insn;
9020 data.where = where;
9021 data.vars = htab;
9023 changed_variables
9024 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9027 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9028 same variable in hash table DATA or is not there at all. */
9031 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
9033 variable old_var, new_var;
9035 old_var = *slot;
9036 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9038 if (!new_var)
9040 /* Variable has disappeared. */
9041 variable empty_var = NULL;
9043 if (old_var->onepart == ONEPART_VALUE
9044 || old_var->onepart == ONEPART_DEXPR)
9046 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9047 if (empty_var)
9049 gcc_checking_assert (!empty_var->in_changed_variables);
9050 if (!VAR_LOC_1PAUX (old_var))
9052 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9053 VAR_LOC_1PAUX (empty_var) = NULL;
9055 else
9056 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9060 if (!empty_var)
9062 empty_var = onepart_pool (old_var->onepart).allocate ();
9063 empty_var->dv = old_var->dv;
9064 empty_var->refcount = 0;
9065 empty_var->n_var_parts = 0;
9066 empty_var->onepart = old_var->onepart;
9067 empty_var->in_changed_variables = false;
9070 if (empty_var->onepart)
9072 /* Propagate the auxiliary data to (ultimately)
9073 changed_variables. */
9074 empty_var->var_part[0].loc_chain = NULL;
9075 empty_var->var_part[0].cur_loc = NULL;
9076 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9077 VAR_LOC_1PAUX (old_var) = NULL;
9079 variable_was_changed (empty_var, NULL);
9080 /* Continue traversing the hash table. */
9081 return 1;
9083 /* Update cur_loc and one-part auxiliary data, before new_var goes
9084 through variable_was_changed. */
9085 if (old_var != new_var && new_var->onepart)
9087 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9088 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9089 VAR_LOC_1PAUX (old_var) = NULL;
9090 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9092 if (variable_different_p (old_var, new_var))
9093 variable_was_changed (new_var, NULL);
9095 /* Continue traversing the hash table. */
9096 return 1;
9099 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9100 table DATA. */
9103 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9105 variable old_var, new_var;
9107 new_var = *slot;
9108 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9109 if (!old_var)
9111 int i;
9112 for (i = 0; i < new_var->n_var_parts; i++)
9113 new_var->var_part[i].cur_loc = NULL;
9114 variable_was_changed (new_var, NULL);
9117 /* Continue traversing the hash table. */
9118 return 1;
9121 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9122 NEW_SET. */
9124 static void
9125 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9126 dataflow_set *new_set)
9128 shared_hash_htab (old_set->vars)
9129 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9130 (shared_hash_htab (new_set->vars));
9131 shared_hash_htab (new_set->vars)
9132 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9133 (shared_hash_htab (old_set->vars));
9134 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9137 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9139 static rtx_insn *
9140 next_non_note_insn_var_location (rtx_insn *insn)
9142 while (insn)
9144 insn = NEXT_INSN (insn);
9145 if (insn == 0
9146 || !NOTE_P (insn)
9147 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9148 break;
9151 return insn;
9154 /* Emit the notes for changes of location parts in the basic block BB. */
9156 static void
9157 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9159 unsigned int i;
9160 micro_operation *mo;
9162 dataflow_set_clear (set);
9163 dataflow_set_copy (set, &VTI (bb)->in);
9165 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9167 rtx_insn *insn = mo->insn;
9168 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9170 switch (mo->type)
9172 case MO_CALL:
9173 dataflow_set_clear_at_call (set);
9174 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9176 rtx arguments = mo->u.loc, *p = &arguments;
9177 rtx_note *note;
9178 while (*p)
9180 XEXP (XEXP (*p, 0), 1)
9181 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9182 shared_hash_htab (set->vars));
9183 /* If expansion is successful, keep it in the list. */
9184 if (XEXP (XEXP (*p, 0), 1))
9185 p = &XEXP (*p, 1);
9186 /* Otherwise, if the following item is data_value for it,
9187 drop it too too. */
9188 else if (XEXP (*p, 1)
9189 && REG_P (XEXP (XEXP (*p, 0), 0))
9190 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9191 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9193 && REGNO (XEXP (XEXP (*p, 0), 0))
9194 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9195 0), 0)))
9196 *p = XEXP (XEXP (*p, 1), 1);
9197 /* Just drop this item. */
9198 else
9199 *p = XEXP (*p, 1);
9201 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9202 NOTE_VAR_LOCATION (note) = arguments;
9204 break;
9206 case MO_USE:
9208 rtx loc = mo->u.loc;
9210 if (REG_P (loc))
9211 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9212 else
9213 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9215 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9217 break;
9219 case MO_VAL_LOC:
9221 rtx loc = mo->u.loc;
9222 rtx val, vloc;
9223 tree var;
9225 if (GET_CODE (loc) == CONCAT)
9227 val = XEXP (loc, 0);
9228 vloc = XEXP (loc, 1);
9230 else
9232 val = NULL_RTX;
9233 vloc = loc;
9236 var = PAT_VAR_LOCATION_DECL (vloc);
9238 clobber_variable_part (set, NULL_RTX,
9239 dv_from_decl (var), 0, NULL_RTX);
9240 if (val)
9242 if (VAL_NEEDS_RESOLUTION (loc))
9243 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9244 set_variable_part (set, val, dv_from_decl (var), 0,
9245 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9246 INSERT);
9248 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9249 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9250 dv_from_decl (var), 0,
9251 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9252 INSERT);
9254 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9256 break;
9258 case MO_VAL_USE:
9260 rtx loc = mo->u.loc;
9261 rtx val, vloc, uloc;
9263 vloc = uloc = XEXP (loc, 1);
9264 val = XEXP (loc, 0);
9266 if (GET_CODE (val) == CONCAT)
9268 uloc = XEXP (val, 1);
9269 val = XEXP (val, 0);
9272 if (VAL_NEEDS_RESOLUTION (loc))
9273 val_resolve (set, val, vloc, insn);
9274 else
9275 val_store (set, val, uloc, insn, false);
9277 if (VAL_HOLDS_TRACK_EXPR (loc))
9279 if (GET_CODE (uloc) == REG)
9280 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9281 NULL);
9282 else if (GET_CODE (uloc) == MEM)
9283 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9284 NULL);
9287 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9289 break;
9291 case MO_VAL_SET:
9293 rtx loc = mo->u.loc;
9294 rtx val, vloc, uloc;
9295 rtx dstv, srcv;
9297 vloc = loc;
9298 uloc = XEXP (vloc, 1);
9299 val = XEXP (vloc, 0);
9300 vloc = uloc;
9302 if (GET_CODE (uloc) == SET)
9304 dstv = SET_DEST (uloc);
9305 srcv = SET_SRC (uloc);
9307 else
9309 dstv = uloc;
9310 srcv = NULL;
9313 if (GET_CODE (val) == CONCAT)
9315 dstv = vloc = XEXP (val, 1);
9316 val = XEXP (val, 0);
9319 if (GET_CODE (vloc) == SET)
9321 srcv = SET_SRC (vloc);
9323 gcc_assert (val != srcv);
9324 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9326 dstv = vloc = SET_DEST (vloc);
9328 if (VAL_NEEDS_RESOLUTION (loc))
9329 val_resolve (set, val, srcv, insn);
9331 else if (VAL_NEEDS_RESOLUTION (loc))
9333 gcc_assert (GET_CODE (uloc) == SET
9334 && GET_CODE (SET_SRC (uloc)) == REG);
9335 val_resolve (set, val, SET_SRC (uloc), insn);
9338 if (VAL_HOLDS_TRACK_EXPR (loc))
9340 if (VAL_EXPR_IS_CLOBBERED (loc))
9342 if (REG_P (uloc))
9343 var_reg_delete (set, uloc, true);
9344 else if (MEM_P (uloc))
9346 gcc_assert (MEM_P (dstv));
9347 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9348 var_mem_delete (set, dstv, true);
9351 else
9353 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9354 rtx src = NULL, dst = uloc;
9355 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9357 if (GET_CODE (uloc) == SET)
9359 src = SET_SRC (uloc);
9360 dst = SET_DEST (uloc);
9363 if (copied_p)
9365 status = find_src_status (set, src);
9367 src = find_src_set_src (set, src);
9370 if (REG_P (dst))
9371 var_reg_delete_and_set (set, dst, !copied_p,
9372 status, srcv);
9373 else if (MEM_P (dst))
9375 gcc_assert (MEM_P (dstv));
9376 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9377 var_mem_delete_and_set (set, dstv, !copied_p,
9378 status, srcv);
9382 else if (REG_P (uloc))
9383 var_regno_delete (set, REGNO (uloc));
9384 else if (MEM_P (uloc))
9386 gcc_checking_assert (GET_CODE (vloc) == MEM);
9387 gcc_checking_assert (vloc == dstv);
9388 if (vloc != dstv)
9389 clobber_overlapping_mems (set, vloc);
9392 val_store (set, val, dstv, insn, true);
9394 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9395 set->vars);
9397 break;
9399 case MO_SET:
9401 rtx loc = mo->u.loc;
9402 rtx set_src = NULL;
9404 if (GET_CODE (loc) == SET)
9406 set_src = SET_SRC (loc);
9407 loc = SET_DEST (loc);
9410 if (REG_P (loc))
9411 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9412 set_src);
9413 else
9414 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9415 set_src);
9417 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9418 set->vars);
9420 break;
9422 case MO_COPY:
9424 rtx loc = mo->u.loc;
9425 enum var_init_status src_status;
9426 rtx set_src = NULL;
9428 if (GET_CODE (loc) == SET)
9430 set_src = SET_SRC (loc);
9431 loc = SET_DEST (loc);
9434 src_status = find_src_status (set, set_src);
9435 set_src = find_src_set_src (set, set_src);
9437 if (REG_P (loc))
9438 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9439 else
9440 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9442 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9443 set->vars);
9445 break;
9447 case MO_USE_NO_VAR:
9449 rtx loc = mo->u.loc;
9451 if (REG_P (loc))
9452 var_reg_delete (set, loc, false);
9453 else
9454 var_mem_delete (set, loc, false);
9456 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9458 break;
9460 case MO_CLOBBER:
9462 rtx loc = mo->u.loc;
9464 if (REG_P (loc))
9465 var_reg_delete (set, loc, true);
9466 else
9467 var_mem_delete (set, loc, true);
9469 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9470 set->vars);
9472 break;
9474 case MO_ADJUST:
9475 set->stack_adjust += mo->u.adjust;
9476 break;
9481 /* Emit notes for the whole function. */
9483 static void
9484 vt_emit_notes (void)
9486 basic_block bb;
9487 dataflow_set cur;
9489 gcc_assert (!changed_variables->elements ());
9491 /* Free memory occupied by the out hash tables, as they aren't used
9492 anymore. */
9493 FOR_EACH_BB_FN (bb, cfun)
9494 dataflow_set_clear (&VTI (bb)->out);
9496 /* Enable emitting notes by functions (mainly by set_variable_part and
9497 delete_variable_part). */
9498 emit_notes = true;
9500 if (MAY_HAVE_DEBUG_INSNS)
9502 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9505 dataflow_set_init (&cur);
9507 FOR_EACH_BB_FN (bb, cfun)
9509 /* Emit the notes for changes of variable locations between two
9510 subsequent basic blocks. */
9511 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9513 if (MAY_HAVE_DEBUG_INSNS)
9514 local_get_addr_cache = new hash_map<rtx, rtx>;
9516 /* Emit the notes for the changes in the basic block itself. */
9517 emit_notes_in_bb (bb, &cur);
9519 if (MAY_HAVE_DEBUG_INSNS)
9520 delete local_get_addr_cache;
9521 local_get_addr_cache = NULL;
9523 /* Free memory occupied by the in hash table, we won't need it
9524 again. */
9525 dataflow_set_clear (&VTI (bb)->in);
9527 #ifdef ENABLE_CHECKING
9528 shared_hash_htab (cur.vars)
9529 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9530 (shared_hash_htab (empty_shared_hash));
9531 #endif
9532 dataflow_set_destroy (&cur);
9534 if (MAY_HAVE_DEBUG_INSNS)
9535 delete dropped_values;
9536 dropped_values = NULL;
9538 emit_notes = false;
9541 /* If there is a declaration and offset associated with register/memory RTL
9542 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9544 static bool
9545 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9547 if (REG_P (rtl))
9549 if (REG_ATTRS (rtl))
9551 *declp = REG_EXPR (rtl);
9552 *offsetp = REG_OFFSET (rtl);
9553 return true;
9556 else if (GET_CODE (rtl) == PARALLEL)
9558 tree decl = NULL_TREE;
9559 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9560 int len = XVECLEN (rtl, 0), i;
9562 for (i = 0; i < len; i++)
9564 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9565 if (!REG_P (reg) || !REG_ATTRS (reg))
9566 break;
9567 if (!decl)
9568 decl = REG_EXPR (reg);
9569 if (REG_EXPR (reg) != decl)
9570 break;
9571 if (REG_OFFSET (reg) < offset)
9572 offset = REG_OFFSET (reg);
9575 if (i == len)
9577 *declp = decl;
9578 *offsetp = offset;
9579 return true;
9582 else if (MEM_P (rtl))
9584 if (MEM_ATTRS (rtl))
9586 *declp = MEM_EXPR (rtl);
9587 *offsetp = INT_MEM_OFFSET (rtl);
9588 return true;
9591 return false;
9594 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9595 of VAL. */
9597 static void
9598 record_entry_value (cselib_val *val, rtx rtl)
9600 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9602 ENTRY_VALUE_EXP (ev) = rtl;
9604 cselib_add_permanent_equiv (val, ev, get_insns ());
9607 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9609 static void
9610 vt_add_function_parameter (tree parm)
9612 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9613 rtx incoming = DECL_INCOMING_RTL (parm);
9614 tree decl;
9615 machine_mode mode;
9616 HOST_WIDE_INT offset;
9617 dataflow_set *out;
9618 decl_or_value dv;
9620 if (TREE_CODE (parm) != PARM_DECL)
9621 return;
9623 if (!decl_rtl || !incoming)
9624 return;
9626 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9627 return;
9629 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9630 rewrite the incoming location of parameters passed on the stack
9631 into MEMs based on the argument pointer, so that incoming doesn't
9632 depend on a pseudo. */
9633 if (MEM_P (incoming)
9634 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9635 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9636 && XEXP (XEXP (incoming, 0), 0)
9637 == crtl->args.internal_arg_pointer
9638 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9640 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9641 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9642 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9643 incoming
9644 = replace_equiv_address_nv (incoming,
9645 plus_constant (Pmode,
9646 arg_pointer_rtx, off));
9649 #ifdef HAVE_window_save
9650 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9651 If the target machine has an explicit window save instruction, the
9652 actual entry value is the corresponding OUTGOING_REGNO instead. */
9653 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9655 if (REG_P (incoming)
9656 && HARD_REGISTER_P (incoming)
9657 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9659 parm_reg_t p;
9660 p.incoming = incoming;
9661 incoming
9662 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9663 OUTGOING_REGNO (REGNO (incoming)), 0);
9664 p.outgoing = incoming;
9665 vec_safe_push (windowed_parm_regs, p);
9667 else if (GET_CODE (incoming) == PARALLEL)
9669 rtx outgoing
9670 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9671 int i;
9673 for (i = 0; i < XVECLEN (incoming, 0); i++)
9675 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9676 parm_reg_t p;
9677 p.incoming = reg;
9678 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9679 OUTGOING_REGNO (REGNO (reg)), 0);
9680 p.outgoing = reg;
9681 XVECEXP (outgoing, 0, i)
9682 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9683 XEXP (XVECEXP (incoming, 0, i), 1));
9684 vec_safe_push (windowed_parm_regs, p);
9687 incoming = outgoing;
9689 else if (MEM_P (incoming)
9690 && REG_P (XEXP (incoming, 0))
9691 && HARD_REGISTER_P (XEXP (incoming, 0)))
9693 rtx reg = XEXP (incoming, 0);
9694 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9696 parm_reg_t p;
9697 p.incoming = reg;
9698 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9699 p.outgoing = reg;
9700 vec_safe_push (windowed_parm_regs, p);
9701 incoming = replace_equiv_address_nv (incoming, reg);
9705 #endif
9707 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9709 if (MEM_P (incoming))
9711 /* This means argument is passed by invisible reference. */
9712 offset = 0;
9713 decl = parm;
9715 else
9717 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9718 return;
9719 offset += byte_lowpart_offset (GET_MODE (incoming),
9720 GET_MODE (decl_rtl));
9724 if (!decl)
9725 return;
9727 if (parm != decl)
9729 /* If that DECL_RTL wasn't a pseudo that got spilled to
9730 memory, bail out. Otherwise, the spill slot sharing code
9731 will force the memory to reference spill_slot_decl (%sfp),
9732 so we don't match above. That's ok, the pseudo must have
9733 referenced the entire parameter, so just reset OFFSET. */
9734 if (decl != get_spill_slot_decl (false))
9735 return;
9736 offset = 0;
9739 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9740 return;
9742 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9744 dv = dv_from_decl (parm);
9746 if (target_for_debug_bind (parm)
9747 /* We can't deal with these right now, because this kind of
9748 variable is single-part. ??? We could handle parallels
9749 that describe multiple locations for the same single
9750 value, but ATM we don't. */
9751 && GET_CODE (incoming) != PARALLEL)
9753 cselib_val *val;
9754 rtx lowpart;
9756 /* ??? We shouldn't ever hit this, but it may happen because
9757 arguments passed by invisible reference aren't dealt with
9758 above: incoming-rtl will have Pmode rather than the
9759 expected mode for the type. */
9760 if (offset)
9761 return;
9763 lowpart = var_lowpart (mode, incoming);
9764 if (!lowpart)
9765 return;
9767 val = cselib_lookup_from_insn (lowpart, mode, true,
9768 VOIDmode, get_insns ());
9770 /* ??? Float-typed values in memory are not handled by
9771 cselib. */
9772 if (val)
9774 preserve_value (val);
9775 set_variable_part (out, val->val_rtx, dv, offset,
9776 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9777 dv = dv_from_value (val->val_rtx);
9780 if (MEM_P (incoming))
9782 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9783 VOIDmode, get_insns ());
9784 if (val)
9786 preserve_value (val);
9787 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9792 if (REG_P (incoming))
9794 incoming = var_lowpart (mode, incoming);
9795 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9796 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9797 incoming);
9798 set_variable_part (out, incoming, dv, offset,
9799 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9800 if (dv_is_value_p (dv))
9802 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9803 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9804 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9806 machine_mode indmode
9807 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9808 rtx mem = gen_rtx_MEM (indmode, incoming);
9809 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9810 VOIDmode,
9811 get_insns ());
9812 if (val)
9814 preserve_value (val);
9815 record_entry_value (val, mem);
9816 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9817 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9822 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9824 int i;
9826 for (i = 0; i < XVECLEN (incoming, 0); i++)
9828 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9829 offset = REG_OFFSET (reg);
9830 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9831 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9832 set_variable_part (out, reg, dv, offset,
9833 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9836 else if (MEM_P (incoming))
9838 incoming = var_lowpart (mode, incoming);
9839 set_variable_part (out, incoming, dv, offset,
9840 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9844 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9846 static void
9847 vt_add_function_parameters (void)
9849 tree parm;
9851 for (parm = DECL_ARGUMENTS (current_function_decl);
9852 parm; parm = DECL_CHAIN (parm))
9853 if (!POINTER_BOUNDS_P (parm))
9854 vt_add_function_parameter (parm);
9856 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9858 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9860 if (TREE_CODE (vexpr) == INDIRECT_REF)
9861 vexpr = TREE_OPERAND (vexpr, 0);
9863 if (TREE_CODE (vexpr) == PARM_DECL
9864 && DECL_ARTIFICIAL (vexpr)
9865 && !DECL_IGNORED_P (vexpr)
9866 && DECL_NAMELESS (vexpr))
9867 vt_add_function_parameter (vexpr);
9871 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9872 ensure it isn't flushed during cselib_reset_table.
9873 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9874 has been eliminated. */
9876 static void
9877 vt_init_cfa_base (void)
9879 cselib_val *val;
9881 #ifdef FRAME_POINTER_CFA_OFFSET
9882 cfa_base_rtx = frame_pointer_rtx;
9883 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9884 #else
9885 cfa_base_rtx = arg_pointer_rtx;
9886 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9887 #endif
9888 if (cfa_base_rtx == hard_frame_pointer_rtx
9889 || !fixed_regs[REGNO (cfa_base_rtx)])
9891 cfa_base_rtx = NULL_RTX;
9892 return;
9894 if (!MAY_HAVE_DEBUG_INSNS)
9895 return;
9897 /* Tell alias analysis that cfa_base_rtx should share
9898 find_base_term value with stack pointer or hard frame pointer. */
9899 if (!frame_pointer_needed)
9900 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9901 else if (!crtl->stack_realign_tried)
9902 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9904 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9905 VOIDmode, get_insns ());
9906 preserve_value (val);
9907 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9910 /* Allocate and initialize the data structures for variable tracking
9911 and parse the RTL to get the micro operations. */
9913 static bool
9914 vt_initialize (void)
9916 basic_block bb;
9917 HOST_WIDE_INT fp_cfa_offset = -1;
9919 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9921 empty_shared_hash = new shared_hash_def;
9922 empty_shared_hash->refcount = 1;
9923 empty_shared_hash->htab = new variable_table_type (1);
9924 changed_variables = new variable_table_type (10);
9926 /* Init the IN and OUT sets. */
9927 FOR_ALL_BB_FN (bb, cfun)
9929 VTI (bb)->visited = false;
9930 VTI (bb)->flooded = false;
9931 dataflow_set_init (&VTI (bb)->in);
9932 dataflow_set_init (&VTI (bb)->out);
9933 VTI (bb)->permp = NULL;
9936 if (MAY_HAVE_DEBUG_INSNS)
9938 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9939 scratch_regs = BITMAP_ALLOC (NULL);
9940 preserved_values.create (256);
9941 global_get_addr_cache = new hash_map<rtx, rtx>;
9943 else
9945 scratch_regs = NULL;
9946 global_get_addr_cache = NULL;
9949 if (MAY_HAVE_DEBUG_INSNS)
9951 rtx reg, expr;
9952 int ofst;
9953 cselib_val *val;
9955 #ifdef FRAME_POINTER_CFA_OFFSET
9956 reg = frame_pointer_rtx;
9957 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9958 #else
9959 reg = arg_pointer_rtx;
9960 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9961 #endif
9963 ofst -= INCOMING_FRAME_SP_OFFSET;
9965 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9966 VOIDmode, get_insns ());
9967 preserve_value (val);
9968 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9969 cselib_preserve_cfa_base_value (val, REGNO (reg));
9970 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9971 stack_pointer_rtx, -ofst);
9972 cselib_add_permanent_equiv (val, expr, get_insns ());
9974 if (ofst)
9976 val = cselib_lookup_from_insn (stack_pointer_rtx,
9977 GET_MODE (stack_pointer_rtx), 1,
9978 VOIDmode, get_insns ());
9979 preserve_value (val);
9980 expr = plus_constant (GET_MODE (reg), reg, ofst);
9981 cselib_add_permanent_equiv (val, expr, get_insns ());
9985 /* In order to factor out the adjustments made to the stack pointer or to
9986 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9987 instead of individual location lists, we're going to rewrite MEMs based
9988 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9989 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9990 resp. arg_pointer_rtx. We can do this either when there is no frame
9991 pointer in the function and stack adjustments are consistent for all
9992 basic blocks or when there is a frame pointer and no stack realignment.
9993 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9994 has been eliminated. */
9995 if (!frame_pointer_needed)
9997 rtx reg, elim;
9999 if (!vt_stack_adjustments ())
10000 return false;
10002 #ifdef FRAME_POINTER_CFA_OFFSET
10003 reg = frame_pointer_rtx;
10004 #else
10005 reg = arg_pointer_rtx;
10006 #endif
10007 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10008 if (elim != reg)
10010 if (GET_CODE (elim) == PLUS)
10011 elim = XEXP (elim, 0);
10012 if (elim == stack_pointer_rtx)
10013 vt_init_cfa_base ();
10016 else if (!crtl->stack_realign_tried)
10018 rtx reg, elim;
10020 #ifdef FRAME_POINTER_CFA_OFFSET
10021 reg = frame_pointer_rtx;
10022 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10023 #else
10024 reg = arg_pointer_rtx;
10025 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10026 #endif
10027 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10028 if (elim != reg)
10030 if (GET_CODE (elim) == PLUS)
10032 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10033 elim = XEXP (elim, 0);
10035 if (elim != hard_frame_pointer_rtx)
10036 fp_cfa_offset = -1;
10038 else
10039 fp_cfa_offset = -1;
10042 /* If the stack is realigned and a DRAP register is used, we're going to
10043 rewrite MEMs based on it representing incoming locations of parameters
10044 passed on the stack into MEMs based on the argument pointer. Although
10045 we aren't going to rewrite other MEMs, we still need to initialize the
10046 virtual CFA pointer in order to ensure that the argument pointer will
10047 be seen as a constant throughout the function.
10049 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10050 else if (stack_realign_drap)
10052 rtx reg, elim;
10054 #ifdef FRAME_POINTER_CFA_OFFSET
10055 reg = frame_pointer_rtx;
10056 #else
10057 reg = arg_pointer_rtx;
10058 #endif
10059 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10060 if (elim != reg)
10062 if (GET_CODE (elim) == PLUS)
10063 elim = XEXP (elim, 0);
10064 if (elim == hard_frame_pointer_rtx)
10065 vt_init_cfa_base ();
10069 hard_frame_pointer_adjustment = -1;
10071 vt_add_function_parameters ();
10073 FOR_EACH_BB_FN (bb, cfun)
10075 rtx_insn *insn;
10076 HOST_WIDE_INT pre, post = 0;
10077 basic_block first_bb, last_bb;
10079 if (MAY_HAVE_DEBUG_INSNS)
10081 cselib_record_sets_hook = add_with_sets;
10082 if (dump_file && (dump_flags & TDF_DETAILS))
10083 fprintf (dump_file, "first value: %i\n",
10084 cselib_get_next_uid ());
10087 first_bb = bb;
10088 for (;;)
10090 edge e;
10091 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10092 || ! single_pred_p (bb->next_bb))
10093 break;
10094 e = find_edge (bb, bb->next_bb);
10095 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10096 break;
10097 bb = bb->next_bb;
10099 last_bb = bb;
10101 /* Add the micro-operations to the vector. */
10102 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10104 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10105 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10106 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10107 insn = NEXT_INSN (insn))
10109 if (INSN_P (insn))
10111 if (!frame_pointer_needed)
10113 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10114 if (pre)
10116 micro_operation mo;
10117 mo.type = MO_ADJUST;
10118 mo.u.adjust = pre;
10119 mo.insn = insn;
10120 if (dump_file && (dump_flags & TDF_DETAILS))
10121 log_op_type (PATTERN (insn), bb, insn,
10122 MO_ADJUST, dump_file);
10123 VTI (bb)->mos.safe_push (mo);
10124 VTI (bb)->out.stack_adjust += pre;
10128 cselib_hook_called = false;
10129 adjust_insn (bb, insn);
10130 if (MAY_HAVE_DEBUG_INSNS)
10132 if (CALL_P (insn))
10133 prepare_call_arguments (bb, insn);
10134 cselib_process_insn (insn);
10135 if (dump_file && (dump_flags & TDF_DETAILS))
10137 print_rtl_single (dump_file, insn);
10138 dump_cselib_table (dump_file);
10141 if (!cselib_hook_called)
10142 add_with_sets (insn, 0, 0);
10143 cancel_changes (0);
10145 if (!frame_pointer_needed && post)
10147 micro_operation mo;
10148 mo.type = MO_ADJUST;
10149 mo.u.adjust = post;
10150 mo.insn = insn;
10151 if (dump_file && (dump_flags & TDF_DETAILS))
10152 log_op_type (PATTERN (insn), bb, insn,
10153 MO_ADJUST, dump_file);
10154 VTI (bb)->mos.safe_push (mo);
10155 VTI (bb)->out.stack_adjust += post;
10158 if (fp_cfa_offset != -1
10159 && hard_frame_pointer_adjustment == -1
10160 && fp_setter_insn (insn))
10162 vt_init_cfa_base ();
10163 hard_frame_pointer_adjustment = fp_cfa_offset;
10164 /* Disassociate sp from fp now. */
10165 if (MAY_HAVE_DEBUG_INSNS)
10167 cselib_val *v;
10168 cselib_invalidate_rtx (stack_pointer_rtx);
10169 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10170 VOIDmode);
10171 if (v && !cselib_preserved_value_p (v))
10173 cselib_set_value_sp_based (v);
10174 preserve_value (v);
10180 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10183 bb = last_bb;
10185 if (MAY_HAVE_DEBUG_INSNS)
10187 cselib_preserve_only_values ();
10188 cselib_reset_table (cselib_get_next_uid ());
10189 cselib_record_sets_hook = NULL;
10193 hard_frame_pointer_adjustment = -1;
10194 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10195 cfa_base_rtx = NULL_RTX;
10196 return true;
10199 /* This is *not* reset after each function. It gives each
10200 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10201 a unique label number. */
10203 static int debug_label_num = 1;
10205 /* Get rid of all debug insns from the insn stream. */
10207 static void
10208 delete_debug_insns (void)
10210 basic_block bb;
10211 rtx_insn *insn, *next;
10213 if (!MAY_HAVE_DEBUG_INSNS)
10214 return;
10216 FOR_EACH_BB_FN (bb, cfun)
10218 FOR_BB_INSNS_SAFE (bb, insn, next)
10219 if (DEBUG_INSN_P (insn))
10221 tree decl = INSN_VAR_LOCATION_DECL (insn);
10222 if (TREE_CODE (decl) == LABEL_DECL
10223 && DECL_NAME (decl)
10224 && !DECL_RTL_SET_P (decl))
10226 PUT_CODE (insn, NOTE);
10227 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10228 NOTE_DELETED_LABEL_NAME (insn)
10229 = IDENTIFIER_POINTER (DECL_NAME (decl));
10230 SET_DECL_RTL (decl, insn);
10231 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10233 else
10234 delete_insn (insn);
10239 /* Run a fast, BB-local only version of var tracking, to take care of
10240 information that we don't do global analysis on, such that not all
10241 information is lost. If SKIPPED holds, we're skipping the global
10242 pass entirely, so we should try to use information it would have
10243 handled as well.. */
10245 static void
10246 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10248 /* ??? Just skip it all for now. */
10249 delete_debug_insns ();
10252 /* Free the data structures needed for variable tracking. */
10254 static void
10255 vt_finalize (void)
10257 basic_block bb;
10259 FOR_EACH_BB_FN (bb, cfun)
10261 VTI (bb)->mos.release ();
10264 FOR_ALL_BB_FN (bb, cfun)
10266 dataflow_set_destroy (&VTI (bb)->in);
10267 dataflow_set_destroy (&VTI (bb)->out);
10268 if (VTI (bb)->permp)
10270 dataflow_set_destroy (VTI (bb)->permp);
10271 XDELETE (VTI (bb)->permp);
10274 free_aux_for_blocks ();
10275 delete empty_shared_hash->htab;
10276 empty_shared_hash->htab = NULL;
10277 delete changed_variables;
10278 changed_variables = NULL;
10279 attrs_def::pool.release ();
10280 var_pool.release ();
10281 location_chain_def::pool.release ();
10282 shared_hash_def::pool.release ();
10284 if (MAY_HAVE_DEBUG_INSNS)
10286 if (global_get_addr_cache)
10287 delete global_get_addr_cache;
10288 global_get_addr_cache = NULL;
10289 loc_exp_dep::pool.release ();
10290 valvar_pool.release ();
10291 preserved_values.release ();
10292 cselib_finish ();
10293 BITMAP_FREE (scratch_regs);
10294 scratch_regs = NULL;
10297 #ifdef HAVE_window_save
10298 vec_free (windowed_parm_regs);
10299 #endif
10301 if (vui_vec)
10302 XDELETEVEC (vui_vec);
10303 vui_vec = NULL;
10304 vui_allocated = 0;
10307 /* The entry point to variable tracking pass. */
10309 static inline unsigned int
10310 variable_tracking_main_1 (void)
10312 bool success;
10314 if (flag_var_tracking_assignments < 0
10315 /* Var-tracking right now assumes the IR doesn't contain
10316 any pseudos at this point. */
10317 || targetm.no_register_allocation)
10319 delete_debug_insns ();
10320 return 0;
10323 if (n_basic_blocks_for_fn (cfun) > 500 &&
10324 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10326 vt_debug_insns_local (true);
10327 return 0;
10330 mark_dfs_back_edges ();
10331 if (!vt_initialize ())
10333 vt_finalize ();
10334 vt_debug_insns_local (true);
10335 return 0;
10338 success = vt_find_locations ();
10340 if (!success && flag_var_tracking_assignments > 0)
10342 vt_finalize ();
10344 delete_debug_insns ();
10346 /* This is later restored by our caller. */
10347 flag_var_tracking_assignments = 0;
10349 success = vt_initialize ();
10350 gcc_assert (success);
10352 success = vt_find_locations ();
10355 if (!success)
10357 vt_finalize ();
10358 vt_debug_insns_local (false);
10359 return 0;
10362 if (dump_file && (dump_flags & TDF_DETAILS))
10364 dump_dataflow_sets ();
10365 dump_reg_info (dump_file);
10366 dump_flow_info (dump_file, dump_flags);
10369 timevar_push (TV_VAR_TRACKING_EMIT);
10370 vt_emit_notes ();
10371 timevar_pop (TV_VAR_TRACKING_EMIT);
10373 vt_finalize ();
10374 vt_debug_insns_local (false);
10375 return 0;
10378 unsigned int
10379 variable_tracking_main (void)
10381 unsigned int ret;
10382 int save = flag_var_tracking_assignments;
10384 ret = variable_tracking_main_1 ();
10386 flag_var_tracking_assignments = save;
10388 return ret;
10391 namespace {
10393 const pass_data pass_data_variable_tracking =
10395 RTL_PASS, /* type */
10396 "vartrack", /* name */
10397 OPTGROUP_NONE, /* optinfo_flags */
10398 TV_VAR_TRACKING, /* tv_id */
10399 0, /* properties_required */
10400 0, /* properties_provided */
10401 0, /* properties_destroyed */
10402 0, /* todo_flags_start */
10403 0, /* todo_flags_finish */
10406 class pass_variable_tracking : public rtl_opt_pass
10408 public:
10409 pass_variable_tracking (gcc::context *ctxt)
10410 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10413 /* opt_pass methods: */
10414 virtual bool gate (function *)
10416 return (flag_var_tracking && !targetm.delay_vartrack);
10419 virtual unsigned int execute (function *)
10421 return variable_tracking_main ();
10424 }; // class pass_variable_tracking
10426 } // anon namespace
10428 rtl_opt_pass *
10429 make_pass_variable_tracking (gcc::context *ctxt)
10431 return new pass_variable_tracking (ctxt);