PR debug/66535
[official-gcc.git] / gcc / ifcvt.c
blob50ccaa11f0bd9361c0ce7d044b084b1f0baaaf12
1 /* If-conversion support.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "input.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "predict.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfgrtl.h"
38 #include "cfganal.h"
39 #include "cfgcleanup.h"
40 #include "basic-block.h"
41 #include "symtab.h"
42 #include "alias.h"
43 #include "tree.h"
44 #include "expmed.h"
45 #include "dojump.h"
46 #include "explow.h"
47 #include "calls.h"
48 #include "emit-rtl.h"
49 #include "varasm.h"
50 #include "stmt.h"
51 #include "expr.h"
52 #include "output.h"
53 #include "insn-codes.h"
54 #include "optabs.h"
55 #include "diagnostic-core.h"
56 #include "tm_p.h"
57 #include "cfgloop.h"
58 #include "target.h"
59 #include "tree-pass.h"
60 #include "df.h"
61 #include "dbgcnt.h"
62 #include "shrink-wrap.h"
63 #include "ifcvt.h"
65 #ifndef HAVE_incscc
66 #define HAVE_incscc 0
67 #endif
68 #ifndef HAVE_decscc
69 #define HAVE_decscc 0
70 #endif
71 #ifndef HAVE_trap
72 #define HAVE_trap 0
73 #endif
75 #ifndef MAX_CONDITIONAL_EXECUTE
76 #define MAX_CONDITIONAL_EXECUTE \
77 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
78 + 1)
79 #endif
81 #ifndef HAVE_cbranchcc4
82 #define HAVE_cbranchcc4 0
83 #endif
85 #define IFCVT_MULTIPLE_DUMPS 1
87 #define NULL_BLOCK ((basic_block) NULL)
89 /* True if after combine pass. */
90 static bool ifcvt_after_combine;
92 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
93 static int num_possible_if_blocks;
95 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
96 execution. */
97 static int num_updated_if_blocks;
99 /* # of changes made. */
100 static int num_true_changes;
102 /* Whether conditional execution changes were made. */
103 static int cond_exec_changed_p;
105 /* Forward references. */
106 static int count_bb_insns (const_basic_block);
107 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
108 static rtx_insn *first_active_insn (basic_block);
109 static rtx_insn *last_active_insn (basic_block, int);
110 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
111 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
112 static basic_block block_fallthru (basic_block);
113 static int cond_exec_process_insns (ce_if_block *, rtx_insn *, rtx, rtx, int,
114 int);
115 static rtx cond_exec_get_condition (rtx_insn *);
116 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
117 static int noce_operand_ok (const_rtx);
118 static void merge_if_block (ce_if_block *);
119 static int find_cond_trap (basic_block, edge, edge);
120 static basic_block find_if_header (basic_block, int);
121 static int block_jumps_and_fallthru_p (basic_block, basic_block);
122 static int noce_find_if_block (basic_block, edge, edge, int);
123 static int cond_exec_find_if_block (ce_if_block *);
124 static int find_if_case_1 (basic_block, edge, edge);
125 static int find_if_case_2 (basic_block, edge, edge);
126 static int dead_or_predicable (basic_block, basic_block, basic_block,
127 edge, int);
128 static void noce_emit_move_insn (rtx, rtx);
129 static rtx_insn *block_has_only_trap (basic_block);
131 /* Count the number of non-jump active insns in BB. */
133 static int
134 count_bb_insns (const_basic_block bb)
136 int count = 0;
137 rtx_insn *insn = BB_HEAD (bb);
139 while (1)
141 if (active_insn_p (insn) && !JUMP_P (insn))
142 count++;
144 if (insn == BB_END (bb))
145 break;
146 insn = NEXT_INSN (insn);
149 return count;
152 /* Determine whether the total insn_rtx_cost on non-jump insns in
153 basic block BB is less than MAX_COST. This function returns
154 false if the cost of any instruction could not be estimated.
156 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
157 as those insns are being speculated. MAX_COST is scaled with SCALE
158 plus a small fudge factor. */
160 static bool
161 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
163 int count = 0;
164 rtx_insn *insn = BB_HEAD (bb);
165 bool speed = optimize_bb_for_speed_p (bb);
167 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
168 applied to insn_rtx_cost when optimizing for size. Only do
169 this after combine because if-conversion might interfere with
170 passes before combine.
172 Use optimize_function_for_speed_p instead of the pre-defined
173 variable speed to make sure it is set to same value for all
174 basic blocks in one if-conversion transformation. */
175 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
176 scale = REG_BR_PROB_BASE;
177 /* Our branch probability/scaling factors are just estimates and don't
178 account for cases where we can get speculation for free and other
179 secondary benefits. So we fudge the scale factor to make speculating
180 appear a little more profitable when optimizing for performance. */
181 else
182 scale += REG_BR_PROB_BASE / 8;
185 max_cost *= scale;
187 while (1)
189 if (NONJUMP_INSN_P (insn))
191 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
192 if (cost == 0)
193 return false;
195 /* If this instruction is the load or set of a "stack" register,
196 such as a floating point register on x87, then the cost of
197 speculatively executing this insn may need to include
198 the additional cost of popping its result off of the
199 register stack. Unfortunately, correctly recognizing and
200 accounting for this additional overhead is tricky, so for
201 now we simply prohibit such speculative execution. */
202 #ifdef STACK_REGS
204 rtx set = single_set (insn);
205 if (set && STACK_REG_P (SET_DEST (set)))
206 return false;
208 #endif
210 count += cost;
211 if (count >= max_cost)
212 return false;
214 else if (CALL_P (insn))
215 return false;
217 if (insn == BB_END (bb))
218 break;
219 insn = NEXT_INSN (insn);
222 return true;
225 /* Return the first non-jump active insn in the basic block. */
227 static rtx_insn *
228 first_active_insn (basic_block bb)
230 rtx_insn *insn = BB_HEAD (bb);
232 if (LABEL_P (insn))
234 if (insn == BB_END (bb))
235 return NULL;
236 insn = NEXT_INSN (insn);
239 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
241 if (insn == BB_END (bb))
242 return NULL;
243 insn = NEXT_INSN (insn);
246 if (JUMP_P (insn))
247 return NULL;
249 return insn;
252 /* Return the last non-jump active (non-jump) insn in the basic block. */
254 static rtx_insn *
255 last_active_insn (basic_block bb, int skip_use_p)
257 rtx_insn *insn = BB_END (bb);
258 rtx_insn *head = BB_HEAD (bb);
260 while (NOTE_P (insn)
261 || JUMP_P (insn)
262 || DEBUG_INSN_P (insn)
263 || (skip_use_p
264 && NONJUMP_INSN_P (insn)
265 && GET_CODE (PATTERN (insn)) == USE))
267 if (insn == head)
268 return NULL;
269 insn = PREV_INSN (insn);
272 if (LABEL_P (insn))
273 return NULL;
275 return insn;
278 /* Return the active insn before INSN inside basic block CURR_BB. */
280 static rtx_insn *
281 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
283 if (!insn || insn == BB_HEAD (curr_bb))
284 return NULL;
286 while ((insn = PREV_INSN (insn)) != NULL_RTX)
288 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
289 break;
291 /* No other active insn all the way to the start of the basic block. */
292 if (insn == BB_HEAD (curr_bb))
293 return NULL;
296 return insn;
299 /* Return the active insn after INSN inside basic block CURR_BB. */
301 static rtx_insn *
302 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
304 if (!insn || insn == BB_END (curr_bb))
305 return NULL;
307 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
309 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
310 break;
312 /* No other active insn all the way to the end of the basic block. */
313 if (insn == BB_END (curr_bb))
314 return NULL;
317 return insn;
320 /* Return the basic block reached by falling though the basic block BB. */
322 static basic_block
323 block_fallthru (basic_block bb)
325 edge e = find_fallthru_edge (bb->succs);
327 return (e) ? e->dest : NULL_BLOCK;
330 /* Return true if RTXs A and B can be safely interchanged. */
332 static bool
333 rtx_interchangeable_p (const_rtx a, const_rtx b)
335 if (!rtx_equal_p (a, b))
336 return false;
338 if (GET_CODE (a) != MEM)
339 return true;
341 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
342 reference is not. Interchanging a dead type-unsafe memory reference with
343 a live type-safe one creates a live type-unsafe memory reference, in other
344 words, it makes the program illegal.
345 We check here conservatively whether the two memory references have equal
346 memory attributes. */
348 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
352 /* Go through a bunch of insns, converting them to conditional
353 execution format if possible. Return TRUE if all of the non-note
354 insns were processed. */
356 static int
357 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
358 /* if block information */rtx_insn *start,
359 /* first insn to look at */rtx end,
360 /* last insn to look at */rtx test,
361 /* conditional execution test */int prob_val,
362 /* probability of branch taken. */int mod_ok)
364 int must_be_last = FALSE;
365 rtx_insn *insn;
366 rtx xtest;
367 rtx pattern;
369 if (!start || !end)
370 return FALSE;
372 for (insn = start; ; insn = NEXT_INSN (insn))
374 /* dwarf2out can't cope with conditional prologues. */
375 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
376 return FALSE;
378 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
379 goto insn_done;
381 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
383 /* dwarf2out can't cope with conditional unwind info. */
384 if (RTX_FRAME_RELATED_P (insn))
385 return FALSE;
387 /* Remove USE insns that get in the way. */
388 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
390 /* ??? Ug. Actually unlinking the thing is problematic,
391 given what we'd have to coordinate with our callers. */
392 SET_INSN_DELETED (insn);
393 goto insn_done;
396 /* Last insn wasn't last? */
397 if (must_be_last)
398 return FALSE;
400 if (modified_in_p (test, insn))
402 if (!mod_ok)
403 return FALSE;
404 must_be_last = TRUE;
407 /* Now build the conditional form of the instruction. */
408 pattern = PATTERN (insn);
409 xtest = copy_rtx (test);
411 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
412 two conditions. */
413 if (GET_CODE (pattern) == COND_EXEC)
415 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
416 return FALSE;
418 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
419 COND_EXEC_TEST (pattern));
420 pattern = COND_EXEC_CODE (pattern);
423 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
425 /* If the machine needs to modify the insn being conditionally executed,
426 say for example to force a constant integer operand into a temp
427 register, do so here. */
428 #ifdef IFCVT_MODIFY_INSN
429 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
430 if (! pattern)
431 return FALSE;
432 #endif
434 validate_change (insn, &PATTERN (insn), pattern, 1);
436 if (CALL_P (insn) && prob_val >= 0)
437 validate_change (insn, &REG_NOTES (insn),
438 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
439 prob_val, REG_NOTES (insn)), 1);
441 insn_done:
442 if (insn == end)
443 break;
446 return TRUE;
449 /* Return the condition for a jump. Do not do any special processing. */
451 static rtx
452 cond_exec_get_condition (rtx_insn *jump)
454 rtx test_if, cond;
456 if (any_condjump_p (jump))
457 test_if = SET_SRC (pc_set (jump));
458 else
459 return NULL_RTX;
460 cond = XEXP (test_if, 0);
462 /* If this branches to JUMP_LABEL when the condition is false,
463 reverse the condition. */
464 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
465 && LABEL_REF_LABEL (XEXP (test_if, 2)) == JUMP_LABEL (jump))
467 enum rtx_code rev = reversed_comparison_code (cond, jump);
468 if (rev == UNKNOWN)
469 return NULL_RTX;
471 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
472 XEXP (cond, 1));
475 return cond;
478 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
479 to conditional execution. Return TRUE if we were successful at
480 converting the block. */
482 static int
483 cond_exec_process_if_block (ce_if_block * ce_info,
484 /* if block information */int do_multiple_p)
486 basic_block test_bb = ce_info->test_bb; /* last test block */
487 basic_block then_bb = ce_info->then_bb; /* THEN */
488 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
489 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
490 rtx_insn *then_start; /* first insn in THEN block */
491 rtx_insn *then_end; /* last insn + 1 in THEN block */
492 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
493 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
494 int max; /* max # of insns to convert. */
495 int then_mod_ok; /* whether conditional mods are ok in THEN */
496 rtx true_expr; /* test for else block insns */
497 rtx false_expr; /* test for then block insns */
498 int true_prob_val; /* probability of else block */
499 int false_prob_val; /* probability of then block */
500 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
501 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
502 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
503 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
504 int then_n_insns, else_n_insns, n_insns;
505 enum rtx_code false_code;
506 rtx note;
508 /* If test is comprised of && or || elements, and we've failed at handling
509 all of them together, just use the last test if it is the special case of
510 && elements without an ELSE block. */
511 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
513 if (else_bb || ! ce_info->and_and_p)
514 return FALSE;
516 ce_info->test_bb = test_bb = ce_info->last_test_bb;
517 ce_info->num_multiple_test_blocks = 0;
518 ce_info->num_and_and_blocks = 0;
519 ce_info->num_or_or_blocks = 0;
522 /* Find the conditional jump to the ELSE or JOIN part, and isolate
523 the test. */
524 test_expr = cond_exec_get_condition (BB_END (test_bb));
525 if (! test_expr)
526 return FALSE;
528 /* If the conditional jump is more than just a conditional jump,
529 then we can not do conditional execution conversion on this block. */
530 if (! onlyjump_p (BB_END (test_bb)))
531 return FALSE;
533 /* Collect the bounds of where we're to search, skipping any labels, jumps
534 and notes at the beginning and end of the block. Then count the total
535 number of insns and see if it is small enough to convert. */
536 then_start = first_active_insn (then_bb);
537 then_end = last_active_insn (then_bb, TRUE);
538 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
539 n_insns = then_n_insns;
540 max = MAX_CONDITIONAL_EXECUTE;
542 if (else_bb)
544 int n_matching;
546 max *= 2;
547 else_start = first_active_insn (else_bb);
548 else_end = last_active_insn (else_bb, TRUE);
549 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
550 n_insns += else_n_insns;
552 /* Look for matching sequences at the head and tail of the two blocks,
553 and limit the range of insns to be converted if possible. */
554 n_matching = flow_find_cross_jump (then_bb, else_bb,
555 &then_first_tail, &else_first_tail,
556 NULL);
557 if (then_first_tail == BB_HEAD (then_bb))
558 then_start = then_end = NULL;
559 if (else_first_tail == BB_HEAD (else_bb))
560 else_start = else_end = NULL;
562 if (n_matching > 0)
564 if (then_end)
565 then_end = find_active_insn_before (then_bb, then_first_tail);
566 if (else_end)
567 else_end = find_active_insn_before (else_bb, else_first_tail);
568 n_insns -= 2 * n_matching;
571 if (then_start
572 && else_start
573 && then_n_insns > n_matching
574 && else_n_insns > n_matching)
576 int longest_match = MIN (then_n_insns - n_matching,
577 else_n_insns - n_matching);
578 n_matching
579 = flow_find_head_matching_sequence (then_bb, else_bb,
580 &then_last_head,
581 &else_last_head,
582 longest_match);
584 if (n_matching > 0)
586 rtx_insn *insn;
588 /* We won't pass the insns in the head sequence to
589 cond_exec_process_insns, so we need to test them here
590 to make sure that they don't clobber the condition. */
591 for (insn = BB_HEAD (then_bb);
592 insn != NEXT_INSN (then_last_head);
593 insn = NEXT_INSN (insn))
594 if (!LABEL_P (insn) && !NOTE_P (insn)
595 && !DEBUG_INSN_P (insn)
596 && modified_in_p (test_expr, insn))
597 return FALSE;
600 if (then_last_head == then_end)
601 then_start = then_end = NULL;
602 if (else_last_head == else_end)
603 else_start = else_end = NULL;
605 if (n_matching > 0)
607 if (then_start)
608 then_start = find_active_insn_after (then_bb, then_last_head);
609 if (else_start)
610 else_start = find_active_insn_after (else_bb, else_last_head);
611 n_insns -= 2 * n_matching;
616 if (n_insns > max)
617 return FALSE;
619 /* Map test_expr/test_jump into the appropriate MD tests to use on
620 the conditionally executed code. */
622 true_expr = test_expr;
624 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
625 if (false_code != UNKNOWN)
626 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
627 XEXP (true_expr, 0), XEXP (true_expr, 1));
628 else
629 false_expr = NULL_RTX;
631 #ifdef IFCVT_MODIFY_TESTS
632 /* If the machine description needs to modify the tests, such as setting a
633 conditional execution register from a comparison, it can do so here. */
634 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
636 /* See if the conversion failed. */
637 if (!true_expr || !false_expr)
638 goto fail;
639 #endif
641 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
642 if (note)
644 true_prob_val = XINT (note, 0);
645 false_prob_val = REG_BR_PROB_BASE - true_prob_val;
647 else
649 true_prob_val = -1;
650 false_prob_val = -1;
653 /* If we have && or || tests, do them here. These tests are in the adjacent
654 blocks after the first block containing the test. */
655 if (ce_info->num_multiple_test_blocks > 0)
657 basic_block bb = test_bb;
658 basic_block last_test_bb = ce_info->last_test_bb;
660 if (! false_expr)
661 goto fail;
665 rtx_insn *start, *end;
666 rtx t, f;
667 enum rtx_code f_code;
669 bb = block_fallthru (bb);
670 start = first_active_insn (bb);
671 end = last_active_insn (bb, TRUE);
672 if (start
673 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
674 false_prob_val, FALSE))
675 goto fail;
677 /* If the conditional jump is more than just a conditional jump, then
678 we can not do conditional execution conversion on this block. */
679 if (! onlyjump_p (BB_END (bb)))
680 goto fail;
682 /* Find the conditional jump and isolate the test. */
683 t = cond_exec_get_condition (BB_END (bb));
684 if (! t)
685 goto fail;
687 f_code = reversed_comparison_code (t, BB_END (bb));
688 if (f_code == UNKNOWN)
689 goto fail;
691 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
692 if (ce_info->and_and_p)
694 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
695 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
697 else
699 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
700 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
703 /* If the machine description needs to modify the tests, such as
704 setting a conditional execution register from a comparison, it can
705 do so here. */
706 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
707 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
709 /* See if the conversion failed. */
710 if (!t || !f)
711 goto fail;
712 #endif
714 true_expr = t;
715 false_expr = f;
717 while (bb != last_test_bb);
720 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
721 on then THEN block. */
722 then_mod_ok = (else_bb == NULL_BLOCK);
724 /* Go through the THEN and ELSE blocks converting the insns if possible
725 to conditional execution. */
727 if (then_end
728 && (! false_expr
729 || ! cond_exec_process_insns (ce_info, then_start, then_end,
730 false_expr, false_prob_val,
731 then_mod_ok)))
732 goto fail;
734 if (else_bb && else_end
735 && ! cond_exec_process_insns (ce_info, else_start, else_end,
736 true_expr, true_prob_val, TRUE))
737 goto fail;
739 /* If we cannot apply the changes, fail. Do not go through the normal fail
740 processing, since apply_change_group will call cancel_changes. */
741 if (! apply_change_group ())
743 #ifdef IFCVT_MODIFY_CANCEL
744 /* Cancel any machine dependent changes. */
745 IFCVT_MODIFY_CANCEL (ce_info);
746 #endif
747 return FALSE;
750 #ifdef IFCVT_MODIFY_FINAL
751 /* Do any machine dependent final modifications. */
752 IFCVT_MODIFY_FINAL (ce_info);
753 #endif
755 /* Conversion succeeded. */
756 if (dump_file)
757 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
758 n_insns, (n_insns == 1) ? " was" : "s were");
760 /* Merge the blocks! If we had matching sequences, make sure to delete one
761 copy at the appropriate location first: delete the copy in the THEN branch
762 for a tail sequence so that the remaining one is executed last for both
763 branches, and delete the copy in the ELSE branch for a head sequence so
764 that the remaining one is executed first for both branches. */
765 if (then_first_tail)
767 rtx_insn *from = then_first_tail;
768 if (!INSN_P (from))
769 from = find_active_insn_after (then_bb, from);
770 delete_insn_chain (from, BB_END (then_bb), false);
772 if (else_last_head)
773 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
775 merge_if_block (ce_info);
776 cond_exec_changed_p = TRUE;
777 return TRUE;
779 fail:
780 #ifdef IFCVT_MODIFY_CANCEL
781 /* Cancel any machine dependent changes. */
782 IFCVT_MODIFY_CANCEL (ce_info);
783 #endif
785 cancel_changes (0);
786 return FALSE;
789 /* Used by noce_process_if_block to communicate with its subroutines.
791 The subroutines know that A and B may be evaluated freely. They
792 know that X is a register. They should insert new instructions
793 before cond_earliest. */
795 struct noce_if_info
797 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
798 basic_block test_bb, then_bb, else_bb, join_bb;
800 /* The jump that ends TEST_BB. */
801 rtx_insn *jump;
803 /* The jump condition. */
804 rtx cond;
806 /* New insns should be inserted before this one. */
807 rtx_insn *cond_earliest;
809 /* Insns in the THEN and ELSE block. There is always just this
810 one insns in those blocks. The insns are single_set insns.
811 If there was no ELSE block, INSN_B is the last insn before
812 COND_EARLIEST, or NULL_RTX. In the former case, the insn
813 operands are still valid, as if INSN_B was moved down below
814 the jump. */
815 rtx_insn *insn_a, *insn_b;
817 /* The SET_SRC of INSN_A and INSN_B. */
818 rtx a, b;
820 /* The SET_DEST of INSN_A. */
821 rtx x;
823 /* True if this if block is not canonical. In the canonical form of
824 if blocks, the THEN_BB is the block reached via the fallthru edge
825 from TEST_BB. For the noce transformations, we allow the symmetric
826 form as well. */
827 bool then_else_reversed;
829 /* Estimated cost of the particular branch instruction. */
830 int branch_cost;
833 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
834 static int noce_try_move (struct noce_if_info *);
835 static int noce_try_store_flag (struct noce_if_info *);
836 static int noce_try_addcc (struct noce_if_info *);
837 static int noce_try_store_flag_constants (struct noce_if_info *);
838 static int noce_try_store_flag_mask (struct noce_if_info *);
839 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
840 rtx, rtx, rtx);
841 static int noce_try_cmove (struct noce_if_info *);
842 static int noce_try_cmove_arith (struct noce_if_info *);
843 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
844 static int noce_try_minmax (struct noce_if_info *);
845 static int noce_try_abs (struct noce_if_info *);
846 static int noce_try_sign_mask (struct noce_if_info *);
848 /* Helper function for noce_try_store_flag*. */
850 static rtx
851 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
852 int normalize)
854 rtx cond = if_info->cond;
855 int cond_complex;
856 enum rtx_code code;
858 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
859 || ! general_operand (XEXP (cond, 1), VOIDmode));
861 /* If earliest == jump, or when the condition is complex, try to
862 build the store_flag insn directly. */
864 if (cond_complex)
866 rtx set = pc_set (if_info->jump);
867 cond = XEXP (SET_SRC (set), 0);
868 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
869 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
870 reversep = !reversep;
871 if (if_info->then_else_reversed)
872 reversep = !reversep;
875 if (reversep)
876 code = reversed_comparison_code (cond, if_info->jump);
877 else
878 code = GET_CODE (cond);
880 if ((if_info->cond_earliest == if_info->jump || cond_complex)
881 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
883 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
884 XEXP (cond, 1));
885 rtx set = gen_rtx_SET (x, src);
887 start_sequence ();
888 rtx_insn *insn = emit_insn (set);
890 if (recog_memoized (insn) >= 0)
892 rtx_insn *seq = get_insns ();
893 end_sequence ();
894 emit_insn (seq);
896 if_info->cond_earliest = if_info->jump;
898 return x;
901 end_sequence ();
904 /* Don't even try if the comparison operands or the mode of X are weird. */
905 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
906 return NULL_RTX;
908 return emit_store_flag (x, code, XEXP (cond, 0),
909 XEXP (cond, 1), VOIDmode,
910 (code == LTU || code == LEU
911 || code == GEU || code == GTU), normalize);
914 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
915 X is the destination/target and Y is the value to copy. */
917 static void
918 noce_emit_move_insn (rtx x, rtx y)
920 machine_mode outmode;
921 rtx outer, inner;
922 int bitpos;
924 if (GET_CODE (x) != STRICT_LOW_PART)
926 rtx_insn *seq, *insn;
927 rtx target;
928 optab ot;
930 start_sequence ();
931 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
932 otherwise construct a suitable SET pattern ourselves. */
933 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
934 ? emit_move_insn (x, y)
935 : emit_insn (gen_rtx_SET (x, y));
936 seq = get_insns ();
937 end_sequence ();
939 if (recog_memoized (insn) <= 0)
941 if (GET_CODE (x) == ZERO_EXTRACT)
943 rtx op = XEXP (x, 0);
944 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
945 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
947 /* store_bit_field expects START to be relative to
948 BYTES_BIG_ENDIAN and adjusts this value for machines with
949 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
950 invoke store_bit_field again it is necessary to have the START
951 value from the first call. */
952 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
954 if (MEM_P (op))
955 start = BITS_PER_UNIT - start - size;
956 else
958 gcc_assert (REG_P (op));
959 start = BITS_PER_WORD - start - size;
963 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
964 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
965 return;
968 switch (GET_RTX_CLASS (GET_CODE (y)))
970 case RTX_UNARY:
971 ot = code_to_optab (GET_CODE (y));
972 if (ot)
974 start_sequence ();
975 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
976 if (target != NULL_RTX)
978 if (target != x)
979 emit_move_insn (x, target);
980 seq = get_insns ();
982 end_sequence ();
984 break;
986 case RTX_BIN_ARITH:
987 case RTX_COMM_ARITH:
988 ot = code_to_optab (GET_CODE (y));
989 if (ot)
991 start_sequence ();
992 target = expand_binop (GET_MODE (y), ot,
993 XEXP (y, 0), XEXP (y, 1),
994 x, 0, OPTAB_DIRECT);
995 if (target != NULL_RTX)
997 if (target != x)
998 emit_move_insn (x, target);
999 seq = get_insns ();
1001 end_sequence ();
1003 break;
1005 default:
1006 break;
1010 emit_insn (seq);
1011 return;
1014 outer = XEXP (x, 0);
1015 inner = XEXP (outer, 0);
1016 outmode = GET_MODE (outer);
1017 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1018 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1019 0, 0, outmode, y);
1022 /* Return the CC reg if it is used in COND. */
1024 static rtx
1025 cc_in_cond (rtx cond)
1027 if (HAVE_cbranchcc4 && cond
1028 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1029 return XEXP (cond, 0);
1031 return NULL_RTX;
1034 /* Return sequence of instructions generated by if conversion. This
1035 function calls end_sequence() to end the current stream, ensures
1036 that the instructions are unshared, recognizable non-jump insns.
1037 On failure, this function returns a NULL_RTX. */
1039 static rtx_insn *
1040 end_ifcvt_sequence (struct noce_if_info *if_info)
1042 rtx_insn *insn;
1043 rtx_insn *seq = get_insns ();
1044 rtx cc = cc_in_cond (if_info->cond);
1046 set_used_flags (if_info->x);
1047 set_used_flags (if_info->cond);
1048 set_used_flags (if_info->a);
1049 set_used_flags (if_info->b);
1050 unshare_all_rtl_in_chain (seq);
1051 end_sequence ();
1053 /* Make sure that all of the instructions emitted are recognizable,
1054 and that we haven't introduced a new jump instruction.
1055 As an exercise for the reader, build a general mechanism that
1056 allows proper placement of required clobbers. */
1057 for (insn = seq; insn; insn = NEXT_INSN (insn))
1058 if (JUMP_P (insn)
1059 || recog_memoized (insn) == -1
1060 /* Make sure new generated code does not clobber CC. */
1061 || (cc && set_of (cc, insn)))
1062 return NULL;
1064 return seq;
1067 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1068 "if (a == b) x = a; else x = b" into "x = b". */
1070 static int
1071 noce_try_move (struct noce_if_info *if_info)
1073 rtx cond = if_info->cond;
1074 enum rtx_code code = GET_CODE (cond);
1075 rtx y;
1076 rtx_insn *seq;
1078 if (code != NE && code != EQ)
1079 return FALSE;
1081 /* This optimization isn't valid if either A or B could be a NaN
1082 or a signed zero. */
1083 if (HONOR_NANS (if_info->x)
1084 || HONOR_SIGNED_ZEROS (if_info->x))
1085 return FALSE;
1087 /* Check whether the operands of the comparison are A and in
1088 either order. */
1089 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1090 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1091 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1092 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1094 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1095 return FALSE;
1097 y = (code == EQ) ? if_info->a : if_info->b;
1099 /* Avoid generating the move if the source is the destination. */
1100 if (! rtx_equal_p (if_info->x, y))
1102 start_sequence ();
1103 noce_emit_move_insn (if_info->x, y);
1104 seq = end_ifcvt_sequence (if_info);
1105 if (!seq)
1106 return FALSE;
1108 emit_insn_before_setloc (seq, if_info->jump,
1109 INSN_LOCATION (if_info->insn_a));
1111 return TRUE;
1113 return FALSE;
1116 /* Convert "if (test) x = 1; else x = 0".
1118 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1119 tried in noce_try_store_flag_constants after noce_try_cmove has had
1120 a go at the conversion. */
1122 static int
1123 noce_try_store_flag (struct noce_if_info *if_info)
1125 int reversep;
1126 rtx target;
1127 rtx_insn *seq;
1129 if (CONST_INT_P (if_info->b)
1130 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1131 && if_info->a == const0_rtx)
1132 reversep = 0;
1133 else if (if_info->b == const0_rtx
1134 && CONST_INT_P (if_info->a)
1135 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1136 && (reversed_comparison_code (if_info->cond, if_info->jump)
1137 != UNKNOWN))
1138 reversep = 1;
1139 else
1140 return FALSE;
1142 start_sequence ();
1144 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1145 if (target)
1147 if (target != if_info->x)
1148 noce_emit_move_insn (if_info->x, target);
1150 seq = end_ifcvt_sequence (if_info);
1151 if (! seq)
1152 return FALSE;
1154 emit_insn_before_setloc (seq, if_info->jump,
1155 INSN_LOCATION (if_info->insn_a));
1156 return TRUE;
1158 else
1160 end_sequence ();
1161 return FALSE;
1165 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1167 static int
1168 noce_try_store_flag_constants (struct noce_if_info *if_info)
1170 rtx target;
1171 rtx_insn *seq;
1172 int reversep;
1173 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1174 int normalize, can_reverse;
1175 machine_mode mode;
1177 if (CONST_INT_P (if_info->a)
1178 && CONST_INT_P (if_info->b))
1180 mode = GET_MODE (if_info->x);
1181 ifalse = INTVAL (if_info->a);
1182 itrue = INTVAL (if_info->b);
1184 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1185 /* Make sure we can represent the difference between the two values. */
1186 if ((diff > 0)
1187 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1188 return FALSE;
1190 diff = trunc_int_for_mode (diff, mode);
1192 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1193 != UNKNOWN);
1195 reversep = 0;
1196 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1197 normalize = 0;
1198 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1199 && (STORE_FLAG_VALUE == 1
1200 || if_info->branch_cost >= 2))
1201 normalize = 1;
1202 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1203 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1204 normalize = 1, reversep = 1;
1205 else if (itrue == -1
1206 && (STORE_FLAG_VALUE == -1
1207 || if_info->branch_cost >= 2))
1208 normalize = -1;
1209 else if (ifalse == -1 && can_reverse
1210 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1211 normalize = -1, reversep = 1;
1212 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1213 || if_info->branch_cost >= 3)
1214 normalize = -1;
1215 else
1216 return FALSE;
1218 if (reversep)
1220 std::swap (itrue, ifalse);
1221 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1224 start_sequence ();
1225 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1226 if (! target)
1228 end_sequence ();
1229 return FALSE;
1232 /* if (test) x = 3; else x = 4;
1233 => x = 3 + (test == 0); */
1234 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1236 target = expand_simple_binop (mode,
1237 (diff == STORE_FLAG_VALUE
1238 ? PLUS : MINUS),
1239 gen_int_mode (ifalse, mode), target,
1240 if_info->x, 0, OPTAB_WIDEN);
1243 /* if (test) x = 8; else x = 0;
1244 => x = (test != 0) << 3; */
1245 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1247 target = expand_simple_binop (mode, ASHIFT,
1248 target, GEN_INT (tmp), if_info->x, 0,
1249 OPTAB_WIDEN);
1252 /* if (test) x = -1; else x = b;
1253 => x = -(test != 0) | b; */
1254 else if (itrue == -1)
1256 target = expand_simple_binop (mode, IOR,
1257 target, gen_int_mode (ifalse, mode),
1258 if_info->x, 0, OPTAB_WIDEN);
1261 /* if (test) x = a; else x = b;
1262 => x = (-(test != 0) & (b - a)) + a; */
1263 else
1265 target = expand_simple_binop (mode, AND,
1266 target, gen_int_mode (diff, mode),
1267 if_info->x, 0, OPTAB_WIDEN);
1268 if (target)
1269 target = expand_simple_binop (mode, PLUS,
1270 target, gen_int_mode (ifalse, mode),
1271 if_info->x, 0, OPTAB_WIDEN);
1274 if (! target)
1276 end_sequence ();
1277 return FALSE;
1280 if (target != if_info->x)
1281 noce_emit_move_insn (if_info->x, target);
1283 seq = end_ifcvt_sequence (if_info);
1284 if (!seq)
1285 return FALSE;
1287 emit_insn_before_setloc (seq, if_info->jump,
1288 INSN_LOCATION (if_info->insn_a));
1289 return TRUE;
1292 return FALSE;
1295 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1296 similarly for "foo--". */
1298 static int
1299 noce_try_addcc (struct noce_if_info *if_info)
1301 rtx target;
1302 rtx_insn *seq;
1303 int subtract, normalize;
1305 if (GET_CODE (if_info->a) == PLUS
1306 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1307 && (reversed_comparison_code (if_info->cond, if_info->jump)
1308 != UNKNOWN))
1310 rtx cond = if_info->cond;
1311 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1313 /* First try to use addcc pattern. */
1314 if (general_operand (XEXP (cond, 0), VOIDmode)
1315 && general_operand (XEXP (cond, 1), VOIDmode))
1317 start_sequence ();
1318 target = emit_conditional_add (if_info->x, code,
1319 XEXP (cond, 0),
1320 XEXP (cond, 1),
1321 VOIDmode,
1322 if_info->b,
1323 XEXP (if_info->a, 1),
1324 GET_MODE (if_info->x),
1325 (code == LTU || code == GEU
1326 || code == LEU || code == GTU));
1327 if (target)
1329 if (target != if_info->x)
1330 noce_emit_move_insn (if_info->x, target);
1332 seq = end_ifcvt_sequence (if_info);
1333 if (!seq)
1334 return FALSE;
1336 emit_insn_before_setloc (seq, if_info->jump,
1337 INSN_LOCATION (if_info->insn_a));
1338 return TRUE;
1340 end_sequence ();
1343 /* If that fails, construct conditional increment or decrement using
1344 setcc. */
1345 if (if_info->branch_cost >= 2
1346 && (XEXP (if_info->a, 1) == const1_rtx
1347 || XEXP (if_info->a, 1) == constm1_rtx))
1349 start_sequence ();
1350 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1351 subtract = 0, normalize = 0;
1352 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1353 subtract = 1, normalize = 0;
1354 else
1355 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1358 target = noce_emit_store_flag (if_info,
1359 gen_reg_rtx (GET_MODE (if_info->x)),
1360 1, normalize);
1362 if (target)
1363 target = expand_simple_binop (GET_MODE (if_info->x),
1364 subtract ? MINUS : PLUS,
1365 if_info->b, target, if_info->x,
1366 0, OPTAB_WIDEN);
1367 if (target)
1369 if (target != if_info->x)
1370 noce_emit_move_insn (if_info->x, target);
1372 seq = end_ifcvt_sequence (if_info);
1373 if (!seq)
1374 return FALSE;
1376 emit_insn_before_setloc (seq, if_info->jump,
1377 INSN_LOCATION (if_info->insn_a));
1378 return TRUE;
1380 end_sequence ();
1384 return FALSE;
1387 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1389 static int
1390 noce_try_store_flag_mask (struct noce_if_info *if_info)
1392 rtx target;
1393 rtx_insn *seq;
1394 int reversep;
1396 reversep = 0;
1397 if ((if_info->branch_cost >= 2
1398 || STORE_FLAG_VALUE == -1)
1399 && ((if_info->a == const0_rtx
1400 && rtx_equal_p (if_info->b, if_info->x))
1401 || ((reversep = (reversed_comparison_code (if_info->cond,
1402 if_info->jump)
1403 != UNKNOWN))
1404 && if_info->b == const0_rtx
1405 && rtx_equal_p (if_info->a, if_info->x))))
1407 start_sequence ();
1408 target = noce_emit_store_flag (if_info,
1409 gen_reg_rtx (GET_MODE (if_info->x)),
1410 reversep, -1);
1411 if (target)
1412 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1413 if_info->x,
1414 target, if_info->x, 0,
1415 OPTAB_WIDEN);
1417 if (target)
1419 int old_cost, new_cost, insn_cost;
1420 int speed_p;
1422 if (target != if_info->x)
1423 noce_emit_move_insn (if_info->x, target);
1425 seq = end_ifcvt_sequence (if_info);
1426 if (!seq)
1427 return FALSE;
1429 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (if_info->insn_a));
1430 insn_cost = insn_rtx_cost (PATTERN (if_info->insn_a), speed_p);
1431 old_cost = COSTS_N_INSNS (if_info->branch_cost) + insn_cost;
1432 new_cost = seq_cost (seq, speed_p);
1434 if (new_cost > old_cost)
1435 return FALSE;
1437 emit_insn_before_setloc (seq, if_info->jump,
1438 INSN_LOCATION (if_info->insn_a));
1439 return TRUE;
1442 end_sequence ();
1445 return FALSE;
1448 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1450 static rtx
1451 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1452 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1454 rtx target ATTRIBUTE_UNUSED;
1455 int unsignedp ATTRIBUTE_UNUSED;
1457 /* If earliest == jump, try to build the cmove insn directly.
1458 This is helpful when combine has created some complex condition
1459 (like for alpha's cmovlbs) that we can't hope to regenerate
1460 through the normal interface. */
1462 if (if_info->cond_earliest == if_info->jump)
1464 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1465 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1466 cond, vtrue, vfalse);
1467 rtx set = gen_rtx_SET (x, if_then_else);
1469 start_sequence ();
1470 rtx_insn *insn = emit_insn (set);
1472 if (recog_memoized (insn) >= 0)
1474 rtx_insn *seq = get_insns ();
1475 end_sequence ();
1476 emit_insn (seq);
1478 return x;
1481 end_sequence ();
1484 /* Don't even try if the comparison operands are weird
1485 except that the target supports cbranchcc4. */
1486 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1487 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1489 if (!(HAVE_cbranchcc4)
1490 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1491 || cmp_b != const0_rtx)
1492 return NULL_RTX;
1495 unsignedp = (code == LTU || code == GEU
1496 || code == LEU || code == GTU);
1498 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1499 vtrue, vfalse, GET_MODE (x),
1500 unsignedp);
1501 if (target)
1502 return target;
1504 /* We might be faced with a situation like:
1506 x = (reg:M TARGET)
1507 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1508 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1510 We can't do a conditional move in mode M, but it's possible that we
1511 could do a conditional move in mode N instead and take a subreg of
1512 the result.
1514 If we can't create new pseudos, though, don't bother. */
1515 if (reload_completed)
1516 return NULL_RTX;
1518 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1520 rtx reg_vtrue = SUBREG_REG (vtrue);
1521 rtx reg_vfalse = SUBREG_REG (vfalse);
1522 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1523 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1524 rtx promoted_target;
1526 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1527 || byte_vtrue != byte_vfalse
1528 || (SUBREG_PROMOTED_VAR_P (vtrue)
1529 != SUBREG_PROMOTED_VAR_P (vfalse))
1530 || (SUBREG_PROMOTED_GET (vtrue)
1531 != SUBREG_PROMOTED_GET (vfalse)))
1532 return NULL_RTX;
1534 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1536 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1537 VOIDmode, reg_vtrue, reg_vfalse,
1538 GET_MODE (reg_vtrue), unsignedp);
1539 /* Nope, couldn't do it in that mode either. */
1540 if (!target)
1541 return NULL_RTX;
1543 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1544 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1545 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1546 emit_move_insn (x, target);
1547 return x;
1549 else
1550 return NULL_RTX;
1553 /* Try only simple constants and registers here. More complex cases
1554 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1555 has had a go at it. */
1557 static int
1558 noce_try_cmove (struct noce_if_info *if_info)
1560 enum rtx_code code;
1561 rtx target;
1562 rtx_insn *seq;
1564 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1565 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1567 start_sequence ();
1569 code = GET_CODE (if_info->cond);
1570 target = noce_emit_cmove (if_info, if_info->x, code,
1571 XEXP (if_info->cond, 0),
1572 XEXP (if_info->cond, 1),
1573 if_info->a, if_info->b);
1575 if (target)
1577 if (target != if_info->x)
1578 noce_emit_move_insn (if_info->x, target);
1580 seq = end_ifcvt_sequence (if_info);
1581 if (!seq)
1582 return FALSE;
1584 emit_insn_before_setloc (seq, if_info->jump,
1585 INSN_LOCATION (if_info->insn_a));
1586 return TRUE;
1588 else
1590 end_sequence ();
1591 return FALSE;
1595 return FALSE;
1598 /* Try more complex cases involving conditional_move. */
1600 static int
1601 noce_try_cmove_arith (struct noce_if_info *if_info)
1603 rtx a = if_info->a;
1604 rtx b = if_info->b;
1605 rtx x = if_info->x;
1606 rtx orig_a, orig_b;
1607 rtx_insn *insn_a, *insn_b;
1608 rtx target;
1609 int is_mem = 0;
1610 int insn_cost;
1611 enum rtx_code code;
1612 rtx_insn *ifcvt_seq;
1614 /* A conditional move from two memory sources is equivalent to a
1615 conditional on their addresses followed by a load. Don't do this
1616 early because it'll screw alias analysis. Note that we've
1617 already checked for no side effects. */
1618 /* ??? FIXME: Magic number 5. */
1619 if (cse_not_expected
1620 && MEM_P (a) && MEM_P (b)
1621 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1622 && if_info->branch_cost >= 5)
1624 machine_mode address_mode = get_address_mode (a);
1626 a = XEXP (a, 0);
1627 b = XEXP (b, 0);
1628 x = gen_reg_rtx (address_mode);
1629 is_mem = 1;
1632 /* ??? We could handle this if we knew that a load from A or B could
1633 not trap or fault. This is also true if we've already loaded
1634 from the address along the path from ENTRY. */
1635 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1636 return FALSE;
1638 /* if (test) x = a + b; else x = c - d;
1639 => y = a + b;
1640 x = c - d;
1641 if (test)
1642 x = y;
1645 code = GET_CODE (if_info->cond);
1646 insn_a = if_info->insn_a;
1647 insn_b = if_info->insn_b;
1649 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1650 if insn_rtx_cost can't be estimated. */
1651 if (insn_a)
1653 insn_cost
1654 = insn_rtx_cost (PATTERN (insn_a),
1655 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1656 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1657 return FALSE;
1659 else
1660 insn_cost = 0;
1662 if (insn_b)
1664 insn_cost
1665 += insn_rtx_cost (PATTERN (insn_b),
1666 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1667 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1668 return FALSE;
1671 /* Possibly rearrange operands to make things come out more natural. */
1672 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1674 int reversep = 0;
1675 if (rtx_equal_p (b, x))
1676 reversep = 1;
1677 else if (general_operand (b, GET_MODE (b)))
1678 reversep = 1;
1680 if (reversep)
1682 code = reversed_comparison_code (if_info->cond, if_info->jump);
1683 std::swap (a, b);
1684 std::swap (insn_a, insn_b);
1688 start_sequence ();
1690 orig_a = a;
1691 orig_b = b;
1693 /* If either operand is complex, load it into a register first.
1694 The best way to do this is to copy the original insn. In this
1695 way we preserve any clobbers etc that the insn may have had.
1696 This is of course not possible in the IS_MEM case. */
1697 if (! general_operand (a, GET_MODE (a)))
1699 rtx_insn *insn;
1701 if (is_mem)
1703 rtx reg = gen_reg_rtx (GET_MODE (a));
1704 insn = emit_insn (gen_rtx_SET (reg, a));
1706 else if (! insn_a)
1707 goto end_seq_and_fail;
1708 else
1710 a = gen_reg_rtx (GET_MODE (a));
1711 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
1712 rtx set = single_set (copy_of_a);
1713 SET_DEST (set) = a;
1714 insn = emit_insn (PATTERN (copy_of_a));
1716 if (recog_memoized (insn) < 0)
1717 goto end_seq_and_fail;
1719 if (! general_operand (b, GET_MODE (b)))
1721 rtx pat;
1722 rtx_insn *last;
1723 rtx_insn *new_insn;
1725 if (is_mem)
1727 rtx reg = gen_reg_rtx (GET_MODE (b));
1728 pat = gen_rtx_SET (reg, b);
1730 else if (! insn_b)
1731 goto end_seq_and_fail;
1732 else
1734 b = gen_reg_rtx (GET_MODE (b));
1735 rtx_insn *copy_of_insn_b = as_a <rtx_insn *> (copy_rtx (insn_b));
1736 rtx set = single_set (copy_of_insn_b);
1737 SET_DEST (set) = b;
1738 pat = PATTERN (copy_of_insn_b);
1741 /* If insn to set up A clobbers any registers B depends on, try to
1742 swap insn that sets up A with the one that sets up B. If even
1743 that doesn't help, punt. */
1744 last = get_last_insn ();
1745 if (last && modified_in_p (orig_b, last))
1747 new_insn = emit_insn_before (pat, get_insns ());
1748 if (modified_in_p (orig_a, new_insn))
1749 goto end_seq_and_fail;
1751 else
1752 new_insn = emit_insn (pat);
1754 if (recog_memoized (new_insn) < 0)
1755 goto end_seq_and_fail;
1758 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1759 XEXP (if_info->cond, 1), a, b);
1761 if (! target)
1762 goto end_seq_and_fail;
1764 /* If we're handling a memory for above, emit the load now. */
1765 if (is_mem)
1767 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
1769 /* Copy over flags as appropriate. */
1770 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1771 MEM_VOLATILE_P (mem) = 1;
1772 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1773 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
1774 set_mem_align (mem,
1775 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1777 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1778 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
1780 noce_emit_move_insn (if_info->x, mem);
1782 else if (target != x)
1783 noce_emit_move_insn (x, target);
1785 ifcvt_seq = end_ifcvt_sequence (if_info);
1786 if (!ifcvt_seq)
1787 return FALSE;
1789 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
1790 INSN_LOCATION (if_info->insn_a));
1791 return TRUE;
1793 end_seq_and_fail:
1794 end_sequence ();
1795 return FALSE;
1798 /* For most cases, the simplified condition we found is the best
1799 choice, but this is not the case for the min/max/abs transforms.
1800 For these we wish to know that it is A or B in the condition. */
1802 static rtx
1803 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1804 rtx_insn **earliest)
1806 rtx cond, set;
1807 rtx_insn *insn;
1808 int reverse;
1810 /* If target is already mentioned in the known condition, return it. */
1811 if (reg_mentioned_p (target, if_info->cond))
1813 *earliest = if_info->cond_earliest;
1814 return if_info->cond;
1817 set = pc_set (if_info->jump);
1818 cond = XEXP (SET_SRC (set), 0);
1819 reverse
1820 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1821 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
1822 if (if_info->then_else_reversed)
1823 reverse = !reverse;
1825 /* If we're looking for a constant, try to make the conditional
1826 have that constant in it. There are two reasons why it may
1827 not have the constant we want:
1829 1. GCC may have needed to put the constant in a register, because
1830 the target can't compare directly against that constant. For
1831 this case, we look for a SET immediately before the comparison
1832 that puts a constant in that register.
1834 2. GCC may have canonicalized the conditional, for example
1835 replacing "if x < 4" with "if x <= 3". We can undo that (or
1836 make equivalent types of changes) to get the constants we need
1837 if they're off by one in the right direction. */
1839 if (CONST_INT_P (target))
1841 enum rtx_code code = GET_CODE (if_info->cond);
1842 rtx op_a = XEXP (if_info->cond, 0);
1843 rtx op_b = XEXP (if_info->cond, 1);
1844 rtx_insn *prev_insn;
1846 /* First, look to see if we put a constant in a register. */
1847 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1848 if (prev_insn
1849 && BLOCK_FOR_INSN (prev_insn)
1850 == BLOCK_FOR_INSN (if_info->cond_earliest)
1851 && INSN_P (prev_insn)
1852 && GET_CODE (PATTERN (prev_insn)) == SET)
1854 rtx src = find_reg_equal_equiv_note (prev_insn);
1855 if (!src)
1856 src = SET_SRC (PATTERN (prev_insn));
1857 if (CONST_INT_P (src))
1859 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1860 op_a = src;
1861 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1862 op_b = src;
1864 if (CONST_INT_P (op_a))
1866 std::swap (op_a, op_b);
1867 code = swap_condition (code);
1872 /* Now, look to see if we can get the right constant by
1873 adjusting the conditional. */
1874 if (CONST_INT_P (op_b))
1876 HOST_WIDE_INT desired_val = INTVAL (target);
1877 HOST_WIDE_INT actual_val = INTVAL (op_b);
1879 switch (code)
1881 case LT:
1882 if (actual_val == desired_val + 1)
1884 code = LE;
1885 op_b = GEN_INT (desired_val);
1887 break;
1888 case LE:
1889 if (actual_val == desired_val - 1)
1891 code = LT;
1892 op_b = GEN_INT (desired_val);
1894 break;
1895 case GT:
1896 if (actual_val == desired_val - 1)
1898 code = GE;
1899 op_b = GEN_INT (desired_val);
1901 break;
1902 case GE:
1903 if (actual_val == desired_val + 1)
1905 code = GT;
1906 op_b = GEN_INT (desired_val);
1908 break;
1909 default:
1910 break;
1914 /* If we made any changes, generate a new conditional that is
1915 equivalent to what we started with, but has the right
1916 constants in it. */
1917 if (code != GET_CODE (if_info->cond)
1918 || op_a != XEXP (if_info->cond, 0)
1919 || op_b != XEXP (if_info->cond, 1))
1921 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1922 *earliest = if_info->cond_earliest;
1923 return cond;
1927 cond = canonicalize_condition (if_info->jump, cond, reverse,
1928 earliest, target, HAVE_cbranchcc4, true);
1929 if (! cond || ! reg_mentioned_p (target, cond))
1930 return NULL;
1932 /* We almost certainly searched back to a different place.
1933 Need to re-verify correct lifetimes. */
1935 /* X may not be mentioned in the range (cond_earliest, jump]. */
1936 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1937 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1938 return NULL;
1940 /* A and B may not be modified in the range [cond_earliest, jump). */
1941 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1942 if (INSN_P (insn)
1943 && (modified_in_p (if_info->a, insn)
1944 || modified_in_p (if_info->b, insn)))
1945 return NULL;
1947 return cond;
1950 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1952 static int
1953 noce_try_minmax (struct noce_if_info *if_info)
1955 rtx cond, target;
1956 rtx_insn *earliest, *seq;
1957 enum rtx_code code, op;
1958 int unsignedp;
1960 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1961 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1962 to get the target to tell us... */
1963 if (HONOR_SIGNED_ZEROS (if_info->x)
1964 || HONOR_NANS (if_info->x))
1965 return FALSE;
1967 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1968 if (!cond)
1969 return FALSE;
1971 /* Verify the condition is of the form we expect, and canonicalize
1972 the comparison code. */
1973 code = GET_CODE (cond);
1974 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1976 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1977 return FALSE;
1979 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1981 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1982 return FALSE;
1983 code = swap_condition (code);
1985 else
1986 return FALSE;
1988 /* Determine what sort of operation this is. Note that the code is for
1989 a taken branch, so the code->operation mapping appears backwards. */
1990 switch (code)
1992 case LT:
1993 case LE:
1994 case UNLT:
1995 case UNLE:
1996 op = SMAX;
1997 unsignedp = 0;
1998 break;
1999 case GT:
2000 case GE:
2001 case UNGT:
2002 case UNGE:
2003 op = SMIN;
2004 unsignedp = 0;
2005 break;
2006 case LTU:
2007 case LEU:
2008 op = UMAX;
2009 unsignedp = 1;
2010 break;
2011 case GTU:
2012 case GEU:
2013 op = UMIN;
2014 unsignedp = 1;
2015 break;
2016 default:
2017 return FALSE;
2020 start_sequence ();
2022 target = expand_simple_binop (GET_MODE (if_info->x), op,
2023 if_info->a, if_info->b,
2024 if_info->x, unsignedp, OPTAB_WIDEN);
2025 if (! target)
2027 end_sequence ();
2028 return FALSE;
2030 if (target != if_info->x)
2031 noce_emit_move_insn (if_info->x, target);
2033 seq = end_ifcvt_sequence (if_info);
2034 if (!seq)
2035 return FALSE;
2037 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2038 if_info->cond = cond;
2039 if_info->cond_earliest = earliest;
2041 return TRUE;
2044 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2045 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2046 etc. */
2048 static int
2049 noce_try_abs (struct noce_if_info *if_info)
2051 rtx cond, target, a, b, c;
2052 rtx_insn *earliest, *seq;
2053 int negate;
2054 bool one_cmpl = false;
2056 /* Reject modes with signed zeros. */
2057 if (HONOR_SIGNED_ZEROS (if_info->x))
2058 return FALSE;
2060 /* Recognize A and B as constituting an ABS or NABS. The canonical
2061 form is a branch around the negation, taken when the object is the
2062 first operand of a comparison against 0 that evaluates to true. */
2063 a = if_info->a;
2064 b = if_info->b;
2065 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2066 negate = 0;
2067 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2069 c = a; a = b; b = c;
2070 negate = 1;
2072 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2074 negate = 0;
2075 one_cmpl = true;
2077 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2079 c = a; a = b; b = c;
2080 negate = 1;
2081 one_cmpl = true;
2083 else
2084 return FALSE;
2086 cond = noce_get_alt_condition (if_info, b, &earliest);
2087 if (!cond)
2088 return FALSE;
2090 /* Verify the condition is of the form we expect. */
2091 if (rtx_equal_p (XEXP (cond, 0), b))
2092 c = XEXP (cond, 1);
2093 else if (rtx_equal_p (XEXP (cond, 1), b))
2095 c = XEXP (cond, 0);
2096 negate = !negate;
2098 else
2099 return FALSE;
2101 /* Verify that C is zero. Search one step backward for a
2102 REG_EQUAL note or a simple source if necessary. */
2103 if (REG_P (c))
2105 rtx set;
2106 rtx_insn *insn = prev_nonnote_insn (earliest);
2107 if (insn
2108 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2109 && (set = single_set (insn))
2110 && rtx_equal_p (SET_DEST (set), c))
2112 rtx note = find_reg_equal_equiv_note (insn);
2113 if (note)
2114 c = XEXP (note, 0);
2115 else
2116 c = SET_SRC (set);
2118 else
2119 return FALSE;
2121 if (MEM_P (c)
2122 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2123 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2124 c = get_pool_constant (XEXP (c, 0));
2126 /* Work around funny ideas get_condition has wrt canonicalization.
2127 Note that these rtx constants are known to be CONST_INT, and
2128 therefore imply integer comparisons. */
2129 if (c == constm1_rtx && GET_CODE (cond) == GT)
2131 else if (c == const1_rtx && GET_CODE (cond) == LT)
2133 else if (c != CONST0_RTX (GET_MODE (b)))
2134 return FALSE;
2136 /* Determine what sort of operation this is. */
2137 switch (GET_CODE (cond))
2139 case LT:
2140 case LE:
2141 case UNLT:
2142 case UNLE:
2143 negate = !negate;
2144 break;
2145 case GT:
2146 case GE:
2147 case UNGT:
2148 case UNGE:
2149 break;
2150 default:
2151 return FALSE;
2154 start_sequence ();
2155 if (one_cmpl)
2156 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2157 if_info->x);
2158 else
2159 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2161 /* ??? It's a quandary whether cmove would be better here, especially
2162 for integers. Perhaps combine will clean things up. */
2163 if (target && negate)
2165 if (one_cmpl)
2166 target = expand_simple_unop (GET_MODE (target), NOT, target,
2167 if_info->x, 0);
2168 else
2169 target = expand_simple_unop (GET_MODE (target), NEG, target,
2170 if_info->x, 0);
2173 if (! target)
2175 end_sequence ();
2176 return FALSE;
2179 if (target != if_info->x)
2180 noce_emit_move_insn (if_info->x, target);
2182 seq = end_ifcvt_sequence (if_info);
2183 if (!seq)
2184 return FALSE;
2186 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2187 if_info->cond = cond;
2188 if_info->cond_earliest = earliest;
2190 return TRUE;
2193 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2195 static int
2196 noce_try_sign_mask (struct noce_if_info *if_info)
2198 rtx cond, t, m, c;
2199 rtx_insn *seq;
2200 machine_mode mode;
2201 enum rtx_code code;
2202 bool t_unconditional;
2204 cond = if_info->cond;
2205 code = GET_CODE (cond);
2206 m = XEXP (cond, 0);
2207 c = XEXP (cond, 1);
2209 t = NULL_RTX;
2210 if (if_info->a == const0_rtx)
2212 if ((code == LT && c == const0_rtx)
2213 || (code == LE && c == constm1_rtx))
2214 t = if_info->b;
2216 else if (if_info->b == const0_rtx)
2218 if ((code == GE && c == const0_rtx)
2219 || (code == GT && c == constm1_rtx))
2220 t = if_info->a;
2223 if (! t || side_effects_p (t))
2224 return FALSE;
2226 /* We currently don't handle different modes. */
2227 mode = GET_MODE (t);
2228 if (GET_MODE (m) != mode)
2229 return FALSE;
2231 /* This is only profitable if T is unconditionally executed/evaluated in the
2232 original insn sequence or T is cheap. The former happens if B is the
2233 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2234 INSN_B which can happen for e.g. conditional stores to memory. For the
2235 cost computation use the block TEST_BB where the evaluation will end up
2236 after the transformation. */
2237 t_unconditional =
2238 (t == if_info->b
2239 && (if_info->insn_b == NULL_RTX
2240 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2241 if (!(t_unconditional
2242 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2243 < COSTS_N_INSNS (2))))
2244 return FALSE;
2246 start_sequence ();
2247 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2248 "(signed) m >> 31" directly. This benefits targets with specialized
2249 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2250 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2251 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2252 : NULL_RTX;
2254 if (!t)
2256 end_sequence ();
2257 return FALSE;
2260 noce_emit_move_insn (if_info->x, t);
2262 seq = end_ifcvt_sequence (if_info);
2263 if (!seq)
2264 return FALSE;
2266 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2267 return TRUE;
2271 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2272 transformations. */
2274 static int
2275 noce_try_bitop (struct noce_if_info *if_info)
2277 rtx cond, x, a, result;
2278 rtx_insn *seq;
2279 machine_mode mode;
2280 enum rtx_code code;
2281 int bitnum;
2283 x = if_info->x;
2284 cond = if_info->cond;
2285 code = GET_CODE (cond);
2287 /* Check for no else condition. */
2288 if (! rtx_equal_p (x, if_info->b))
2289 return FALSE;
2291 /* Check for a suitable condition. */
2292 if (code != NE && code != EQ)
2293 return FALSE;
2294 if (XEXP (cond, 1) != const0_rtx)
2295 return FALSE;
2296 cond = XEXP (cond, 0);
2298 /* ??? We could also handle AND here. */
2299 if (GET_CODE (cond) == ZERO_EXTRACT)
2301 if (XEXP (cond, 1) != const1_rtx
2302 || !CONST_INT_P (XEXP (cond, 2))
2303 || ! rtx_equal_p (x, XEXP (cond, 0)))
2304 return FALSE;
2305 bitnum = INTVAL (XEXP (cond, 2));
2306 mode = GET_MODE (x);
2307 if (BITS_BIG_ENDIAN)
2308 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2309 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2310 return FALSE;
2312 else
2313 return FALSE;
2315 a = if_info->a;
2316 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2318 /* Check for "if (X & C) x = x op C". */
2319 if (! rtx_equal_p (x, XEXP (a, 0))
2320 || !CONST_INT_P (XEXP (a, 1))
2321 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2322 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2323 return FALSE;
2325 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2326 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2327 if (GET_CODE (a) == IOR)
2328 result = (code == NE) ? a : NULL_RTX;
2329 else if (code == NE)
2331 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2332 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2333 result = simplify_gen_binary (IOR, mode, x, result);
2335 else
2337 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2338 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2339 result = simplify_gen_binary (AND, mode, x, result);
2342 else if (GET_CODE (a) == AND)
2344 /* Check for "if (X & C) x &= ~C". */
2345 if (! rtx_equal_p (x, XEXP (a, 0))
2346 || !CONST_INT_P (XEXP (a, 1))
2347 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2348 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2349 return FALSE;
2351 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2352 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2353 result = (code == EQ) ? a : NULL_RTX;
2355 else
2356 return FALSE;
2358 if (result)
2360 start_sequence ();
2361 noce_emit_move_insn (x, result);
2362 seq = end_ifcvt_sequence (if_info);
2363 if (!seq)
2364 return FALSE;
2366 emit_insn_before_setloc (seq, if_info->jump,
2367 INSN_LOCATION (if_info->insn_a));
2369 return TRUE;
2373 /* Similar to get_condition, only the resulting condition must be
2374 valid at JUMP, instead of at EARLIEST.
2376 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2377 THEN block of the caller, and we have to reverse the condition. */
2379 static rtx
2380 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2382 rtx cond, set, tmp;
2383 bool reverse;
2385 if (! any_condjump_p (jump))
2386 return NULL_RTX;
2388 set = pc_set (jump);
2390 /* If this branches to JUMP_LABEL when the condition is false,
2391 reverse the condition. */
2392 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2393 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
2395 /* We may have to reverse because the caller's if block is not canonical,
2396 i.e. the THEN block isn't the fallthrough block for the TEST block
2397 (see find_if_header). */
2398 if (then_else_reversed)
2399 reverse = !reverse;
2401 /* If the condition variable is a register and is MODE_INT, accept it. */
2403 cond = XEXP (SET_SRC (set), 0);
2404 tmp = XEXP (cond, 0);
2405 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2406 && (GET_MODE (tmp) != BImode
2407 || !targetm.small_register_classes_for_mode_p (BImode)))
2409 *earliest = jump;
2411 if (reverse)
2412 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2413 GET_MODE (cond), tmp, XEXP (cond, 1));
2414 return cond;
2417 /* Otherwise, fall back on canonicalize_condition to do the dirty
2418 work of manipulating MODE_CC values and COMPARE rtx codes. */
2419 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2420 NULL_RTX, HAVE_cbranchcc4, true);
2422 /* We don't handle side-effects in the condition, like handling
2423 REG_INC notes and making sure no duplicate conditions are emitted. */
2424 if (tmp != NULL_RTX && side_effects_p (tmp))
2425 return NULL_RTX;
2427 return tmp;
2430 /* Return true if OP is ok for if-then-else processing. */
2432 static int
2433 noce_operand_ok (const_rtx op)
2435 if (side_effects_p (op))
2436 return FALSE;
2438 /* We special-case memories, so handle any of them with
2439 no address side effects. */
2440 if (MEM_P (op))
2441 return ! side_effects_p (XEXP (op, 0));
2443 return ! may_trap_p (op);
2446 /* Return true if a write into MEM may trap or fault. */
2448 static bool
2449 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2451 rtx addr;
2453 if (MEM_READONLY_P (mem))
2454 return true;
2456 if (may_trap_or_fault_p (mem))
2457 return true;
2459 addr = XEXP (mem, 0);
2461 /* Call target hook to avoid the effects of -fpic etc.... */
2462 addr = targetm.delegitimize_address (addr);
2464 while (addr)
2465 switch (GET_CODE (addr))
2467 case CONST:
2468 case PRE_DEC:
2469 case PRE_INC:
2470 case POST_DEC:
2471 case POST_INC:
2472 case POST_MODIFY:
2473 addr = XEXP (addr, 0);
2474 break;
2475 case LO_SUM:
2476 case PRE_MODIFY:
2477 addr = XEXP (addr, 1);
2478 break;
2479 case PLUS:
2480 if (CONST_INT_P (XEXP (addr, 1)))
2481 addr = XEXP (addr, 0);
2482 else
2483 return false;
2484 break;
2485 case LABEL_REF:
2486 return true;
2487 case SYMBOL_REF:
2488 if (SYMBOL_REF_DECL (addr)
2489 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2490 return true;
2491 return false;
2492 default:
2493 return false;
2496 return false;
2499 /* Return whether we can use store speculation for MEM. TOP_BB is the
2500 basic block above the conditional block where we are considering
2501 doing the speculative store. We look for whether MEM is set
2502 unconditionally later in the function. */
2504 static bool
2505 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2507 basic_block dominator;
2509 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2510 dominator != NULL;
2511 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2513 rtx_insn *insn;
2515 FOR_BB_INSNS (dominator, insn)
2517 /* If we see something that might be a memory barrier, we
2518 have to stop looking. Even if the MEM is set later in
2519 the function, we still don't want to set it
2520 unconditionally before the barrier. */
2521 if (INSN_P (insn)
2522 && (volatile_insn_p (PATTERN (insn))
2523 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2524 return false;
2526 if (memory_must_be_modified_in_insn_p (mem, insn))
2527 return true;
2528 if (modified_in_p (XEXP (mem, 0), insn))
2529 return false;
2534 return false;
2537 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2538 it without using conditional execution. Return TRUE if we were successful
2539 at converting the block. */
2541 static int
2542 noce_process_if_block (struct noce_if_info *if_info)
2544 basic_block test_bb = if_info->test_bb; /* test block */
2545 basic_block then_bb = if_info->then_bb; /* THEN */
2546 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2547 basic_block join_bb = if_info->join_bb; /* JOIN */
2548 rtx_insn *jump = if_info->jump;
2549 rtx cond = if_info->cond;
2550 rtx_insn *insn_a, *insn_b;
2551 rtx set_a, set_b;
2552 rtx orig_x, x, a, b;
2553 rtx cc;
2555 /* We're looking for patterns of the form
2557 (1) if (...) x = a; else x = b;
2558 (2) x = b; if (...) x = a;
2559 (3) if (...) x = a; // as if with an initial x = x.
2561 The later patterns require jumps to be more expensive.
2563 ??? For future expansion, look for multiple X in such patterns. */
2565 /* Look for one of the potential sets. */
2566 insn_a = first_active_insn (then_bb);
2567 if (! insn_a
2568 || insn_a != last_active_insn (then_bb, FALSE)
2569 || (set_a = single_set (insn_a)) == NULL_RTX)
2570 return FALSE;
2572 x = SET_DEST (set_a);
2573 a = SET_SRC (set_a);
2575 /* Look for the other potential set. Make sure we've got equivalent
2576 destinations. */
2577 /* ??? This is overconservative. Storing to two different mems is
2578 as easy as conditionally computing the address. Storing to a
2579 single mem merely requires a scratch memory to use as one of the
2580 destination addresses; often the memory immediately below the
2581 stack pointer is available for this. */
2582 set_b = NULL_RTX;
2583 if (else_bb)
2585 insn_b = first_active_insn (else_bb);
2586 if (! insn_b
2587 || insn_b != last_active_insn (else_bb, FALSE)
2588 || (set_b = single_set (insn_b)) == NULL_RTX
2589 || ! rtx_interchangeable_p (x, SET_DEST (set_b)))
2590 return FALSE;
2592 else
2594 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2595 /* We're going to be moving the evaluation of B down from above
2596 COND_EARLIEST to JUMP. Make sure the relevant data is still
2597 intact. */
2598 if (! insn_b
2599 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2600 || !NONJUMP_INSN_P (insn_b)
2601 || (set_b = single_set (insn_b)) == NULL_RTX
2602 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
2603 || ! noce_operand_ok (SET_SRC (set_b))
2604 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2605 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2606 /* Avoid extending the lifetime of hard registers on small
2607 register class machines. */
2608 || (REG_P (SET_SRC (set_b))
2609 && HARD_REGISTER_P (SET_SRC (set_b))
2610 && targetm.small_register_classes_for_mode_p
2611 (GET_MODE (SET_SRC (set_b))))
2612 /* Likewise with X. In particular this can happen when
2613 noce_get_condition looks farther back in the instruction
2614 stream than one might expect. */
2615 || reg_overlap_mentioned_p (x, cond)
2616 || reg_overlap_mentioned_p (x, a)
2617 || modified_between_p (x, insn_b, jump))
2619 insn_b = NULL;
2620 set_b = NULL_RTX;
2624 /* If x has side effects then only the if-then-else form is safe to
2625 convert. But even in that case we would need to restore any notes
2626 (such as REG_INC) at then end. That can be tricky if
2627 noce_emit_move_insn expands to more than one insn, so disable the
2628 optimization entirely for now if there are side effects. */
2629 if (side_effects_p (x))
2630 return FALSE;
2632 b = (set_b ? SET_SRC (set_b) : x);
2634 /* Only operate on register destinations, and even then avoid extending
2635 the lifetime of hard registers on small register class machines. */
2636 orig_x = x;
2637 if (!REG_P (x)
2638 || (HARD_REGISTER_P (x)
2639 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2641 if (GET_MODE (x) == BLKmode)
2642 return FALSE;
2644 if (GET_CODE (x) == ZERO_EXTRACT
2645 && (!CONST_INT_P (XEXP (x, 1))
2646 || !CONST_INT_P (XEXP (x, 2))))
2647 return FALSE;
2649 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2650 ? XEXP (x, 0) : x));
2653 /* Don't operate on sources that may trap or are volatile. */
2654 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2655 return FALSE;
2657 retry:
2658 /* Set up the info block for our subroutines. */
2659 if_info->insn_a = insn_a;
2660 if_info->insn_b = insn_b;
2661 if_info->x = x;
2662 if_info->a = a;
2663 if_info->b = b;
2665 /* Skip it if the instruction to be moved might clobber CC. */
2666 cc = cc_in_cond (cond);
2667 if (cc
2668 && (set_of (cc, insn_a)
2669 || (insn_b && set_of (cc, insn_b))))
2670 return FALSE;
2672 /* Try optimizations in some approximation of a useful order. */
2673 /* ??? Should first look to see if X is live incoming at all. If it
2674 isn't, we don't need anything but an unconditional set. */
2676 /* Look and see if A and B are really the same. Avoid creating silly
2677 cmove constructs that no one will fix up later. */
2678 if (rtx_interchangeable_p (a, b))
2680 /* If we have an INSN_B, we don't have to create any new rtl. Just
2681 move the instruction that we already have. If we don't have an
2682 INSN_B, that means that A == X, and we've got a noop move. In
2683 that case don't do anything and let the code below delete INSN_A. */
2684 if (insn_b && else_bb)
2686 rtx note;
2688 if (else_bb && insn_b == BB_END (else_bb))
2689 BB_END (else_bb) = PREV_INSN (insn_b);
2690 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2692 /* If there was a REG_EQUAL note, delete it since it may have been
2693 true due to this insn being after a jump. */
2694 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2695 remove_note (insn_b, note);
2697 insn_b = NULL;
2699 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2700 x must be executed twice. */
2701 else if (insn_b && side_effects_p (orig_x))
2702 return FALSE;
2704 x = orig_x;
2705 goto success;
2708 if (!set_b && MEM_P (orig_x))
2710 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2711 for optimizations if writing to x may trap or fault,
2712 i.e. it's a memory other than a static var or a stack slot,
2713 is misaligned on strict aligned machines or is read-only. If
2714 x is a read-only memory, then the program is valid only if we
2715 avoid the store into it. If there are stores on both the
2716 THEN and ELSE arms, then we can go ahead with the conversion;
2717 either the program is broken, or the condition is always
2718 false such that the other memory is selected. */
2719 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2720 return FALSE;
2722 /* Avoid store speculation: given "if (...) x = a" where x is a
2723 MEM, we only want to do the store if x is always set
2724 somewhere in the function. This avoids cases like
2725 if (pthread_mutex_trylock(mutex))
2726 ++global_variable;
2727 where we only want global_variable to be changed if the mutex
2728 is held. FIXME: This should ideally be expressed directly in
2729 RTL somehow. */
2730 if (!noce_can_store_speculate_p (test_bb, orig_x))
2731 return FALSE;
2734 if (noce_try_move (if_info))
2735 goto success;
2736 if (noce_try_store_flag (if_info))
2737 goto success;
2738 if (noce_try_bitop (if_info))
2739 goto success;
2740 if (noce_try_minmax (if_info))
2741 goto success;
2742 if (noce_try_abs (if_info))
2743 goto success;
2744 if (HAVE_conditional_move
2745 && noce_try_cmove (if_info))
2746 goto success;
2747 if (! targetm.have_conditional_execution ())
2749 if (noce_try_store_flag_constants (if_info))
2750 goto success;
2751 if (noce_try_addcc (if_info))
2752 goto success;
2753 if (noce_try_store_flag_mask (if_info))
2754 goto success;
2755 if (HAVE_conditional_move
2756 && noce_try_cmove_arith (if_info))
2757 goto success;
2758 if (noce_try_sign_mask (if_info))
2759 goto success;
2762 if (!else_bb && set_b)
2764 insn_b = NULL;
2765 set_b = NULL_RTX;
2766 b = orig_x;
2767 goto retry;
2770 return FALSE;
2772 success:
2774 /* If we used a temporary, fix it up now. */
2775 if (orig_x != x)
2777 rtx_insn *seq;
2779 start_sequence ();
2780 noce_emit_move_insn (orig_x, x);
2781 seq = get_insns ();
2782 set_used_flags (orig_x);
2783 unshare_all_rtl_in_chain (seq);
2784 end_sequence ();
2786 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2789 /* The original THEN and ELSE blocks may now be removed. The test block
2790 must now jump to the join block. If the test block and the join block
2791 can be merged, do so. */
2792 if (else_bb)
2794 delete_basic_block (else_bb);
2795 num_true_changes++;
2797 else
2798 remove_edge (find_edge (test_bb, join_bb));
2800 remove_edge (find_edge (then_bb, join_bb));
2801 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2802 delete_basic_block (then_bb);
2803 num_true_changes++;
2805 if (can_merge_blocks_p (test_bb, join_bb))
2807 merge_blocks (test_bb, join_bb);
2808 num_true_changes++;
2811 num_updated_if_blocks++;
2812 return TRUE;
2815 /* Check whether a block is suitable for conditional move conversion.
2816 Every insn must be a simple set of a register to a constant or a
2817 register. For each assignment, store the value in the pointer map
2818 VALS, keyed indexed by register pointer, then store the register
2819 pointer in REGS. COND is the condition we will test. */
2821 static int
2822 check_cond_move_block (basic_block bb,
2823 hash_map<rtx, rtx> *vals,
2824 vec<rtx> *regs,
2825 rtx cond)
2827 rtx_insn *insn;
2828 rtx cc = cc_in_cond (cond);
2830 /* We can only handle simple jumps at the end of the basic block.
2831 It is almost impossible to update the CFG otherwise. */
2832 insn = BB_END (bb);
2833 if (JUMP_P (insn) && !onlyjump_p (insn))
2834 return FALSE;
2836 FOR_BB_INSNS (bb, insn)
2838 rtx set, dest, src;
2840 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2841 continue;
2842 set = single_set (insn);
2843 if (!set)
2844 return FALSE;
2846 dest = SET_DEST (set);
2847 src = SET_SRC (set);
2848 if (!REG_P (dest)
2849 || (HARD_REGISTER_P (dest)
2850 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2851 return FALSE;
2853 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2854 return FALSE;
2856 if (side_effects_p (src) || side_effects_p (dest))
2857 return FALSE;
2859 if (may_trap_p (src) || may_trap_p (dest))
2860 return FALSE;
2862 /* Don't try to handle this if the source register was
2863 modified earlier in the block. */
2864 if ((REG_P (src)
2865 && vals->get (src))
2866 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2867 && vals->get (SUBREG_REG (src))))
2868 return FALSE;
2870 /* Don't try to handle this if the destination register was
2871 modified earlier in the block. */
2872 if (vals->get (dest))
2873 return FALSE;
2875 /* Don't try to handle this if the condition uses the
2876 destination register. */
2877 if (reg_overlap_mentioned_p (dest, cond))
2878 return FALSE;
2880 /* Don't try to handle this if the source register is modified
2881 later in the block. */
2882 if (!CONSTANT_P (src)
2883 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2884 return FALSE;
2886 /* Skip it if the instruction to be moved might clobber CC. */
2887 if (cc && set_of (cc, insn))
2888 return FALSE;
2890 vals->put (dest, src);
2892 regs->safe_push (dest);
2895 return TRUE;
2898 /* Given a basic block BB suitable for conditional move conversion,
2899 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2900 the register values depending on COND, emit the insns in the block as
2901 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2902 processed. The caller has started a sequence for the conversion.
2903 Return true if successful, false if something goes wrong. */
2905 static bool
2906 cond_move_convert_if_block (struct noce_if_info *if_infop,
2907 basic_block bb, rtx cond,
2908 hash_map<rtx, rtx> *then_vals,
2909 hash_map<rtx, rtx> *else_vals,
2910 bool else_block_p)
2912 enum rtx_code code;
2913 rtx_insn *insn;
2914 rtx cond_arg0, cond_arg1;
2916 code = GET_CODE (cond);
2917 cond_arg0 = XEXP (cond, 0);
2918 cond_arg1 = XEXP (cond, 1);
2920 FOR_BB_INSNS (bb, insn)
2922 rtx set, target, dest, t, e;
2924 /* ??? Maybe emit conditional debug insn? */
2925 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2926 continue;
2927 set = single_set (insn);
2928 gcc_assert (set && REG_P (SET_DEST (set)));
2930 dest = SET_DEST (set);
2932 rtx *then_slot = then_vals->get (dest);
2933 rtx *else_slot = else_vals->get (dest);
2934 t = then_slot ? *then_slot : NULL_RTX;
2935 e = else_slot ? *else_slot : NULL_RTX;
2937 if (else_block_p)
2939 /* If this register was set in the then block, we already
2940 handled this case there. */
2941 if (t)
2942 continue;
2943 t = dest;
2944 gcc_assert (e);
2946 else
2948 gcc_assert (t);
2949 if (!e)
2950 e = dest;
2953 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2954 t, e);
2955 if (!target)
2956 return false;
2958 if (target != dest)
2959 noce_emit_move_insn (dest, target);
2962 return true;
2965 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2966 it using only conditional moves. Return TRUE if we were successful at
2967 converting the block. */
2969 static int
2970 cond_move_process_if_block (struct noce_if_info *if_info)
2972 basic_block test_bb = if_info->test_bb;
2973 basic_block then_bb = if_info->then_bb;
2974 basic_block else_bb = if_info->else_bb;
2975 basic_block join_bb = if_info->join_bb;
2976 rtx_insn *jump = if_info->jump;
2977 rtx cond = if_info->cond;
2978 rtx_insn *seq, *loc_insn;
2979 rtx reg;
2980 int c;
2981 vec<rtx> then_regs = vNULL;
2982 vec<rtx> else_regs = vNULL;
2983 unsigned int i;
2984 int success_p = FALSE;
2986 /* Build a mapping for each block to the value used for each
2987 register. */
2988 hash_map<rtx, rtx> then_vals;
2989 hash_map<rtx, rtx> else_vals;
2991 /* Make sure the blocks are suitable. */
2992 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
2993 || (else_bb
2994 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
2995 goto done;
2997 /* Make sure the blocks can be used together. If the same register
2998 is set in both blocks, and is not set to a constant in both
2999 cases, then both blocks must set it to the same register. We
3000 have already verified that if it is set to a register, that the
3001 source register does not change after the assignment. Also count
3002 the number of registers set in only one of the blocks. */
3003 c = 0;
3004 FOR_EACH_VEC_ELT (then_regs, i, reg)
3006 rtx *then_slot = then_vals.get (reg);
3007 rtx *else_slot = else_vals.get (reg);
3009 gcc_checking_assert (then_slot);
3010 if (!else_slot)
3011 ++c;
3012 else
3014 rtx then_val = *then_slot;
3015 rtx else_val = *else_slot;
3016 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
3017 && !rtx_equal_p (then_val, else_val))
3018 goto done;
3022 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3023 FOR_EACH_VEC_ELT (else_regs, i, reg)
3025 gcc_checking_assert (else_vals.get (reg));
3026 if (!then_vals.get (reg))
3027 ++c;
3030 /* Make sure it is reasonable to convert this block. What matters
3031 is the number of assignments currently made in only one of the
3032 branches, since if we convert we are going to always execute
3033 them. */
3034 if (c > MAX_CONDITIONAL_EXECUTE)
3035 goto done;
3037 /* Try to emit the conditional moves. First do the then block,
3038 then do anything left in the else blocks. */
3039 start_sequence ();
3040 if (!cond_move_convert_if_block (if_info, then_bb, cond,
3041 &then_vals, &else_vals, false)
3042 || (else_bb
3043 && !cond_move_convert_if_block (if_info, else_bb, cond,
3044 &then_vals, &else_vals, true)))
3046 end_sequence ();
3047 goto done;
3049 seq = end_ifcvt_sequence (if_info);
3050 if (!seq)
3051 goto done;
3053 loc_insn = first_active_insn (then_bb);
3054 if (!loc_insn)
3056 loc_insn = first_active_insn (else_bb);
3057 gcc_assert (loc_insn);
3059 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
3061 if (else_bb)
3063 delete_basic_block (else_bb);
3064 num_true_changes++;
3066 else
3067 remove_edge (find_edge (test_bb, join_bb));
3069 remove_edge (find_edge (then_bb, join_bb));
3070 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3071 delete_basic_block (then_bb);
3072 num_true_changes++;
3074 if (can_merge_blocks_p (test_bb, join_bb))
3076 merge_blocks (test_bb, join_bb);
3077 num_true_changes++;
3080 num_updated_if_blocks++;
3082 success_p = TRUE;
3084 done:
3085 then_regs.release ();
3086 else_regs.release ();
3087 return success_p;
3091 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3092 IF-THEN-ELSE-JOIN block.
3094 If so, we'll try to convert the insns to not require the branch,
3095 using only transformations that do not require conditional execution.
3097 Return TRUE if we were successful at converting the block. */
3099 static int
3100 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
3101 int pass)
3103 basic_block then_bb, else_bb, join_bb;
3104 bool then_else_reversed = false;
3105 rtx_insn *jump;
3106 rtx cond;
3107 rtx_insn *cond_earliest;
3108 struct noce_if_info if_info;
3110 /* We only ever should get here before reload. */
3111 gcc_assert (!reload_completed);
3113 /* Recognize an IF-THEN-ELSE-JOIN block. */
3114 if (single_pred_p (then_edge->dest)
3115 && single_succ_p (then_edge->dest)
3116 && single_pred_p (else_edge->dest)
3117 && single_succ_p (else_edge->dest)
3118 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
3120 then_bb = then_edge->dest;
3121 else_bb = else_edge->dest;
3122 join_bb = single_succ (then_bb);
3124 /* Recognize an IF-THEN-JOIN block. */
3125 else if (single_pred_p (then_edge->dest)
3126 && single_succ_p (then_edge->dest)
3127 && single_succ (then_edge->dest) == else_edge->dest)
3129 then_bb = then_edge->dest;
3130 else_bb = NULL_BLOCK;
3131 join_bb = else_edge->dest;
3133 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3134 of basic blocks in cfglayout mode does not matter, so the fallthrough
3135 edge can go to any basic block (and not just to bb->next_bb, like in
3136 cfgrtl mode). */
3137 else if (single_pred_p (else_edge->dest)
3138 && single_succ_p (else_edge->dest)
3139 && single_succ (else_edge->dest) == then_edge->dest)
3141 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3142 To make this work, we have to invert the THEN and ELSE blocks
3143 and reverse the jump condition. */
3144 then_bb = else_edge->dest;
3145 else_bb = NULL_BLOCK;
3146 join_bb = single_succ (then_bb);
3147 then_else_reversed = true;
3149 else
3150 /* Not a form we can handle. */
3151 return FALSE;
3153 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3154 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3155 return FALSE;
3156 if (else_bb
3157 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3158 return FALSE;
3160 num_possible_if_blocks++;
3162 if (dump_file)
3164 fprintf (dump_file,
3165 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3166 (else_bb) ? "-ELSE" : "",
3167 pass, test_bb->index, then_bb->index);
3169 if (else_bb)
3170 fprintf (dump_file, ", else %d", else_bb->index);
3172 fprintf (dump_file, ", join %d\n", join_bb->index);
3175 /* If the conditional jump is more than just a conditional
3176 jump, then we can not do if-conversion on this block. */
3177 jump = BB_END (test_bb);
3178 if (! onlyjump_p (jump))
3179 return FALSE;
3181 /* If this is not a standard conditional jump, we can't parse it. */
3182 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3183 if (!cond)
3184 return FALSE;
3186 /* We must be comparing objects whose modes imply the size. */
3187 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3188 return FALSE;
3190 /* Initialize an IF_INFO struct to pass around. */
3191 memset (&if_info, 0, sizeof if_info);
3192 if_info.test_bb = test_bb;
3193 if_info.then_bb = then_bb;
3194 if_info.else_bb = else_bb;
3195 if_info.join_bb = join_bb;
3196 if_info.cond = cond;
3197 if_info.cond_earliest = cond_earliest;
3198 if_info.jump = jump;
3199 if_info.then_else_reversed = then_else_reversed;
3200 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3201 predictable_edge_p (then_edge));
3203 /* Do the real work. */
3205 if (noce_process_if_block (&if_info))
3206 return TRUE;
3208 if (HAVE_conditional_move
3209 && cond_move_process_if_block (&if_info))
3210 return TRUE;
3212 return FALSE;
3216 /* Merge the blocks and mark for local life update. */
3218 static void
3219 merge_if_block (struct ce_if_block * ce_info)
3221 basic_block test_bb = ce_info->test_bb; /* last test block */
3222 basic_block then_bb = ce_info->then_bb; /* THEN */
3223 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3224 basic_block join_bb = ce_info->join_bb; /* join block */
3225 basic_block combo_bb;
3227 /* All block merging is done into the lower block numbers. */
3229 combo_bb = test_bb;
3230 df_set_bb_dirty (test_bb);
3232 /* Merge any basic blocks to handle && and || subtests. Each of
3233 the blocks are on the fallthru path from the predecessor block. */
3234 if (ce_info->num_multiple_test_blocks > 0)
3236 basic_block bb = test_bb;
3237 basic_block last_test_bb = ce_info->last_test_bb;
3238 basic_block fallthru = block_fallthru (bb);
3242 bb = fallthru;
3243 fallthru = block_fallthru (bb);
3244 merge_blocks (combo_bb, bb);
3245 num_true_changes++;
3247 while (bb != last_test_bb);
3250 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3251 label, but it might if there were || tests. That label's count should be
3252 zero, and it normally should be removed. */
3254 if (then_bb)
3256 /* If THEN_BB has no successors, then there's a BARRIER after it.
3257 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
3258 is no longer needed, and in fact it is incorrect to leave it in
3259 the insn stream. */
3260 if (EDGE_COUNT (then_bb->succs) == 0
3261 && EDGE_COUNT (combo_bb->succs) > 1)
3263 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
3264 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3265 end = NEXT_INSN (end);
3267 if (end && BARRIER_P (end))
3268 delete_insn (end);
3270 merge_blocks (combo_bb, then_bb);
3271 num_true_changes++;
3274 /* The ELSE block, if it existed, had a label. That label count
3275 will almost always be zero, but odd things can happen when labels
3276 get their addresses taken. */
3277 if (else_bb)
3279 /* If ELSE_BB has no successors, then there's a BARRIER after it.
3280 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
3281 is no longer needed, and in fact it is incorrect to leave it in
3282 the insn stream. */
3283 if (EDGE_COUNT (else_bb->succs) == 0
3284 && EDGE_COUNT (combo_bb->succs) > 1)
3286 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
3287 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
3288 end = NEXT_INSN (end);
3290 if (end && BARRIER_P (end))
3291 delete_insn (end);
3293 merge_blocks (combo_bb, else_bb);
3294 num_true_changes++;
3297 /* If there was no join block reported, that means it was not adjacent
3298 to the others, and so we cannot merge them. */
3300 if (! join_bb)
3302 rtx_insn *last = BB_END (combo_bb);
3304 /* The outgoing edge for the current COMBO block should already
3305 be correct. Verify this. */
3306 if (EDGE_COUNT (combo_bb->succs) == 0)
3307 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3308 || (NONJUMP_INSN_P (last)
3309 && GET_CODE (PATTERN (last)) == TRAP_IF
3310 && (TRAP_CONDITION (PATTERN (last))
3311 == const_true_rtx)));
3313 else
3314 /* There should still be something at the end of the THEN or ELSE
3315 blocks taking us to our final destination. */
3316 gcc_assert (JUMP_P (last)
3317 || (EDGE_SUCC (combo_bb, 0)->dest
3318 == EXIT_BLOCK_PTR_FOR_FN (cfun)
3319 && CALL_P (last)
3320 && SIBLING_CALL_P (last))
3321 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3322 && can_throw_internal (last)));
3325 /* The JOIN block may have had quite a number of other predecessors too.
3326 Since we've already merged the TEST, THEN and ELSE blocks, we should
3327 have only one remaining edge from our if-then-else diamond. If there
3328 is more than one remaining edge, it must come from elsewhere. There
3329 may be zero incoming edges if the THEN block didn't actually join
3330 back up (as with a call to a non-return function). */
3331 else if (EDGE_COUNT (join_bb->preds) < 2
3332 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3334 /* We can merge the JOIN cleanly and update the dataflow try
3335 again on this pass.*/
3336 merge_blocks (combo_bb, join_bb);
3337 num_true_changes++;
3339 else
3341 /* We cannot merge the JOIN. */
3343 /* The outgoing edge for the current COMBO block should already
3344 be correct. Verify this. */
3345 gcc_assert (single_succ_p (combo_bb)
3346 && single_succ (combo_bb) == join_bb);
3348 /* Remove the jump and cruft from the end of the COMBO block. */
3349 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3350 tidy_fallthru_edge (single_succ_edge (combo_bb));
3353 num_updated_if_blocks++;
3356 /* Find a block ending in a simple IF condition and try to transform it
3357 in some way. When converting a multi-block condition, put the new code
3358 in the first such block and delete the rest. Return a pointer to this
3359 first block if some transformation was done. Return NULL otherwise. */
3361 static basic_block
3362 find_if_header (basic_block test_bb, int pass)
3364 ce_if_block ce_info;
3365 edge then_edge;
3366 edge else_edge;
3368 /* The kind of block we're looking for has exactly two successors. */
3369 if (EDGE_COUNT (test_bb->succs) != 2)
3370 return NULL;
3372 then_edge = EDGE_SUCC (test_bb, 0);
3373 else_edge = EDGE_SUCC (test_bb, 1);
3375 if (df_get_bb_dirty (then_edge->dest))
3376 return NULL;
3377 if (df_get_bb_dirty (else_edge->dest))
3378 return NULL;
3380 /* Neither edge should be abnormal. */
3381 if ((then_edge->flags & EDGE_COMPLEX)
3382 || (else_edge->flags & EDGE_COMPLEX))
3383 return NULL;
3385 /* Nor exit the loop. */
3386 if ((then_edge->flags & EDGE_LOOP_EXIT)
3387 || (else_edge->flags & EDGE_LOOP_EXIT))
3388 return NULL;
3390 /* The THEN edge is canonically the one that falls through. */
3391 if (then_edge->flags & EDGE_FALLTHRU)
3393 else if (else_edge->flags & EDGE_FALLTHRU)
3395 edge e = else_edge;
3396 else_edge = then_edge;
3397 then_edge = e;
3399 else
3400 /* Otherwise this must be a multiway branch of some sort. */
3401 return NULL;
3403 memset (&ce_info, 0, sizeof (ce_info));
3404 ce_info.test_bb = test_bb;
3405 ce_info.then_bb = then_edge->dest;
3406 ce_info.else_bb = else_edge->dest;
3407 ce_info.pass = pass;
3409 #ifdef IFCVT_MACHDEP_INIT
3410 IFCVT_MACHDEP_INIT (&ce_info);
3411 #endif
3413 if (!reload_completed
3414 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3415 goto success;
3417 if (reload_completed
3418 && targetm.have_conditional_execution ()
3419 && cond_exec_find_if_block (&ce_info))
3420 goto success;
3422 if (HAVE_trap
3423 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3424 && find_cond_trap (test_bb, then_edge, else_edge))
3425 goto success;
3427 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3428 && (reload_completed || !targetm.have_conditional_execution ()))
3430 if (find_if_case_1 (test_bb, then_edge, else_edge))
3431 goto success;
3432 if (find_if_case_2 (test_bb, then_edge, else_edge))
3433 goto success;
3436 return NULL;
3438 success:
3439 if (dump_file)
3440 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3441 /* Set this so we continue looking. */
3442 cond_exec_changed_p = TRUE;
3443 return ce_info.test_bb;
3446 /* Return true if a block has two edges, one of which falls through to the next
3447 block, and the other jumps to a specific block, so that we can tell if the
3448 block is part of an && test or an || test. Returns either -1 or the number
3449 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3451 static int
3452 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3454 edge cur_edge;
3455 int fallthru_p = FALSE;
3456 int jump_p = FALSE;
3457 rtx_insn *insn;
3458 rtx_insn *end;
3459 int n_insns = 0;
3460 edge_iterator ei;
3462 if (!cur_bb || !target_bb)
3463 return -1;
3465 /* If no edges, obviously it doesn't jump or fallthru. */
3466 if (EDGE_COUNT (cur_bb->succs) == 0)
3467 return FALSE;
3469 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3471 if (cur_edge->flags & EDGE_COMPLEX)
3472 /* Anything complex isn't what we want. */
3473 return -1;
3475 else if (cur_edge->flags & EDGE_FALLTHRU)
3476 fallthru_p = TRUE;
3478 else if (cur_edge->dest == target_bb)
3479 jump_p = TRUE;
3481 else
3482 return -1;
3485 if ((jump_p & fallthru_p) == 0)
3486 return -1;
3488 /* Don't allow calls in the block, since this is used to group && and ||
3489 together for conditional execution support. ??? we should support
3490 conditional execution support across calls for IA-64 some day, but
3491 for now it makes the code simpler. */
3492 end = BB_END (cur_bb);
3493 insn = BB_HEAD (cur_bb);
3495 while (insn != NULL_RTX)
3497 if (CALL_P (insn))
3498 return -1;
3500 if (INSN_P (insn)
3501 && !JUMP_P (insn)
3502 && !DEBUG_INSN_P (insn)
3503 && GET_CODE (PATTERN (insn)) != USE
3504 && GET_CODE (PATTERN (insn)) != CLOBBER)
3505 n_insns++;
3507 if (insn == end)
3508 break;
3510 insn = NEXT_INSN (insn);
3513 return n_insns;
3516 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3517 block. If so, we'll try to convert the insns to not require the branch.
3518 Return TRUE if we were successful at converting the block. */
3520 static int
3521 cond_exec_find_if_block (struct ce_if_block * ce_info)
3523 basic_block test_bb = ce_info->test_bb;
3524 basic_block then_bb = ce_info->then_bb;
3525 basic_block else_bb = ce_info->else_bb;
3526 basic_block join_bb = NULL_BLOCK;
3527 edge cur_edge;
3528 basic_block next;
3529 edge_iterator ei;
3531 ce_info->last_test_bb = test_bb;
3533 /* We only ever should get here after reload,
3534 and if we have conditional execution. */
3535 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3537 /* Discover if any fall through predecessors of the current test basic block
3538 were && tests (which jump to the else block) or || tests (which jump to
3539 the then block). */
3540 if (single_pred_p (test_bb)
3541 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3543 basic_block bb = single_pred (test_bb);
3544 basic_block target_bb;
3545 int max_insns = MAX_CONDITIONAL_EXECUTE;
3546 int n_insns;
3548 /* Determine if the preceding block is an && or || block. */
3549 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3551 ce_info->and_and_p = TRUE;
3552 target_bb = else_bb;
3554 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3556 ce_info->and_and_p = FALSE;
3557 target_bb = then_bb;
3559 else
3560 target_bb = NULL_BLOCK;
3562 if (target_bb && n_insns <= max_insns)
3564 int total_insns = 0;
3565 int blocks = 0;
3567 ce_info->last_test_bb = test_bb;
3569 /* Found at least one && or || block, look for more. */
3572 ce_info->test_bb = test_bb = bb;
3573 total_insns += n_insns;
3574 blocks++;
3576 if (!single_pred_p (bb))
3577 break;
3579 bb = single_pred (bb);
3580 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3582 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3584 ce_info->num_multiple_test_blocks = blocks;
3585 ce_info->num_multiple_test_insns = total_insns;
3587 if (ce_info->and_and_p)
3588 ce_info->num_and_and_blocks = blocks;
3589 else
3590 ce_info->num_or_or_blocks = blocks;
3594 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3595 other than any || blocks which jump to the THEN block. */
3596 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3597 return FALSE;
3599 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3600 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3602 if (cur_edge->flags & EDGE_COMPLEX)
3603 return FALSE;
3606 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3608 if (cur_edge->flags & EDGE_COMPLEX)
3609 return FALSE;
3612 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3613 if (EDGE_COUNT (then_bb->succs) > 0
3614 && (!single_succ_p (then_bb)
3615 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3616 || (epilogue_completed
3617 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3618 return FALSE;
3620 /* If the THEN block has no successors, conditional execution can still
3621 make a conditional call. Don't do this unless the ELSE block has
3622 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3623 Check for the last insn of the THEN block being an indirect jump, which
3624 is listed as not having any successors, but confuses the rest of the CE
3625 code processing. ??? we should fix this in the future. */
3626 if (EDGE_COUNT (then_bb->succs) == 0)
3628 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3630 rtx_insn *last_insn = BB_END (then_bb);
3632 while (last_insn
3633 && NOTE_P (last_insn)
3634 && last_insn != BB_HEAD (then_bb))
3635 last_insn = PREV_INSN (last_insn);
3637 if (last_insn
3638 && JUMP_P (last_insn)
3639 && ! simplejump_p (last_insn))
3640 return FALSE;
3642 join_bb = else_bb;
3643 else_bb = NULL_BLOCK;
3645 else
3646 return FALSE;
3649 /* If the THEN block's successor is the other edge out of the TEST block,
3650 then we have an IF-THEN combo without an ELSE. */
3651 else if (single_succ (then_bb) == else_bb)
3653 join_bb = else_bb;
3654 else_bb = NULL_BLOCK;
3657 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3658 has exactly one predecessor and one successor, and the outgoing edge
3659 is not complex, then we have an IF-THEN-ELSE combo. */
3660 else if (single_succ_p (else_bb)
3661 && single_succ (then_bb) == single_succ (else_bb)
3662 && single_pred_p (else_bb)
3663 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3664 && !(epilogue_completed
3665 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3666 join_bb = single_succ (else_bb);
3668 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3669 else
3670 return FALSE;
3672 num_possible_if_blocks++;
3674 if (dump_file)
3676 fprintf (dump_file,
3677 "\nIF-THEN%s block found, pass %d, start block %d "
3678 "[insn %d], then %d [%d]",
3679 (else_bb) ? "-ELSE" : "",
3680 ce_info->pass,
3681 test_bb->index,
3682 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3683 then_bb->index,
3684 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3686 if (else_bb)
3687 fprintf (dump_file, ", else %d [%d]",
3688 else_bb->index,
3689 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3691 fprintf (dump_file, ", join %d [%d]",
3692 join_bb->index,
3693 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3695 if (ce_info->num_multiple_test_blocks > 0)
3696 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3697 ce_info->num_multiple_test_blocks,
3698 (ce_info->and_and_p) ? "&&" : "||",
3699 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3700 ce_info->last_test_bb->index,
3701 ((BB_HEAD (ce_info->last_test_bb))
3702 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3703 : -1));
3705 fputc ('\n', dump_file);
3708 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3709 first condition for free, since we've already asserted that there's a
3710 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3711 we checked the FALLTHRU flag, those are already adjacent to the last IF
3712 block. */
3713 /* ??? As an enhancement, move the ELSE block. Have to deal with
3714 BLOCK notes, if by no other means than backing out the merge if they
3715 exist. Sticky enough I don't want to think about it now. */
3716 next = then_bb;
3717 if (else_bb && (next = next->next_bb) != else_bb)
3718 return FALSE;
3719 if ((next = next->next_bb) != join_bb
3720 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3722 if (else_bb)
3723 join_bb = NULL;
3724 else
3725 return FALSE;
3728 /* Do the real work. */
3730 ce_info->else_bb = else_bb;
3731 ce_info->join_bb = join_bb;
3733 /* If we have && and || tests, try to first handle combining the && and ||
3734 tests into the conditional code, and if that fails, go back and handle
3735 it without the && and ||, which at present handles the && case if there
3736 was no ELSE block. */
3737 if (cond_exec_process_if_block (ce_info, TRUE))
3738 return TRUE;
3740 if (ce_info->num_multiple_test_blocks)
3742 cancel_changes (0);
3744 if (cond_exec_process_if_block (ce_info, FALSE))
3745 return TRUE;
3748 return FALSE;
3751 /* Convert a branch over a trap, or a branch
3752 to a trap, into a conditional trap. */
3754 static int
3755 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3757 basic_block then_bb = then_edge->dest;
3758 basic_block else_bb = else_edge->dest;
3759 basic_block other_bb, trap_bb;
3760 rtx_insn *trap, *jump;
3761 rtx cond;
3762 rtx_insn *cond_earliest;
3763 enum rtx_code code;
3765 /* Locate the block with the trap instruction. */
3766 /* ??? While we look for no successors, we really ought to allow
3767 EH successors. Need to fix merge_if_block for that to work. */
3768 if ((trap = block_has_only_trap (then_bb)) != NULL)
3769 trap_bb = then_bb, other_bb = else_bb;
3770 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3771 trap_bb = else_bb, other_bb = then_bb;
3772 else
3773 return FALSE;
3775 if (dump_file)
3777 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3778 test_bb->index, trap_bb->index);
3781 /* If this is not a standard conditional jump, we can't parse it. */
3782 jump = BB_END (test_bb);
3783 cond = noce_get_condition (jump, &cond_earliest, false);
3784 if (! cond)
3785 return FALSE;
3787 /* If the conditional jump is more than just a conditional jump, then
3788 we can not do if-conversion on this block. */
3789 if (! onlyjump_p (jump))
3790 return FALSE;
3792 /* We must be comparing objects whose modes imply the size. */
3793 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3794 return FALSE;
3796 /* Reverse the comparison code, if necessary. */
3797 code = GET_CODE (cond);
3798 if (then_bb == trap_bb)
3800 code = reversed_comparison_code (cond, jump);
3801 if (code == UNKNOWN)
3802 return FALSE;
3805 /* Attempt to generate the conditional trap. */
3806 rtx_insn *seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3807 copy_rtx (XEXP (cond, 1)),
3808 TRAP_CODE (PATTERN (trap)));
3809 if (seq == NULL)
3810 return FALSE;
3812 /* Emit the new insns before cond_earliest. */
3813 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3815 /* Delete the trap block if possible. */
3816 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3817 df_set_bb_dirty (test_bb);
3818 df_set_bb_dirty (then_bb);
3819 df_set_bb_dirty (else_bb);
3821 if (EDGE_COUNT (trap_bb->preds) == 0)
3823 delete_basic_block (trap_bb);
3824 num_true_changes++;
3827 /* Wire together the blocks again. */
3828 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3829 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3830 else if (trap_bb == then_bb)
3832 rtx lab;
3834 lab = JUMP_LABEL (jump);
3835 rtx_jump_insn *newjump = emit_jump_insn_after (gen_jump (lab), jump);
3836 LABEL_NUSES (lab) += 1;
3837 JUMP_LABEL (newjump) = lab;
3838 emit_barrier_after (newjump);
3840 delete_insn (jump);
3842 if (can_merge_blocks_p (test_bb, other_bb))
3844 merge_blocks (test_bb, other_bb);
3845 num_true_changes++;
3848 num_updated_if_blocks++;
3849 return TRUE;
3852 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3853 return it. */
3855 static rtx_insn *
3856 block_has_only_trap (basic_block bb)
3858 rtx_insn *trap;
3860 /* We're not the exit block. */
3861 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3862 return NULL;
3864 /* The block must have no successors. */
3865 if (EDGE_COUNT (bb->succs) > 0)
3866 return NULL;
3868 /* The only instruction in the THEN block must be the trap. */
3869 trap = first_active_insn (bb);
3870 if (! (trap == BB_END (bb)
3871 && GET_CODE (PATTERN (trap)) == TRAP_IF
3872 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3873 return NULL;
3875 return trap;
3878 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3879 transformable, but not necessarily the other. There need be no
3880 JOIN block.
3882 Return TRUE if we were successful at converting the block.
3884 Cases we'd like to look at:
3887 if (test) goto over; // x not live
3888 x = a;
3889 goto label;
3890 over:
3892 becomes
3894 x = a;
3895 if (! test) goto label;
3898 if (test) goto E; // x not live
3899 x = big();
3900 goto L;
3902 x = b;
3903 goto M;
3905 becomes
3907 x = b;
3908 if (test) goto M;
3909 x = big();
3910 goto L;
3912 (3) // This one's really only interesting for targets that can do
3913 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3914 // it results in multiple branches on a cache line, which often
3915 // does not sit well with predictors.
3917 if (test1) goto E; // predicted not taken
3918 x = a;
3919 if (test2) goto F;
3922 x = b;
3925 becomes
3927 x = a;
3928 if (test1) goto E;
3929 if (test2) goto F;
3931 Notes:
3933 (A) Don't do (2) if the branch is predicted against the block we're
3934 eliminating. Do it anyway if we can eliminate a branch; this requires
3935 that the sole successor of the eliminated block postdominate the other
3936 side of the if.
3938 (B) With CE, on (3) we can steal from both sides of the if, creating
3940 if (test1) x = a;
3941 if (!test1) x = b;
3942 if (test1) goto J;
3943 if (test2) goto F;
3947 Again, this is most useful if J postdominates.
3949 (C) CE substitutes for helpful life information.
3951 (D) These heuristics need a lot of work. */
3953 /* Tests for case 1 above. */
3955 static int
3956 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3958 basic_block then_bb = then_edge->dest;
3959 basic_block else_bb = else_edge->dest;
3960 basic_block new_bb;
3961 int then_bb_index, then_prob;
3962 rtx else_target = NULL_RTX;
3964 /* If we are partitioning hot/cold basic blocks, we don't want to
3965 mess up unconditional or indirect jumps that cross between hot
3966 and cold sections.
3968 Basic block partitioning may result in some jumps that appear to
3969 be optimizable (or blocks that appear to be mergeable), but which really
3970 must be left untouched (they are required to make it safely across
3971 partition boundaries). See the comments at the top of
3972 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3974 if ((BB_END (then_bb)
3975 && JUMP_P (BB_END (then_bb))
3976 && CROSSING_JUMP_P (BB_END (then_bb)))
3977 || (BB_END (test_bb)
3978 && JUMP_P (BB_END (test_bb))
3979 && CROSSING_JUMP_P (BB_END (test_bb)))
3980 || (BB_END (else_bb)
3981 && JUMP_P (BB_END (else_bb))
3982 && CROSSING_JUMP_P (BB_END (else_bb))))
3983 return FALSE;
3985 /* THEN has one successor. */
3986 if (!single_succ_p (then_bb))
3987 return FALSE;
3989 /* THEN does not fall through, but is not strange either. */
3990 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3991 return FALSE;
3993 /* THEN has one predecessor. */
3994 if (!single_pred_p (then_bb))
3995 return FALSE;
3997 /* THEN must do something. */
3998 if (forwarder_block_p (then_bb))
3999 return FALSE;
4001 num_possible_if_blocks++;
4002 if (dump_file)
4003 fprintf (dump_file,
4004 "\nIF-CASE-1 found, start %d, then %d\n",
4005 test_bb->index, then_bb->index);
4007 if (then_edge->probability)
4008 then_prob = REG_BR_PROB_BASE - then_edge->probability;
4009 else
4010 then_prob = REG_BR_PROB_BASE / 2;
4012 /* We're speculating from the THEN path, we want to make sure the cost
4013 of speculation is within reason. */
4014 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
4015 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
4016 predictable_edge_p (then_edge)))))
4017 return FALSE;
4019 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4021 rtx_insn *jump = BB_END (else_edge->src);
4022 gcc_assert (JUMP_P (jump));
4023 else_target = JUMP_LABEL (jump);
4026 /* Registers set are dead, or are predicable. */
4027 if (! dead_or_predicable (test_bb, then_bb, else_bb,
4028 single_succ_edge (then_bb), 1))
4029 return FALSE;
4031 /* Conversion went ok, including moving the insns and fixing up the
4032 jump. Adjust the CFG to match. */
4034 /* We can avoid creating a new basic block if then_bb is immediately
4035 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4036 through to else_bb. */
4038 if (then_bb->next_bb == else_bb
4039 && then_bb->prev_bb == test_bb
4040 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4042 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
4043 new_bb = 0;
4045 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4046 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
4047 else_bb, else_target);
4048 else
4049 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
4050 else_bb);
4052 df_set_bb_dirty (test_bb);
4053 df_set_bb_dirty (else_bb);
4055 then_bb_index = then_bb->index;
4056 delete_basic_block (then_bb);
4058 /* Make rest of code believe that the newly created block is the THEN_BB
4059 block we removed. */
4060 if (new_bb)
4062 df_bb_replace (then_bb_index, new_bb);
4063 /* This should have been done above via force_nonfallthru_and_redirect
4064 (possibly called from redirect_edge_and_branch_force). */
4065 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
4068 num_true_changes++;
4069 num_updated_if_blocks++;
4071 return TRUE;
4074 /* Test for case 2 above. */
4076 static int
4077 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
4079 basic_block then_bb = then_edge->dest;
4080 basic_block else_bb = else_edge->dest;
4081 edge else_succ;
4082 int then_prob, else_prob;
4084 /* We do not want to speculate (empty) loop latches. */
4085 if (current_loops
4086 && else_bb->loop_father->latch == else_bb)
4087 return FALSE;
4089 /* If we are partitioning hot/cold basic blocks, we don't want to
4090 mess up unconditional or indirect jumps that cross between hot
4091 and cold sections.
4093 Basic block partitioning may result in some jumps that appear to
4094 be optimizable (or blocks that appear to be mergeable), but which really
4095 must be left untouched (they are required to make it safely across
4096 partition boundaries). See the comments at the top of
4097 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4099 if ((BB_END (then_bb)
4100 && JUMP_P (BB_END (then_bb))
4101 && CROSSING_JUMP_P (BB_END (then_bb)))
4102 || (BB_END (test_bb)
4103 && JUMP_P (BB_END (test_bb))
4104 && CROSSING_JUMP_P (BB_END (test_bb)))
4105 || (BB_END (else_bb)
4106 && JUMP_P (BB_END (else_bb))
4107 && CROSSING_JUMP_P (BB_END (else_bb))))
4108 return FALSE;
4110 /* ELSE has one successor. */
4111 if (!single_succ_p (else_bb))
4112 return FALSE;
4113 else
4114 else_succ = single_succ_edge (else_bb);
4116 /* ELSE outgoing edge is not complex. */
4117 if (else_succ->flags & EDGE_COMPLEX)
4118 return FALSE;
4120 /* ELSE has one predecessor. */
4121 if (!single_pred_p (else_bb))
4122 return FALSE;
4124 /* THEN is not EXIT. */
4125 if (then_bb->index < NUM_FIXED_BLOCKS)
4126 return FALSE;
4128 if (else_edge->probability)
4130 else_prob = else_edge->probability;
4131 then_prob = REG_BR_PROB_BASE - else_prob;
4133 else
4135 else_prob = REG_BR_PROB_BASE / 2;
4136 then_prob = REG_BR_PROB_BASE / 2;
4139 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4140 if (else_prob > then_prob)
4142 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
4143 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
4144 else_succ->dest))
4146 else
4147 return FALSE;
4149 num_possible_if_blocks++;
4150 if (dump_file)
4151 fprintf (dump_file,
4152 "\nIF-CASE-2 found, start %d, else %d\n",
4153 test_bb->index, else_bb->index);
4155 /* We're speculating from the ELSE path, we want to make sure the cost
4156 of speculation is within reason. */
4157 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4158 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4159 predictable_edge_p (else_edge)))))
4160 return FALSE;
4162 /* Registers set are dead, or are predicable. */
4163 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4164 return FALSE;
4166 /* Conversion went ok, including moving the insns and fixing up the
4167 jump. Adjust the CFG to match. */
4169 df_set_bb_dirty (test_bb);
4170 df_set_bb_dirty (then_bb);
4171 delete_basic_block (else_bb);
4173 num_true_changes++;
4174 num_updated_if_blocks++;
4176 /* ??? We may now fallthru from one of THEN's successors into a join
4177 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4179 return TRUE;
4182 /* Used by the code above to perform the actual rtl transformations.
4183 Return TRUE if successful.
4185 TEST_BB is the block containing the conditional branch. MERGE_BB
4186 is the block containing the code to manipulate. DEST_EDGE is an
4187 edge representing a jump to the join block; after the conversion,
4188 TEST_BB should be branching to its destination.
4189 REVERSEP is true if the sense of the branch should be reversed. */
4191 static int
4192 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4193 basic_block other_bb, edge dest_edge, int reversep)
4195 basic_block new_dest = dest_edge->dest;
4196 rtx_insn *head, *end, *jump;
4197 rtx_insn *earliest = NULL;
4198 rtx old_dest;
4199 bitmap merge_set = NULL;
4200 /* Number of pending changes. */
4201 int n_validated_changes = 0;
4202 rtx new_dest_label = NULL_RTX;
4204 jump = BB_END (test_bb);
4206 /* Find the extent of the real code in the merge block. */
4207 head = BB_HEAD (merge_bb);
4208 end = BB_END (merge_bb);
4210 while (DEBUG_INSN_P (end) && end != head)
4211 end = PREV_INSN (end);
4213 /* If merge_bb ends with a tablejump, predicating/moving insn's
4214 into test_bb and then deleting merge_bb will result in the jumptable
4215 that follows merge_bb being removed along with merge_bb and then we
4216 get an unresolved reference to the jumptable. */
4217 if (tablejump_p (end, NULL, NULL))
4218 return FALSE;
4220 if (LABEL_P (head))
4221 head = NEXT_INSN (head);
4222 while (DEBUG_INSN_P (head) && head != end)
4223 head = NEXT_INSN (head);
4224 if (NOTE_P (head))
4226 if (head == end)
4228 head = end = NULL;
4229 goto no_body;
4231 head = NEXT_INSN (head);
4232 while (DEBUG_INSN_P (head) && head != end)
4233 head = NEXT_INSN (head);
4236 if (JUMP_P (end))
4238 if (!onlyjump_p (end))
4239 return FALSE;
4240 if (head == end)
4242 head = end = NULL;
4243 goto no_body;
4245 end = PREV_INSN (end);
4246 while (DEBUG_INSN_P (end) && end != head)
4247 end = PREV_INSN (end);
4250 /* Don't move frame-related insn across the conditional branch. This
4251 can lead to one of the paths of the branch having wrong unwind info. */
4252 if (epilogue_completed)
4254 rtx_insn *insn = head;
4255 while (1)
4257 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
4258 return FALSE;
4259 if (insn == end)
4260 break;
4261 insn = NEXT_INSN (insn);
4265 /* Disable handling dead code by conditional execution if the machine needs
4266 to do anything funny with the tests, etc. */
4267 #ifndef IFCVT_MODIFY_TESTS
4268 if (targetm.have_conditional_execution ())
4270 /* In the conditional execution case, we have things easy. We know
4271 the condition is reversible. We don't have to check life info
4272 because we're going to conditionally execute the code anyway.
4273 All that's left is making sure the insns involved can actually
4274 be predicated. */
4276 rtx cond;
4278 cond = cond_exec_get_condition (jump);
4279 if (! cond)
4280 return FALSE;
4282 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4283 int prob_val = (note ? XINT (note, 0) : -1);
4285 if (reversep)
4287 enum rtx_code rev = reversed_comparison_code (cond, jump);
4288 if (rev == UNKNOWN)
4289 return FALSE;
4290 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4291 XEXP (cond, 1));
4292 if (prob_val >= 0)
4293 prob_val = REG_BR_PROB_BASE - prob_val;
4296 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4297 && verify_changes (0))
4298 n_validated_changes = num_validated_changes ();
4299 else
4300 cancel_changes (0);
4302 earliest = jump;
4304 #endif
4306 /* If we allocated new pseudos (e.g. in the conditional move
4307 expander called from noce_emit_cmove), we must resize the
4308 array first. */
4309 if (max_regno < max_reg_num ())
4310 max_regno = max_reg_num ();
4312 /* Try the NCE path if the CE path did not result in any changes. */
4313 if (n_validated_changes == 0)
4315 rtx cond;
4316 rtx_insn *insn;
4317 regset live;
4318 bool success;
4320 /* In the non-conditional execution case, we have to verify that there
4321 are no trapping operations, no calls, no references to memory, and
4322 that any registers modified are dead at the branch site. */
4324 if (!any_condjump_p (jump))
4325 return FALSE;
4327 /* Find the extent of the conditional. */
4328 cond = noce_get_condition (jump, &earliest, false);
4329 if (!cond)
4330 return FALSE;
4332 live = BITMAP_ALLOC (&reg_obstack);
4333 simulate_backwards_to_point (merge_bb, live, end);
4334 success = can_move_insns_across (head, end, earliest, jump,
4335 merge_bb, live,
4336 df_get_live_in (other_bb), NULL);
4337 BITMAP_FREE (live);
4338 if (!success)
4339 return FALSE;
4341 /* Collect the set of registers set in MERGE_BB. */
4342 merge_set = BITMAP_ALLOC (&reg_obstack);
4344 FOR_BB_INSNS (merge_bb, insn)
4345 if (NONDEBUG_INSN_P (insn))
4346 df_simulate_find_defs (insn, merge_set);
4348 /* If shrink-wrapping, disable this optimization when test_bb is
4349 the first basic block and merge_bb exits. The idea is to not
4350 move code setting up a return register as that may clobber a
4351 register used to pass function parameters, which then must be
4352 saved in caller-saved regs. A caller-saved reg requires the
4353 prologue, killing a shrink-wrap opportunity. */
4354 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
4355 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
4356 && single_succ_p (new_dest)
4357 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
4358 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4360 regset return_regs;
4361 unsigned int i;
4363 return_regs = BITMAP_ALLOC (&reg_obstack);
4365 /* Start off with the intersection of regs used to pass
4366 params and regs used to return values. */
4367 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4368 if (FUNCTION_ARG_REGNO_P (i)
4369 && targetm.calls.function_value_regno_p (i))
4370 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4372 bitmap_and_into (return_regs,
4373 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4374 bitmap_and_into (return_regs,
4375 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
4376 if (!bitmap_empty_p (return_regs))
4378 FOR_BB_INSNS_REVERSE (new_dest, insn)
4379 if (NONDEBUG_INSN_P (insn))
4381 df_ref def;
4383 /* If this insn sets any reg in return_regs, add all
4384 reg uses to the set of regs we're interested in. */
4385 FOR_EACH_INSN_DEF (def, insn)
4386 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
4388 df_simulate_uses (insn, return_regs);
4389 break;
4392 if (bitmap_intersect_p (merge_set, return_regs))
4394 BITMAP_FREE (return_regs);
4395 BITMAP_FREE (merge_set);
4396 return FALSE;
4399 BITMAP_FREE (return_regs);
4403 no_body:
4404 /* We don't want to use normal invert_jump or redirect_jump because
4405 we don't want to delete_insn called. Also, we want to do our own
4406 change group management. */
4408 old_dest = JUMP_LABEL (jump);
4409 if (other_bb != new_dest)
4411 if (!any_condjump_p (jump))
4412 goto cancel;
4414 if (JUMP_P (BB_END (dest_edge->src)))
4415 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4416 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4417 new_dest_label = ret_rtx;
4418 else
4419 new_dest_label = block_label (new_dest);
4421 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
4422 if (reversep
4423 ? ! invert_jump_1 (jump_insn, new_dest_label)
4424 : ! redirect_jump_1 (jump_insn, new_dest_label))
4425 goto cancel;
4428 if (verify_changes (n_validated_changes))
4429 confirm_change_group ();
4430 else
4431 goto cancel;
4433 if (other_bb != new_dest)
4435 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
4436 0, reversep);
4438 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4439 if (reversep)
4441 std::swap (BRANCH_EDGE (test_bb)->count,
4442 FALLTHRU_EDGE (test_bb)->count);
4443 std::swap (BRANCH_EDGE (test_bb)->probability,
4444 FALLTHRU_EDGE (test_bb)->probability);
4445 update_br_prob_note (test_bb);
4449 /* Move the insns out of MERGE_BB to before the branch. */
4450 if (head != NULL)
4452 rtx_insn *insn;
4454 if (end == BB_END (merge_bb))
4455 BB_END (merge_bb) = PREV_INSN (head);
4457 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4458 notes being moved might become invalid. */
4459 insn = head;
4462 rtx note;
4464 if (! INSN_P (insn))
4465 continue;
4466 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4467 if (! note)
4468 continue;
4469 remove_note (insn, note);
4470 } while (insn != end && (insn = NEXT_INSN (insn)));
4472 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4473 notes referring to the registers being set might become invalid. */
4474 if (merge_set)
4476 unsigned i;
4477 bitmap_iterator bi;
4479 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4480 remove_reg_equal_equiv_notes_for_regno (i);
4482 BITMAP_FREE (merge_set);
4485 reorder_insns (head, end, PREV_INSN (earliest));
4488 /* Remove the jump and edge if we can. */
4489 if (other_bb == new_dest)
4491 delete_insn (jump);
4492 remove_edge (BRANCH_EDGE (test_bb));
4493 /* ??? Can't merge blocks here, as then_bb is still in use.
4494 At minimum, the merge will get done just before bb-reorder. */
4497 return TRUE;
4499 cancel:
4500 cancel_changes (0);
4502 if (merge_set)
4503 BITMAP_FREE (merge_set);
4505 return FALSE;
4508 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
4509 we are after combine pass. */
4511 static void
4512 if_convert (bool after_combine)
4514 basic_block bb;
4515 int pass;
4517 if (optimize == 1)
4519 df_live_add_problem ();
4520 df_live_set_all_dirty ();
4523 /* Record whether we are after combine pass. */
4524 ifcvt_after_combine = after_combine;
4525 num_possible_if_blocks = 0;
4526 num_updated_if_blocks = 0;
4527 num_true_changes = 0;
4529 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4530 mark_loop_exit_edges ();
4531 loop_optimizer_finalize ();
4532 free_dominance_info (CDI_DOMINATORS);
4534 /* Compute postdominators. */
4535 calculate_dominance_info (CDI_POST_DOMINATORS);
4537 df_set_flags (DF_LR_RUN_DCE);
4539 /* Go through each of the basic blocks looking for things to convert. If we
4540 have conditional execution, we make multiple passes to allow us to handle
4541 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4542 pass = 0;
4545 df_analyze ();
4546 /* Only need to do dce on the first pass. */
4547 df_clear_flags (DF_LR_RUN_DCE);
4548 cond_exec_changed_p = FALSE;
4549 pass++;
4551 #ifdef IFCVT_MULTIPLE_DUMPS
4552 if (dump_file && pass > 1)
4553 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4554 #endif
4556 FOR_EACH_BB_FN (bb, cfun)
4558 basic_block new_bb;
4559 while (!df_get_bb_dirty (bb)
4560 && (new_bb = find_if_header (bb, pass)) != NULL)
4561 bb = new_bb;
4564 #ifdef IFCVT_MULTIPLE_DUMPS
4565 if (dump_file && cond_exec_changed_p)
4566 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4567 #endif
4569 while (cond_exec_changed_p);
4571 #ifdef IFCVT_MULTIPLE_DUMPS
4572 if (dump_file)
4573 fprintf (dump_file, "\n\n========== no more changes\n");
4574 #endif
4576 free_dominance_info (CDI_POST_DOMINATORS);
4578 if (dump_file)
4579 fflush (dump_file);
4581 clear_aux_for_blocks ();
4583 /* If we allocated new pseudos, we must resize the array for sched1. */
4584 if (max_regno < max_reg_num ())
4585 max_regno = max_reg_num ();
4587 /* Write the final stats. */
4588 if (dump_file && num_possible_if_blocks > 0)
4590 fprintf (dump_file,
4591 "\n%d possible IF blocks searched.\n",
4592 num_possible_if_blocks);
4593 fprintf (dump_file,
4594 "%d IF blocks converted.\n",
4595 num_updated_if_blocks);
4596 fprintf (dump_file,
4597 "%d true changes made.\n\n\n",
4598 num_true_changes);
4601 if (optimize == 1)
4602 df_remove_problem (df_live);
4604 #ifdef ENABLE_CHECKING
4605 verify_flow_info ();
4606 #endif
4609 /* If-conversion and CFG cleanup. */
4610 static unsigned int
4611 rest_of_handle_if_conversion (void)
4613 if (flag_if_conversion)
4615 if (dump_file)
4617 dump_reg_info (dump_file);
4618 dump_flow_info (dump_file, dump_flags);
4620 cleanup_cfg (CLEANUP_EXPENSIVE);
4621 if_convert (false);
4624 cleanup_cfg (0);
4625 return 0;
4628 namespace {
4630 const pass_data pass_data_rtl_ifcvt =
4632 RTL_PASS, /* type */
4633 "ce1", /* name */
4634 OPTGROUP_NONE, /* optinfo_flags */
4635 TV_IFCVT, /* tv_id */
4636 0, /* properties_required */
4637 0, /* properties_provided */
4638 0, /* properties_destroyed */
4639 0, /* todo_flags_start */
4640 TODO_df_finish, /* todo_flags_finish */
4643 class pass_rtl_ifcvt : public rtl_opt_pass
4645 public:
4646 pass_rtl_ifcvt (gcc::context *ctxt)
4647 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
4650 /* opt_pass methods: */
4651 virtual bool gate (function *)
4653 return (optimize > 0) && dbg_cnt (if_conversion);
4656 virtual unsigned int execute (function *)
4658 return rest_of_handle_if_conversion ();
4661 }; // class pass_rtl_ifcvt
4663 } // anon namespace
4665 rtl_opt_pass *
4666 make_pass_rtl_ifcvt (gcc::context *ctxt)
4668 return new pass_rtl_ifcvt (ctxt);
4672 /* Rerun if-conversion, as combine may have simplified things enough
4673 to now meet sequence length restrictions. */
4675 namespace {
4677 const pass_data pass_data_if_after_combine =
4679 RTL_PASS, /* type */
4680 "ce2", /* name */
4681 OPTGROUP_NONE, /* optinfo_flags */
4682 TV_IFCVT, /* tv_id */
4683 0, /* properties_required */
4684 0, /* properties_provided */
4685 0, /* properties_destroyed */
4686 0, /* todo_flags_start */
4687 TODO_df_finish, /* todo_flags_finish */
4690 class pass_if_after_combine : public rtl_opt_pass
4692 public:
4693 pass_if_after_combine (gcc::context *ctxt)
4694 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
4697 /* opt_pass methods: */
4698 virtual bool gate (function *)
4700 return optimize > 0 && flag_if_conversion
4701 && dbg_cnt (if_after_combine);
4704 virtual unsigned int execute (function *)
4706 if_convert (true);
4707 return 0;
4710 }; // class pass_if_after_combine
4712 } // anon namespace
4714 rtl_opt_pass *
4715 make_pass_if_after_combine (gcc::context *ctxt)
4717 return new pass_if_after_combine (ctxt);
4721 namespace {
4723 const pass_data pass_data_if_after_reload =
4725 RTL_PASS, /* type */
4726 "ce3", /* name */
4727 OPTGROUP_NONE, /* optinfo_flags */
4728 TV_IFCVT2, /* tv_id */
4729 0, /* properties_required */
4730 0, /* properties_provided */
4731 0, /* properties_destroyed */
4732 0, /* todo_flags_start */
4733 TODO_df_finish, /* todo_flags_finish */
4736 class pass_if_after_reload : public rtl_opt_pass
4738 public:
4739 pass_if_after_reload (gcc::context *ctxt)
4740 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
4743 /* opt_pass methods: */
4744 virtual bool gate (function *)
4746 return optimize > 0 && flag_if_conversion2
4747 && dbg_cnt (if_after_reload);
4750 virtual unsigned int execute (function *)
4752 if_convert (true);
4753 return 0;
4756 }; // class pass_if_after_reload
4758 } // anon namespace
4760 rtl_opt_pass *
4761 make_pass_if_after_reload (gcc::context *ctxt)
4763 return new pass_if_after_reload (ctxt);