1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
34 #include "tree-ssa-alias.h"
35 #include "internal-fn.h"
36 #include "gimple-fold.h"
38 #include "gimple-expr.h"
42 #include "gimple-iterator.h"
43 #include "gimple-ssa.h"
45 #include "tree-phinodes.h"
46 #include "ssa-iterators.h"
47 #include "stringpool.h"
48 #include "tree-ssanames.h"
50 #include "tree-ssa-propagate.h"
51 #include "langhooks.h"
52 #include "value-prof.h"
55 /* This file implements a generic value propagation engine based on
56 the same propagation used by the SSA-CCP algorithm [1].
58 Propagation is performed by simulating the execution of every
59 statement that produces the value being propagated. Simulation
62 1- Initially, all edges of the CFG are marked not executable and
63 the CFG worklist is seeded with all the statements in the entry
64 basic block (block 0).
66 2- Every statement S is simulated with a call to the call-back
67 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
70 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
71 interest and does not affect any of the work lists.
73 SSA_PROP_VARYING: The value produced by S cannot be determined
74 at compile time. Further simulation of S is not required.
75 If S is a conditional jump, all the outgoing edges for the
76 block are considered executable and added to the work
79 SSA_PROP_INTERESTING: S produces a value that can be computed
80 at compile time. Its result can be propagated into the
81 statements that feed from S. Furthermore, if S is a
82 conditional jump, only the edge known to be taken is added
83 to the work list. Edges that are known not to execute are
86 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
87 return value from SSA_PROP_VISIT_PHI has the same semantics as
90 4- Three work lists are kept. Statements are only added to these
91 lists if they produce one of SSA_PROP_INTERESTING or
94 CFG_BLOCKS contains the list of blocks to be simulated.
95 Blocks are added to this list if their incoming edges are
98 VARYING_SSA_EDGES contains the list of statements that feed
99 from statements that produce an SSA_PROP_VARYING result.
100 These are simulated first to speed up processing.
102 INTERESTING_SSA_EDGES contains the list of statements that
103 feed from statements that produce an SSA_PROP_INTERESTING
106 5- Simulation terminates when all three work lists are drained.
108 Before calling ssa_propagate, it is important to clear
109 prop_simulate_again_p for all the statements in the program that
110 should be simulated. This initialization allows an implementation
111 to specify which statements should never be simulated.
113 It is also important to compute def-use information before calling
118 [1] Constant propagation with conditional branches,
119 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
121 [2] Building an Optimizing Compiler,
122 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
124 [3] Advanced Compiler Design and Implementation,
125 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
127 /* Function pointers used to parameterize the propagation engine. */
128 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt
;
129 static ssa_prop_visit_phi_fn ssa_prop_visit_phi
;
131 /* Keep track of statements that have been added to one of the SSA
132 edges worklists. This flag is used to avoid visiting statements
133 unnecessarily when draining an SSA edge worklist. If while
134 simulating a basic block, we find a statement with
135 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
136 processing from visiting it again.
138 NOTE: users of the propagation engine are not allowed to use
139 the GF_PLF_1 flag. */
140 #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1
142 /* A bitmap to keep track of executable blocks in the CFG. */
143 static sbitmap executable_blocks
;
145 /* Array of control flow edges on the worklist. */
146 static vec
<basic_block
> cfg_blocks
;
148 static unsigned int cfg_blocks_num
= 0;
149 static int cfg_blocks_tail
;
150 static int cfg_blocks_head
;
152 static sbitmap bb_in_list
;
154 /* Worklist of SSA edges which will need reexamination as their
155 definition has changed. SSA edges are def-use edges in the SSA
156 web. For each D-U edge, we store the target statement or PHI node
158 static vec
<gimple
> interesting_ssa_edges
;
160 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
161 list of SSA edges is split into two. One contains all SSA edges
162 who need to be reexamined because their lattice value changed to
163 varying (this worklist), and the other contains all other SSA edges
164 to be reexamined (INTERESTING_SSA_EDGES).
166 Since most values in the program are VARYING, the ideal situation
167 is to move them to that lattice value as quickly as possible.
168 Thus, it doesn't make sense to process any other type of lattice
169 value until all VARYING values are propagated fully, which is one
170 thing using the VARYING worklist achieves. In addition, if we
171 don't use a separate worklist for VARYING edges, we end up with
172 situations where lattice values move from
173 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
174 static vec
<gimple
> varying_ssa_edges
;
177 /* Return true if the block worklist empty. */
180 cfg_blocks_empty_p (void)
182 return (cfg_blocks_num
== 0);
186 /* Add a basic block to the worklist. The block must not be already
187 in the worklist, and it must not be the ENTRY or EXIT block. */
190 cfg_blocks_add (basic_block bb
)
194 gcc_assert (bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
195 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
));
196 gcc_assert (!bitmap_bit_p (bb_in_list
, bb
->index
));
198 if (cfg_blocks_empty_p ())
200 cfg_blocks_tail
= cfg_blocks_head
= 0;
206 if (cfg_blocks_num
> cfg_blocks
.length ())
208 /* We have to grow the array now. Adjust to queue to occupy
209 the full space of the original array. We do not need to
210 initialize the newly allocated portion of the array
211 because we keep track of CFG_BLOCKS_HEAD and
213 cfg_blocks_tail
= cfg_blocks
.length ();
215 cfg_blocks
.safe_grow (2 * cfg_blocks_tail
);
217 /* Minor optimization: we prefer to see blocks with more
218 predecessors later, because there is more of a chance that
219 the incoming edges will be executable. */
220 else if (EDGE_COUNT (bb
->preds
)
221 >= EDGE_COUNT (cfg_blocks
[cfg_blocks_head
]->preds
))
222 cfg_blocks_tail
= ((cfg_blocks_tail
+ 1) % cfg_blocks
.length ());
225 if (cfg_blocks_head
== 0)
226 cfg_blocks_head
= cfg_blocks
.length ();
232 cfg_blocks
[head
? cfg_blocks_head
: cfg_blocks_tail
] = bb
;
233 bitmap_set_bit (bb_in_list
, bb
->index
);
237 /* Remove a block from the worklist. */
240 cfg_blocks_get (void)
244 bb
= cfg_blocks
[cfg_blocks_head
];
246 gcc_assert (!cfg_blocks_empty_p ());
249 cfg_blocks_head
= ((cfg_blocks_head
+ 1) % cfg_blocks
.length ());
251 bitmap_clear_bit (bb_in_list
, bb
->index
);
257 /* We have just defined a new value for VAR. If IS_VARYING is true,
258 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
259 them to INTERESTING_SSA_EDGES. */
262 add_ssa_edge (tree var
, bool is_varying
)
264 imm_use_iterator iter
;
267 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
269 gimple use_stmt
= USE_STMT (use_p
);
271 if (prop_simulate_again_p (use_stmt
)
272 && !gimple_plf (use_stmt
, STMT_IN_SSA_EDGE_WORKLIST
))
274 gimple_set_plf (use_stmt
, STMT_IN_SSA_EDGE_WORKLIST
, true);
276 varying_ssa_edges
.safe_push (use_stmt
);
278 interesting_ssa_edges
.safe_push (use_stmt
);
284 /* Add edge E to the control flow worklist. */
287 add_control_edge (edge e
)
289 basic_block bb
= e
->dest
;
290 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
293 /* If the edge had already been executed, skip it. */
294 if (e
->flags
& EDGE_EXECUTABLE
)
297 e
->flags
|= EDGE_EXECUTABLE
;
299 /* If the block is already in the list, we're done. */
300 if (bitmap_bit_p (bb_in_list
, bb
->index
))
305 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
306 fprintf (dump_file
, "\nAdding Destination of edge (%d -> %d) to worklist\n",
307 e
->src
->index
, e
->dest
->index
);
311 /* Simulate the execution of STMT and update the work lists accordingly. */
314 simulate_stmt (gimple stmt
)
316 enum ssa_prop_result val
= SSA_PROP_NOT_INTERESTING
;
317 edge taken_edge
= NULL
;
318 tree output_name
= NULL_TREE
;
320 /* Don't bother visiting statements that are already
321 considered varying by the propagator. */
322 if (!prop_simulate_again_p (stmt
))
325 if (gimple_code (stmt
) == GIMPLE_PHI
)
327 val
= ssa_prop_visit_phi (stmt
);
328 output_name
= gimple_phi_result (stmt
);
331 val
= ssa_prop_visit_stmt (stmt
, &taken_edge
, &output_name
);
333 if (val
== SSA_PROP_VARYING
)
335 prop_set_simulate_again (stmt
, false);
337 /* If the statement produced a new varying value, add the SSA
338 edges coming out of OUTPUT_NAME. */
340 add_ssa_edge (output_name
, true);
342 /* If STMT transfers control out of its basic block, add
343 all outgoing edges to the work list. */
344 if (stmt_ends_bb_p (stmt
))
348 basic_block bb
= gimple_bb (stmt
);
349 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
350 add_control_edge (e
);
353 else if (val
== SSA_PROP_INTERESTING
)
355 /* If the statement produced new value, add the SSA edges coming
356 out of OUTPUT_NAME. */
358 add_ssa_edge (output_name
, false);
360 /* If we know which edge is going to be taken out of this block,
361 add it to the CFG work list. */
363 add_control_edge (taken_edge
);
367 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
368 drain. This pops statements off the given WORKLIST and processes
369 them until there are no more statements on WORKLIST.
370 We take a pointer to WORKLIST because it may be reallocated when an
371 SSA edge is added to it in simulate_stmt. */
374 process_ssa_edge_worklist (vec
<gimple
> *worklist
)
376 /* Drain the entire worklist. */
377 while (worklist
->length () > 0)
381 /* Pull the statement to simulate off the worklist. */
382 gimple stmt
= worklist
->pop ();
384 /* If this statement was already visited by simulate_block, then
385 we don't need to visit it again here. */
386 if (!gimple_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
))
389 /* STMT is no longer in a worklist. */
390 gimple_set_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
, false);
392 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
394 fprintf (dump_file
, "\nSimulating statement (from ssa_edges): ");
395 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
398 bb
= gimple_bb (stmt
);
400 /* PHI nodes are always visited, regardless of whether or not
401 the destination block is executable. Otherwise, visit the
402 statement only if its block is marked executable. */
403 if (gimple_code (stmt
) == GIMPLE_PHI
404 || bitmap_bit_p (executable_blocks
, bb
->index
))
405 simulate_stmt (stmt
);
410 /* Simulate the execution of BLOCK. Evaluate the statement associated
411 with each variable reference inside the block. */
414 simulate_block (basic_block block
)
416 gimple_stmt_iterator gsi
;
418 /* There is nothing to do for the exit block. */
419 if (block
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
422 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
423 fprintf (dump_file
, "\nSimulating block %d\n", block
->index
);
425 /* Always simulate PHI nodes, even if we have simulated this block
427 for (gsi
= gsi_start_phis (block
); !gsi_end_p (gsi
); gsi_next (&gsi
))
428 simulate_stmt (gsi_stmt (gsi
));
430 /* If this is the first time we've simulated this block, then we
431 must simulate each of its statements. */
432 if (!bitmap_bit_p (executable_blocks
, block
->index
))
434 gimple_stmt_iterator j
;
435 unsigned int normal_edge_count
;
439 /* Note that we have simulated this block. */
440 bitmap_set_bit (executable_blocks
, block
->index
);
442 for (j
= gsi_start_bb (block
); !gsi_end_p (j
); gsi_next (&j
))
444 gimple stmt
= gsi_stmt (j
);
446 /* If this statement is already in the worklist then
447 "cancel" it. The reevaluation implied by the worklist
448 entry will produce the same value we generate here and
449 thus reevaluating it again from the worklist is
451 if (gimple_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
))
452 gimple_set_plf (stmt
, STMT_IN_SSA_EDGE_WORKLIST
, false);
454 simulate_stmt (stmt
);
457 /* We can not predict when abnormal and EH edges will be executed, so
458 once a block is considered executable, we consider any
459 outgoing abnormal edges as executable.
461 TODO: This is not exactly true. Simplifying statement might
462 prove it non-throwing and also computed goto can be handled
463 when destination is known.
465 At the same time, if this block has only one successor that is
466 reached by non-abnormal edges, then add that successor to the
468 normal_edge_count
= 0;
470 FOR_EACH_EDGE (e
, ei
, block
->succs
)
472 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
473 add_control_edge (e
);
481 if (normal_edge_count
== 1)
482 add_control_edge (normal_edge
);
487 /* Initialize local data structures and work lists. */
496 /* Worklists of SSA edges. */
497 interesting_ssa_edges
.create (20);
498 varying_ssa_edges
.create (20);
500 executable_blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
501 bitmap_clear (executable_blocks
);
503 bb_in_list
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
504 bitmap_clear (bb_in_list
);
506 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
507 dump_immediate_uses (dump_file
);
509 cfg_blocks
.create (20);
510 cfg_blocks
.safe_grow_cleared (20);
512 /* Initially assume that every edge in the CFG is not executable.
513 (including the edges coming out of the entry block). */
514 FOR_ALL_BB_FN (bb
, cfun
)
516 gimple_stmt_iterator si
;
518 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
519 gimple_set_plf (gsi_stmt (si
), STMT_IN_SSA_EDGE_WORKLIST
, false);
521 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
522 gimple_set_plf (gsi_stmt (si
), STMT_IN_SSA_EDGE_WORKLIST
, false);
524 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
525 e
->flags
&= ~EDGE_EXECUTABLE
;
528 /* Seed the algorithm by adding the successors of the entry block to the
530 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
531 add_control_edge (e
);
535 /* Free allocated storage. */
540 interesting_ssa_edges
.release ();
541 varying_ssa_edges
.release ();
542 cfg_blocks
.release ();
543 sbitmap_free (bb_in_list
);
544 sbitmap_free (executable_blocks
);
548 /* Return true if EXPR is an acceptable right-hand-side for a
549 GIMPLE assignment. We validate the entire tree, not just
550 the root node, thus catching expressions that embed complex
551 operands that are not permitted in GIMPLE. This function
552 is needed because the folding routines in fold-const.c
553 may return such expressions in some cases, e.g., an array
554 access with an embedded index addition. It may make more
555 sense to have folding routines that are sensitive to the
556 constraints on GIMPLE operands, rather than abandoning any
557 any attempt to fold if the usual folding turns out to be too
561 valid_gimple_rhs_p (tree expr
)
563 enum tree_code code
= TREE_CODE (expr
);
565 switch (TREE_CODE_CLASS (code
))
567 case tcc_declaration
:
568 if (!is_gimple_variable (expr
))
573 /* All constants are ok. */
577 /* GENERIC allows comparisons with non-boolean types, reject
578 those for GIMPLE. Let vector-typed comparisons pass - rules
579 for GENERIC and GIMPLE are the same here. */
580 if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr
))
581 && (TREE_CODE (TREE_TYPE (expr
)) == BOOLEAN_TYPE
582 || TYPE_PRECISION (TREE_TYPE (expr
)) == 1))
583 && ! VECTOR_TYPE_P (TREE_TYPE (expr
)))
588 if (!is_gimple_val (TREE_OPERAND (expr
, 0))
589 || !is_gimple_val (TREE_OPERAND (expr
, 1)))
594 if (!is_gimple_val (TREE_OPERAND (expr
, 0)))
604 if (is_gimple_min_invariant (expr
))
606 t
= TREE_OPERAND (expr
, 0);
607 while (handled_component_p (t
))
609 /* ??? More checks needed, see the GIMPLE verifier. */
610 if ((TREE_CODE (t
) == ARRAY_REF
611 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
612 && !is_gimple_val (TREE_OPERAND (t
, 1)))
614 t
= TREE_OPERAND (t
, 0);
616 if (!is_gimple_id (t
))
622 if (get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
)
624 if (((code
== VEC_COND_EXPR
|| code
== COND_EXPR
)
625 ? !is_gimple_condexpr (TREE_OPERAND (expr
, 0))
626 : !is_gimple_val (TREE_OPERAND (expr
, 0)))
627 || !is_gimple_val (TREE_OPERAND (expr
, 1))
628 || !is_gimple_val (TREE_OPERAND (expr
, 2)))
639 case tcc_exceptional
:
640 if (code
== CONSTRUCTOR
)
644 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr
), i
, elt
)
645 if (!is_gimple_val (elt
))
649 if (code
!= SSA_NAME
)
654 if (code
== BIT_FIELD_REF
)
655 return is_gimple_val (TREE_OPERAND (expr
, 0));
666 /* Return true if EXPR is a CALL_EXPR suitable for representation
667 as a single GIMPLE_CALL statement. If the arguments require
668 further gimplification, return false. */
671 valid_gimple_call_p (tree expr
)
675 if (TREE_CODE (expr
) != CALL_EXPR
)
678 nargs
= call_expr_nargs (expr
);
679 for (i
= 0; i
< nargs
; i
++)
681 tree arg
= CALL_EXPR_ARG (expr
, i
);
682 if (is_gimple_reg_type (TREE_TYPE (arg
)))
684 if (!is_gimple_val (arg
))
688 if (!is_gimple_lvalue (arg
))
696 /* Make SSA names defined by OLD_STMT point to NEW_STMT
697 as their defining statement. */
700 move_ssa_defining_stmt_for_defs (gimple new_stmt
, gimple old_stmt
)
705 if (gimple_in_ssa_p (cfun
))
707 /* Make defined SSA_NAMEs point to the new
708 statement as their definition. */
709 FOR_EACH_SSA_TREE_OPERAND (var
, old_stmt
, iter
, SSA_OP_ALL_DEFS
)
711 if (TREE_CODE (var
) == SSA_NAME
)
712 SSA_NAME_DEF_STMT (var
) = new_stmt
;
717 /* Helper function for update_gimple_call and update_call_from_tree.
718 A GIMPLE_CALL STMT is being replaced with GIMPLE_CALL NEW_STMT. */
721 finish_update_gimple_call (gimple_stmt_iterator
*si_p
, gimple new_stmt
,
724 gimple_call_set_lhs (new_stmt
, gimple_call_lhs (stmt
));
725 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
726 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
727 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
728 gimple_set_location (new_stmt
, gimple_location (stmt
));
729 if (gimple_block (new_stmt
) == NULL_TREE
)
730 gimple_set_block (new_stmt
, gimple_block (stmt
));
731 gsi_replace (si_p
, new_stmt
, false);
734 /* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
735 with number of arguments NARGS, where the arguments in GIMPLE form
736 follow NARGS argument. */
739 update_gimple_call (gimple_stmt_iterator
*si_p
, tree fn
, int nargs
, ...)
742 gimple new_stmt
, stmt
= gsi_stmt (*si_p
);
744 gcc_assert (is_gimple_call (stmt
));
745 va_start (ap
, nargs
);
746 new_stmt
= gimple_build_call_valist (fn
, nargs
, ap
);
747 finish_update_gimple_call (si_p
, new_stmt
, stmt
);
752 /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the
753 value of EXPR, which is expected to be the result of folding the
754 call. This can only be done if EXPR is a CALL_EXPR with valid
755 GIMPLE operands as arguments, or if it is a suitable RHS expression
756 for a GIMPLE_ASSIGN. More complex expressions will require
757 gimplification, which will introduce additional statements. In this
758 event, no update is performed, and the function returns false.
759 Note that we cannot mutate a GIMPLE_CALL in-place, so we always
760 replace the statement at *SI_P with an entirely new statement.
761 The new statement need not be a call, e.g., if the original call
762 folded to a constant. */
765 update_call_from_tree (gimple_stmt_iterator
*si_p
, tree expr
)
767 gimple stmt
= gsi_stmt (*si_p
);
769 if (valid_gimple_call_p (expr
))
771 /* The call has simplified to another call. */
772 tree fn
= CALL_EXPR_FN (expr
);
774 unsigned nargs
= call_expr_nargs (expr
);
775 vec
<tree
> args
= vNULL
;
781 args
.safe_grow_cleared (nargs
);
783 for (i
= 0; i
< nargs
; i
++)
784 args
[i
] = CALL_EXPR_ARG (expr
, i
);
787 new_stmt
= gimple_build_call_vec (fn
, args
);
788 finish_update_gimple_call (si_p
, new_stmt
, stmt
);
793 else if (valid_gimple_rhs_p (expr
))
795 tree lhs
= gimple_call_lhs (stmt
);
798 /* The call has simplified to an expression
799 that cannot be represented as a GIMPLE_CALL. */
802 /* A value is expected.
803 Introduce a new GIMPLE_ASSIGN statement. */
804 STRIP_USELESS_TYPE_CONVERSION (expr
);
805 new_stmt
= gimple_build_assign (lhs
, expr
);
806 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
807 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
808 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
810 else if (!TREE_SIDE_EFFECTS (expr
))
812 /* No value is expected, and EXPR has no effect.
813 Replace it with an empty statement. */
814 new_stmt
= gimple_build_nop ();
815 if (gimple_in_ssa_p (cfun
))
817 unlink_stmt_vdef (stmt
);
823 /* No value is expected, but EXPR has an effect,
824 e.g., it could be a reference to a volatile
825 variable. Create an assignment statement
826 with a dummy (unused) lhs variable. */
827 STRIP_USELESS_TYPE_CONVERSION (expr
);
828 if (gimple_in_ssa_p (cfun
))
829 lhs
= make_ssa_name (TREE_TYPE (expr
), NULL
);
831 lhs
= create_tmp_var (TREE_TYPE (expr
), NULL
);
832 new_stmt
= gimple_build_assign (lhs
, expr
);
833 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
834 gimple_set_vdef (new_stmt
, gimple_vdef (stmt
));
835 move_ssa_defining_stmt_for_defs (new_stmt
, stmt
);
837 gimple_set_location (new_stmt
, gimple_location (stmt
));
838 gsi_replace (si_p
, new_stmt
, false);
842 /* The call simplified to an expression that is
843 not a valid GIMPLE RHS. */
848 /* Entry point to the propagation engine.
850 VISIT_STMT is called for every statement visited.
851 VISIT_PHI is called for every PHI node visited. */
854 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt
,
855 ssa_prop_visit_phi_fn visit_phi
)
857 ssa_prop_visit_stmt
= visit_stmt
;
858 ssa_prop_visit_phi
= visit_phi
;
862 /* Iterate until the worklists are empty. */
863 while (!cfg_blocks_empty_p ()
864 || interesting_ssa_edges
.length () > 0
865 || varying_ssa_edges
.length () > 0)
867 if (!cfg_blocks_empty_p ())
869 /* Pull the next block to simulate off the worklist. */
870 basic_block dest_block
= cfg_blocks_get ();
871 simulate_block (dest_block
);
874 /* In order to move things to varying as quickly as
875 possible,process the VARYING_SSA_EDGES worklist first. */
876 process_ssa_edge_worklist (&varying_ssa_edges
);
878 /* Now process the INTERESTING_SSA_EDGES worklist. */
879 process_ssa_edge_worklist (&interesting_ssa_edges
);
886 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
887 is a non-volatile pointer dereference, a structure reference or a
888 reference to a single _DECL. Ignore volatile memory references
889 because they are not interesting for the optimizers. */
892 stmt_makes_single_store (gimple stmt
)
896 if (gimple_code (stmt
) != GIMPLE_ASSIGN
897 && gimple_code (stmt
) != GIMPLE_CALL
)
900 if (!gimple_vdef (stmt
))
903 lhs
= gimple_get_lhs (stmt
);
905 /* A call statement may have a null LHS. */
909 return (!TREE_THIS_VOLATILE (lhs
)
911 || REFERENCE_CLASS_P (lhs
)));
915 /* Propagation statistics. */
920 long num_stmts_folded
;
924 static struct prop_stats_d prop_stats
;
926 /* Replace USE references in statement STMT with the values stored in
927 PROP_VALUE. Return true if at least one reference was replaced. */
930 replace_uses_in (gimple stmt
, ssa_prop_get_value_fn get_value
)
932 bool replaced
= false;
936 FOR_EACH_SSA_USE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
938 tree tuse
= USE_FROM_PTR (use
);
939 tree val
= (*get_value
) (tuse
);
941 if (val
== tuse
|| val
== NULL_TREE
)
944 if (gimple_code (stmt
) == GIMPLE_ASM
945 && !may_propagate_copy_into_asm (tuse
))
948 if (!may_propagate_copy (tuse
, val
))
951 if (TREE_CODE (val
) != SSA_NAME
)
952 prop_stats
.num_const_prop
++;
954 prop_stats
.num_copy_prop
++;
956 propagate_value (use
, val
);
965 /* Replace propagated values into all the arguments for PHI using the
966 values from PROP_VALUE. */
969 replace_phi_args_in (gimple phi
, ssa_prop_get_value_fn get_value
)
972 bool replaced
= false;
974 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
976 fprintf (dump_file
, "Folding PHI node: ");
977 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
980 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
982 tree arg
= gimple_phi_arg_def (phi
, i
);
984 if (TREE_CODE (arg
) == SSA_NAME
)
986 tree val
= (*get_value
) (arg
);
988 if (val
&& val
!= arg
&& may_propagate_copy (arg
, val
))
990 if (TREE_CODE (val
) != SSA_NAME
)
991 prop_stats
.num_const_prop
++;
993 prop_stats
.num_copy_prop
++;
995 propagate_value (PHI_ARG_DEF_PTR (phi
, i
), val
);
998 /* If we propagated a copy and this argument flows
999 through an abnormal edge, update the replacement
1001 if (TREE_CODE (val
) == SSA_NAME
1002 && gimple_phi_arg_edge (phi
, i
)->flags
& EDGE_ABNORMAL
)
1003 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1008 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1011 fprintf (dump_file
, "No folding possible\n");
1014 fprintf (dump_file
, "Folded into: ");
1015 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
1016 fprintf (dump_file
, "\n");
1024 class substitute_and_fold_dom_walker
: public dom_walker
1027 substitute_and_fold_dom_walker (cdi_direction direction
,
1028 ssa_prop_get_value_fn get_value_fn_
,
1029 ssa_prop_fold_stmt_fn fold_fn_
,
1031 : dom_walker (direction
), get_value_fn (get_value_fn_
),
1032 fold_fn (fold_fn_
), do_dce (do_dce_
), something_changed (false)
1034 stmts_to_remove
.create (0);
1035 need_eh_cleanup
= BITMAP_ALLOC (NULL
);
1037 ~substitute_and_fold_dom_walker ()
1039 stmts_to_remove
.release ();
1040 BITMAP_FREE (need_eh_cleanup
);
1043 virtual void before_dom_children (basic_block
);
1044 virtual void after_dom_children (basic_block
) {}
1046 ssa_prop_get_value_fn get_value_fn
;
1047 ssa_prop_fold_stmt_fn fold_fn
;
1049 bool something_changed
;
1050 vec
<gimple
> stmts_to_remove
;
1051 bitmap need_eh_cleanup
;
1055 substitute_and_fold_dom_walker::before_dom_children (basic_block bb
)
1057 gimple_stmt_iterator i
;
1059 /* Propagate known values into PHI nodes. */
1060 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
1062 gimple phi
= gsi_stmt (i
);
1063 tree res
= gimple_phi_result (phi
);
1064 if (virtual_operand_p (res
))
1067 && res
&& TREE_CODE (res
) == SSA_NAME
)
1069 tree sprime
= get_value_fn (res
);
1072 && may_propagate_copy (res
, sprime
))
1074 stmts_to_remove
.safe_push (phi
);
1078 something_changed
|= replace_phi_args_in (phi
, get_value_fn
);
1081 /* Propagate known values into stmts. In some case it exposes
1082 more trivially deletable stmts to walk backward. */
1083 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1086 gimple stmt
= gsi_stmt (i
);
1088 enum gimple_code code
= gimple_code (stmt
);
1090 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1091 range information for names and they are discarded
1094 if (code
== GIMPLE_ASSIGN
1095 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == ASSERT_EXPR
)
1098 /* No point propagating into a stmt we have a value for we
1099 can propagate into all uses. Mark it for removal instead. */
1100 tree lhs
= gimple_get_lhs (stmt
);
1102 && lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
1104 tree sprime
= get_value_fn (lhs
);
1107 && may_propagate_copy (lhs
, sprime
)
1108 && !stmt_could_throw_p (stmt
)
1109 && !gimple_has_side_effects (stmt
))
1111 stmts_to_remove
.safe_push (stmt
);
1116 /* Replace the statement with its folded version and mark it
1118 did_replace
= false;
1119 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1121 fprintf (dump_file
, "Folding statement: ");
1122 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1127 /* Some statements may be simplified using propagator
1128 specific information. Do this before propagating
1129 into the stmt to not disturb pass specific information. */
1134 prop_stats
.num_stmts_folded
++;
1135 stmt
= gsi_stmt (i
);
1139 /* Replace real uses in the statement. */
1140 did_replace
|= replace_uses_in (stmt
, get_value_fn
);
1142 /* If we made a replacement, fold the statement. */
1149 stmt
= gsi_stmt (i
);
1151 /* If we cleaned up EH information from the statement,
1153 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
1154 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
1156 if (is_gimple_assign (stmt
)
1157 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1158 == GIMPLE_SINGLE_RHS
))
1160 tree rhs
= gimple_assign_rhs1 (stmt
);
1162 if (TREE_CODE (rhs
) == ADDR_EXPR
)
1163 recompute_tree_invariant_for_addr_expr (rhs
);
1166 /* Determine what needs to be done to update the SSA form. */
1168 if (!is_gimple_debug (stmt
))
1169 something_changed
= true;
1172 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1176 fprintf (dump_file
, "Folded into: ");
1177 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1178 fprintf (dump_file
, "\n");
1181 fprintf (dump_file
, "Not folded\n");
1188 /* Perform final substitution and folding of propagated values.
1190 PROP_VALUE[I] contains the single value that should be substituted
1191 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1194 If FOLD_FN is non-NULL the function will be invoked on all statements
1195 before propagating values for pass specific simplification.
1197 DO_DCE is true if trivially dead stmts can be removed.
1199 If DO_DCE is true, the statements within a BB are walked from
1200 last to first element. Otherwise we scan from first to last element.
1202 Return TRUE when something changed. */
1205 substitute_and_fold (ssa_prop_get_value_fn get_value_fn
,
1206 ssa_prop_fold_stmt_fn fold_fn
,
1209 gcc_assert (get_value_fn
);
1211 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1212 fprintf (dump_file
, "\nSubstituting values and folding statements\n\n");
1214 memset (&prop_stats
, 0, sizeof (prop_stats
));
1216 calculate_dominance_info (CDI_DOMINATORS
);
1217 substitute_and_fold_dom_walker
walker(CDI_DOMINATORS
,
1218 get_value_fn
, fold_fn
, do_dce
);
1219 walker
.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
1221 /* We cannot remove stmts during the BB walk, especially not release
1222 SSA names there as that destroys the lattice of our callers.
1223 Remove stmts in reverse order to make debug stmt creation possible. */
1224 while (!walker
.stmts_to_remove
.is_empty ())
1226 gimple stmt
= walker
.stmts_to_remove
.pop ();
1227 if (dump_file
&& dump_flags
& TDF_DETAILS
)
1229 fprintf (dump_file
, "Removing dead stmt ");
1230 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1231 fprintf (dump_file
, "\n");
1233 prop_stats
.num_dce
++;
1234 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1235 if (gimple_code (stmt
) == GIMPLE_PHI
)
1236 remove_phi_node (&gsi
, true);
1239 unlink_stmt_vdef (stmt
);
1240 gsi_remove (&gsi
, true);
1241 release_defs (stmt
);
1245 if (!bitmap_empty_p (walker
.need_eh_cleanup
))
1246 gimple_purge_all_dead_eh_edges (walker
.need_eh_cleanup
);
1248 statistics_counter_event (cfun
, "Constants propagated",
1249 prop_stats
.num_const_prop
);
1250 statistics_counter_event (cfun
, "Copies propagated",
1251 prop_stats
.num_copy_prop
);
1252 statistics_counter_event (cfun
, "Statements folded",
1253 prop_stats
.num_stmts_folded
);
1254 statistics_counter_event (cfun
, "Statements deleted",
1255 prop_stats
.num_dce
);
1257 return walker
.something_changed
;
1261 /* Return true if we may propagate ORIG into DEST, false otherwise. */
1264 may_propagate_copy (tree dest
, tree orig
)
1266 tree type_d
= TREE_TYPE (dest
);
1267 tree type_o
= TREE_TYPE (orig
);
1269 /* If ORIG flows in from an abnormal edge, it cannot be propagated. */
1270 if (TREE_CODE (orig
) == SSA_NAME
1271 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig
)
1272 /* If it is the default definition and an automatic variable then
1273 we can though and it is important that we do to avoid
1274 uninitialized regular copies. */
1275 && !(SSA_NAME_IS_DEFAULT_DEF (orig
)
1276 && (SSA_NAME_VAR (orig
) == NULL_TREE
1277 || TREE_CODE (SSA_NAME_VAR (orig
)) == VAR_DECL
)))
1280 /* If DEST is an SSA_NAME that flows from an abnormal edge, then it
1281 cannot be replaced. */
1282 if (TREE_CODE (dest
) == SSA_NAME
1283 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest
))
1286 /* Do not copy between types for which we *do* need a conversion. */
1287 if (!useless_type_conversion_p (type_d
, type_o
))
1290 /* Generally propagating virtual operands is not ok as that may
1291 create overlapping life-ranges. */
1292 if (TREE_CODE (dest
) == SSA_NAME
&& virtual_operand_p (dest
))
1295 /* Anything else is OK. */
1299 /* Like may_propagate_copy, but use as the destination expression
1300 the principal expression (typically, the RHS) contained in
1301 statement DEST. This is more efficient when working with the
1302 gimple tuples representation. */
1305 may_propagate_copy_into_stmt (gimple dest
, tree orig
)
1310 /* If the statement is a switch or a single-rhs assignment,
1311 then the expression to be replaced by the propagation may
1312 be an SSA_NAME. Fortunately, there is an explicit tree
1313 for the expression, so we delegate to may_propagate_copy. */
1315 if (gimple_assign_single_p (dest
))
1316 return may_propagate_copy (gimple_assign_rhs1 (dest
), orig
);
1317 else if (gimple_code (dest
) == GIMPLE_SWITCH
)
1318 return may_propagate_copy (gimple_switch_index (dest
), orig
);
1320 /* In other cases, the expression is not materialized, so there
1321 is no destination to pass to may_propagate_copy. On the other
1322 hand, the expression cannot be an SSA_NAME, so the analysis
1325 if (TREE_CODE (orig
) == SSA_NAME
1326 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig
))
1329 if (is_gimple_assign (dest
))
1330 type_d
= TREE_TYPE (gimple_assign_lhs (dest
));
1331 else if (gimple_code (dest
) == GIMPLE_COND
)
1332 type_d
= boolean_type_node
;
1333 else if (is_gimple_call (dest
)
1334 && gimple_call_lhs (dest
) != NULL_TREE
)
1335 type_d
= TREE_TYPE (gimple_call_lhs (dest
));
1339 type_o
= TREE_TYPE (orig
);
1341 if (!useless_type_conversion_p (type_d
, type_o
))
1347 /* Similarly, but we know that we're propagating into an ASM_EXPR. */
1350 may_propagate_copy_into_asm (tree dest ATTRIBUTE_UNUSED
)
1356 /* Common code for propagate_value and replace_exp.
1358 Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
1359 replacement is done to propagate a value or not. */
1362 replace_exp_1 (use_operand_p op_p
, tree val
,
1363 bool for_propagation ATTRIBUTE_UNUSED
)
1365 #if defined ENABLE_CHECKING
1366 tree op
= USE_FROM_PTR (op_p
);
1368 gcc_assert (!(for_propagation
1369 && TREE_CODE (op
) == SSA_NAME
1370 && TREE_CODE (val
) == SSA_NAME
1371 && !may_propagate_copy (op
, val
)));
1374 if (TREE_CODE (val
) == SSA_NAME
)
1375 SET_USE (op_p
, val
);
1377 SET_USE (op_p
, unshare_expr (val
));
1381 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
1382 into the operand pointed to by OP_P.
1384 Use this version for const/copy propagation as it will perform additional
1385 checks to ensure validity of the const/copy propagation. */
1388 propagate_value (use_operand_p op_p
, tree val
)
1390 replace_exp_1 (op_p
, val
, true);
1393 /* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
1395 Use this version when not const/copy propagating values. For example,
1396 PRE uses this version when building expressions as they would appear
1397 in specific blocks taking into account actions of PHI nodes.
1399 The statement in which an expression has been replaced should be
1400 folded using fold_stmt_inplace. */
1403 replace_exp (use_operand_p op_p
, tree val
)
1405 replace_exp_1 (op_p
, val
, false);
1409 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
1410 into the tree pointed to by OP_P.
1412 Use this version for const/copy propagation when SSA operands are not
1413 available. It will perform the additional checks to ensure validity of
1414 the const/copy propagation, but will not update any operand information.
1415 Be sure to mark the stmt as modified. */
1418 propagate_tree_value (tree
*op_p
, tree val
)
1420 if (TREE_CODE (val
) == SSA_NAME
)
1423 *op_p
= unshare_expr (val
);
1427 /* Like propagate_tree_value, but use as the operand to replace
1428 the principal expression (typically, the RHS) contained in the
1429 statement referenced by iterator GSI. Note that it is not
1430 always possible to update the statement in-place, so a new
1431 statement may be created to replace the original. */
1434 propagate_tree_value_into_stmt (gimple_stmt_iterator
*gsi
, tree val
)
1436 gimple stmt
= gsi_stmt (*gsi
);
1438 if (is_gimple_assign (stmt
))
1440 tree expr
= NULL_TREE
;
1441 if (gimple_assign_single_p (stmt
))
1442 expr
= gimple_assign_rhs1 (stmt
);
1443 propagate_tree_value (&expr
, val
);
1444 gimple_assign_set_rhs_from_tree (gsi
, expr
);
1446 else if (gimple_code (stmt
) == GIMPLE_COND
)
1448 tree lhs
= NULL_TREE
;
1449 tree rhs
= build_zero_cst (TREE_TYPE (val
));
1450 propagate_tree_value (&lhs
, val
);
1451 gimple_cond_set_code (stmt
, NE_EXPR
);
1452 gimple_cond_set_lhs (stmt
, lhs
);
1453 gimple_cond_set_rhs (stmt
, rhs
);
1455 else if (is_gimple_call (stmt
)
1456 && gimple_call_lhs (stmt
) != NULL_TREE
)
1458 tree expr
= NULL_TREE
;
1460 propagate_tree_value (&expr
, val
);
1461 res
= update_call_from_tree (gsi
, expr
);
1464 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1465 propagate_tree_value (gimple_switch_index_ptr (stmt
), val
);