1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
43 CONSTANT -> V_i has been found to hold a constant
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
123 #include "coretypes.h"
126 #include "stor-layout.h"
129 #include "basic-block.h"
130 #include "function.h"
131 #include "gimple-pretty-print.h"
132 #include "hash-table.h"
133 #include "tree-ssa-alias.h"
134 #include "internal-fn.h"
135 #include "gimple-fold.h"
137 #include "gimple-expr.h"
140 #include "gimplify.h"
141 #include "gimple-iterator.h"
142 #include "gimple-ssa.h"
143 #include "tree-cfg.h"
144 #include "tree-phinodes.h"
145 #include "ssa-iterators.h"
146 #include "stringpool.h"
147 #include "tree-ssanames.h"
148 #include "tree-pass.h"
149 #include "tree-ssa-propagate.h"
150 #include "value-prof.h"
151 #include "langhooks.h"
153 #include "diagnostic-core.h"
156 #include "wide-int-print.h"
157 #include "builtins.h"
160 /* Possible lattice values. */
169 struct prop_value_d
{
171 ccp_lattice_t lattice_val
;
173 /* Propagated value. */
176 /* Mask that applies to the propagated value during CCP. For X
177 with a CONSTANT lattice value X & ~mask == value & ~mask. The
178 zero bits in the mask cover constant values. The ones mean no
183 typedef struct prop_value_d prop_value_t
;
185 /* Array of propagated constant values. After propagation,
186 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
187 the constant is held in an SSA name representing a memory store
188 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
189 memory reference used to store (i.e., the LHS of the assignment
191 static prop_value_t
*const_val
;
192 static unsigned n_const_val
;
194 static void canonicalize_value (prop_value_t
*);
195 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
197 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
200 dump_lattice_value (FILE *outf
, const char *prefix
, prop_value_t val
)
202 switch (val
.lattice_val
)
205 fprintf (outf
, "%sUNINITIALIZED", prefix
);
208 fprintf (outf
, "%sUNDEFINED", prefix
);
211 fprintf (outf
, "%sVARYING", prefix
);
214 if (TREE_CODE (val
.value
) != INTEGER_CST
217 fprintf (outf
, "%sCONSTANT ", prefix
);
218 print_generic_expr (outf
, val
.value
, dump_flags
);
222 widest_int cval
= wi::bit_and_not (wi::to_widest (val
.value
),
224 fprintf (outf
, "%sCONSTANT ", prefix
);
225 print_hex (cval
, outf
);
226 fprintf (outf
, " (");
227 print_hex (val
.mask
, outf
);
237 /* Print lattice value VAL to stderr. */
239 void debug_lattice_value (prop_value_t val
);
242 debug_lattice_value (prop_value_t val
)
244 dump_lattice_value (stderr
, "", val
);
245 fprintf (stderr
, "\n");
248 /* Extend NONZERO_BITS to a full mask, with the upper bits being set. */
251 extend_mask (const wide_int
&nonzero_bits
)
253 return (wi::mask
<widest_int
> (wi::get_precision (nonzero_bits
), true)
254 | widest_int::from (nonzero_bits
, UNSIGNED
));
257 /* Compute a default value for variable VAR and store it in the
258 CONST_VAL array. The following rules are used to get default
261 1- Global and static variables that are declared constant are
264 2- Any other value is considered UNDEFINED. This is useful when
265 considering PHI nodes. PHI arguments that are undefined do not
266 change the constant value of the PHI node, which allows for more
267 constants to be propagated.
269 3- Variables defined by statements other than assignments and PHI
270 nodes are considered VARYING.
272 4- Initial values of variables that are not GIMPLE registers are
273 considered VARYING. */
276 get_default_value (tree var
)
278 prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, 0 };
281 stmt
= SSA_NAME_DEF_STMT (var
);
283 if (gimple_nop_p (stmt
))
285 /* Variables defined by an empty statement are those used
286 before being initialized. If VAR is a local variable, we
287 can assume initially that it is UNDEFINED, otherwise we must
288 consider it VARYING. */
289 if (!virtual_operand_p (var
)
290 && TREE_CODE (SSA_NAME_VAR (var
)) == VAR_DECL
)
291 val
.lattice_val
= UNDEFINED
;
294 val
.lattice_val
= VARYING
;
296 if (flag_tree_bit_ccp
)
298 wide_int nonzero_bits
= get_nonzero_bits (var
);
299 if (nonzero_bits
!= -1)
301 val
.lattice_val
= CONSTANT
;
302 val
.value
= build_zero_cst (TREE_TYPE (var
));
303 val
.mask
= extend_mask (nonzero_bits
);
308 else if (is_gimple_assign (stmt
))
311 if (gimple_assign_single_p (stmt
)
312 && DECL_P (gimple_assign_rhs1 (stmt
))
313 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
315 val
.lattice_val
= CONSTANT
;
320 /* Any other variable defined by an assignment is considered
322 val
.lattice_val
= UNDEFINED
;
325 else if ((is_gimple_call (stmt
)
326 && gimple_call_lhs (stmt
) != NULL_TREE
)
327 || gimple_code (stmt
) == GIMPLE_PHI
)
329 /* A variable defined by a call or a PHI node is considered
331 val
.lattice_val
= UNDEFINED
;
335 /* Otherwise, VAR will never take on a constant value. */
336 val
.lattice_val
= VARYING
;
344 /* Get the constant value associated with variable VAR. */
346 static inline prop_value_t
*
351 if (const_val
== NULL
352 || SSA_NAME_VERSION (var
) >= n_const_val
)
355 val
= &const_val
[SSA_NAME_VERSION (var
)];
356 if (val
->lattice_val
== UNINITIALIZED
)
357 *val
= get_default_value (var
);
359 canonicalize_value (val
);
364 /* Return the constant tree value associated with VAR. */
367 get_constant_value (tree var
)
370 if (TREE_CODE (var
) != SSA_NAME
)
372 if (is_gimple_min_invariant (var
))
376 val
= get_value (var
);
378 && val
->lattice_val
== CONSTANT
379 && (TREE_CODE (val
->value
) != INTEGER_CST
385 /* Sets the value associated with VAR to VARYING. */
388 set_value_varying (tree var
)
390 prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
392 val
->lattice_val
= VARYING
;
393 val
->value
= NULL_TREE
;
397 /* For float types, modify the value of VAL to make ccp work correctly
398 for non-standard values (-0, NaN):
400 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
401 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
402 This is to fix the following problem (see PR 29921): Suppose we have
406 and we set value of y to NaN. This causes value of x to be set to NaN.
407 When we later determine that y is in fact VARYING, fold uses the fact
408 that HONOR_NANS is false, and we try to change the value of x to 0,
409 causing an ICE. With HONOR_NANS being false, the real appearance of
410 NaN would cause undefined behavior, though, so claiming that y (and x)
411 are UNDEFINED initially is correct.
413 For other constants, make sure to drop TREE_OVERFLOW. */
416 canonicalize_value (prop_value_t
*val
)
418 enum machine_mode mode
;
422 if (val
->lattice_val
!= CONSTANT
)
425 if (TREE_OVERFLOW_P (val
->value
))
426 val
->value
= drop_tree_overflow (val
->value
);
428 if (TREE_CODE (val
->value
) != REAL_CST
)
431 d
= TREE_REAL_CST (val
->value
);
432 type
= TREE_TYPE (val
->value
);
433 mode
= TYPE_MODE (type
);
435 if (!HONOR_SIGNED_ZEROS (mode
)
436 && REAL_VALUE_MINUS_ZERO (d
))
438 val
->value
= build_real (type
, dconst0
);
442 if (!HONOR_NANS (mode
)
443 && REAL_VALUE_ISNAN (d
))
445 val
->lattice_val
= UNDEFINED
;
451 /* Return whether the lattice transition is valid. */
454 valid_lattice_transition (prop_value_t old_val
, prop_value_t new_val
)
456 /* Lattice transitions must always be monotonically increasing in
458 if (old_val
.lattice_val
< new_val
.lattice_val
)
461 if (old_val
.lattice_val
!= new_val
.lattice_val
)
464 if (!old_val
.value
&& !new_val
.value
)
467 /* Now both lattice values are CONSTANT. */
469 /* Allow transitioning from PHI <&x, not executable> == &x
470 to PHI <&x, &y> == common alignment. */
471 if (TREE_CODE (old_val
.value
) != INTEGER_CST
472 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
475 /* Bit-lattices have to agree in the still valid bits. */
476 if (TREE_CODE (old_val
.value
) == INTEGER_CST
477 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
478 return (wi::bit_and_not (wi::to_widest (old_val
.value
), new_val
.mask
)
479 == wi::bit_and_not (wi::to_widest (new_val
.value
), new_val
.mask
));
481 /* Otherwise constant values have to agree. */
482 return operand_equal_p (old_val
.value
, new_val
.value
, 0);
485 /* Set the value for variable VAR to NEW_VAL. Return true if the new
486 value is different from VAR's previous value. */
489 set_lattice_value (tree var
, prop_value_t new_val
)
491 /* We can deal with old UNINITIALIZED values just fine here. */
492 prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
494 canonicalize_value (&new_val
);
496 /* We have to be careful to not go up the bitwise lattice
497 represented by the mask.
498 ??? This doesn't seem to be the best place to enforce this. */
499 if (new_val
.lattice_val
== CONSTANT
500 && old_val
->lattice_val
== CONSTANT
501 && TREE_CODE (new_val
.value
) == INTEGER_CST
502 && TREE_CODE (old_val
->value
) == INTEGER_CST
)
504 widest_int diff
= (wi::to_widest (new_val
.value
)
505 ^ wi::to_widest (old_val
->value
));
506 new_val
.mask
= new_val
.mask
| old_val
->mask
| diff
;
509 gcc_assert (valid_lattice_transition (*old_val
, new_val
));
511 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
512 caller that this was a non-transition. */
513 if (old_val
->lattice_val
!= new_val
.lattice_val
514 || (new_val
.lattice_val
== CONSTANT
515 && TREE_CODE (new_val
.value
) == INTEGER_CST
516 && (TREE_CODE (old_val
->value
) != INTEGER_CST
517 || new_val
.mask
!= old_val
->mask
)))
519 /* ??? We would like to delay creation of INTEGER_CSTs from
520 partially constants here. */
522 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
524 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
525 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
530 gcc_assert (new_val
.lattice_val
!= UNINITIALIZED
);
537 static prop_value_t
get_value_for_expr (tree
, bool);
538 static prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
539 static void bit_value_binop_1 (enum tree_code
, tree
, widest_int
*, widest_int
*,
540 tree
, const widest_int
&, const widest_int
&,
541 tree
, const widest_int
&, const widest_int
&);
543 /* Return a widest_int that can be used for bitwise simplifications
547 value_to_wide_int (prop_value_t val
)
550 && TREE_CODE (val
.value
) == INTEGER_CST
)
551 return wi::to_widest (val
.value
);
556 /* Return the value for the address expression EXPR based on alignment
560 get_value_from_alignment (tree expr
)
562 tree type
= TREE_TYPE (expr
);
564 unsigned HOST_WIDE_INT bitpos
;
567 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
569 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
570 val
.mask
= (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
571 ? wi::mask
<widest_int
> (TYPE_PRECISION (type
), false)
572 : -1).and_not (align
/ BITS_PER_UNIT
- 1);
573 val
.lattice_val
= val
.mask
== -1 ? VARYING
: CONSTANT
;
574 if (val
.lattice_val
== CONSTANT
)
575 val
.value
= build_int_cstu (type
, bitpos
/ BITS_PER_UNIT
);
577 val
.value
= NULL_TREE
;
582 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
583 return constant bits extracted from alignment information for
584 invariant addresses. */
587 get_value_for_expr (tree expr
, bool for_bits_p
)
591 if (TREE_CODE (expr
) == SSA_NAME
)
593 val
= *get_value (expr
);
595 && val
.lattice_val
== CONSTANT
596 && TREE_CODE (val
.value
) == ADDR_EXPR
)
597 val
= get_value_from_alignment (val
.value
);
599 else if (is_gimple_min_invariant (expr
)
600 && (!for_bits_p
|| TREE_CODE (expr
) != ADDR_EXPR
))
602 val
.lattice_val
= CONSTANT
;
605 canonicalize_value (&val
);
607 else if (TREE_CODE (expr
) == ADDR_EXPR
)
608 val
= get_value_from_alignment (expr
);
611 val
.lattice_val
= VARYING
;
613 val
.value
= NULL_TREE
;
618 /* Return the likely CCP lattice value for STMT.
620 If STMT has no operands, then return CONSTANT.
622 Else if undefinedness of operands of STMT cause its value to be
623 undefined, then return UNDEFINED.
625 Else if any operands of STMT are constants, then return CONSTANT.
627 Else return VARYING. */
630 likely_value (gimple stmt
)
632 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
637 enum gimple_code code
= gimple_code (stmt
);
639 /* This function appears to be called only for assignments, calls,
640 conditionals, and switches, due to the logic in visit_stmt. */
641 gcc_assert (code
== GIMPLE_ASSIGN
642 || code
== GIMPLE_CALL
643 || code
== GIMPLE_COND
644 || code
== GIMPLE_SWITCH
);
646 /* If the statement has volatile operands, it won't fold to a
648 if (gimple_has_volatile_ops (stmt
))
651 /* Arrive here for more complex cases. */
652 has_constant_operand
= false;
653 has_undefined_operand
= false;
654 all_undefined_operands
= true;
655 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
657 prop_value_t
*val
= get_value (use
);
659 if (val
->lattice_val
== UNDEFINED
)
660 has_undefined_operand
= true;
662 all_undefined_operands
= false;
664 if (val
->lattice_val
== CONSTANT
)
665 has_constant_operand
= true;
668 /* There may be constants in regular rhs operands. For calls we
669 have to ignore lhs, fndecl and static chain, otherwise only
671 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
672 i
< gimple_num_ops (stmt
); ++i
)
674 tree op
= gimple_op (stmt
, i
);
675 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
677 if (is_gimple_min_invariant (op
))
678 has_constant_operand
= true;
681 if (has_constant_operand
)
682 all_undefined_operands
= false;
684 if (has_undefined_operand
685 && code
== GIMPLE_CALL
686 && gimple_call_internal_p (stmt
))
687 switch (gimple_call_internal_fn (stmt
))
689 /* These 3 builtins use the first argument just as a magic
690 way how to find out a decl uid. */
691 case IFN_GOMP_SIMD_LANE
:
692 case IFN_GOMP_SIMD_VF
:
693 case IFN_GOMP_SIMD_LAST_LANE
:
694 has_undefined_operand
= false;
700 /* If the operation combines operands like COMPLEX_EXPR make sure to
701 not mark the result UNDEFINED if only one part of the result is
703 if (has_undefined_operand
&& all_undefined_operands
)
705 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
707 switch (gimple_assign_rhs_code (stmt
))
709 /* Unary operators are handled with all_undefined_operands. */
712 case POINTER_PLUS_EXPR
:
713 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
714 Not bitwise operators, one VARYING operand may specify the
715 result completely. Not logical operators for the same reason.
716 Not COMPLEX_EXPR as one VARYING operand makes the result partly
717 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
718 the undefined operand may be promoted. */
722 /* If any part of an address is UNDEFINED, like the index
723 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
730 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
731 fall back to CONSTANT. During iteration UNDEFINED may still drop
733 if (has_undefined_operand
)
736 /* We do not consider virtual operands here -- load from read-only
737 memory may have only VARYING virtual operands, but still be
739 if (has_constant_operand
740 || gimple_references_memory_p (stmt
))
746 /* Returns true if STMT cannot be constant. */
749 surely_varying_stmt_p (gimple stmt
)
751 /* If the statement has operands that we cannot handle, it cannot be
753 if (gimple_has_volatile_ops (stmt
))
756 /* If it is a call and does not return a value or is not a
757 builtin and not an indirect call or a call to function with
758 assume_aligned/alloc_align attribute, it is varying. */
759 if (is_gimple_call (stmt
))
761 tree fndecl
, fntype
= gimple_call_fntype (stmt
);
762 if (!gimple_call_lhs (stmt
)
763 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
764 && !DECL_BUILT_IN (fndecl
)
765 && !lookup_attribute ("assume_aligned",
766 TYPE_ATTRIBUTES (fntype
))
767 && !lookup_attribute ("alloc_align",
768 TYPE_ATTRIBUTES (fntype
))))
772 /* Any other store operation is not interesting. */
773 else if (gimple_vdef (stmt
))
776 /* Anything other than assignments and conditional jumps are not
777 interesting for CCP. */
778 if (gimple_code (stmt
) != GIMPLE_ASSIGN
779 && gimple_code (stmt
) != GIMPLE_COND
780 && gimple_code (stmt
) != GIMPLE_SWITCH
781 && gimple_code (stmt
) != GIMPLE_CALL
)
787 /* Initialize local data structures for CCP. */
790 ccp_initialize (void)
794 n_const_val
= num_ssa_names
;
795 const_val
= XCNEWVEC (prop_value_t
, n_const_val
);
797 /* Initialize simulation flags for PHI nodes and statements. */
798 FOR_EACH_BB_FN (bb
, cfun
)
800 gimple_stmt_iterator i
;
802 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
804 gimple stmt
= gsi_stmt (i
);
807 /* If the statement is a control insn, then we do not
808 want to avoid simulating the statement once. Failure
809 to do so means that those edges will never get added. */
810 if (stmt_ends_bb_p (stmt
))
813 is_varying
= surely_varying_stmt_p (stmt
);
820 /* If the statement will not produce a constant, mark
821 all its outputs VARYING. */
822 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
823 set_value_varying (def
);
825 prop_set_simulate_again (stmt
, !is_varying
);
829 /* Now process PHI nodes. We never clear the simulate_again flag on
830 phi nodes, since we do not know which edges are executable yet,
831 except for phi nodes for virtual operands when we do not do store ccp. */
832 FOR_EACH_BB_FN (bb
, cfun
)
834 gimple_stmt_iterator i
;
836 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
838 gimple phi
= gsi_stmt (i
);
840 if (virtual_operand_p (gimple_phi_result (phi
)))
841 prop_set_simulate_again (phi
, false);
843 prop_set_simulate_again (phi
, true);
848 /* Debug count support. Reset the values of ssa names
849 VARYING when the total number ssa names analyzed is
850 beyond the debug count specified. */
856 for (i
= 0; i
< num_ssa_names
; i
++)
860 const_val
[i
].lattice_val
= VARYING
;
861 const_val
[i
].mask
= -1;
862 const_val
[i
].value
= NULL_TREE
;
868 /* Do final substitution of propagated values, cleanup the flowgraph and
869 free allocated storage.
871 Return TRUE when something was optimized. */
876 bool something_changed
;
881 /* Derive alignment and misalignment information from partially
882 constant pointers in the lattice or nonzero bits from partially
883 constant integers. */
884 for (i
= 1; i
< num_ssa_names
; ++i
)
886 tree name
= ssa_name (i
);
888 unsigned int tem
, align
;
891 || (!POINTER_TYPE_P (TREE_TYPE (name
))
892 && (!INTEGRAL_TYPE_P (TREE_TYPE (name
))
893 /* Don't record nonzero bits before IPA to avoid
894 using too much memory. */
895 || first_pass_instance
)))
898 val
= get_value (name
);
899 if (val
->lattice_val
!= CONSTANT
900 || TREE_CODE (val
->value
) != INTEGER_CST
)
903 if (POINTER_TYPE_P (TREE_TYPE (name
)))
905 /* Trailing mask bits specify the alignment, trailing value
906 bits the misalignment. */
907 tem
= val
->mask
.to_uhwi ();
908 align
= (tem
& -tem
);
910 set_ptr_info_alignment (get_ptr_info (name
), align
,
911 (TREE_INT_CST_LOW (val
->value
)
916 unsigned int precision
= TYPE_PRECISION (TREE_TYPE (val
->value
));
917 wide_int nonzero_bits
= wide_int::from (val
->mask
, precision
,
918 UNSIGNED
) | val
->value
;
919 nonzero_bits
&= get_nonzero_bits (name
);
920 set_nonzero_bits (name
, nonzero_bits
);
924 /* Perform substitutions based on the known constant values. */
925 something_changed
= substitute_and_fold (get_constant_value
,
926 ccp_fold_stmt
, true);
930 return something_changed
;;
934 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
937 any M UNDEFINED = any
938 any M VARYING = VARYING
939 Ci M Cj = Ci if (i == j)
940 Ci M Cj = VARYING if (i != j)
944 ccp_lattice_meet (prop_value_t
*val1
, prop_value_t
*val2
)
946 if (val1
->lattice_val
== UNDEFINED
)
948 /* UNDEFINED M any = any */
951 else if (val2
->lattice_val
== UNDEFINED
)
953 /* any M UNDEFINED = any
954 Nothing to do. VAL1 already contains the value we want. */
957 else if (val1
->lattice_val
== VARYING
958 || val2
->lattice_val
== VARYING
)
960 /* any M VARYING = VARYING. */
961 val1
->lattice_val
= VARYING
;
963 val1
->value
= NULL_TREE
;
965 else if (val1
->lattice_val
== CONSTANT
966 && val2
->lattice_val
== CONSTANT
967 && TREE_CODE (val1
->value
) == INTEGER_CST
968 && TREE_CODE (val2
->value
) == INTEGER_CST
)
970 /* Ci M Cj = Ci if (i == j)
971 Ci M Cj = VARYING if (i != j)
973 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
975 val1
->mask
= (val1
->mask
| val2
->mask
976 | (wi::to_widest (val1
->value
)
977 ^ wi::to_widest (val2
->value
)));
978 if (val1
->mask
== -1)
980 val1
->lattice_val
= VARYING
;
981 val1
->value
= NULL_TREE
;
984 else if (val1
->lattice_val
== CONSTANT
985 && val2
->lattice_val
== CONSTANT
986 && simple_cst_equal (val1
->value
, val2
->value
) == 1)
988 /* Ci M Cj = Ci if (i == j)
989 Ci M Cj = VARYING if (i != j)
991 VAL1 already contains the value we want for equivalent values. */
993 else if (val1
->lattice_val
== CONSTANT
994 && val2
->lattice_val
== CONSTANT
995 && (TREE_CODE (val1
->value
) == ADDR_EXPR
996 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
998 /* When not equal addresses are involved try meeting for
1000 prop_value_t tem
= *val2
;
1001 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
1002 *val1
= get_value_for_expr (val1
->value
, true);
1003 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
1004 tem
= get_value_for_expr (val2
->value
, true);
1005 ccp_lattice_meet (val1
, &tem
);
1009 /* Any other combination is VARYING. */
1010 val1
->lattice_val
= VARYING
;
1012 val1
->value
= NULL_TREE
;
1017 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1018 lattice values to determine PHI_NODE's lattice value. The value of a
1019 PHI node is determined calling ccp_lattice_meet with all the arguments
1020 of the PHI node that are incoming via executable edges. */
1022 static enum ssa_prop_result
1023 ccp_visit_phi_node (gimple phi
)
1026 prop_value_t
*old_val
, new_val
;
1028 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1030 fprintf (dump_file
, "\nVisiting PHI node: ");
1031 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
1034 old_val
= get_value (gimple_phi_result (phi
));
1035 switch (old_val
->lattice_val
)
1038 return SSA_PROP_VARYING
;
1045 new_val
.lattice_val
= UNDEFINED
;
1046 new_val
.value
= NULL_TREE
;
1053 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1055 /* Compute the meet operator over all the PHI arguments flowing
1056 through executable edges. */
1057 edge e
= gimple_phi_arg_edge (phi
, i
);
1059 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1062 "\n Argument #%d (%d -> %d %sexecutable)\n",
1063 i
, e
->src
->index
, e
->dest
->index
,
1064 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
1067 /* If the incoming edge is executable, Compute the meet operator for
1068 the existing value of the PHI node and the current PHI argument. */
1069 if (e
->flags
& EDGE_EXECUTABLE
)
1071 tree arg
= gimple_phi_arg (phi
, i
)->def
;
1072 prop_value_t arg_val
= get_value_for_expr (arg
, false);
1074 ccp_lattice_meet (&new_val
, &arg_val
);
1076 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1078 fprintf (dump_file
, "\t");
1079 print_generic_expr (dump_file
, arg
, dump_flags
);
1080 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
1081 fprintf (dump_file
, "\n");
1084 if (new_val
.lattice_val
== VARYING
)
1089 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1091 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
1092 fprintf (dump_file
, "\n\n");
1095 /* Make the transition to the new value. */
1096 if (set_lattice_value (gimple_phi_result (phi
), new_val
))
1098 if (new_val
.lattice_val
== VARYING
)
1099 return SSA_PROP_VARYING
;
1101 return SSA_PROP_INTERESTING
;
1104 return SSA_PROP_NOT_INTERESTING
;
1107 /* Return the constant value for OP or OP otherwise. */
1110 valueize_op (tree op
)
1112 if (TREE_CODE (op
) == SSA_NAME
)
1114 tree tem
= get_constant_value (op
);
1121 /* CCP specific front-end to the non-destructive constant folding
1124 Attempt to simplify the RHS of STMT knowing that one or more
1125 operands are constants.
1127 If simplification is possible, return the simplified RHS,
1128 otherwise return the original RHS or NULL_TREE. */
1131 ccp_fold (gimple stmt
)
1133 location_t loc
= gimple_location (stmt
);
1134 switch (gimple_code (stmt
))
1138 /* Handle comparison operators that can appear in GIMPLE form. */
1139 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1140 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1141 enum tree_code code
= gimple_cond_code (stmt
);
1142 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1147 /* Return the constant switch index. */
1148 return valueize_op (gimple_switch_index (stmt
));
1153 return gimple_fold_stmt_to_constant_1 (stmt
, valueize_op
);
1160 /* Apply the operation CODE in type TYPE to the value, mask pair
1161 RVAL and RMASK representing a value of type RTYPE and set
1162 the value, mask pair *VAL and *MASK to the result. */
1165 bit_value_unop_1 (enum tree_code code
, tree type
,
1166 widest_int
*val
, widest_int
*mask
,
1167 tree rtype
, const widest_int
&rval
, const widest_int
&rmask
)
1178 widest_int temv
, temm
;
1179 /* Return ~rval + 1. */
1180 bit_value_unop_1 (BIT_NOT_EXPR
, type
, &temv
, &temm
, type
, rval
, rmask
);
1181 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1182 type
, temv
, temm
, type
, 1, 0);
1190 /* First extend mask and value according to the original type. */
1191 sgn
= TYPE_SIGN (rtype
);
1192 *mask
= wi::ext (rmask
, TYPE_PRECISION (rtype
), sgn
);
1193 *val
= wi::ext (rval
, TYPE_PRECISION (rtype
), sgn
);
1195 /* Then extend mask and value according to the target type. */
1196 sgn
= TYPE_SIGN (type
);
1197 *mask
= wi::ext (*mask
, TYPE_PRECISION (type
), sgn
);
1198 *val
= wi::ext (*val
, TYPE_PRECISION (type
), sgn
);
1208 /* Apply the operation CODE in type TYPE to the value, mask pairs
1209 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1210 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1213 bit_value_binop_1 (enum tree_code code
, tree type
,
1214 widest_int
*val
, widest_int
*mask
,
1215 tree r1type
, const widest_int
&r1val
,
1216 const widest_int
&r1mask
, tree r2type
,
1217 const widest_int
&r2val
, const widest_int
&r2mask
)
1219 signop sgn
= TYPE_SIGN (type
);
1220 int width
= TYPE_PRECISION (type
);
1221 bool swap_p
= false;
1223 /* Assume we'll get a constant result. Use an initial non varying
1224 value, we fall back to varying in the end if necessary. */
1230 /* The mask is constant where there is a known not
1231 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1232 *mask
= (r1mask
| r2mask
) & (r1val
| r1mask
) & (r2val
| r2mask
);
1233 *val
= r1val
& r2val
;
1237 /* The mask is constant where there is a known
1238 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1239 *mask
= (r1mask
| r2mask
)
1240 .and_not (r1val
.and_not (r1mask
) | r2val
.and_not (r2mask
));
1241 *val
= r1val
| r2val
;
1246 *mask
= r1mask
| r2mask
;
1247 *val
= r1val
^ r2val
;
1254 widest_int shift
= r2val
;
1262 if (wi::neg_p (shift
))
1265 if (code
== RROTATE_EXPR
)
1266 code
= LROTATE_EXPR
;
1268 code
= RROTATE_EXPR
;
1270 if (code
== RROTATE_EXPR
)
1272 *mask
= wi::rrotate (r1mask
, shift
, width
);
1273 *val
= wi::rrotate (r1val
, shift
, width
);
1277 *mask
= wi::lrotate (r1mask
, shift
, width
);
1278 *val
= wi::lrotate (r1val
, shift
, width
);
1286 /* ??? We can handle partially known shift counts if we know
1287 its sign. That way we can tell that (x << (y | 8)) & 255
1291 widest_int shift
= r2val
;
1299 if (wi::neg_p (shift
))
1302 if (code
== RSHIFT_EXPR
)
1307 if (code
== RSHIFT_EXPR
)
1309 *mask
= wi::rshift (wi::ext (r1mask
, width
, sgn
), shift
, sgn
);
1310 *val
= wi::rshift (wi::ext (r1val
, width
, sgn
), shift
, sgn
);
1314 *mask
= wi::ext (wi::lshift (r1mask
, shift
), width
, sgn
);
1315 *val
= wi::ext (wi::lshift (r1val
, shift
), width
, sgn
);
1322 case POINTER_PLUS_EXPR
:
1324 /* Do the addition with unknown bits set to zero, to give carry-ins of
1325 zero wherever possible. */
1326 widest_int lo
= r1val
.and_not (r1mask
) + r2val
.and_not (r2mask
);
1327 lo
= wi::ext (lo
, width
, sgn
);
1328 /* Do the addition with unknown bits set to one, to give carry-ins of
1329 one wherever possible. */
1330 widest_int hi
= (r1val
| r1mask
) + (r2val
| r2mask
);
1331 hi
= wi::ext (hi
, width
, sgn
);
1332 /* Each bit in the result is known if (a) the corresponding bits in
1333 both inputs are known, and (b) the carry-in to that bit position
1334 is known. We can check condition (b) by seeing if we got the same
1335 result with minimised carries as with maximised carries. */
1336 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1337 *mask
= wi::ext (*mask
, width
, sgn
);
1338 /* It shouldn't matter whether we choose lo or hi here. */
1345 widest_int temv
, temm
;
1346 bit_value_unop_1 (NEGATE_EXPR
, r2type
, &temv
, &temm
,
1347 r2type
, r2val
, r2mask
);
1348 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1349 r1type
, r1val
, r1mask
,
1350 r2type
, temv
, temm
);
1356 /* Just track trailing zeros in both operands and transfer
1357 them to the other. */
1358 int r1tz
= wi::ctz (r1val
| r1mask
);
1359 int r2tz
= wi::ctz (r2val
| r2mask
);
1360 if (r1tz
+ r2tz
>= width
)
1365 else if (r1tz
+ r2tz
> 0)
1367 *mask
= wi::ext (wi::mask
<widest_int
> (r1tz
+ r2tz
, true),
1377 widest_int m
= r1mask
| r2mask
;
1378 if (r1val
.and_not (m
) != r2val
.and_not (m
))
1381 *val
= ((code
== EQ_EXPR
) ? 0 : 1);
1385 /* We know the result of a comparison is always one or zero. */
1395 code
= swap_tree_comparison (code
);
1402 const widest_int
&o1val
= swap_p
? r2val
: r1val
;
1403 const widest_int
&o1mask
= swap_p
? r2mask
: r1mask
;
1404 const widest_int
&o2val
= swap_p
? r1val
: r2val
;
1405 const widest_int
&o2mask
= swap_p
? r1mask
: r2mask
;
1407 /* If the most significant bits are not known we know nothing. */
1408 if (wi::neg_p (o1mask
) || wi::neg_p (o2mask
))
1411 /* For comparisons the signedness is in the comparison operands. */
1412 sgn
= TYPE_SIGN (r1type
);
1414 /* If we know the most significant bits we know the values
1415 value ranges by means of treating varying bits as zero
1416 or one. Do a cross comparison of the max/min pairs. */
1417 maxmin
= wi::cmp (o1val
| o1mask
, o2val
.and_not (o2mask
), sgn
);
1418 minmax
= wi::cmp (o1val
.and_not (o1mask
), o2val
| o2mask
, sgn
);
1419 if (maxmin
< 0) /* o1 is less than o2. */
1424 else if (minmax
> 0) /* o1 is not less or equal to o2. */
1429 else if (maxmin
== minmax
) /* o1 and o2 are equal. */
1431 /* This probably should never happen as we'd have
1432 folded the thing during fully constant value folding. */
1434 *val
= (code
== LE_EXPR
? 1 : 0);
1438 /* We know the result of a comparison is always one or zero. */
1449 /* Return the propagation value when applying the operation CODE to
1450 the value RHS yielding type TYPE. */
1453 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1455 prop_value_t rval
= get_value_for_expr (rhs
, true);
1456 widest_int value
, mask
;
1459 if (rval
.lattice_val
== UNDEFINED
)
1462 gcc_assert ((rval
.lattice_val
== CONSTANT
1463 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1464 || rval
.mask
== -1);
1465 bit_value_unop_1 (code
, type
, &value
, &mask
,
1466 TREE_TYPE (rhs
), value_to_wide_int (rval
), rval
.mask
);
1469 val
.lattice_val
= CONSTANT
;
1471 /* ??? Delay building trees here. */
1472 val
.value
= wide_int_to_tree (type
, value
);
1476 val
.lattice_val
= VARYING
;
1477 val
.value
= NULL_TREE
;
1483 /* Return the propagation value when applying the operation CODE to
1484 the values RHS1 and RHS2 yielding type TYPE. */
1487 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1489 prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1490 prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1491 widest_int value
, mask
;
1494 if (r1val
.lattice_val
== UNDEFINED
1495 || r2val
.lattice_val
== UNDEFINED
)
1497 val
.lattice_val
= VARYING
;
1498 val
.value
= NULL_TREE
;
1503 gcc_assert ((r1val
.lattice_val
== CONSTANT
1504 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1505 || r1val
.mask
== -1);
1506 gcc_assert ((r2val
.lattice_val
== CONSTANT
1507 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1508 || r2val
.mask
== -1);
1509 bit_value_binop_1 (code
, type
, &value
, &mask
,
1510 TREE_TYPE (rhs1
), value_to_wide_int (r1val
), r1val
.mask
,
1511 TREE_TYPE (rhs2
), value_to_wide_int (r2val
), r2val
.mask
);
1514 val
.lattice_val
= CONSTANT
;
1516 /* ??? Delay building trees here. */
1517 val
.value
= wide_int_to_tree (type
, value
);
1521 val
.lattice_val
= VARYING
;
1522 val
.value
= NULL_TREE
;
1528 /* Return the propagation value for __builtin_assume_aligned
1529 and functions with assume_aligned or alloc_aligned attribute.
1530 For __builtin_assume_aligned, ATTR is NULL_TREE,
1531 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1532 is false, for alloc_aligned attribute ATTR is non-NULL and
1533 ALLOC_ALIGNED is true. */
1536 bit_value_assume_aligned (gimple stmt
, tree attr
, prop_value_t ptrval
,
1539 tree align
, misalign
= NULL_TREE
, type
;
1540 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
1541 prop_value_t alignval
;
1542 widest_int value
, mask
;
1545 if (attr
== NULL_TREE
)
1547 tree ptr
= gimple_call_arg (stmt
, 0);
1548 type
= TREE_TYPE (ptr
);
1549 ptrval
= get_value_for_expr (ptr
, true);
1553 tree lhs
= gimple_call_lhs (stmt
);
1554 type
= TREE_TYPE (lhs
);
1557 if (ptrval
.lattice_val
== UNDEFINED
)
1559 gcc_assert ((ptrval
.lattice_val
== CONSTANT
1560 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
1561 || ptrval
.mask
== -1);
1562 if (attr
== NULL_TREE
)
1564 /* Get aligni and misaligni from __builtin_assume_aligned. */
1565 align
= gimple_call_arg (stmt
, 1);
1566 if (!tree_fits_uhwi_p (align
))
1568 aligni
= tree_to_uhwi (align
);
1569 if (gimple_call_num_args (stmt
) > 2)
1571 misalign
= gimple_call_arg (stmt
, 2);
1572 if (!tree_fits_uhwi_p (misalign
))
1574 misaligni
= tree_to_uhwi (misalign
);
1579 /* Get aligni and misaligni from assume_aligned or
1580 alloc_align attributes. */
1581 if (TREE_VALUE (attr
) == NULL_TREE
)
1583 attr
= TREE_VALUE (attr
);
1584 align
= TREE_VALUE (attr
);
1585 if (!tree_fits_uhwi_p (align
))
1587 aligni
= tree_to_uhwi (align
);
1590 if (aligni
== 0 || aligni
> gimple_call_num_args (stmt
))
1592 align
= gimple_call_arg (stmt
, aligni
- 1);
1593 if (!tree_fits_uhwi_p (align
))
1595 aligni
= tree_to_uhwi (align
);
1597 else if (TREE_CHAIN (attr
) && TREE_VALUE (TREE_CHAIN (attr
)))
1599 misalign
= TREE_VALUE (TREE_CHAIN (attr
));
1600 if (!tree_fits_uhwi_p (misalign
))
1602 misaligni
= tree_to_uhwi (misalign
);
1605 if (aligni
<= 1 || (aligni
& (aligni
- 1)) != 0 || misaligni
>= aligni
)
1608 align
= build_int_cst_type (type
, -aligni
);
1609 alignval
= get_value_for_expr (align
, true);
1610 bit_value_binop_1 (BIT_AND_EXPR
, type
, &value
, &mask
,
1611 type
, value_to_wide_int (ptrval
), ptrval
.mask
,
1612 type
, value_to_wide_int (alignval
), alignval
.mask
);
1615 val
.lattice_val
= CONSTANT
;
1617 gcc_assert ((mask
.to_uhwi () & (aligni
- 1)) == 0);
1618 gcc_assert ((value
.to_uhwi () & (aligni
- 1)) == 0);
1620 /* ??? Delay building trees here. */
1621 val
.value
= wide_int_to_tree (type
, value
);
1625 val
.lattice_val
= VARYING
;
1626 val
.value
= NULL_TREE
;
1632 /* Evaluate statement STMT.
1633 Valid only for assignments, calls, conditionals, and switches. */
1636 evaluate_stmt (gimple stmt
)
1639 tree simplified
= NULL_TREE
;
1640 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1641 bool is_constant
= false;
1644 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1646 fprintf (dump_file
, "which is likely ");
1647 switch (likelyvalue
)
1650 fprintf (dump_file
, "CONSTANT");
1653 fprintf (dump_file
, "UNDEFINED");
1656 fprintf (dump_file
, "VARYING");
1660 fprintf (dump_file
, "\n");
1663 /* If the statement is likely to have a CONSTANT result, then try
1664 to fold the statement to determine the constant value. */
1665 /* FIXME. This is the only place that we call ccp_fold.
1666 Since likely_value never returns CONSTANT for calls, we will
1667 not attempt to fold them, including builtins that may profit. */
1668 if (likelyvalue
== CONSTANT
)
1670 fold_defer_overflow_warnings ();
1671 simplified
= ccp_fold (stmt
);
1672 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1673 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1676 /* The statement produced a constant value. */
1677 val
.lattice_val
= CONSTANT
;
1678 val
.value
= simplified
;
1682 /* If the statement is likely to have a VARYING result, then do not
1683 bother folding the statement. */
1684 else if (likelyvalue
== VARYING
)
1686 enum gimple_code code
= gimple_code (stmt
);
1687 if (code
== GIMPLE_ASSIGN
)
1689 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1691 /* Other cases cannot satisfy is_gimple_min_invariant
1693 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1694 simplified
= gimple_assign_rhs1 (stmt
);
1696 else if (code
== GIMPLE_SWITCH
)
1697 simplified
= gimple_switch_index (stmt
);
1699 /* These cannot satisfy is_gimple_min_invariant without folding. */
1700 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1701 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1704 /* The statement produced a constant value. */
1705 val
.lattice_val
= CONSTANT
;
1706 val
.value
= simplified
;
1711 /* Resort to simplification for bitwise tracking. */
1712 if (flag_tree_bit_ccp
1713 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
))
1716 enum gimple_code code
= gimple_code (stmt
);
1717 val
.lattice_val
= VARYING
;
1718 val
.value
= NULL_TREE
;
1720 if (code
== GIMPLE_ASSIGN
)
1722 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1723 tree rhs1
= gimple_assign_rhs1 (stmt
);
1724 switch (get_gimple_rhs_class (subcode
))
1726 case GIMPLE_SINGLE_RHS
:
1727 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1728 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1729 val
= get_value_for_expr (rhs1
, true);
1732 case GIMPLE_UNARY_RHS
:
1733 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1734 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1735 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt
))
1736 || POINTER_TYPE_P (gimple_expr_type (stmt
))))
1737 val
= bit_value_unop (subcode
, gimple_expr_type (stmt
), rhs1
);
1740 case GIMPLE_BINARY_RHS
:
1741 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1742 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1744 tree lhs
= gimple_assign_lhs (stmt
);
1745 tree rhs2
= gimple_assign_rhs2 (stmt
);
1746 val
= bit_value_binop (subcode
,
1747 TREE_TYPE (lhs
), rhs1
, rhs2
);
1754 else if (code
== GIMPLE_COND
)
1756 enum tree_code code
= gimple_cond_code (stmt
);
1757 tree rhs1
= gimple_cond_lhs (stmt
);
1758 tree rhs2
= gimple_cond_rhs (stmt
);
1759 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1760 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1761 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1763 else if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
1765 tree fndecl
= gimple_call_fndecl (stmt
);
1766 switch (DECL_FUNCTION_CODE (fndecl
))
1768 case BUILT_IN_MALLOC
:
1769 case BUILT_IN_REALLOC
:
1770 case BUILT_IN_CALLOC
:
1771 case BUILT_IN_STRDUP
:
1772 case BUILT_IN_STRNDUP
:
1773 val
.lattice_val
= CONSTANT
;
1774 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1775 val
.mask
= ~((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
1776 / BITS_PER_UNIT
- 1);
1779 case BUILT_IN_ALLOCA
:
1780 case BUILT_IN_ALLOCA_WITH_ALIGN
:
1781 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
1782 ? TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1))
1783 : BIGGEST_ALIGNMENT
);
1784 val
.lattice_val
= CONSTANT
;
1785 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1786 val
.mask
= ~((HOST_WIDE_INT
) align
/ BITS_PER_UNIT
- 1);
1789 /* These builtins return their first argument, unmodified. */
1790 case BUILT_IN_MEMCPY
:
1791 case BUILT_IN_MEMMOVE
:
1792 case BUILT_IN_MEMSET
:
1793 case BUILT_IN_STRCPY
:
1794 case BUILT_IN_STRNCPY
:
1795 case BUILT_IN_MEMCPY_CHK
:
1796 case BUILT_IN_MEMMOVE_CHK
:
1797 case BUILT_IN_MEMSET_CHK
:
1798 case BUILT_IN_STRCPY_CHK
:
1799 case BUILT_IN_STRNCPY_CHK
:
1800 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
1803 case BUILT_IN_ASSUME_ALIGNED
:
1804 val
= bit_value_assume_aligned (stmt
, NULL_TREE
, val
, false);
1807 case BUILT_IN_ALIGNED_ALLOC
:
1809 tree align
= get_constant_value (gimple_call_arg (stmt
, 0));
1811 && tree_fits_uhwi_p (align
))
1813 unsigned HOST_WIDE_INT aligni
= tree_to_uhwi (align
);
1815 /* align must be power-of-two */
1816 && (aligni
& (aligni
- 1)) == 0)
1818 val
.lattice_val
= CONSTANT
;
1819 val
.value
= build_int_cst (ptr_type_node
, 0);
1829 if (is_gimple_call (stmt
) && gimple_call_lhs (stmt
))
1831 tree fntype
= gimple_call_fntype (stmt
);
1834 tree attrs
= lookup_attribute ("assume_aligned",
1835 TYPE_ATTRIBUTES (fntype
));
1837 val
= bit_value_assume_aligned (stmt
, attrs
, val
, false);
1838 attrs
= lookup_attribute ("alloc_align",
1839 TYPE_ATTRIBUTES (fntype
));
1841 val
= bit_value_assume_aligned (stmt
, attrs
, val
, true);
1844 is_constant
= (val
.lattice_val
== CONSTANT
);
1847 if (flag_tree_bit_ccp
1848 && ((is_constant
&& TREE_CODE (val
.value
) == INTEGER_CST
)
1849 || (!is_constant
&& likelyvalue
!= UNDEFINED
))
1850 && gimple_get_lhs (stmt
)
1851 && TREE_CODE (gimple_get_lhs (stmt
)) == SSA_NAME
)
1853 tree lhs
= gimple_get_lhs (stmt
);
1854 wide_int nonzero_bits
= get_nonzero_bits (lhs
);
1855 if (nonzero_bits
!= -1)
1859 val
.lattice_val
= CONSTANT
;
1860 val
.value
= build_zero_cst (TREE_TYPE (lhs
));
1861 val
.mask
= extend_mask (nonzero_bits
);
1866 if (wi::bit_and_not (val
.value
, nonzero_bits
) != 0)
1867 val
.value
= wide_int_to_tree (TREE_TYPE (lhs
),
1868 nonzero_bits
& val
.value
);
1869 if (nonzero_bits
== 0)
1872 val
.mask
= val
.mask
& extend_mask (nonzero_bits
);
1879 /* The statement produced a nonconstant value. If the statement
1880 had UNDEFINED operands, then the result of the statement
1881 should be UNDEFINED. Otherwise, the statement is VARYING. */
1882 if (likelyvalue
== UNDEFINED
)
1884 val
.lattice_val
= likelyvalue
;
1889 val
.lattice_val
= VARYING
;
1893 val
.value
= NULL_TREE
;
1899 typedef hash_table
<pointer_hash
<gimple_statement_base
> > gimple_htab
;
1901 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1902 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1905 insert_clobber_before_stack_restore (tree saved_val
, tree var
,
1906 gimple_htab
**visited
)
1908 gimple stmt
, clobber_stmt
;
1910 imm_use_iterator iter
;
1911 gimple_stmt_iterator i
;
1914 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
1915 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1917 clobber
= build_constructor (TREE_TYPE (var
),
1919 TREE_THIS_VOLATILE (clobber
) = 1;
1920 clobber_stmt
= gimple_build_assign (var
, clobber
);
1922 i
= gsi_for_stmt (stmt
);
1923 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
1925 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1928 *visited
= new gimple_htab (10);
1930 slot
= (*visited
)->find_slot (stmt
, INSERT
);
1935 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
1938 else if (gimple_assign_ssa_name_copy_p (stmt
))
1939 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt
), var
,
1942 gcc_assert (is_gimple_debug (stmt
));
1945 /* Advance the iterator to the previous non-debug gimple statement in the same
1946 or dominating basic block. */
1949 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
1953 gsi_prev_nondebug (i
);
1954 while (gsi_end_p (*i
))
1956 dom
= get_immediate_dominator (CDI_DOMINATORS
, i
->bb
);
1957 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1960 *i
= gsi_last_bb (dom
);
1964 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1965 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
1967 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
1968 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
1969 that case the function gives up without inserting the clobbers. */
1972 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
1976 gimple_htab
*visited
= NULL
;
1978 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
1980 stmt
= gsi_stmt (i
);
1982 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
1985 saved_val
= gimple_call_lhs (stmt
);
1986 if (saved_val
== NULL_TREE
)
1989 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
1996 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
1997 fixed-size array and returns the address, if found, otherwise returns
2001 fold_builtin_alloca_with_align (gimple stmt
)
2003 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
2004 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
2007 lhs
= gimple_call_lhs (stmt
);
2008 if (lhs
== NULL_TREE
)
2011 /* Detect constant argument. */
2012 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
2013 if (arg
== NULL_TREE
2014 || TREE_CODE (arg
) != INTEGER_CST
2015 || !tree_fits_uhwi_p (arg
))
2018 size
= tree_to_uhwi (arg
);
2020 /* Heuristic: don't fold large allocas. */
2021 threshold
= (unsigned HOST_WIDE_INT
)PARAM_VALUE (PARAM_LARGE_STACK_FRAME
);
2022 /* In case the alloca is located at function entry, it has the same lifetime
2023 as a declared array, so we allow a larger size. */
2024 block
= gimple_block (stmt
);
2025 if (!(cfun
->after_inlining
2026 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
2028 if (size
> threshold
)
2031 /* Declare array. */
2032 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
2033 n_elem
= size
* 8 / BITS_PER_UNIT
;
2034 array_type
= build_array_type_nelts (elem_type
, n_elem
);
2035 var
= create_tmp_var (array_type
, NULL
);
2036 DECL_ALIGN (var
) = TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1));
2038 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
2039 if (pi
!= NULL
&& !pi
->pt
.anything
)
2043 singleton_p
= pt_solution_singleton_p (&pi
->pt
, &uid
);
2044 gcc_assert (singleton_p
);
2045 SET_DECL_PT_UID (var
, uid
);
2049 /* Fold alloca to the address of the array. */
2050 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
2053 /* Fold the stmt at *GSI with CCP specific information that propagating
2054 and regular folding does not catch. */
2057 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
2059 gimple stmt
= gsi_stmt (*gsi
);
2061 switch (gimple_code (stmt
))
2066 /* Statement evaluation will handle type mismatches in constants
2067 more gracefully than the final propagation. This allows us to
2068 fold more conditionals here. */
2069 val
= evaluate_stmt (stmt
);
2070 if (val
.lattice_val
!= CONSTANT
2076 fprintf (dump_file
, "Folding predicate ");
2077 print_gimple_expr (dump_file
, stmt
, 0, 0);
2078 fprintf (dump_file
, " to ");
2079 print_generic_expr (dump_file
, val
.value
, 0);
2080 fprintf (dump_file
, "\n");
2083 if (integer_zerop (val
.value
))
2084 gimple_cond_make_false (stmt
);
2086 gimple_cond_make_true (stmt
);
2093 tree lhs
= gimple_call_lhs (stmt
);
2094 int flags
= gimple_call_flags (stmt
);
2097 bool changed
= false;
2100 /* If the call was folded into a constant make sure it goes
2101 away even if we cannot propagate into all uses because of
2104 && TREE_CODE (lhs
) == SSA_NAME
2105 && (val
= get_constant_value (lhs
))
2106 /* Don't optimize away calls that have side-effects. */
2107 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
2108 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
2110 tree new_rhs
= unshare_expr (val
);
2112 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
2113 TREE_TYPE (new_rhs
)))
2114 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
2115 res
= update_call_from_tree (gsi
, new_rhs
);
2120 /* Internal calls provide no argument types, so the extra laxity
2121 for normal calls does not apply. */
2122 if (gimple_call_internal_p (stmt
))
2125 /* The heuristic of fold_builtin_alloca_with_align differs before and
2126 after inlining, so we don't require the arg to be changed into a
2127 constant for folding, but just to be constant. */
2128 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
))
2130 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
2133 bool res
= update_call_from_tree (gsi
, new_rhs
);
2134 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
2136 insert_clobbers_for_var (*gsi
, var
);
2141 /* Propagate into the call arguments. Compared to replace_uses_in
2142 this can use the argument slot types for type verification
2143 instead of the current argument type. We also can safely
2144 drop qualifiers here as we are dealing with constants anyway. */
2145 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
2146 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
2147 ++i
, argt
= TREE_CHAIN (argt
))
2149 tree arg
= gimple_call_arg (stmt
, i
);
2150 if (TREE_CODE (arg
) == SSA_NAME
2151 && (val
= get_constant_value (arg
))
2152 && useless_type_conversion_p
2153 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
2154 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
2156 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
2166 tree lhs
= gimple_assign_lhs (stmt
);
2169 /* If we have a load that turned out to be constant replace it
2170 as we cannot propagate into all uses in all cases. */
2171 if (gimple_assign_single_p (stmt
)
2172 && TREE_CODE (lhs
) == SSA_NAME
2173 && (val
= get_constant_value (lhs
)))
2175 tree rhs
= unshare_expr (val
);
2176 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
2177 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
2178 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
2190 /* Visit the assignment statement STMT. Set the value of its LHS to the
2191 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2192 creates virtual definitions, set the value of each new name to that
2193 of the RHS (if we can derive a constant out of the RHS).
2194 Value-returning call statements also perform an assignment, and
2195 are handled here. */
2197 static enum ssa_prop_result
2198 visit_assignment (gimple stmt
, tree
*output_p
)
2201 enum ssa_prop_result retval
;
2203 tree lhs
= gimple_get_lhs (stmt
);
2205 gcc_assert (gimple_code (stmt
) != GIMPLE_CALL
2206 || gimple_call_lhs (stmt
) != NULL_TREE
);
2208 if (gimple_assign_single_p (stmt
)
2209 && gimple_assign_rhs_code (stmt
) == SSA_NAME
)
2210 /* For a simple copy operation, we copy the lattice values. */
2211 val
= *get_value (gimple_assign_rhs1 (stmt
));
2213 /* Evaluate the statement, which could be
2214 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2215 val
= evaluate_stmt (stmt
);
2217 retval
= SSA_PROP_NOT_INTERESTING
;
2219 /* Set the lattice value of the statement's output. */
2220 if (TREE_CODE (lhs
) == SSA_NAME
)
2222 /* If STMT is an assignment to an SSA_NAME, we only have one
2224 if (set_lattice_value (lhs
, val
))
2227 if (val
.lattice_val
== VARYING
)
2228 retval
= SSA_PROP_VARYING
;
2230 retval
= SSA_PROP_INTERESTING
;
2238 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2239 if it can determine which edge will be taken. Otherwise, return
2240 SSA_PROP_VARYING. */
2242 static enum ssa_prop_result
2243 visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
2248 block
= gimple_bb (stmt
);
2249 val
= evaluate_stmt (stmt
);
2250 if (val
.lattice_val
!= CONSTANT
2252 return SSA_PROP_VARYING
;
2254 /* Find which edge out of the conditional block will be taken and add it
2255 to the worklist. If no single edge can be determined statically,
2256 return SSA_PROP_VARYING to feed all the outgoing edges to the
2257 propagation engine. */
2258 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2260 return SSA_PROP_INTERESTING
;
2262 return SSA_PROP_VARYING
;
2266 /* Evaluate statement STMT. If the statement produces an output value and
2267 its evaluation changes the lattice value of its output, return
2268 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2271 If STMT is a conditional branch and we can determine its truth
2272 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2273 value, return SSA_PROP_VARYING. */
2275 static enum ssa_prop_result
2276 ccp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
2281 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2283 fprintf (dump_file
, "\nVisiting statement:\n");
2284 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2287 switch (gimple_code (stmt
))
2290 /* If the statement is an assignment that produces a single
2291 output value, evaluate its RHS to see if the lattice value of
2292 its output has changed. */
2293 return visit_assignment (stmt
, output_p
);
2296 /* A value-returning call also performs an assignment. */
2297 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2298 return visit_assignment (stmt
, output_p
);
2303 /* If STMT is a conditional branch, see if we can determine
2304 which branch will be taken. */
2305 /* FIXME. It appears that we should be able to optimize
2306 computed GOTOs here as well. */
2307 return visit_cond_stmt (stmt
, taken_edge_p
);
2313 /* Any other kind of statement is not interesting for constant
2314 propagation and, therefore, not worth simulating. */
2315 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2316 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2318 /* Definitions made by statements other than assignments to
2319 SSA_NAMEs represent unknown modifications to their outputs.
2320 Mark them VARYING. */
2321 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2323 prop_value_t v
= { VARYING
, NULL_TREE
, -1 };
2324 set_lattice_value (def
, v
);
2327 return SSA_PROP_VARYING
;
2331 /* Main entry point for SSA Conditional Constant Propagation. */
2336 unsigned int todo
= 0;
2337 calculate_dominance_info (CDI_DOMINATORS
);
2339 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
2340 if (ccp_finalize ())
2341 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
);
2342 free_dominance_info (CDI_DOMINATORS
);
2349 const pass_data pass_data_ccp
=
2351 GIMPLE_PASS
, /* type */
2353 OPTGROUP_NONE
, /* optinfo_flags */
2354 TV_TREE_CCP
, /* tv_id */
2355 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2356 0, /* properties_provided */
2357 0, /* properties_destroyed */
2358 0, /* todo_flags_start */
2359 TODO_update_address_taken
, /* todo_flags_finish */
2362 class pass_ccp
: public gimple_opt_pass
2365 pass_ccp (gcc::context
*ctxt
)
2366 : gimple_opt_pass (pass_data_ccp
, ctxt
)
2369 /* opt_pass methods: */
2370 opt_pass
* clone () { return new pass_ccp (m_ctxt
); }
2371 virtual bool gate (function
*) { return flag_tree_ccp
!= 0; }
2372 virtual unsigned int execute (function
*) { return do_ssa_ccp (); }
2374 }; // class pass_ccp
2379 make_pass_ccp (gcc::context
*ctxt
)
2381 return new pass_ccp (ctxt
);
2386 /* Try to optimize out __builtin_stack_restore. Optimize it out
2387 if there is another __builtin_stack_restore in the same basic
2388 block and no calls or ASM_EXPRs are in between, or if this block's
2389 only outgoing edge is to EXIT_BLOCK and there are no calls or
2390 ASM_EXPRs after this __builtin_stack_restore. */
2393 optimize_stack_restore (gimple_stmt_iterator i
)
2398 basic_block bb
= gsi_bb (i
);
2399 gimple call
= gsi_stmt (i
);
2401 if (gimple_code (call
) != GIMPLE_CALL
2402 || gimple_call_num_args (call
) != 1
2403 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
2404 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
2407 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
2409 stmt
= gsi_stmt (i
);
2410 if (gimple_code (stmt
) == GIMPLE_ASM
)
2412 if (gimple_code (stmt
) != GIMPLE_CALL
)
2415 callee
= gimple_call_fndecl (stmt
);
2417 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2418 /* All regular builtins are ok, just obviously not alloca. */
2419 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
2420 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA_WITH_ALIGN
)
2423 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2424 goto second_stack_restore
;
2430 /* Allow one successor of the exit block, or zero successors. */
2431 switch (EDGE_COUNT (bb
->succs
))
2436 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
2442 second_stack_restore
:
2444 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2445 If there are multiple uses, then the last one should remove the call.
2446 In any case, whether the call to __builtin_stack_save can be removed
2447 or not is irrelevant to removing the call to __builtin_stack_restore. */
2448 if (has_single_use (gimple_call_arg (call
, 0)))
2450 gimple stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2451 if (is_gimple_call (stack_save
))
2453 callee
= gimple_call_fndecl (stack_save
);
2455 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2456 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2458 gimple_stmt_iterator stack_save_gsi
;
2461 stack_save_gsi
= gsi_for_stmt (stack_save
);
2462 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2463 update_call_from_tree (&stack_save_gsi
, rhs
);
2468 /* No effect, so the statement will be deleted. */
2469 return integer_zero_node
;
2472 /* If va_list type is a simple pointer and nothing special is needed,
2473 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2474 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2475 pointer assignment. */
2478 optimize_stdarg_builtin (gimple call
)
2480 tree callee
, lhs
, rhs
, cfun_va_list
;
2481 bool va_list_simple_ptr
;
2482 location_t loc
= gimple_location (call
);
2484 if (gimple_code (call
) != GIMPLE_CALL
)
2487 callee
= gimple_call_fndecl (call
);
2489 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2490 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2491 && (TREE_TYPE (cfun_va_list
) == void_type_node
2492 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2494 switch (DECL_FUNCTION_CODE (callee
))
2496 case BUILT_IN_VA_START
:
2497 if (!va_list_simple_ptr
2498 || targetm
.expand_builtin_va_start
!= NULL
2499 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
2502 if (gimple_call_num_args (call
) != 2)
2505 lhs
= gimple_call_arg (call
, 0);
2506 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2507 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2508 != TYPE_MAIN_VARIANT (cfun_va_list
))
2511 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2512 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
2513 1, integer_zero_node
);
2514 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2515 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2517 case BUILT_IN_VA_COPY
:
2518 if (!va_list_simple_ptr
)
2521 if (gimple_call_num_args (call
) != 2)
2524 lhs
= gimple_call_arg (call
, 0);
2525 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2526 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2527 != TYPE_MAIN_VARIANT (cfun_va_list
))
2530 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2531 rhs
= gimple_call_arg (call
, 1);
2532 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2533 != TYPE_MAIN_VARIANT (cfun_va_list
))
2536 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2537 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2539 case BUILT_IN_VA_END
:
2540 /* No effect, so the statement will be deleted. */
2541 return integer_zero_node
;
2548 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2549 the incoming jumps. Return true if at least one jump was changed. */
2552 optimize_unreachable (gimple_stmt_iterator i
)
2554 basic_block bb
= gsi_bb (i
);
2555 gimple_stmt_iterator gsi
;
2561 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2563 stmt
= gsi_stmt (gsi
);
2565 if (is_gimple_debug (stmt
))
2568 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2570 /* Verify we do not need to preserve the label. */
2571 if (FORCED_LABEL (gimple_label_label (stmt
)))
2577 /* Only handle the case that __builtin_unreachable is the first statement
2578 in the block. We rely on DCE to remove stmts without side-effects
2579 before __builtin_unreachable. */
2580 if (gsi_stmt (gsi
) != gsi_stmt (i
))
2585 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2587 gsi
= gsi_last_bb (e
->src
);
2588 if (gsi_end_p (gsi
))
2591 stmt
= gsi_stmt (gsi
);
2592 if (gimple_code (stmt
) == GIMPLE_COND
)
2594 if (e
->flags
& EDGE_TRUE_VALUE
)
2595 gimple_cond_make_false (stmt
);
2596 else if (e
->flags
& EDGE_FALSE_VALUE
)
2597 gimple_cond_make_true (stmt
);
2604 /* Todo: handle other cases, f.i. switch statement. */
2614 /* A simple pass that attempts to fold all builtin functions. This pass
2615 is run after we've propagated as many constants as we can. */
2619 const pass_data pass_data_fold_builtins
=
2621 GIMPLE_PASS
, /* type */
2623 OPTGROUP_NONE
, /* optinfo_flags */
2624 TV_NONE
, /* tv_id */
2625 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2626 0, /* properties_provided */
2627 0, /* properties_destroyed */
2628 0, /* todo_flags_start */
2629 TODO_update_ssa
, /* todo_flags_finish */
2632 class pass_fold_builtins
: public gimple_opt_pass
2635 pass_fold_builtins (gcc::context
*ctxt
)
2636 : gimple_opt_pass (pass_data_fold_builtins
, ctxt
)
2639 /* opt_pass methods: */
2640 opt_pass
* clone () { return new pass_fold_builtins (m_ctxt
); }
2641 virtual unsigned int execute (function
*);
2643 }; // class pass_fold_builtins
2646 pass_fold_builtins::execute (function
*fun
)
2648 bool cfg_changed
= false;
2650 unsigned int todoflags
= 0;
2652 FOR_EACH_BB_FN (bb
, fun
)
2654 gimple_stmt_iterator i
;
2655 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
2657 gimple stmt
, old_stmt
;
2659 enum built_in_function fcode
;
2661 stmt
= gsi_stmt (i
);
2663 if (gimple_code (stmt
) != GIMPLE_CALL
)
2665 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2666 after the last GIMPLE DSE they aren't needed and might
2667 unnecessarily keep the SSA_NAMEs live. */
2668 if (gimple_clobber_p (stmt
))
2670 tree lhs
= gimple_assign_lhs (stmt
);
2671 if (TREE_CODE (lhs
) == MEM_REF
2672 && TREE_CODE (TREE_OPERAND (lhs
, 0)) == SSA_NAME
)
2674 unlink_stmt_vdef (stmt
);
2675 gsi_remove (&i
, true);
2676 release_defs (stmt
);
2684 callee
= gimple_call_fndecl (stmt
);
2685 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2691 fcode
= DECL_FUNCTION_CODE (callee
);
2696 tree result
= NULL_TREE
;
2697 switch (DECL_FUNCTION_CODE (callee
))
2699 case BUILT_IN_CONSTANT_P
:
2700 /* Resolve __builtin_constant_p. If it hasn't been
2701 folded to integer_one_node by now, it's fairly
2702 certain that the value simply isn't constant. */
2703 result
= integer_zero_node
;
2706 case BUILT_IN_ASSUME_ALIGNED
:
2707 /* Remove __builtin_assume_aligned. */
2708 result
= gimple_call_arg (stmt
, 0);
2711 case BUILT_IN_STACK_RESTORE
:
2712 result
= optimize_stack_restore (i
);
2718 case BUILT_IN_UNREACHABLE
:
2719 if (optimize_unreachable (i
))
2723 case BUILT_IN_VA_START
:
2724 case BUILT_IN_VA_END
:
2725 case BUILT_IN_VA_COPY
:
2726 /* These shouldn't be folded before pass_stdarg. */
2727 result
= optimize_stdarg_builtin (stmt
);
2741 if (!update_call_from_tree (&i
, result
))
2742 gimplify_and_update_call_from_tree (&i
, result
);
2745 todoflags
|= TODO_update_address_taken
;
2747 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2749 fprintf (dump_file
, "Simplified\n ");
2750 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2754 stmt
= gsi_stmt (i
);
2757 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
2758 && gimple_purge_dead_eh_edges (bb
))
2761 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2763 fprintf (dump_file
, "to\n ");
2764 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2765 fprintf (dump_file
, "\n");
2768 /* Retry the same statement if it changed into another
2769 builtin, there might be new opportunities now. */
2770 if (gimple_code (stmt
) != GIMPLE_CALL
)
2775 callee
= gimple_call_fndecl (stmt
);
2777 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2778 || DECL_FUNCTION_CODE (callee
) == fcode
)
2783 /* Delete unreachable blocks. */
2785 todoflags
|= TODO_cleanup_cfg
;
2793 make_pass_fold_builtins (gcc::context
*ctxt
)
2795 return new pass_fold_builtins (ctxt
);