[AArch64] Replace temporary inline assembler for vset_lane
[official-gcc.git] / gcc / sched-deps.c
blobcceff6dac840d8b9d112cd597f2d9ab10705ca0d
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h" /* FIXME: Used by call_may_noreturn_p. */
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "emit-rtl.h"
40 #include "sched-int.h"
41 #include "params.h"
42 #include "cselib.h"
43 #include "ira.h"
44 #include "target.h"
46 #ifdef INSN_SCHEDULING
48 #ifdef ENABLE_CHECKING
49 #define CHECK (true)
50 #else
51 #define CHECK (false)
52 #endif
54 /* Holds current parameters for the dependency analyzer. */
55 struct sched_deps_info_def *sched_deps_info;
57 /* The data is specific to the Haifa scheduler. */
58 vec<haifa_deps_insn_data_def>
59 h_d_i_d = vNULL;
61 /* Return the major type present in the DS. */
62 enum reg_note
63 ds_to_dk (ds_t ds)
65 if (ds & DEP_TRUE)
66 return REG_DEP_TRUE;
68 if (ds & DEP_OUTPUT)
69 return REG_DEP_OUTPUT;
71 if (ds & DEP_CONTROL)
72 return REG_DEP_CONTROL;
74 gcc_assert (ds & DEP_ANTI);
76 return REG_DEP_ANTI;
79 /* Return equivalent dep_status. */
80 ds_t
81 dk_to_ds (enum reg_note dk)
83 switch (dk)
85 case REG_DEP_TRUE:
86 return DEP_TRUE;
88 case REG_DEP_OUTPUT:
89 return DEP_OUTPUT;
91 case REG_DEP_CONTROL:
92 return DEP_CONTROL;
94 default:
95 gcc_assert (dk == REG_DEP_ANTI);
96 return DEP_ANTI;
100 /* Functions to operate with dependence information container - dep_t. */
102 /* Init DEP with the arguments. */
103 void
104 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
106 DEP_PRO (dep) = pro;
107 DEP_CON (dep) = con;
108 DEP_TYPE (dep) = type;
109 DEP_STATUS (dep) = ds;
110 DEP_COST (dep) = UNKNOWN_DEP_COST;
111 DEP_NONREG (dep) = 0;
112 DEP_MULTIPLE (dep) = 0;
113 DEP_REPLACE (dep) = NULL;
116 /* Init DEP with the arguments.
117 While most of the scheduler (including targets) only need the major type
118 of the dependency, it is convenient to hide full dep_status from them. */
119 void
120 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
122 ds_t ds;
124 if ((current_sched_info->flags & USE_DEPS_LIST))
125 ds = dk_to_ds (kind);
126 else
127 ds = 0;
129 init_dep_1 (dep, pro, con, kind, ds);
132 /* Make a copy of FROM in TO. */
133 static void
134 copy_dep (dep_t to, dep_t from)
136 memcpy (to, from, sizeof (*to));
139 static void dump_ds (FILE *, ds_t);
141 /* Define flags for dump_dep (). */
143 /* Dump producer of the dependence. */
144 #define DUMP_DEP_PRO (2)
146 /* Dump consumer of the dependence. */
147 #define DUMP_DEP_CON (4)
149 /* Dump type of the dependence. */
150 #define DUMP_DEP_TYPE (8)
152 /* Dump status of the dependence. */
153 #define DUMP_DEP_STATUS (16)
155 /* Dump all information about the dependence. */
156 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
157 |DUMP_DEP_STATUS)
159 /* Dump DEP to DUMP.
160 FLAGS is a bit mask specifying what information about DEP needs
161 to be printed.
162 If FLAGS has the very first bit set, then dump all information about DEP
163 and propagate this bit into the callee dump functions. */
164 static void
165 dump_dep (FILE *dump, dep_t dep, int flags)
167 if (flags & 1)
168 flags |= DUMP_DEP_ALL;
170 fprintf (dump, "<");
172 if (flags & DUMP_DEP_PRO)
173 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
175 if (flags & DUMP_DEP_CON)
176 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
178 if (flags & DUMP_DEP_TYPE)
180 char t;
181 enum reg_note type = DEP_TYPE (dep);
183 switch (type)
185 case REG_DEP_TRUE:
186 t = 't';
187 break;
189 case REG_DEP_OUTPUT:
190 t = 'o';
191 break;
193 case REG_DEP_CONTROL:
194 t = 'c';
195 break;
197 case REG_DEP_ANTI:
198 t = 'a';
199 break;
201 default:
202 gcc_unreachable ();
203 break;
206 fprintf (dump, "%c; ", t);
209 if (flags & DUMP_DEP_STATUS)
211 if (current_sched_info->flags & USE_DEPS_LIST)
212 dump_ds (dump, DEP_STATUS (dep));
215 fprintf (dump, ">");
218 /* Default flags for dump_dep (). */
219 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
221 /* Dump all fields of DEP to STDERR. */
222 void
223 sd_debug_dep (dep_t dep)
225 dump_dep (stderr, dep, 1);
226 fprintf (stderr, "\n");
229 /* Determine whether DEP is a dependency link of a non-debug insn on a
230 debug insn. */
232 static inline bool
233 depl_on_debug_p (dep_link_t dep)
235 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
236 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
239 /* Functions to operate with a single link from the dependencies lists -
240 dep_link_t. */
242 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
243 PREV_NEXT_P. */
244 static void
245 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
247 dep_link_t next = *prev_nextp;
249 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
250 && DEP_LINK_NEXT (l) == NULL);
252 /* Init node being inserted. */
253 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
254 DEP_LINK_NEXT (l) = next;
256 /* Fix next node. */
257 if (next != NULL)
259 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
261 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
264 /* Fix prev node. */
265 *prev_nextp = l;
268 /* Add dep_link LINK to deps_list L. */
269 static void
270 add_to_deps_list (dep_link_t link, deps_list_t l)
272 attach_dep_link (link, &DEPS_LIST_FIRST (l));
274 /* Don't count debug deps. */
275 if (!depl_on_debug_p (link))
276 ++DEPS_LIST_N_LINKS (l);
279 /* Detach dep_link L from the list. */
280 static void
281 detach_dep_link (dep_link_t l)
283 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
284 dep_link_t next = DEP_LINK_NEXT (l);
286 *prev_nextp = next;
288 if (next != NULL)
289 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
291 DEP_LINK_PREV_NEXTP (l) = NULL;
292 DEP_LINK_NEXT (l) = NULL;
295 /* Remove link LINK from list LIST. */
296 static void
297 remove_from_deps_list (dep_link_t link, deps_list_t list)
299 detach_dep_link (link);
301 /* Don't count debug deps. */
302 if (!depl_on_debug_p (link))
303 --DEPS_LIST_N_LINKS (list);
306 /* Move link LINK from list FROM to list TO. */
307 static void
308 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
310 remove_from_deps_list (link, from);
311 add_to_deps_list (link, to);
314 /* Return true of LINK is not attached to any list. */
315 static bool
316 dep_link_is_detached_p (dep_link_t link)
318 return DEP_LINK_PREV_NEXTP (link) == NULL;
321 /* Pool to hold all dependency nodes (dep_node_t). */
322 static alloc_pool dn_pool;
324 /* Number of dep_nodes out there. */
325 static int dn_pool_diff = 0;
327 /* Create a dep_node. */
328 static dep_node_t
329 create_dep_node (void)
331 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
332 dep_link_t back = DEP_NODE_BACK (n);
333 dep_link_t forw = DEP_NODE_FORW (n);
335 DEP_LINK_NODE (back) = n;
336 DEP_LINK_NEXT (back) = NULL;
337 DEP_LINK_PREV_NEXTP (back) = NULL;
339 DEP_LINK_NODE (forw) = n;
340 DEP_LINK_NEXT (forw) = NULL;
341 DEP_LINK_PREV_NEXTP (forw) = NULL;
343 ++dn_pool_diff;
345 return n;
348 /* Delete dep_node N. N must not be connected to any deps_list. */
349 static void
350 delete_dep_node (dep_node_t n)
352 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
353 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
355 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
357 --dn_pool_diff;
359 pool_free (dn_pool, n);
362 /* Pool to hold dependencies lists (deps_list_t). */
363 static alloc_pool dl_pool;
365 /* Number of deps_lists out there. */
366 static int dl_pool_diff = 0;
368 /* Functions to operate with dependences lists - deps_list_t. */
370 /* Return true if list L is empty. */
371 static bool
372 deps_list_empty_p (deps_list_t l)
374 return DEPS_LIST_N_LINKS (l) == 0;
377 /* Create a new deps_list. */
378 static deps_list_t
379 create_deps_list (void)
381 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
383 DEPS_LIST_FIRST (l) = NULL;
384 DEPS_LIST_N_LINKS (l) = 0;
386 ++dl_pool_diff;
387 return l;
390 /* Free deps_list L. */
391 static void
392 free_deps_list (deps_list_t l)
394 gcc_assert (deps_list_empty_p (l));
396 --dl_pool_diff;
398 pool_free (dl_pool, l);
401 /* Return true if there is no dep_nodes and deps_lists out there.
402 After the region is scheduled all the dependency nodes and lists
403 should [generally] be returned to pool. */
404 bool
405 deps_pools_are_empty_p (void)
407 return dn_pool_diff == 0 && dl_pool_diff == 0;
410 /* Remove all elements from L. */
411 static void
412 clear_deps_list (deps_list_t l)
416 dep_link_t link = DEPS_LIST_FIRST (l);
418 if (link == NULL)
419 break;
421 remove_from_deps_list (link, l);
423 while (1);
426 /* Decide whether a dependency should be treated as a hard or a speculative
427 dependency. */
428 static bool
429 dep_spec_p (dep_t dep)
431 if (current_sched_info->flags & DO_SPECULATION)
433 if (DEP_STATUS (dep) & SPECULATIVE)
434 return true;
436 if (current_sched_info->flags & DO_PREDICATION)
438 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
439 return true;
441 if (DEP_REPLACE (dep) != NULL)
442 return true;
443 return false;
446 static regset reg_pending_sets;
447 static regset reg_pending_clobbers;
448 static regset reg_pending_uses;
449 static regset reg_pending_control_uses;
450 static enum reg_pending_barrier_mode reg_pending_barrier;
452 /* Hard registers implicitly clobbered or used (or may be implicitly
453 clobbered or used) by the currently analyzed insn. For example,
454 insn in its constraint has one register class. Even if there is
455 currently no hard register in the insn, the particular hard
456 register will be in the insn after reload pass because the
457 constraint requires it. */
458 static HARD_REG_SET implicit_reg_pending_clobbers;
459 static HARD_REG_SET implicit_reg_pending_uses;
461 /* To speed up the test for duplicate dependency links we keep a
462 record of dependencies created by add_dependence when the average
463 number of instructions in a basic block is very large.
465 Studies have shown that there is typically around 5 instructions between
466 branches for typical C code. So we can make a guess that the average
467 basic block is approximately 5 instructions long; we will choose 100X
468 the average size as a very large basic block.
470 Each insn has associated bitmaps for its dependencies. Each bitmap
471 has enough entries to represent a dependency on any other insn in
472 the insn chain. All bitmap for true dependencies cache is
473 allocated then the rest two ones are also allocated. */
474 static bitmap_head *true_dependency_cache = NULL;
475 static bitmap_head *output_dependency_cache = NULL;
476 static bitmap_head *anti_dependency_cache = NULL;
477 static bitmap_head *control_dependency_cache = NULL;
478 static bitmap_head *spec_dependency_cache = NULL;
479 static int cache_size;
481 /* True if we should mark added dependencies as a non-register deps. */
482 static bool mark_as_hard;
484 static int deps_may_trap_p (const_rtx);
485 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
486 static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
487 enum reg_note, bool);
488 static void add_dependence_list_and_free (struct deps_desc *, rtx_insn *,
489 rtx_insn_list **, int, enum reg_note,
490 bool);
491 static void delete_all_dependences (rtx);
492 static void chain_to_prev_insn (rtx_insn *);
494 static void flush_pending_lists (struct deps_desc *, rtx_insn *, int, int);
495 static void sched_analyze_1 (struct deps_desc *, rtx, rtx_insn *);
496 static void sched_analyze_2 (struct deps_desc *, rtx, rtx_insn *);
497 static void sched_analyze_insn (struct deps_desc *, rtx, rtx_insn *);
499 static bool sched_has_condition_p (const rtx_insn *);
500 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
502 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
503 rtx, rtx);
504 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
506 #ifdef ENABLE_CHECKING
507 static void check_dep (dep_t, bool);
508 #endif
510 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
512 static int
513 deps_may_trap_p (const_rtx mem)
515 const_rtx addr = XEXP (mem, 0);
517 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
519 const_rtx t = get_reg_known_value (REGNO (addr));
520 if (t)
521 addr = t;
523 return rtx_addr_can_trap_p (addr);
527 /* Find the condition under which INSN is executed. If REV is not NULL,
528 it is set to TRUE when the returned comparison should be reversed
529 to get the actual condition. */
530 static rtx
531 sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
533 rtx pat = PATTERN (insn);
534 rtx src;
536 if (rev)
537 *rev = false;
539 if (GET_CODE (pat) == COND_EXEC)
540 return COND_EXEC_TEST (pat);
542 if (!any_condjump_p (insn) || !onlyjump_p (insn))
543 return 0;
545 src = SET_SRC (pc_set (insn));
547 if (XEXP (src, 2) == pc_rtx)
548 return XEXP (src, 0);
549 else if (XEXP (src, 1) == pc_rtx)
551 rtx cond = XEXP (src, 0);
552 enum rtx_code revcode = reversed_comparison_code (cond, insn);
554 if (revcode == UNKNOWN)
555 return 0;
557 if (rev)
558 *rev = true;
559 return cond;
562 return 0;
565 /* Return the condition under which INSN does not execute (i.e. the
566 not-taken condition for a conditional branch), or NULL if we cannot
567 find such a condition. The caller should make a copy of the condition
568 before using it. */
570 sched_get_reverse_condition_uncached (const rtx_insn *insn)
572 bool rev;
573 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
574 if (cond == NULL_RTX)
575 return cond;
576 if (!rev)
578 enum rtx_code revcode = reversed_comparison_code (cond, insn);
579 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
580 XEXP (cond, 0),
581 XEXP (cond, 1));
583 return cond;
586 /* Caching variant of sched_get_condition_with_rev_uncached.
587 We only do actual work the first time we come here for an insn; the
588 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
589 static rtx
590 sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
592 bool tmp;
594 if (INSN_LUID (insn) == 0)
595 return sched_get_condition_with_rev_uncached (insn, rev);
597 if (INSN_CACHED_COND (insn) == const_true_rtx)
598 return NULL_RTX;
600 if (INSN_CACHED_COND (insn) != NULL_RTX)
602 if (rev)
603 *rev = INSN_REVERSE_COND (insn);
604 return INSN_CACHED_COND (insn);
607 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
608 INSN_REVERSE_COND (insn) = tmp;
610 if (INSN_CACHED_COND (insn) == NULL_RTX)
612 INSN_CACHED_COND (insn) = const_true_rtx;
613 return NULL_RTX;
616 if (rev)
617 *rev = INSN_REVERSE_COND (insn);
618 return INSN_CACHED_COND (insn);
621 /* True when we can find a condition under which INSN is executed. */
622 static bool
623 sched_has_condition_p (const rtx_insn *insn)
625 return !! sched_get_condition_with_rev (insn, NULL);
630 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
631 static int
632 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
634 if (COMPARISON_P (cond1)
635 && COMPARISON_P (cond2)
636 && GET_CODE (cond1) ==
637 (rev1==rev2
638 ? reversed_comparison_code (cond2, NULL)
639 : GET_CODE (cond2))
640 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
641 && XEXP (cond1, 1) == XEXP (cond2, 1))
642 return 1;
643 return 0;
646 /* Return true if insn1 and insn2 can never depend on one another because
647 the conditions under which they are executed are mutually exclusive. */
648 bool
649 sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
651 rtx cond1, cond2;
652 bool rev1 = false, rev2 = false;
654 /* df doesn't handle conditional lifetimes entirely correctly;
655 calls mess up the conditional lifetimes. */
656 if (!CALL_P (insn1) && !CALL_P (insn2))
658 cond1 = sched_get_condition_with_rev (insn1, &rev1);
659 cond2 = sched_get_condition_with_rev (insn2, &rev2);
660 if (cond1 && cond2
661 && conditions_mutex_p (cond1, cond2, rev1, rev2)
662 /* Make sure first instruction doesn't affect condition of second
663 instruction if switched. */
664 && !modified_in_p (cond1, insn2)
665 /* Make sure second instruction doesn't affect condition of first
666 instruction if switched. */
667 && !modified_in_p (cond2, insn1))
668 return true;
670 return false;
674 /* Return true if INSN can potentially be speculated with type DS. */
675 bool
676 sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
678 if (HAS_INTERNAL_DEP (insn))
679 return false;
681 if (!NONJUMP_INSN_P (insn))
682 return false;
684 if (SCHED_GROUP_P (insn))
685 return false;
687 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
688 return false;
690 if (side_effects_p (PATTERN (insn)))
691 return false;
693 if (ds & BE_IN_SPEC)
694 /* The following instructions, which depend on a speculatively scheduled
695 instruction, cannot be speculatively scheduled along. */
697 if (may_trap_or_fault_p (PATTERN (insn)))
698 /* If instruction might fault, it cannot be speculatively scheduled.
699 For control speculation it's obvious why and for data speculation
700 it's because the insn might get wrong input if speculation
701 wasn't successful. */
702 return false;
704 if ((ds & BE_IN_DATA)
705 && sched_has_condition_p (insn))
706 /* If this is a predicated instruction, then it cannot be
707 speculatively scheduled. See PR35659. */
708 return false;
711 return true;
714 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
715 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
716 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
717 This function is used to switch sd_iterator to the next list.
718 !!! For internal use only. Might consider moving it to sched-int.h. */
719 void
720 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
721 deps_list_t *list_ptr, bool *resolved_p_ptr)
723 sd_list_types_def types = *types_ptr;
725 if (types & SD_LIST_HARD_BACK)
727 *list_ptr = INSN_HARD_BACK_DEPS (insn);
728 *resolved_p_ptr = false;
729 *types_ptr = types & ~SD_LIST_HARD_BACK;
731 else if (types & SD_LIST_SPEC_BACK)
733 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
734 *resolved_p_ptr = false;
735 *types_ptr = types & ~SD_LIST_SPEC_BACK;
737 else if (types & SD_LIST_FORW)
739 *list_ptr = INSN_FORW_DEPS (insn);
740 *resolved_p_ptr = false;
741 *types_ptr = types & ~SD_LIST_FORW;
743 else if (types & SD_LIST_RES_BACK)
745 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
746 *resolved_p_ptr = true;
747 *types_ptr = types & ~SD_LIST_RES_BACK;
749 else if (types & SD_LIST_RES_FORW)
751 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
752 *resolved_p_ptr = true;
753 *types_ptr = types & ~SD_LIST_RES_FORW;
755 else
757 *list_ptr = NULL;
758 *resolved_p_ptr = false;
759 *types_ptr = SD_LIST_NONE;
763 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
765 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
767 int size = 0;
769 while (list_types != SD_LIST_NONE)
771 deps_list_t list;
772 bool resolved_p;
774 sd_next_list (insn, &list_types, &list, &resolved_p);
775 if (list)
776 size += DEPS_LIST_N_LINKS (list);
779 return size;
782 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
784 bool
785 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
787 while (list_types != SD_LIST_NONE)
789 deps_list_t list;
790 bool resolved_p;
792 sd_next_list (insn, &list_types, &list, &resolved_p);
793 if (!deps_list_empty_p (list))
794 return false;
797 return true;
800 /* Initialize data for INSN. */
801 void
802 sd_init_insn (rtx insn)
804 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
805 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
806 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
807 INSN_FORW_DEPS (insn) = create_deps_list ();
808 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
810 /* ??? It would be nice to allocate dependency caches here. */
813 /* Free data for INSN. */
814 void
815 sd_finish_insn (rtx insn)
817 /* ??? It would be nice to deallocate dependency caches here. */
819 free_deps_list (INSN_HARD_BACK_DEPS (insn));
820 INSN_HARD_BACK_DEPS (insn) = NULL;
822 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
823 INSN_SPEC_BACK_DEPS (insn) = NULL;
825 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
826 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
828 free_deps_list (INSN_FORW_DEPS (insn));
829 INSN_FORW_DEPS (insn) = NULL;
831 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
832 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
835 /* Find a dependency between producer PRO and consumer CON.
836 Search through resolved dependency lists if RESOLVED_P is true.
837 If no such dependency is found return NULL,
838 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
839 with an iterator pointing to it. */
840 static dep_t
841 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
842 sd_iterator_def *sd_it_ptr)
844 sd_list_types_def pro_list_type;
845 sd_list_types_def con_list_type;
846 sd_iterator_def sd_it;
847 dep_t dep;
848 bool found_p = false;
850 if (resolved_p)
852 pro_list_type = SD_LIST_RES_FORW;
853 con_list_type = SD_LIST_RES_BACK;
855 else
857 pro_list_type = SD_LIST_FORW;
858 con_list_type = SD_LIST_BACK;
861 /* Walk through either back list of INSN or forw list of ELEM
862 depending on which one is shorter. */
863 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
865 /* Find the dep_link with producer PRO in consumer's back_deps. */
866 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
867 if (DEP_PRO (dep) == pro)
869 found_p = true;
870 break;
873 else
875 /* Find the dep_link with consumer CON in producer's forw_deps. */
876 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
877 if (DEP_CON (dep) == con)
879 found_p = true;
880 break;
884 if (found_p)
886 if (sd_it_ptr != NULL)
887 *sd_it_ptr = sd_it;
889 return dep;
892 return NULL;
895 /* Find a dependency between producer PRO and consumer CON.
896 Use dependency [if available] to check if dependency is present at all.
897 Search through resolved dependency lists if RESOLVED_P is true.
898 If the dependency or NULL if none found. */
899 dep_t
900 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
902 if (true_dependency_cache != NULL)
903 /* Avoiding the list walk below can cut compile times dramatically
904 for some code. */
906 int elem_luid = INSN_LUID (pro);
907 int insn_luid = INSN_LUID (con);
909 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
910 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
911 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
912 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
913 return NULL;
916 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
919 /* Add or update a dependence described by DEP.
920 MEM1 and MEM2, if non-null, correspond to memory locations in case of
921 data speculation.
923 The function returns a value indicating if an old entry has been changed
924 or a new entry has been added to insn's backward deps.
926 This function merely checks if producer and consumer is the same insn
927 and doesn't create a dep in this case. Actual manipulation of
928 dependence data structures is performed in add_or_update_dep_1. */
929 static enum DEPS_ADJUST_RESULT
930 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
932 rtx_insn *elem = DEP_PRO (dep);
933 rtx_insn *insn = DEP_CON (dep);
935 gcc_assert (INSN_P (insn) && INSN_P (elem));
937 /* Don't depend an insn on itself. */
938 if (insn == elem)
940 if (sched_deps_info->generate_spec_deps)
941 /* INSN has an internal dependence, which we can't overcome. */
942 HAS_INTERNAL_DEP (insn) = 1;
944 return DEP_NODEP;
947 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
950 /* Ask dependency caches what needs to be done for dependence DEP.
951 Return DEP_CREATED if new dependence should be created and there is no
952 need to try to find one searching the dependencies lists.
953 Return DEP_PRESENT if there already is a dependence described by DEP and
954 hence nothing is to be done.
955 Return DEP_CHANGED if there already is a dependence, but it should be
956 updated to incorporate additional information from DEP. */
957 static enum DEPS_ADJUST_RESULT
958 ask_dependency_caches (dep_t dep)
960 int elem_luid = INSN_LUID (DEP_PRO (dep));
961 int insn_luid = INSN_LUID (DEP_CON (dep));
963 gcc_assert (true_dependency_cache != NULL
964 && output_dependency_cache != NULL
965 && anti_dependency_cache != NULL
966 && control_dependency_cache != NULL);
968 if (!(current_sched_info->flags & USE_DEPS_LIST))
970 enum reg_note present_dep_type;
972 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
973 present_dep_type = REG_DEP_TRUE;
974 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
975 present_dep_type = REG_DEP_OUTPUT;
976 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
977 present_dep_type = REG_DEP_ANTI;
978 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
979 present_dep_type = REG_DEP_CONTROL;
980 else
981 /* There is no existing dep so it should be created. */
982 return DEP_CREATED;
984 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
985 /* DEP does not add anything to the existing dependence. */
986 return DEP_PRESENT;
988 else
990 ds_t present_dep_types = 0;
992 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
993 present_dep_types |= DEP_TRUE;
994 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
995 present_dep_types |= DEP_OUTPUT;
996 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
997 present_dep_types |= DEP_ANTI;
998 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
999 present_dep_types |= DEP_CONTROL;
1001 if (present_dep_types == 0)
1002 /* There is no existing dep so it should be created. */
1003 return DEP_CREATED;
1005 if (!(current_sched_info->flags & DO_SPECULATION)
1006 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
1008 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
1009 == present_dep_types)
1010 /* DEP does not add anything to the existing dependence. */
1011 return DEP_PRESENT;
1013 else
1015 /* Only true dependencies can be data speculative and
1016 only anti dependencies can be control speculative. */
1017 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1018 == present_dep_types);
1020 /* if (DEP is SPECULATIVE) then
1021 ..we should update DEP_STATUS
1022 else
1023 ..we should reset existing dep to non-speculative. */
1027 return DEP_CHANGED;
1030 /* Set dependency caches according to DEP. */
1031 static void
1032 set_dependency_caches (dep_t dep)
1034 int elem_luid = INSN_LUID (DEP_PRO (dep));
1035 int insn_luid = INSN_LUID (DEP_CON (dep));
1037 if (!(current_sched_info->flags & USE_DEPS_LIST))
1039 switch (DEP_TYPE (dep))
1041 case REG_DEP_TRUE:
1042 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1043 break;
1045 case REG_DEP_OUTPUT:
1046 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1047 break;
1049 case REG_DEP_ANTI:
1050 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1051 break;
1053 case REG_DEP_CONTROL:
1054 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1055 break;
1057 default:
1058 gcc_unreachable ();
1061 else
1063 ds_t ds = DEP_STATUS (dep);
1065 if (ds & DEP_TRUE)
1066 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1067 if (ds & DEP_OUTPUT)
1068 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1069 if (ds & DEP_ANTI)
1070 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1071 if (ds & DEP_CONTROL)
1072 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1074 if (ds & SPECULATIVE)
1076 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1077 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1082 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1083 caches accordingly. */
1084 static void
1085 update_dependency_caches (dep_t dep, enum reg_note old_type)
1087 int elem_luid = INSN_LUID (DEP_PRO (dep));
1088 int insn_luid = INSN_LUID (DEP_CON (dep));
1090 /* Clear corresponding cache entry because type of the link
1091 may have changed. Keep them if we use_deps_list. */
1092 if (!(current_sched_info->flags & USE_DEPS_LIST))
1094 switch (old_type)
1096 case REG_DEP_OUTPUT:
1097 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1098 break;
1100 case REG_DEP_ANTI:
1101 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1102 break;
1104 case REG_DEP_CONTROL:
1105 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1106 break;
1108 default:
1109 gcc_unreachable ();
1113 set_dependency_caches (dep);
1116 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1117 static void
1118 change_spec_dep_to_hard (sd_iterator_def sd_it)
1120 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1121 dep_link_t link = DEP_NODE_BACK (node);
1122 dep_t dep = DEP_NODE_DEP (node);
1123 rtx_insn *elem = DEP_PRO (dep);
1124 rtx_insn *insn = DEP_CON (dep);
1126 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1128 DEP_STATUS (dep) &= ~SPECULATIVE;
1130 if (true_dependency_cache != NULL)
1131 /* Clear the cache entry. */
1132 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1133 INSN_LUID (elem));
1136 /* Update DEP to incorporate information from NEW_DEP.
1137 SD_IT points to DEP in case it should be moved to another list.
1138 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1139 data-speculative dependence should be updated. */
1140 static enum DEPS_ADJUST_RESULT
1141 update_dep (dep_t dep, dep_t new_dep,
1142 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1143 rtx mem1 ATTRIBUTE_UNUSED,
1144 rtx mem2 ATTRIBUTE_UNUSED)
1146 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1147 enum reg_note old_type = DEP_TYPE (dep);
1148 bool was_spec = dep_spec_p (dep);
1150 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1151 DEP_MULTIPLE (dep) = 1;
1153 /* If this is a more restrictive type of dependence than the
1154 existing one, then change the existing dependence to this
1155 type. */
1156 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1158 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1159 res = DEP_CHANGED;
1162 if (current_sched_info->flags & USE_DEPS_LIST)
1163 /* Update DEP_STATUS. */
1165 ds_t dep_status = DEP_STATUS (dep);
1166 ds_t ds = DEP_STATUS (new_dep);
1167 ds_t new_status = ds | dep_status;
1169 if (new_status & SPECULATIVE)
1171 /* Either existing dep or a dep we're adding or both are
1172 speculative. */
1173 if (!(ds & SPECULATIVE)
1174 || !(dep_status & SPECULATIVE))
1175 /* The new dep can't be speculative. */
1176 new_status &= ~SPECULATIVE;
1177 else
1179 /* Both are speculative. Merge probabilities. */
1180 if (mem1 != NULL)
1182 dw_t dw;
1184 dw = estimate_dep_weak (mem1, mem2);
1185 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1188 new_status = ds_merge (dep_status, ds);
1192 ds = new_status;
1194 if (dep_status != ds)
1196 DEP_STATUS (dep) = ds;
1197 res = DEP_CHANGED;
1201 if (was_spec && !dep_spec_p (dep))
1202 /* The old dep was speculative, but now it isn't. */
1203 change_spec_dep_to_hard (sd_it);
1205 if (true_dependency_cache != NULL
1206 && res == DEP_CHANGED)
1207 update_dependency_caches (dep, old_type);
1209 return res;
1212 /* Add or update a dependence described by DEP.
1213 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1214 data speculation.
1216 The function returns a value indicating if an old entry has been changed
1217 or a new entry has been added to insn's backward deps or nothing has
1218 been updated at all. */
1219 static enum DEPS_ADJUST_RESULT
1220 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1221 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1223 bool maybe_present_p = true;
1224 bool present_p = false;
1226 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1227 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1229 #ifdef ENABLE_CHECKING
1230 check_dep (new_dep, mem1 != NULL);
1231 #endif
1233 if (true_dependency_cache != NULL)
1235 switch (ask_dependency_caches (new_dep))
1237 case DEP_PRESENT:
1238 dep_t present_dep;
1239 sd_iterator_def sd_it;
1241 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1242 DEP_CON (new_dep),
1243 resolved_p, &sd_it);
1244 DEP_MULTIPLE (present_dep) = 1;
1245 return DEP_PRESENT;
1247 case DEP_CHANGED:
1248 maybe_present_p = true;
1249 present_p = true;
1250 break;
1252 case DEP_CREATED:
1253 maybe_present_p = false;
1254 present_p = false;
1255 break;
1257 default:
1258 gcc_unreachable ();
1259 break;
1263 /* Check that we don't already have this dependence. */
1264 if (maybe_present_p)
1266 dep_t present_dep;
1267 sd_iterator_def sd_it;
1269 gcc_assert (true_dependency_cache == NULL || present_p);
1271 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1272 DEP_CON (new_dep),
1273 resolved_p, &sd_it);
1275 if (present_dep != NULL)
1276 /* We found an existing dependency between ELEM and INSN. */
1277 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1278 else
1279 /* We didn't find a dep, it shouldn't present in the cache. */
1280 gcc_assert (!present_p);
1283 /* Might want to check one level of transitivity to save conses.
1284 This check should be done in maybe_add_or_update_dep_1.
1285 Since we made it to add_or_update_dep_1, we must create
1286 (or update) a link. */
1288 if (mem1 != NULL_RTX)
1290 gcc_assert (sched_deps_info->generate_spec_deps);
1291 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1292 estimate_dep_weak (mem1, mem2));
1295 sd_add_dep (new_dep, resolved_p);
1297 return DEP_CREATED;
1300 /* Initialize BACK_LIST_PTR with consumer's backward list and
1301 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1302 initialize with lists that hold resolved deps. */
1303 static void
1304 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1305 deps_list_t *back_list_ptr,
1306 deps_list_t *forw_list_ptr)
1308 rtx_insn *con = DEP_CON (dep);
1310 if (!resolved_p)
1312 if (dep_spec_p (dep))
1313 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1314 else
1315 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1317 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1319 else
1321 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1322 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1326 /* Add dependence described by DEP.
1327 If RESOLVED_P is true treat the dependence as a resolved one. */
1328 void
1329 sd_add_dep (dep_t dep, bool resolved_p)
1331 dep_node_t n = create_dep_node ();
1332 deps_list_t con_back_deps;
1333 deps_list_t pro_forw_deps;
1334 rtx_insn *elem = DEP_PRO (dep);
1335 rtx_insn *insn = DEP_CON (dep);
1337 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1339 if ((current_sched_info->flags & DO_SPECULATION) == 0
1340 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1341 DEP_STATUS (dep) &= ~SPECULATIVE;
1343 copy_dep (DEP_NODE_DEP (n), dep);
1345 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1347 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1349 #ifdef ENABLE_CHECKING
1350 check_dep (dep, false);
1351 #endif
1353 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1355 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1356 in the bitmap caches of dependency information. */
1357 if (true_dependency_cache != NULL)
1358 set_dependency_caches (dep);
1361 /* Add or update backward dependence between INSN and ELEM
1362 with given type DEP_TYPE and dep_status DS.
1363 This function is a convenience wrapper. */
1364 enum DEPS_ADJUST_RESULT
1365 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1367 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1370 /* Resolved dependence pointed to by SD_IT.
1371 SD_IT will advance to the next element. */
1372 void
1373 sd_resolve_dep (sd_iterator_def sd_it)
1375 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1376 dep_t dep = DEP_NODE_DEP (node);
1377 rtx_insn *pro = DEP_PRO (dep);
1378 rtx_insn *con = DEP_CON (dep);
1380 if (dep_spec_p (dep))
1381 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1382 INSN_RESOLVED_BACK_DEPS (con));
1383 else
1384 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1385 INSN_RESOLVED_BACK_DEPS (con));
1387 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1388 INSN_RESOLVED_FORW_DEPS (pro));
1391 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1392 pointed to by SD_IT to unresolved state. */
1393 void
1394 sd_unresolve_dep (sd_iterator_def sd_it)
1396 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1397 dep_t dep = DEP_NODE_DEP (node);
1398 rtx_insn *pro = DEP_PRO (dep);
1399 rtx_insn *con = DEP_CON (dep);
1401 if (dep_spec_p (dep))
1402 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1403 INSN_SPEC_BACK_DEPS (con));
1404 else
1405 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1406 INSN_HARD_BACK_DEPS (con));
1408 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1409 INSN_FORW_DEPS (pro));
1412 /* Make TO depend on all the FROM's producers.
1413 If RESOLVED_P is true add dependencies to the resolved lists. */
1414 void
1415 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1417 sd_list_types_def list_type;
1418 sd_iterator_def sd_it;
1419 dep_t dep;
1421 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1423 FOR_EACH_DEP (from, list_type, sd_it, dep)
1425 dep_def _new_dep, *new_dep = &_new_dep;
1427 copy_dep (new_dep, dep);
1428 DEP_CON (new_dep) = to;
1429 sd_add_dep (new_dep, resolved_p);
1433 /* Remove a dependency referred to by SD_IT.
1434 SD_IT will point to the next dependence after removal. */
1435 void
1436 sd_delete_dep (sd_iterator_def sd_it)
1438 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1439 dep_t dep = DEP_NODE_DEP (n);
1440 rtx_insn *pro = DEP_PRO (dep);
1441 rtx_insn *con = DEP_CON (dep);
1442 deps_list_t con_back_deps;
1443 deps_list_t pro_forw_deps;
1445 if (true_dependency_cache != NULL)
1447 int elem_luid = INSN_LUID (pro);
1448 int insn_luid = INSN_LUID (con);
1450 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1451 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1452 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1453 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1455 if (current_sched_info->flags & DO_SPECULATION)
1456 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1459 get_back_and_forw_lists (dep, sd_it.resolved_p,
1460 &con_back_deps, &pro_forw_deps);
1462 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1463 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1465 delete_dep_node (n);
1468 /* Dump size of the lists. */
1469 #define DUMP_LISTS_SIZE (2)
1471 /* Dump dependencies of the lists. */
1472 #define DUMP_LISTS_DEPS (4)
1474 /* Dump all information about the lists. */
1475 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1477 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1478 FLAGS is a bit mask specifying what information about the lists needs
1479 to be printed.
1480 If FLAGS has the very first bit set, then dump all information about
1481 the lists and propagate this bit into the callee dump functions. */
1482 static void
1483 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1485 sd_iterator_def sd_it;
1486 dep_t dep;
1487 int all;
1489 all = (flags & 1);
1491 if (all)
1492 flags |= DUMP_LISTS_ALL;
1494 fprintf (dump, "[");
1496 if (flags & DUMP_LISTS_SIZE)
1497 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1499 if (flags & DUMP_LISTS_DEPS)
1501 FOR_EACH_DEP (insn, types, sd_it, dep)
1503 dump_dep (dump, dep, dump_dep_flags | all);
1504 fprintf (dump, " ");
1509 /* Dump all information about deps_lists of INSN specified by TYPES
1510 to STDERR. */
1511 void
1512 sd_debug_lists (rtx insn, sd_list_types_def types)
1514 dump_lists (stderr, insn, types, 1);
1515 fprintf (stderr, "\n");
1518 /* A wrapper around add_dependence_1, to add a dependence of CON on
1519 PRO, with type DEP_TYPE. This function implements special handling
1520 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1521 the type to REG_DEP_ANTI if we can determine that predication is
1522 impossible; otherwise we add additional true dependencies on the
1523 INSN_COND_DEPS list of the jump (which PRO must be). */
1524 void
1525 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1527 if (dep_type == REG_DEP_CONTROL
1528 && !(current_sched_info->flags & DO_PREDICATION))
1529 dep_type = REG_DEP_ANTI;
1531 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1532 so we must also make the insn dependent on the setter of the
1533 condition. */
1534 if (dep_type == REG_DEP_CONTROL)
1536 rtx_insn *real_pro = pro;
1537 rtx_insn *other = real_insn_for_shadow (real_pro);
1538 rtx cond;
1540 if (other != NULL_RTX)
1541 real_pro = other;
1542 cond = sched_get_reverse_condition_uncached (real_pro);
1543 /* Verify that the insn does not use a different value in
1544 the condition register than the one that was present at
1545 the jump. */
1546 if (cond == NULL_RTX)
1547 dep_type = REG_DEP_ANTI;
1548 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1550 HARD_REG_SET uses;
1551 CLEAR_HARD_REG_SET (uses);
1552 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1553 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1554 dep_type = REG_DEP_ANTI;
1556 if (dep_type == REG_DEP_CONTROL)
1558 if (sched_verbose >= 5)
1559 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1560 INSN_UID (real_pro));
1561 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1562 REG_DEP_TRUE, false);
1566 add_dependence_1 (con, pro, dep_type);
1569 /* A convenience wrapper to operate on an entire list. HARD should be
1570 true if DEP_NONREG should be set on newly created dependencies. */
1572 static void
1573 add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1574 enum reg_note dep_type, bool hard)
1576 mark_as_hard = hard;
1577 for (; list; list = list->next ())
1579 if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
1580 add_dependence (insn, list->insn (), dep_type);
1582 mark_as_hard = false;
1585 /* Similar, but free *LISTP at the same time, when the context
1586 is not readonly. HARD should be true if DEP_NONREG should be set on
1587 newly created dependencies. */
1589 static void
1590 add_dependence_list_and_free (struct deps_desc *deps, rtx_insn *insn,
1591 rtx_insn_list **listp,
1592 int uncond, enum reg_note dep_type, bool hard)
1594 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1596 /* We don't want to short-circuit dependencies involving debug
1597 insns, because they may cause actual dependencies to be
1598 disregarded. */
1599 if (deps->readonly || DEBUG_INSN_P (insn))
1600 return;
1602 free_INSN_LIST_list (listp);
1605 /* Remove all occurrences of INSN from LIST. Return the number of
1606 occurrences removed. */
1608 static int
1609 remove_from_dependence_list (rtx insn, rtx_insn_list **listp)
1611 int removed = 0;
1613 while (*listp)
1615 if ((*listp)->insn () == insn)
1617 remove_free_INSN_LIST_node (listp);
1618 removed++;
1619 continue;
1622 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1625 return removed;
1628 /* Same as above, but process two lists at once. */
1629 static int
1630 remove_from_both_dependence_lists (rtx insn,
1631 rtx_insn_list **listp,
1632 rtx_expr_list **exprp)
1634 int removed = 0;
1636 while (*listp)
1638 if (XEXP (*listp, 0) == insn)
1640 remove_free_INSN_LIST_node (listp);
1641 remove_free_EXPR_LIST_node (exprp);
1642 removed++;
1643 continue;
1646 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1647 exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1650 return removed;
1653 /* Clear all dependencies for an insn. */
1654 static void
1655 delete_all_dependences (rtx insn)
1657 sd_iterator_def sd_it;
1658 dep_t dep;
1660 /* The below cycle can be optimized to clear the caches and back_deps
1661 in one call but that would provoke duplication of code from
1662 delete_dep (). */
1664 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1665 sd_iterator_cond (&sd_it, &dep);)
1666 sd_delete_dep (sd_it);
1669 /* All insns in a scheduling group except the first should only have
1670 dependencies on the previous insn in the group. So we find the
1671 first instruction in the scheduling group by walking the dependence
1672 chains backwards. Then we add the dependencies for the group to
1673 the previous nonnote insn. */
1675 static void
1676 chain_to_prev_insn (rtx_insn *insn)
1678 sd_iterator_def sd_it;
1679 dep_t dep;
1680 rtx_insn *prev_nonnote;
1682 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1684 rtx_insn *i = insn;
1685 rtx_insn *pro = DEP_PRO (dep);
1689 i = prev_nonnote_insn (i);
1691 if (pro == i)
1692 goto next_link;
1693 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1695 if (! sched_insns_conditions_mutex_p (i, pro))
1696 add_dependence (i, pro, DEP_TYPE (dep));
1697 next_link:;
1700 delete_all_dependences (insn);
1702 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1703 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1704 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1705 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1708 /* Process an insn's memory dependencies. There are four kinds of
1709 dependencies:
1711 (0) read dependence: read follows read
1712 (1) true dependence: read follows write
1713 (2) output dependence: write follows write
1714 (3) anti dependence: write follows read
1716 We are careful to build only dependencies which actually exist, and
1717 use transitivity to avoid building too many links. */
1719 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1720 The MEM is a memory reference contained within INSN, which we are saving
1721 so that we can do memory aliasing on it. */
1723 static void
1724 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1725 rtx_insn *insn, rtx mem)
1727 rtx_insn_list **insn_list;
1728 rtx_insn_list *insn_node;
1729 rtx_expr_list **mem_list;
1730 rtx_expr_list *mem_node;
1732 gcc_assert (!deps->readonly);
1733 if (read_p)
1735 insn_list = &deps->pending_read_insns;
1736 mem_list = &deps->pending_read_mems;
1737 if (!DEBUG_INSN_P (insn))
1738 deps->pending_read_list_length++;
1740 else
1742 insn_list = &deps->pending_write_insns;
1743 mem_list = &deps->pending_write_mems;
1744 deps->pending_write_list_length++;
1747 insn_node = alloc_INSN_LIST (insn, *insn_list);
1748 *insn_list = insn_node;
1750 if (sched_deps_info->use_cselib)
1752 mem = shallow_copy_rtx (mem);
1753 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1754 GET_MODE (mem), insn);
1756 mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1757 *mem_list = mem_node;
1760 /* Make a dependency between every memory reference on the pending lists
1761 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1762 dependencies for a read operation, similarly with FOR_WRITE. */
1764 static void
1765 flush_pending_lists (struct deps_desc *deps, rtx_insn *insn, int for_read,
1766 int for_write)
1768 if (for_write)
1770 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1771 1, REG_DEP_ANTI, true);
1772 if (!deps->readonly)
1774 free_EXPR_LIST_list (&deps->pending_read_mems);
1775 deps->pending_read_list_length = 0;
1779 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1780 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1781 true);
1783 add_dependence_list_and_free (deps, insn,
1784 &deps->last_pending_memory_flush, 1,
1785 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1786 true);
1788 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1789 REG_DEP_ANTI, true);
1791 if (DEBUG_INSN_P (insn))
1793 if (for_write)
1794 free_INSN_LIST_list (&deps->pending_read_insns);
1795 free_INSN_LIST_list (&deps->pending_write_insns);
1796 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1797 free_INSN_LIST_list (&deps->pending_jump_insns);
1800 if (!deps->readonly)
1802 free_EXPR_LIST_list (&deps->pending_write_mems);
1803 deps->pending_write_list_length = 0;
1805 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1806 deps->pending_flush_length = 1;
1808 mark_as_hard = false;
1811 /* Instruction which dependencies we are analyzing. */
1812 static rtx_insn *cur_insn = NULL;
1814 /* Implement hooks for haifa scheduler. */
1816 static void
1817 haifa_start_insn (rtx_insn *insn)
1819 gcc_assert (insn && !cur_insn);
1821 cur_insn = insn;
1824 static void
1825 haifa_finish_insn (void)
1827 cur_insn = NULL;
1830 void
1831 haifa_note_reg_set (int regno)
1833 SET_REGNO_REG_SET (reg_pending_sets, regno);
1836 void
1837 haifa_note_reg_clobber (int regno)
1839 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1842 void
1843 haifa_note_reg_use (int regno)
1845 SET_REGNO_REG_SET (reg_pending_uses, regno);
1848 static void
1849 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1851 if (!(ds & SPECULATIVE))
1853 mem = NULL_RTX;
1854 pending_mem = NULL_RTX;
1856 else
1857 gcc_assert (ds & BEGIN_DATA);
1860 dep_def _dep, *dep = &_dep;
1862 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1863 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1864 DEP_NONREG (dep) = 1;
1865 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1870 static void
1871 haifa_note_dep (rtx_insn *elem, ds_t ds)
1873 dep_def _dep;
1874 dep_t dep = &_dep;
1876 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1877 if (mark_as_hard)
1878 DEP_NONREG (dep) = 1;
1879 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1882 static void
1883 note_reg_use (int r)
1885 if (sched_deps_info->note_reg_use)
1886 sched_deps_info->note_reg_use (r);
1889 static void
1890 note_reg_set (int r)
1892 if (sched_deps_info->note_reg_set)
1893 sched_deps_info->note_reg_set (r);
1896 static void
1897 note_reg_clobber (int r)
1899 if (sched_deps_info->note_reg_clobber)
1900 sched_deps_info->note_reg_clobber (r);
1903 static void
1904 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1906 if (sched_deps_info->note_mem_dep)
1907 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1910 static void
1911 note_dep (rtx_insn *e, ds_t ds)
1913 if (sched_deps_info->note_dep)
1914 sched_deps_info->note_dep (e, ds);
1917 /* Return corresponding to DS reg_note. */
1918 enum reg_note
1919 ds_to_dt (ds_t ds)
1921 if (ds & DEP_TRUE)
1922 return REG_DEP_TRUE;
1923 else if (ds & DEP_OUTPUT)
1924 return REG_DEP_OUTPUT;
1925 else if (ds & DEP_ANTI)
1926 return REG_DEP_ANTI;
1927 else
1929 gcc_assert (ds & DEP_CONTROL);
1930 return REG_DEP_CONTROL;
1936 /* Functions for computation of info needed for register pressure
1937 sensitive insn scheduling. */
1940 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1941 static struct reg_use_data *
1942 create_insn_reg_use (int regno, rtx_insn *insn)
1944 struct reg_use_data *use;
1946 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1947 use->regno = regno;
1948 use->insn = insn;
1949 use->next_insn_use = INSN_REG_USE_LIST (insn);
1950 INSN_REG_USE_LIST (insn) = use;
1951 return use;
1954 /* Allocate reg_set_data structure for REGNO and INSN. */
1955 static void
1956 create_insn_reg_set (int regno, rtx insn)
1958 struct reg_set_data *set;
1960 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1961 set->regno = regno;
1962 set->insn = insn;
1963 set->next_insn_set = INSN_REG_SET_LIST (insn);
1964 INSN_REG_SET_LIST (insn) = set;
1967 /* Set up insn register uses for INSN and dependency context DEPS. */
1968 static void
1969 setup_insn_reg_uses (struct deps_desc *deps, rtx_insn *insn)
1971 unsigned i;
1972 reg_set_iterator rsi;
1973 struct reg_use_data *use, *use2, *next;
1974 struct deps_reg *reg_last;
1976 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1978 if (i < FIRST_PSEUDO_REGISTER
1979 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1980 continue;
1982 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1983 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1984 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1985 /* Ignore use which is not dying. */
1986 continue;
1988 use = create_insn_reg_use (i, insn);
1989 use->next_regno_use = use;
1990 reg_last = &deps->reg_last[i];
1992 /* Create the cycle list of uses. */
1993 for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
1995 use2 = create_insn_reg_use (i, list->insn ());
1996 next = use->next_regno_use;
1997 use->next_regno_use = use2;
1998 use2->next_regno_use = next;
2003 /* Register pressure info for the currently processed insn. */
2004 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
2006 /* Return TRUE if INSN has the use structure for REGNO. */
2007 static bool
2008 insn_use_p (rtx insn, int regno)
2010 struct reg_use_data *use;
2012 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2013 if (use->regno == regno)
2014 return true;
2015 return false;
2018 /* Update the register pressure info after birth of pseudo register REGNO
2019 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2020 the register is in clobber or unused after the insn. */
2021 static void
2022 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2024 int incr, new_incr;
2025 enum reg_class cl;
2027 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2028 cl = sched_regno_pressure_class[regno];
2029 if (cl != NO_REGS)
2031 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2032 if (clobber_p)
2034 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2035 reg_pressure_info[cl].clobber_increase = new_incr;
2037 else if (unused_p)
2039 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2040 reg_pressure_info[cl].unused_set_increase = new_incr;
2042 else
2044 new_incr = reg_pressure_info[cl].set_increase + incr;
2045 reg_pressure_info[cl].set_increase = new_incr;
2046 if (! insn_use_p (insn, regno))
2047 reg_pressure_info[cl].change += incr;
2048 create_insn_reg_set (regno, insn);
2050 gcc_assert (new_incr < (1 << INCREASE_BITS));
2054 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2055 hard registers involved in the birth. */
2056 static void
2057 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2058 bool clobber_p, bool unused_p)
2060 enum reg_class cl;
2061 int new_incr, last = regno + nregs;
2063 while (regno < last)
2065 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2066 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2068 cl = sched_regno_pressure_class[regno];
2069 if (cl != NO_REGS)
2071 if (clobber_p)
2073 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2074 reg_pressure_info[cl].clobber_increase = new_incr;
2076 else if (unused_p)
2078 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2079 reg_pressure_info[cl].unused_set_increase = new_incr;
2081 else
2083 new_incr = reg_pressure_info[cl].set_increase + 1;
2084 reg_pressure_info[cl].set_increase = new_incr;
2085 if (! insn_use_p (insn, regno))
2086 reg_pressure_info[cl].change += 1;
2087 create_insn_reg_set (regno, insn);
2089 gcc_assert (new_incr < (1 << INCREASE_BITS));
2092 regno++;
2096 /* Update the register pressure info after birth of pseudo or hard
2097 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2098 correspondingly that the register is in clobber or unused after the
2099 insn. */
2100 static void
2101 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2103 int regno;
2105 if (GET_CODE (reg) == SUBREG)
2106 reg = SUBREG_REG (reg);
2108 if (! REG_P (reg))
2109 return;
2111 regno = REGNO (reg);
2112 if (regno < FIRST_PSEUDO_REGISTER)
2113 mark_insn_hard_regno_birth (insn, regno,
2114 hard_regno_nregs[regno][GET_MODE (reg)],
2115 clobber_p, unused_p);
2116 else
2117 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2120 /* Update the register pressure info after death of pseudo register
2121 REGNO. */
2122 static void
2123 mark_pseudo_death (int regno)
2125 int incr;
2126 enum reg_class cl;
2128 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2129 cl = sched_regno_pressure_class[regno];
2130 if (cl != NO_REGS)
2132 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2133 reg_pressure_info[cl].change -= incr;
2137 /* Like mark_pseudo_death except that NREGS saying how many hard
2138 registers involved in the death. */
2139 static void
2140 mark_hard_regno_death (int regno, int nregs)
2142 enum reg_class cl;
2143 int last = regno + nregs;
2145 while (regno < last)
2147 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2148 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2150 cl = sched_regno_pressure_class[regno];
2151 if (cl != NO_REGS)
2152 reg_pressure_info[cl].change -= 1;
2154 regno++;
2158 /* Update the register pressure info after death of pseudo or hard
2159 register REG. */
2160 static void
2161 mark_reg_death (rtx reg)
2163 int regno;
2165 if (GET_CODE (reg) == SUBREG)
2166 reg = SUBREG_REG (reg);
2168 if (! REG_P (reg))
2169 return;
2171 regno = REGNO (reg);
2172 if (regno < FIRST_PSEUDO_REGISTER)
2173 mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2174 else
2175 mark_pseudo_death (regno);
2178 /* Process SETTER of REG. DATA is an insn containing the setter. */
2179 static void
2180 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2182 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2183 return;
2184 mark_insn_reg_birth
2185 ((rtx) data, reg, false,
2186 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2189 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2190 static void
2191 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2193 if (GET_CODE (setter) == CLOBBER)
2194 mark_insn_reg_birth ((rtx) data, reg, true, false);
2197 /* Set up reg pressure info related to INSN. */
2198 void
2199 init_insn_reg_pressure_info (rtx insn)
2201 int i, len;
2202 enum reg_class cl;
2203 static struct reg_pressure_data *pressure_info;
2204 rtx link;
2206 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2208 if (! INSN_P (insn))
2209 return;
2211 for (i = 0; i < ira_pressure_classes_num; i++)
2213 cl = ira_pressure_classes[i];
2214 reg_pressure_info[cl].clobber_increase = 0;
2215 reg_pressure_info[cl].set_increase = 0;
2216 reg_pressure_info[cl].unused_set_increase = 0;
2217 reg_pressure_info[cl].change = 0;
2220 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2222 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2224 #ifdef AUTO_INC_DEC
2225 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2226 if (REG_NOTE_KIND (link) == REG_INC)
2227 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2228 #endif
2230 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2231 if (REG_NOTE_KIND (link) == REG_DEAD)
2232 mark_reg_death (XEXP (link, 0));
2234 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2235 pressure_info
2236 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2237 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2238 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2239 * sizeof (int), 1);
2240 for (i = 0; i < ira_pressure_classes_num; i++)
2242 cl = ira_pressure_classes[i];
2243 pressure_info[i].clobber_increase
2244 = reg_pressure_info[cl].clobber_increase;
2245 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2246 pressure_info[i].unused_set_increase
2247 = reg_pressure_info[cl].unused_set_increase;
2248 pressure_info[i].change = reg_pressure_info[cl].change;
2255 /* Internal variable for sched_analyze_[12] () functions.
2256 If it is nonzero, this means that sched_analyze_[12] looks
2257 at the most toplevel SET. */
2258 static bool can_start_lhs_rhs_p;
2260 /* Extend reg info for the deps context DEPS given that
2261 we have just generated a register numbered REGNO. */
2262 static void
2263 extend_deps_reg_info (struct deps_desc *deps, int regno)
2265 int max_regno = regno + 1;
2267 gcc_assert (!reload_completed);
2269 /* In a readonly context, it would not hurt to extend info,
2270 but it should not be needed. */
2271 if (reload_completed && deps->readonly)
2273 deps->max_reg = max_regno;
2274 return;
2277 if (max_regno > deps->max_reg)
2279 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2280 max_regno);
2281 memset (&deps->reg_last[deps->max_reg],
2282 0, (max_regno - deps->max_reg)
2283 * sizeof (struct deps_reg));
2284 deps->max_reg = max_regno;
2288 /* Extends REG_INFO_P if needed. */
2289 void
2290 maybe_extend_reg_info_p (void)
2292 /* Extend REG_INFO_P, if needed. */
2293 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2295 size_t new_reg_info_p_size = max_regno + 128;
2297 gcc_assert (!reload_completed && sel_sched_p ());
2299 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2300 new_reg_info_p_size,
2301 reg_info_p_size,
2302 sizeof (*reg_info_p));
2303 reg_info_p_size = new_reg_info_p_size;
2307 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2308 The type of the reference is specified by REF and can be SET,
2309 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2311 static void
2312 sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
2313 enum rtx_code ref, rtx_insn *insn)
2315 /* We could emit new pseudos in renaming. Extend the reg structures. */
2316 if (!reload_completed && sel_sched_p ()
2317 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2318 extend_deps_reg_info (deps, regno);
2320 maybe_extend_reg_info_p ();
2322 /* A hard reg in a wide mode may really be multiple registers.
2323 If so, mark all of them just like the first. */
2324 if (regno < FIRST_PSEUDO_REGISTER)
2326 int i = hard_regno_nregs[regno][mode];
2327 if (ref == SET)
2329 while (--i >= 0)
2330 note_reg_set (regno + i);
2332 else if (ref == USE)
2334 while (--i >= 0)
2335 note_reg_use (regno + i);
2337 else
2339 while (--i >= 0)
2340 note_reg_clobber (regno + i);
2344 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2345 it does not reload. Ignore these as they have served their
2346 purpose already. */
2347 else if (regno >= deps->max_reg)
2349 enum rtx_code code = GET_CODE (PATTERN (insn));
2350 gcc_assert (code == USE || code == CLOBBER);
2353 else
2355 if (ref == SET)
2356 note_reg_set (regno);
2357 else if (ref == USE)
2358 note_reg_use (regno);
2359 else
2360 note_reg_clobber (regno);
2362 /* Pseudos that are REG_EQUIV to something may be replaced
2363 by that during reloading. We need only add dependencies for
2364 the address in the REG_EQUIV note. */
2365 if (!reload_completed && get_reg_known_equiv_p (regno))
2367 rtx t = get_reg_known_value (regno);
2368 if (MEM_P (t))
2369 sched_analyze_2 (deps, XEXP (t, 0), insn);
2372 /* Don't let it cross a call after scheduling if it doesn't
2373 already cross one. */
2374 if (REG_N_CALLS_CROSSED (regno) == 0)
2376 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2377 deps->sched_before_next_call
2378 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2379 else
2380 add_dependence_list (insn, deps->last_function_call, 1,
2381 REG_DEP_ANTI, false);
2386 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2387 rtx, X, creating all dependencies generated by the write to the
2388 destination of X, and reads of everything mentioned. */
2390 static void
2391 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2393 rtx dest = XEXP (x, 0);
2394 enum rtx_code code = GET_CODE (x);
2395 bool cslr_p = can_start_lhs_rhs_p;
2397 can_start_lhs_rhs_p = false;
2399 gcc_assert (dest);
2400 if (dest == 0)
2401 return;
2403 if (cslr_p && sched_deps_info->start_lhs)
2404 sched_deps_info->start_lhs (dest);
2406 if (GET_CODE (dest) == PARALLEL)
2408 int i;
2410 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2411 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2412 sched_analyze_1 (deps,
2413 gen_rtx_CLOBBER (VOIDmode,
2414 XEXP (XVECEXP (dest, 0, i), 0)),
2415 insn);
2417 if (cslr_p && sched_deps_info->finish_lhs)
2418 sched_deps_info->finish_lhs ();
2420 if (code == SET)
2422 can_start_lhs_rhs_p = cslr_p;
2424 sched_analyze_2 (deps, SET_SRC (x), insn);
2426 can_start_lhs_rhs_p = false;
2429 return;
2432 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2433 || GET_CODE (dest) == ZERO_EXTRACT)
2435 if (GET_CODE (dest) == STRICT_LOW_PART
2436 || GET_CODE (dest) == ZERO_EXTRACT
2437 || df_read_modify_subreg_p (dest))
2439 /* These both read and modify the result. We must handle
2440 them as writes to get proper dependencies for following
2441 instructions. We must handle them as reads to get proper
2442 dependencies from this to previous instructions.
2443 Thus we need to call sched_analyze_2. */
2445 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2447 if (GET_CODE (dest) == ZERO_EXTRACT)
2449 /* The second and third arguments are values read by this insn. */
2450 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2451 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2453 dest = XEXP (dest, 0);
2456 if (REG_P (dest))
2458 int regno = REGNO (dest);
2459 enum machine_mode mode = GET_MODE (dest);
2461 sched_analyze_reg (deps, regno, mode, code, insn);
2463 #ifdef STACK_REGS
2464 /* Treat all writes to a stack register as modifying the TOS. */
2465 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2467 /* Avoid analyzing the same register twice. */
2468 if (regno != FIRST_STACK_REG)
2469 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2471 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2472 FIRST_STACK_REG);
2474 #endif
2476 else if (MEM_P (dest))
2478 /* Writing memory. */
2479 rtx t = dest;
2481 if (sched_deps_info->use_cselib)
2483 enum machine_mode address_mode = get_address_mode (dest);
2485 t = shallow_copy_rtx (dest);
2486 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2487 GET_MODE (t), insn);
2488 XEXP (t, 0)
2489 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2490 insn);
2492 t = canon_rtx (t);
2494 /* Pending lists can't get larger with a readonly context. */
2495 if (!deps->readonly
2496 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2497 > MAX_PENDING_LIST_LENGTH))
2499 /* Flush all pending reads and writes to prevent the pending lists
2500 from getting any larger. Insn scheduling runs too slowly when
2501 these lists get long. When compiling GCC with itself,
2502 this flush occurs 8 times for sparc, and 10 times for m88k using
2503 the default value of 32. */
2504 flush_pending_lists (deps, insn, false, true);
2506 else
2508 rtx_insn_list *pending;
2509 rtx_expr_list *pending_mem;
2511 pending = deps->pending_read_insns;
2512 pending_mem = deps->pending_read_mems;
2513 while (pending)
2515 if (anti_dependence (pending_mem->element (), t)
2516 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2517 note_mem_dep (t, pending_mem->element (), pending->insn (),
2518 DEP_ANTI);
2520 pending = pending->next ();
2521 pending_mem = pending_mem->next ();
2524 pending = deps->pending_write_insns;
2525 pending_mem = deps->pending_write_mems;
2526 while (pending)
2528 if (output_dependence (pending_mem->element (), t)
2529 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2530 note_mem_dep (t, pending_mem->element (),
2531 pending->insn (),
2532 DEP_OUTPUT);
2534 pending = pending->next ();
2535 pending_mem = pending_mem-> next ();
2538 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2539 REG_DEP_ANTI, true);
2540 add_dependence_list (insn, deps->pending_jump_insns, 1,
2541 REG_DEP_CONTROL, true);
2543 if (!deps->readonly)
2544 add_insn_mem_dependence (deps, false, insn, dest);
2546 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2549 if (cslr_p && sched_deps_info->finish_lhs)
2550 sched_deps_info->finish_lhs ();
2552 /* Analyze reads. */
2553 if (GET_CODE (x) == SET)
2555 can_start_lhs_rhs_p = cslr_p;
2557 sched_analyze_2 (deps, SET_SRC (x), insn);
2559 can_start_lhs_rhs_p = false;
2563 /* Analyze the uses of memory and registers in rtx X in INSN. */
2564 static void
2565 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2567 int i;
2568 int j;
2569 enum rtx_code code;
2570 const char *fmt;
2571 bool cslr_p = can_start_lhs_rhs_p;
2573 can_start_lhs_rhs_p = false;
2575 gcc_assert (x);
2576 if (x == 0)
2577 return;
2579 if (cslr_p && sched_deps_info->start_rhs)
2580 sched_deps_info->start_rhs (x);
2582 code = GET_CODE (x);
2584 switch (code)
2586 CASE_CONST_ANY:
2587 case SYMBOL_REF:
2588 case CONST:
2589 case LABEL_REF:
2590 /* Ignore constants. */
2591 if (cslr_p && sched_deps_info->finish_rhs)
2592 sched_deps_info->finish_rhs ();
2594 return;
2596 #ifdef HAVE_cc0
2597 case CC0:
2598 /* User of CC0 depends on immediately preceding insn. */
2599 SCHED_GROUP_P (insn) = 1;
2600 /* Don't move CC0 setter to another block (it can set up the
2601 same flag for previous CC0 users which is safe). */
2602 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2604 if (cslr_p && sched_deps_info->finish_rhs)
2605 sched_deps_info->finish_rhs ();
2607 return;
2608 #endif
2610 case REG:
2612 int regno = REGNO (x);
2613 enum machine_mode mode = GET_MODE (x);
2615 sched_analyze_reg (deps, regno, mode, USE, insn);
2617 #ifdef STACK_REGS
2618 /* Treat all reads of a stack register as modifying the TOS. */
2619 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2621 /* Avoid analyzing the same register twice. */
2622 if (regno != FIRST_STACK_REG)
2623 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2624 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2626 #endif
2628 if (cslr_p && sched_deps_info->finish_rhs)
2629 sched_deps_info->finish_rhs ();
2631 return;
2634 case MEM:
2636 /* Reading memory. */
2637 rtx u;
2638 rtx_insn_list *pending;
2639 rtx_expr_list *pending_mem;
2640 rtx t = x;
2642 if (sched_deps_info->use_cselib)
2644 enum machine_mode address_mode = get_address_mode (t);
2646 t = shallow_copy_rtx (t);
2647 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2648 GET_MODE (t), insn);
2649 XEXP (t, 0)
2650 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2651 insn);
2654 if (!DEBUG_INSN_P (insn))
2656 t = canon_rtx (t);
2657 pending = deps->pending_read_insns;
2658 pending_mem = deps->pending_read_mems;
2659 while (pending)
2661 if (read_dependence (pending_mem->element (), t)
2662 && ! sched_insns_conditions_mutex_p (insn,
2663 pending->insn ()))
2664 note_mem_dep (t, pending_mem->element (),
2665 pending->insn (),
2666 DEP_ANTI);
2668 pending = pending->next ();
2669 pending_mem = pending_mem->next ();
2672 pending = deps->pending_write_insns;
2673 pending_mem = deps->pending_write_mems;
2674 while (pending)
2676 if (true_dependence (pending_mem->element (), VOIDmode, t)
2677 && ! sched_insns_conditions_mutex_p (insn,
2678 pending->insn ()))
2679 note_mem_dep (t, pending_mem->element (),
2680 pending->insn (),
2681 sched_deps_info->generate_spec_deps
2682 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2684 pending = pending->next ();
2685 pending_mem = pending_mem->next ();
2688 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2689 add_dependence (insn, as_a <rtx_insn *> (XEXP (u, 0)),
2690 REG_DEP_ANTI);
2692 for (u = deps->pending_jump_insns; u; u = XEXP (u, 1))
2693 if (deps_may_trap_p (x))
2695 if ((sched_deps_info->generate_spec_deps)
2696 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2698 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2699 MAX_DEP_WEAK);
2701 note_dep (as_a <rtx_insn *> (XEXP (u, 0)), ds);
2703 else
2704 add_dependence (insn, as_a <rtx_insn *> (XEXP (u, 0)),
2705 REG_DEP_CONTROL);
2709 /* Always add these dependencies to pending_reads, since
2710 this insn may be followed by a write. */
2711 if (!deps->readonly)
2713 if ((deps->pending_read_list_length
2714 + deps->pending_write_list_length)
2715 > MAX_PENDING_LIST_LENGTH
2716 && !DEBUG_INSN_P (insn))
2717 flush_pending_lists (deps, insn, true, true);
2718 add_insn_mem_dependence (deps, true, insn, x);
2721 sched_analyze_2 (deps, XEXP (x, 0), insn);
2723 if (cslr_p && sched_deps_info->finish_rhs)
2724 sched_deps_info->finish_rhs ();
2726 return;
2729 /* Force pending stores to memory in case a trap handler needs them. */
2730 case TRAP_IF:
2731 flush_pending_lists (deps, insn, true, false);
2732 break;
2734 case PREFETCH:
2735 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2736 reg_pending_barrier = TRUE_BARRIER;
2737 /* Prefetch insn contains addresses only. So if the prefetch
2738 address has no registers, there will be no dependencies on
2739 the prefetch insn. This is wrong with result code
2740 correctness point of view as such prefetch can be moved below
2741 a jump insn which usually generates MOVE_BARRIER preventing
2742 to move insns containing registers or memories through the
2743 barrier. It is also wrong with generated code performance
2744 point of view as prefetch withouth dependecies will have a
2745 tendency to be issued later instead of earlier. It is hard
2746 to generate accurate dependencies for prefetch insns as
2747 prefetch has only the start address but it is better to have
2748 something than nothing. */
2749 if (!deps->readonly)
2751 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2752 if (sched_deps_info->use_cselib)
2753 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2754 add_insn_mem_dependence (deps, true, insn, x);
2756 break;
2758 case UNSPEC_VOLATILE:
2759 flush_pending_lists (deps, insn, true, true);
2760 /* FALLTHRU */
2762 case ASM_OPERANDS:
2763 case ASM_INPUT:
2765 /* Traditional and volatile asm instructions must be considered to use
2766 and clobber all hard registers, all pseudo-registers and all of
2767 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2769 Consider for instance a volatile asm that changes the fpu rounding
2770 mode. An insn should not be moved across this even if it only uses
2771 pseudo-regs because it might give an incorrectly rounded result. */
2772 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2773 && !DEBUG_INSN_P (insn))
2774 reg_pending_barrier = TRUE_BARRIER;
2776 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2777 We can not just fall through here since then we would be confused
2778 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2779 traditional asms unlike their normal usage. */
2781 if (code == ASM_OPERANDS)
2783 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2784 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2786 if (cslr_p && sched_deps_info->finish_rhs)
2787 sched_deps_info->finish_rhs ();
2789 return;
2791 break;
2794 case PRE_DEC:
2795 case POST_DEC:
2796 case PRE_INC:
2797 case POST_INC:
2798 /* These both read and modify the result. We must handle them as writes
2799 to get proper dependencies for following instructions. We must handle
2800 them as reads to get proper dependencies from this to previous
2801 instructions. Thus we need to pass them to both sched_analyze_1
2802 and sched_analyze_2. We must call sched_analyze_2 first in order
2803 to get the proper antecedent for the read. */
2804 sched_analyze_2 (deps, XEXP (x, 0), insn);
2805 sched_analyze_1 (deps, x, insn);
2807 if (cslr_p && sched_deps_info->finish_rhs)
2808 sched_deps_info->finish_rhs ();
2810 return;
2812 case POST_MODIFY:
2813 case PRE_MODIFY:
2814 /* op0 = op0 + op1 */
2815 sched_analyze_2 (deps, XEXP (x, 0), insn);
2816 sched_analyze_2 (deps, XEXP (x, 1), insn);
2817 sched_analyze_1 (deps, x, insn);
2819 if (cslr_p && sched_deps_info->finish_rhs)
2820 sched_deps_info->finish_rhs ();
2822 return;
2824 default:
2825 break;
2828 /* Other cases: walk the insn. */
2829 fmt = GET_RTX_FORMAT (code);
2830 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2832 if (fmt[i] == 'e')
2833 sched_analyze_2 (deps, XEXP (x, i), insn);
2834 else if (fmt[i] == 'E')
2835 for (j = 0; j < XVECLEN (x, i); j++)
2836 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2839 if (cslr_p && sched_deps_info->finish_rhs)
2840 sched_deps_info->finish_rhs ();
2843 /* Try to group two fuseable insns together to prevent scheduler
2844 from scheduling them apart. */
2846 static void
2847 sched_macro_fuse_insns (rtx_insn *insn)
2849 rtx_insn *prev;
2851 if (any_condjump_p (insn))
2853 unsigned int condreg1, condreg2;
2854 rtx cc_reg_1;
2855 targetm.fixed_condition_code_regs (&condreg1, &condreg2);
2856 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2857 prev = prev_nonnote_nondebug_insn (insn);
2858 if (!reg_referenced_p (cc_reg_1, PATTERN (insn))
2859 || !prev
2860 || !modified_in_p (cc_reg_1, prev))
2861 return;
2863 else
2865 rtx insn_set = single_set (insn);
2867 prev = prev_nonnote_nondebug_insn (insn);
2868 if (!prev
2869 || !insn_set
2870 || !single_set (prev)
2871 || !modified_in_p (SET_DEST (insn_set), prev))
2872 return;
2876 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2877 SCHED_GROUP_P (insn) = 1;
2881 /* Analyze an INSN with pattern X to find all dependencies. */
2882 static void
2883 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx_insn *insn)
2885 RTX_CODE code = GET_CODE (x);
2886 rtx link;
2887 unsigned i;
2888 reg_set_iterator rsi;
2890 if (! reload_completed)
2892 HARD_REG_SET temp;
2894 extract_insn (insn);
2895 preprocess_constraints (insn);
2896 ira_implicitly_set_insn_hard_regs (&temp);
2897 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2898 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2901 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2902 && code == SET);
2904 /* Group compare and branch insns for macro-fusion. */
2905 if (targetm.sched.macro_fusion_p
2906 && targetm.sched.macro_fusion_p ())
2907 sched_macro_fuse_insns (insn);
2909 if (may_trap_p (x))
2910 /* Avoid moving trapping instructions across function calls that might
2911 not always return. */
2912 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2913 1, REG_DEP_ANTI, true);
2915 /* We must avoid creating a situation in which two successors of the
2916 current block have different unwind info after scheduling. If at any
2917 point the two paths re-join this leads to incorrect unwind info. */
2918 /* ??? There are certain situations involving a forced frame pointer in
2919 which, with extra effort, we could fix up the unwind info at a later
2920 CFG join. However, it seems better to notice these cases earlier
2921 during prologue generation and avoid marking the frame pointer setup
2922 as frame-related at all. */
2923 if (RTX_FRAME_RELATED_P (insn))
2925 /* Make sure prologue insn is scheduled before next jump. */
2926 deps->sched_before_next_jump
2927 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2929 /* Make sure epilogue insn is scheduled after preceding jumps. */
2930 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2931 true);
2934 if (code == COND_EXEC)
2936 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2938 /* ??? Should be recording conditions so we reduce the number of
2939 false dependencies. */
2940 x = COND_EXEC_CODE (x);
2941 code = GET_CODE (x);
2943 if (code == SET || code == CLOBBER)
2945 sched_analyze_1 (deps, x, insn);
2947 /* Bare clobber insns are used for letting life analysis, reg-stack
2948 and others know that a value is dead. Depend on the last call
2949 instruction so that reg-stack won't get confused. */
2950 if (code == CLOBBER)
2951 add_dependence_list (insn, deps->last_function_call, 1,
2952 REG_DEP_OUTPUT, true);
2954 else if (code == PARALLEL)
2956 for (i = XVECLEN (x, 0); i--;)
2958 rtx sub = XVECEXP (x, 0, i);
2959 code = GET_CODE (sub);
2961 if (code == COND_EXEC)
2963 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2964 sub = COND_EXEC_CODE (sub);
2965 code = GET_CODE (sub);
2967 if (code == SET || code == CLOBBER)
2968 sched_analyze_1 (deps, sub, insn);
2969 else
2970 sched_analyze_2 (deps, sub, insn);
2973 else
2974 sched_analyze_2 (deps, x, insn);
2976 /* Mark registers CLOBBERED or used by called function. */
2977 if (CALL_P (insn))
2979 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2981 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2982 sched_analyze_1 (deps, XEXP (link, 0), insn);
2983 else if (GET_CODE (XEXP (link, 0)) != SET)
2984 sched_analyze_2 (deps, XEXP (link, 0), insn);
2986 /* Don't schedule anything after a tail call, tail call needs
2987 to use at least all call-saved registers. */
2988 if (SIBLING_CALL_P (insn))
2989 reg_pending_barrier = TRUE_BARRIER;
2990 else if (find_reg_note (insn, REG_SETJMP, NULL))
2991 reg_pending_barrier = MOVE_BARRIER;
2994 if (JUMP_P (insn))
2996 rtx next;
2997 next = next_nonnote_nondebug_insn (insn);
2998 if (next && BARRIER_P (next))
2999 reg_pending_barrier = MOVE_BARRIER;
3000 else
3002 rtx_insn_list *pending;
3003 rtx_expr_list *pending_mem;
3005 if (sched_deps_info->compute_jump_reg_dependencies)
3007 (*sched_deps_info->compute_jump_reg_dependencies)
3008 (insn, reg_pending_control_uses);
3010 /* Make latency of jump equal to 0 by using anti-dependence. */
3011 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3013 struct deps_reg *reg_last = &deps->reg_last[i];
3014 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3015 false);
3016 add_dependence_list (insn, reg_last->implicit_sets,
3017 0, REG_DEP_ANTI, false);
3018 add_dependence_list (insn, reg_last->clobbers, 0,
3019 REG_DEP_ANTI, false);
3023 /* All memory writes and volatile reads must happen before the
3024 jump. Non-volatile reads must happen before the jump iff
3025 the result is needed by the above register used mask. */
3027 pending = deps->pending_write_insns;
3028 pending_mem = deps->pending_write_mems;
3029 while (pending)
3031 if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3032 add_dependence (insn, pending->insn (),
3033 REG_DEP_OUTPUT);
3034 pending = pending->next ();
3035 pending_mem = pending_mem->next ();
3038 pending = deps->pending_read_insns;
3039 pending_mem = deps->pending_read_mems;
3040 while (pending)
3042 if (MEM_VOLATILE_P (pending_mem->element ())
3043 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3044 add_dependence (insn, pending->insn (),
3045 REG_DEP_OUTPUT);
3046 pending = pending->next ();
3047 pending_mem = pending_mem->next ();
3050 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3051 REG_DEP_ANTI, true);
3052 add_dependence_list (insn, deps->pending_jump_insns, 1,
3053 REG_DEP_ANTI, true);
3057 /* If this instruction can throw an exception, then moving it changes
3058 where block boundaries fall. This is mighty confusing elsewhere.
3059 Therefore, prevent such an instruction from being moved. Same for
3060 non-jump instructions that define block boundaries.
3061 ??? Unclear whether this is still necessary in EBB mode. If not,
3062 add_branch_dependences should be adjusted for RGN mode instead. */
3063 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3064 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3065 reg_pending_barrier = MOVE_BARRIER;
3067 if (sched_pressure != SCHED_PRESSURE_NONE)
3069 setup_insn_reg_uses (deps, insn);
3070 init_insn_reg_pressure_info (insn);
3073 /* Add register dependencies for insn. */
3074 if (DEBUG_INSN_P (insn))
3076 rtx_insn *prev = deps->last_debug_insn;
3077 rtx u;
3079 if (!deps->readonly)
3080 deps->last_debug_insn = insn;
3082 if (prev)
3083 add_dependence (insn, prev, REG_DEP_ANTI);
3085 add_dependence_list (insn, deps->last_function_call, 1,
3086 REG_DEP_ANTI, false);
3088 if (!sel_sched_p ())
3089 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
3090 add_dependence (insn, as_a <rtx_insn *> (XEXP (u, 0)), REG_DEP_ANTI);
3092 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3094 struct deps_reg *reg_last = &deps->reg_last[i];
3095 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3096 /* There's no point in making REG_DEP_CONTROL dependencies for
3097 debug insns. */
3098 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3099 false);
3101 if (!deps->readonly)
3102 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3104 CLEAR_REG_SET (reg_pending_uses);
3106 /* Quite often, a debug insn will refer to stuff in the
3107 previous instruction, but the reason we want this
3108 dependency here is to make sure the scheduler doesn't
3109 gratuitously move a debug insn ahead. This could dirty
3110 DF flags and cause additional analysis that wouldn't have
3111 occurred in compilation without debug insns, and such
3112 additional analysis can modify the generated code. */
3113 prev = PREV_INSN (insn);
3115 if (prev && NONDEBUG_INSN_P (prev))
3116 add_dependence (insn, prev, REG_DEP_ANTI);
3118 else
3120 regset_head set_or_clobbered;
3122 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3124 struct deps_reg *reg_last = &deps->reg_last[i];
3125 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3126 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3127 false);
3128 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3129 false);
3131 if (!deps->readonly)
3133 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3134 reg_last->uses_length++;
3138 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3139 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3141 struct deps_reg *reg_last = &deps->reg_last[i];
3142 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3143 add_dependence_list (insn, reg_last->implicit_sets, 0,
3144 REG_DEP_ANTI, false);
3145 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3146 false);
3148 if (!deps->readonly)
3150 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3151 reg_last->uses_length++;
3155 if (targetm.sched.exposed_pipeline)
3157 INIT_REG_SET (&set_or_clobbered);
3158 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3159 reg_pending_sets);
3160 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3162 struct deps_reg *reg_last = &deps->reg_last[i];
3163 rtx list;
3164 for (list = reg_last->uses; list; list = XEXP (list, 1))
3166 rtx other = XEXP (list, 0);
3167 if (INSN_CACHED_COND (other) != const_true_rtx
3168 && refers_to_regno_p (i, i + 1, INSN_CACHED_COND (other), NULL))
3169 INSN_CACHED_COND (other) = const_true_rtx;
3174 /* If the current insn is conditional, we can't free any
3175 of the lists. */
3176 if (sched_has_condition_p (insn))
3178 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3180 struct deps_reg *reg_last = &deps->reg_last[i];
3181 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3182 false);
3183 add_dependence_list (insn, reg_last->implicit_sets, 0,
3184 REG_DEP_ANTI, false);
3185 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3186 false);
3187 add_dependence_list (insn, reg_last->control_uses, 0,
3188 REG_DEP_CONTROL, false);
3190 if (!deps->readonly)
3192 reg_last->clobbers
3193 = alloc_INSN_LIST (insn, reg_last->clobbers);
3194 reg_last->clobbers_length++;
3197 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3199 struct deps_reg *reg_last = &deps->reg_last[i];
3200 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3201 false);
3202 add_dependence_list (insn, reg_last->implicit_sets, 0,
3203 REG_DEP_ANTI, false);
3204 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3205 false);
3206 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3207 false);
3208 add_dependence_list (insn, reg_last->control_uses, 0,
3209 REG_DEP_CONTROL, false);
3211 if (!deps->readonly)
3212 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3215 else
3217 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3219 struct deps_reg *reg_last = &deps->reg_last[i];
3220 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
3221 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
3223 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3224 REG_DEP_OUTPUT, false);
3225 add_dependence_list_and_free (deps, insn,
3226 &reg_last->implicit_sets, 0,
3227 REG_DEP_ANTI, false);
3228 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3229 REG_DEP_ANTI, false);
3230 add_dependence_list_and_free (deps, insn,
3231 &reg_last->control_uses, 0,
3232 REG_DEP_ANTI, false);
3233 add_dependence_list_and_free (deps, insn,
3234 &reg_last->clobbers, 0,
3235 REG_DEP_OUTPUT, false);
3237 if (!deps->readonly)
3239 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3240 reg_last->clobbers_length = 0;
3241 reg_last->uses_length = 0;
3244 else
3246 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3247 false);
3248 add_dependence_list (insn, reg_last->implicit_sets, 0,
3249 REG_DEP_ANTI, false);
3250 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3251 false);
3252 add_dependence_list (insn, reg_last->control_uses, 0,
3253 REG_DEP_CONTROL, false);
3256 if (!deps->readonly)
3258 reg_last->clobbers_length++;
3259 reg_last->clobbers
3260 = alloc_INSN_LIST (insn, reg_last->clobbers);
3263 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3265 struct deps_reg *reg_last = &deps->reg_last[i];
3267 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3268 REG_DEP_OUTPUT, false);
3269 add_dependence_list_and_free (deps, insn,
3270 &reg_last->implicit_sets,
3271 0, REG_DEP_ANTI, false);
3272 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3273 REG_DEP_OUTPUT, false);
3274 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3275 REG_DEP_ANTI, false);
3276 add_dependence_list (insn, reg_last->control_uses, 0,
3277 REG_DEP_CONTROL, false);
3279 if (!deps->readonly)
3281 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3282 reg_last->uses_length = 0;
3283 reg_last->clobbers_length = 0;
3287 if (!deps->readonly)
3289 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3291 struct deps_reg *reg_last = &deps->reg_last[i];
3292 reg_last->control_uses
3293 = alloc_INSN_LIST (insn, reg_last->control_uses);
3298 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3299 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3301 struct deps_reg *reg_last = &deps->reg_last[i];
3302 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3303 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3304 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3305 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3306 false);
3308 if (!deps->readonly)
3309 reg_last->implicit_sets
3310 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3313 if (!deps->readonly)
3315 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3316 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3317 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3318 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3319 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3320 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3321 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3323 /* Set up the pending barrier found. */
3324 deps->last_reg_pending_barrier = reg_pending_barrier;
3327 CLEAR_REG_SET (reg_pending_uses);
3328 CLEAR_REG_SET (reg_pending_clobbers);
3329 CLEAR_REG_SET (reg_pending_sets);
3330 CLEAR_REG_SET (reg_pending_control_uses);
3331 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3332 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3334 /* Add dependencies if a scheduling barrier was found. */
3335 if (reg_pending_barrier)
3337 /* In the case of barrier the most added dependencies are not
3338 real, so we use anti-dependence here. */
3339 if (sched_has_condition_p (insn))
3341 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3343 struct deps_reg *reg_last = &deps->reg_last[i];
3344 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3345 true);
3346 add_dependence_list (insn, reg_last->sets, 0,
3347 reg_pending_barrier == TRUE_BARRIER
3348 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3349 add_dependence_list (insn, reg_last->implicit_sets, 0,
3350 REG_DEP_ANTI, true);
3351 add_dependence_list (insn, reg_last->clobbers, 0,
3352 reg_pending_barrier == TRUE_BARRIER
3353 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3356 else
3358 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3360 struct deps_reg *reg_last = &deps->reg_last[i];
3361 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3362 REG_DEP_ANTI, true);
3363 add_dependence_list_and_free (deps, insn,
3364 &reg_last->control_uses, 0,
3365 REG_DEP_CONTROL, true);
3366 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3367 reg_pending_barrier == TRUE_BARRIER
3368 ? REG_DEP_TRUE : REG_DEP_ANTI,
3369 true);
3370 add_dependence_list_and_free (deps, insn,
3371 &reg_last->implicit_sets, 0,
3372 REG_DEP_ANTI, true);
3373 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3374 reg_pending_barrier == TRUE_BARRIER
3375 ? REG_DEP_TRUE : REG_DEP_ANTI,
3376 true);
3378 if (!deps->readonly)
3380 reg_last->uses_length = 0;
3381 reg_last->clobbers_length = 0;
3386 if (!deps->readonly)
3387 for (i = 0; i < (unsigned)deps->max_reg; i++)
3389 struct deps_reg *reg_last = &deps->reg_last[i];
3390 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3391 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3394 /* Don't flush pending lists on speculative checks for
3395 selective scheduling. */
3396 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3397 flush_pending_lists (deps, insn, true, true);
3399 reg_pending_barrier = NOT_A_BARRIER;
3402 /* If a post-call group is still open, see if it should remain so.
3403 This insn must be a simple move of a hard reg to a pseudo or
3404 vice-versa.
3406 We must avoid moving these insns for correctness on targets
3407 with small register classes, and for special registers like
3408 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3409 hard regs for all targets. */
3411 if (deps->in_post_call_group_p)
3413 rtx tmp, set = single_set (insn);
3414 int src_regno, dest_regno;
3416 if (set == NULL)
3418 if (DEBUG_INSN_P (insn))
3419 /* We don't want to mark debug insns as part of the same
3420 sched group. We know they really aren't, but if we use
3421 debug insns to tell that a call group is over, we'll
3422 get different code if debug insns are not there and
3423 instructions that follow seem like they should be part
3424 of the call group.
3426 Also, if we did, chain_to_prev_insn would move the
3427 deps of the debug insn to the call insn, modifying
3428 non-debug post-dependency counts of the debug insn
3429 dependencies and otherwise messing with the scheduling
3430 order.
3432 Instead, let such debug insns be scheduled freely, but
3433 keep the call group open in case there are insns that
3434 should be part of it afterwards. Since we grant debug
3435 insns higher priority than even sched group insns, it
3436 will all turn out all right. */
3437 goto debug_dont_end_call_group;
3438 else
3439 goto end_call_group;
3442 tmp = SET_DEST (set);
3443 if (GET_CODE (tmp) == SUBREG)
3444 tmp = SUBREG_REG (tmp);
3445 if (REG_P (tmp))
3446 dest_regno = REGNO (tmp);
3447 else
3448 goto end_call_group;
3450 tmp = SET_SRC (set);
3451 if (GET_CODE (tmp) == SUBREG)
3452 tmp = SUBREG_REG (tmp);
3453 if ((GET_CODE (tmp) == PLUS
3454 || GET_CODE (tmp) == MINUS)
3455 && REG_P (XEXP (tmp, 0))
3456 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3457 && dest_regno == STACK_POINTER_REGNUM)
3458 src_regno = STACK_POINTER_REGNUM;
3459 else if (REG_P (tmp))
3460 src_regno = REGNO (tmp);
3461 else
3462 goto end_call_group;
3464 if (src_regno < FIRST_PSEUDO_REGISTER
3465 || dest_regno < FIRST_PSEUDO_REGISTER)
3467 if (!deps->readonly
3468 && deps->in_post_call_group_p == post_call_initial)
3469 deps->in_post_call_group_p = post_call;
3471 if (!sel_sched_p () || sched_emulate_haifa_p)
3473 SCHED_GROUP_P (insn) = 1;
3474 CANT_MOVE (insn) = 1;
3477 else
3479 end_call_group:
3480 if (!deps->readonly)
3481 deps->in_post_call_group_p = not_post_call;
3485 debug_dont_end_call_group:
3486 if ((current_sched_info->flags & DO_SPECULATION)
3487 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3488 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3489 be speculated. */
3491 if (sel_sched_p ())
3492 sel_mark_hard_insn (insn);
3493 else
3495 sd_iterator_def sd_it;
3496 dep_t dep;
3498 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3499 sd_iterator_cond (&sd_it, &dep);)
3500 change_spec_dep_to_hard (sd_it);
3504 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3505 honor their original ordering. */
3506 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3508 if (deps->last_args_size)
3509 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3510 deps->last_args_size = insn;
3514 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3515 longjmp, loop forever, ...). */
3516 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3517 test for ECF_NORETURN? */
3518 static bool
3519 call_may_noreturn_p (rtx insn)
3521 rtx call;
3523 /* const or pure calls that aren't looping will always return. */
3524 if (RTL_CONST_OR_PURE_CALL_P (insn)
3525 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3526 return false;
3528 call = get_call_rtx_from (insn);
3529 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3531 rtx symbol = XEXP (XEXP (call, 0), 0);
3532 if (SYMBOL_REF_DECL (symbol)
3533 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3535 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3536 == BUILT_IN_NORMAL)
3537 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3539 case BUILT_IN_BCMP:
3540 case BUILT_IN_BCOPY:
3541 case BUILT_IN_BZERO:
3542 case BUILT_IN_INDEX:
3543 case BUILT_IN_MEMCHR:
3544 case BUILT_IN_MEMCMP:
3545 case BUILT_IN_MEMCPY:
3546 case BUILT_IN_MEMMOVE:
3547 case BUILT_IN_MEMPCPY:
3548 case BUILT_IN_MEMSET:
3549 case BUILT_IN_RINDEX:
3550 case BUILT_IN_STPCPY:
3551 case BUILT_IN_STPNCPY:
3552 case BUILT_IN_STRCAT:
3553 case BUILT_IN_STRCHR:
3554 case BUILT_IN_STRCMP:
3555 case BUILT_IN_STRCPY:
3556 case BUILT_IN_STRCSPN:
3557 case BUILT_IN_STRLEN:
3558 case BUILT_IN_STRNCAT:
3559 case BUILT_IN_STRNCMP:
3560 case BUILT_IN_STRNCPY:
3561 case BUILT_IN_STRPBRK:
3562 case BUILT_IN_STRRCHR:
3563 case BUILT_IN_STRSPN:
3564 case BUILT_IN_STRSTR:
3565 /* Assume certain string/memory builtins always return. */
3566 return false;
3567 default:
3568 break;
3573 /* For all other calls assume that they might not always return. */
3574 return true;
3577 /* Return true if INSN should be made dependent on the previous instruction
3578 group, and if all INSN's dependencies should be moved to the first
3579 instruction of that group. */
3581 static bool
3582 chain_to_prev_insn_p (rtx insn)
3584 rtx prev, x;
3586 /* INSN forms a group with the previous instruction. */
3587 if (SCHED_GROUP_P (insn))
3588 return true;
3590 /* If the previous instruction clobbers a register R and this one sets
3591 part of R, the clobber was added specifically to help us track the
3592 liveness of R. There's no point scheduling the clobber and leaving
3593 INSN behind, especially if we move the clobber to another block. */
3594 prev = prev_nonnote_nondebug_insn (insn);
3595 if (prev
3596 && INSN_P (prev)
3597 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3598 && GET_CODE (PATTERN (prev)) == CLOBBER)
3600 x = XEXP (PATTERN (prev), 0);
3601 if (set_of (x, insn))
3602 return true;
3605 return false;
3608 /* Analyze INSN with DEPS as a context. */
3609 void
3610 deps_analyze_insn (struct deps_desc *deps, rtx_insn *insn)
3612 if (sched_deps_info->start_insn)
3613 sched_deps_info->start_insn (insn);
3615 /* Record the condition for this insn. */
3616 if (NONDEBUG_INSN_P (insn))
3618 rtx t;
3619 sched_get_condition_with_rev (insn, NULL);
3620 t = INSN_CACHED_COND (insn);
3621 INSN_COND_DEPS (insn) = NULL;
3622 if (reload_completed
3623 && (current_sched_info->flags & DO_PREDICATION)
3624 && COMPARISON_P (t)
3625 && REG_P (XEXP (t, 0))
3626 && CONSTANT_P (XEXP (t, 1)))
3628 unsigned int regno;
3629 int nregs;
3630 rtx_insn_list *cond_deps = NULL;
3631 t = XEXP (t, 0);
3632 regno = REGNO (t);
3633 nregs = hard_regno_nregs[regno][GET_MODE (t)];
3634 while (nregs-- > 0)
3636 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3637 cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3638 cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3639 cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3641 INSN_COND_DEPS (insn) = cond_deps;
3645 if (JUMP_P (insn))
3647 /* Make each JUMP_INSN (but not a speculative check)
3648 a scheduling barrier for memory references. */
3649 if (!deps->readonly
3650 && !(sel_sched_p ()
3651 && sel_insn_is_speculation_check (insn)))
3653 /* Keep the list a reasonable size. */
3654 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
3655 flush_pending_lists (deps, insn, true, true);
3656 else
3657 deps->pending_jump_insns
3658 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3661 /* For each insn which shouldn't cross a jump, add a dependence. */
3662 add_dependence_list_and_free (deps, insn,
3663 &deps->sched_before_next_jump, 1,
3664 REG_DEP_ANTI, true);
3666 sched_analyze_insn (deps, PATTERN (insn), insn);
3668 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3670 sched_analyze_insn (deps, PATTERN (insn), insn);
3672 else if (CALL_P (insn))
3674 int i;
3676 CANT_MOVE (insn) = 1;
3678 if (find_reg_note (insn, REG_SETJMP, NULL))
3680 /* This is setjmp. Assume that all registers, not just
3681 hard registers, may be clobbered by this call. */
3682 reg_pending_barrier = MOVE_BARRIER;
3684 else
3686 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3687 /* A call may read and modify global register variables. */
3688 if (global_regs[i])
3690 SET_REGNO_REG_SET (reg_pending_sets, i);
3691 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3693 /* Other call-clobbered hard regs may be clobbered.
3694 Since we only have a choice between 'might be clobbered'
3695 and 'definitely not clobbered', we must include all
3696 partly call-clobbered registers here. */
3697 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3698 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3699 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3700 /* We don't know what set of fixed registers might be used
3701 by the function, but it is certain that the stack pointer
3702 is among them, but be conservative. */
3703 else if (fixed_regs[i])
3704 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3705 /* The frame pointer is normally not used by the function
3706 itself, but by the debugger. */
3707 /* ??? MIPS o32 is an exception. It uses the frame pointer
3708 in the macro expansion of jal but does not represent this
3709 fact in the call_insn rtl. */
3710 else if (i == FRAME_POINTER_REGNUM
3711 || (i == HARD_FRAME_POINTER_REGNUM
3712 && (! reload_completed || frame_pointer_needed)))
3713 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3716 /* For each insn which shouldn't cross a call, add a dependence
3717 between that insn and this call insn. */
3718 add_dependence_list_and_free (deps, insn,
3719 &deps->sched_before_next_call, 1,
3720 REG_DEP_ANTI, true);
3722 sched_analyze_insn (deps, PATTERN (insn), insn);
3724 /* If CALL would be in a sched group, then this will violate
3725 convention that sched group insns have dependencies only on the
3726 previous instruction.
3728 Of course one can say: "Hey! What about head of the sched group?"
3729 And I will answer: "Basic principles (one dep per insn) are always
3730 the same." */
3731 gcc_assert (!SCHED_GROUP_P (insn));
3733 /* In the absence of interprocedural alias analysis, we must flush
3734 all pending reads and writes, and start new dependencies starting
3735 from here. But only flush writes for constant calls (which may
3736 be passed a pointer to something we haven't written yet). */
3737 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3739 if (!deps->readonly)
3741 /* Remember the last function call for limiting lifetimes. */
3742 free_INSN_LIST_list (&deps->last_function_call);
3743 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3745 if (call_may_noreturn_p (insn))
3747 /* Remember the last function call that might not always return
3748 normally for limiting moves of trapping insns. */
3749 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3750 deps->last_function_call_may_noreturn
3751 = alloc_INSN_LIST (insn, NULL_RTX);
3754 /* Before reload, begin a post-call group, so as to keep the
3755 lifetimes of hard registers correct. */
3756 if (! reload_completed)
3757 deps->in_post_call_group_p = post_call;
3761 if (sched_deps_info->use_cselib)
3762 cselib_process_insn (insn);
3764 if (sched_deps_info->finish_insn)
3765 sched_deps_info->finish_insn ();
3767 /* Fixup the dependencies in the sched group. */
3768 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3769 && chain_to_prev_insn_p (insn)
3770 && !sel_sched_p ())
3771 chain_to_prev_insn (insn);
3774 /* Initialize DEPS for the new block beginning with HEAD. */
3775 void
3776 deps_start_bb (struct deps_desc *deps, rtx head)
3778 gcc_assert (!deps->readonly);
3780 /* Before reload, if the previous block ended in a call, show that
3781 we are inside a post-call group, so as to keep the lifetimes of
3782 hard registers correct. */
3783 if (! reload_completed && !LABEL_P (head))
3785 rtx insn = prev_nonnote_nondebug_insn (head);
3787 if (insn && CALL_P (insn))
3788 deps->in_post_call_group_p = post_call_initial;
3792 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3793 dependencies for each insn. */
3794 void
3795 sched_analyze (struct deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3797 rtx_insn *insn;
3799 if (sched_deps_info->use_cselib)
3800 cselib_init (CSELIB_RECORD_MEMORY);
3802 deps_start_bb (deps, head);
3804 for (insn = head;; insn = NEXT_INSN (insn))
3807 if (INSN_P (insn))
3809 /* And initialize deps_lists. */
3810 sd_init_insn (insn);
3811 /* Clean up SCHED_GROUP_P which may be set by last
3812 scheduler pass. */
3813 if (SCHED_GROUP_P (insn))
3814 SCHED_GROUP_P (insn) = 0;
3817 deps_analyze_insn (deps, insn);
3819 if (insn == tail)
3821 if (sched_deps_info->use_cselib)
3822 cselib_finish ();
3823 return;
3826 gcc_unreachable ();
3829 /* Helper for sched_free_deps ().
3830 Delete INSN's (RESOLVED_P) backward dependencies. */
3831 static void
3832 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3834 sd_iterator_def sd_it;
3835 dep_t dep;
3836 sd_list_types_def types;
3838 if (resolved_p)
3839 types = SD_LIST_RES_BACK;
3840 else
3841 types = SD_LIST_BACK;
3843 for (sd_it = sd_iterator_start (insn, types);
3844 sd_iterator_cond (&sd_it, &dep);)
3846 dep_link_t link = *sd_it.linkp;
3847 dep_node_t node = DEP_LINK_NODE (link);
3848 deps_list_t back_list;
3849 deps_list_t forw_list;
3851 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3852 remove_from_deps_list (link, back_list);
3853 delete_dep_node (node);
3857 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3858 deps_lists. */
3859 void
3860 sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3862 rtx_insn *insn;
3863 rtx_insn *next_tail = NEXT_INSN (tail);
3865 /* We make two passes since some insns may be scheduled before their
3866 dependencies are resolved. */
3867 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3868 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3870 /* Clear forward deps and leave the dep_nodes to the
3871 corresponding back_deps list. */
3872 if (resolved_p)
3873 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3874 else
3875 clear_deps_list (INSN_FORW_DEPS (insn));
3877 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3878 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3880 /* Clear resolved back deps together with its dep_nodes. */
3881 delete_dep_nodes_in_back_deps (insn, resolved_p);
3883 sd_finish_insn (insn);
3887 /* Initialize variables for region data dependence analysis.
3888 When LAZY_REG_LAST is true, do not allocate reg_last array
3889 of struct deps_desc immediately. */
3891 void
3892 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3894 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3896 deps->max_reg = max_reg;
3897 if (lazy_reg_last)
3898 deps->reg_last = NULL;
3899 else
3900 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3901 INIT_REG_SET (&deps->reg_last_in_use);
3903 deps->pending_read_insns = 0;
3904 deps->pending_read_mems = 0;
3905 deps->pending_write_insns = 0;
3906 deps->pending_write_mems = 0;
3907 deps->pending_jump_insns = 0;
3908 deps->pending_read_list_length = 0;
3909 deps->pending_write_list_length = 0;
3910 deps->pending_flush_length = 0;
3911 deps->last_pending_memory_flush = 0;
3912 deps->last_function_call = 0;
3913 deps->last_function_call_may_noreturn = 0;
3914 deps->sched_before_next_call = 0;
3915 deps->sched_before_next_jump = 0;
3916 deps->in_post_call_group_p = not_post_call;
3917 deps->last_debug_insn = 0;
3918 deps->last_args_size = 0;
3919 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3920 deps->readonly = 0;
3923 /* Init only reg_last field of DEPS, which was not allocated before as
3924 we inited DEPS lazily. */
3925 void
3926 init_deps_reg_last (struct deps_desc *deps)
3928 gcc_assert (deps && deps->max_reg > 0);
3929 gcc_assert (deps->reg_last == NULL);
3931 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3935 /* Free insn lists found in DEPS. */
3937 void
3938 free_deps (struct deps_desc *deps)
3940 unsigned i;
3941 reg_set_iterator rsi;
3943 /* We set max_reg to 0 when this context was already freed. */
3944 if (deps->max_reg == 0)
3946 gcc_assert (deps->reg_last == NULL);
3947 return;
3949 deps->max_reg = 0;
3951 free_INSN_LIST_list (&deps->pending_read_insns);
3952 free_EXPR_LIST_list (&deps->pending_read_mems);
3953 free_INSN_LIST_list (&deps->pending_write_insns);
3954 free_EXPR_LIST_list (&deps->pending_write_mems);
3955 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3957 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3958 times. For a testcase with 42000 regs and 8000 small basic blocks,
3959 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3960 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3962 struct deps_reg *reg_last = &deps->reg_last[i];
3963 if (reg_last->uses)
3964 free_INSN_LIST_list (&reg_last->uses);
3965 if (reg_last->sets)
3966 free_INSN_LIST_list (&reg_last->sets);
3967 if (reg_last->implicit_sets)
3968 free_INSN_LIST_list (&reg_last->implicit_sets);
3969 if (reg_last->control_uses)
3970 free_INSN_LIST_list (&reg_last->control_uses);
3971 if (reg_last->clobbers)
3972 free_INSN_LIST_list (&reg_last->clobbers);
3974 CLEAR_REG_SET (&deps->reg_last_in_use);
3976 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3977 it at all. */
3978 free (deps->reg_last);
3979 deps->reg_last = NULL;
3981 deps = NULL;
3984 /* Remove INSN from dependence contexts DEPS. */
3985 void
3986 remove_from_deps (struct deps_desc *deps, rtx_insn *insn)
3988 int removed;
3989 unsigned i;
3990 reg_set_iterator rsi;
3992 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
3993 &deps->pending_read_mems);
3994 if (!DEBUG_INSN_P (insn))
3995 deps->pending_read_list_length -= removed;
3996 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
3997 &deps->pending_write_mems);
3998 deps->pending_write_list_length -= removed;
4000 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
4001 deps->pending_flush_length -= removed;
4002 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
4003 deps->pending_flush_length -= removed;
4005 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4007 struct deps_reg *reg_last = &deps->reg_last[i];
4008 if (reg_last->uses)
4009 remove_from_dependence_list (insn, &reg_last->uses);
4010 if (reg_last->sets)
4011 remove_from_dependence_list (insn, &reg_last->sets);
4012 if (reg_last->implicit_sets)
4013 remove_from_dependence_list (insn, &reg_last->implicit_sets);
4014 if (reg_last->clobbers)
4015 remove_from_dependence_list (insn, &reg_last->clobbers);
4016 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4017 && !reg_last->clobbers)
4018 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
4021 if (CALL_P (insn))
4023 remove_from_dependence_list (insn, &deps->last_function_call);
4024 remove_from_dependence_list (insn,
4025 &deps->last_function_call_may_noreturn);
4027 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4030 /* Init deps data vector. */
4031 static void
4032 init_deps_data_vector (void)
4034 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4035 if (reserve > 0 && ! h_d_i_d.space (reserve))
4036 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4039 /* If it is profitable to use them, initialize or extend (depending on
4040 GLOBAL_P) dependency data. */
4041 void
4042 sched_deps_init (bool global_p)
4044 /* Average number of insns in the basic block.
4045 '+ 1' is used to make it nonzero. */
4046 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4048 init_deps_data_vector ();
4050 /* We use another caching mechanism for selective scheduling, so
4051 we don't use this one. */
4052 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4054 /* ?!? We could save some memory by computing a per-region luid mapping
4055 which could reduce both the number of vectors in the cache and the
4056 size of each vector. Instead we just avoid the cache entirely unless
4057 the average number of instructions in a basic block is very high. See
4058 the comment before the declaration of true_dependency_cache for
4059 what we consider "very high". */
4060 cache_size = 0;
4061 extend_dependency_caches (sched_max_luid, true);
4064 if (global_p)
4066 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
4067 /* Allocate lists for one block at a time. */
4068 insns_in_block);
4069 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
4070 /* Allocate nodes for one block at a time.
4071 We assume that average insn has
4072 5 producers. */
4073 5 * insns_in_block);
4078 /* Create or extend (depending on CREATE_P) dependency caches to
4079 size N. */
4080 void
4081 extend_dependency_caches (int n, bool create_p)
4083 if (create_p || true_dependency_cache)
4085 int i, luid = cache_size + n;
4087 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4088 luid);
4089 output_dependency_cache = XRESIZEVEC (bitmap_head,
4090 output_dependency_cache, luid);
4091 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4092 luid);
4093 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4094 luid);
4096 if (current_sched_info->flags & DO_SPECULATION)
4097 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4098 luid);
4100 for (i = cache_size; i < luid; i++)
4102 bitmap_initialize (&true_dependency_cache[i], 0);
4103 bitmap_initialize (&output_dependency_cache[i], 0);
4104 bitmap_initialize (&anti_dependency_cache[i], 0);
4105 bitmap_initialize (&control_dependency_cache[i], 0);
4107 if (current_sched_info->flags & DO_SPECULATION)
4108 bitmap_initialize (&spec_dependency_cache[i], 0);
4110 cache_size = luid;
4114 /* Finalize dependency information for the whole function. */
4115 void
4116 sched_deps_finish (void)
4118 gcc_assert (deps_pools_are_empty_p ());
4119 free_alloc_pool_if_empty (&dn_pool);
4120 free_alloc_pool_if_empty (&dl_pool);
4121 gcc_assert (dn_pool == NULL && dl_pool == NULL);
4123 h_d_i_d.release ();
4124 cache_size = 0;
4126 if (true_dependency_cache)
4128 int i;
4130 for (i = 0; i < cache_size; i++)
4132 bitmap_clear (&true_dependency_cache[i]);
4133 bitmap_clear (&output_dependency_cache[i]);
4134 bitmap_clear (&anti_dependency_cache[i]);
4135 bitmap_clear (&control_dependency_cache[i]);
4137 if (sched_deps_info->generate_spec_deps)
4138 bitmap_clear (&spec_dependency_cache[i]);
4140 free (true_dependency_cache);
4141 true_dependency_cache = NULL;
4142 free (output_dependency_cache);
4143 output_dependency_cache = NULL;
4144 free (anti_dependency_cache);
4145 anti_dependency_cache = NULL;
4146 free (control_dependency_cache);
4147 control_dependency_cache = NULL;
4149 if (sched_deps_info->generate_spec_deps)
4151 free (spec_dependency_cache);
4152 spec_dependency_cache = NULL;
4158 /* Initialize some global variables needed by the dependency analysis
4159 code. */
4161 void
4162 init_deps_global (void)
4164 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4165 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4166 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4167 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4168 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4169 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4170 reg_pending_barrier = NOT_A_BARRIER;
4172 if (!sel_sched_p () || sched_emulate_haifa_p)
4174 sched_deps_info->start_insn = haifa_start_insn;
4175 sched_deps_info->finish_insn = haifa_finish_insn;
4177 sched_deps_info->note_reg_set = haifa_note_reg_set;
4178 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4179 sched_deps_info->note_reg_use = haifa_note_reg_use;
4181 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4182 sched_deps_info->note_dep = haifa_note_dep;
4186 /* Free everything used by the dependency analysis code. */
4188 void
4189 finish_deps_global (void)
4191 FREE_REG_SET (reg_pending_sets);
4192 FREE_REG_SET (reg_pending_clobbers);
4193 FREE_REG_SET (reg_pending_uses);
4194 FREE_REG_SET (reg_pending_control_uses);
4197 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4198 dw_t
4199 estimate_dep_weak (rtx mem1, rtx mem2)
4201 rtx r1, r2;
4203 if (mem1 == mem2)
4204 /* MEMs are the same - don't speculate. */
4205 return MIN_DEP_WEAK;
4207 r1 = XEXP (mem1, 0);
4208 r2 = XEXP (mem2, 0);
4210 if (r1 == r2
4211 || (REG_P (r1) && REG_P (r2)
4212 && REGNO (r1) == REGNO (r2)))
4213 /* Again, MEMs are the same. */
4214 return MIN_DEP_WEAK;
4215 else if ((REG_P (r1) && !REG_P (r2))
4216 || (!REG_P (r1) && REG_P (r2)))
4217 /* Different addressing modes - reason to be more speculative,
4218 than usual. */
4219 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4220 else
4221 /* We can't say anything about the dependence. */
4222 return UNCERTAIN_DEP_WEAK;
4225 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4226 This function can handle same INSN and ELEM (INSN == ELEM).
4227 It is a convenience wrapper. */
4228 static void
4229 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4231 ds_t ds;
4232 bool internal;
4234 if (dep_type == REG_DEP_TRUE)
4235 ds = DEP_TRUE;
4236 else if (dep_type == REG_DEP_OUTPUT)
4237 ds = DEP_OUTPUT;
4238 else if (dep_type == REG_DEP_CONTROL)
4239 ds = DEP_CONTROL;
4240 else
4242 gcc_assert (dep_type == REG_DEP_ANTI);
4243 ds = DEP_ANTI;
4246 /* When add_dependence is called from inside sched-deps.c, we expect
4247 cur_insn to be non-null. */
4248 internal = cur_insn != NULL;
4249 if (internal)
4250 gcc_assert (insn == cur_insn);
4251 else
4252 cur_insn = insn;
4254 note_dep (elem, ds);
4255 if (!internal)
4256 cur_insn = NULL;
4259 /* Return weakness of speculative type TYPE in the dep_status DS,
4260 without checking to prevent ICEs on malformed input. */
4261 static dw_t
4262 get_dep_weak_1 (ds_t ds, ds_t type)
4264 ds = ds & type;
4266 switch (type)
4268 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4269 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4270 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4271 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4272 default: gcc_unreachable ();
4275 return (dw_t) ds;
4278 /* Return weakness of speculative type TYPE in the dep_status DS. */
4279 dw_t
4280 get_dep_weak (ds_t ds, ds_t type)
4282 dw_t dw = get_dep_weak_1 (ds, type);
4284 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4285 return dw;
4288 /* Return the dep_status, which has the same parameters as DS, except for
4289 speculative type TYPE, that will have weakness DW. */
4290 ds_t
4291 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4293 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4295 ds &= ~type;
4296 switch (type)
4298 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4299 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4300 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4301 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4302 default: gcc_unreachable ();
4304 return ds;
4307 /* Return the join of two dep_statuses DS1 and DS2.
4308 If MAX_P is true then choose the greater probability,
4309 otherwise multiply probabilities.
4310 This function assumes that both DS1 and DS2 contain speculative bits. */
4311 static ds_t
4312 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4314 ds_t ds, t;
4316 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4318 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4320 t = FIRST_SPEC_TYPE;
4323 if ((ds1 & t) && !(ds2 & t))
4324 ds |= ds1 & t;
4325 else if (!(ds1 & t) && (ds2 & t))
4326 ds |= ds2 & t;
4327 else if ((ds1 & t) && (ds2 & t))
4329 dw_t dw1 = get_dep_weak (ds1, t);
4330 dw_t dw2 = get_dep_weak (ds2, t);
4331 ds_t dw;
4333 if (!max_p)
4335 dw = ((ds_t) dw1) * ((ds_t) dw2);
4336 dw /= MAX_DEP_WEAK;
4337 if (dw < MIN_DEP_WEAK)
4338 dw = MIN_DEP_WEAK;
4340 else
4342 if (dw1 >= dw2)
4343 dw = dw1;
4344 else
4345 dw = dw2;
4348 ds = set_dep_weak (ds, t, (dw_t) dw);
4351 if (t == LAST_SPEC_TYPE)
4352 break;
4353 t <<= SPEC_TYPE_SHIFT;
4355 while (1);
4357 return ds;
4360 /* Return the join of two dep_statuses DS1 and DS2.
4361 This function assumes that both DS1 and DS2 contain speculative bits. */
4362 ds_t
4363 ds_merge (ds_t ds1, ds_t ds2)
4365 return ds_merge_1 (ds1, ds2, false);
4368 /* Return the join of two dep_statuses DS1 and DS2. */
4369 ds_t
4370 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4372 ds_t new_status = ds | ds2;
4374 if (new_status & SPECULATIVE)
4376 if ((ds && !(ds & SPECULATIVE))
4377 || (ds2 && !(ds2 & SPECULATIVE)))
4378 /* Then this dep can't be speculative. */
4379 new_status &= ~SPECULATIVE;
4380 else
4382 /* Both are speculative. Merging probabilities. */
4383 if (mem1)
4385 dw_t dw;
4387 dw = estimate_dep_weak (mem1, mem2);
4388 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4391 if (!ds)
4392 new_status = ds2;
4393 else if (!ds2)
4394 new_status = ds;
4395 else
4396 new_status = ds_merge (ds2, ds);
4400 return new_status;
4403 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4404 probabilities. */
4405 ds_t
4406 ds_max_merge (ds_t ds1, ds_t ds2)
4408 if (ds1 == 0 && ds2 == 0)
4409 return 0;
4411 if (ds1 == 0 && ds2 != 0)
4412 return ds2;
4414 if (ds1 != 0 && ds2 == 0)
4415 return ds1;
4417 return ds_merge_1 (ds1, ds2, true);
4420 /* Return the probability of speculation success for the speculation
4421 status DS. */
4422 dw_t
4423 ds_weak (ds_t ds)
4425 ds_t res = 1, dt;
4426 int n = 0;
4428 dt = FIRST_SPEC_TYPE;
4431 if (ds & dt)
4433 res *= (ds_t) get_dep_weak (ds, dt);
4434 n++;
4437 if (dt == LAST_SPEC_TYPE)
4438 break;
4439 dt <<= SPEC_TYPE_SHIFT;
4441 while (1);
4443 gcc_assert (n);
4444 while (--n)
4445 res /= MAX_DEP_WEAK;
4447 if (res < MIN_DEP_WEAK)
4448 res = MIN_DEP_WEAK;
4450 gcc_assert (res <= MAX_DEP_WEAK);
4452 return (dw_t) res;
4455 /* Return a dep status that contains all speculation types of DS. */
4456 ds_t
4457 ds_get_speculation_types (ds_t ds)
4459 if (ds & BEGIN_DATA)
4460 ds |= BEGIN_DATA;
4461 if (ds & BE_IN_DATA)
4462 ds |= BE_IN_DATA;
4463 if (ds & BEGIN_CONTROL)
4464 ds |= BEGIN_CONTROL;
4465 if (ds & BE_IN_CONTROL)
4466 ds |= BE_IN_CONTROL;
4468 return ds & SPECULATIVE;
4471 /* Return a dep status that contains maximal weakness for each speculation
4472 type present in DS. */
4473 ds_t
4474 ds_get_max_dep_weak (ds_t ds)
4476 if (ds & BEGIN_DATA)
4477 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4478 if (ds & BE_IN_DATA)
4479 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4480 if (ds & BEGIN_CONTROL)
4481 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4482 if (ds & BE_IN_CONTROL)
4483 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4485 return ds;
4488 /* Dump information about the dependence status S. */
4489 static void
4490 dump_ds (FILE *f, ds_t s)
4492 fprintf (f, "{");
4494 if (s & BEGIN_DATA)
4495 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4496 if (s & BE_IN_DATA)
4497 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4498 if (s & BEGIN_CONTROL)
4499 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4500 if (s & BE_IN_CONTROL)
4501 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4503 if (s & HARD_DEP)
4504 fprintf (f, "HARD_DEP; ");
4506 if (s & DEP_TRUE)
4507 fprintf (f, "DEP_TRUE; ");
4508 if (s & DEP_OUTPUT)
4509 fprintf (f, "DEP_OUTPUT; ");
4510 if (s & DEP_ANTI)
4511 fprintf (f, "DEP_ANTI; ");
4512 if (s & DEP_CONTROL)
4513 fprintf (f, "DEP_CONTROL; ");
4515 fprintf (f, "}");
4518 DEBUG_FUNCTION void
4519 debug_ds (ds_t s)
4521 dump_ds (stderr, s);
4522 fprintf (stderr, "\n");
4525 #ifdef ENABLE_CHECKING
4526 /* Verify that dependence type and status are consistent.
4527 If RELAXED_P is true, then skip dep_weakness checks. */
4528 static void
4529 check_dep (dep_t dep, bool relaxed_p)
4531 enum reg_note dt = DEP_TYPE (dep);
4532 ds_t ds = DEP_STATUS (dep);
4534 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4536 if (!(current_sched_info->flags & USE_DEPS_LIST))
4538 gcc_assert (ds == 0);
4539 return;
4542 /* Check that dependence type contains the same bits as the status. */
4543 if (dt == REG_DEP_TRUE)
4544 gcc_assert (ds & DEP_TRUE);
4545 else if (dt == REG_DEP_OUTPUT)
4546 gcc_assert ((ds & DEP_OUTPUT)
4547 && !(ds & DEP_TRUE));
4548 else if (dt == REG_DEP_ANTI)
4549 gcc_assert ((ds & DEP_ANTI)
4550 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4551 else
4552 gcc_assert (dt == REG_DEP_CONTROL
4553 && (ds & DEP_CONTROL)
4554 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4556 /* HARD_DEP can not appear in dep_status of a link. */
4557 gcc_assert (!(ds & HARD_DEP));
4559 /* Check that dependence status is set correctly when speculation is not
4560 supported. */
4561 if (!sched_deps_info->generate_spec_deps)
4562 gcc_assert (!(ds & SPECULATIVE));
4563 else if (ds & SPECULATIVE)
4565 if (!relaxed_p)
4567 ds_t type = FIRST_SPEC_TYPE;
4569 /* Check that dependence weakness is in proper range. */
4572 if (ds & type)
4573 get_dep_weak (ds, type);
4575 if (type == LAST_SPEC_TYPE)
4576 break;
4577 type <<= SPEC_TYPE_SHIFT;
4579 while (1);
4582 if (ds & BEGIN_SPEC)
4584 /* Only true dependence can be data speculative. */
4585 if (ds & BEGIN_DATA)
4586 gcc_assert (ds & DEP_TRUE);
4588 /* Control dependencies in the insn scheduler are represented by
4589 anti-dependencies, therefore only anti dependence can be
4590 control speculative. */
4591 if (ds & BEGIN_CONTROL)
4592 gcc_assert (ds & DEP_ANTI);
4594 else
4596 /* Subsequent speculations should resolve true dependencies. */
4597 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4600 /* Check that true and anti dependencies can't have other speculative
4601 statuses. */
4602 if (ds & DEP_TRUE)
4603 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4604 /* An output dependence can't be speculative at all. */
4605 gcc_assert (!(ds & DEP_OUTPUT));
4606 if (ds & DEP_ANTI)
4607 gcc_assert (ds & BEGIN_CONTROL);
4610 #endif /* ENABLE_CHECKING */
4612 /* The following code discovers opportunities to switch a memory reference
4613 and an increment by modifying the address. We ensure that this is done
4614 only for dependencies that are only used to show a single register
4615 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4616 instruction involved is subject to only one dep that can cause a pattern
4617 change.
4619 When we discover a suitable dependency, we fill in the dep_replacement
4620 structure to show how to modify the memory reference. */
4622 /* Holds information about a pair of memory reference and register increment
4623 insns which depend on each other, but could possibly be interchanged. */
4624 struct mem_inc_info
4626 rtx_insn *inc_insn;
4627 rtx_insn *mem_insn;
4629 rtx *mem_loc;
4630 /* A register occurring in the memory address for which we wish to break
4631 the dependence. This must be identical to the destination register of
4632 the increment. */
4633 rtx mem_reg0;
4634 /* Any kind of index that is added to that register. */
4635 rtx mem_index;
4636 /* The constant offset used in the memory address. */
4637 HOST_WIDE_INT mem_constant;
4638 /* The constant added in the increment insn. Negated if the increment is
4639 after the memory address. */
4640 HOST_WIDE_INT inc_constant;
4641 /* The source register used in the increment. May be different from mem_reg0
4642 if the increment occurs before the memory address. */
4643 rtx inc_input;
4646 /* Verify that the memory location described in MII can be replaced with
4647 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4648 insn remains unchanged by this function. */
4650 static rtx
4651 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4653 rtx mem = *mii->mem_loc;
4654 rtx new_mem;
4656 /* Jump through a lot of hoops to keep the attributes up to date. We
4657 do not want to call one of the change address variants that take
4658 an offset even though we know the offset in many cases. These
4659 assume you are changing where the address is pointing by the
4660 offset. */
4661 new_mem = replace_equiv_address_nv (mem, new_addr);
4662 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4664 if (sched_verbose >= 5)
4665 fprintf (sched_dump, "validation failure\n");
4666 return NULL_RTX;
4669 /* Put back the old one. */
4670 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4672 return new_mem;
4675 /* Return true if INSN is of a form "a = b op c" where a and b are
4676 regs. op is + if c is a reg and +|- if c is a const. Fill in
4677 informantion in MII about what is found.
4678 BEFORE_MEM indicates whether the increment is found before or after
4679 a corresponding memory reference. */
4681 static bool
4682 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4684 rtx pat = single_set (insn);
4685 rtx src, cst;
4686 bool regs_equal;
4688 if (RTX_FRAME_RELATED_P (insn) || !pat)
4689 return false;
4691 /* Result must be single reg. */
4692 if (!REG_P (SET_DEST (pat)))
4693 return false;
4695 if (GET_CODE (SET_SRC (pat)) != PLUS)
4696 return false;
4698 mii->inc_insn = insn;
4699 src = SET_SRC (pat);
4700 mii->inc_input = XEXP (src, 0);
4702 if (!REG_P (XEXP (src, 0)))
4703 return false;
4705 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4706 return false;
4708 cst = XEXP (src, 1);
4709 if (!CONST_INT_P (cst))
4710 return false;
4711 mii->inc_constant = INTVAL (cst);
4713 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4715 if (!before_mem)
4717 mii->inc_constant = -mii->inc_constant;
4718 if (!regs_equal)
4719 return false;
4722 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4724 /* Note that the sign has already been reversed for !before_mem. */
4725 #ifdef STACK_GROWS_DOWNWARD
4726 return mii->inc_constant > 0;
4727 #else
4728 return mii->inc_constant < 0;
4729 #endif
4731 return true;
4734 /* Once a suitable mem reference has been found and the corresponding data
4735 in MII has been filled in, this function is called to find a suitable
4736 add or inc insn involving the register we found in the memory
4737 reference. */
4739 static bool
4740 find_inc (struct mem_inc_info *mii, bool backwards)
4742 sd_iterator_def sd_it;
4743 dep_t dep;
4745 sd_it = sd_iterator_start (mii->mem_insn,
4746 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4747 while (sd_iterator_cond (&sd_it, &dep))
4749 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4750 rtx_insn *pro = DEP_PRO (dep);
4751 rtx_insn *con = DEP_CON (dep);
4752 rtx_insn *inc_cand = backwards ? pro : con;
4753 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4754 goto next;
4755 if (parse_add_or_inc (mii, inc_cand, backwards))
4757 struct dep_replacement *desc;
4758 df_ref def;
4759 rtx newaddr, newmem;
4761 if (sched_verbose >= 5)
4762 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4763 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4765 /* Need to assure that none of the operands of the inc
4766 instruction are assigned to by the mem insn. */
4767 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4768 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4769 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4771 if (sched_verbose >= 5)
4772 fprintf (sched_dump,
4773 "inc conflicts with store failure.\n");
4774 goto next;
4777 newaddr = mii->inc_input;
4778 if (mii->mem_index != NULL_RTX)
4779 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4780 mii->mem_index);
4781 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4782 mii->mem_constant + mii->inc_constant);
4783 newmem = attempt_change (mii, newaddr);
4784 if (newmem == NULL_RTX)
4785 goto next;
4786 if (sched_verbose >= 5)
4787 fprintf (sched_dump, "successful address replacement\n");
4788 desc = XCNEW (struct dep_replacement);
4789 DEP_REPLACE (dep) = desc;
4790 desc->loc = mii->mem_loc;
4791 desc->newval = newmem;
4792 desc->orig = *desc->loc;
4793 desc->insn = mii->mem_insn;
4794 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4795 INSN_SPEC_BACK_DEPS (con));
4796 if (backwards)
4798 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4799 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4800 REG_DEP_TRUE);
4802 else
4804 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4805 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4806 REG_DEP_ANTI);
4808 return true;
4810 next:
4811 sd_iterator_next (&sd_it);
4813 return false;
4816 /* A recursive function that walks ADDRESS_OF_X to find memory references
4817 which could be modified during scheduling. We call find_inc for each
4818 one we find that has a recognizable form. MII holds information about
4819 the pair of memory/increment instructions.
4820 We ensure that every instruction with a memory reference (which will be
4821 the location of the replacement) is assigned at most one breakable
4822 dependency. */
4824 static bool
4825 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4827 rtx x = *address_of_x;
4828 enum rtx_code code = GET_CODE (x);
4829 const char *const fmt = GET_RTX_FORMAT (code);
4830 int i;
4832 if (code == MEM)
4834 rtx reg0 = XEXP (x, 0);
4836 mii->mem_loc = address_of_x;
4837 mii->mem_index = NULL_RTX;
4838 mii->mem_constant = 0;
4839 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4841 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4842 reg0 = XEXP (reg0, 0);
4844 if (GET_CODE (reg0) == PLUS)
4846 mii->mem_index = XEXP (reg0, 1);
4847 reg0 = XEXP (reg0, 0);
4849 if (REG_P (reg0))
4851 df_ref use;
4852 int occurrences = 0;
4854 /* Make sure this reg appears only once in this insn. Can't use
4855 count_occurrences since that only works for pseudos. */
4856 FOR_EACH_INSN_USE (use, mii->mem_insn)
4857 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4858 if (++occurrences > 1)
4860 if (sched_verbose >= 5)
4861 fprintf (sched_dump, "mem count failure\n");
4862 return false;
4865 mii->mem_reg0 = reg0;
4866 return find_inc (mii, true) || find_inc (mii, false);
4868 return false;
4871 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4873 /* If REG occurs inside a MEM used in a bit-field reference,
4874 that is unacceptable. */
4875 return false;
4878 /* Time for some deep diving. */
4879 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4881 if (fmt[i] == 'e')
4883 if (find_mem (mii, &XEXP (x, i)))
4884 return true;
4886 else if (fmt[i] == 'E')
4888 int j;
4889 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4890 if (find_mem (mii, &XVECEXP (x, i, j)))
4891 return true;
4894 return false;
4898 /* Examine the instructions between HEAD and TAIL and try to find
4899 dependencies that can be broken by modifying one of the patterns. */
4901 void
4902 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4904 rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4905 int success_in_block = 0;
4907 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4909 struct mem_inc_info mii;
4911 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4912 continue;
4914 mii.mem_insn = insn;
4915 if (find_mem (&mii, &PATTERN (insn)))
4916 success_in_block++;
4918 if (success_in_block && sched_verbose >= 5)
4919 fprintf (sched_dump, "%d candidates for address modification found.\n",
4920 success_in_block);
4923 #endif /* INSN_SCHEDULING */