GCCPY:
[official-gcc.git] / gcc / tree-cfg.c
blob83003fb8b44cf762131909b80a10ba87e8610a91
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "ggc.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "tree-pass.h"
35 #include "diagnostic-core.h"
36 #include "except.h"
37 #include "cfgloop.h"
38 #include "tree-ssa-propagate.h"
39 #include "value-prof.h"
40 #include "pointer-set.h"
41 #include "tree-inline.h"
42 #include "target.h"
44 /* This file contains functions for building the Control Flow Graph (CFG)
45 for a function tree. */
47 /* Local declarations. */
49 /* Initial capacity for the basic block array. */
50 static const int initial_cfg_capacity = 20;
52 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
53 which use a particular edge. The CASE_LABEL_EXPRs are chained together
54 via their CASE_CHAIN field, which we clear after we're done with the
55 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
57 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
58 update the case vector in response to edge redirections.
60 Right now this table is set up and torn down at key points in the
61 compilation process. It would be nice if we could make the table
62 more persistent. The key is getting notification of changes to
63 the CFG (particularly edge removal, creation and redirection). */
65 static struct pointer_map_t *edge_to_cases;
67 /* If we record edge_to_cases, this bitmap will hold indexes
68 of basic blocks that end in a GIMPLE_SWITCH which we touched
69 due to edge manipulations. */
71 static bitmap touched_switch_bbs;
73 /* CFG statistics. */
74 struct cfg_stats_d
76 long num_merged_labels;
79 static struct cfg_stats_d cfg_stats;
81 /* Nonzero if we found a computed goto while building basic blocks. */
82 static bool found_computed_goto;
84 /* Hash table to store last discriminator assigned for each locus. */
85 struct locus_discrim_map
87 location_t locus;
88 int discriminator;
90 static htab_t discriminator_per_locus;
92 /* Basic blocks and flowgraphs. */
93 static void make_blocks (gimple_seq);
94 static void factor_computed_gotos (void);
96 /* Edges. */
97 static void make_edges (void);
98 static void make_cond_expr_edges (basic_block);
99 static void make_gimple_switch_edges (basic_block);
100 static void make_goto_expr_edges (basic_block);
101 static void make_gimple_asm_edges (basic_block);
102 static unsigned int locus_map_hash (const void *);
103 static int locus_map_eq (const void *, const void *);
104 static void assign_discriminator (location_t, basic_block);
105 static edge gimple_redirect_edge_and_branch (edge, basic_block);
106 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
107 static unsigned int split_critical_edges (void);
109 /* Various helpers. */
110 static inline bool stmt_starts_bb_p (gimple, gimple);
111 static int gimple_verify_flow_info (void);
112 static void gimple_make_forwarder_block (edge);
113 static gimple first_non_label_stmt (basic_block);
114 static bool verify_gimple_transaction (gimple);
116 /* Flowgraph optimization and cleanup. */
117 static void gimple_merge_blocks (basic_block, basic_block);
118 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
119 static void remove_bb (basic_block);
120 static edge find_taken_edge_computed_goto (basic_block, tree);
121 static edge find_taken_edge_cond_expr (basic_block, tree);
122 static edge find_taken_edge_switch_expr (basic_block, tree);
123 static tree find_case_label_for_value (gimple, tree);
125 void
126 init_empty_tree_cfg_for_function (struct function *fn)
128 /* Initialize the basic block array. */
129 init_flow (fn);
130 profile_status_for_function (fn) = PROFILE_ABSENT;
131 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
132 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
133 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
134 vec_safe_grow_cleared (basic_block_info_for_function (fn),
135 initial_cfg_capacity);
137 /* Build a mapping of labels to their associated blocks. */
138 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
139 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
140 initial_cfg_capacity);
142 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
143 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
144 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
145 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
147 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
148 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
149 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
150 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
153 void
154 init_empty_tree_cfg (void)
156 init_empty_tree_cfg_for_function (cfun);
159 /*---------------------------------------------------------------------------
160 Create basic blocks
161 ---------------------------------------------------------------------------*/
163 /* Entry point to the CFG builder for trees. SEQ is the sequence of
164 statements to be added to the flowgraph. */
166 static void
167 build_gimple_cfg (gimple_seq seq)
169 /* Register specific gimple functions. */
170 gimple_register_cfg_hooks ();
172 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
174 init_empty_tree_cfg ();
176 found_computed_goto = 0;
177 make_blocks (seq);
179 /* Computed gotos are hell to deal with, especially if there are
180 lots of them with a large number of destinations. So we factor
181 them to a common computed goto location before we build the
182 edge list. After we convert back to normal form, we will un-factor
183 the computed gotos since factoring introduces an unwanted jump. */
184 if (found_computed_goto)
185 factor_computed_gotos ();
187 /* Make sure there is always at least one block, even if it's empty. */
188 if (n_basic_blocks == NUM_FIXED_BLOCKS)
189 create_empty_bb (ENTRY_BLOCK_PTR);
191 /* Adjust the size of the array. */
192 if (basic_block_info->length () < (size_t) n_basic_blocks)
193 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
195 /* To speed up statement iterator walks, we first purge dead labels. */
196 cleanup_dead_labels ();
198 /* Group case nodes to reduce the number of edges.
199 We do this after cleaning up dead labels because otherwise we miss
200 a lot of obvious case merging opportunities. */
201 group_case_labels ();
203 /* Create the edges of the flowgraph. */
204 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
205 free);
206 make_edges ();
207 cleanup_dead_labels ();
208 htab_delete (discriminator_per_locus);
211 static unsigned int
212 execute_build_cfg (void)
214 gimple_seq body = gimple_body (current_function_decl);
216 build_gimple_cfg (body);
217 gimple_set_body (current_function_decl, NULL);
218 if (dump_file && (dump_flags & TDF_DETAILS))
220 fprintf (dump_file, "Scope blocks:\n");
221 dump_scope_blocks (dump_file, dump_flags);
223 return 0;
226 struct gimple_opt_pass pass_build_cfg =
229 GIMPLE_PASS,
230 "cfg", /* name */
231 OPTGROUP_NONE, /* optinfo_flags */
232 NULL, /* gate */
233 execute_build_cfg, /* execute */
234 NULL, /* sub */
235 NULL, /* next */
236 0, /* static_pass_number */
237 TV_TREE_CFG, /* tv_id */
238 PROP_gimple_leh, /* properties_required */
239 PROP_cfg, /* properties_provided */
240 0, /* properties_destroyed */
241 0, /* todo_flags_start */
242 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
247 /* Return true if T is a computed goto. */
249 static bool
250 computed_goto_p (gimple t)
252 return (gimple_code (t) == GIMPLE_GOTO
253 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
257 /* Search the CFG for any computed gotos. If found, factor them to a
258 common computed goto site. Also record the location of that site so
259 that we can un-factor the gotos after we have converted back to
260 normal form. */
262 static void
263 factor_computed_gotos (void)
265 basic_block bb;
266 tree factored_label_decl = NULL;
267 tree var = NULL;
268 gimple factored_computed_goto_label = NULL;
269 gimple factored_computed_goto = NULL;
271 /* We know there are one or more computed gotos in this function.
272 Examine the last statement in each basic block to see if the block
273 ends with a computed goto. */
275 FOR_EACH_BB (bb)
277 gimple_stmt_iterator gsi = gsi_last_bb (bb);
278 gimple last;
280 if (gsi_end_p (gsi))
281 continue;
283 last = gsi_stmt (gsi);
285 /* Ignore the computed goto we create when we factor the original
286 computed gotos. */
287 if (last == factored_computed_goto)
288 continue;
290 /* If the last statement is a computed goto, factor it. */
291 if (computed_goto_p (last))
293 gimple assignment;
295 /* The first time we find a computed goto we need to create
296 the factored goto block and the variable each original
297 computed goto will use for their goto destination. */
298 if (!factored_computed_goto)
300 basic_block new_bb = create_empty_bb (bb);
301 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
303 /* Create the destination of the factored goto. Each original
304 computed goto will put its desired destination into this
305 variable and jump to the label we create immediately
306 below. */
307 var = create_tmp_var (ptr_type_node, "gotovar");
309 /* Build a label for the new block which will contain the
310 factored computed goto. */
311 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
312 factored_computed_goto_label
313 = gimple_build_label (factored_label_decl);
314 gsi_insert_after (&new_gsi, factored_computed_goto_label,
315 GSI_NEW_STMT);
317 /* Build our new computed goto. */
318 factored_computed_goto = gimple_build_goto (var);
319 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
322 /* Copy the original computed goto's destination into VAR. */
323 assignment = gimple_build_assign (var, gimple_goto_dest (last));
324 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
326 /* And re-vector the computed goto to the new destination. */
327 gimple_goto_set_dest (last, factored_label_decl);
333 /* Build a flowgraph for the sequence of stmts SEQ. */
335 static void
336 make_blocks (gimple_seq seq)
338 gimple_stmt_iterator i = gsi_start (seq);
339 gimple stmt = NULL;
340 bool start_new_block = true;
341 bool first_stmt_of_seq = true;
342 basic_block bb = ENTRY_BLOCK_PTR;
344 while (!gsi_end_p (i))
346 gimple prev_stmt;
348 prev_stmt = stmt;
349 stmt = gsi_stmt (i);
351 /* If the statement starts a new basic block or if we have determined
352 in a previous pass that we need to create a new block for STMT, do
353 so now. */
354 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
356 if (!first_stmt_of_seq)
357 gsi_split_seq_before (&i, &seq);
358 bb = create_basic_block (seq, NULL, bb);
359 start_new_block = false;
362 /* Now add STMT to BB and create the subgraphs for special statement
363 codes. */
364 gimple_set_bb (stmt, bb);
366 if (computed_goto_p (stmt))
367 found_computed_goto = true;
369 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
370 next iteration. */
371 if (stmt_ends_bb_p (stmt))
373 /* If the stmt can make abnormal goto use a new temporary
374 for the assignment to the LHS. This makes sure the old value
375 of the LHS is available on the abnormal edge. Otherwise
376 we will end up with overlapping life-ranges for abnormal
377 SSA names. */
378 if (gimple_has_lhs (stmt)
379 && stmt_can_make_abnormal_goto (stmt)
380 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
382 tree lhs = gimple_get_lhs (stmt);
383 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
384 gimple s = gimple_build_assign (lhs, tmp);
385 gimple_set_location (s, gimple_location (stmt));
386 gimple_set_block (s, gimple_block (stmt));
387 gimple_set_lhs (stmt, tmp);
388 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
389 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
390 DECL_GIMPLE_REG_P (tmp) = 1;
391 gsi_insert_after (&i, s, GSI_SAME_STMT);
393 start_new_block = true;
396 gsi_next (&i);
397 first_stmt_of_seq = false;
402 /* Create and return a new empty basic block after bb AFTER. */
404 static basic_block
405 create_bb (void *h, void *e, basic_block after)
407 basic_block bb;
409 gcc_assert (!e);
411 /* Create and initialize a new basic block. Since alloc_block uses
412 GC allocation that clears memory to allocate a basic block, we do
413 not have to clear the newly allocated basic block here. */
414 bb = alloc_block ();
416 bb->index = last_basic_block;
417 bb->flags = BB_NEW;
418 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
420 /* Add the new block to the linked list of blocks. */
421 link_block (bb, after);
423 /* Grow the basic block array if needed. */
424 if ((size_t) last_basic_block == basic_block_info->length ())
426 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
427 vec_safe_grow_cleared (basic_block_info, new_size);
430 /* Add the newly created block to the array. */
431 SET_BASIC_BLOCK (last_basic_block, bb);
433 n_basic_blocks++;
434 last_basic_block++;
436 return bb;
440 /*---------------------------------------------------------------------------
441 Edge creation
442 ---------------------------------------------------------------------------*/
444 /* Fold COND_EXPR_COND of each COND_EXPR. */
446 void
447 fold_cond_expr_cond (void)
449 basic_block bb;
451 FOR_EACH_BB (bb)
453 gimple stmt = last_stmt (bb);
455 if (stmt && gimple_code (stmt) == GIMPLE_COND)
457 location_t loc = gimple_location (stmt);
458 tree cond;
459 bool zerop, onep;
461 fold_defer_overflow_warnings ();
462 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
463 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
464 if (cond)
466 zerop = integer_zerop (cond);
467 onep = integer_onep (cond);
469 else
470 zerop = onep = false;
472 fold_undefer_overflow_warnings (zerop || onep,
473 stmt,
474 WARN_STRICT_OVERFLOW_CONDITIONAL);
475 if (zerop)
476 gimple_cond_make_false (stmt);
477 else if (onep)
478 gimple_cond_make_true (stmt);
483 /* Join all the blocks in the flowgraph. */
485 static void
486 make_edges (void)
488 basic_block bb;
489 struct omp_region *cur_region = NULL;
491 /* Create an edge from entry to the first block with executable
492 statements in it. */
493 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
495 /* Traverse the basic block array placing edges. */
496 FOR_EACH_BB (bb)
498 gimple last = last_stmt (bb);
499 bool fallthru;
501 if (last)
503 enum gimple_code code = gimple_code (last);
504 switch (code)
506 case GIMPLE_GOTO:
507 make_goto_expr_edges (bb);
508 fallthru = false;
509 break;
510 case GIMPLE_RETURN:
511 make_edge (bb, EXIT_BLOCK_PTR, 0);
512 fallthru = false;
513 break;
514 case GIMPLE_COND:
515 make_cond_expr_edges (bb);
516 fallthru = false;
517 break;
518 case GIMPLE_SWITCH:
519 make_gimple_switch_edges (bb);
520 fallthru = false;
521 break;
522 case GIMPLE_RESX:
523 make_eh_edges (last);
524 fallthru = false;
525 break;
526 case GIMPLE_EH_DISPATCH:
527 fallthru = make_eh_dispatch_edges (last);
528 break;
530 case GIMPLE_CALL:
531 /* If this function receives a nonlocal goto, then we need to
532 make edges from this call site to all the nonlocal goto
533 handlers. */
534 if (stmt_can_make_abnormal_goto (last))
535 make_abnormal_goto_edges (bb, true);
537 /* If this statement has reachable exception handlers, then
538 create abnormal edges to them. */
539 make_eh_edges (last);
541 /* BUILTIN_RETURN is really a return statement. */
542 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
543 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
544 /* Some calls are known not to return. */
545 else
546 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
547 break;
549 case GIMPLE_ASSIGN:
550 /* A GIMPLE_ASSIGN may throw internally and thus be considered
551 control-altering. */
552 if (is_ctrl_altering_stmt (last))
553 make_eh_edges (last);
554 fallthru = true;
555 break;
557 case GIMPLE_ASM:
558 make_gimple_asm_edges (bb);
559 fallthru = true;
560 break;
562 case GIMPLE_OMP_PARALLEL:
563 case GIMPLE_OMP_TASK:
564 case GIMPLE_OMP_FOR:
565 case GIMPLE_OMP_SINGLE:
566 case GIMPLE_OMP_MASTER:
567 case GIMPLE_OMP_ORDERED:
568 case GIMPLE_OMP_CRITICAL:
569 case GIMPLE_OMP_SECTION:
570 cur_region = new_omp_region (bb, code, cur_region);
571 fallthru = true;
572 break;
574 case GIMPLE_OMP_SECTIONS:
575 cur_region = new_omp_region (bb, code, cur_region);
576 fallthru = true;
577 break;
579 case GIMPLE_OMP_SECTIONS_SWITCH:
580 fallthru = false;
581 break;
583 case GIMPLE_OMP_ATOMIC_LOAD:
584 case GIMPLE_OMP_ATOMIC_STORE:
585 fallthru = true;
586 break;
588 case GIMPLE_OMP_RETURN:
589 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
590 somewhere other than the next block. This will be
591 created later. */
592 cur_region->exit = bb;
593 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
594 cur_region = cur_region->outer;
595 break;
597 case GIMPLE_OMP_CONTINUE:
598 cur_region->cont = bb;
599 switch (cur_region->type)
601 case GIMPLE_OMP_FOR:
602 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
603 succs edges as abnormal to prevent splitting
604 them. */
605 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
606 /* Make the loopback edge. */
607 make_edge (bb, single_succ (cur_region->entry),
608 EDGE_ABNORMAL);
610 /* Create an edge from GIMPLE_OMP_FOR to exit, which
611 corresponds to the case that the body of the loop
612 is not executed at all. */
613 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
614 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
615 fallthru = false;
616 break;
618 case GIMPLE_OMP_SECTIONS:
619 /* Wire up the edges into and out of the nested sections. */
621 basic_block switch_bb = single_succ (cur_region->entry);
623 struct omp_region *i;
624 for (i = cur_region->inner; i ; i = i->next)
626 gcc_assert (i->type == GIMPLE_OMP_SECTION);
627 make_edge (switch_bb, i->entry, 0);
628 make_edge (i->exit, bb, EDGE_FALLTHRU);
631 /* Make the loopback edge to the block with
632 GIMPLE_OMP_SECTIONS_SWITCH. */
633 make_edge (bb, switch_bb, 0);
635 /* Make the edge from the switch to exit. */
636 make_edge (switch_bb, bb->next_bb, 0);
637 fallthru = false;
639 break;
641 default:
642 gcc_unreachable ();
644 break;
646 case GIMPLE_TRANSACTION:
648 tree abort_label = gimple_transaction_label (last);
649 if (abort_label)
650 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
651 fallthru = true;
653 break;
655 default:
656 gcc_assert (!stmt_ends_bb_p (last));
657 fallthru = true;
660 else
661 fallthru = true;
663 if (fallthru)
665 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
666 if (last)
667 assign_discriminator (gimple_location (last), bb->next_bb);
671 if (root_omp_region)
672 free_omp_regions ();
674 /* Fold COND_EXPR_COND of each COND_EXPR. */
675 fold_cond_expr_cond ();
678 /* Trivial hash function for a location_t. ITEM is a pointer to
679 a hash table entry that maps a location_t to a discriminator. */
681 static unsigned int
682 locus_map_hash (const void *item)
684 return ((const struct locus_discrim_map *) item)->locus;
687 /* Equality function for the locus-to-discriminator map. VA and VB
688 point to the two hash table entries to compare. */
690 static int
691 locus_map_eq (const void *va, const void *vb)
693 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
694 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
695 return a->locus == b->locus;
698 /* Find the next available discriminator value for LOCUS. The
699 discriminator distinguishes among several basic blocks that
700 share a common locus, allowing for more accurate sample-based
701 profiling. */
703 static int
704 next_discriminator_for_locus (location_t locus)
706 struct locus_discrim_map item;
707 struct locus_discrim_map **slot;
709 item.locus = locus;
710 item.discriminator = 0;
711 slot = (struct locus_discrim_map **)
712 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
713 (hashval_t) locus, INSERT);
714 gcc_assert (slot);
715 if (*slot == HTAB_EMPTY_ENTRY)
717 *slot = XNEW (struct locus_discrim_map);
718 gcc_assert (*slot);
719 (*slot)->locus = locus;
720 (*slot)->discriminator = 0;
722 (*slot)->discriminator++;
723 return (*slot)->discriminator;
726 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
728 static bool
729 same_line_p (location_t locus1, location_t locus2)
731 expanded_location from, to;
733 if (locus1 == locus2)
734 return true;
736 from = expand_location (locus1);
737 to = expand_location (locus2);
739 if (from.line != to.line)
740 return false;
741 if (from.file == to.file)
742 return true;
743 return (from.file != NULL
744 && to.file != NULL
745 && filename_cmp (from.file, to.file) == 0);
748 /* Assign a unique discriminator value to block BB if it begins at the same
749 LOCUS as its predecessor block. */
751 static void
752 assign_discriminator (location_t locus, basic_block bb)
754 gimple first_in_to_bb, last_in_to_bb;
756 if (locus == 0 || bb->discriminator != 0)
757 return;
759 first_in_to_bb = first_non_label_stmt (bb);
760 last_in_to_bb = last_stmt (bb);
761 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
762 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
763 bb->discriminator = next_discriminator_for_locus (locus);
766 /* Create the edges for a GIMPLE_COND starting at block BB. */
768 static void
769 make_cond_expr_edges (basic_block bb)
771 gimple entry = last_stmt (bb);
772 gimple then_stmt, else_stmt;
773 basic_block then_bb, else_bb;
774 tree then_label, else_label;
775 edge e;
776 location_t entry_locus;
778 gcc_assert (entry);
779 gcc_assert (gimple_code (entry) == GIMPLE_COND);
781 entry_locus = gimple_location (entry);
783 /* Entry basic blocks for each component. */
784 then_label = gimple_cond_true_label (entry);
785 else_label = gimple_cond_false_label (entry);
786 then_bb = label_to_block (then_label);
787 else_bb = label_to_block (else_label);
788 then_stmt = first_stmt (then_bb);
789 else_stmt = first_stmt (else_bb);
791 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
792 assign_discriminator (entry_locus, then_bb);
793 e->goto_locus = gimple_location (then_stmt);
794 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
795 if (e)
797 assign_discriminator (entry_locus, else_bb);
798 e->goto_locus = gimple_location (else_stmt);
801 /* We do not need the labels anymore. */
802 gimple_cond_set_true_label (entry, NULL_TREE);
803 gimple_cond_set_false_label (entry, NULL_TREE);
807 /* Called for each element in the hash table (P) as we delete the
808 edge to cases hash table.
810 Clear all the TREE_CHAINs to prevent problems with copying of
811 SWITCH_EXPRs and structure sharing rules, then free the hash table
812 element. */
814 static bool
815 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
816 void *data ATTRIBUTE_UNUSED)
818 tree t, next;
820 for (t = (tree) *value; t; t = next)
822 next = CASE_CHAIN (t);
823 CASE_CHAIN (t) = NULL;
826 *value = NULL;
827 return true;
830 /* Start recording information mapping edges to case labels. */
832 void
833 start_recording_case_labels (void)
835 gcc_assert (edge_to_cases == NULL);
836 edge_to_cases = pointer_map_create ();
837 touched_switch_bbs = BITMAP_ALLOC (NULL);
840 /* Return nonzero if we are recording information for case labels. */
842 static bool
843 recording_case_labels_p (void)
845 return (edge_to_cases != NULL);
848 /* Stop recording information mapping edges to case labels and
849 remove any information we have recorded. */
850 void
851 end_recording_case_labels (void)
853 bitmap_iterator bi;
854 unsigned i;
855 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
856 pointer_map_destroy (edge_to_cases);
857 edge_to_cases = NULL;
858 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
860 basic_block bb = BASIC_BLOCK (i);
861 if (bb)
863 gimple stmt = last_stmt (bb);
864 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
865 group_case_labels_stmt (stmt);
868 BITMAP_FREE (touched_switch_bbs);
871 /* If we are inside a {start,end}_recording_cases block, then return
872 a chain of CASE_LABEL_EXPRs from T which reference E.
874 Otherwise return NULL. */
876 static tree
877 get_cases_for_edge (edge e, gimple t)
879 void **slot;
880 size_t i, n;
882 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
883 chains available. Return NULL so the caller can detect this case. */
884 if (!recording_case_labels_p ())
885 return NULL;
887 slot = pointer_map_contains (edge_to_cases, e);
888 if (slot)
889 return (tree) *slot;
891 /* If we did not find E in the hash table, then this must be the first
892 time we have been queried for information about E & T. Add all the
893 elements from T to the hash table then perform the query again. */
895 n = gimple_switch_num_labels (t);
896 for (i = 0; i < n; i++)
898 tree elt = gimple_switch_label (t, i);
899 tree lab = CASE_LABEL (elt);
900 basic_block label_bb = label_to_block (lab);
901 edge this_edge = find_edge (e->src, label_bb);
903 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
904 a new chain. */
905 slot = pointer_map_insert (edge_to_cases, this_edge);
906 CASE_CHAIN (elt) = (tree) *slot;
907 *slot = elt;
910 return (tree) *pointer_map_contains (edge_to_cases, e);
913 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
915 static void
916 make_gimple_switch_edges (basic_block bb)
918 gimple entry = last_stmt (bb);
919 location_t entry_locus;
920 size_t i, n;
922 entry_locus = gimple_location (entry);
924 n = gimple_switch_num_labels (entry);
926 for (i = 0; i < n; ++i)
928 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
929 basic_block label_bb = label_to_block (lab);
930 make_edge (bb, label_bb, 0);
931 assign_discriminator (entry_locus, label_bb);
936 /* Return the basic block holding label DEST. */
938 basic_block
939 label_to_block_fn (struct function *ifun, tree dest)
941 int uid = LABEL_DECL_UID (dest);
943 /* We would die hard when faced by an undefined label. Emit a label to
944 the very first basic block. This will hopefully make even the dataflow
945 and undefined variable warnings quite right. */
946 if (seen_error () && uid < 0)
948 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
949 gimple stmt;
951 stmt = gimple_build_label (dest);
952 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
953 uid = LABEL_DECL_UID (dest);
955 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
956 return NULL;
957 return (*ifun->cfg->x_label_to_block_map)[uid];
960 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
961 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
963 void
964 make_abnormal_goto_edges (basic_block bb, bool for_call)
966 basic_block target_bb;
967 gimple_stmt_iterator gsi;
969 FOR_EACH_BB (target_bb)
970 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
972 gimple label_stmt = gsi_stmt (gsi);
973 tree target;
975 if (gimple_code (label_stmt) != GIMPLE_LABEL)
976 break;
978 target = gimple_label_label (label_stmt);
980 /* Make an edge to every label block that has been marked as a
981 potential target for a computed goto or a non-local goto. */
982 if ((FORCED_LABEL (target) && !for_call)
983 || (DECL_NONLOCAL (target) && for_call))
985 make_edge (bb, target_bb, EDGE_ABNORMAL);
986 break;
991 /* Create edges for a goto statement at block BB. */
993 static void
994 make_goto_expr_edges (basic_block bb)
996 gimple_stmt_iterator last = gsi_last_bb (bb);
997 gimple goto_t = gsi_stmt (last);
999 /* A simple GOTO creates normal edges. */
1000 if (simple_goto_p (goto_t))
1002 tree dest = gimple_goto_dest (goto_t);
1003 basic_block label_bb = label_to_block (dest);
1004 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1005 e->goto_locus = gimple_location (goto_t);
1006 assign_discriminator (e->goto_locus, label_bb);
1007 gsi_remove (&last, true);
1008 return;
1011 /* A computed GOTO creates abnormal edges. */
1012 make_abnormal_goto_edges (bb, false);
1015 /* Create edges for an asm statement with labels at block BB. */
1017 static void
1018 make_gimple_asm_edges (basic_block bb)
1020 gimple stmt = last_stmt (bb);
1021 location_t stmt_loc = gimple_location (stmt);
1022 int i, n = gimple_asm_nlabels (stmt);
1024 for (i = 0; i < n; ++i)
1026 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1027 basic_block label_bb = label_to_block (label);
1028 make_edge (bb, label_bb, 0);
1029 assign_discriminator (stmt_loc, label_bb);
1033 /*---------------------------------------------------------------------------
1034 Flowgraph analysis
1035 ---------------------------------------------------------------------------*/
1037 /* Cleanup useless labels in basic blocks. This is something we wish
1038 to do early because it allows us to group case labels before creating
1039 the edges for the CFG, and it speeds up block statement iterators in
1040 all passes later on.
1041 We rerun this pass after CFG is created, to get rid of the labels that
1042 are no longer referenced. After then we do not run it any more, since
1043 (almost) no new labels should be created. */
1045 /* A map from basic block index to the leading label of that block. */
1046 static struct label_record
1048 /* The label. */
1049 tree label;
1051 /* True if the label is referenced from somewhere. */
1052 bool used;
1053 } *label_for_bb;
1055 /* Given LABEL return the first label in the same basic block. */
1057 static tree
1058 main_block_label (tree label)
1060 basic_block bb = label_to_block (label);
1061 tree main_label = label_for_bb[bb->index].label;
1063 /* label_to_block possibly inserted undefined label into the chain. */
1064 if (!main_label)
1066 label_for_bb[bb->index].label = label;
1067 main_label = label;
1070 label_for_bb[bb->index].used = true;
1071 return main_label;
1074 /* Clean up redundant labels within the exception tree. */
1076 static void
1077 cleanup_dead_labels_eh (void)
1079 eh_landing_pad lp;
1080 eh_region r;
1081 tree lab;
1082 int i;
1084 if (cfun->eh == NULL)
1085 return;
1087 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1088 if (lp && lp->post_landing_pad)
1090 lab = main_block_label (lp->post_landing_pad);
1091 if (lab != lp->post_landing_pad)
1093 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1094 EH_LANDING_PAD_NR (lab) = lp->index;
1098 FOR_ALL_EH_REGION (r)
1099 switch (r->type)
1101 case ERT_CLEANUP:
1102 case ERT_MUST_NOT_THROW:
1103 break;
1105 case ERT_TRY:
1107 eh_catch c;
1108 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1110 lab = c->label;
1111 if (lab)
1112 c->label = main_block_label (lab);
1115 break;
1117 case ERT_ALLOWED_EXCEPTIONS:
1118 lab = r->u.allowed.label;
1119 if (lab)
1120 r->u.allowed.label = main_block_label (lab);
1121 break;
1126 /* Cleanup redundant labels. This is a three-step process:
1127 1) Find the leading label for each block.
1128 2) Redirect all references to labels to the leading labels.
1129 3) Cleanup all useless labels. */
1131 void
1132 cleanup_dead_labels (void)
1134 basic_block bb;
1135 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1137 /* Find a suitable label for each block. We use the first user-defined
1138 label if there is one, or otherwise just the first label we see. */
1139 FOR_EACH_BB (bb)
1141 gimple_stmt_iterator i;
1143 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1145 tree label;
1146 gimple stmt = gsi_stmt (i);
1148 if (gimple_code (stmt) != GIMPLE_LABEL)
1149 break;
1151 label = gimple_label_label (stmt);
1153 /* If we have not yet seen a label for the current block,
1154 remember this one and see if there are more labels. */
1155 if (!label_for_bb[bb->index].label)
1157 label_for_bb[bb->index].label = label;
1158 continue;
1161 /* If we did see a label for the current block already, but it
1162 is an artificially created label, replace it if the current
1163 label is a user defined label. */
1164 if (!DECL_ARTIFICIAL (label)
1165 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1167 label_for_bb[bb->index].label = label;
1168 break;
1173 /* Now redirect all jumps/branches to the selected label.
1174 First do so for each block ending in a control statement. */
1175 FOR_EACH_BB (bb)
1177 gimple stmt = last_stmt (bb);
1178 tree label, new_label;
1180 if (!stmt)
1181 continue;
1183 switch (gimple_code (stmt))
1185 case GIMPLE_COND:
1186 label = gimple_cond_true_label (stmt);
1187 if (label)
1189 new_label = main_block_label (label);
1190 if (new_label != label)
1191 gimple_cond_set_true_label (stmt, new_label);
1194 label = gimple_cond_false_label (stmt);
1195 if (label)
1197 new_label = main_block_label (label);
1198 if (new_label != label)
1199 gimple_cond_set_false_label (stmt, new_label);
1201 break;
1203 case GIMPLE_SWITCH:
1205 size_t i, n = gimple_switch_num_labels (stmt);
1207 /* Replace all destination labels. */
1208 for (i = 0; i < n; ++i)
1210 tree case_label = gimple_switch_label (stmt, i);
1211 label = CASE_LABEL (case_label);
1212 new_label = main_block_label (label);
1213 if (new_label != label)
1214 CASE_LABEL (case_label) = new_label;
1216 break;
1219 case GIMPLE_ASM:
1221 int i, n = gimple_asm_nlabels (stmt);
1223 for (i = 0; i < n; ++i)
1225 tree cons = gimple_asm_label_op (stmt, i);
1226 tree label = main_block_label (TREE_VALUE (cons));
1227 TREE_VALUE (cons) = label;
1229 break;
1232 /* We have to handle gotos until they're removed, and we don't
1233 remove them until after we've created the CFG edges. */
1234 case GIMPLE_GOTO:
1235 if (!computed_goto_p (stmt))
1237 label = gimple_goto_dest (stmt);
1238 new_label = main_block_label (label);
1239 if (new_label != label)
1240 gimple_goto_set_dest (stmt, new_label);
1242 break;
1244 case GIMPLE_TRANSACTION:
1246 tree label = gimple_transaction_label (stmt);
1247 if (label)
1249 tree new_label = main_block_label (label);
1250 if (new_label != label)
1251 gimple_transaction_set_label (stmt, new_label);
1254 break;
1256 default:
1257 break;
1261 /* Do the same for the exception region tree labels. */
1262 cleanup_dead_labels_eh ();
1264 /* Finally, purge dead labels. All user-defined labels and labels that
1265 can be the target of non-local gotos and labels which have their
1266 address taken are preserved. */
1267 FOR_EACH_BB (bb)
1269 gimple_stmt_iterator i;
1270 tree label_for_this_bb = label_for_bb[bb->index].label;
1272 if (!label_for_this_bb)
1273 continue;
1275 /* If the main label of the block is unused, we may still remove it. */
1276 if (!label_for_bb[bb->index].used)
1277 label_for_this_bb = NULL;
1279 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1281 tree label;
1282 gimple stmt = gsi_stmt (i);
1284 if (gimple_code (stmt) != GIMPLE_LABEL)
1285 break;
1287 label = gimple_label_label (stmt);
1289 if (label == label_for_this_bb
1290 || !DECL_ARTIFICIAL (label)
1291 || DECL_NONLOCAL (label)
1292 || FORCED_LABEL (label))
1293 gsi_next (&i);
1294 else
1295 gsi_remove (&i, true);
1299 free (label_for_bb);
1302 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1303 the ones jumping to the same label.
1304 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1306 void
1307 group_case_labels_stmt (gimple stmt)
1309 int old_size = gimple_switch_num_labels (stmt);
1310 int i, j, new_size = old_size;
1311 basic_block default_bb = NULL;
1313 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1315 /* Look for possible opportunities to merge cases. */
1316 i = 1;
1317 while (i < old_size)
1319 tree base_case, base_high;
1320 basic_block base_bb;
1322 base_case = gimple_switch_label (stmt, i);
1324 gcc_assert (base_case);
1325 base_bb = label_to_block (CASE_LABEL (base_case));
1327 /* Discard cases that have the same destination as the
1328 default case. */
1329 if (base_bb == default_bb)
1331 gimple_switch_set_label (stmt, i, NULL_TREE);
1332 i++;
1333 new_size--;
1334 continue;
1337 base_high = CASE_HIGH (base_case)
1338 ? CASE_HIGH (base_case)
1339 : CASE_LOW (base_case);
1340 i++;
1342 /* Try to merge case labels. Break out when we reach the end
1343 of the label vector or when we cannot merge the next case
1344 label with the current one. */
1345 while (i < old_size)
1347 tree merge_case = gimple_switch_label (stmt, i);
1348 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1349 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1351 /* Merge the cases if they jump to the same place,
1352 and their ranges are consecutive. */
1353 if (merge_bb == base_bb
1354 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1356 base_high = CASE_HIGH (merge_case) ?
1357 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1358 CASE_HIGH (base_case) = base_high;
1359 gimple_switch_set_label (stmt, i, NULL_TREE);
1360 new_size--;
1361 i++;
1363 else
1364 break;
1368 /* Compress the case labels in the label vector, and adjust the
1369 length of the vector. */
1370 for (i = 0, j = 0; i < new_size; i++)
1372 while (! gimple_switch_label (stmt, j))
1373 j++;
1374 gimple_switch_set_label (stmt, i,
1375 gimple_switch_label (stmt, j++));
1378 gcc_assert (new_size <= old_size);
1379 gimple_switch_set_num_labels (stmt, new_size);
1382 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1383 and scan the sorted vector of cases. Combine the ones jumping to the
1384 same label. */
1386 void
1387 group_case_labels (void)
1389 basic_block bb;
1391 FOR_EACH_BB (bb)
1393 gimple stmt = last_stmt (bb);
1394 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1395 group_case_labels_stmt (stmt);
1399 /* Checks whether we can merge block B into block A. */
1401 static bool
1402 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1404 gimple stmt;
1405 gimple_stmt_iterator gsi;
1407 if (!single_succ_p (a))
1408 return false;
1410 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1411 return false;
1413 if (single_succ (a) != b)
1414 return false;
1416 if (!single_pred_p (b))
1417 return false;
1419 if (b == EXIT_BLOCK_PTR)
1420 return false;
1422 /* If A ends by a statement causing exceptions or something similar, we
1423 cannot merge the blocks. */
1424 stmt = last_stmt (a);
1425 if (stmt && stmt_ends_bb_p (stmt))
1426 return false;
1428 /* Do not allow a block with only a non-local label to be merged. */
1429 if (stmt
1430 && gimple_code (stmt) == GIMPLE_LABEL
1431 && DECL_NONLOCAL (gimple_label_label (stmt)))
1432 return false;
1434 /* Examine the labels at the beginning of B. */
1435 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1437 tree lab;
1438 stmt = gsi_stmt (gsi);
1439 if (gimple_code (stmt) != GIMPLE_LABEL)
1440 break;
1441 lab = gimple_label_label (stmt);
1443 /* Do not remove user forced labels or for -O0 any user labels. */
1444 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1445 return false;
1448 /* Protect the loop latches. */
1449 if (current_loops && b->loop_father->latch == b)
1450 return false;
1452 /* It must be possible to eliminate all phi nodes in B. If ssa form
1453 is not up-to-date and a name-mapping is registered, we cannot eliminate
1454 any phis. Symbols marked for renaming are never a problem though. */
1455 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1457 gimple phi = gsi_stmt (gsi);
1458 /* Technically only new names matter. */
1459 if (name_registered_for_update_p (PHI_RESULT (phi)))
1460 return false;
1463 /* When not optimizing, don't merge if we'd lose goto_locus. */
1464 if (!optimize
1465 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1467 location_t goto_locus = single_succ_edge (a)->goto_locus;
1468 gimple_stmt_iterator prev, next;
1469 prev = gsi_last_nondebug_bb (a);
1470 next = gsi_after_labels (b);
1471 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1472 gsi_next_nondebug (&next);
1473 if ((gsi_end_p (prev)
1474 || gimple_location (gsi_stmt (prev)) != goto_locus)
1475 && (gsi_end_p (next)
1476 || gimple_location (gsi_stmt (next)) != goto_locus))
1477 return false;
1480 return true;
1483 /* Return true if the var whose chain of uses starts at PTR has no
1484 nondebug uses. */
1485 bool
1486 has_zero_uses_1 (const ssa_use_operand_t *head)
1488 const ssa_use_operand_t *ptr;
1490 for (ptr = head->next; ptr != head; ptr = ptr->next)
1491 if (!is_gimple_debug (USE_STMT (ptr)))
1492 return false;
1494 return true;
1497 /* Return true if the var whose chain of uses starts at PTR has a
1498 single nondebug use. Set USE_P and STMT to that single nondebug
1499 use, if so, or to NULL otherwise. */
1500 bool
1501 single_imm_use_1 (const ssa_use_operand_t *head,
1502 use_operand_p *use_p, gimple *stmt)
1504 ssa_use_operand_t *ptr, *single_use = 0;
1506 for (ptr = head->next; ptr != head; ptr = ptr->next)
1507 if (!is_gimple_debug (USE_STMT (ptr)))
1509 if (single_use)
1511 single_use = NULL;
1512 break;
1514 single_use = ptr;
1517 if (use_p)
1518 *use_p = single_use;
1520 if (stmt)
1521 *stmt = single_use ? single_use->loc.stmt : NULL;
1523 return !!single_use;
1526 /* Replaces all uses of NAME by VAL. */
1528 void
1529 replace_uses_by (tree name, tree val)
1531 imm_use_iterator imm_iter;
1532 use_operand_p use;
1533 gimple stmt;
1534 edge e;
1536 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1538 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1540 replace_exp (use, val);
1542 if (gimple_code (stmt) == GIMPLE_PHI)
1544 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1545 if (e->flags & EDGE_ABNORMAL)
1547 /* This can only occur for virtual operands, since
1548 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1549 would prevent replacement. */
1550 gcc_checking_assert (virtual_operand_p (name));
1551 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1556 if (gimple_code (stmt) != GIMPLE_PHI)
1558 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1559 gimple orig_stmt = stmt;
1560 size_t i;
1562 /* Mark the block if we changed the last stmt in it. */
1563 if (cfgcleanup_altered_bbs
1564 && stmt_ends_bb_p (stmt))
1565 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1567 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1568 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1569 only change sth from non-invariant to invariant, and only
1570 when propagating constants. */
1571 if (is_gimple_min_invariant (val))
1572 for (i = 0; i < gimple_num_ops (stmt); i++)
1574 tree op = gimple_op (stmt, i);
1575 /* Operands may be empty here. For example, the labels
1576 of a GIMPLE_COND are nulled out following the creation
1577 of the corresponding CFG edges. */
1578 if (op && TREE_CODE (op) == ADDR_EXPR)
1579 recompute_tree_invariant_for_addr_expr (op);
1582 if (fold_stmt (&gsi))
1583 stmt = gsi_stmt (gsi);
1585 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1586 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1588 update_stmt (stmt);
1592 gcc_checking_assert (has_zero_uses (name));
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1597 struct loop *loop;
1598 loop_iterator li;
1600 FOR_EACH_LOOP (li, loop, 0)
1602 substitute_in_loop_info (loop, name, val);
1607 /* Merge block B into block A. */
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1612 gimple_stmt_iterator last, gsi, psi;
1614 if (dump_file)
1615 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi = gsi_last_bb (a);
1620 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1622 gimple phi = gsi_stmt (psi);
1623 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1624 gimple copy;
1625 bool may_replace_uses = (virtual_operand_p (def)
1626 || may_propagate_copy (def, use));
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1630 if (current_loops
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1632 && !virtual_operand_p (def)
1633 && TREE_CODE (use) == SSA_NAME
1634 && a->loop_father != b->loop_father)
1635 may_replace_uses = false;
1637 if (!may_replace_uses)
1639 gcc_assert (!virtual_operand_p (def));
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy = gimple_build_assign (def, use);
1646 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1647 remove_phi_node (&psi, false);
1649 else
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1653 the stmt. */
1654 if (virtual_operand_p (def))
1656 imm_use_iterator iter;
1657 use_operand_p use_p;
1658 gimple stmt;
1660 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1662 SET_USE (use_p, use);
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1667 else
1668 replace_uses_by (def, use);
1670 remove_phi_node (&psi, true);
1674 /* Ensure that B follows A. */
1675 move_block_after (b, a);
1677 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1678 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1683 gimple stmt = gsi_stmt (gsi);
1684 if (gimple_code (stmt) == GIMPLE_LABEL)
1686 tree label = gimple_label_label (stmt);
1687 int lp_nr;
1689 gsi_remove (&gsi, false);
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label))
1699 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1700 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1702 /* Other user labels keep around in a form of a debug stmt. */
1703 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1705 gimple dbg = gimple_build_debug_bind (label,
1706 integer_zero_node,
1707 stmt);
1708 gimple_debug_bind_reset_value (dbg);
1709 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1712 lp_nr = EH_LANDING_PAD_NR (label);
1713 if (lp_nr)
1715 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1716 lp->post_landing_pad = NULL;
1719 else
1721 gimple_set_bb (stmt, a);
1722 gsi_next (&gsi);
1726 /* Merge the sequences. */
1727 last = gsi_last_bb (a);
1728 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1729 set_bb_seq (b, NULL);
1731 if (cfgcleanup_altered_bbs)
1732 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1736 /* Return the one of two successors of BB that is not reachable by a
1737 complex edge, if there is one. Else, return BB. We use
1738 this in optimizations that use post-dominators for their heuristics,
1739 to catch the cases in C++ where function calls are involved. */
1741 basic_block
1742 single_noncomplex_succ (basic_block bb)
1744 edge e0, e1;
1745 if (EDGE_COUNT (bb->succs) != 2)
1746 return bb;
1748 e0 = EDGE_SUCC (bb, 0);
1749 e1 = EDGE_SUCC (bb, 1);
1750 if (e0->flags & EDGE_COMPLEX)
1751 return e1->dest;
1752 if (e1->flags & EDGE_COMPLEX)
1753 return e0->dest;
1755 return bb;
1758 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1760 void
1761 notice_special_calls (gimple call)
1763 int flags = gimple_call_flags (call);
1765 if (flags & ECF_MAY_BE_ALLOCA)
1766 cfun->calls_alloca = true;
1767 if (flags & ECF_RETURNS_TWICE)
1768 cfun->calls_setjmp = true;
1772 /* Clear flags set by notice_special_calls. Used by dead code removal
1773 to update the flags. */
1775 void
1776 clear_special_calls (void)
1778 cfun->calls_alloca = false;
1779 cfun->calls_setjmp = false;
1782 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1784 static void
1785 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1787 /* Since this block is no longer reachable, we can just delete all
1788 of its PHI nodes. */
1789 remove_phi_nodes (bb);
1791 /* Remove edges to BB's successors. */
1792 while (EDGE_COUNT (bb->succs) > 0)
1793 remove_edge (EDGE_SUCC (bb, 0));
1797 /* Remove statements of basic block BB. */
1799 static void
1800 remove_bb (basic_block bb)
1802 gimple_stmt_iterator i;
1804 if (dump_file)
1806 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1807 if (dump_flags & TDF_DETAILS)
1809 dump_bb (dump_file, bb, 0, dump_flags);
1810 fprintf (dump_file, "\n");
1814 if (current_loops)
1816 struct loop *loop = bb->loop_father;
1818 /* If a loop gets removed, clean up the information associated
1819 with it. */
1820 if (loop->latch == bb
1821 || loop->header == bb)
1822 free_numbers_of_iterations_estimates_loop (loop);
1825 /* Remove all the instructions in the block. */
1826 if (bb_seq (bb) != NULL)
1828 /* Walk backwards so as to get a chance to substitute all
1829 released DEFs into debug stmts. See
1830 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1831 details. */
1832 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1834 gimple stmt = gsi_stmt (i);
1835 if (gimple_code (stmt) == GIMPLE_LABEL
1836 && (FORCED_LABEL (gimple_label_label (stmt))
1837 || DECL_NONLOCAL (gimple_label_label (stmt))))
1839 basic_block new_bb;
1840 gimple_stmt_iterator new_gsi;
1842 /* A non-reachable non-local label may still be referenced.
1843 But it no longer needs to carry the extra semantics of
1844 non-locality. */
1845 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1847 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1848 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1851 new_bb = bb->prev_bb;
1852 new_gsi = gsi_start_bb (new_bb);
1853 gsi_remove (&i, false);
1854 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1856 else
1858 /* Release SSA definitions if we are in SSA. Note that we
1859 may be called when not in SSA. For example,
1860 final_cleanup calls this function via
1861 cleanup_tree_cfg. */
1862 if (gimple_in_ssa_p (cfun))
1863 release_defs (stmt);
1865 gsi_remove (&i, true);
1868 if (gsi_end_p (i))
1869 i = gsi_last_bb (bb);
1870 else
1871 gsi_prev (&i);
1875 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1876 bb->il.gimple.seq = NULL;
1877 bb->il.gimple.phi_nodes = NULL;
1881 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1882 predicate VAL, return the edge that will be taken out of the block.
1883 If VAL does not match a unique edge, NULL is returned. */
1885 edge
1886 find_taken_edge (basic_block bb, tree val)
1888 gimple stmt;
1890 stmt = last_stmt (bb);
1892 gcc_assert (stmt);
1893 gcc_assert (is_ctrl_stmt (stmt));
1895 if (val == NULL)
1896 return NULL;
1898 if (!is_gimple_min_invariant (val))
1899 return NULL;
1901 if (gimple_code (stmt) == GIMPLE_COND)
1902 return find_taken_edge_cond_expr (bb, val);
1904 if (gimple_code (stmt) == GIMPLE_SWITCH)
1905 return find_taken_edge_switch_expr (bb, val);
1907 if (computed_goto_p (stmt))
1909 /* Only optimize if the argument is a label, if the argument is
1910 not a label then we can not construct a proper CFG.
1912 It may be the case that we only need to allow the LABEL_REF to
1913 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1914 appear inside a LABEL_EXPR just to be safe. */
1915 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1916 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1917 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1918 return NULL;
1921 gcc_unreachable ();
1924 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1925 statement, determine which of the outgoing edges will be taken out of the
1926 block. Return NULL if either edge may be taken. */
1928 static edge
1929 find_taken_edge_computed_goto (basic_block bb, tree val)
1931 basic_block dest;
1932 edge e = NULL;
1934 dest = label_to_block (val);
1935 if (dest)
1937 e = find_edge (bb, dest);
1938 gcc_assert (e != NULL);
1941 return e;
1944 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1945 statement, determine which of the two edges will be taken out of the
1946 block. Return NULL if either edge may be taken. */
1948 static edge
1949 find_taken_edge_cond_expr (basic_block bb, tree val)
1951 edge true_edge, false_edge;
1953 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1955 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1956 return (integer_zerop (val) ? false_edge : true_edge);
1959 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1960 statement, determine which edge will be taken out of the block. Return
1961 NULL if any edge may be taken. */
1963 static edge
1964 find_taken_edge_switch_expr (basic_block bb, tree val)
1966 basic_block dest_bb;
1967 edge e;
1968 gimple switch_stmt;
1969 tree taken_case;
1971 switch_stmt = last_stmt (bb);
1972 taken_case = find_case_label_for_value (switch_stmt, val);
1973 dest_bb = label_to_block (CASE_LABEL (taken_case));
1975 e = find_edge (bb, dest_bb);
1976 gcc_assert (e);
1977 return e;
1981 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1982 We can make optimal use here of the fact that the case labels are
1983 sorted: We can do a binary search for a case matching VAL. */
1985 static tree
1986 find_case_label_for_value (gimple switch_stmt, tree val)
1988 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1989 tree default_case = gimple_switch_default_label (switch_stmt);
1991 for (low = 0, high = n; high - low > 1; )
1993 size_t i = (high + low) / 2;
1994 tree t = gimple_switch_label (switch_stmt, i);
1995 int cmp;
1997 /* Cache the result of comparing CASE_LOW and val. */
1998 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2000 if (cmp > 0)
2001 high = i;
2002 else
2003 low = i;
2005 if (CASE_HIGH (t) == NULL)
2007 /* A singe-valued case label. */
2008 if (cmp == 0)
2009 return t;
2011 else
2013 /* A case range. We can only handle integer ranges. */
2014 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2015 return t;
2019 return default_case;
2023 /* Dump a basic block on stderr. */
2025 void
2026 gimple_debug_bb (basic_block bb)
2028 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2032 /* Dump basic block with index N on stderr. */
2034 basic_block
2035 gimple_debug_bb_n (int n)
2037 gimple_debug_bb (BASIC_BLOCK (n));
2038 return BASIC_BLOCK (n);
2042 /* Dump the CFG on stderr.
2044 FLAGS are the same used by the tree dumping functions
2045 (see TDF_* in dumpfile.h). */
2047 void
2048 gimple_debug_cfg (int flags)
2050 gimple_dump_cfg (stderr, flags);
2054 /* Dump the program showing basic block boundaries on the given FILE.
2056 FLAGS are the same used by the tree dumping functions (see TDF_* in
2057 tree.h). */
2059 void
2060 gimple_dump_cfg (FILE *file, int flags)
2062 if (flags & TDF_DETAILS)
2064 dump_function_header (file, current_function_decl, flags);
2065 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2066 n_basic_blocks, n_edges, last_basic_block);
2068 brief_dump_cfg (file, flags | TDF_COMMENT);
2069 fprintf (file, "\n");
2072 if (flags & TDF_STATS)
2073 dump_cfg_stats (file);
2075 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2079 /* Dump CFG statistics on FILE. */
2081 void
2082 dump_cfg_stats (FILE *file)
2084 static long max_num_merged_labels = 0;
2085 unsigned long size, total = 0;
2086 long num_edges;
2087 basic_block bb;
2088 const char * const fmt_str = "%-30s%-13s%12s\n";
2089 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2090 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2091 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2092 const char *funcname = current_function_name ();
2094 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2096 fprintf (file, "---------------------------------------------------------\n");
2097 fprintf (file, fmt_str, "", " Number of ", "Memory");
2098 fprintf (file, fmt_str, "", " instances ", "used ");
2099 fprintf (file, "---------------------------------------------------------\n");
2101 size = n_basic_blocks * sizeof (struct basic_block_def);
2102 total += size;
2103 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2104 SCALE (size), LABEL (size));
2106 num_edges = 0;
2107 FOR_EACH_BB (bb)
2108 num_edges += EDGE_COUNT (bb->succs);
2109 size = num_edges * sizeof (struct edge_def);
2110 total += size;
2111 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2115 LABEL (total));
2116 fprintf (file, "---------------------------------------------------------\n");
2117 fprintf (file, "\n");
2119 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2120 max_num_merged_labels = cfg_stats.num_merged_labels;
2122 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2123 cfg_stats.num_merged_labels, max_num_merged_labels);
2125 fprintf (file, "\n");
2129 /* Dump CFG statistics on stderr. Keep extern so that it's always
2130 linked in the final executable. */
2132 DEBUG_FUNCTION void
2133 debug_cfg_stats (void)
2135 dump_cfg_stats (stderr);
2138 /*---------------------------------------------------------------------------
2139 Miscellaneous helpers
2140 ---------------------------------------------------------------------------*/
2142 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2143 flow. Transfers of control flow associated with EH are excluded. */
2145 static bool
2146 call_can_make_abnormal_goto (gimple t)
2148 /* If the function has no non-local labels, then a call cannot make an
2149 abnormal transfer of control. */
2150 if (!cfun->has_nonlocal_label)
2151 return false;
2153 /* Likewise if the call has no side effects. */
2154 if (!gimple_has_side_effects (t))
2155 return false;
2157 /* Likewise if the called function is leaf. */
2158 if (gimple_call_flags (t) & ECF_LEAF)
2159 return false;
2161 return true;
2165 /* Return true if T can make an abnormal transfer of control flow.
2166 Transfers of control flow associated with EH are excluded. */
2168 bool
2169 stmt_can_make_abnormal_goto (gimple t)
2171 if (computed_goto_p (t))
2172 return true;
2173 if (is_gimple_call (t))
2174 return call_can_make_abnormal_goto (t);
2175 return false;
2179 /* Return true if T represents a stmt that always transfers control. */
2181 bool
2182 is_ctrl_stmt (gimple t)
2184 switch (gimple_code (t))
2186 case GIMPLE_COND:
2187 case GIMPLE_SWITCH:
2188 case GIMPLE_GOTO:
2189 case GIMPLE_RETURN:
2190 case GIMPLE_RESX:
2191 return true;
2192 default:
2193 return false;
2198 /* Return true if T is a statement that may alter the flow of control
2199 (e.g., a call to a non-returning function). */
2201 bool
2202 is_ctrl_altering_stmt (gimple t)
2204 gcc_assert (t);
2206 switch (gimple_code (t))
2208 case GIMPLE_CALL:
2210 int flags = gimple_call_flags (t);
2212 /* A call alters control flow if it can make an abnormal goto. */
2213 if (call_can_make_abnormal_goto (t))
2214 return true;
2216 /* A call also alters control flow if it does not return. */
2217 if (flags & ECF_NORETURN)
2218 return true;
2220 /* TM ending statements have backedges out of the transaction.
2221 Return true so we split the basic block containing them.
2222 Note that the TM_BUILTIN test is merely an optimization. */
2223 if ((flags & ECF_TM_BUILTIN)
2224 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2225 return true;
2227 /* BUILT_IN_RETURN call is same as return statement. */
2228 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2229 return true;
2231 break;
2233 case GIMPLE_EH_DISPATCH:
2234 /* EH_DISPATCH branches to the individual catch handlers at
2235 this level of a try or allowed-exceptions region. It can
2236 fallthru to the next statement as well. */
2237 return true;
2239 case GIMPLE_ASM:
2240 if (gimple_asm_nlabels (t) > 0)
2241 return true;
2242 break;
2244 CASE_GIMPLE_OMP:
2245 /* OpenMP directives alter control flow. */
2246 return true;
2248 case GIMPLE_TRANSACTION:
2249 /* A transaction start alters control flow. */
2250 return true;
2252 default:
2253 break;
2256 /* If a statement can throw, it alters control flow. */
2257 return stmt_can_throw_internal (t);
2261 /* Return true if T is a simple local goto. */
2263 bool
2264 simple_goto_p (gimple t)
2266 return (gimple_code (t) == GIMPLE_GOTO
2267 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2271 /* Return true if STMT should start a new basic block. PREV_STMT is
2272 the statement preceding STMT. It is used when STMT is a label or a
2273 case label. Labels should only start a new basic block if their
2274 previous statement wasn't a label. Otherwise, sequence of labels
2275 would generate unnecessary basic blocks that only contain a single
2276 label. */
2278 static inline bool
2279 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2281 if (stmt == NULL)
2282 return false;
2284 /* Labels start a new basic block only if the preceding statement
2285 wasn't a label of the same type. This prevents the creation of
2286 consecutive blocks that have nothing but a single label. */
2287 if (gimple_code (stmt) == GIMPLE_LABEL)
2289 /* Nonlocal and computed GOTO targets always start a new block. */
2290 if (DECL_NONLOCAL (gimple_label_label (stmt))
2291 || FORCED_LABEL (gimple_label_label (stmt)))
2292 return true;
2294 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2296 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2297 return true;
2299 cfg_stats.num_merged_labels++;
2300 return false;
2302 else
2303 return true;
2306 return false;
2310 /* Return true if T should end a basic block. */
2312 bool
2313 stmt_ends_bb_p (gimple t)
2315 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2318 /* Remove block annotations and other data structures. */
2320 void
2321 delete_tree_cfg_annotations (void)
2323 vec_free (label_to_block_map);
2327 /* Return the first statement in basic block BB. */
2329 gimple
2330 first_stmt (basic_block bb)
2332 gimple_stmt_iterator i = gsi_start_bb (bb);
2333 gimple stmt = NULL;
2335 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2337 gsi_next (&i);
2338 stmt = NULL;
2340 return stmt;
2343 /* Return the first non-label statement in basic block BB. */
2345 static gimple
2346 first_non_label_stmt (basic_block bb)
2348 gimple_stmt_iterator i = gsi_start_bb (bb);
2349 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2350 gsi_next (&i);
2351 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2354 /* Return the last statement in basic block BB. */
2356 gimple
2357 last_stmt (basic_block bb)
2359 gimple_stmt_iterator i = gsi_last_bb (bb);
2360 gimple stmt = NULL;
2362 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2364 gsi_prev (&i);
2365 stmt = NULL;
2367 return stmt;
2370 /* Return the last statement of an otherwise empty block. Return NULL
2371 if the block is totally empty, or if it contains more than one
2372 statement. */
2374 gimple
2375 last_and_only_stmt (basic_block bb)
2377 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2378 gimple last, prev;
2380 if (gsi_end_p (i))
2381 return NULL;
2383 last = gsi_stmt (i);
2384 gsi_prev_nondebug (&i);
2385 if (gsi_end_p (i))
2386 return last;
2388 /* Empty statements should no longer appear in the instruction stream.
2389 Everything that might have appeared before should be deleted by
2390 remove_useless_stmts, and the optimizers should just gsi_remove
2391 instead of smashing with build_empty_stmt.
2393 Thus the only thing that should appear here in a block containing
2394 one executable statement is a label. */
2395 prev = gsi_stmt (i);
2396 if (gimple_code (prev) == GIMPLE_LABEL)
2397 return last;
2398 else
2399 return NULL;
2402 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2404 static void
2405 reinstall_phi_args (edge new_edge, edge old_edge)
2407 edge_var_map_vector *v;
2408 edge_var_map *vm;
2409 int i;
2410 gimple_stmt_iterator phis;
2412 v = redirect_edge_var_map_vector (old_edge);
2413 if (!v)
2414 return;
2416 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2417 v->iterate (i, &vm) && !gsi_end_p (phis);
2418 i++, gsi_next (&phis))
2420 gimple phi = gsi_stmt (phis);
2421 tree result = redirect_edge_var_map_result (vm);
2422 tree arg = redirect_edge_var_map_def (vm);
2424 gcc_assert (result == gimple_phi_result (phi));
2426 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2429 redirect_edge_var_map_clear (old_edge);
2432 /* Returns the basic block after which the new basic block created
2433 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2434 near its "logical" location. This is of most help to humans looking
2435 at debugging dumps. */
2437 static basic_block
2438 split_edge_bb_loc (edge edge_in)
2440 basic_block dest = edge_in->dest;
2441 basic_block dest_prev = dest->prev_bb;
2443 if (dest_prev)
2445 edge e = find_edge (dest_prev, dest);
2446 if (e && !(e->flags & EDGE_COMPLEX))
2447 return edge_in->src;
2449 return dest_prev;
2452 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2453 Abort on abnormal edges. */
2455 static basic_block
2456 gimple_split_edge (edge edge_in)
2458 basic_block new_bb, after_bb, dest;
2459 edge new_edge, e;
2461 /* Abnormal edges cannot be split. */
2462 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2464 dest = edge_in->dest;
2466 after_bb = split_edge_bb_loc (edge_in);
2468 new_bb = create_empty_bb (after_bb);
2469 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2470 new_bb->count = edge_in->count;
2471 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2472 new_edge->probability = REG_BR_PROB_BASE;
2473 new_edge->count = edge_in->count;
2475 e = redirect_edge_and_branch (edge_in, new_bb);
2476 gcc_assert (e == edge_in);
2477 reinstall_phi_args (new_edge, e);
2479 return new_bb;
2483 /* Verify properties of the address expression T with base object BASE. */
2485 static tree
2486 verify_address (tree t, tree base)
2488 bool old_constant;
2489 bool old_side_effects;
2490 bool new_constant;
2491 bool new_side_effects;
2493 old_constant = TREE_CONSTANT (t);
2494 old_side_effects = TREE_SIDE_EFFECTS (t);
2496 recompute_tree_invariant_for_addr_expr (t);
2497 new_side_effects = TREE_SIDE_EFFECTS (t);
2498 new_constant = TREE_CONSTANT (t);
2500 if (old_constant != new_constant)
2502 error ("constant not recomputed when ADDR_EXPR changed");
2503 return t;
2505 if (old_side_effects != new_side_effects)
2507 error ("side effects not recomputed when ADDR_EXPR changed");
2508 return t;
2511 if (!(TREE_CODE (base) == VAR_DECL
2512 || TREE_CODE (base) == PARM_DECL
2513 || TREE_CODE (base) == RESULT_DECL))
2514 return NULL_TREE;
2516 if (DECL_GIMPLE_REG_P (base))
2518 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2519 return base;
2522 return NULL_TREE;
2525 /* Callback for walk_tree, check that all elements with address taken are
2526 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2527 inside a PHI node. */
2529 static tree
2530 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2532 tree t = *tp, x;
2534 if (TYPE_P (t))
2535 *walk_subtrees = 0;
2537 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2538 #define CHECK_OP(N, MSG) \
2539 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2540 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2542 switch (TREE_CODE (t))
2544 case SSA_NAME:
2545 if (SSA_NAME_IN_FREE_LIST (t))
2547 error ("SSA name in freelist but still referenced");
2548 return *tp;
2550 break;
2552 case INDIRECT_REF:
2553 error ("INDIRECT_REF in gimple IL");
2554 return t;
2556 case MEM_REF:
2557 x = TREE_OPERAND (t, 0);
2558 if (!POINTER_TYPE_P (TREE_TYPE (x))
2559 || !is_gimple_mem_ref_addr (x))
2561 error ("invalid first operand of MEM_REF");
2562 return x;
2564 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2565 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2567 error ("invalid offset operand of MEM_REF");
2568 return TREE_OPERAND (t, 1);
2570 if (TREE_CODE (x) == ADDR_EXPR
2571 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2572 return x;
2573 *walk_subtrees = 0;
2574 break;
2576 case ASSERT_EXPR:
2577 x = fold (ASSERT_EXPR_COND (t));
2578 if (x == boolean_false_node)
2580 error ("ASSERT_EXPR with an always-false condition");
2581 return *tp;
2583 break;
2585 case MODIFY_EXPR:
2586 error ("MODIFY_EXPR not expected while having tuples");
2587 return *tp;
2589 case ADDR_EXPR:
2591 tree tem;
2593 gcc_assert (is_gimple_address (t));
2595 /* Skip any references (they will be checked when we recurse down the
2596 tree) and ensure that any variable used as a prefix is marked
2597 addressable. */
2598 for (x = TREE_OPERAND (t, 0);
2599 handled_component_p (x);
2600 x = TREE_OPERAND (x, 0))
2603 if ((tem = verify_address (t, x)))
2604 return tem;
2606 if (!(TREE_CODE (x) == VAR_DECL
2607 || TREE_CODE (x) == PARM_DECL
2608 || TREE_CODE (x) == RESULT_DECL))
2609 return NULL;
2611 if (!TREE_ADDRESSABLE (x))
2613 error ("address taken, but ADDRESSABLE bit not set");
2614 return x;
2617 break;
2620 case COND_EXPR:
2621 x = COND_EXPR_COND (t);
2622 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2624 error ("non-integral used in condition");
2625 return x;
2627 if (!is_gimple_condexpr (x))
2629 error ("invalid conditional operand");
2630 return x;
2632 break;
2634 case NON_LVALUE_EXPR:
2635 case TRUTH_NOT_EXPR:
2636 gcc_unreachable ();
2638 CASE_CONVERT:
2639 case FIX_TRUNC_EXPR:
2640 case FLOAT_EXPR:
2641 case NEGATE_EXPR:
2642 case ABS_EXPR:
2643 case BIT_NOT_EXPR:
2644 CHECK_OP (0, "invalid operand to unary operator");
2645 break;
2647 case REALPART_EXPR:
2648 case IMAGPART_EXPR:
2649 case COMPONENT_REF:
2650 case ARRAY_REF:
2651 case ARRAY_RANGE_REF:
2652 case BIT_FIELD_REF:
2653 case VIEW_CONVERT_EXPR:
2654 /* We have a nest of references. Verify that each of the operands
2655 that determine where to reference is either a constant or a variable,
2656 verify that the base is valid, and then show we've already checked
2657 the subtrees. */
2658 while (handled_component_p (t))
2660 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2661 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2662 else if (TREE_CODE (t) == ARRAY_REF
2663 || TREE_CODE (t) == ARRAY_RANGE_REF)
2665 CHECK_OP (1, "invalid array index");
2666 if (TREE_OPERAND (t, 2))
2667 CHECK_OP (2, "invalid array lower bound");
2668 if (TREE_OPERAND (t, 3))
2669 CHECK_OP (3, "invalid array stride");
2671 else if (TREE_CODE (t) == BIT_FIELD_REF)
2673 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2674 || !host_integerp (TREE_OPERAND (t, 2), 1))
2676 error ("invalid position or size operand to BIT_FIELD_REF");
2677 return t;
2679 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2680 && (TYPE_PRECISION (TREE_TYPE (t))
2681 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2683 error ("integral result type precision does not match "
2684 "field size of BIT_FIELD_REF");
2685 return t;
2687 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2688 && !AGGREGATE_TYPE_P (TREE_TYPE (t))
2689 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2690 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2691 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2693 error ("mode precision of non-integral result does not "
2694 "match field size of BIT_FIELD_REF");
2695 return t;
2699 t = TREE_OPERAND (t, 0);
2702 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2704 error ("invalid reference prefix");
2705 return t;
2707 *walk_subtrees = 0;
2708 break;
2709 case PLUS_EXPR:
2710 case MINUS_EXPR:
2711 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2712 POINTER_PLUS_EXPR. */
2713 if (POINTER_TYPE_P (TREE_TYPE (t)))
2715 error ("invalid operand to plus/minus, type is a pointer");
2716 return t;
2718 CHECK_OP (0, "invalid operand to binary operator");
2719 CHECK_OP (1, "invalid operand to binary operator");
2720 break;
2722 case POINTER_PLUS_EXPR:
2723 /* Check to make sure the first operand is a pointer or reference type. */
2724 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2726 error ("invalid operand to pointer plus, first operand is not a pointer");
2727 return t;
2729 /* Check to make sure the second operand is a ptrofftype. */
2730 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2732 error ("invalid operand to pointer plus, second operand is not an "
2733 "integer type of appropriate width");
2734 return t;
2736 /* FALLTHROUGH */
2737 case LT_EXPR:
2738 case LE_EXPR:
2739 case GT_EXPR:
2740 case GE_EXPR:
2741 case EQ_EXPR:
2742 case NE_EXPR:
2743 case UNORDERED_EXPR:
2744 case ORDERED_EXPR:
2745 case UNLT_EXPR:
2746 case UNLE_EXPR:
2747 case UNGT_EXPR:
2748 case UNGE_EXPR:
2749 case UNEQ_EXPR:
2750 case LTGT_EXPR:
2751 case MULT_EXPR:
2752 case TRUNC_DIV_EXPR:
2753 case CEIL_DIV_EXPR:
2754 case FLOOR_DIV_EXPR:
2755 case ROUND_DIV_EXPR:
2756 case TRUNC_MOD_EXPR:
2757 case CEIL_MOD_EXPR:
2758 case FLOOR_MOD_EXPR:
2759 case ROUND_MOD_EXPR:
2760 case RDIV_EXPR:
2761 case EXACT_DIV_EXPR:
2762 case MIN_EXPR:
2763 case MAX_EXPR:
2764 case LSHIFT_EXPR:
2765 case RSHIFT_EXPR:
2766 case LROTATE_EXPR:
2767 case RROTATE_EXPR:
2768 case BIT_IOR_EXPR:
2769 case BIT_XOR_EXPR:
2770 case BIT_AND_EXPR:
2771 CHECK_OP (0, "invalid operand to binary operator");
2772 CHECK_OP (1, "invalid operand to binary operator");
2773 break;
2775 case CONSTRUCTOR:
2776 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2777 *walk_subtrees = 0;
2778 break;
2780 case CASE_LABEL_EXPR:
2781 if (CASE_CHAIN (t))
2783 error ("invalid CASE_CHAIN");
2784 return t;
2786 break;
2788 default:
2789 break;
2791 return NULL;
2793 #undef CHECK_OP
2797 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2798 Returns true if there is an error, otherwise false. */
2800 static bool
2801 verify_types_in_gimple_min_lval (tree expr)
2803 tree op;
2805 if (is_gimple_id (expr))
2806 return false;
2808 if (TREE_CODE (expr) != TARGET_MEM_REF
2809 && TREE_CODE (expr) != MEM_REF)
2811 error ("invalid expression for min lvalue");
2812 return true;
2815 /* TARGET_MEM_REFs are strange beasts. */
2816 if (TREE_CODE (expr) == TARGET_MEM_REF)
2817 return false;
2819 op = TREE_OPERAND (expr, 0);
2820 if (!is_gimple_val (op))
2822 error ("invalid operand in indirect reference");
2823 debug_generic_stmt (op);
2824 return true;
2826 /* Memory references now generally can involve a value conversion. */
2828 return false;
2831 /* Verify if EXPR is a valid GIMPLE reference expression. If
2832 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2833 if there is an error, otherwise false. */
2835 static bool
2836 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2838 while (handled_component_p (expr))
2840 tree op = TREE_OPERAND (expr, 0);
2842 if (TREE_CODE (expr) == ARRAY_REF
2843 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2845 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2846 || (TREE_OPERAND (expr, 2)
2847 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2848 || (TREE_OPERAND (expr, 3)
2849 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2851 error ("invalid operands to array reference");
2852 debug_generic_stmt (expr);
2853 return true;
2857 /* Verify if the reference array element types are compatible. */
2858 if (TREE_CODE (expr) == ARRAY_REF
2859 && !useless_type_conversion_p (TREE_TYPE (expr),
2860 TREE_TYPE (TREE_TYPE (op))))
2862 error ("type mismatch in array reference");
2863 debug_generic_stmt (TREE_TYPE (expr));
2864 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2865 return true;
2867 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2868 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2869 TREE_TYPE (TREE_TYPE (op))))
2871 error ("type mismatch in array range reference");
2872 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2873 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2874 return true;
2877 if ((TREE_CODE (expr) == REALPART_EXPR
2878 || TREE_CODE (expr) == IMAGPART_EXPR)
2879 && !useless_type_conversion_p (TREE_TYPE (expr),
2880 TREE_TYPE (TREE_TYPE (op))))
2882 error ("type mismatch in real/imagpart reference");
2883 debug_generic_stmt (TREE_TYPE (expr));
2884 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2885 return true;
2888 if (TREE_CODE (expr) == COMPONENT_REF
2889 && !useless_type_conversion_p (TREE_TYPE (expr),
2890 TREE_TYPE (TREE_OPERAND (expr, 1))))
2892 error ("type mismatch in component reference");
2893 debug_generic_stmt (TREE_TYPE (expr));
2894 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2895 return true;
2898 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2900 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2901 that their operand is not an SSA name or an invariant when
2902 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2903 bug). Otherwise there is nothing to verify, gross mismatches at
2904 most invoke undefined behavior. */
2905 if (require_lvalue
2906 && (TREE_CODE (op) == SSA_NAME
2907 || is_gimple_min_invariant (op)))
2909 error ("conversion of an SSA_NAME on the left hand side");
2910 debug_generic_stmt (expr);
2911 return true;
2913 else if (TREE_CODE (op) == SSA_NAME
2914 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2916 error ("conversion of register to a different size");
2917 debug_generic_stmt (expr);
2918 return true;
2920 else if (!handled_component_p (op))
2921 return false;
2924 expr = op;
2927 if (TREE_CODE (expr) == MEM_REF)
2929 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2931 error ("invalid address operand in MEM_REF");
2932 debug_generic_stmt (expr);
2933 return true;
2935 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2936 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2938 error ("invalid offset operand in MEM_REF");
2939 debug_generic_stmt (expr);
2940 return true;
2943 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2945 if (!TMR_BASE (expr)
2946 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2948 error ("invalid address operand in TARGET_MEM_REF");
2949 return true;
2951 if (!TMR_OFFSET (expr)
2952 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2953 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2955 error ("invalid offset operand in TARGET_MEM_REF");
2956 debug_generic_stmt (expr);
2957 return true;
2961 return ((require_lvalue || !is_gimple_min_invariant (expr))
2962 && verify_types_in_gimple_min_lval (expr));
2965 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
2966 list of pointer-to types that is trivially convertible to DEST. */
2968 static bool
2969 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
2971 tree src;
2973 if (!TYPE_POINTER_TO (src_obj))
2974 return true;
2976 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
2977 if (useless_type_conversion_p (dest, src))
2978 return true;
2980 return false;
2983 /* Return true if TYPE1 is a fixed-point type and if conversions to and
2984 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
2986 static bool
2987 valid_fixed_convert_types_p (tree type1, tree type2)
2989 return (FIXED_POINT_TYPE_P (type1)
2990 && (INTEGRAL_TYPE_P (type2)
2991 || SCALAR_FLOAT_TYPE_P (type2)
2992 || FIXED_POINT_TYPE_P (type2)));
2995 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
2996 is a problem, otherwise false. */
2998 static bool
2999 verify_gimple_call (gimple stmt)
3001 tree fn = gimple_call_fn (stmt);
3002 tree fntype, fndecl;
3003 unsigned i;
3005 if (gimple_call_internal_p (stmt))
3007 if (fn)
3009 error ("gimple call has two targets");
3010 debug_generic_stmt (fn);
3011 return true;
3014 else
3016 if (!fn)
3018 error ("gimple call has no target");
3019 return true;
3023 if (fn && !is_gimple_call_addr (fn))
3025 error ("invalid function in gimple call");
3026 debug_generic_stmt (fn);
3027 return true;
3030 if (fn
3031 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3032 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3033 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3035 error ("non-function in gimple call");
3036 return true;
3039 fndecl = gimple_call_fndecl (stmt);
3040 if (fndecl
3041 && TREE_CODE (fndecl) == FUNCTION_DECL
3042 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3043 && !DECL_PURE_P (fndecl)
3044 && !TREE_READONLY (fndecl))
3046 error ("invalid pure const state for function");
3047 return true;
3050 if (gimple_call_lhs (stmt)
3051 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3052 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3054 error ("invalid LHS in gimple call");
3055 return true;
3058 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3060 error ("LHS in noreturn call");
3061 return true;
3064 fntype = gimple_call_fntype (stmt);
3065 if (fntype
3066 && gimple_call_lhs (stmt)
3067 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3068 TREE_TYPE (fntype))
3069 /* ??? At least C++ misses conversions at assignments from
3070 void * call results.
3071 ??? Java is completely off. Especially with functions
3072 returning java.lang.Object.
3073 For now simply allow arbitrary pointer type conversions. */
3074 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3075 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3077 error ("invalid conversion in gimple call");
3078 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3079 debug_generic_stmt (TREE_TYPE (fntype));
3080 return true;
3083 if (gimple_call_chain (stmt)
3084 && !is_gimple_val (gimple_call_chain (stmt)))
3086 error ("invalid static chain in gimple call");
3087 debug_generic_stmt (gimple_call_chain (stmt));
3088 return true;
3091 /* If there is a static chain argument, this should not be an indirect
3092 call, and the decl should have DECL_STATIC_CHAIN set. */
3093 if (gimple_call_chain (stmt))
3095 if (!gimple_call_fndecl (stmt))
3097 error ("static chain in indirect gimple call");
3098 return true;
3100 fn = TREE_OPERAND (fn, 0);
3102 if (!DECL_STATIC_CHAIN (fn))
3104 error ("static chain with function that doesn%'t use one");
3105 return true;
3109 /* ??? The C frontend passes unpromoted arguments in case it
3110 didn't see a function declaration before the call. So for now
3111 leave the call arguments mostly unverified. Once we gimplify
3112 unit-at-a-time we have a chance to fix this. */
3114 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3116 tree arg = gimple_call_arg (stmt, i);
3117 if ((is_gimple_reg_type (TREE_TYPE (arg))
3118 && !is_gimple_val (arg))
3119 || (!is_gimple_reg_type (TREE_TYPE (arg))
3120 && !is_gimple_lvalue (arg)))
3122 error ("invalid argument to gimple call");
3123 debug_generic_expr (arg);
3124 return true;
3128 return false;
3131 /* Verifies the gimple comparison with the result type TYPE and
3132 the operands OP0 and OP1. */
3134 static bool
3135 verify_gimple_comparison (tree type, tree op0, tree op1)
3137 tree op0_type = TREE_TYPE (op0);
3138 tree op1_type = TREE_TYPE (op1);
3140 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3142 error ("invalid operands in gimple comparison");
3143 return true;
3146 /* For comparisons we do not have the operations type as the
3147 effective type the comparison is carried out in. Instead
3148 we require that either the first operand is trivially
3149 convertible into the second, or the other way around.
3150 Because we special-case pointers to void we allow
3151 comparisons of pointers with the same mode as well. */
3152 if (!useless_type_conversion_p (op0_type, op1_type)
3153 && !useless_type_conversion_p (op1_type, op0_type)
3154 && (!POINTER_TYPE_P (op0_type)
3155 || !POINTER_TYPE_P (op1_type)
3156 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3158 error ("mismatching comparison operand types");
3159 debug_generic_expr (op0_type);
3160 debug_generic_expr (op1_type);
3161 return true;
3164 /* The resulting type of a comparison may be an effective boolean type. */
3165 if (INTEGRAL_TYPE_P (type)
3166 && (TREE_CODE (type) == BOOLEAN_TYPE
3167 || TYPE_PRECISION (type) == 1))
3169 if (TREE_CODE (op0_type) == VECTOR_TYPE
3170 || TREE_CODE (op1_type) == VECTOR_TYPE)
3172 error ("vector comparison returning a boolean");
3173 debug_generic_expr (op0_type);
3174 debug_generic_expr (op1_type);
3175 return true;
3178 /* Or an integer vector type with the same size and element count
3179 as the comparison operand types. */
3180 else if (TREE_CODE (type) == VECTOR_TYPE
3181 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3183 if (TREE_CODE (op0_type) != VECTOR_TYPE
3184 || TREE_CODE (op1_type) != VECTOR_TYPE)
3186 error ("non-vector operands in vector comparison");
3187 debug_generic_expr (op0_type);
3188 debug_generic_expr (op1_type);
3189 return true;
3192 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3193 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3194 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3196 error ("invalid vector comparison resulting type");
3197 debug_generic_expr (type);
3198 return true;
3201 else
3203 error ("bogus comparison result type");
3204 debug_generic_expr (type);
3205 return true;
3208 return false;
3211 /* Verify a gimple assignment statement STMT with an unary rhs.
3212 Returns true if anything is wrong. */
3214 static bool
3215 verify_gimple_assign_unary (gimple stmt)
3217 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3218 tree lhs = gimple_assign_lhs (stmt);
3219 tree lhs_type = TREE_TYPE (lhs);
3220 tree rhs1 = gimple_assign_rhs1 (stmt);
3221 tree rhs1_type = TREE_TYPE (rhs1);
3223 if (!is_gimple_reg (lhs))
3225 error ("non-register as LHS of unary operation");
3226 return true;
3229 if (!is_gimple_val (rhs1))
3231 error ("invalid operand in unary operation");
3232 return true;
3235 /* First handle conversions. */
3236 switch (rhs_code)
3238 CASE_CONVERT:
3240 /* Allow conversions from pointer type to integral type only if
3241 there is no sign or zero extension involved.
3242 For targets were the precision of ptrofftype doesn't match that
3243 of pointers we need to allow arbitrary conversions to ptrofftype. */
3244 if ((POINTER_TYPE_P (lhs_type)
3245 && INTEGRAL_TYPE_P (rhs1_type))
3246 || (POINTER_TYPE_P (rhs1_type)
3247 && INTEGRAL_TYPE_P (lhs_type)
3248 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3249 || ptrofftype_p (sizetype))))
3250 return false;
3252 /* Allow conversion from integral to offset type and vice versa. */
3253 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3254 && INTEGRAL_TYPE_P (rhs1_type))
3255 || (INTEGRAL_TYPE_P (lhs_type)
3256 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3257 return false;
3259 /* Otherwise assert we are converting between types of the
3260 same kind. */
3261 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3263 error ("invalid types in nop conversion");
3264 debug_generic_expr (lhs_type);
3265 debug_generic_expr (rhs1_type);
3266 return true;
3269 return false;
3272 case ADDR_SPACE_CONVERT_EXPR:
3274 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3275 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3276 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3278 error ("invalid types in address space conversion");
3279 debug_generic_expr (lhs_type);
3280 debug_generic_expr (rhs1_type);
3281 return true;
3284 return false;
3287 case FIXED_CONVERT_EXPR:
3289 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3290 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3292 error ("invalid types in fixed-point conversion");
3293 debug_generic_expr (lhs_type);
3294 debug_generic_expr (rhs1_type);
3295 return true;
3298 return false;
3301 case FLOAT_EXPR:
3303 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3304 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3305 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3307 error ("invalid types in conversion to floating point");
3308 debug_generic_expr (lhs_type);
3309 debug_generic_expr (rhs1_type);
3310 return true;
3313 return false;
3316 case FIX_TRUNC_EXPR:
3318 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3319 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3320 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3322 error ("invalid types in conversion to integer");
3323 debug_generic_expr (lhs_type);
3324 debug_generic_expr (rhs1_type);
3325 return true;
3328 return false;
3331 case VEC_UNPACK_HI_EXPR:
3332 case VEC_UNPACK_LO_EXPR:
3333 case REDUC_MAX_EXPR:
3334 case REDUC_MIN_EXPR:
3335 case REDUC_PLUS_EXPR:
3336 case VEC_UNPACK_FLOAT_HI_EXPR:
3337 case VEC_UNPACK_FLOAT_LO_EXPR:
3338 /* FIXME. */
3339 return false;
3341 case NEGATE_EXPR:
3342 case ABS_EXPR:
3343 case BIT_NOT_EXPR:
3344 case PAREN_EXPR:
3345 case NON_LVALUE_EXPR:
3346 case CONJ_EXPR:
3347 break;
3349 default:
3350 gcc_unreachable ();
3353 /* For the remaining codes assert there is no conversion involved. */
3354 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3356 error ("non-trivial conversion in unary operation");
3357 debug_generic_expr (lhs_type);
3358 debug_generic_expr (rhs1_type);
3359 return true;
3362 return false;
3365 /* Verify a gimple assignment statement STMT with a binary rhs.
3366 Returns true if anything is wrong. */
3368 static bool
3369 verify_gimple_assign_binary (gimple stmt)
3371 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3372 tree lhs = gimple_assign_lhs (stmt);
3373 tree lhs_type = TREE_TYPE (lhs);
3374 tree rhs1 = gimple_assign_rhs1 (stmt);
3375 tree rhs1_type = TREE_TYPE (rhs1);
3376 tree rhs2 = gimple_assign_rhs2 (stmt);
3377 tree rhs2_type = TREE_TYPE (rhs2);
3379 if (!is_gimple_reg (lhs))
3381 error ("non-register as LHS of binary operation");
3382 return true;
3385 if (!is_gimple_val (rhs1)
3386 || !is_gimple_val (rhs2))
3388 error ("invalid operands in binary operation");
3389 return true;
3392 /* First handle operations that involve different types. */
3393 switch (rhs_code)
3395 case COMPLEX_EXPR:
3397 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3398 || !(INTEGRAL_TYPE_P (rhs1_type)
3399 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3400 || !(INTEGRAL_TYPE_P (rhs2_type)
3401 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3403 error ("type mismatch in complex expression");
3404 debug_generic_expr (lhs_type);
3405 debug_generic_expr (rhs1_type);
3406 debug_generic_expr (rhs2_type);
3407 return true;
3410 return false;
3413 case LSHIFT_EXPR:
3414 case RSHIFT_EXPR:
3415 case LROTATE_EXPR:
3416 case RROTATE_EXPR:
3418 /* Shifts and rotates are ok on integral types, fixed point
3419 types and integer vector types. */
3420 if ((!INTEGRAL_TYPE_P (rhs1_type)
3421 && !FIXED_POINT_TYPE_P (rhs1_type)
3422 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3423 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3424 || (!INTEGRAL_TYPE_P (rhs2_type)
3425 /* Vector shifts of vectors are also ok. */
3426 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3427 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3428 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3429 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3430 || !useless_type_conversion_p (lhs_type, rhs1_type))
3432 error ("type mismatch in shift expression");
3433 debug_generic_expr (lhs_type);
3434 debug_generic_expr (rhs1_type);
3435 debug_generic_expr (rhs2_type);
3436 return true;
3439 return false;
3442 case VEC_LSHIFT_EXPR:
3443 case VEC_RSHIFT_EXPR:
3445 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3446 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3447 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3448 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3449 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3450 || (!INTEGRAL_TYPE_P (rhs2_type)
3451 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3452 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3453 || !useless_type_conversion_p (lhs_type, rhs1_type))
3455 error ("type mismatch in vector shift expression");
3456 debug_generic_expr (lhs_type);
3457 debug_generic_expr (rhs1_type);
3458 debug_generic_expr (rhs2_type);
3459 return true;
3461 /* For shifting a vector of non-integral components we
3462 only allow shifting by a constant multiple of the element size. */
3463 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3464 && (TREE_CODE (rhs2) != INTEGER_CST
3465 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3466 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3468 error ("non-element sized vector shift of floating point vector");
3469 return true;
3472 return false;
3475 case WIDEN_LSHIFT_EXPR:
3477 if (!INTEGRAL_TYPE_P (lhs_type)
3478 || !INTEGRAL_TYPE_P (rhs1_type)
3479 || TREE_CODE (rhs2) != INTEGER_CST
3480 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3482 error ("type mismatch in widening vector shift expression");
3483 debug_generic_expr (lhs_type);
3484 debug_generic_expr (rhs1_type);
3485 debug_generic_expr (rhs2_type);
3486 return true;
3489 return false;
3492 case VEC_WIDEN_LSHIFT_HI_EXPR:
3493 case VEC_WIDEN_LSHIFT_LO_EXPR:
3495 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3496 || TREE_CODE (lhs_type) != VECTOR_TYPE
3497 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3498 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3499 || TREE_CODE (rhs2) != INTEGER_CST
3500 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3501 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3503 error ("type mismatch in widening vector shift expression");
3504 debug_generic_expr (lhs_type);
3505 debug_generic_expr (rhs1_type);
3506 debug_generic_expr (rhs2_type);
3507 return true;
3510 return false;
3513 case PLUS_EXPR:
3514 case MINUS_EXPR:
3516 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3517 ??? This just makes the checker happy and may not be what is
3518 intended. */
3519 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3520 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3522 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3523 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3525 error ("invalid non-vector operands to vector valued plus");
3526 return true;
3528 lhs_type = TREE_TYPE (lhs_type);
3529 rhs1_type = TREE_TYPE (rhs1_type);
3530 rhs2_type = TREE_TYPE (rhs2_type);
3531 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3532 the pointer to 2nd place. */
3533 if (POINTER_TYPE_P (rhs2_type))
3535 tree tem = rhs1_type;
3536 rhs1_type = rhs2_type;
3537 rhs2_type = tem;
3539 goto do_pointer_plus_expr_check;
3541 if (POINTER_TYPE_P (lhs_type)
3542 || POINTER_TYPE_P (rhs1_type)
3543 || POINTER_TYPE_P (rhs2_type))
3545 error ("invalid (pointer) operands to plus/minus");
3546 return true;
3549 /* Continue with generic binary expression handling. */
3550 break;
3553 case POINTER_PLUS_EXPR:
3555 do_pointer_plus_expr_check:
3556 if (!POINTER_TYPE_P (rhs1_type)
3557 || !useless_type_conversion_p (lhs_type, rhs1_type)
3558 || !ptrofftype_p (rhs2_type))
3560 error ("type mismatch in pointer plus expression");
3561 debug_generic_stmt (lhs_type);
3562 debug_generic_stmt (rhs1_type);
3563 debug_generic_stmt (rhs2_type);
3564 return true;
3567 return false;
3570 case TRUTH_ANDIF_EXPR:
3571 case TRUTH_ORIF_EXPR:
3572 case TRUTH_AND_EXPR:
3573 case TRUTH_OR_EXPR:
3574 case TRUTH_XOR_EXPR:
3576 gcc_unreachable ();
3578 case LT_EXPR:
3579 case LE_EXPR:
3580 case GT_EXPR:
3581 case GE_EXPR:
3582 case EQ_EXPR:
3583 case NE_EXPR:
3584 case UNORDERED_EXPR:
3585 case ORDERED_EXPR:
3586 case UNLT_EXPR:
3587 case UNLE_EXPR:
3588 case UNGT_EXPR:
3589 case UNGE_EXPR:
3590 case UNEQ_EXPR:
3591 case LTGT_EXPR:
3592 /* Comparisons are also binary, but the result type is not
3593 connected to the operand types. */
3594 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3596 case WIDEN_MULT_EXPR:
3597 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3598 return true;
3599 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3600 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3602 case WIDEN_SUM_EXPR:
3603 case VEC_WIDEN_MULT_HI_EXPR:
3604 case VEC_WIDEN_MULT_LO_EXPR:
3605 case VEC_WIDEN_MULT_EVEN_EXPR:
3606 case VEC_WIDEN_MULT_ODD_EXPR:
3607 case VEC_PACK_TRUNC_EXPR:
3608 case VEC_PACK_SAT_EXPR:
3609 case VEC_PACK_FIX_TRUNC_EXPR:
3610 /* FIXME. */
3611 return false;
3613 case MULT_EXPR:
3614 case MULT_HIGHPART_EXPR:
3615 case TRUNC_DIV_EXPR:
3616 case CEIL_DIV_EXPR:
3617 case FLOOR_DIV_EXPR:
3618 case ROUND_DIV_EXPR:
3619 case TRUNC_MOD_EXPR:
3620 case CEIL_MOD_EXPR:
3621 case FLOOR_MOD_EXPR:
3622 case ROUND_MOD_EXPR:
3623 case RDIV_EXPR:
3624 case EXACT_DIV_EXPR:
3625 case MIN_EXPR:
3626 case MAX_EXPR:
3627 case BIT_IOR_EXPR:
3628 case BIT_XOR_EXPR:
3629 case BIT_AND_EXPR:
3630 /* Continue with generic binary expression handling. */
3631 break;
3633 default:
3634 gcc_unreachable ();
3637 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3638 || !useless_type_conversion_p (lhs_type, rhs2_type))
3640 error ("type mismatch in binary expression");
3641 debug_generic_stmt (lhs_type);
3642 debug_generic_stmt (rhs1_type);
3643 debug_generic_stmt (rhs2_type);
3644 return true;
3647 return false;
3650 /* Verify a gimple assignment statement STMT with a ternary rhs.
3651 Returns true if anything is wrong. */
3653 static bool
3654 verify_gimple_assign_ternary (gimple stmt)
3656 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3657 tree lhs = gimple_assign_lhs (stmt);
3658 tree lhs_type = TREE_TYPE (lhs);
3659 tree rhs1 = gimple_assign_rhs1 (stmt);
3660 tree rhs1_type = TREE_TYPE (rhs1);
3661 tree rhs2 = gimple_assign_rhs2 (stmt);
3662 tree rhs2_type = TREE_TYPE (rhs2);
3663 tree rhs3 = gimple_assign_rhs3 (stmt);
3664 tree rhs3_type = TREE_TYPE (rhs3);
3666 if (!is_gimple_reg (lhs))
3668 error ("non-register as LHS of ternary operation");
3669 return true;
3672 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3673 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3674 || !is_gimple_val (rhs2)
3675 || !is_gimple_val (rhs3))
3677 error ("invalid operands in ternary operation");
3678 return true;
3681 /* First handle operations that involve different types. */
3682 switch (rhs_code)
3684 case WIDEN_MULT_PLUS_EXPR:
3685 case WIDEN_MULT_MINUS_EXPR:
3686 if ((!INTEGRAL_TYPE_P (rhs1_type)
3687 && !FIXED_POINT_TYPE_P (rhs1_type))
3688 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3689 || !useless_type_conversion_p (lhs_type, rhs3_type)
3690 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3691 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3693 error ("type mismatch in widening multiply-accumulate expression");
3694 debug_generic_expr (lhs_type);
3695 debug_generic_expr (rhs1_type);
3696 debug_generic_expr (rhs2_type);
3697 debug_generic_expr (rhs3_type);
3698 return true;
3700 break;
3702 case FMA_EXPR:
3703 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3704 || !useless_type_conversion_p (lhs_type, rhs2_type)
3705 || !useless_type_conversion_p (lhs_type, rhs3_type))
3707 error ("type mismatch in fused multiply-add expression");
3708 debug_generic_expr (lhs_type);
3709 debug_generic_expr (rhs1_type);
3710 debug_generic_expr (rhs2_type);
3711 debug_generic_expr (rhs3_type);
3712 return true;
3714 break;
3716 case COND_EXPR:
3717 case VEC_COND_EXPR:
3718 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3719 || !useless_type_conversion_p (lhs_type, rhs3_type))
3721 error ("type mismatch in conditional expression");
3722 debug_generic_expr (lhs_type);
3723 debug_generic_expr (rhs2_type);
3724 debug_generic_expr (rhs3_type);
3725 return true;
3727 break;
3729 case VEC_PERM_EXPR:
3730 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3731 || !useless_type_conversion_p (lhs_type, rhs2_type))
3733 error ("type mismatch in vector permute expression");
3734 debug_generic_expr (lhs_type);
3735 debug_generic_expr (rhs1_type);
3736 debug_generic_expr (rhs2_type);
3737 debug_generic_expr (rhs3_type);
3738 return true;
3741 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3742 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3743 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3745 error ("vector types expected in vector permute expression");
3746 debug_generic_expr (lhs_type);
3747 debug_generic_expr (rhs1_type);
3748 debug_generic_expr (rhs2_type);
3749 debug_generic_expr (rhs3_type);
3750 return true;
3753 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3754 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3755 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3756 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3757 != TYPE_VECTOR_SUBPARTS (lhs_type))
3759 error ("vectors with different element number found "
3760 "in vector permute expression");
3761 debug_generic_expr (lhs_type);
3762 debug_generic_expr (rhs1_type);
3763 debug_generic_expr (rhs2_type);
3764 debug_generic_expr (rhs3_type);
3765 return true;
3768 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3769 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3770 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3772 error ("invalid mask type in vector permute expression");
3773 debug_generic_expr (lhs_type);
3774 debug_generic_expr (rhs1_type);
3775 debug_generic_expr (rhs2_type);
3776 debug_generic_expr (rhs3_type);
3777 return true;
3780 return false;
3782 case DOT_PROD_EXPR:
3783 case REALIGN_LOAD_EXPR:
3784 /* FIXME. */
3785 return false;
3787 default:
3788 gcc_unreachable ();
3790 return false;
3793 /* Verify a gimple assignment statement STMT with a single rhs.
3794 Returns true if anything is wrong. */
3796 static bool
3797 verify_gimple_assign_single (gimple stmt)
3799 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3800 tree lhs = gimple_assign_lhs (stmt);
3801 tree lhs_type = TREE_TYPE (lhs);
3802 tree rhs1 = gimple_assign_rhs1 (stmt);
3803 tree rhs1_type = TREE_TYPE (rhs1);
3804 bool res = false;
3806 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3808 error ("non-trivial conversion at assignment");
3809 debug_generic_expr (lhs_type);
3810 debug_generic_expr (rhs1_type);
3811 return true;
3814 if (gimple_clobber_p (stmt)
3815 && !DECL_P (lhs))
3817 error ("non-decl LHS in clobber statement");
3818 debug_generic_expr (lhs);
3819 return true;
3822 if (handled_component_p (lhs))
3823 res |= verify_types_in_gimple_reference (lhs, true);
3825 /* Special codes we cannot handle via their class. */
3826 switch (rhs_code)
3828 case ADDR_EXPR:
3830 tree op = TREE_OPERAND (rhs1, 0);
3831 if (!is_gimple_addressable (op))
3833 error ("invalid operand in unary expression");
3834 return true;
3837 /* Technically there is no longer a need for matching types, but
3838 gimple hygiene asks for this check. In LTO we can end up
3839 combining incompatible units and thus end up with addresses
3840 of globals that change their type to a common one. */
3841 if (!in_lto_p
3842 && !types_compatible_p (TREE_TYPE (op),
3843 TREE_TYPE (TREE_TYPE (rhs1)))
3844 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3845 TREE_TYPE (op)))
3847 error ("type mismatch in address expression");
3848 debug_generic_stmt (TREE_TYPE (rhs1));
3849 debug_generic_stmt (TREE_TYPE (op));
3850 return true;
3853 return verify_types_in_gimple_reference (op, true);
3856 /* tcc_reference */
3857 case INDIRECT_REF:
3858 error ("INDIRECT_REF in gimple IL");
3859 return true;
3861 case COMPONENT_REF:
3862 case BIT_FIELD_REF:
3863 case ARRAY_REF:
3864 case ARRAY_RANGE_REF:
3865 case VIEW_CONVERT_EXPR:
3866 case REALPART_EXPR:
3867 case IMAGPART_EXPR:
3868 case TARGET_MEM_REF:
3869 case MEM_REF:
3870 if (!is_gimple_reg (lhs)
3871 && is_gimple_reg_type (TREE_TYPE (lhs)))
3873 error ("invalid rhs for gimple memory store");
3874 debug_generic_stmt (lhs);
3875 debug_generic_stmt (rhs1);
3876 return true;
3878 return res || verify_types_in_gimple_reference (rhs1, false);
3880 /* tcc_constant */
3881 case SSA_NAME:
3882 case INTEGER_CST:
3883 case REAL_CST:
3884 case FIXED_CST:
3885 case COMPLEX_CST:
3886 case VECTOR_CST:
3887 case STRING_CST:
3888 return res;
3890 /* tcc_declaration */
3891 case CONST_DECL:
3892 return res;
3893 case VAR_DECL:
3894 case PARM_DECL:
3895 if (!is_gimple_reg (lhs)
3896 && !is_gimple_reg (rhs1)
3897 && is_gimple_reg_type (TREE_TYPE (lhs)))
3899 error ("invalid rhs for gimple memory store");
3900 debug_generic_stmt (lhs);
3901 debug_generic_stmt (rhs1);
3902 return true;
3904 return res;
3906 case CONSTRUCTOR:
3907 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3909 unsigned int i;
3910 tree elt_i, elt_v, elt_t = NULL_TREE;
3912 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3913 return res;
3914 /* For vector CONSTRUCTORs we require that either it is empty
3915 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3916 (then the element count must be correct to cover the whole
3917 outer vector and index must be NULL on all elements, or it is
3918 a CONSTRUCTOR of scalar elements, where we as an exception allow
3919 smaller number of elements (assuming zero filling) and
3920 consecutive indexes as compared to NULL indexes (such
3921 CONSTRUCTORs can appear in the IL from FEs). */
3922 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3924 if (elt_t == NULL_TREE)
3926 elt_t = TREE_TYPE (elt_v);
3927 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3929 tree elt_t = TREE_TYPE (elt_v);
3930 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3931 TREE_TYPE (elt_t)))
3933 error ("incorrect type of vector CONSTRUCTOR"
3934 " elements");
3935 debug_generic_stmt (rhs1);
3936 return true;
3938 else if (CONSTRUCTOR_NELTS (rhs1)
3939 * TYPE_VECTOR_SUBPARTS (elt_t)
3940 != TYPE_VECTOR_SUBPARTS (rhs1_type))
3942 error ("incorrect number of vector CONSTRUCTOR"
3943 " elements");
3944 debug_generic_stmt (rhs1);
3945 return true;
3948 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3949 elt_t))
3951 error ("incorrect type of vector CONSTRUCTOR elements");
3952 debug_generic_stmt (rhs1);
3953 return true;
3955 else if (CONSTRUCTOR_NELTS (rhs1)
3956 > TYPE_VECTOR_SUBPARTS (rhs1_type))
3958 error ("incorrect number of vector CONSTRUCTOR elements");
3959 debug_generic_stmt (rhs1);
3960 return true;
3963 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
3965 error ("incorrect type of vector CONSTRUCTOR elements");
3966 debug_generic_stmt (rhs1);
3967 return true;
3969 if (elt_i != NULL_TREE
3970 && (TREE_CODE (elt_t) == VECTOR_TYPE
3971 || TREE_CODE (elt_i) != INTEGER_CST
3972 || compare_tree_int (elt_i, i) != 0))
3974 error ("vector CONSTRUCTOR with non-NULL element index");
3975 debug_generic_stmt (rhs1);
3976 return true;
3980 return res;
3981 case OBJ_TYPE_REF:
3982 case ASSERT_EXPR:
3983 case WITH_SIZE_EXPR:
3984 /* FIXME. */
3985 return res;
3987 default:;
3990 return res;
3993 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3994 is a problem, otherwise false. */
3996 static bool
3997 verify_gimple_assign (gimple stmt)
3999 switch (gimple_assign_rhs_class (stmt))
4001 case GIMPLE_SINGLE_RHS:
4002 return verify_gimple_assign_single (stmt);
4004 case GIMPLE_UNARY_RHS:
4005 return verify_gimple_assign_unary (stmt);
4007 case GIMPLE_BINARY_RHS:
4008 return verify_gimple_assign_binary (stmt);
4010 case GIMPLE_TERNARY_RHS:
4011 return verify_gimple_assign_ternary (stmt);
4013 default:
4014 gcc_unreachable ();
4018 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4019 is a problem, otherwise false. */
4021 static bool
4022 verify_gimple_return (gimple stmt)
4024 tree op = gimple_return_retval (stmt);
4025 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4027 /* We cannot test for present return values as we do not fix up missing
4028 return values from the original source. */
4029 if (op == NULL)
4030 return false;
4032 if (!is_gimple_val (op)
4033 && TREE_CODE (op) != RESULT_DECL)
4035 error ("invalid operand in return statement");
4036 debug_generic_stmt (op);
4037 return true;
4040 if ((TREE_CODE (op) == RESULT_DECL
4041 && DECL_BY_REFERENCE (op))
4042 || (TREE_CODE (op) == SSA_NAME
4043 && SSA_NAME_VAR (op)
4044 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4045 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4046 op = TREE_TYPE (op);
4048 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4050 error ("invalid conversion in return statement");
4051 debug_generic_stmt (restype);
4052 debug_generic_stmt (TREE_TYPE (op));
4053 return true;
4056 return false;
4060 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4061 is a problem, otherwise false. */
4063 static bool
4064 verify_gimple_goto (gimple stmt)
4066 tree dest = gimple_goto_dest (stmt);
4068 /* ??? We have two canonical forms of direct goto destinations, a
4069 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4070 if (TREE_CODE (dest) != LABEL_DECL
4071 && (!is_gimple_val (dest)
4072 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4074 error ("goto destination is neither a label nor a pointer");
4075 return true;
4078 return false;
4081 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4082 is a problem, otherwise false. */
4084 static bool
4085 verify_gimple_switch (gimple stmt)
4087 unsigned int i, n;
4088 tree elt, prev_upper_bound = NULL_TREE;
4089 tree index_type, elt_type = NULL_TREE;
4091 if (!is_gimple_val (gimple_switch_index (stmt)))
4093 error ("invalid operand to switch statement");
4094 debug_generic_stmt (gimple_switch_index (stmt));
4095 return true;
4098 index_type = TREE_TYPE (gimple_switch_index (stmt));
4099 if (! INTEGRAL_TYPE_P (index_type))
4101 error ("non-integral type switch statement");
4102 debug_generic_expr (index_type);
4103 return true;
4106 elt = gimple_switch_label (stmt, 0);
4107 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4109 error ("invalid default case label in switch statement");
4110 debug_generic_expr (elt);
4111 return true;
4114 n = gimple_switch_num_labels (stmt);
4115 for (i = 1; i < n; i++)
4117 elt = gimple_switch_label (stmt, i);
4119 if (! CASE_LOW (elt))
4121 error ("invalid case label in switch statement");
4122 debug_generic_expr (elt);
4123 return true;
4125 if (CASE_HIGH (elt)
4126 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4128 error ("invalid case range in switch statement");
4129 debug_generic_expr (elt);
4130 return true;
4133 if (elt_type)
4135 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4136 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4138 error ("type mismatch for case label in switch statement");
4139 debug_generic_expr (elt);
4140 return true;
4143 else
4145 elt_type = TREE_TYPE (CASE_LOW (elt));
4146 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4148 error ("type precision mismatch in switch statement");
4149 return true;
4153 if (prev_upper_bound)
4155 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4157 error ("case labels not sorted in switch statement");
4158 return true;
4162 prev_upper_bound = CASE_HIGH (elt);
4163 if (! prev_upper_bound)
4164 prev_upper_bound = CASE_LOW (elt);
4167 return false;
4170 /* Verify a gimple debug statement STMT.
4171 Returns true if anything is wrong. */
4173 static bool
4174 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4176 /* There isn't much that could be wrong in a gimple debug stmt. A
4177 gimple debug bind stmt, for example, maps a tree, that's usually
4178 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4179 component or member of an aggregate type, to another tree, that
4180 can be an arbitrary expression. These stmts expand into debug
4181 insns, and are converted to debug notes by var-tracking.c. */
4182 return false;
4185 /* Verify a gimple label statement STMT.
4186 Returns true if anything is wrong. */
4188 static bool
4189 verify_gimple_label (gimple stmt)
4191 tree decl = gimple_label_label (stmt);
4192 int uid;
4193 bool err = false;
4195 if (TREE_CODE (decl) != LABEL_DECL)
4196 return true;
4198 uid = LABEL_DECL_UID (decl);
4199 if (cfun->cfg
4200 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4202 error ("incorrect entry in label_to_block_map");
4203 err |= true;
4206 uid = EH_LANDING_PAD_NR (decl);
4207 if (uid)
4209 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4210 if (decl != lp->post_landing_pad)
4212 error ("incorrect setting of landing pad number");
4213 err |= true;
4217 return err;
4220 /* Verify the GIMPLE statement STMT. Returns true if there is an
4221 error, otherwise false. */
4223 static bool
4224 verify_gimple_stmt (gimple stmt)
4226 switch (gimple_code (stmt))
4228 case GIMPLE_ASSIGN:
4229 return verify_gimple_assign (stmt);
4231 case GIMPLE_LABEL:
4232 return verify_gimple_label (stmt);
4234 case GIMPLE_CALL:
4235 return verify_gimple_call (stmt);
4237 case GIMPLE_COND:
4238 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4240 error ("invalid comparison code in gimple cond");
4241 return true;
4243 if (!(!gimple_cond_true_label (stmt)
4244 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4245 || !(!gimple_cond_false_label (stmt)
4246 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4248 error ("invalid labels in gimple cond");
4249 return true;
4252 return verify_gimple_comparison (boolean_type_node,
4253 gimple_cond_lhs (stmt),
4254 gimple_cond_rhs (stmt));
4256 case GIMPLE_GOTO:
4257 return verify_gimple_goto (stmt);
4259 case GIMPLE_SWITCH:
4260 return verify_gimple_switch (stmt);
4262 case GIMPLE_RETURN:
4263 return verify_gimple_return (stmt);
4265 case GIMPLE_ASM:
4266 return false;
4268 case GIMPLE_TRANSACTION:
4269 return verify_gimple_transaction (stmt);
4271 /* Tuples that do not have tree operands. */
4272 case GIMPLE_NOP:
4273 case GIMPLE_PREDICT:
4274 case GIMPLE_RESX:
4275 case GIMPLE_EH_DISPATCH:
4276 case GIMPLE_EH_MUST_NOT_THROW:
4277 return false;
4279 CASE_GIMPLE_OMP:
4280 /* OpenMP directives are validated by the FE and never operated
4281 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4282 non-gimple expressions when the main index variable has had
4283 its address taken. This does not affect the loop itself
4284 because the header of an GIMPLE_OMP_FOR is merely used to determine
4285 how to setup the parallel iteration. */
4286 return false;
4288 case GIMPLE_DEBUG:
4289 return verify_gimple_debug (stmt);
4291 default:
4292 gcc_unreachable ();
4296 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4297 and false otherwise. */
4299 static bool
4300 verify_gimple_phi (gimple phi)
4302 bool err = false;
4303 unsigned i;
4304 tree phi_result = gimple_phi_result (phi);
4305 bool virtual_p;
4307 if (!phi_result)
4309 error ("invalid PHI result");
4310 return true;
4313 virtual_p = virtual_operand_p (phi_result);
4314 if (TREE_CODE (phi_result) != SSA_NAME
4315 || (virtual_p
4316 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4318 error ("invalid PHI result");
4319 err = true;
4322 for (i = 0; i < gimple_phi_num_args (phi); i++)
4324 tree t = gimple_phi_arg_def (phi, i);
4326 if (!t)
4328 error ("missing PHI def");
4329 err |= true;
4330 continue;
4332 /* Addressable variables do have SSA_NAMEs but they
4333 are not considered gimple values. */
4334 else if ((TREE_CODE (t) == SSA_NAME
4335 && virtual_p != virtual_operand_p (t))
4336 || (virtual_p
4337 && (TREE_CODE (t) != SSA_NAME
4338 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4339 || (!virtual_p
4340 && !is_gimple_val (t)))
4342 error ("invalid PHI argument");
4343 debug_generic_expr (t);
4344 err |= true;
4346 #ifdef ENABLE_TYPES_CHECKING
4347 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4349 error ("incompatible types in PHI argument %u", i);
4350 debug_generic_stmt (TREE_TYPE (phi_result));
4351 debug_generic_stmt (TREE_TYPE (t));
4352 err |= true;
4354 #endif
4357 return err;
4360 /* Verify the GIMPLE statements inside the sequence STMTS. */
4362 static bool
4363 verify_gimple_in_seq_2 (gimple_seq stmts)
4365 gimple_stmt_iterator ittr;
4366 bool err = false;
4368 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4370 gimple stmt = gsi_stmt (ittr);
4372 switch (gimple_code (stmt))
4374 case GIMPLE_BIND:
4375 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4376 break;
4378 case GIMPLE_TRY:
4379 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4380 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4381 break;
4383 case GIMPLE_EH_FILTER:
4384 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4385 break;
4387 case GIMPLE_EH_ELSE:
4388 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4389 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4390 break;
4392 case GIMPLE_CATCH:
4393 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4394 break;
4396 case GIMPLE_TRANSACTION:
4397 err |= verify_gimple_transaction (stmt);
4398 break;
4400 default:
4402 bool err2 = verify_gimple_stmt (stmt);
4403 if (err2)
4404 debug_gimple_stmt (stmt);
4405 err |= err2;
4410 return err;
4413 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4414 is a problem, otherwise false. */
4416 static bool
4417 verify_gimple_transaction (gimple stmt)
4419 tree lab = gimple_transaction_label (stmt);
4420 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4421 return true;
4422 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4426 /* Verify the GIMPLE statements inside the statement list STMTS. */
4428 DEBUG_FUNCTION void
4429 verify_gimple_in_seq (gimple_seq stmts)
4431 timevar_push (TV_TREE_STMT_VERIFY);
4432 if (verify_gimple_in_seq_2 (stmts))
4433 internal_error ("verify_gimple failed");
4434 timevar_pop (TV_TREE_STMT_VERIFY);
4437 /* Return true when the T can be shared. */
4439 bool
4440 tree_node_can_be_shared (tree t)
4442 if (IS_TYPE_OR_DECL_P (t)
4443 || is_gimple_min_invariant (t)
4444 || TREE_CODE (t) == SSA_NAME
4445 || t == error_mark_node
4446 || TREE_CODE (t) == IDENTIFIER_NODE)
4447 return true;
4449 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4450 return true;
4452 if (DECL_P (t))
4453 return true;
4455 return false;
4458 /* Called via walk_tree. Verify tree sharing. */
4460 static tree
4461 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4463 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4465 if (tree_node_can_be_shared (*tp))
4467 *walk_subtrees = false;
4468 return NULL;
4471 if (pointer_set_insert (visited, *tp))
4472 return *tp;
4474 return NULL;
4477 /* Called via walk_gimple_stmt. Verify tree sharing. */
4479 static tree
4480 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4482 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4483 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4486 static bool eh_error_found;
4487 static int
4488 verify_eh_throw_stmt_node (void **slot, void *data)
4490 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4491 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4493 if (!pointer_set_contains (visited, node->stmt))
4495 error ("dead STMT in EH table");
4496 debug_gimple_stmt (node->stmt);
4497 eh_error_found = true;
4499 return 1;
4502 /* Verify if the location LOCs block is in BLOCKS. */
4504 static bool
4505 verify_location (pointer_set_t *blocks, location_t loc)
4507 tree block = LOCATION_BLOCK (loc);
4508 if (block != NULL_TREE
4509 && !pointer_set_contains (blocks, block))
4511 error ("location references block not in block tree");
4512 return true;
4514 return false;
4517 /* Called via walk_tree. Verify locations of expressions. */
4519 static tree
4520 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4522 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4524 if (!EXPR_P (*tp))
4526 *walk_subtrees = false;
4527 return NULL;
4530 location_t loc = EXPR_LOCATION (*tp);
4531 if (verify_location (blocks, loc))
4532 return *tp;
4534 return NULL;
4537 /* Called via walk_gimple_op. Verify locations of expressions. */
4539 static tree
4540 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4542 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4543 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4546 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4548 static void
4549 collect_subblocks (pointer_set_t *blocks, tree block)
4551 tree t;
4552 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4554 pointer_set_insert (blocks, t);
4555 collect_subblocks (blocks, t);
4559 /* Verify the GIMPLE statements in the CFG of FN. */
4561 DEBUG_FUNCTION void
4562 verify_gimple_in_cfg (struct function *fn)
4564 basic_block bb;
4565 bool err = false;
4566 struct pointer_set_t *visited, *visited_stmts, *blocks;
4568 timevar_push (TV_TREE_STMT_VERIFY);
4569 visited = pointer_set_create ();
4570 visited_stmts = pointer_set_create ();
4572 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4573 blocks = pointer_set_create ();
4574 if (DECL_INITIAL (fn->decl))
4576 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4577 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4580 FOR_EACH_BB_FN (bb, fn)
4582 gimple_stmt_iterator gsi;
4584 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4586 gimple phi = gsi_stmt (gsi);
4587 bool err2 = false;
4588 unsigned i;
4590 pointer_set_insert (visited_stmts, phi);
4592 if (gimple_bb (phi) != bb)
4594 error ("gimple_bb (phi) is set to a wrong basic block");
4595 err2 = true;
4598 err2 |= verify_gimple_phi (phi);
4600 /* Only PHI arguments have locations. */
4601 if (gimple_location (phi) != UNKNOWN_LOCATION)
4603 error ("PHI node with location");
4604 err2 = true;
4607 for (i = 0; i < gimple_phi_num_args (phi); i++)
4609 tree arg = gimple_phi_arg_def (phi, i);
4610 tree addr = walk_tree (&arg, verify_node_sharing_1,
4611 visited, NULL);
4612 if (addr)
4614 error ("incorrect sharing of tree nodes");
4615 debug_generic_expr (addr);
4616 err2 |= true;
4618 location_t loc = gimple_phi_arg_location (phi, i);
4619 if (virtual_operand_p (gimple_phi_result (phi))
4620 && loc != UNKNOWN_LOCATION)
4622 error ("virtual PHI with argument locations");
4623 err2 = true;
4625 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4626 if (addr)
4628 debug_generic_expr (addr);
4629 err2 = true;
4631 err2 |= verify_location (blocks, loc);
4634 if (err2)
4635 debug_gimple_stmt (phi);
4636 err |= err2;
4639 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4641 gimple stmt = gsi_stmt (gsi);
4642 bool err2 = false;
4643 struct walk_stmt_info wi;
4644 tree addr;
4645 int lp_nr;
4647 pointer_set_insert (visited_stmts, stmt);
4649 if (gimple_bb (stmt) != bb)
4651 error ("gimple_bb (stmt) is set to a wrong basic block");
4652 err2 = true;
4655 err2 |= verify_gimple_stmt (stmt);
4656 err2 |= verify_location (blocks, gimple_location (stmt));
4658 memset (&wi, 0, sizeof (wi));
4659 wi.info = (void *) visited;
4660 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4661 if (addr)
4663 error ("incorrect sharing of tree nodes");
4664 debug_generic_expr (addr);
4665 err2 |= true;
4668 memset (&wi, 0, sizeof (wi));
4669 wi.info = (void *) blocks;
4670 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4671 if (addr)
4673 debug_generic_expr (addr);
4674 err2 |= true;
4677 /* ??? Instead of not checking these stmts at all the walker
4678 should know its context via wi. */
4679 if (!is_gimple_debug (stmt)
4680 && !is_gimple_omp (stmt))
4682 memset (&wi, 0, sizeof (wi));
4683 addr = walk_gimple_op (stmt, verify_expr, &wi);
4684 if (addr)
4686 debug_generic_expr (addr);
4687 inform (gimple_location (stmt), "in statement");
4688 err2 |= true;
4692 /* If the statement is marked as part of an EH region, then it is
4693 expected that the statement could throw. Verify that when we
4694 have optimizations that simplify statements such that we prove
4695 that they cannot throw, that we update other data structures
4696 to match. */
4697 lp_nr = lookup_stmt_eh_lp (stmt);
4698 if (lp_nr != 0)
4700 if (!stmt_could_throw_p (stmt))
4702 error ("statement marked for throw, but doesn%'t");
4703 err2 |= true;
4705 else if (lp_nr > 0
4706 && !gsi_one_before_end_p (gsi)
4707 && stmt_can_throw_internal (stmt))
4709 error ("statement marked for throw in middle of block");
4710 err2 |= true;
4714 if (err2)
4715 debug_gimple_stmt (stmt);
4716 err |= err2;
4720 eh_error_found = false;
4721 if (get_eh_throw_stmt_table (cfun))
4722 htab_traverse (get_eh_throw_stmt_table (cfun),
4723 verify_eh_throw_stmt_node,
4724 visited_stmts);
4726 if (err || eh_error_found)
4727 internal_error ("verify_gimple failed");
4729 pointer_set_destroy (visited);
4730 pointer_set_destroy (visited_stmts);
4731 pointer_set_destroy (blocks);
4732 verify_histograms ();
4733 timevar_pop (TV_TREE_STMT_VERIFY);
4737 /* Verifies that the flow information is OK. */
4739 static int
4740 gimple_verify_flow_info (void)
4742 int err = 0;
4743 basic_block bb;
4744 gimple_stmt_iterator gsi;
4745 gimple stmt;
4746 edge e;
4747 edge_iterator ei;
4749 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4751 error ("ENTRY_BLOCK has IL associated with it");
4752 err = 1;
4755 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4757 error ("EXIT_BLOCK has IL associated with it");
4758 err = 1;
4761 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4762 if (e->flags & EDGE_FALLTHRU)
4764 error ("fallthru to exit from bb %d", e->src->index);
4765 err = 1;
4768 FOR_EACH_BB (bb)
4770 bool found_ctrl_stmt = false;
4772 stmt = NULL;
4774 /* Skip labels on the start of basic block. */
4775 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4777 tree label;
4778 gimple prev_stmt = stmt;
4780 stmt = gsi_stmt (gsi);
4782 if (gimple_code (stmt) != GIMPLE_LABEL)
4783 break;
4785 label = gimple_label_label (stmt);
4786 if (prev_stmt && DECL_NONLOCAL (label))
4788 error ("nonlocal label ");
4789 print_generic_expr (stderr, label, 0);
4790 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4791 bb->index);
4792 err = 1;
4795 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4797 error ("EH landing pad label ");
4798 print_generic_expr (stderr, label, 0);
4799 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4800 bb->index);
4801 err = 1;
4804 if (label_to_block (label) != bb)
4806 error ("label ");
4807 print_generic_expr (stderr, label, 0);
4808 fprintf (stderr, " to block does not match in bb %d",
4809 bb->index);
4810 err = 1;
4813 if (decl_function_context (label) != current_function_decl)
4815 error ("label ");
4816 print_generic_expr (stderr, label, 0);
4817 fprintf (stderr, " has incorrect context in bb %d",
4818 bb->index);
4819 err = 1;
4823 /* Verify that body of basic block BB is free of control flow. */
4824 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4826 gimple stmt = gsi_stmt (gsi);
4828 if (found_ctrl_stmt)
4830 error ("control flow in the middle of basic block %d",
4831 bb->index);
4832 err = 1;
4835 if (stmt_ends_bb_p (stmt))
4836 found_ctrl_stmt = true;
4838 if (gimple_code (stmt) == GIMPLE_LABEL)
4840 error ("label ");
4841 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4842 fprintf (stderr, " in the middle of basic block %d", bb->index);
4843 err = 1;
4847 gsi = gsi_last_bb (bb);
4848 if (gsi_end_p (gsi))
4849 continue;
4851 stmt = gsi_stmt (gsi);
4853 if (gimple_code (stmt) == GIMPLE_LABEL)
4854 continue;
4856 err |= verify_eh_edges (stmt);
4858 if (is_ctrl_stmt (stmt))
4860 FOR_EACH_EDGE (e, ei, bb->succs)
4861 if (e->flags & EDGE_FALLTHRU)
4863 error ("fallthru edge after a control statement in bb %d",
4864 bb->index);
4865 err = 1;
4869 if (gimple_code (stmt) != GIMPLE_COND)
4871 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4872 after anything else but if statement. */
4873 FOR_EACH_EDGE (e, ei, bb->succs)
4874 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4876 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4877 bb->index);
4878 err = 1;
4882 switch (gimple_code (stmt))
4884 case GIMPLE_COND:
4886 edge true_edge;
4887 edge false_edge;
4889 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4891 if (!true_edge
4892 || !false_edge
4893 || !(true_edge->flags & EDGE_TRUE_VALUE)
4894 || !(false_edge->flags & EDGE_FALSE_VALUE)
4895 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4896 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4897 || EDGE_COUNT (bb->succs) >= 3)
4899 error ("wrong outgoing edge flags at end of bb %d",
4900 bb->index);
4901 err = 1;
4904 break;
4906 case GIMPLE_GOTO:
4907 if (simple_goto_p (stmt))
4909 error ("explicit goto at end of bb %d", bb->index);
4910 err = 1;
4912 else
4914 /* FIXME. We should double check that the labels in the
4915 destination blocks have their address taken. */
4916 FOR_EACH_EDGE (e, ei, bb->succs)
4917 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4918 | EDGE_FALSE_VALUE))
4919 || !(e->flags & EDGE_ABNORMAL))
4921 error ("wrong outgoing edge flags at end of bb %d",
4922 bb->index);
4923 err = 1;
4926 break;
4928 case GIMPLE_CALL:
4929 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4930 break;
4931 /* ... fallthru ... */
4932 case GIMPLE_RETURN:
4933 if (!single_succ_p (bb)
4934 || (single_succ_edge (bb)->flags
4935 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4936 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4938 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4939 err = 1;
4941 if (single_succ (bb) != EXIT_BLOCK_PTR)
4943 error ("return edge does not point to exit in bb %d",
4944 bb->index);
4945 err = 1;
4947 break;
4949 case GIMPLE_SWITCH:
4951 tree prev;
4952 edge e;
4953 size_t i, n;
4955 n = gimple_switch_num_labels (stmt);
4957 /* Mark all the destination basic blocks. */
4958 for (i = 0; i < n; ++i)
4960 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4961 basic_block label_bb = label_to_block (lab);
4962 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4963 label_bb->aux = (void *)1;
4966 /* Verify that the case labels are sorted. */
4967 prev = gimple_switch_label (stmt, 0);
4968 for (i = 1; i < n; ++i)
4970 tree c = gimple_switch_label (stmt, i);
4971 if (!CASE_LOW (c))
4973 error ("found default case not at the start of "
4974 "case vector");
4975 err = 1;
4976 continue;
4978 if (CASE_LOW (prev)
4979 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4981 error ("case labels not sorted: ");
4982 print_generic_expr (stderr, prev, 0);
4983 fprintf (stderr," is greater than ");
4984 print_generic_expr (stderr, c, 0);
4985 fprintf (stderr," but comes before it.\n");
4986 err = 1;
4988 prev = c;
4990 /* VRP will remove the default case if it can prove it will
4991 never be executed. So do not verify there always exists
4992 a default case here. */
4994 FOR_EACH_EDGE (e, ei, bb->succs)
4996 if (!e->dest->aux)
4998 error ("extra outgoing edge %d->%d",
4999 bb->index, e->dest->index);
5000 err = 1;
5003 e->dest->aux = (void *)2;
5004 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5005 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5007 error ("wrong outgoing edge flags at end of bb %d",
5008 bb->index);
5009 err = 1;
5013 /* Check that we have all of them. */
5014 for (i = 0; i < n; ++i)
5016 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5017 basic_block label_bb = label_to_block (lab);
5019 if (label_bb->aux != (void *)2)
5021 error ("missing edge %i->%i", bb->index, label_bb->index);
5022 err = 1;
5026 FOR_EACH_EDGE (e, ei, bb->succs)
5027 e->dest->aux = (void *)0;
5029 break;
5031 case GIMPLE_EH_DISPATCH:
5032 err |= verify_eh_dispatch_edge (stmt);
5033 break;
5035 default:
5036 break;
5040 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5041 verify_dominators (CDI_DOMINATORS);
5043 return err;
5047 /* Updates phi nodes after creating a forwarder block joined
5048 by edge FALLTHRU. */
5050 static void
5051 gimple_make_forwarder_block (edge fallthru)
5053 edge e;
5054 edge_iterator ei;
5055 basic_block dummy, bb;
5056 tree var;
5057 gimple_stmt_iterator gsi;
5059 dummy = fallthru->src;
5060 bb = fallthru->dest;
5062 if (single_pred_p (bb))
5063 return;
5065 /* If we redirected a branch we must create new PHI nodes at the
5066 start of BB. */
5067 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5069 gimple phi, new_phi;
5071 phi = gsi_stmt (gsi);
5072 var = gimple_phi_result (phi);
5073 new_phi = create_phi_node (var, bb);
5074 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5075 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5076 UNKNOWN_LOCATION);
5079 /* Add the arguments we have stored on edges. */
5080 FOR_EACH_EDGE (e, ei, bb->preds)
5082 if (e == fallthru)
5083 continue;
5085 flush_pending_stmts (e);
5090 /* Return a non-special label in the head of basic block BLOCK.
5091 Create one if it doesn't exist. */
5093 tree
5094 gimple_block_label (basic_block bb)
5096 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5097 bool first = true;
5098 tree label;
5099 gimple stmt;
5101 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5103 stmt = gsi_stmt (i);
5104 if (gimple_code (stmt) != GIMPLE_LABEL)
5105 break;
5106 label = gimple_label_label (stmt);
5107 if (!DECL_NONLOCAL (label))
5109 if (!first)
5110 gsi_move_before (&i, &s);
5111 return label;
5115 label = create_artificial_label (UNKNOWN_LOCATION);
5116 stmt = gimple_build_label (label);
5117 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5118 return label;
5122 /* Attempt to perform edge redirection by replacing a possibly complex
5123 jump instruction by a goto or by removing the jump completely.
5124 This can apply only if all edges now point to the same block. The
5125 parameters and return values are equivalent to
5126 redirect_edge_and_branch. */
5128 static edge
5129 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5131 basic_block src = e->src;
5132 gimple_stmt_iterator i;
5133 gimple stmt;
5135 /* We can replace or remove a complex jump only when we have exactly
5136 two edges. */
5137 if (EDGE_COUNT (src->succs) != 2
5138 /* Verify that all targets will be TARGET. Specifically, the
5139 edge that is not E must also go to TARGET. */
5140 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5141 return NULL;
5143 i = gsi_last_bb (src);
5144 if (gsi_end_p (i))
5145 return NULL;
5147 stmt = gsi_stmt (i);
5149 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5151 gsi_remove (&i, true);
5152 e = ssa_redirect_edge (e, target);
5153 e->flags = EDGE_FALLTHRU;
5154 return e;
5157 return NULL;
5161 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5162 edge representing the redirected branch. */
5164 static edge
5165 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5167 basic_block bb = e->src;
5168 gimple_stmt_iterator gsi;
5169 edge ret;
5170 gimple stmt;
5172 if (e->flags & EDGE_ABNORMAL)
5173 return NULL;
5175 if (e->dest == dest)
5176 return NULL;
5178 if (e->flags & EDGE_EH)
5179 return redirect_eh_edge (e, dest);
5181 if (e->src != ENTRY_BLOCK_PTR)
5183 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5184 if (ret)
5185 return ret;
5188 gsi = gsi_last_bb (bb);
5189 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5191 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5193 case GIMPLE_COND:
5194 /* For COND_EXPR, we only need to redirect the edge. */
5195 break;
5197 case GIMPLE_GOTO:
5198 /* No non-abnormal edges should lead from a non-simple goto, and
5199 simple ones should be represented implicitly. */
5200 gcc_unreachable ();
5202 case GIMPLE_SWITCH:
5204 tree label = gimple_block_label (dest);
5205 tree cases = get_cases_for_edge (e, stmt);
5207 /* If we have a list of cases associated with E, then use it
5208 as it's a lot faster than walking the entire case vector. */
5209 if (cases)
5211 edge e2 = find_edge (e->src, dest);
5212 tree last, first;
5214 first = cases;
5215 while (cases)
5217 last = cases;
5218 CASE_LABEL (cases) = label;
5219 cases = CASE_CHAIN (cases);
5222 /* If there was already an edge in the CFG, then we need
5223 to move all the cases associated with E to E2. */
5224 if (e2)
5226 tree cases2 = get_cases_for_edge (e2, stmt);
5228 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5229 CASE_CHAIN (cases2) = first;
5231 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5233 else
5235 size_t i, n = gimple_switch_num_labels (stmt);
5237 for (i = 0; i < n; i++)
5239 tree elt = gimple_switch_label (stmt, i);
5240 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5241 CASE_LABEL (elt) = label;
5245 break;
5247 case GIMPLE_ASM:
5249 int i, n = gimple_asm_nlabels (stmt);
5250 tree label = NULL;
5252 for (i = 0; i < n; ++i)
5254 tree cons = gimple_asm_label_op (stmt, i);
5255 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5257 if (!label)
5258 label = gimple_block_label (dest);
5259 TREE_VALUE (cons) = label;
5263 /* If we didn't find any label matching the former edge in the
5264 asm labels, we must be redirecting the fallthrough
5265 edge. */
5266 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5268 break;
5270 case GIMPLE_RETURN:
5271 gsi_remove (&gsi, true);
5272 e->flags |= EDGE_FALLTHRU;
5273 break;
5275 case GIMPLE_OMP_RETURN:
5276 case GIMPLE_OMP_CONTINUE:
5277 case GIMPLE_OMP_SECTIONS_SWITCH:
5278 case GIMPLE_OMP_FOR:
5279 /* The edges from OMP constructs can be simply redirected. */
5280 break;
5282 case GIMPLE_EH_DISPATCH:
5283 if (!(e->flags & EDGE_FALLTHRU))
5284 redirect_eh_dispatch_edge (stmt, e, dest);
5285 break;
5287 case GIMPLE_TRANSACTION:
5288 /* The ABORT edge has a stored label associated with it, otherwise
5289 the edges are simply redirectable. */
5290 if (e->flags == 0)
5291 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5292 break;
5294 default:
5295 /* Otherwise it must be a fallthru edge, and we don't need to
5296 do anything besides redirecting it. */
5297 gcc_assert (e->flags & EDGE_FALLTHRU);
5298 break;
5301 /* Update/insert PHI nodes as necessary. */
5303 /* Now update the edges in the CFG. */
5304 e = ssa_redirect_edge (e, dest);
5306 return e;
5309 /* Returns true if it is possible to remove edge E by redirecting
5310 it to the destination of the other edge from E->src. */
5312 static bool
5313 gimple_can_remove_branch_p (const_edge e)
5315 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5316 return false;
5318 return true;
5321 /* Simple wrapper, as we can always redirect fallthru edges. */
5323 static basic_block
5324 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5326 e = gimple_redirect_edge_and_branch (e, dest);
5327 gcc_assert (e);
5329 return NULL;
5333 /* Splits basic block BB after statement STMT (but at least after the
5334 labels). If STMT is NULL, BB is split just after the labels. */
5336 static basic_block
5337 gimple_split_block (basic_block bb, void *stmt)
5339 gimple_stmt_iterator gsi;
5340 gimple_stmt_iterator gsi_tgt;
5341 gimple act;
5342 gimple_seq list;
5343 basic_block new_bb;
5344 edge e;
5345 edge_iterator ei;
5347 new_bb = create_empty_bb (bb);
5349 /* Redirect the outgoing edges. */
5350 new_bb->succs = bb->succs;
5351 bb->succs = NULL;
5352 FOR_EACH_EDGE (e, ei, new_bb->succs)
5353 e->src = new_bb;
5355 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5356 stmt = NULL;
5358 /* Move everything from GSI to the new basic block. */
5359 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5361 act = gsi_stmt (gsi);
5362 if (gimple_code (act) == GIMPLE_LABEL)
5363 continue;
5365 if (!stmt)
5366 break;
5368 if (stmt == act)
5370 gsi_next (&gsi);
5371 break;
5375 if (gsi_end_p (gsi))
5376 return new_bb;
5378 /* Split the statement list - avoid re-creating new containers as this
5379 brings ugly quadratic memory consumption in the inliner.
5380 (We are still quadratic since we need to update stmt BB pointers,
5381 sadly.) */
5382 gsi_split_seq_before (&gsi, &list);
5383 set_bb_seq (new_bb, list);
5384 for (gsi_tgt = gsi_start (list);
5385 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5386 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5388 return new_bb;
5392 /* Moves basic block BB after block AFTER. */
5394 static bool
5395 gimple_move_block_after (basic_block bb, basic_block after)
5397 if (bb->prev_bb == after)
5398 return true;
5400 unlink_block (bb);
5401 link_block (bb, after);
5403 return true;
5407 /* Return TRUE if block BB has no executable statements, otherwise return
5408 FALSE. */
5410 bool
5411 gimple_empty_block_p (basic_block bb)
5413 /* BB must have no executable statements. */
5414 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5415 if (phi_nodes (bb))
5416 return false;
5417 if (gsi_end_p (gsi))
5418 return true;
5419 if (is_gimple_debug (gsi_stmt (gsi)))
5420 gsi_next_nondebug (&gsi);
5421 return gsi_end_p (gsi);
5425 /* Split a basic block if it ends with a conditional branch and if the
5426 other part of the block is not empty. */
5428 static basic_block
5429 gimple_split_block_before_cond_jump (basic_block bb)
5431 gimple last, split_point;
5432 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5433 if (gsi_end_p (gsi))
5434 return NULL;
5435 last = gsi_stmt (gsi);
5436 if (gimple_code (last) != GIMPLE_COND
5437 && gimple_code (last) != GIMPLE_SWITCH)
5438 return NULL;
5439 gsi_prev_nondebug (&gsi);
5440 split_point = gsi_stmt (gsi);
5441 return split_block (bb, split_point)->dest;
5445 /* Return true if basic_block can be duplicated. */
5447 static bool
5448 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5450 return true;
5453 /* Create a duplicate of the basic block BB. NOTE: This does not
5454 preserve SSA form. */
5456 static basic_block
5457 gimple_duplicate_bb (basic_block bb)
5459 basic_block new_bb;
5460 gimple_stmt_iterator gsi, gsi_tgt;
5461 gimple_seq phis = phi_nodes (bb);
5462 gimple phi, stmt, copy;
5464 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5466 /* Copy the PHI nodes. We ignore PHI node arguments here because
5467 the incoming edges have not been setup yet. */
5468 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5470 phi = gsi_stmt (gsi);
5471 copy = create_phi_node (NULL_TREE, new_bb);
5472 create_new_def_for (gimple_phi_result (phi), copy,
5473 gimple_phi_result_ptr (copy));
5476 gsi_tgt = gsi_start_bb (new_bb);
5477 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5479 def_operand_p def_p;
5480 ssa_op_iter op_iter;
5481 tree lhs;
5483 stmt = gsi_stmt (gsi);
5484 if (gimple_code (stmt) == GIMPLE_LABEL)
5485 continue;
5487 /* Don't duplicate label debug stmts. */
5488 if (gimple_debug_bind_p (stmt)
5489 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5490 == LABEL_DECL)
5491 continue;
5493 /* Create a new copy of STMT and duplicate STMT's virtual
5494 operands. */
5495 copy = gimple_copy (stmt);
5496 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5498 maybe_duplicate_eh_stmt (copy, stmt);
5499 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5501 /* When copying around a stmt writing into a local non-user
5502 aggregate, make sure it won't share stack slot with other
5503 vars. */
5504 lhs = gimple_get_lhs (stmt);
5505 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5507 tree base = get_base_address (lhs);
5508 if (base
5509 && (TREE_CODE (base) == VAR_DECL
5510 || TREE_CODE (base) == RESULT_DECL)
5511 && DECL_IGNORED_P (base)
5512 && !TREE_STATIC (base)
5513 && !DECL_EXTERNAL (base)
5514 && (TREE_CODE (base) != VAR_DECL
5515 || !DECL_HAS_VALUE_EXPR_P (base)))
5516 DECL_NONSHAREABLE (base) = 1;
5519 /* Create new names for all the definitions created by COPY and
5520 add replacement mappings for each new name. */
5521 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5522 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5525 return new_bb;
5528 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5530 static void
5531 add_phi_args_after_copy_edge (edge e_copy)
5533 basic_block bb, bb_copy = e_copy->src, dest;
5534 edge e;
5535 edge_iterator ei;
5536 gimple phi, phi_copy;
5537 tree def;
5538 gimple_stmt_iterator psi, psi_copy;
5540 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5541 return;
5543 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5545 if (e_copy->dest->flags & BB_DUPLICATED)
5546 dest = get_bb_original (e_copy->dest);
5547 else
5548 dest = e_copy->dest;
5550 e = find_edge (bb, dest);
5551 if (!e)
5553 /* During loop unrolling the target of the latch edge is copied.
5554 In this case we are not looking for edge to dest, but to
5555 duplicated block whose original was dest. */
5556 FOR_EACH_EDGE (e, ei, bb->succs)
5558 if ((e->dest->flags & BB_DUPLICATED)
5559 && get_bb_original (e->dest) == dest)
5560 break;
5563 gcc_assert (e != NULL);
5566 for (psi = gsi_start_phis (e->dest),
5567 psi_copy = gsi_start_phis (e_copy->dest);
5568 !gsi_end_p (psi);
5569 gsi_next (&psi), gsi_next (&psi_copy))
5571 phi = gsi_stmt (psi);
5572 phi_copy = gsi_stmt (psi_copy);
5573 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5574 add_phi_arg (phi_copy, def, e_copy,
5575 gimple_phi_arg_location_from_edge (phi, e));
5580 /* Basic block BB_COPY was created by code duplication. Add phi node
5581 arguments for edges going out of BB_COPY. The blocks that were
5582 duplicated have BB_DUPLICATED set. */
5584 void
5585 add_phi_args_after_copy_bb (basic_block bb_copy)
5587 edge e_copy;
5588 edge_iterator ei;
5590 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5592 add_phi_args_after_copy_edge (e_copy);
5596 /* Blocks in REGION_COPY array of length N_REGION were created by
5597 duplication of basic blocks. Add phi node arguments for edges
5598 going from these blocks. If E_COPY is not NULL, also add
5599 phi node arguments for its destination.*/
5601 void
5602 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5603 edge e_copy)
5605 unsigned i;
5607 for (i = 0; i < n_region; i++)
5608 region_copy[i]->flags |= BB_DUPLICATED;
5610 for (i = 0; i < n_region; i++)
5611 add_phi_args_after_copy_bb (region_copy[i]);
5612 if (e_copy)
5613 add_phi_args_after_copy_edge (e_copy);
5615 for (i = 0; i < n_region; i++)
5616 region_copy[i]->flags &= ~BB_DUPLICATED;
5619 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5620 important exit edge EXIT. By important we mean that no SSA name defined
5621 inside region is live over the other exit edges of the region. All entry
5622 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5623 to the duplicate of the region. Dominance and loop information is
5624 updated, but not the SSA web. The new basic blocks are stored to
5625 REGION_COPY in the same order as they had in REGION, provided that
5626 REGION_COPY is not NULL.
5627 The function returns false if it is unable to copy the region,
5628 true otherwise. */
5630 bool
5631 gimple_duplicate_sese_region (edge entry, edge exit,
5632 basic_block *region, unsigned n_region,
5633 basic_block *region_copy)
5635 unsigned i;
5636 bool free_region_copy = false, copying_header = false;
5637 struct loop *loop = entry->dest->loop_father;
5638 edge exit_copy;
5639 vec<basic_block> doms;
5640 edge redirected;
5641 int total_freq = 0, entry_freq = 0;
5642 gcov_type total_count = 0, entry_count = 0;
5644 if (!can_copy_bbs_p (region, n_region))
5645 return false;
5647 /* Some sanity checking. Note that we do not check for all possible
5648 missuses of the functions. I.e. if you ask to copy something weird,
5649 it will work, but the state of structures probably will not be
5650 correct. */
5651 for (i = 0; i < n_region; i++)
5653 /* We do not handle subloops, i.e. all the blocks must belong to the
5654 same loop. */
5655 if (region[i]->loop_father != loop)
5656 return false;
5658 if (region[i] != entry->dest
5659 && region[i] == loop->header)
5660 return false;
5663 set_loop_copy (loop, loop);
5665 /* In case the function is used for loop header copying (which is the primary
5666 use), ensure that EXIT and its copy will be new latch and entry edges. */
5667 if (loop->header == entry->dest)
5669 copying_header = true;
5670 set_loop_copy (loop, loop_outer (loop));
5672 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5673 return false;
5675 for (i = 0; i < n_region; i++)
5676 if (region[i] != exit->src
5677 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5678 return false;
5681 if (!region_copy)
5683 region_copy = XNEWVEC (basic_block, n_region);
5684 free_region_copy = true;
5687 /* Record blocks outside the region that are dominated by something
5688 inside. */
5689 doms.create (0);
5690 initialize_original_copy_tables ();
5692 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5694 if (entry->dest->count)
5696 total_count = entry->dest->count;
5697 entry_count = entry->count;
5698 /* Fix up corner cases, to avoid division by zero or creation of negative
5699 frequencies. */
5700 if (entry_count > total_count)
5701 entry_count = total_count;
5703 else
5705 total_freq = entry->dest->frequency;
5706 entry_freq = EDGE_FREQUENCY (entry);
5707 /* Fix up corner cases, to avoid division by zero or creation of negative
5708 frequencies. */
5709 if (total_freq == 0)
5710 total_freq = 1;
5711 else if (entry_freq > total_freq)
5712 entry_freq = total_freq;
5715 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5716 split_edge_bb_loc (entry));
5717 if (total_count)
5719 scale_bbs_frequencies_gcov_type (region, n_region,
5720 total_count - entry_count,
5721 total_count);
5722 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5723 total_count);
5725 else
5727 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5728 total_freq);
5729 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5732 if (copying_header)
5734 loop->header = exit->dest;
5735 loop->latch = exit->src;
5738 /* Redirect the entry and add the phi node arguments. */
5739 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5740 gcc_assert (redirected != NULL);
5741 flush_pending_stmts (entry);
5743 /* Concerning updating of dominators: We must recount dominators
5744 for entry block and its copy. Anything that is outside of the
5745 region, but was dominated by something inside needs recounting as
5746 well. */
5747 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5748 doms.safe_push (get_bb_original (entry->dest));
5749 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5750 doms.release ();
5752 /* Add the other PHI node arguments. */
5753 add_phi_args_after_copy (region_copy, n_region, NULL);
5755 if (free_region_copy)
5756 free (region_copy);
5758 free_original_copy_tables ();
5759 return true;
5762 /* Checks if BB is part of the region defined by N_REGION BBS. */
5763 static bool
5764 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5766 unsigned int n;
5768 for (n = 0; n < n_region; n++)
5770 if (bb == bbs[n])
5771 return true;
5773 return false;
5776 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5777 are stored to REGION_COPY in the same order in that they appear
5778 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5779 the region, EXIT an exit from it. The condition guarding EXIT
5780 is moved to ENTRY. Returns true if duplication succeeds, false
5781 otherwise.
5783 For example,
5785 some_code;
5786 if (cond)
5788 else
5791 is transformed to
5793 if (cond)
5795 some_code;
5798 else
5800 some_code;
5805 bool
5806 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5807 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5808 basic_block *region_copy ATTRIBUTE_UNUSED)
5810 unsigned i;
5811 bool free_region_copy = false;
5812 struct loop *loop = exit->dest->loop_father;
5813 struct loop *orig_loop = entry->dest->loop_father;
5814 basic_block switch_bb, entry_bb, nentry_bb;
5815 vec<basic_block> doms;
5816 int total_freq = 0, exit_freq = 0;
5817 gcov_type total_count = 0, exit_count = 0;
5818 edge exits[2], nexits[2], e;
5819 gimple_stmt_iterator gsi;
5820 gimple cond_stmt;
5821 edge sorig, snew;
5822 basic_block exit_bb;
5823 gimple_stmt_iterator psi;
5824 gimple phi;
5825 tree def;
5826 struct loop *target, *aloop, *cloop;
5828 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5829 exits[0] = exit;
5830 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5832 if (!can_copy_bbs_p (region, n_region))
5833 return false;
5835 initialize_original_copy_tables ();
5836 set_loop_copy (orig_loop, loop);
5838 target= loop;
5839 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5841 if (bb_part_of_region_p (aloop->header, region, n_region))
5843 cloop = duplicate_loop (aloop, target);
5844 duplicate_subloops (aloop, cloop);
5848 if (!region_copy)
5850 region_copy = XNEWVEC (basic_block, n_region);
5851 free_region_copy = true;
5854 gcc_assert (!need_ssa_update_p (cfun));
5856 /* Record blocks outside the region that are dominated by something
5857 inside. */
5858 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5860 if (exit->src->count)
5862 total_count = exit->src->count;
5863 exit_count = exit->count;
5864 /* Fix up corner cases, to avoid division by zero or creation of negative
5865 frequencies. */
5866 if (exit_count > total_count)
5867 exit_count = total_count;
5869 else
5871 total_freq = exit->src->frequency;
5872 exit_freq = EDGE_FREQUENCY (exit);
5873 /* Fix up corner cases, to avoid division by zero or creation of negative
5874 frequencies. */
5875 if (total_freq == 0)
5876 total_freq = 1;
5877 if (exit_freq > total_freq)
5878 exit_freq = total_freq;
5881 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5882 split_edge_bb_loc (exit));
5883 if (total_count)
5885 scale_bbs_frequencies_gcov_type (region, n_region,
5886 total_count - exit_count,
5887 total_count);
5888 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5889 total_count);
5891 else
5893 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5894 total_freq);
5895 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5898 /* Create the switch block, and put the exit condition to it. */
5899 entry_bb = entry->dest;
5900 nentry_bb = get_bb_copy (entry_bb);
5901 if (!last_stmt (entry->src)
5902 || !stmt_ends_bb_p (last_stmt (entry->src)))
5903 switch_bb = entry->src;
5904 else
5905 switch_bb = split_edge (entry);
5906 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5908 gsi = gsi_last_bb (switch_bb);
5909 cond_stmt = last_stmt (exit->src);
5910 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5911 cond_stmt = gimple_copy (cond_stmt);
5913 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5915 sorig = single_succ_edge (switch_bb);
5916 sorig->flags = exits[1]->flags;
5917 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5919 /* Register the new edge from SWITCH_BB in loop exit lists. */
5920 rescan_loop_exit (snew, true, false);
5922 /* Add the PHI node arguments. */
5923 add_phi_args_after_copy (region_copy, n_region, snew);
5925 /* Get rid of now superfluous conditions and associated edges (and phi node
5926 arguments). */
5927 exit_bb = exit->dest;
5929 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5930 PENDING_STMT (e) = NULL;
5932 /* The latch of ORIG_LOOP was copied, and so was the backedge
5933 to the original header. We redirect this backedge to EXIT_BB. */
5934 for (i = 0; i < n_region; i++)
5935 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5937 gcc_assert (single_succ_edge (region_copy[i]));
5938 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5939 PENDING_STMT (e) = NULL;
5940 for (psi = gsi_start_phis (exit_bb);
5941 !gsi_end_p (psi);
5942 gsi_next (&psi))
5944 phi = gsi_stmt (psi);
5945 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5946 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5949 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
5950 PENDING_STMT (e) = NULL;
5952 /* Anything that is outside of the region, but was dominated by something
5953 inside needs to update dominance info. */
5954 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5955 doms.release ();
5956 /* Update the SSA web. */
5957 update_ssa (TODO_update_ssa);
5959 if (free_region_copy)
5960 free (region_copy);
5962 free_original_copy_tables ();
5963 return true;
5966 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5967 adding blocks when the dominator traversal reaches EXIT. This
5968 function silently assumes that ENTRY strictly dominates EXIT. */
5970 void
5971 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5972 vec<basic_block> *bbs_p)
5974 basic_block son;
5976 for (son = first_dom_son (CDI_DOMINATORS, entry);
5977 son;
5978 son = next_dom_son (CDI_DOMINATORS, son))
5980 bbs_p->safe_push (son);
5981 if (son != exit)
5982 gather_blocks_in_sese_region (son, exit, bbs_p);
5986 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5987 The duplicates are recorded in VARS_MAP. */
5989 static void
5990 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5991 tree to_context)
5993 tree t = *tp, new_t;
5994 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5995 void **loc;
5997 if (DECL_CONTEXT (t) == to_context)
5998 return;
6000 loc = pointer_map_contains (vars_map, t);
6002 if (!loc)
6004 loc = pointer_map_insert (vars_map, t);
6006 if (SSA_VAR_P (t))
6008 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6009 add_local_decl (f, new_t);
6011 else
6013 gcc_assert (TREE_CODE (t) == CONST_DECL);
6014 new_t = copy_node (t);
6016 DECL_CONTEXT (new_t) = to_context;
6018 *loc = new_t;
6020 else
6021 new_t = (tree) *loc;
6023 *tp = new_t;
6027 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6028 VARS_MAP maps old ssa names and var_decls to the new ones. */
6030 static tree
6031 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6032 tree to_context)
6034 void **loc;
6035 tree new_name;
6037 gcc_assert (!virtual_operand_p (name));
6039 loc = pointer_map_contains (vars_map, name);
6041 if (!loc)
6043 tree decl = SSA_NAME_VAR (name);
6044 if (decl)
6046 replace_by_duplicate_decl (&decl, vars_map, to_context);
6047 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6048 decl, SSA_NAME_DEF_STMT (name));
6049 if (SSA_NAME_IS_DEFAULT_DEF (name))
6050 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6051 decl, new_name);
6053 else
6054 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6055 name, SSA_NAME_DEF_STMT (name));
6057 loc = pointer_map_insert (vars_map, name);
6058 *loc = new_name;
6060 else
6061 new_name = (tree) *loc;
6063 return new_name;
6066 struct move_stmt_d
6068 tree orig_block;
6069 tree new_block;
6070 tree from_context;
6071 tree to_context;
6072 struct pointer_map_t *vars_map;
6073 htab_t new_label_map;
6074 struct pointer_map_t *eh_map;
6075 bool remap_decls_p;
6078 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6079 contained in *TP if it has been ORIG_BLOCK previously and change the
6080 DECL_CONTEXT of every local variable referenced in *TP. */
6082 static tree
6083 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6085 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6086 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6087 tree t = *tp;
6089 if (EXPR_P (t))
6091 if (TREE_BLOCK (t) == p->orig_block
6092 || (p->orig_block == NULL_TREE
6093 && TREE_BLOCK (t) == NULL_TREE))
6094 TREE_SET_BLOCK (t, p->new_block);
6096 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6098 if (TREE_CODE (t) == SSA_NAME)
6099 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6100 else if (TREE_CODE (t) == LABEL_DECL)
6102 if (p->new_label_map)
6104 struct tree_map in, *out;
6105 in.base.from = t;
6106 out = (struct tree_map *)
6107 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6108 if (out)
6109 *tp = t = out->to;
6112 DECL_CONTEXT (t) = p->to_context;
6114 else if (p->remap_decls_p)
6116 /* Replace T with its duplicate. T should no longer appear in the
6117 parent function, so this looks wasteful; however, it may appear
6118 in referenced_vars, and more importantly, as virtual operands of
6119 statements, and in alias lists of other variables. It would be
6120 quite difficult to expunge it from all those places. ??? It might
6121 suffice to do this for addressable variables. */
6122 if ((TREE_CODE (t) == VAR_DECL
6123 && !is_global_var (t))
6124 || TREE_CODE (t) == CONST_DECL)
6125 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6127 *walk_subtrees = 0;
6129 else if (TYPE_P (t))
6130 *walk_subtrees = 0;
6132 return NULL_TREE;
6135 /* Helper for move_stmt_r. Given an EH region number for the source
6136 function, map that to the duplicate EH regio number in the dest. */
6138 static int
6139 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6141 eh_region old_r, new_r;
6142 void **slot;
6144 old_r = get_eh_region_from_number (old_nr);
6145 slot = pointer_map_contains (p->eh_map, old_r);
6146 new_r = (eh_region) *slot;
6148 return new_r->index;
6151 /* Similar, but operate on INTEGER_CSTs. */
6153 static tree
6154 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6156 int old_nr, new_nr;
6158 old_nr = tree_low_cst (old_t_nr, 0);
6159 new_nr = move_stmt_eh_region_nr (old_nr, p);
6161 return build_int_cst (integer_type_node, new_nr);
6164 /* Like move_stmt_op, but for gimple statements.
6166 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6167 contained in the current statement in *GSI_P and change the
6168 DECL_CONTEXT of every local variable referenced in the current
6169 statement. */
6171 static tree
6172 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6173 struct walk_stmt_info *wi)
6175 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6176 gimple stmt = gsi_stmt (*gsi_p);
6177 tree block = gimple_block (stmt);
6179 if (p->orig_block == NULL_TREE
6180 || block == p->orig_block
6181 || block == NULL_TREE)
6182 gimple_set_block (stmt, p->new_block);
6183 #ifdef ENABLE_CHECKING
6184 else if (block != p->new_block)
6186 while (block && block != p->orig_block)
6187 block = BLOCK_SUPERCONTEXT (block);
6188 gcc_assert (block);
6190 #endif
6192 switch (gimple_code (stmt))
6194 case GIMPLE_CALL:
6195 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6197 tree r, fndecl = gimple_call_fndecl (stmt);
6198 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6199 switch (DECL_FUNCTION_CODE (fndecl))
6201 case BUILT_IN_EH_COPY_VALUES:
6202 r = gimple_call_arg (stmt, 1);
6203 r = move_stmt_eh_region_tree_nr (r, p);
6204 gimple_call_set_arg (stmt, 1, r);
6205 /* FALLTHRU */
6207 case BUILT_IN_EH_POINTER:
6208 case BUILT_IN_EH_FILTER:
6209 r = gimple_call_arg (stmt, 0);
6210 r = move_stmt_eh_region_tree_nr (r, p);
6211 gimple_call_set_arg (stmt, 0, r);
6212 break;
6214 default:
6215 break;
6218 break;
6220 case GIMPLE_RESX:
6222 int r = gimple_resx_region (stmt);
6223 r = move_stmt_eh_region_nr (r, p);
6224 gimple_resx_set_region (stmt, r);
6226 break;
6228 case GIMPLE_EH_DISPATCH:
6230 int r = gimple_eh_dispatch_region (stmt);
6231 r = move_stmt_eh_region_nr (r, p);
6232 gimple_eh_dispatch_set_region (stmt, r);
6234 break;
6236 case GIMPLE_OMP_RETURN:
6237 case GIMPLE_OMP_CONTINUE:
6238 break;
6239 default:
6240 if (is_gimple_omp (stmt))
6242 /* Do not remap variables inside OMP directives. Variables
6243 referenced in clauses and directive header belong to the
6244 parent function and should not be moved into the child
6245 function. */
6246 bool save_remap_decls_p = p->remap_decls_p;
6247 p->remap_decls_p = false;
6248 *handled_ops_p = true;
6250 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6251 move_stmt_op, wi);
6253 p->remap_decls_p = save_remap_decls_p;
6255 break;
6258 return NULL_TREE;
6261 /* Move basic block BB from function CFUN to function DEST_FN. The
6262 block is moved out of the original linked list and placed after
6263 block AFTER in the new list. Also, the block is removed from the
6264 original array of blocks and placed in DEST_FN's array of blocks.
6265 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6266 updated to reflect the moved edges.
6268 The local variables are remapped to new instances, VARS_MAP is used
6269 to record the mapping. */
6271 static void
6272 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6273 basic_block after, bool update_edge_count_p,
6274 struct move_stmt_d *d)
6276 struct control_flow_graph *cfg;
6277 edge_iterator ei;
6278 edge e;
6279 gimple_stmt_iterator si;
6280 unsigned old_len, new_len;
6282 /* Remove BB from dominance structures. */
6283 delete_from_dominance_info (CDI_DOMINATORS, bb);
6284 if (current_loops)
6285 remove_bb_from_loops (bb);
6287 /* Link BB to the new linked list. */
6288 move_block_after (bb, after);
6290 /* Update the edge count in the corresponding flowgraphs. */
6291 if (update_edge_count_p)
6292 FOR_EACH_EDGE (e, ei, bb->succs)
6294 cfun->cfg->x_n_edges--;
6295 dest_cfun->cfg->x_n_edges++;
6298 /* Remove BB from the original basic block array. */
6299 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6300 cfun->cfg->x_n_basic_blocks--;
6302 /* Grow DEST_CFUN's basic block array if needed. */
6303 cfg = dest_cfun->cfg;
6304 cfg->x_n_basic_blocks++;
6305 if (bb->index >= cfg->x_last_basic_block)
6306 cfg->x_last_basic_block = bb->index + 1;
6308 old_len = vec_safe_length (cfg->x_basic_block_info);
6309 if ((unsigned) cfg->x_last_basic_block >= old_len)
6311 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6312 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6315 (*cfg->x_basic_block_info)[bb->index] = bb;
6317 /* Remap the variables in phi nodes. */
6318 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6320 gimple phi = gsi_stmt (si);
6321 use_operand_p use;
6322 tree op = PHI_RESULT (phi);
6323 ssa_op_iter oi;
6324 unsigned i;
6326 if (virtual_operand_p (op))
6328 /* Remove the phi nodes for virtual operands (alias analysis will be
6329 run for the new function, anyway). */
6330 remove_phi_node (&si, true);
6331 continue;
6334 SET_PHI_RESULT (phi,
6335 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6336 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6338 op = USE_FROM_PTR (use);
6339 if (TREE_CODE (op) == SSA_NAME)
6340 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6343 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6345 location_t locus = gimple_phi_arg_location (phi, i);
6346 tree block = LOCATION_BLOCK (locus);
6348 if (locus == UNKNOWN_LOCATION)
6349 continue;
6350 if (d->orig_block == NULL_TREE || block == d->orig_block)
6352 if (d->new_block == NULL_TREE)
6353 locus = LOCATION_LOCUS (locus);
6354 else
6355 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6356 gimple_phi_arg_set_location (phi, i, locus);
6360 gsi_next (&si);
6363 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6365 gimple stmt = gsi_stmt (si);
6366 struct walk_stmt_info wi;
6368 memset (&wi, 0, sizeof (wi));
6369 wi.info = d;
6370 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6372 if (gimple_code (stmt) == GIMPLE_LABEL)
6374 tree label = gimple_label_label (stmt);
6375 int uid = LABEL_DECL_UID (label);
6377 gcc_assert (uid > -1);
6379 old_len = vec_safe_length (cfg->x_label_to_block_map);
6380 if (old_len <= (unsigned) uid)
6382 new_len = 3 * uid / 2 + 1;
6383 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6386 (*cfg->x_label_to_block_map)[uid] = bb;
6387 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6389 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6391 if (uid >= dest_cfun->cfg->last_label_uid)
6392 dest_cfun->cfg->last_label_uid = uid + 1;
6395 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6396 remove_stmt_from_eh_lp_fn (cfun, stmt);
6398 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6399 gimple_remove_stmt_histograms (cfun, stmt);
6401 /* We cannot leave any operands allocated from the operand caches of
6402 the current function. */
6403 free_stmt_operands (stmt);
6404 push_cfun (dest_cfun);
6405 update_stmt (stmt);
6406 pop_cfun ();
6409 FOR_EACH_EDGE (e, ei, bb->succs)
6410 if (e->goto_locus != UNKNOWN_LOCATION)
6412 tree block = LOCATION_BLOCK (e->goto_locus);
6413 if (d->orig_block == NULL_TREE
6414 || block == d->orig_block)
6415 e->goto_locus = d->new_block ?
6416 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6417 LOCATION_LOCUS (e->goto_locus);
6418 #ifdef ENABLE_CHECKING
6419 else if (block != d->new_block)
6421 while (block && block != d->orig_block)
6422 block = BLOCK_SUPERCONTEXT (block);
6423 gcc_assert (block);
6425 #endif
6429 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6430 the outermost EH region. Use REGION as the incoming base EH region. */
6432 static eh_region
6433 find_outermost_region_in_block (struct function *src_cfun,
6434 basic_block bb, eh_region region)
6436 gimple_stmt_iterator si;
6438 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6440 gimple stmt = gsi_stmt (si);
6441 eh_region stmt_region;
6442 int lp_nr;
6444 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6445 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6446 if (stmt_region)
6448 if (region == NULL)
6449 region = stmt_region;
6450 else if (stmt_region != region)
6452 region = eh_region_outermost (src_cfun, stmt_region, region);
6453 gcc_assert (region != NULL);
6458 return region;
6461 static tree
6462 new_label_mapper (tree decl, void *data)
6464 htab_t hash = (htab_t) data;
6465 struct tree_map *m;
6466 void **slot;
6468 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6470 m = XNEW (struct tree_map);
6471 m->hash = DECL_UID (decl);
6472 m->base.from = decl;
6473 m->to = create_artificial_label (UNKNOWN_LOCATION);
6474 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6475 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6476 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6478 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6479 gcc_assert (*slot == NULL);
6481 *slot = m;
6483 return m->to;
6486 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6487 subblocks. */
6489 static void
6490 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6491 tree to_context)
6493 tree *tp, t;
6495 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6497 t = *tp;
6498 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6499 continue;
6500 replace_by_duplicate_decl (&t, vars_map, to_context);
6501 if (t != *tp)
6503 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6505 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6506 DECL_HAS_VALUE_EXPR_P (t) = 1;
6508 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6509 *tp = t;
6513 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6514 replace_block_vars_by_duplicates (block, vars_map, to_context);
6517 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6518 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6519 single basic block in the original CFG and the new basic block is
6520 returned. DEST_CFUN must not have a CFG yet.
6522 Note that the region need not be a pure SESE region. Blocks inside
6523 the region may contain calls to abort/exit. The only restriction
6524 is that ENTRY_BB should be the only entry point and it must
6525 dominate EXIT_BB.
6527 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6528 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6529 to the new function.
6531 All local variables referenced in the region are assumed to be in
6532 the corresponding BLOCK_VARS and unexpanded variable lists
6533 associated with DEST_CFUN. */
6535 basic_block
6536 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6537 basic_block exit_bb, tree orig_block)
6539 vec<basic_block> bbs, dom_bbs;
6540 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6541 basic_block after, bb, *entry_pred, *exit_succ, abb;
6542 struct function *saved_cfun = cfun;
6543 int *entry_flag, *exit_flag;
6544 unsigned *entry_prob, *exit_prob;
6545 unsigned i, num_entry_edges, num_exit_edges;
6546 edge e;
6547 edge_iterator ei;
6548 htab_t new_label_map;
6549 struct pointer_map_t *vars_map, *eh_map;
6550 struct loop *loop = entry_bb->loop_father;
6551 struct move_stmt_d d;
6553 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6554 region. */
6555 gcc_assert (entry_bb != exit_bb
6556 && (!exit_bb
6557 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6559 /* Collect all the blocks in the region. Manually add ENTRY_BB
6560 because it won't be added by dfs_enumerate_from. */
6561 bbs.create (0);
6562 bbs.safe_push (entry_bb);
6563 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6565 /* The blocks that used to be dominated by something in BBS will now be
6566 dominated by the new block. */
6567 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6568 bbs.address (),
6569 bbs.length ());
6571 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6572 the predecessor edges to ENTRY_BB and the successor edges to
6573 EXIT_BB so that we can re-attach them to the new basic block that
6574 will replace the region. */
6575 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6576 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6577 entry_flag = XNEWVEC (int, num_entry_edges);
6578 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6579 i = 0;
6580 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6582 entry_prob[i] = e->probability;
6583 entry_flag[i] = e->flags;
6584 entry_pred[i++] = e->src;
6585 remove_edge (e);
6588 if (exit_bb)
6590 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6591 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6592 exit_flag = XNEWVEC (int, num_exit_edges);
6593 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6594 i = 0;
6595 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6597 exit_prob[i] = e->probability;
6598 exit_flag[i] = e->flags;
6599 exit_succ[i++] = e->dest;
6600 remove_edge (e);
6603 else
6605 num_exit_edges = 0;
6606 exit_succ = NULL;
6607 exit_flag = NULL;
6608 exit_prob = NULL;
6611 /* Switch context to the child function to initialize DEST_FN's CFG. */
6612 gcc_assert (dest_cfun->cfg == NULL);
6613 push_cfun (dest_cfun);
6615 init_empty_tree_cfg ();
6617 /* Initialize EH information for the new function. */
6618 eh_map = NULL;
6619 new_label_map = NULL;
6620 if (saved_cfun->eh)
6622 eh_region region = NULL;
6624 FOR_EACH_VEC_ELT (bbs, i, bb)
6625 region = find_outermost_region_in_block (saved_cfun, bb, region);
6627 init_eh_for_function ();
6628 if (region != NULL)
6630 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6631 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6632 new_label_mapper, new_label_map);
6636 pop_cfun ();
6638 /* Move blocks from BBS into DEST_CFUN. */
6639 gcc_assert (bbs.length () >= 2);
6640 after = dest_cfun->cfg->x_entry_block_ptr;
6641 vars_map = pointer_map_create ();
6643 memset (&d, 0, sizeof (d));
6644 d.orig_block = orig_block;
6645 d.new_block = DECL_INITIAL (dest_cfun->decl);
6646 d.from_context = cfun->decl;
6647 d.to_context = dest_cfun->decl;
6648 d.vars_map = vars_map;
6649 d.new_label_map = new_label_map;
6650 d.eh_map = eh_map;
6651 d.remap_decls_p = true;
6653 FOR_EACH_VEC_ELT (bbs, i, bb)
6655 /* No need to update edge counts on the last block. It has
6656 already been updated earlier when we detached the region from
6657 the original CFG. */
6658 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6659 after = bb;
6662 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6663 if (orig_block)
6665 tree block;
6666 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6667 == NULL_TREE);
6668 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6669 = BLOCK_SUBBLOCKS (orig_block);
6670 for (block = BLOCK_SUBBLOCKS (orig_block);
6671 block; block = BLOCK_CHAIN (block))
6672 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6673 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6676 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6677 vars_map, dest_cfun->decl);
6679 if (new_label_map)
6680 htab_delete (new_label_map);
6681 if (eh_map)
6682 pointer_map_destroy (eh_map);
6683 pointer_map_destroy (vars_map);
6685 /* Rewire the entry and exit blocks. The successor to the entry
6686 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6687 the child function. Similarly, the predecessor of DEST_FN's
6688 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6689 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6690 various CFG manipulation function get to the right CFG.
6692 FIXME, this is silly. The CFG ought to become a parameter to
6693 these helpers. */
6694 push_cfun (dest_cfun);
6695 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6696 if (exit_bb)
6697 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6698 pop_cfun ();
6700 /* Back in the original function, the SESE region has disappeared,
6701 create a new basic block in its place. */
6702 bb = create_empty_bb (entry_pred[0]);
6703 if (current_loops)
6704 add_bb_to_loop (bb, loop);
6705 for (i = 0; i < num_entry_edges; i++)
6707 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6708 e->probability = entry_prob[i];
6711 for (i = 0; i < num_exit_edges; i++)
6713 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6714 e->probability = exit_prob[i];
6717 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6718 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6719 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6720 dom_bbs.release ();
6722 if (exit_bb)
6724 free (exit_prob);
6725 free (exit_flag);
6726 free (exit_succ);
6728 free (entry_prob);
6729 free (entry_flag);
6730 free (entry_pred);
6731 bbs.release ();
6733 return bb;
6737 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6740 void
6741 dump_function_to_file (tree fndecl, FILE *file, int flags)
6743 tree arg, var, old_current_fndecl = current_function_decl;
6744 struct function *dsf;
6745 bool ignore_topmost_bind = false, any_var = false;
6746 basic_block bb;
6747 tree chain;
6748 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6749 && decl_is_tm_clone (fndecl));
6750 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6752 current_function_decl = fndecl;
6753 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6755 arg = DECL_ARGUMENTS (fndecl);
6756 while (arg)
6758 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6759 fprintf (file, " ");
6760 print_generic_expr (file, arg, dump_flags);
6761 if (flags & TDF_VERBOSE)
6762 print_node (file, "", arg, 4);
6763 if (DECL_CHAIN (arg))
6764 fprintf (file, ", ");
6765 arg = DECL_CHAIN (arg);
6767 fprintf (file, ")\n");
6769 if (flags & TDF_VERBOSE)
6770 print_node (file, "", fndecl, 2);
6772 dsf = DECL_STRUCT_FUNCTION (fndecl);
6773 if (dsf && (flags & TDF_EH))
6774 dump_eh_tree (file, dsf);
6776 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6778 dump_node (fndecl, TDF_SLIM | flags, file);
6779 current_function_decl = old_current_fndecl;
6780 return;
6783 /* When GIMPLE is lowered, the variables are no longer available in
6784 BIND_EXPRs, so display them separately. */
6785 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6787 unsigned ix;
6788 ignore_topmost_bind = true;
6790 fprintf (file, "{\n");
6791 if (!vec_safe_is_empty (fun->local_decls))
6792 FOR_EACH_LOCAL_DECL (fun, ix, var)
6794 print_generic_decl (file, var, flags);
6795 if (flags & TDF_VERBOSE)
6796 print_node (file, "", var, 4);
6797 fprintf (file, "\n");
6799 any_var = true;
6801 if (gimple_in_ssa_p (cfun))
6802 for (ix = 1; ix < num_ssa_names; ++ix)
6804 tree name = ssa_name (ix);
6805 if (name && !SSA_NAME_VAR (name))
6807 fprintf (file, " ");
6808 print_generic_expr (file, TREE_TYPE (name), flags);
6809 fprintf (file, " ");
6810 print_generic_expr (file, name, flags);
6811 fprintf (file, ";\n");
6813 any_var = true;
6818 if (fun && fun->decl == fndecl
6819 && fun->cfg
6820 && basic_block_info_for_function (fun))
6822 /* If the CFG has been built, emit a CFG-based dump. */
6823 if (!ignore_topmost_bind)
6824 fprintf (file, "{\n");
6826 if (any_var && n_basic_blocks_for_function (fun))
6827 fprintf (file, "\n");
6829 FOR_EACH_BB_FN (bb, fun)
6830 dump_bb (file, bb, 2, flags | TDF_COMMENT);
6832 fprintf (file, "}\n");
6834 else if (DECL_SAVED_TREE (fndecl) == NULL)
6836 /* The function is now in GIMPLE form but the CFG has not been
6837 built yet. Emit the single sequence of GIMPLE statements
6838 that make up its body. */
6839 gimple_seq body = gimple_body (fndecl);
6841 if (gimple_seq_first_stmt (body)
6842 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6843 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6844 print_gimple_seq (file, body, 0, flags);
6845 else
6847 if (!ignore_topmost_bind)
6848 fprintf (file, "{\n");
6850 if (any_var)
6851 fprintf (file, "\n");
6853 print_gimple_seq (file, body, 2, flags);
6854 fprintf (file, "}\n");
6857 else
6859 int indent;
6861 /* Make a tree based dump. */
6862 chain = DECL_SAVED_TREE (fndecl);
6863 if (chain && TREE_CODE (chain) == BIND_EXPR)
6865 if (ignore_topmost_bind)
6867 chain = BIND_EXPR_BODY (chain);
6868 indent = 2;
6870 else
6871 indent = 0;
6873 else
6875 if (!ignore_topmost_bind)
6876 fprintf (file, "{\n");
6877 indent = 2;
6880 if (any_var)
6881 fprintf (file, "\n");
6883 print_generic_stmt_indented (file, chain, flags, indent);
6884 if (ignore_topmost_bind)
6885 fprintf (file, "}\n");
6888 if (flags & TDF_ENUMERATE_LOCALS)
6889 dump_enumerated_decls (file, flags);
6890 fprintf (file, "\n\n");
6892 current_function_decl = old_current_fndecl;
6895 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6897 DEBUG_FUNCTION void
6898 debug_function (tree fn, int flags)
6900 dump_function_to_file (fn, stderr, flags);
6904 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6906 static void
6907 print_pred_bbs (FILE *file, basic_block bb)
6909 edge e;
6910 edge_iterator ei;
6912 FOR_EACH_EDGE (e, ei, bb->preds)
6913 fprintf (file, "bb_%d ", e->src->index);
6917 /* Print on FILE the indexes for the successors of basic_block BB. */
6919 static void
6920 print_succ_bbs (FILE *file, basic_block bb)
6922 edge e;
6923 edge_iterator ei;
6925 FOR_EACH_EDGE (e, ei, bb->succs)
6926 fprintf (file, "bb_%d ", e->dest->index);
6929 /* Print to FILE the basic block BB following the VERBOSITY level. */
6931 void
6932 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6934 char *s_indent = (char *) alloca ((size_t) indent + 1);
6935 memset ((void *) s_indent, ' ', (size_t) indent);
6936 s_indent[indent] = '\0';
6938 /* Print basic_block's header. */
6939 if (verbosity >= 2)
6941 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6942 print_pred_bbs (file, bb);
6943 fprintf (file, "}, succs = {");
6944 print_succ_bbs (file, bb);
6945 fprintf (file, "})\n");
6948 /* Print basic_block's body. */
6949 if (verbosity >= 3)
6951 fprintf (file, "%s {\n", s_indent);
6952 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6953 fprintf (file, "%s }\n", s_indent);
6957 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6959 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6960 VERBOSITY level this outputs the contents of the loop, or just its
6961 structure. */
6963 static void
6964 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6966 char *s_indent;
6967 basic_block bb;
6969 if (loop == NULL)
6970 return;
6972 s_indent = (char *) alloca ((size_t) indent + 1);
6973 memset ((void *) s_indent, ' ', (size_t) indent);
6974 s_indent[indent] = '\0';
6976 /* Print loop's header. */
6977 fprintf (file, "%sloop_%d (", s_indent, loop->num);
6978 if (loop->header)
6979 fprintf (file, "header = %d", loop->header->index);
6980 else
6982 fprintf (file, "deleted)\n");
6983 return;
6985 if (loop->latch)
6986 fprintf (file, ", latch = %d", loop->latch->index);
6987 else
6988 fprintf (file, ", multiple latches");
6989 fprintf (file, ", niter = ");
6990 print_generic_expr (file, loop->nb_iterations, 0);
6992 if (loop->any_upper_bound)
6994 fprintf (file, ", upper_bound = ");
6995 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6998 if (loop->any_estimate)
7000 fprintf (file, ", estimate = ");
7001 dump_double_int (file, loop->nb_iterations_estimate, true);
7003 fprintf (file, ")\n");
7005 /* Print loop's body. */
7006 if (verbosity >= 1)
7008 fprintf (file, "%s{\n", s_indent);
7009 FOR_EACH_BB (bb)
7010 if (bb->loop_father == loop)
7011 print_loops_bb (file, bb, indent, verbosity);
7013 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7014 fprintf (file, "%s}\n", s_indent);
7018 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7019 spaces. Following VERBOSITY level this outputs the contents of the
7020 loop, or just its structure. */
7022 static void
7023 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
7025 if (loop == NULL)
7026 return;
7028 print_loop (file, loop, indent, verbosity);
7029 print_loop_and_siblings (file, loop->next, indent, verbosity);
7032 /* Follow a CFG edge from the entry point of the program, and on entry
7033 of a loop, pretty print the loop structure on FILE. */
7035 void
7036 print_loops (FILE *file, int verbosity)
7038 basic_block bb;
7040 bb = ENTRY_BLOCK_PTR;
7041 if (bb && bb->loop_father)
7042 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7046 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7048 DEBUG_FUNCTION void
7049 debug_loops (int verbosity)
7051 print_loops (stderr, verbosity);
7054 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7056 DEBUG_FUNCTION void
7057 debug_loop (struct loop *loop, int verbosity)
7059 print_loop (stderr, loop, 0, verbosity);
7062 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7063 level. */
7065 DEBUG_FUNCTION void
7066 debug_loop_num (unsigned num, int verbosity)
7068 debug_loop (get_loop (num), verbosity);
7071 /* Return true if BB ends with a call, possibly followed by some
7072 instructions that must stay with the call. Return false,
7073 otherwise. */
7075 static bool
7076 gimple_block_ends_with_call_p (basic_block bb)
7078 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7079 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7083 /* Return true if BB ends with a conditional branch. Return false,
7084 otherwise. */
7086 static bool
7087 gimple_block_ends_with_condjump_p (const_basic_block bb)
7089 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7090 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7094 /* Return true if we need to add fake edge to exit at statement T.
7095 Helper function for gimple_flow_call_edges_add. */
7097 static bool
7098 need_fake_edge_p (gimple t)
7100 tree fndecl = NULL_TREE;
7101 int call_flags = 0;
7103 /* NORETURN and LONGJMP calls already have an edge to exit.
7104 CONST and PURE calls do not need one.
7105 We don't currently check for CONST and PURE here, although
7106 it would be a good idea, because those attributes are
7107 figured out from the RTL in mark_constant_function, and
7108 the counter incrementation code from -fprofile-arcs
7109 leads to different results from -fbranch-probabilities. */
7110 if (is_gimple_call (t))
7112 fndecl = gimple_call_fndecl (t);
7113 call_flags = gimple_call_flags (t);
7116 if (is_gimple_call (t)
7117 && fndecl
7118 && DECL_BUILT_IN (fndecl)
7119 && (call_flags & ECF_NOTHROW)
7120 && !(call_flags & ECF_RETURNS_TWICE)
7121 /* fork() doesn't really return twice, but the effect of
7122 wrapping it in __gcov_fork() which calls __gcov_flush()
7123 and clears the counters before forking has the same
7124 effect as returning twice. Force a fake edge. */
7125 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7126 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7127 return false;
7129 if (is_gimple_call (t))
7131 edge_iterator ei;
7132 edge e;
7133 basic_block bb;
7135 if (!(call_flags & ECF_NORETURN))
7136 return true;
7138 bb = gimple_bb (t);
7139 FOR_EACH_EDGE (e, ei, bb->succs)
7140 if ((e->flags & EDGE_FAKE) == 0)
7141 return true;
7144 if (gimple_code (t) == GIMPLE_ASM
7145 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7146 return true;
7148 return false;
7152 /* Add fake edges to the function exit for any non constant and non
7153 noreturn calls (or noreturn calls with EH/abnormal edges),
7154 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7155 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7156 that were split.
7158 The goal is to expose cases in which entering a basic block does
7159 not imply that all subsequent instructions must be executed. */
7161 static int
7162 gimple_flow_call_edges_add (sbitmap blocks)
7164 int i;
7165 int blocks_split = 0;
7166 int last_bb = last_basic_block;
7167 bool check_last_block = false;
7169 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7170 return 0;
7172 if (! blocks)
7173 check_last_block = true;
7174 else
7175 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7177 /* In the last basic block, before epilogue generation, there will be
7178 a fallthru edge to EXIT. Special care is required if the last insn
7179 of the last basic block is a call because make_edge folds duplicate
7180 edges, which would result in the fallthru edge also being marked
7181 fake, which would result in the fallthru edge being removed by
7182 remove_fake_edges, which would result in an invalid CFG.
7184 Moreover, we can't elide the outgoing fake edge, since the block
7185 profiler needs to take this into account in order to solve the minimal
7186 spanning tree in the case that the call doesn't return.
7188 Handle this by adding a dummy instruction in a new last basic block. */
7189 if (check_last_block)
7191 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7192 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7193 gimple t = NULL;
7195 if (!gsi_end_p (gsi))
7196 t = gsi_stmt (gsi);
7198 if (t && need_fake_edge_p (t))
7200 edge e;
7202 e = find_edge (bb, EXIT_BLOCK_PTR);
7203 if (e)
7205 gsi_insert_on_edge (e, gimple_build_nop ());
7206 gsi_commit_edge_inserts ();
7211 /* Now add fake edges to the function exit for any non constant
7212 calls since there is no way that we can determine if they will
7213 return or not... */
7214 for (i = 0; i < last_bb; i++)
7216 basic_block bb = BASIC_BLOCK (i);
7217 gimple_stmt_iterator gsi;
7218 gimple stmt, last_stmt;
7220 if (!bb)
7221 continue;
7223 if (blocks && !bitmap_bit_p (blocks, i))
7224 continue;
7226 gsi = gsi_last_nondebug_bb (bb);
7227 if (!gsi_end_p (gsi))
7229 last_stmt = gsi_stmt (gsi);
7232 stmt = gsi_stmt (gsi);
7233 if (need_fake_edge_p (stmt))
7235 edge e;
7237 /* The handling above of the final block before the
7238 epilogue should be enough to verify that there is
7239 no edge to the exit block in CFG already.
7240 Calling make_edge in such case would cause us to
7241 mark that edge as fake and remove it later. */
7242 #ifdef ENABLE_CHECKING
7243 if (stmt == last_stmt)
7245 e = find_edge (bb, EXIT_BLOCK_PTR);
7246 gcc_assert (e == NULL);
7248 #endif
7250 /* Note that the following may create a new basic block
7251 and renumber the existing basic blocks. */
7252 if (stmt != last_stmt)
7254 e = split_block (bb, stmt);
7255 if (e)
7256 blocks_split++;
7258 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7260 gsi_prev (&gsi);
7262 while (!gsi_end_p (gsi));
7266 if (blocks_split)
7267 verify_flow_info ();
7269 return blocks_split;
7272 /* Removes edge E and all the blocks dominated by it, and updates dominance
7273 information. The IL in E->src needs to be updated separately.
7274 If dominance info is not available, only the edge E is removed.*/
7276 void
7277 remove_edge_and_dominated_blocks (edge e)
7279 vec<basic_block> bbs_to_remove = vNULL;
7280 vec<basic_block> bbs_to_fix_dom = vNULL;
7281 bitmap df, df_idom;
7282 edge f;
7283 edge_iterator ei;
7284 bool none_removed = false;
7285 unsigned i;
7286 basic_block bb, dbb;
7287 bitmap_iterator bi;
7289 if (!dom_info_available_p (CDI_DOMINATORS))
7291 remove_edge (e);
7292 return;
7295 /* No updating is needed for edges to exit. */
7296 if (e->dest == EXIT_BLOCK_PTR)
7298 if (cfgcleanup_altered_bbs)
7299 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7300 remove_edge (e);
7301 return;
7304 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7305 that is not dominated by E->dest, then this set is empty. Otherwise,
7306 all the basic blocks dominated by E->dest are removed.
7308 Also, to DF_IDOM we store the immediate dominators of the blocks in
7309 the dominance frontier of E (i.e., of the successors of the
7310 removed blocks, if there are any, and of E->dest otherwise). */
7311 FOR_EACH_EDGE (f, ei, e->dest->preds)
7313 if (f == e)
7314 continue;
7316 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7318 none_removed = true;
7319 break;
7323 df = BITMAP_ALLOC (NULL);
7324 df_idom = BITMAP_ALLOC (NULL);
7326 if (none_removed)
7327 bitmap_set_bit (df_idom,
7328 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7329 else
7331 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7332 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7334 FOR_EACH_EDGE (f, ei, bb->succs)
7336 if (f->dest != EXIT_BLOCK_PTR)
7337 bitmap_set_bit (df, f->dest->index);
7340 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7341 bitmap_clear_bit (df, bb->index);
7343 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7345 bb = BASIC_BLOCK (i);
7346 bitmap_set_bit (df_idom,
7347 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7351 if (cfgcleanup_altered_bbs)
7353 /* Record the set of the altered basic blocks. */
7354 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7355 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7358 /* Remove E and the cancelled blocks. */
7359 if (none_removed)
7360 remove_edge (e);
7361 else
7363 /* Walk backwards so as to get a chance to substitute all
7364 released DEFs into debug stmts. See
7365 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7366 details. */
7367 for (i = bbs_to_remove.length (); i-- > 0; )
7368 delete_basic_block (bbs_to_remove[i]);
7371 /* Update the dominance information. The immediate dominator may change only
7372 for blocks whose immediate dominator belongs to DF_IDOM:
7374 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7375 removal. Let Z the arbitrary block such that idom(Z) = Y and
7376 Z dominates X after the removal. Before removal, there exists a path P
7377 from Y to X that avoids Z. Let F be the last edge on P that is
7378 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7379 dominates W, and because of P, Z does not dominate W), and W belongs to
7380 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7381 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7383 bb = BASIC_BLOCK (i);
7384 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7385 dbb;
7386 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7387 bbs_to_fix_dom.safe_push (dbb);
7390 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7392 BITMAP_FREE (df);
7393 BITMAP_FREE (df_idom);
7394 bbs_to_remove.release ();
7395 bbs_to_fix_dom.release ();
7398 /* Purge dead EH edges from basic block BB. */
7400 bool
7401 gimple_purge_dead_eh_edges (basic_block bb)
7403 bool changed = false;
7404 edge e;
7405 edge_iterator ei;
7406 gimple stmt = last_stmt (bb);
7408 if (stmt && stmt_can_throw_internal (stmt))
7409 return false;
7411 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7413 if (e->flags & EDGE_EH)
7415 remove_edge_and_dominated_blocks (e);
7416 changed = true;
7418 else
7419 ei_next (&ei);
7422 return changed;
7425 /* Purge dead EH edges from basic block listed in BLOCKS. */
7427 bool
7428 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7430 bool changed = false;
7431 unsigned i;
7432 bitmap_iterator bi;
7434 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7436 basic_block bb = BASIC_BLOCK (i);
7438 /* Earlier gimple_purge_dead_eh_edges could have removed
7439 this basic block already. */
7440 gcc_assert (bb || changed);
7441 if (bb != NULL)
7442 changed |= gimple_purge_dead_eh_edges (bb);
7445 return changed;
7448 /* Purge dead abnormal call edges from basic block BB. */
7450 bool
7451 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7453 bool changed = false;
7454 edge e;
7455 edge_iterator ei;
7456 gimple stmt = last_stmt (bb);
7458 if (!cfun->has_nonlocal_label)
7459 return false;
7461 if (stmt && stmt_can_make_abnormal_goto (stmt))
7462 return false;
7464 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7466 if (e->flags & EDGE_ABNORMAL)
7468 remove_edge_and_dominated_blocks (e);
7469 changed = true;
7471 else
7472 ei_next (&ei);
7475 return changed;
7478 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7480 bool
7481 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7483 bool changed = false;
7484 unsigned i;
7485 bitmap_iterator bi;
7487 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7489 basic_block bb = BASIC_BLOCK (i);
7491 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7492 this basic block already. */
7493 gcc_assert (bb || changed);
7494 if (bb != NULL)
7495 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7498 return changed;
7501 /* This function is called whenever a new edge is created or
7502 redirected. */
7504 static void
7505 gimple_execute_on_growing_pred (edge e)
7507 basic_block bb = e->dest;
7509 if (!gimple_seq_empty_p (phi_nodes (bb)))
7510 reserve_phi_args_for_new_edge (bb);
7513 /* This function is called immediately before edge E is removed from
7514 the edge vector E->dest->preds. */
7516 static void
7517 gimple_execute_on_shrinking_pred (edge e)
7519 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7520 remove_phi_args (e);
7523 /*---------------------------------------------------------------------------
7524 Helper functions for Loop versioning
7525 ---------------------------------------------------------------------------*/
7527 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7528 of 'first'. Both of them are dominated by 'new_head' basic block. When
7529 'new_head' was created by 'second's incoming edge it received phi arguments
7530 on the edge by split_edge(). Later, additional edge 'e' was created to
7531 connect 'new_head' and 'first'. Now this routine adds phi args on this
7532 additional edge 'e' that new_head to second edge received as part of edge
7533 splitting. */
7535 static void
7536 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7537 basic_block new_head, edge e)
7539 gimple phi1, phi2;
7540 gimple_stmt_iterator psi1, psi2;
7541 tree def;
7542 edge e2 = find_edge (new_head, second);
7544 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7545 edge, we should always have an edge from NEW_HEAD to SECOND. */
7546 gcc_assert (e2 != NULL);
7548 /* Browse all 'second' basic block phi nodes and add phi args to
7549 edge 'e' for 'first' head. PHI args are always in correct order. */
7551 for (psi2 = gsi_start_phis (second),
7552 psi1 = gsi_start_phis (first);
7553 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7554 gsi_next (&psi2), gsi_next (&psi1))
7556 phi1 = gsi_stmt (psi1);
7557 phi2 = gsi_stmt (psi2);
7558 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7559 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7564 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7565 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7566 the destination of the ELSE part. */
7568 static void
7569 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7570 basic_block second_head ATTRIBUTE_UNUSED,
7571 basic_block cond_bb, void *cond_e)
7573 gimple_stmt_iterator gsi;
7574 gimple new_cond_expr;
7575 tree cond_expr = (tree) cond_e;
7576 edge e0;
7578 /* Build new conditional expr */
7579 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7580 NULL_TREE, NULL_TREE);
7582 /* Add new cond in cond_bb. */
7583 gsi = gsi_last_bb (cond_bb);
7584 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7586 /* Adjust edges appropriately to connect new head with first head
7587 as well as second head. */
7588 e0 = single_succ_edge (cond_bb);
7589 e0->flags &= ~EDGE_FALLTHRU;
7590 e0->flags |= EDGE_FALSE_VALUE;
7594 /* Do book-keeping of basic block BB for the profile consistency checker.
7595 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7596 then do post-pass accounting. Store the counting in RECORD. */
7597 static void
7598 gimple_account_profile_record (basic_block bb, int after_pass,
7599 struct profile_record *record)
7601 gimple_stmt_iterator i;
7602 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7604 record->size[after_pass]
7605 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7606 if (profile_status == PROFILE_READ)
7607 record->time[after_pass]
7608 += estimate_num_insns (gsi_stmt (i),
7609 &eni_time_weights) * bb->count;
7610 else if (profile_status == PROFILE_GUESSED)
7611 record->time[after_pass]
7612 += estimate_num_insns (gsi_stmt (i),
7613 &eni_time_weights) * bb->frequency;
7617 struct cfg_hooks gimple_cfg_hooks = {
7618 "gimple",
7619 gimple_verify_flow_info,
7620 gimple_dump_bb, /* dump_bb */
7621 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7622 create_bb, /* create_basic_block */
7623 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7624 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7625 gimple_can_remove_branch_p, /* can_remove_branch_p */
7626 remove_bb, /* delete_basic_block */
7627 gimple_split_block, /* split_block */
7628 gimple_move_block_after, /* move_block_after */
7629 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7630 gimple_merge_blocks, /* merge_blocks */
7631 gimple_predict_edge, /* predict_edge */
7632 gimple_predicted_by_p, /* predicted_by_p */
7633 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7634 gimple_duplicate_bb, /* duplicate_block */
7635 gimple_split_edge, /* split_edge */
7636 gimple_make_forwarder_block, /* make_forward_block */
7637 NULL, /* tidy_fallthru_edge */
7638 NULL, /* force_nonfallthru */
7639 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7640 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7641 gimple_flow_call_edges_add, /* flow_call_edges_add */
7642 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7643 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7644 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7645 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7646 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7647 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7648 flush_pending_stmts, /* flush_pending_stmts */
7649 gimple_empty_block_p, /* block_empty_p */
7650 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7651 gimple_account_profile_record,
7655 /* Split all critical edges. */
7657 static unsigned int
7658 split_critical_edges (void)
7660 basic_block bb;
7661 edge e;
7662 edge_iterator ei;
7664 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7665 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7666 mappings around the calls to split_edge. */
7667 start_recording_case_labels ();
7668 FOR_ALL_BB (bb)
7670 FOR_EACH_EDGE (e, ei, bb->succs)
7672 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7673 split_edge (e);
7674 /* PRE inserts statements to edges and expects that
7675 since split_critical_edges was done beforehand, committing edge
7676 insertions will not split more edges. In addition to critical
7677 edges we must split edges that have multiple successors and
7678 end by control flow statements, such as RESX.
7679 Go ahead and split them too. This matches the logic in
7680 gimple_find_edge_insert_loc. */
7681 else if ((!single_pred_p (e->dest)
7682 || !gimple_seq_empty_p (phi_nodes (e->dest))
7683 || e->dest == EXIT_BLOCK_PTR)
7684 && e->src != ENTRY_BLOCK_PTR
7685 && !(e->flags & EDGE_ABNORMAL))
7687 gimple_stmt_iterator gsi;
7689 gsi = gsi_last_bb (e->src);
7690 if (!gsi_end_p (gsi)
7691 && stmt_ends_bb_p (gsi_stmt (gsi))
7692 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7693 && !gimple_call_builtin_p (gsi_stmt (gsi),
7694 BUILT_IN_RETURN)))
7695 split_edge (e);
7699 end_recording_case_labels ();
7700 return 0;
7703 struct gimple_opt_pass pass_split_crit_edges =
7706 GIMPLE_PASS,
7707 "crited", /* name */
7708 OPTGROUP_NONE, /* optinfo_flags */
7709 NULL, /* gate */
7710 split_critical_edges, /* execute */
7711 NULL, /* sub */
7712 NULL, /* next */
7713 0, /* static_pass_number */
7714 TV_TREE_SPLIT_EDGES, /* tv_id */
7715 PROP_cfg, /* properties required */
7716 PROP_no_crit_edges, /* properties_provided */
7717 0, /* properties_destroyed */
7718 0, /* todo_flags_start */
7719 TODO_verify_flow /* todo_flags_finish */
7724 /* Build a ternary operation and gimplify it. Emit code before GSI.
7725 Return the gimple_val holding the result. */
7727 tree
7728 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7729 tree type, tree a, tree b, tree c)
7731 tree ret;
7732 location_t loc = gimple_location (gsi_stmt (*gsi));
7734 ret = fold_build3_loc (loc, code, type, a, b, c);
7735 STRIP_NOPS (ret);
7737 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7738 GSI_SAME_STMT);
7741 /* Build a binary operation and gimplify it. Emit code before GSI.
7742 Return the gimple_val holding the result. */
7744 tree
7745 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7746 tree type, tree a, tree b)
7748 tree ret;
7750 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7751 STRIP_NOPS (ret);
7753 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7754 GSI_SAME_STMT);
7757 /* Build a unary operation and gimplify it. Emit code before GSI.
7758 Return the gimple_val holding the result. */
7760 tree
7761 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7762 tree a)
7764 tree ret;
7766 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7767 STRIP_NOPS (ret);
7769 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7770 GSI_SAME_STMT);
7775 /* Emit return warnings. */
7777 static unsigned int
7778 execute_warn_function_return (void)
7780 source_location location;
7781 gimple last;
7782 edge e;
7783 edge_iterator ei;
7785 if (!targetm.warn_func_return (cfun->decl))
7786 return 0;
7788 /* If we have a path to EXIT, then we do return. */
7789 if (TREE_THIS_VOLATILE (cfun->decl)
7790 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7792 location = UNKNOWN_LOCATION;
7793 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7795 last = last_stmt (e->src);
7796 if ((gimple_code (last) == GIMPLE_RETURN
7797 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7798 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7799 break;
7801 if (location == UNKNOWN_LOCATION)
7802 location = cfun->function_end_locus;
7803 warning_at (location, 0, "%<noreturn%> function does return");
7806 /* If we see "return;" in some basic block, then we do reach the end
7807 without returning a value. */
7808 else if (warn_return_type
7809 && !TREE_NO_WARNING (cfun->decl)
7810 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7811 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7813 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7815 gimple last = last_stmt (e->src);
7816 if (gimple_code (last) == GIMPLE_RETURN
7817 && gimple_return_retval (last) == NULL
7818 && !gimple_no_warning_p (last))
7820 location = gimple_location (last);
7821 if (location == UNKNOWN_LOCATION)
7822 location = cfun->function_end_locus;
7823 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7824 TREE_NO_WARNING (cfun->decl) = 1;
7825 break;
7829 return 0;
7833 /* Given a basic block B which ends with a conditional and has
7834 precisely two successors, determine which of the edges is taken if
7835 the conditional is true and which is taken if the conditional is
7836 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7838 void
7839 extract_true_false_edges_from_block (basic_block b,
7840 edge *true_edge,
7841 edge *false_edge)
7843 edge e = EDGE_SUCC (b, 0);
7845 if (e->flags & EDGE_TRUE_VALUE)
7847 *true_edge = e;
7848 *false_edge = EDGE_SUCC (b, 1);
7850 else
7852 *false_edge = e;
7853 *true_edge = EDGE_SUCC (b, 1);
7857 struct gimple_opt_pass pass_warn_function_return =
7860 GIMPLE_PASS,
7861 "*warn_function_return", /* name */
7862 OPTGROUP_NONE, /* optinfo_flags */
7863 NULL, /* gate */
7864 execute_warn_function_return, /* execute */
7865 NULL, /* sub */
7866 NULL, /* next */
7867 0, /* static_pass_number */
7868 TV_NONE, /* tv_id */
7869 PROP_cfg, /* properties_required */
7870 0, /* properties_provided */
7871 0, /* properties_destroyed */
7872 0, /* todo_flags_start */
7873 0 /* todo_flags_finish */
7877 /* Emit noreturn warnings. */
7879 static unsigned int
7880 execute_warn_function_noreturn (void)
7882 if (!TREE_THIS_VOLATILE (current_function_decl)
7883 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7884 warn_function_noreturn (current_function_decl);
7885 return 0;
7888 static bool
7889 gate_warn_function_noreturn (void)
7891 return warn_suggest_attribute_noreturn;
7894 struct gimple_opt_pass pass_warn_function_noreturn =
7897 GIMPLE_PASS,
7898 "*warn_function_noreturn", /* name */
7899 OPTGROUP_NONE, /* optinfo_flags */
7900 gate_warn_function_noreturn, /* gate */
7901 execute_warn_function_noreturn, /* execute */
7902 NULL, /* sub */
7903 NULL, /* next */
7904 0, /* static_pass_number */
7905 TV_NONE, /* tv_id */
7906 PROP_cfg, /* properties_required */
7907 0, /* properties_provided */
7908 0, /* properties_destroyed */
7909 0, /* todo_flags_start */
7910 0 /* todo_flags_finish */
7915 /* Walk a gimplified function and warn for functions whose return value is
7916 ignored and attribute((warn_unused_result)) is set. This is done before
7917 inlining, so we don't have to worry about that. */
7919 static void
7920 do_warn_unused_result (gimple_seq seq)
7922 tree fdecl, ftype;
7923 gimple_stmt_iterator i;
7925 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7927 gimple g = gsi_stmt (i);
7929 switch (gimple_code (g))
7931 case GIMPLE_BIND:
7932 do_warn_unused_result (gimple_bind_body (g));
7933 break;
7934 case GIMPLE_TRY:
7935 do_warn_unused_result (gimple_try_eval (g));
7936 do_warn_unused_result (gimple_try_cleanup (g));
7937 break;
7938 case GIMPLE_CATCH:
7939 do_warn_unused_result (gimple_catch_handler (g));
7940 break;
7941 case GIMPLE_EH_FILTER:
7942 do_warn_unused_result (gimple_eh_filter_failure (g));
7943 break;
7945 case GIMPLE_CALL:
7946 if (gimple_call_lhs (g))
7947 break;
7948 if (gimple_call_internal_p (g))
7949 break;
7951 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7952 LHS. All calls whose value is ignored should be
7953 represented like this. Look for the attribute. */
7954 fdecl = gimple_call_fndecl (g);
7955 ftype = gimple_call_fntype (g);
7957 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7959 location_t loc = gimple_location (g);
7961 if (fdecl)
7962 warning_at (loc, OPT_Wunused_result,
7963 "ignoring return value of %qD, "
7964 "declared with attribute warn_unused_result",
7965 fdecl);
7966 else
7967 warning_at (loc, OPT_Wunused_result,
7968 "ignoring return value of function "
7969 "declared with attribute warn_unused_result");
7971 break;
7973 default:
7974 /* Not a container, not a call, or a call whose value is used. */
7975 break;
7980 static unsigned int
7981 run_warn_unused_result (void)
7983 do_warn_unused_result (gimple_body (current_function_decl));
7984 return 0;
7987 static bool
7988 gate_warn_unused_result (void)
7990 return flag_warn_unused_result;
7993 struct gimple_opt_pass pass_warn_unused_result =
7996 GIMPLE_PASS,
7997 "*warn_unused_result", /* name */
7998 OPTGROUP_NONE, /* optinfo_flags */
7999 gate_warn_unused_result, /* gate */
8000 run_warn_unused_result, /* execute */
8001 NULL, /* sub */
8002 NULL, /* next */
8003 0, /* static_pass_number */
8004 TV_NONE, /* tv_id */
8005 PROP_gimple_any, /* properties_required */
8006 0, /* properties_provided */
8007 0, /* properties_destroyed */
8008 0, /* todo_flags_start */
8009 0, /* todo_flags_finish */
8014 /* Garbage collection support for edge_def. */
8016 extern void gt_ggc_mx (tree&);
8017 extern void gt_ggc_mx (gimple&);
8018 extern void gt_ggc_mx (rtx&);
8019 extern void gt_ggc_mx (basic_block&);
8021 void
8022 gt_ggc_mx (edge_def *e)
8024 tree block = LOCATION_BLOCK (e->goto_locus);
8025 gt_ggc_mx (e->src);
8026 gt_ggc_mx (e->dest);
8027 if (current_ir_type () == IR_GIMPLE)
8028 gt_ggc_mx (e->insns.g);
8029 else
8030 gt_ggc_mx (e->insns.r);
8031 gt_ggc_mx (block);
8034 /* PCH support for edge_def. */
8036 extern void gt_pch_nx (tree&);
8037 extern void gt_pch_nx (gimple&);
8038 extern void gt_pch_nx (rtx&);
8039 extern void gt_pch_nx (basic_block&);
8041 void
8042 gt_pch_nx (edge_def *e)
8044 tree block = LOCATION_BLOCK (e->goto_locus);
8045 gt_pch_nx (e->src);
8046 gt_pch_nx (e->dest);
8047 if (current_ir_type () == IR_GIMPLE)
8048 gt_pch_nx (e->insns.g);
8049 else
8050 gt_pch_nx (e->insns.r);
8051 gt_pch_nx (block);
8054 void
8055 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8057 tree block = LOCATION_BLOCK (e->goto_locus);
8058 op (&(e->src), cookie);
8059 op (&(e->dest), cookie);
8060 if (current_ir_type () == IR_GIMPLE)
8061 op (&(e->insns.g), cookie);
8062 else
8063 op (&(e->insns.r), cookie);
8064 op (&(block), cookie);