1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
6 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7 2002, 2005, 2010 Free Software Foundation, Inc.
8 This file is part of the GNU C Library.
10 The GNU C Library is free software; you can redistribute it and/or
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
15 The GNU C Library is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 Lesser General Public License for more details.
20 You should have received a copy of the GNU Lesser General Public
21 License along with the GNU C Library; if not, write to the Free
22 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25 /* This file has been modified for usage in libiberty. It includes "xregex.h"
26 instead of <regex.h>. The "xregex.h" header file renames all external
27 routines with an "x" prefix so they do not collide with the native regex
28 routines or with other components regex routines. */
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
37 #ifndef INSIDE_RECURSION
45 #ifndef INSIDE_RECURSION
47 # if defined STDC_HEADERS && !defined emacs
50 /* We need this for `regex.h', and perhaps for the Emacs include files. */
51 # include <sys/types.h>
54 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
56 /* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
58 # if defined _LIBC || WIDE_CHAR_SUPPORT
59 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
65 /* We have to keep the namespace clean. */
66 # define regfree(preg) __regfree (preg)
67 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69 # define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71 # define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75 # define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77 # define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79 # define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81 # define re_set_syntax(syntax) __re_set_syntax (syntax)
82 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86 # define btowc __btowc
88 /* We are also using some library internals. */
89 # include <locale/localeinfo.h>
90 # include <locale/elem-hash.h>
91 # include <langinfo.h>
92 # include <locale/coll-lookup.h>
95 /* This is for other GNU distributions with internationalized messages. */
96 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
100 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
103 # define gettext(msgid) (msgid)
106 # ifndef gettext_noop
107 /* This define is so xgettext can find the internationalizable
109 # define gettext_noop(String) String
112 /* The `emacs' switch turns on certain matching commands
113 that make sense only in Emacs. */
120 # else /* not emacs */
122 /* If we are not linking with Emacs proper,
123 we can't use the relocating allocator
124 even if config.h says that we can. */
127 # if defined STDC_HEADERS || defined _LIBC
134 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
135 If nothing else has been done, use the method below. */
136 # ifdef INHIBIT_STRING_HEADER
137 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
138 # if !defined bzero && !defined bcopy
139 # undef INHIBIT_STRING_HEADER
144 /* This is the normal way of making sure we have a bcopy and a bzero.
145 This is used in most programs--a few other programs avoid this
146 by defining INHIBIT_STRING_HEADER. */
147 # ifndef INHIBIT_STRING_HEADER
148 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
152 # define bzero(s, n) (memset (s, '\0', n), (s))
154 # define bzero(s, n) __bzero (s, n)
158 # include <strings.h>
160 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
163 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
168 /* Define the syntax stuff for \<, \>, etc. */
170 /* This must be nonzero for the wordchar and notwordchar pattern
171 commands in re_match_2. */
176 # ifdef SWITCH_ENUM_BUG
177 # define SWITCH_ENUM_CAST(x) ((int)(x))
179 # define SWITCH_ENUM_CAST(x) (x)
182 # endif /* not emacs */
184 # if defined _LIBC || HAVE_LIMITS_H
189 # define MB_LEN_MAX 1
192 /* Get the interface, including the syntax bits. */
193 # include "xregex.h" /* change for libiberty */
195 /* isalpha etc. are used for the character classes. */
198 /* Jim Meyering writes:
200 "... Some ctype macros are valid only for character codes that
201 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
202 using /bin/cc or gcc but without giving an ansi option). So, all
203 ctype uses should be through macros like ISPRINT... If
204 STDC_HEADERS is defined, then autoconf has verified that the ctype
205 macros don't need to be guarded with references to isascii. ...
206 Defining isascii to 1 should let any compiler worth its salt
207 eliminate the && through constant folding."
208 Solaris defines some of these symbols so we must undefine them first. */
211 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
212 # define ISASCII(c) 1
214 # define ISASCII(c) isascii(c)
218 # define ISBLANK(c) (ISASCII (c) && isblank (c))
220 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
225 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
229 # define ISPRINT(c) (ISASCII (c) && isprint (c))
230 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
231 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
232 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
233 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
234 # define ISLOWER(c) (ISASCII (c) && islower (c))
235 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
236 # define ISSPACE(c) (ISASCII (c) && isspace (c))
237 # define ISUPPER(c) (ISASCII (c) && isupper (c))
238 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
241 # define TOLOWER(c) _tolower(c)
243 # define TOLOWER(c) tolower(c)
247 # define NULL (void *)0
250 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
251 since ours (we hope) works properly with all combinations of
252 machines, compilers, `char' and `unsigned char' argument types.
253 (Per Bothner suggested the basic approach.) */
254 # undef SIGN_EXTEND_CHAR
256 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
257 # else /* not __STDC__ */
258 /* As in Harbison and Steele. */
259 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
263 /* How many characters in the character set. */
264 # define CHAR_SET_SIZE 256
268 extern char *re_syntax_table
;
270 # else /* not SYNTAX_TABLE */
272 static char re_syntax_table
[CHAR_SET_SIZE
];
274 static void init_syntax_once (void);
277 init_syntax_once (void)
284 bzero (re_syntax_table
, sizeof re_syntax_table
);
286 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
288 re_syntax_table
[c
] = Sword
;
290 re_syntax_table
['_'] = Sword
;
295 # endif /* not SYNTAX_TABLE */
297 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
301 /* Integer type for pointers. */
302 # if !defined _LIBC && !defined HAVE_UINTPTR_T
303 typedef unsigned long int uintptr_t;
306 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
307 use `alloca' instead of `malloc'. This is because using malloc in
308 re_search* or re_match* could cause memory leaks when C-g is used in
309 Emacs; also, malloc is slower and causes storage fragmentation. On
310 the other hand, malloc is more portable, and easier to debug.
312 Because we sometimes use alloca, some routines have to be macros,
313 not functions -- `alloca'-allocated space disappears at the end of the
314 function it is called in. */
318 # define REGEX_ALLOCATE malloc
319 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
320 # define REGEX_FREE free
322 # else /* not REGEX_MALLOC */
324 /* Emacs already defines alloca, sometimes. */
327 /* Make alloca work the best possible way. */
329 # define alloca __builtin_alloca
330 # else /* not __GNUC__ */
333 # endif /* HAVE_ALLOCA_H */
334 # endif /* not __GNUC__ */
336 # endif /* not alloca */
338 # define REGEX_ALLOCATE alloca
340 /* Assumes a `char *destination' variable. */
341 # define REGEX_REALLOCATE(source, osize, nsize) \
342 (destination = (char *) alloca (nsize), \
343 memcpy (destination, source, osize))
345 /* No need to do anything to free, after alloca. */
346 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
348 # endif /* not REGEX_MALLOC */
350 /* Define how to allocate the failure stack. */
352 # if defined REL_ALLOC && defined REGEX_MALLOC
354 # define REGEX_ALLOCATE_STACK(size) \
355 r_alloc (&failure_stack_ptr, (size))
356 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
357 r_re_alloc (&failure_stack_ptr, (nsize))
358 # define REGEX_FREE_STACK(ptr) \
359 r_alloc_free (&failure_stack_ptr)
361 # else /* not using relocating allocator */
365 # define REGEX_ALLOCATE_STACK malloc
366 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
367 # define REGEX_FREE_STACK free
369 # else /* not REGEX_MALLOC */
371 # define REGEX_ALLOCATE_STACK alloca
373 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
374 REGEX_REALLOCATE (source, osize, nsize)
375 /* No need to explicitly free anything. */
376 # define REGEX_FREE_STACK(arg)
378 # endif /* not REGEX_MALLOC */
379 # endif /* not using relocating allocator */
382 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
383 `string1' or just past its end. This works if PTR is NULL, which is
385 # define FIRST_STRING_P(ptr) \
386 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
388 /* (Re)Allocate N items of type T using malloc, or fail. */
389 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
390 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
391 # define RETALLOC_IF(addr, n, t) \
392 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
393 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
395 # define BYTEWIDTH 8 /* In bits. */
397 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
401 # define MAX(a, b) ((a) > (b) ? (a) : (b))
402 # define MIN(a, b) ((a) < (b) ? (a) : (b))
404 typedef char boolean
;
408 static reg_errcode_t
byte_regex_compile (const char *pattern
, size_t size
,
410 struct re_pattern_buffer
*bufp
);
412 static int byte_re_match_2_internal (struct re_pattern_buffer
*bufp
,
413 const char *string1
, int size1
,
414 const char *string2
, int size2
,
416 struct re_registers
*regs
,
418 static int byte_re_search_2 (struct re_pattern_buffer
*bufp
,
419 const char *string1
, int size1
,
420 const char *string2
, int size2
,
421 int startpos
, int range
,
422 struct re_registers
*regs
, int stop
);
423 static int byte_re_compile_fastmap (struct re_pattern_buffer
*bufp
);
426 static reg_errcode_t
wcs_regex_compile (const char *pattern
, size_t size
,
428 struct re_pattern_buffer
*bufp
);
431 static int wcs_re_match_2_internal (struct re_pattern_buffer
*bufp
,
432 const char *cstring1
, int csize1
,
433 const char *cstring2
, int csize2
,
435 struct re_registers
*regs
,
437 wchar_t *string1
, int size1
,
438 wchar_t *string2
, int size2
,
439 int *mbs_offset1
, int *mbs_offset2
);
440 static int wcs_re_search_2 (struct re_pattern_buffer
*bufp
,
441 const char *string1
, int size1
,
442 const char *string2
, int size2
,
443 int startpos
, int range
,
444 struct re_registers
*regs
, int stop
);
445 static int wcs_re_compile_fastmap (struct re_pattern_buffer
*bufp
);
448 /* These are the command codes that appear in compiled regular
449 expressions. Some opcodes are followed by argument bytes. A
450 command code can specify any interpretation whatsoever for its
451 arguments. Zero bytes may appear in the compiled regular expression. */
457 /* Succeed right away--no more backtracking. */
460 /* Followed by one byte giving n, then by n literal bytes. */
464 /* Same as exactn, but contains binary data. */
468 /* Matches any (more or less) character. */
471 /* Matches any one char belonging to specified set. First
472 following byte is number of bitmap bytes. Then come bytes
473 for a bitmap saying which chars are in. Bits in each byte
474 are ordered low-bit-first. A character is in the set if its
475 bit is 1. A character too large to have a bit in the map is
476 automatically not in the set. */
477 /* ifdef MBS_SUPPORT, following element is length of character
478 classes, length of collating symbols, length of equivalence
479 classes, length of character ranges, and length of characters.
480 Next, character class element, collating symbols elements,
481 equivalence class elements, range elements, and character
483 See regex_compile function. */
486 /* Same parameters as charset, but match any character that is
487 not one of those specified. */
490 /* Start remembering the text that is matched, for storing in a
491 register. Followed by one byte with the register number, in
492 the range 0 to one less than the pattern buffer's re_nsub
493 field. Then followed by one byte with the number of groups
494 inner to this one. (This last has to be part of the
495 start_memory only because we need it in the on_failure_jump
499 /* Stop remembering the text that is matched and store it in a
500 memory register. Followed by one byte with the register
501 number, in the range 0 to one less than `re_nsub' in the
502 pattern buffer, and one byte with the number of inner groups,
503 just like `start_memory'. (We need the number of inner
504 groups here because we don't have any easy way of finding the
505 corresponding start_memory when we're at a stop_memory.) */
508 /* Match a duplicate of something remembered. Followed by one
509 byte containing the register number. */
512 /* Fail unless at beginning of line. */
515 /* Fail unless at end of line. */
518 /* Succeeds if at beginning of buffer (if emacs) or at beginning
519 of string to be matched (if not). */
522 /* Analogously, for end of buffer/string. */
525 /* Followed by two byte relative address to which to jump. */
528 /* Same as jump, but marks the end of an alternative. */
531 /* Followed by two-byte relative address of place to resume at
532 in case of failure. */
533 /* ifdef MBS_SUPPORT, the size of address is 1. */
536 /* Like on_failure_jump, but pushes a placeholder instead of the
537 current string position when executed. */
538 on_failure_keep_string_jump
,
540 /* Throw away latest failure point and then jump to following
541 two-byte relative address. */
542 /* ifdef MBS_SUPPORT, the size of address is 1. */
545 /* Change to pop_failure_jump if know won't have to backtrack to
546 match; otherwise change to jump. This is used to jump
547 back to the beginning of a repeat. If what follows this jump
548 clearly won't match what the repeat does, such that we can be
549 sure that there is no use backtracking out of repetitions
550 already matched, then we change it to a pop_failure_jump.
551 Followed by two-byte address. */
552 /* ifdef MBS_SUPPORT, the size of address is 1. */
555 /* Jump to following two-byte address, and push a dummy failure
556 point. This failure point will be thrown away if an attempt
557 is made to use it for a failure. A `+' construct makes this
558 before the first repeat. Also used as an intermediary kind
559 of jump when compiling an alternative. */
560 /* ifdef MBS_SUPPORT, the size of address is 1. */
563 /* Push a dummy failure point and continue. Used at the end of
567 /* Followed by two-byte relative address and two-byte number n.
568 After matching N times, jump to the address upon failure. */
569 /* ifdef MBS_SUPPORT, the size of address is 1. */
572 /* Followed by two-byte relative address, and two-byte number n.
573 Jump to the address N times, then fail. */
574 /* ifdef MBS_SUPPORT, the size of address is 1. */
577 /* Set the following two-byte relative address to the
578 subsequent two-byte number. The address *includes* the two
580 /* ifdef MBS_SUPPORT, the size of address is 1. */
583 wordchar
, /* Matches any word-constituent character. */
584 notwordchar
, /* Matches any char that is not a word-constituent. */
586 wordbeg
, /* Succeeds if at word beginning. */
587 wordend
, /* Succeeds if at word end. */
589 wordbound
, /* Succeeds if at a word boundary. */
590 notwordbound
/* Succeeds if not at a word boundary. */
593 ,before_dot
, /* Succeeds if before point. */
594 at_dot
, /* Succeeds if at point. */
595 after_dot
, /* Succeeds if after point. */
597 /* Matches any character whose syntax is specified. Followed by
598 a byte which contains a syntax code, e.g., Sword. */
601 /* Matches any character whose syntax is not that specified. */
605 #endif /* not INSIDE_RECURSION */
610 # define UCHAR_T unsigned char
611 # define COMPILED_BUFFER_VAR bufp->buffer
612 # define OFFSET_ADDRESS_SIZE 2
613 # define PREFIX(name) byte_##name
614 # define ARG_PREFIX(name) name
615 # define PUT_CHAR(c) putchar (c)
618 # define CHAR_T wchar_t
619 # define UCHAR_T wchar_t
620 # define COMPILED_BUFFER_VAR wc_buffer
621 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
622 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
623 # define PREFIX(name) wcs_##name
624 # define ARG_PREFIX(name) c##name
625 /* Should we use wide stream?? */
626 # define PUT_CHAR(c) printf ("%C", c);
632 # define INSIDE_RECURSION
634 # undef INSIDE_RECURSION
637 # define INSIDE_RECURSION
639 # undef INSIDE_RECURSION
643 #ifdef INSIDE_RECURSION
644 /* Common operations on the compiled pattern. */
646 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
647 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
650 # define STORE_NUMBER(destination, number) \
652 *(destination) = (UCHAR_T)(number); \
655 # define STORE_NUMBER(destination, number) \
657 (destination)[0] = (number) & 0377; \
658 (destination)[1] = (number) >> 8; \
662 /* Same as STORE_NUMBER, except increment DESTINATION to
663 the byte after where the number is stored. Therefore, DESTINATION
664 must be an lvalue. */
665 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
667 # define STORE_NUMBER_AND_INCR(destination, number) \
669 STORE_NUMBER (destination, number); \
670 (destination) += OFFSET_ADDRESS_SIZE; \
673 /* Put into DESTINATION a number stored in two contiguous bytes starting
675 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
678 # define EXTRACT_NUMBER(destination, source) \
680 (destination) = *(source); \
683 # define EXTRACT_NUMBER(destination, source) \
685 (destination) = *(source) & 0377; \
686 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
691 static void PREFIX(extract_number
) (int *dest
, UCHAR_T
*source
);
693 PREFIX(extract_number
) (int *dest
, UCHAR_T
*source
)
698 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
699 *dest
= *source
& 0377;
704 # ifndef EXTRACT_MACROS /* To debug the macros. */
705 # undef EXTRACT_NUMBER
706 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
707 # endif /* not EXTRACT_MACROS */
711 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
712 SOURCE must be an lvalue. */
714 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
716 EXTRACT_NUMBER (destination, source); \
717 (source) += OFFSET_ADDRESS_SIZE; \
721 static void PREFIX(extract_number_and_incr
) (int *destination
,
724 PREFIX(extract_number_and_incr
) (int *destination
, UCHAR_T
**source
)
726 PREFIX(extract_number
) (destination
, *source
);
727 *source
+= OFFSET_ADDRESS_SIZE
;
730 # ifndef EXTRACT_MACROS
731 # undef EXTRACT_NUMBER_AND_INCR
732 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
733 PREFIX(extract_number_and_incr) (&dest, &src)
734 # endif /* not EXTRACT_MACROS */
740 /* If DEBUG is defined, Regex prints many voluminous messages about what
741 it is doing (if the variable `debug' is nonzero). If linked with the
742 main program in `iregex.c', you can enter patterns and strings
743 interactively. And if linked with the main program in `main.c' and
744 the other test files, you can run the already-written tests. */
748 # ifndef DEFINED_ONCE
750 /* We use standard I/O for debugging. */
753 /* It is useful to test things that ``must'' be true when debugging. */
758 # define DEBUG_STATEMENT(e) e
759 # define DEBUG_PRINT1(x) if (debug) printf (x)
760 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
761 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
762 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
763 # endif /* not DEFINED_ONCE */
765 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
766 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
767 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
768 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
771 /* Print the fastmap in human-readable form. */
773 # ifndef DEFINED_ONCE
775 print_fastmap (char *fastmap
)
777 unsigned was_a_range
= 0;
780 while (i
< (1 << BYTEWIDTH
))
786 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
800 # endif /* not DEFINED_ONCE */
803 /* Print a compiled pattern string in human-readable form, starting at
804 the START pointer into it and ending just before the pointer END. */
807 PREFIX(print_partial_compiled_pattern
) (UCHAR_T
*start
, UCHAR_T
*end
)
820 /* Loop over pattern commands. */
824 printf ("%td:\t", p
- start
);
826 printf ("%ld:\t", (long int) (p
- start
));
829 switch ((re_opcode_t
) *p
++)
837 printf ("/exactn/%d", mcnt
);
849 printf ("/exactn_bin/%d", mcnt
);
852 printf("/%lx", (long int) *p
++);
856 # endif /* MBS_SUPPORT */
860 printf ("/start_memory/%d/%ld", mcnt
, (long int) *p
++);
865 printf ("/stop_memory/%d/%ld", mcnt
, (long int) *p
++);
869 printf ("/duplicate/%ld", (long int) *p
++);
882 printf ("/charset [%s",
883 (re_opcode_t
) *(workp
- 1) == charset_not
? "^" : "");
885 length
= *workp
++; /* the length of char_classes */
886 for (i
=0 ; i
<length
; i
++)
887 printf("[:%lx:]", (long int) *p
++);
888 length
= *workp
++; /* the length of collating_symbol */
889 for (i
=0 ; i
<length
;)
893 PUT_CHAR((i
++,*p
++));
897 length
= *workp
++; /* the length of equivalence_class */
898 for (i
=0 ; i
<length
;)
902 PUT_CHAR((i
++,*p
++));
906 length
= *workp
++; /* the length of char_range */
907 for (i
=0 ; i
<length
; i
++)
909 wchar_t range_start
= *p
++;
910 wchar_t range_end
= *p
++;
911 printf("%C-%C", range_start
, range_end
);
913 length
= *workp
++; /* the length of char */
914 for (i
=0 ; i
<length
; i
++)
918 register int c
, last
= -100;
919 register int in_range
= 0;
921 printf ("/charset [%s",
922 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
924 assert (p
+ *p
< pend
);
926 for (c
= 0; c
< 256; c
++)
928 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
930 /* Are we starting a range? */
931 if (last
+ 1 == c
&& ! in_range
)
936 /* Have we broken a range? */
937 else if (last
+ 1 != c
&& in_range
)
967 case on_failure_jump
:
968 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
970 printf ("/on_failure_jump to %td", p
+ mcnt
- start
);
972 printf ("/on_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
976 case on_failure_keep_string_jump
:
977 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
979 printf ("/on_failure_keep_string_jump to %td", p
+ mcnt
- start
);
981 printf ("/on_failure_keep_string_jump to %ld",
982 (long int) (p
+ mcnt
- start
));
986 case dummy_failure_jump
:
987 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
989 printf ("/dummy_failure_jump to %td", p
+ mcnt
- start
);
991 printf ("/dummy_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
995 case push_dummy_failure
:
996 printf ("/push_dummy_failure");
1000 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1002 printf ("/maybe_pop_jump to %td", p
+ mcnt
- start
);
1004 printf ("/maybe_pop_jump to %ld", (long int) (p
+ mcnt
- start
));
1008 case pop_failure_jump
:
1009 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1011 printf ("/pop_failure_jump to %td", p
+ mcnt
- start
);
1013 printf ("/pop_failure_jump to %ld", (long int) (p
+ mcnt
- start
));
1018 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1020 printf ("/jump_past_alt to %td", p
+ mcnt
- start
);
1022 printf ("/jump_past_alt to %ld", (long int) (p
+ mcnt
- start
));
1027 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1029 printf ("/jump to %td", p
+ mcnt
- start
);
1031 printf ("/jump to %ld", (long int) (p
+ mcnt
- start
));
1036 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1038 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1040 printf ("/succeed_n to %td, %d times", p1
- start
, mcnt2
);
1042 printf ("/succeed_n to %ld, %d times",
1043 (long int) (p1
- start
), mcnt2
);
1048 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1050 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1051 printf ("/jump_n to %d, %d times", p1
- start
, mcnt2
);
1055 PREFIX(extract_number_and_incr
) (&mcnt
, &p
);
1057 PREFIX(extract_number_and_incr
) (&mcnt2
, &p
);
1059 printf ("/set_number_at location %td to %d", p1
- start
, mcnt2
);
1061 printf ("/set_number_at location %ld to %d",
1062 (long int) (p1
- start
), mcnt2
);
1067 printf ("/wordbound");
1071 printf ("/notwordbound");
1075 printf ("/wordbeg");
1079 printf ("/wordend");
1084 printf ("/before_dot");
1092 printf ("/after_dot");
1096 printf ("/syntaxspec");
1098 printf ("/%d", mcnt
);
1102 printf ("/notsyntaxspec");
1104 printf ("/%d", mcnt
);
1109 printf ("/wordchar");
1113 printf ("/notwordchar");
1125 printf ("?%ld", (long int) *(p
-1));
1132 printf ("%td:\tend of pattern.\n", p
- start
);
1134 printf ("%ld:\tend of pattern.\n", (long int) (p
- start
));
1140 PREFIX(print_compiled_pattern
) (struct re_pattern_buffer
*bufp
)
1142 UCHAR_T
*buffer
= (UCHAR_T
*) bufp
->buffer
;
1144 PREFIX(print_partial_compiled_pattern
) (buffer
, buffer
1145 + bufp
->used
/ sizeof(UCHAR_T
));
1146 printf ("%ld bytes used/%ld bytes allocated.\n",
1147 bufp
->used
, bufp
->allocated
);
1149 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1151 printf ("fastmap: ");
1152 print_fastmap (bufp
->fastmap
);
1156 printf ("re_nsub: %Zd\t", bufp
->re_nsub
);
1158 printf ("re_nsub: %ld\t", (long int) bufp
->re_nsub
);
1160 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1161 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1162 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
1163 printf ("no_sub: %d\t", bufp
->no_sub
);
1164 printf ("not_bol: %d\t", bufp
->not_bol
);
1165 printf ("not_eol: %d\t", bufp
->not_eol
);
1166 printf ("syntax: %lx\n", bufp
->syntax
);
1167 /* Perhaps we should print the translate table? */
1172 PREFIX(print_double_string
) (const CHAR_T
*where
, const CHAR_T
*string1
,
1173 int size1
, const CHAR_T
*string2
, int size2
)
1183 if (FIRST_STRING_P (where
))
1185 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1186 PUT_CHAR (string1
[this_char
]);
1192 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1194 PUT_CHAR (string2
[this_char
]);
1197 fputs ("...", stdout
);
1204 # ifndef DEFINED_ONCE
1212 # else /* not DEBUG */
1214 # ifndef DEFINED_ONCE
1218 # define DEBUG_STATEMENT(e)
1219 # define DEBUG_PRINT1(x)
1220 # define DEBUG_PRINT2(x1, x2)
1221 # define DEBUG_PRINT3(x1, x2, x3)
1222 # define DEBUG_PRINT4(x1, x2, x3, x4)
1223 # endif /* not DEFINED_ONCE */
1224 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1225 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1227 # endif /* not DEBUG */
1232 /* This convert a multibyte string to a wide character string.
1233 And write their correspondances to offset_buffer(see below)
1234 and write whether each wchar_t is binary data to is_binary.
1235 This assume invalid multibyte sequences as binary data.
1236 We assume offset_buffer and is_binary is already allocated
1239 static size_t convert_mbs_to_wcs (CHAR_T
*dest
, const unsigned char* src
,
1240 size_t len
, int *offset_buffer
,
1243 convert_mbs_to_wcs (CHAR_T
*dest
, const unsigned char*src
, size_t len
,
1244 int *offset_buffer
, char *is_binary
)
1245 /* It hold correspondances between src(char string) and
1246 dest(wchar_t string) for optimization.
1248 dest = {'X', 'Y', 'Z'}
1249 (each "xxx", "y" and "zz" represent one multibyte character
1250 corresponding to 'X', 'Y' and 'Z'.)
1251 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1255 wchar_t *pdest
= dest
;
1256 const unsigned char *psrc
= src
;
1257 size_t wc_count
= 0;
1261 size_t mb_remain
= len
;
1262 size_t mb_count
= 0;
1264 /* Initialize the conversion state. */
1265 memset (&mbs
, 0, sizeof (mbstate_t));
1267 offset_buffer
[0] = 0;
1268 for( ; mb_remain
> 0 ; ++wc_count
, ++pdest
, mb_remain
-= consumed
,
1272 consumed
= __mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1274 consumed
= mbrtowc (pdest
, psrc
, mb_remain
, &mbs
);
1278 /* failed to convert. maybe src contains binary data.
1279 So we consume 1 byte manualy. */
1283 is_binary
[wc_count
] = TRUE
;
1286 is_binary
[wc_count
] = FALSE
;
1287 /* In sjis encoding, we use yen sign as escape character in
1288 place of reverse solidus. So we convert 0x5c(yen sign in
1289 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1290 solidus in UCS2). */
1291 if (consumed
== 1 && (int) *psrc
== 0x5c && (int) *pdest
== 0xa5)
1292 *pdest
= (wchar_t) *psrc
;
1294 offset_buffer
[wc_count
+ 1] = mb_count
+= consumed
;
1297 /* Fill remain of the buffer with sentinel. */
1298 for (i
= wc_count
+ 1 ; i
<= len
; i
++)
1299 offset_buffer
[i
] = mb_count
+ 1;
1306 #else /* not INSIDE_RECURSION */
1308 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1309 also be assigned to arbitrarily: each pattern buffer stores its own
1310 syntax, so it can be changed between regex compilations. */
1311 /* This has no initializer because initialized variables in Emacs
1312 become read-only after dumping. */
1313 reg_syntax_t re_syntax_options
;
1316 /* Specify the precise syntax of regexps for compilation. This provides
1317 for compatibility for various utilities which historically have
1318 different, incompatible syntaxes.
1320 The argument SYNTAX is a bit mask comprised of the various bits
1321 defined in regex.h. We return the old syntax. */
1324 re_set_syntax (reg_syntax_t syntax
)
1326 reg_syntax_t ret
= re_syntax_options
;
1328 re_syntax_options
= syntax
;
1330 if (syntax
& RE_DEBUG
)
1332 else if (debug
) /* was on but now is not */
1338 weak_alias (__re_set_syntax
, re_set_syntax
)
1341 /* This table gives an error message for each of the error codes listed
1342 in regex.h. Obviously the order here has to be same as there.
1343 POSIX doesn't require that we do anything for REG_NOERROR,
1344 but why not be nice? */
1346 static const char *re_error_msgid
[] =
1348 gettext_noop ("Success"), /* REG_NOERROR */
1349 gettext_noop ("No match"), /* REG_NOMATCH */
1350 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1351 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1352 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1353 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1354 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1355 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1356 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1357 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1358 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1359 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1360 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1361 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1362 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1363 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1364 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1367 #endif /* INSIDE_RECURSION */
1369 #ifndef DEFINED_ONCE
1370 /* Avoiding alloca during matching, to placate r_alloc. */
1372 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1373 searching and matching functions should not call alloca. On some
1374 systems, alloca is implemented in terms of malloc, and if we're
1375 using the relocating allocator routines, then malloc could cause a
1376 relocation, which might (if the strings being searched are in the
1377 ralloc heap) shift the data out from underneath the regexp
1380 Here's another reason to avoid allocation: Emacs
1381 processes input from X in a signal handler; processing X input may
1382 call malloc; if input arrives while a matching routine is calling
1383 malloc, then we're scrod. But Emacs can't just block input while
1384 calling matching routines; then we don't notice interrupts when
1385 they come in. So, Emacs blocks input around all regexp calls
1386 except the matching calls, which it leaves unprotected, in the
1387 faith that they will not malloc. */
1389 /* Normally, this is fine. */
1390 # define MATCH_MAY_ALLOCATE
1392 /* When using GNU C, we are not REALLY using the C alloca, no matter
1393 what config.h may say. So don't take precautions for it. */
1398 /* The match routines may not allocate if (1) they would do it with malloc
1399 and (2) it's not safe for them to use malloc.
1400 Note that if REL_ALLOC is defined, matching would not use malloc for the
1401 failure stack, but we would still use it for the register vectors;
1402 so REL_ALLOC should not affect this. */
1403 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1404 # undef MATCH_MAY_ALLOCATE
1406 #endif /* not DEFINED_ONCE */
1408 #ifdef INSIDE_RECURSION
1409 /* Failure stack declarations and macros; both re_compile_fastmap and
1410 re_match_2 use a failure stack. These have to be macros because of
1411 REGEX_ALLOCATE_STACK. */
1414 /* Number of failure points for which to initially allocate space
1415 when matching. If this number is exceeded, we allocate more
1416 space, so it is not a hard limit. */
1417 # ifndef INIT_FAILURE_ALLOC
1418 # define INIT_FAILURE_ALLOC 5
1421 /* Roughly the maximum number of failure points on the stack. Would be
1422 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1423 This is a variable only so users of regex can assign to it; we never
1424 change it ourselves. */
1426 # ifdef INT_IS_16BIT
1428 # ifndef DEFINED_ONCE
1429 # if defined MATCH_MAY_ALLOCATE
1430 /* 4400 was enough to cause a crash on Alpha OSF/1,
1431 whose default stack limit is 2mb. */
1432 long int re_max_failures
= 4000;
1434 long int re_max_failures
= 2000;
1438 union PREFIX(fail_stack_elt
)
1444 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1448 PREFIX(fail_stack_elt_t
) *stack
;
1449 unsigned long int size
;
1450 unsigned long int avail
; /* Offset of next open position. */
1451 } PREFIX(fail_stack_type
);
1453 # else /* not INT_IS_16BIT */
1455 # ifndef DEFINED_ONCE
1456 # if defined MATCH_MAY_ALLOCATE
1457 /* 4400 was enough to cause a crash on Alpha OSF/1,
1458 whose default stack limit is 2mb. */
1459 int re_max_failures
= 4000;
1461 int re_max_failures
= 2000;
1465 union PREFIX(fail_stack_elt
)
1471 typedef union PREFIX(fail_stack_elt
) PREFIX(fail_stack_elt_t
);
1475 PREFIX(fail_stack_elt_t
) *stack
;
1477 unsigned avail
; /* Offset of next open position. */
1478 } PREFIX(fail_stack_type
);
1480 # endif /* INT_IS_16BIT */
1482 # ifndef DEFINED_ONCE
1483 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1484 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1485 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1489 /* Define macros to initialize and free the failure stack.
1490 Do `return -2' if the alloc fails. */
1492 # ifdef MATCH_MAY_ALLOCATE
1493 # define INIT_FAIL_STACK() \
1495 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1496 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1498 if (fail_stack.stack == NULL) \
1501 fail_stack.size = INIT_FAILURE_ALLOC; \
1502 fail_stack.avail = 0; \
1505 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1507 # define INIT_FAIL_STACK() \
1509 fail_stack.avail = 0; \
1512 # define RESET_FAIL_STACK()
1516 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1518 Return 1 if succeeds, and 0 if either ran out of memory
1519 allocating space for it or it was already too large.
1521 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1523 # define DOUBLE_FAIL_STACK(fail_stack) \
1524 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1526 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1527 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1528 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1529 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1531 (fail_stack).stack == NULL \
1533 : ((fail_stack).size <<= 1, \
1537 /* Push pointer POINTER on FAIL_STACK.
1538 Return 1 if was able to do so and 0 if ran out of memory allocating
1540 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1541 ((FAIL_STACK_FULL () \
1542 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1544 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1547 /* Push a pointer value onto the failure stack.
1548 Assumes the variable `fail_stack'. Probably should only
1549 be called from within `PUSH_FAILURE_POINT'. */
1550 # define PUSH_FAILURE_POINTER(item) \
1551 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1553 /* This pushes an integer-valued item onto the failure stack.
1554 Assumes the variable `fail_stack'. Probably should only
1555 be called from within `PUSH_FAILURE_POINT'. */
1556 # define PUSH_FAILURE_INT(item) \
1557 fail_stack.stack[fail_stack.avail++].integer = (item)
1559 /* Push a fail_stack_elt_t value onto the failure stack.
1560 Assumes the variable `fail_stack'. Probably should only
1561 be called from within `PUSH_FAILURE_POINT'. */
1562 # define PUSH_FAILURE_ELT(item) \
1563 fail_stack.stack[fail_stack.avail++] = (item)
1565 /* These three POP... operations complement the three PUSH... operations.
1566 All assume that `fail_stack' is nonempty. */
1567 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1568 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1569 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1571 /* Used to omit pushing failure point id's when we're not debugging. */
1573 # define DEBUG_PUSH PUSH_FAILURE_INT
1574 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1576 # define DEBUG_PUSH(item)
1577 # define DEBUG_POP(item_addr)
1581 /* Push the information about the state we will need
1582 if we ever fail back to it.
1584 Requires variables fail_stack, regstart, regend, reg_info, and
1585 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1588 Does `return FAILURE_CODE' if runs out of memory. */
1590 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1592 char *destination; \
1593 /* Must be int, so when we don't save any registers, the arithmetic \
1594 of 0 + -1 isn't done as unsigned. */ \
1595 /* Can't be int, since there is not a shred of a guarantee that int \
1596 is wide enough to hold a value of something to which pointer can \
1598 active_reg_t this_reg; \
1600 DEBUG_STATEMENT (failure_id++); \
1601 DEBUG_STATEMENT (nfailure_points_pushed++); \
1602 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1603 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1604 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1606 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1607 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1609 /* Ensure we have enough space allocated for what we will push. */ \
1610 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1612 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1613 return failure_code; \
1615 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1616 (fail_stack).size); \
1617 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1620 /* Push the info, starting with the registers. */ \
1621 DEBUG_PRINT1 ("\n"); \
1624 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1627 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1628 DEBUG_STATEMENT (num_regs_pushed++); \
1630 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1631 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1633 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1634 PUSH_FAILURE_POINTER (regend[this_reg]); \
1636 DEBUG_PRINT2 (" info: %p\n ", \
1637 reg_info[this_reg].word.pointer); \
1638 DEBUG_PRINT2 (" match_null=%d", \
1639 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1640 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1641 DEBUG_PRINT2 (" matched_something=%d", \
1642 MATCHED_SOMETHING (reg_info[this_reg])); \
1643 DEBUG_PRINT2 (" ever_matched=%d", \
1644 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1645 DEBUG_PRINT1 ("\n"); \
1646 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1649 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1650 PUSH_FAILURE_INT (lowest_active_reg); \
1652 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1653 PUSH_FAILURE_INT (highest_active_reg); \
1655 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1656 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1657 PUSH_FAILURE_POINTER (pattern_place); \
1659 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1660 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1662 DEBUG_PRINT1 ("'\n"); \
1663 PUSH_FAILURE_POINTER (string_place); \
1665 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1666 DEBUG_PUSH (failure_id); \
1669 # ifndef DEFINED_ONCE
1670 /* This is the number of items that are pushed and popped on the stack
1671 for each register. */
1672 # define NUM_REG_ITEMS 3
1674 /* Individual items aside from the registers. */
1676 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1678 # define NUM_NONREG_ITEMS 4
1681 /* We push at most this many items on the stack. */
1682 /* We used to use (num_regs - 1), which is the number of registers
1683 this regexp will save; but that was changed to 5
1684 to avoid stack overflow for a regexp with lots of parens. */
1685 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1687 /* We actually push this many items. */
1688 # define NUM_FAILURE_ITEMS \
1690 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1694 /* How many items can still be added to the stack without overflowing it. */
1695 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1696 # endif /* not DEFINED_ONCE */
1699 /* Pops what PUSH_FAIL_STACK pushes.
1701 We restore into the parameters, all of which should be lvalues:
1702 STR -- the saved data position.
1703 PAT -- the saved pattern position.
1704 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1705 REGSTART, REGEND -- arrays of string positions.
1706 REG_INFO -- array of information about each subexpression.
1708 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1709 `pend', `string1', `size1', `string2', and `size2'. */
1710 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1712 DEBUG_STATEMENT (unsigned failure_id;) \
1713 active_reg_t this_reg; \
1714 const UCHAR_T *string_temp; \
1716 assert (!FAIL_STACK_EMPTY ()); \
1718 /* Remove failure points and point to how many regs pushed. */ \
1719 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1720 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1721 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1723 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1725 DEBUG_POP (&failure_id); \
1726 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1728 /* If the saved string location is NULL, it came from an \
1729 on_failure_keep_string_jump opcode, and we want to throw away the \
1730 saved NULL, thus retaining our current position in the string. */ \
1731 string_temp = POP_FAILURE_POINTER (); \
1732 if (string_temp != NULL) \
1733 str = (const CHAR_T *) string_temp; \
1735 DEBUG_PRINT2 (" Popping string %p: `", str); \
1736 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1737 DEBUG_PRINT1 ("'\n"); \
1739 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1740 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1741 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1743 /* Restore register info. */ \
1744 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1745 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1747 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1748 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1751 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1753 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1755 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1756 DEBUG_PRINT2 (" info: %p\n", \
1757 reg_info[this_reg].word.pointer); \
1759 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1760 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1762 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1763 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1767 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1769 reg_info[this_reg].word.integer = 0; \
1770 regend[this_reg] = 0; \
1771 regstart[this_reg] = 0; \
1773 highest_active_reg = high_reg; \
1776 set_regs_matched_done = 0; \
1777 DEBUG_STATEMENT (nfailure_points_popped++); \
1778 } /* POP_FAILURE_POINT */
1780 /* Structure for per-register (a.k.a. per-group) information.
1781 Other register information, such as the
1782 starting and ending positions (which are addresses), and the list of
1783 inner groups (which is a bits list) are maintained in separate
1786 We are making a (strictly speaking) nonportable assumption here: that
1787 the compiler will pack our bit fields into something that fits into
1788 the type of `word', i.e., is something that fits into one item on the
1792 /* Declarations and macros for re_match_2. */
1796 PREFIX(fail_stack_elt_t
) word
;
1799 /* This field is one if this group can match the empty string,
1800 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1801 # define MATCH_NULL_UNSET_VALUE 3
1802 unsigned match_null_string_p
: 2;
1803 unsigned is_active
: 1;
1804 unsigned matched_something
: 1;
1805 unsigned ever_matched_something
: 1;
1807 } PREFIX(register_info_type
);
1809 # ifndef DEFINED_ONCE
1810 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1811 # define IS_ACTIVE(R) ((R).bits.is_active)
1812 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1813 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1816 /* Call this when have matched a real character; it sets `matched' flags
1817 for the subexpressions which we are currently inside. Also records
1818 that those subexprs have matched. */
1819 # define SET_REGS_MATCHED() \
1822 if (!set_regs_matched_done) \
1825 set_regs_matched_done = 1; \
1826 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1828 MATCHED_SOMETHING (reg_info[r]) \
1829 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1835 # endif /* not DEFINED_ONCE */
1837 /* Registers are set to a sentinel when they haven't yet matched. */
1838 static CHAR_T
PREFIX(reg_unset_dummy
);
1839 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1840 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1842 /* Subroutine declarations and macros for regex_compile. */
1843 static void PREFIX(store_op1
) (re_opcode_t op
, UCHAR_T
*loc
, int arg
);
1844 static void PREFIX(store_op2
) (re_opcode_t op
, UCHAR_T
*loc
,
1845 int arg1
, int arg2
);
1846 static void PREFIX(insert_op1
) (re_opcode_t op
, UCHAR_T
*loc
,
1847 int arg
, UCHAR_T
*end
);
1848 static void PREFIX(insert_op2
) (re_opcode_t op
, UCHAR_T
*loc
,
1849 int arg1
, int arg2
, UCHAR_T
*end
);
1850 static boolean
PREFIX(at_begline_loc_p
) (const CHAR_T
*pattern
,
1852 reg_syntax_t syntax
);
1853 static boolean
PREFIX(at_endline_loc_p
) (const CHAR_T
*p
,
1855 reg_syntax_t syntax
);
1857 static reg_errcode_t
wcs_compile_range (CHAR_T range_start
,
1858 const CHAR_T
**p_ptr
,
1861 reg_syntax_t syntax
,
1864 static void insert_space (int num
, CHAR_T
*loc
, CHAR_T
*end
);
1866 static reg_errcode_t
byte_compile_range (unsigned int range_start
,
1870 reg_syntax_t syntax
,
1874 /* Fetch the next character in the uncompiled pattern---translating it
1875 if necessary. Also cast from a signed character in the constant
1876 string passed to us by the user to an unsigned char that we can use
1877 as an array index (in, e.g., `translate'). */
1878 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1879 because it is impossible to allocate 4GB array for some encodings
1880 which have 4 byte character_set like UCS4. */
1883 # define PATFETCH(c) \
1884 do {if (p == pend) return REG_EEND; \
1885 c = (UCHAR_T) *p++; \
1886 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1889 # define PATFETCH(c) \
1890 do {if (p == pend) return REG_EEND; \
1891 c = (unsigned char) *p++; \
1892 if (translate) c = (unsigned char) translate[c]; \
1897 /* Fetch the next character in the uncompiled pattern, with no
1899 # define PATFETCH_RAW(c) \
1900 do {if (p == pend) return REG_EEND; \
1901 c = (UCHAR_T) *p++; \
1904 /* Go backwards one character in the pattern. */
1905 # define PATUNFETCH p--
1908 /* If `translate' is non-null, return translate[D], else just D. We
1909 cast the subscript to translate because some data is declared as
1910 `char *', to avoid warnings when a string constant is passed. But
1911 when we use a character as a subscript we must make it unsigned. */
1912 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1913 because it is impossible to allocate 4GB array for some encodings
1914 which have 4 byte character_set like UCS4. */
1918 # define TRANSLATE(d) \
1919 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1920 ? (char) translate[(unsigned char) (d)] : (d))
1922 # define TRANSLATE(d) \
1923 (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1928 /* Macros for outputting the compiled pattern into `buffer'. */
1930 /* If the buffer isn't allocated when it comes in, use this. */
1931 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
1933 /* Make sure we have at least N more bytes of space in buffer. */
1935 # define GET_BUFFER_SPACE(n) \
1936 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1937 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
1940 # define GET_BUFFER_SPACE(n) \
1941 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1945 /* Make sure we have one more byte of buffer space and then add C to it. */
1946 # define BUF_PUSH(c) \
1948 GET_BUFFER_SPACE (1); \
1949 *b++ = (UCHAR_T) (c); \
1953 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1954 # define BUF_PUSH_2(c1, c2) \
1956 GET_BUFFER_SPACE (2); \
1957 *b++ = (UCHAR_T) (c1); \
1958 *b++ = (UCHAR_T) (c2); \
1962 /* As with BUF_PUSH_2, except for three bytes. */
1963 # define BUF_PUSH_3(c1, c2, c3) \
1965 GET_BUFFER_SPACE (3); \
1966 *b++ = (UCHAR_T) (c1); \
1967 *b++ = (UCHAR_T) (c2); \
1968 *b++ = (UCHAR_T) (c3); \
1971 /* Store a jump with opcode OP at LOC to location TO. We store a
1972 relative address offset by the three bytes the jump itself occupies. */
1973 # define STORE_JUMP(op, loc, to) \
1974 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1976 /* Likewise, for a two-argument jump. */
1977 # define STORE_JUMP2(op, loc, to, arg) \
1978 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1980 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1981 # define INSERT_JUMP(op, loc, to) \
1982 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1984 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1985 # define INSERT_JUMP2(op, loc, to, arg) \
1986 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1989 /* This is not an arbitrary limit: the arguments which represent offsets
1990 into the pattern are two bytes long. So if 2^16 bytes turns out to
1991 be too small, many things would have to change. */
1992 /* Any other compiler which, like MSC, has allocation limit below 2^16
1993 bytes will have to use approach similar to what was done below for
1994 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1995 reallocating to 0 bytes. Such thing is not going to work too well.
1996 You have been warned!! */
1997 # ifndef DEFINED_ONCE
1998 # if defined _MSC_VER && !defined WIN32
1999 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2000 The REALLOC define eliminates a flurry of conversion warnings,
2001 but is not required. */
2002 # define MAX_BUF_SIZE 65500L
2003 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2005 # define MAX_BUF_SIZE (1L << 16)
2006 # define REALLOC(p,s) realloc ((p), (s))
2009 /* Extend the buffer by twice its current size via realloc and
2010 reset the pointers that pointed into the old block to point to the
2011 correct places in the new one. If extending the buffer results in it
2012 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2013 # if __BOUNDED_POINTERS__
2014 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2015 # define MOVE_BUFFER_POINTER(P) \
2016 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2017 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2020 SET_HIGH_BOUND (b); \
2021 SET_HIGH_BOUND (begalt); \
2022 if (fixup_alt_jump) \
2023 SET_HIGH_BOUND (fixup_alt_jump); \
2025 SET_HIGH_BOUND (laststart); \
2026 if (pending_exact) \
2027 SET_HIGH_BOUND (pending_exact); \
2030 # define MOVE_BUFFER_POINTER(P) (P) += incr
2031 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2033 # endif /* not DEFINED_ONCE */
2036 # define EXTEND_BUFFER() \
2038 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2040 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2042 bufp->allocated <<= 1; \
2043 if (bufp->allocated > MAX_BUF_SIZE) \
2044 bufp->allocated = MAX_BUF_SIZE; \
2045 /* How many characters the new buffer can have? */ \
2046 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2047 if (wchar_count == 0) wchar_count = 1; \
2048 /* Truncate the buffer to CHAR_T align. */ \
2049 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2050 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2051 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2052 if (COMPILED_BUFFER_VAR == NULL) \
2053 return REG_ESPACE; \
2054 /* If the buffer moved, move all the pointers into it. */ \
2055 if (old_buffer != COMPILED_BUFFER_VAR) \
2057 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2058 MOVE_BUFFER_POINTER (b); \
2059 MOVE_BUFFER_POINTER (begalt); \
2060 if (fixup_alt_jump) \
2061 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2063 MOVE_BUFFER_POINTER (laststart); \
2064 if (pending_exact) \
2065 MOVE_BUFFER_POINTER (pending_exact); \
2067 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2070 # define EXTEND_BUFFER() \
2072 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2073 if (bufp->allocated == MAX_BUF_SIZE) \
2075 bufp->allocated <<= 1; \
2076 if (bufp->allocated > MAX_BUF_SIZE) \
2077 bufp->allocated = MAX_BUF_SIZE; \
2078 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2080 if (COMPILED_BUFFER_VAR == NULL) \
2081 return REG_ESPACE; \
2082 /* If the buffer moved, move all the pointers into it. */ \
2083 if (old_buffer != COMPILED_BUFFER_VAR) \
2085 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2086 MOVE_BUFFER_POINTER (b); \
2087 MOVE_BUFFER_POINTER (begalt); \
2088 if (fixup_alt_jump) \
2089 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2091 MOVE_BUFFER_POINTER (laststart); \
2092 if (pending_exact) \
2093 MOVE_BUFFER_POINTER (pending_exact); \
2095 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2099 # ifndef DEFINED_ONCE
2100 /* Since we have one byte reserved for the register number argument to
2101 {start,stop}_memory, the maximum number of groups we can report
2102 things about is what fits in that byte. */
2103 # define MAX_REGNUM 255
2105 /* But patterns can have more than `MAX_REGNUM' registers. We just
2106 ignore the excess. */
2107 typedef unsigned regnum_t
;
2110 /* Macros for the compile stack. */
2112 /* Since offsets can go either forwards or backwards, this type needs to
2113 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2114 /* int may be not enough when sizeof(int) == 2. */
2115 typedef long pattern_offset_t
;
2119 pattern_offset_t begalt_offset
;
2120 pattern_offset_t fixup_alt_jump
;
2121 pattern_offset_t inner_group_offset
;
2122 pattern_offset_t laststart_offset
;
2124 } compile_stack_elt_t
;
2129 compile_stack_elt_t
*stack
;
2131 unsigned avail
; /* Offset of next open position. */
2132 } compile_stack_type
;
2135 # define INIT_COMPILE_STACK_SIZE 32
2137 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2138 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2140 /* The next available element. */
2141 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2143 # endif /* not DEFINED_ONCE */
2145 /* Set the bit for character C in a list. */
2146 # ifndef DEFINED_ONCE
2147 # define SET_LIST_BIT(c) \
2148 (b[((unsigned char) (c)) / BYTEWIDTH] \
2149 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2150 # endif /* DEFINED_ONCE */
2152 /* Get the next unsigned number in the uncompiled pattern. */
2153 # define GET_UNSIGNED_NUMBER(num) \
2158 if (c < '0' || c > '9') \
2160 if (num <= RE_DUP_MAX) \
2164 num = num * 10 + c - '0'; \
2169 # ifndef DEFINED_ONCE
2170 # if defined _LIBC || WIDE_CHAR_SUPPORT
2171 /* The GNU C library provides support for user-defined character classes
2172 and the functions from ISO C amendement 1. */
2173 # ifdef CHARCLASS_NAME_MAX
2174 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2176 /* This shouldn't happen but some implementation might still have this
2177 problem. Use a reasonable default value. */
2178 # define CHAR_CLASS_MAX_LENGTH 256
2182 # define IS_CHAR_CLASS(string) __wctype (string)
2184 # define IS_CHAR_CLASS(string) wctype (string)
2187 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2189 # define IS_CHAR_CLASS(string) \
2190 (STREQ (string, "alpha") || STREQ (string, "upper") \
2191 || STREQ (string, "lower") || STREQ (string, "digit") \
2192 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2193 || STREQ (string, "space") || STREQ (string, "print") \
2194 || STREQ (string, "punct") || STREQ (string, "graph") \
2195 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2197 # endif /* DEFINED_ONCE */
2199 # ifndef MATCH_MAY_ALLOCATE
2201 /* If we cannot allocate large objects within re_match_2_internal,
2202 we make the fail stack and register vectors global.
2203 The fail stack, we grow to the maximum size when a regexp
2205 The register vectors, we adjust in size each time we
2206 compile a regexp, according to the number of registers it needs. */
2208 static PREFIX(fail_stack_type
) fail_stack
;
2210 /* Size with which the following vectors are currently allocated.
2211 That is so we can make them bigger as needed,
2212 but never make them smaller. */
2213 # ifdef DEFINED_ONCE
2214 static int regs_allocated_size
;
2216 static const char ** regstart
, ** regend
;
2217 static const char ** old_regstart
, ** old_regend
;
2218 static const char **best_regstart
, **best_regend
;
2219 static const char **reg_dummy
;
2220 # endif /* DEFINED_ONCE */
2222 static PREFIX(register_info_type
) *PREFIX(reg_info
);
2223 static PREFIX(register_info_type
) *PREFIX(reg_info_dummy
);
2225 /* Make the register vectors big enough for NUM_REGS registers,
2226 but don't make them smaller. */
2229 PREFIX(regex_grow_registers
) (int num_regs
)
2231 if (num_regs
> regs_allocated_size
)
2233 RETALLOC_IF (regstart
, num_regs
, const char *);
2234 RETALLOC_IF (regend
, num_regs
, const char *);
2235 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2236 RETALLOC_IF (old_regend
, num_regs
, const char *);
2237 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2238 RETALLOC_IF (best_regend
, num_regs
, const char *);
2239 RETALLOC_IF (PREFIX(reg_info
), num_regs
, PREFIX(register_info_type
));
2240 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2241 RETALLOC_IF (PREFIX(reg_info_dummy
), num_regs
, PREFIX(register_info_type
));
2243 regs_allocated_size
= num_regs
;
2247 # endif /* not MATCH_MAY_ALLOCATE */
2249 # ifndef DEFINED_ONCE
2250 static boolean
group_in_compile_stack (compile_stack_type compile_stack
,
2252 # endif /* not DEFINED_ONCE */
2254 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2255 Returns one of error codes defined in `regex.h', or zero for success.
2257 Assumes the `allocated' (and perhaps `buffer') and `translate'
2258 fields are set in BUFP on entry.
2260 If it succeeds, results are put in BUFP (if it returns an error, the
2261 contents of BUFP are undefined):
2262 `buffer' is the compiled pattern;
2263 `syntax' is set to SYNTAX;
2264 `used' is set to the length of the compiled pattern;
2265 `fastmap_accurate' is zero;
2266 `re_nsub' is the number of subexpressions in PATTERN;
2267 `not_bol' and `not_eol' are zero;
2269 The `fastmap' and `newline_anchor' fields are neither
2270 examined nor set. */
2272 /* Return, freeing storage we allocated. */
2274 # define FREE_STACK_RETURN(value) \
2275 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2277 # define FREE_STACK_RETURN(value) \
2278 return (free (compile_stack.stack), value)
2281 static reg_errcode_t
2282 PREFIX(regex_compile
) (const char *ARG_PREFIX(pattern
),
2283 size_t ARG_PREFIX(size
), reg_syntax_t syntax
,
2284 struct re_pattern_buffer
*bufp
)
2286 /* We fetch characters from PATTERN here. Even though PATTERN is
2287 `char *' (i.e., signed), we declare these variables as unsigned, so
2288 they can be reliably used as array indices. */
2289 register UCHAR_T c
, c1
;
2292 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2293 CHAR_T
*pattern
, *COMPILED_BUFFER_VAR
;
2295 /* offset buffer for optimization. See convert_mbs_to_wc. */
2296 int *mbs_offset
= NULL
;
2297 /* It hold whether each wchar_t is binary data or not. */
2298 char *is_binary
= NULL
;
2299 /* A flag whether exactn is handling binary data or not. */
2300 char is_exactn_bin
= FALSE
;
2303 /* A random temporary spot in PATTERN. */
2306 /* Points to the end of the buffer, where we should append. */
2307 register UCHAR_T
*b
;
2309 /* Keeps track of unclosed groups. */
2310 compile_stack_type compile_stack
;
2312 /* Points to the current (ending) position in the pattern. */
2317 const CHAR_T
*p
= pattern
;
2318 const CHAR_T
*pend
= pattern
+ size
;
2321 /* How to translate the characters in the pattern. */
2322 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2324 /* Address of the count-byte of the most recently inserted `exactn'
2325 command. This makes it possible to tell if a new exact-match
2326 character can be added to that command or if the character requires
2327 a new `exactn' command. */
2328 UCHAR_T
*pending_exact
= 0;
2330 /* Address of start of the most recently finished expression.
2331 This tells, e.g., postfix * where to find the start of its
2332 operand. Reset at the beginning of groups and alternatives. */
2333 UCHAR_T
*laststart
= 0;
2335 /* Address of beginning of regexp, or inside of last group. */
2338 /* Address of the place where a forward jump should go to the end of
2339 the containing expression. Each alternative of an `or' -- except the
2340 last -- ends with a forward jump of this sort. */
2341 UCHAR_T
*fixup_alt_jump
= 0;
2343 /* Counts open-groups as they are encountered. Remembered for the
2344 matching close-group on the compile stack, so the same register
2345 number is put in the stop_memory as the start_memory. */
2346 regnum_t regnum
= 0;
2349 /* Initialize the wchar_t PATTERN and offset_buffer. */
2350 p
= pend
= pattern
= TALLOC(csize
+ 1, CHAR_T
);
2351 mbs_offset
= TALLOC(csize
+ 1, int);
2352 is_binary
= TALLOC(csize
+ 1, char);
2353 if (pattern
== NULL
|| mbs_offset
== NULL
|| is_binary
== NULL
)
2360 pattern
[csize
] = L
'\0'; /* sentinel */
2361 size
= convert_mbs_to_wcs(pattern
, cpattern
, csize
, mbs_offset
, is_binary
);
2373 DEBUG_PRINT1 ("\nCompiling pattern: ");
2376 unsigned debug_count
;
2378 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2379 PUT_CHAR (pattern
[debug_count
]);
2384 /* Initialize the compile stack. */
2385 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2386 if (compile_stack
.stack
== NULL
)
2396 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2397 compile_stack
.avail
= 0;
2399 /* Initialize the pattern buffer. */
2400 bufp
->syntax
= syntax
;
2401 bufp
->fastmap_accurate
= 0;
2402 bufp
->not_bol
= bufp
->not_eol
= 0;
2404 /* Set `used' to zero, so that if we return an error, the pattern
2405 printer (for debugging) will think there's no pattern. We reset it
2409 /* Always count groups, whether or not bufp->no_sub is set. */
2412 #if !defined emacs && !defined SYNTAX_TABLE
2413 /* Initialize the syntax table. */
2414 init_syntax_once ();
2417 if (bufp
->allocated
== 0)
2420 { /* If zero allocated, but buffer is non-null, try to realloc
2421 enough space. This loses if buffer's address is bogus, but
2422 that is the user's responsibility. */
2424 /* Free bufp->buffer and allocate an array for wchar_t pattern
2427 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/sizeof(UCHAR_T
),
2430 RETALLOC (COMPILED_BUFFER_VAR
, INIT_BUF_SIZE
, UCHAR_T
);
2434 { /* Caller did not allocate a buffer. Do it for them. */
2435 COMPILED_BUFFER_VAR
= TALLOC (INIT_BUF_SIZE
/ sizeof(UCHAR_T
),
2439 if (!COMPILED_BUFFER_VAR
) FREE_STACK_RETURN (REG_ESPACE
);
2441 bufp
->buffer
= (char*)COMPILED_BUFFER_VAR
;
2443 bufp
->allocated
= INIT_BUF_SIZE
;
2447 COMPILED_BUFFER_VAR
= (UCHAR_T
*) bufp
->buffer
;
2450 begalt
= b
= COMPILED_BUFFER_VAR
;
2452 /* Loop through the uncompiled pattern until we're at the end. */
2461 if ( /* If at start of pattern, it's an operator. */
2463 /* If context independent, it's an operator. */
2464 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2465 /* Otherwise, depends on what's come before. */
2466 || PREFIX(at_begline_loc_p
) (pattern
, p
, syntax
))
2476 if ( /* If at end of pattern, it's an operator. */
2478 /* If context independent, it's an operator. */
2479 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2480 /* Otherwise, depends on what's next. */
2481 || PREFIX(at_endline_loc_p
) (p
, pend
, syntax
))
2491 if ((syntax
& RE_BK_PLUS_QM
)
2492 || (syntax
& RE_LIMITED_OPS
))
2496 /* If there is no previous pattern... */
2499 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2500 FREE_STACK_RETURN (REG_BADRPT
);
2501 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2506 /* Are we optimizing this jump? */
2507 boolean keep_string_p
= false;
2509 /* 1 means zero (many) matches is allowed. */
2510 char zero_times_ok
= 0, many_times_ok
= 0;
2512 /* If there is a sequence of repetition chars, collapse it
2513 down to just one (the right one). We can't combine
2514 interval operators with these because of, e.g., `a{2}*',
2515 which should only match an even number of `a's. */
2519 zero_times_ok
|= c
!= '+';
2520 many_times_ok
|= c
!= '?';
2528 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
2531 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
2533 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2536 if (!(c1
== '+' || c1
== '?'))
2551 /* If we get here, we found another repeat character. */
2554 /* Star, etc. applied to an empty pattern is equivalent
2555 to an empty pattern. */
2559 /* Now we know whether or not zero matches is allowed
2560 and also whether or not two or more matches is allowed. */
2562 { /* More than one repetition is allowed, so put in at the
2563 end a backward relative jump from `b' to before the next
2564 jump we're going to put in below (which jumps from
2565 laststart to after this jump).
2567 But if we are at the `*' in the exact sequence `.*\n',
2568 insert an unconditional jump backwards to the .,
2569 instead of the beginning of the loop. This way we only
2570 push a failure point once, instead of every time
2571 through the loop. */
2572 assert (p
- 1 > pattern
);
2574 /* Allocate the space for the jump. */
2575 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2577 /* We know we are not at the first character of the pattern,
2578 because laststart was nonzero. And we've already
2579 incremented `p', by the way, to be the character after
2580 the `*'. Do we have to do something analogous here
2581 for null bytes, because of RE_DOT_NOT_NULL? */
2582 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
2584 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
2585 && !(syntax
& RE_DOT_NEWLINE
))
2586 { /* We have .*\n. */
2587 STORE_JUMP (jump
, b
, laststart
);
2588 keep_string_p
= true;
2591 /* Anything else. */
2592 STORE_JUMP (maybe_pop_jump
, b
, laststart
-
2593 (1 + OFFSET_ADDRESS_SIZE
));
2595 /* We've added more stuff to the buffer. */
2596 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2599 /* On failure, jump from laststart to b + 3, which will be the
2600 end of the buffer after this jump is inserted. */
2601 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2603 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2604 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
2606 laststart
, b
+ 1 + OFFSET_ADDRESS_SIZE
);
2608 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2612 /* At least one repetition is required, so insert a
2613 `dummy_failure_jump' before the initial
2614 `on_failure_jump' instruction of the loop. This
2615 effects a skip over that instruction the first time
2616 we hit that loop. */
2617 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
2618 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+
2619 2 + 2 * OFFSET_ADDRESS_SIZE
);
2620 b
+= 1 + OFFSET_ADDRESS_SIZE
;
2634 boolean had_char_class
= false;
2636 CHAR_T range_start
= 0xffffffff;
2638 unsigned int range_start
= 0xffffffff;
2640 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2643 /* We assume a charset(_not) structure as a wchar_t array.
2644 charset[0] = (re_opcode_t) charset(_not)
2645 charset[1] = l (= length of char_classes)
2646 charset[2] = m (= length of collating_symbols)
2647 charset[3] = n (= length of equivalence_classes)
2648 charset[4] = o (= length of char_ranges)
2649 charset[5] = p (= length of chars)
2651 charset[6] = char_class (wctype_t)
2652 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2654 charset[l+5] = char_class (wctype_t)
2656 charset[l+6] = collating_symbol (wchar_t)
2658 charset[l+m+5] = collating_symbol (wchar_t)
2659 ifdef _LIBC we use the index if
2660 _NL_COLLATE_SYMB_EXTRAMB instead of
2663 charset[l+m+6] = equivalence_classes (wchar_t)
2665 charset[l+m+n+5] = equivalence_classes (wchar_t)
2666 ifdef _LIBC we use the index in
2667 _NL_COLLATE_WEIGHT instead of
2670 charset[l+m+n+6] = range_start
2671 charset[l+m+n+7] = range_end
2673 charset[l+m+n+2o+4] = range_start
2674 charset[l+m+n+2o+5] = range_end
2675 ifdef _LIBC we use the value looked up
2676 in _NL_COLLATE_COLLSEQ instead of
2679 charset[l+m+n+2o+6] = char
2681 charset[l+m+n+2o+p+5] = char
2685 /* We need at least 6 spaces: the opcode, the length of
2686 char_classes, the length of collating_symbols, the length of
2687 equivalence_classes, the length of char_ranges, the length of
2689 GET_BUFFER_SPACE (6);
2691 /* Save b as laststart. And We use laststart as the pointer
2692 to the first element of the charset here.
2693 In other words, laststart[i] indicates charset[i]. */
2696 /* We test `*p == '^' twice, instead of using an if
2697 statement, so we only need one BUF_PUSH. */
2698 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2702 /* Push the length of char_classes, the length of
2703 collating_symbols, the length of equivalence_classes, the
2704 length of char_ranges and the length of chars. */
2705 BUF_PUSH_3 (0, 0, 0);
2708 /* Remember the first position in the bracket expression. */
2711 /* charset_not matches newline according to a syntax bit. */
2712 if ((re_opcode_t
) b
[-6] == charset_not
2713 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2716 laststart
[5]++; /* Update the length of characters */
2719 /* Read in characters and ranges, setting map bits. */
2722 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2726 /* \ might escape characters inside [...] and [^...]. */
2727 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2729 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2733 laststart
[5]++; /* Update the length of chars */
2738 /* Could be the end of the bracket expression. If it's
2739 not (i.e., when the bracket expression is `[]' so
2740 far), the ']' character bit gets set way below. */
2741 if (c
== ']' && p
!= p1
+ 1)
2744 /* Look ahead to see if it's a range when the last thing
2745 was a character class. */
2746 if (had_char_class
&& c
== '-' && *p
!= ']')
2747 FREE_STACK_RETURN (REG_ERANGE
);
2749 /* Look ahead to see if it's a range when the last thing
2750 was a character: if this is a hyphen not at the
2751 beginning or the end of a list, then it's the range
2754 && !(p
- 2 >= pattern
&& p
[-2] == '[')
2755 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
2759 /* Allocate the space for range_start and range_end. */
2760 GET_BUFFER_SPACE (2);
2761 /* Update the pointer to indicate end of buffer. */
2763 ret
= wcs_compile_range (range_start
, &p
, pend
, translate
,
2764 syntax
, b
, laststart
);
2765 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2766 range_start
= 0xffffffff;
2768 else if (p
[0] == '-' && p
[1] != ']')
2769 { /* This handles ranges made up of characters only. */
2772 /* Move past the `-'. */
2774 /* Allocate the space for range_start and range_end. */
2775 GET_BUFFER_SPACE (2);
2776 /* Update the pointer to indicate end of buffer. */
2778 ret
= wcs_compile_range (c
, &p
, pend
, translate
, syntax
, b
,
2780 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
2781 range_start
= 0xffffffff;
2784 /* See if we're at the beginning of a possible character
2786 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2787 { /* Leave room for the null. */
2788 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2793 /* If pattern is `[[:'. */
2794 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2799 if ((c
== ':' && *p
== ']') || p
== pend
)
2801 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2804 /* This is in any case an invalid class name. */
2809 /* If isn't a word bracketed by `[:' and `:]':
2810 undo the ending character, the letters, and leave
2811 the leading `:' and `[' (but store them as character). */
2812 if (c
== ':' && *p
== ']')
2817 /* Query the character class as wctype_t. */
2818 wt
= IS_CHAR_CLASS (str
);
2820 FREE_STACK_RETURN (REG_ECTYPE
);
2822 /* Throw away the ] at the end of the character
2826 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2828 /* Allocate the space for character class. */
2829 GET_BUFFER_SPACE(CHAR_CLASS_SIZE
);
2830 /* Update the pointer to indicate end of buffer. */
2831 b
+= CHAR_CLASS_SIZE
;
2832 /* Move data which follow character classes
2833 not to violate the data. */
2834 insert_space(CHAR_CLASS_SIZE
,
2835 laststart
+ 6 + laststart
[1],
2837 alignedp
= ((uintptr_t)(laststart
+ 6 + laststart
[1])
2838 + __alignof__(wctype_t) - 1)
2839 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2840 /* Store the character class. */
2841 *((wctype_t*)alignedp
) = wt
;
2842 /* Update length of char_classes */
2843 laststart
[1] += CHAR_CLASS_SIZE
;
2845 had_char_class
= true;
2854 laststart
[5] += 2; /* Update the length of characters */
2856 had_char_class
= false;
2859 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && (*p
== '='
2862 CHAR_T str
[128]; /* Should be large enough. */
2863 CHAR_T delim
= *p
; /* '=' or '.' */
2866 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
2871 /* If pattern is `[[=' or '[[.'. */
2872 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2877 if ((c
== delim
&& *p
== ']') || p
== pend
)
2879 if (c1
< sizeof (str
) - 1)
2882 /* This is in any case an invalid class name. */
2887 if (c
== delim
&& *p
== ']' && str
[0] != '\0')
2889 unsigned int i
, offset
;
2890 /* If we have no collation data we use the default
2891 collation in which each character is in a class
2892 by itself. It also means that ASCII is the
2893 character set and therefore we cannot have character
2894 with more than one byte in the multibyte
2897 /* If not defined _LIBC, we push the name and
2898 `\0' for the sake of matching performance. */
2899 int datasize
= c1
+ 1;
2907 FREE_STACK_RETURN (REG_ECOLLATE
);
2912 const int32_t *table
;
2913 const int32_t *weights
;
2914 const int32_t *extra
;
2915 const int32_t *indirect
;
2918 /* This #include defines a local function! */
2919 # include <locale/weightwc.h>
2923 /* We push the index for equivalence class. */
2926 table
= (const int32_t *)
2927 _NL_CURRENT (LC_COLLATE
,
2928 _NL_COLLATE_TABLEWC
);
2929 weights
= (const int32_t *)
2930 _NL_CURRENT (LC_COLLATE
,
2931 _NL_COLLATE_WEIGHTWC
);
2932 extra
= (const int32_t *)
2933 _NL_CURRENT (LC_COLLATE
,
2934 _NL_COLLATE_EXTRAWC
);
2935 indirect
= (const int32_t *)
2936 _NL_CURRENT (LC_COLLATE
,
2937 _NL_COLLATE_INDIRECTWC
);
2939 idx
= findidx ((const wint_t**)&cp
);
2940 if (idx
== 0 || cp
< (wint_t*) str
+ c1
)
2941 /* This is no valid character. */
2942 FREE_STACK_RETURN (REG_ECOLLATE
);
2944 str
[0] = (wchar_t)idx
;
2946 else /* delim == '.' */
2948 /* We push collation sequence value
2949 for collating symbol. */
2951 const int32_t *symb_table
;
2952 const unsigned char *extra
;
2959 /* We have to convert the name to a single-byte
2960 string. This is possible since the names
2961 consist of ASCII characters and the internal
2962 representation is UCS4. */
2963 for (i
= 0; i
< c1
; ++i
)
2964 char_str
[i
] = str
[i
];
2967 _NL_CURRENT_WORD (LC_COLLATE
,
2968 _NL_COLLATE_SYMB_HASH_SIZEMB
);
2969 symb_table
= (const int32_t *)
2970 _NL_CURRENT (LC_COLLATE
,
2971 _NL_COLLATE_SYMB_TABLEMB
);
2972 extra
= (const unsigned char *)
2973 _NL_CURRENT (LC_COLLATE
,
2974 _NL_COLLATE_SYMB_EXTRAMB
);
2976 /* Locate the character in the hashing table. */
2977 hash
= elem_hash (char_str
, c1
);
2980 elem
= hash
% table_size
;
2981 second
= hash
% (table_size
- 2);
2982 while (symb_table
[2 * elem
] != 0)
2984 /* First compare the hashing value. */
2985 if (symb_table
[2 * elem
] == hash
2986 && c1
== extra
[symb_table
[2 * elem
+ 1]]
2987 && memcmp (char_str
,
2988 &extra
[symb_table
[2 * elem
+ 1]
2991 /* Yep, this is the entry. */
2992 idx
= symb_table
[2 * elem
+ 1];
2993 idx
+= 1 + extra
[idx
];
3001 if (symb_table
[2 * elem
] != 0)
3003 /* Compute the index of the byte sequence
3005 idx
+= 1 + extra
[idx
];
3006 /* Adjust for the alignment. */
3007 idx
= (idx
+ 3) & ~3;
3009 str
[0] = (wchar_t) idx
+ 4;
3011 else if (symb_table
[2 * elem
] == 0 && c1
== 1)
3013 /* No valid character. Match it as a
3014 single byte character. */
3015 had_char_class
= false;
3017 /* Update the length of characters */
3019 range_start
= str
[0];
3021 /* Throw away the ] at the end of the
3022 collating symbol. */
3024 /* exit from the switch block. */
3028 FREE_STACK_RETURN (REG_ECOLLATE
);
3033 /* Throw away the ] at the end of the equivalence
3034 class (or collating symbol). */
3037 /* Allocate the space for the equivalence class
3038 (or collating symbol) (and '\0' if needed). */
3039 GET_BUFFER_SPACE(datasize
);
3040 /* Update the pointer to indicate end of buffer. */
3044 { /* equivalence class */
3045 /* Calculate the offset of char_ranges,
3046 which is next to equivalence_classes. */
3047 offset
= laststart
[1] + laststart
[2]
3050 insert_space(datasize
, laststart
+ offset
, b
- 1);
3052 /* Write the equivalence_class and \0. */
3053 for (i
= 0 ; i
< datasize
; i
++)
3054 laststart
[offset
+ i
] = str
[i
];
3056 /* Update the length of equivalence_classes. */
3057 laststart
[3] += datasize
;
3058 had_char_class
= true;
3060 else /* delim == '.' */
3061 { /* collating symbol */
3062 /* Calculate the offset of the equivalence_classes,
3063 which is next to collating_symbols. */
3064 offset
= laststart
[1] + laststart
[2] + 6;
3065 /* Insert space and write the collationg_symbol
3067 insert_space(datasize
, laststart
+ offset
, b
-1);
3068 for (i
= 0 ; i
< datasize
; i
++)
3069 laststart
[offset
+ i
] = str
[i
];
3071 /* In re_match_2_internal if range_start < -1, we
3072 assume -range_start is the offset of the
3073 collating symbol which is specified as
3074 the character of the range start. So we assign
3075 -(laststart[1] + laststart[2] + 6) to
3077 range_start
= -(laststart
[1] + laststart
[2] + 6);
3078 /* Update the length of collating_symbol. */
3079 laststart
[2] += datasize
;
3080 had_char_class
= false;
3090 laststart
[5] += 2; /* Update the length of characters */
3091 range_start
= delim
;
3092 had_char_class
= false;
3097 had_char_class
= false;
3099 laststart
[5]++; /* Update the length of characters */
3105 /* Ensure that we have enough space to push a charset: the
3106 opcode, the length count, and the bitset; 34 bytes in all. */
3107 GET_BUFFER_SPACE (34);
3111 /* We test `*p == '^' twice, instead of using an if
3112 statement, so we only need one BUF_PUSH. */
3113 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
3117 /* Remember the first position in the bracket expression. */
3120 /* Push the number of bytes in the bitmap. */
3121 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
3123 /* Clear the whole map. */
3124 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
3126 /* charset_not matches newline according to a syntax bit. */
3127 if ((re_opcode_t
) b
[-2] == charset_not
3128 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
3129 SET_LIST_BIT ('\n');
3131 /* Read in characters and ranges, setting map bits. */
3134 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3138 /* \ might escape characters inside [...] and [^...]. */
3139 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
3141 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3149 /* Could be the end of the bracket expression. If it's
3150 not (i.e., when the bracket expression is `[]' so
3151 far), the ']' character bit gets set way below. */
3152 if (c
== ']' && p
!= p1
+ 1)
3155 /* Look ahead to see if it's a range when the last thing
3156 was a character class. */
3157 if (had_char_class
&& c
== '-' && *p
!= ']')
3158 FREE_STACK_RETURN (REG_ERANGE
);
3160 /* Look ahead to see if it's a range when the last thing
3161 was a character: if this is a hyphen not at the
3162 beginning or the end of a list, then it's the range
3165 && !(p
- 2 >= pattern
&& p
[-2] == '[')
3166 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
3170 = byte_compile_range (range_start
, &p
, pend
, translate
,
3172 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3173 range_start
= 0xffffffff;
3176 else if (p
[0] == '-' && p
[1] != ']')
3177 { /* This handles ranges made up of characters only. */
3180 /* Move past the `-'. */
3183 ret
= byte_compile_range (c
, &p
, pend
, translate
, syntax
, b
);
3184 if (ret
!= REG_NOERROR
) FREE_STACK_RETURN (ret
);
3185 range_start
= 0xffffffff;
3188 /* See if we're at the beginning of a possible character
3191 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
3192 { /* Leave room for the null. */
3193 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
3198 /* If pattern is `[[:'. */
3199 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3204 if ((c
== ':' && *p
== ']') || p
== pend
)
3206 if (c1
< CHAR_CLASS_MAX_LENGTH
)
3209 /* This is in any case an invalid class name. */
3214 /* If isn't a word bracketed by `[:' and `:]':
3215 undo the ending character, the letters, and leave
3216 the leading `:' and `[' (but set bits for them). */
3217 if (c
== ':' && *p
== ']')
3219 # if defined _LIBC || WIDE_CHAR_SUPPORT
3220 boolean is_lower
= STREQ (str
, "lower");
3221 boolean is_upper
= STREQ (str
, "upper");
3225 wt
= IS_CHAR_CLASS (str
);
3227 FREE_STACK_RETURN (REG_ECTYPE
);
3229 /* Throw away the ] at the end of the character
3233 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3235 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
3238 if (__iswctype (__btowc (ch
), wt
))
3241 if (iswctype (btowc (ch
), wt
))
3245 if (translate
&& (is_upper
|| is_lower
)
3246 && (ISUPPER (ch
) || ISLOWER (ch
)))
3250 had_char_class
= true;
3253 boolean is_alnum
= STREQ (str
, "alnum");
3254 boolean is_alpha
= STREQ (str
, "alpha");
3255 boolean is_blank
= STREQ (str
, "blank");
3256 boolean is_cntrl
= STREQ (str
, "cntrl");
3257 boolean is_digit
= STREQ (str
, "digit");
3258 boolean is_graph
= STREQ (str
, "graph");
3259 boolean is_lower
= STREQ (str
, "lower");
3260 boolean is_print
= STREQ (str
, "print");
3261 boolean is_punct
= STREQ (str
, "punct");
3262 boolean is_space
= STREQ (str
, "space");
3263 boolean is_upper
= STREQ (str
, "upper");
3264 boolean is_xdigit
= STREQ (str
, "xdigit");
3266 if (!IS_CHAR_CLASS (str
))
3267 FREE_STACK_RETURN (REG_ECTYPE
);
3269 /* Throw away the ] at the end of the character
3273 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3275 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
3277 /* This was split into 3 if's to
3278 avoid an arbitrary limit in some compiler. */
3279 if ( (is_alnum
&& ISALNUM (ch
))
3280 || (is_alpha
&& ISALPHA (ch
))
3281 || (is_blank
&& ISBLANK (ch
))
3282 || (is_cntrl
&& ISCNTRL (ch
)))
3284 if ( (is_digit
&& ISDIGIT (ch
))
3285 || (is_graph
&& ISGRAPH (ch
))
3286 || (is_lower
&& ISLOWER (ch
))
3287 || (is_print
&& ISPRINT (ch
)))
3289 if ( (is_punct
&& ISPUNCT (ch
))
3290 || (is_space
&& ISSPACE (ch
))
3291 || (is_upper
&& ISUPPER (ch
))
3292 || (is_xdigit
&& ISXDIGIT (ch
)))
3294 if ( translate
&& (is_upper
|| is_lower
)
3295 && (ISUPPER (ch
) || ISLOWER (ch
)))
3298 had_char_class
= true;
3299 # endif /* libc || wctype.h */
3309 had_char_class
= false;
3312 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '=')
3314 unsigned char str
[MB_LEN_MAX
+ 1];
3317 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3323 /* If pattern is `[[='. */
3324 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3329 if ((c
== '=' && *p
== ']') || p
== pend
)
3331 if (c1
< MB_LEN_MAX
)
3334 /* This is in any case an invalid class name. */
3339 if (c
== '=' && *p
== ']' && str
[0] != '\0')
3341 /* If we have no collation data we use the default
3342 collation in which each character is in a class
3343 by itself. It also means that ASCII is the
3344 character set and therefore we cannot have character
3345 with more than one byte in the multibyte
3352 FREE_STACK_RETURN (REG_ECOLLATE
);
3354 /* Throw away the ] at the end of the equivalence
3358 /* Set the bit for the character. */
3359 SET_LIST_BIT (str
[0]);
3364 /* Try to match the byte sequence in `str' against
3365 those known to the collate implementation.
3366 First find out whether the bytes in `str' are
3367 actually from exactly one character. */
3368 const int32_t *table
;
3369 const unsigned char *weights
;
3370 const unsigned char *extra
;
3371 const int32_t *indirect
;
3373 const unsigned char *cp
= str
;
3376 /* This #include defines a local function! */
3377 # include <locale/weight.h>
3379 table
= (const int32_t *)
3380 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEMB
);
3381 weights
= (const unsigned char *)
3382 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTMB
);
3383 extra
= (const unsigned char *)
3384 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAMB
);
3385 indirect
= (const int32_t *)
3386 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTMB
);
3388 idx
= findidx (&cp
);
3389 if (idx
== 0 || cp
< str
+ c1
)
3390 /* This is no valid character. */
3391 FREE_STACK_RETURN (REG_ECOLLATE
);
3393 /* Throw away the ] at the end of the equivalence
3397 /* Now we have to go throught the whole table
3398 and find all characters which have the same
3401 XXX Note that this is not entirely correct.
3402 we would have to match multibyte sequences
3403 but this is not possible with the current
3405 for (ch
= 1; ch
< 256; ++ch
)
3406 /* XXX This test would have to be changed if we
3407 would allow matching multibyte sequences. */
3410 int32_t idx2
= table
[ch
];
3411 size_t len
= weights
[idx2
];
3413 /* Test whether the lenghts match. */
3414 if (weights
[idx
] == len
)
3416 /* They do. New compare the bytes of
3421 && (weights
[idx
+ 1 + cnt
]
3422 == weights
[idx2
+ 1 + cnt
]))
3426 /* They match. Mark the character as
3433 had_char_class
= true;
3443 had_char_class
= false;
3446 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== '.')
3448 unsigned char str
[128]; /* Should be large enough. */
3451 _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
3457 /* If pattern is `[[.'. */
3458 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
3463 if ((c
== '.' && *p
== ']') || p
== pend
)
3465 if (c1
< sizeof (str
))
3468 /* This is in any case an invalid class name. */
3473 if (c
== '.' && *p
== ']' && str
[0] != '\0')
3475 /* If we have no collation data we use the default
3476 collation in which each character is the name
3477 for its own class which contains only the one
3478 character. It also means that ASCII is the
3479 character set and therefore we cannot have character
3480 with more than one byte in the multibyte
3487 FREE_STACK_RETURN (REG_ECOLLATE
);
3489 /* Throw away the ] at the end of the equivalence
3493 /* Set the bit for the character. */
3494 SET_LIST_BIT (str
[0]);
3495 range_start
= ((const unsigned char *) str
)[0];
3500 /* Try to match the byte sequence in `str' against
3501 those known to the collate implementation.
3502 First find out whether the bytes in `str' are
3503 actually from exactly one character. */
3505 const int32_t *symb_table
;
3506 const unsigned char *extra
;
3513 _NL_CURRENT_WORD (LC_COLLATE
,
3514 _NL_COLLATE_SYMB_HASH_SIZEMB
);
3515 symb_table
= (const int32_t *)
3516 _NL_CURRENT (LC_COLLATE
,
3517 _NL_COLLATE_SYMB_TABLEMB
);
3518 extra
= (const unsigned char *)
3519 _NL_CURRENT (LC_COLLATE
,
3520 _NL_COLLATE_SYMB_EXTRAMB
);
3522 /* Locate the character in the hashing table. */
3523 hash
= elem_hash (str
, c1
);
3526 elem
= hash
% table_size
;
3527 second
= hash
% (table_size
- 2);
3528 while (symb_table
[2 * elem
] != 0)
3530 /* First compare the hashing value. */
3531 if (symb_table
[2 * elem
] == hash
3532 && c1
== extra
[symb_table
[2 * elem
+ 1]]
3534 &extra
[symb_table
[2 * elem
+ 1]
3538 /* Yep, this is the entry. */
3539 idx
= symb_table
[2 * elem
+ 1];
3540 idx
+= 1 + extra
[idx
];
3548 if (symb_table
[2 * elem
] == 0)
3549 /* This is no valid character. */
3550 FREE_STACK_RETURN (REG_ECOLLATE
);
3552 /* Throw away the ] at the end of the equivalence
3556 /* Now add the multibyte character(s) we found
3559 XXX Note that this is not entirely correct.
3560 we would have to match multibyte sequences
3561 but this is not possible with the current
3562 implementation. Also, we have to match
3563 collating symbols, which expand to more than
3564 one file, as a whole and not allow the
3565 individual bytes. */
3568 range_start
= extra
[idx
];
3571 SET_LIST_BIT (extra
[idx
]);
3576 had_char_class
= false;
3586 had_char_class
= false;
3591 had_char_class
= false;
3597 /* Discard any (non)matching list bytes that are all 0 at the
3598 end of the map. Decrease the map-length byte too. */
3599 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3608 if (syntax
& RE_NO_BK_PARENS
)
3615 if (syntax
& RE_NO_BK_PARENS
)
3622 if (syntax
& RE_NEWLINE_ALT
)
3629 if (syntax
& RE_NO_BK_VBAR
)
3636 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3637 goto handle_interval
;
3643 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3645 /* Do not translate the character after the \, so that we can
3646 distinguish, e.g., \B from \b, even if we normally would
3647 translate, e.g., B to b. */
3653 if (syntax
& RE_NO_BK_PARENS
)
3654 goto normal_backslash
;
3660 if (COMPILE_STACK_FULL
)
3662 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3663 compile_stack_elt_t
);
3664 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3666 compile_stack
.size
<<= 1;
3669 /* These are the values to restore when we hit end of this
3670 group. They are all relative offsets, so that if the
3671 whole pattern moves because of realloc, they will still
3673 COMPILE_STACK_TOP
.begalt_offset
= begalt
- COMPILED_BUFFER_VAR
;
3674 COMPILE_STACK_TOP
.fixup_alt_jump
3675 = fixup_alt_jump
? fixup_alt_jump
- COMPILED_BUFFER_VAR
+ 1 : 0;
3676 COMPILE_STACK_TOP
.laststart_offset
= b
- COMPILED_BUFFER_VAR
;
3677 COMPILE_STACK_TOP
.regnum
= regnum
;
3679 /* We will eventually replace the 0 with the number of
3680 groups inner to this one. But do not push a
3681 start_memory for groups beyond the last one we can
3682 represent in the compiled pattern. */
3683 if (regnum
<= MAX_REGNUM
)
3685 COMPILE_STACK_TOP
.inner_group_offset
= b
3686 - COMPILED_BUFFER_VAR
+ 2;
3687 BUF_PUSH_3 (start_memory
, regnum
, 0);
3690 compile_stack
.avail
++;
3695 /* If we've reached MAX_REGNUM groups, then this open
3696 won't actually generate any code, so we'll have to
3697 clear pending_exact explicitly. */
3703 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3705 if (COMPILE_STACK_EMPTY
)
3707 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3708 goto normal_backslash
;
3710 FREE_STACK_RETURN (REG_ERPAREN
);
3715 { /* Push a dummy failure point at the end of the
3716 alternative for a possible future
3717 `pop_failure_jump' to pop. See comments at
3718 `push_dummy_failure' in `re_match_2'. */
3719 BUF_PUSH (push_dummy_failure
);
3721 /* We allocated space for this jump when we assigned
3722 to `fixup_alt_jump', in the `handle_alt' case below. */
3723 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
3726 /* See similar code for backslashed left paren above. */
3727 if (COMPILE_STACK_EMPTY
)
3729 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3732 FREE_STACK_RETURN (REG_ERPAREN
);
3735 /* Since we just checked for an empty stack above, this
3736 ``can't happen''. */
3737 assert (compile_stack
.avail
!= 0);
3739 /* We don't just want to restore into `regnum', because
3740 later groups should continue to be numbered higher,
3741 as in `(ab)c(de)' -- the second group is #2. */
3742 regnum_t this_group_regnum
;
3744 compile_stack
.avail
--;
3745 begalt
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.begalt_offset
;
3747 = COMPILE_STACK_TOP
.fixup_alt_jump
3748 ? COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3750 laststart
= COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.laststart_offset
;
3751 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3752 /* If we've reached MAX_REGNUM groups, then this open
3753 won't actually generate any code, so we'll have to
3754 clear pending_exact explicitly. */
3757 /* We're at the end of the group, so now we know how many
3758 groups were inside this one. */
3759 if (this_group_regnum
<= MAX_REGNUM
)
3761 UCHAR_T
*inner_group_loc
3762 = COMPILED_BUFFER_VAR
+ COMPILE_STACK_TOP
.inner_group_offset
;
3764 *inner_group_loc
= regnum
- this_group_regnum
;
3765 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
3766 regnum
- this_group_regnum
);
3772 case '|': /* `\|'. */
3773 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3774 goto normal_backslash
;
3776 if (syntax
& RE_LIMITED_OPS
)
3779 /* Insert before the previous alternative a jump which
3780 jumps to this alternative if the former fails. */
3781 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3782 INSERT_JUMP (on_failure_jump
, begalt
,
3783 b
+ 2 + 2 * OFFSET_ADDRESS_SIZE
);
3785 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3787 /* The alternative before this one has a jump after it
3788 which gets executed if it gets matched. Adjust that
3789 jump so it will jump to this alternative's analogous
3790 jump (put in below, which in turn will jump to the next
3791 (if any) alternative's such jump, etc.). The last such
3792 jump jumps to the correct final destination. A picture:
3798 If we are at `b', then fixup_alt_jump right now points to a
3799 three-byte space after `a'. We'll put in the jump, set
3800 fixup_alt_jump to right after `b', and leave behind three
3801 bytes which we'll fill in when we get to after `c'. */
3804 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
3806 /* Mark and leave space for a jump after this alternative,
3807 to be filled in later either by next alternative or
3808 when know we're at the end of a series of alternatives. */
3810 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3811 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3819 /* If \{ is a literal. */
3820 if (!(syntax
& RE_INTERVALS
)
3821 /* If we're at `\{' and it's not the open-interval
3823 || (syntax
& RE_NO_BK_BRACES
))
3824 goto normal_backslash
;
3828 /* If got here, then the syntax allows intervals. */
3830 /* At least (most) this many matches must be made. */
3831 int lower_bound
= -1, upper_bound
= -1;
3833 /* Place in the uncompiled pattern (i.e., just after
3834 the '{') to go back to if the interval is invalid. */
3835 const CHAR_T
*beg_interval
= p
;
3838 goto invalid_interval
;
3840 GET_UNSIGNED_NUMBER (lower_bound
);
3844 GET_UNSIGNED_NUMBER (upper_bound
);
3845 if (upper_bound
< 0)
3846 upper_bound
= RE_DUP_MAX
;
3849 /* Interval such as `{1}' => match exactly once. */
3850 upper_bound
= lower_bound
;
3852 if (! (0 <= lower_bound
&& lower_bound
<= upper_bound
))
3853 goto invalid_interval
;
3855 if (!(syntax
& RE_NO_BK_BRACES
))
3857 if (c
!= '\\' || p
== pend
)
3858 goto invalid_interval
;
3863 goto invalid_interval
;
3865 /* If it's invalid to have no preceding re. */
3868 if (syntax
& RE_CONTEXT_INVALID_OPS
3869 && !(syntax
& RE_INVALID_INTERVAL_ORD
))
3870 FREE_STACK_RETURN (REG_BADRPT
);
3871 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3874 goto unfetch_interval
;
3877 /* We just parsed a valid interval. */
3879 if (RE_DUP_MAX
< upper_bound
)
3880 FREE_STACK_RETURN (REG_BADBR
);
3882 /* If the upper bound is zero, don't want to succeed at
3883 all; jump from `laststart' to `b + 3', which will be
3884 the end of the buffer after we insert the jump. */
3885 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3886 instead of 'b + 3'. */
3887 if (upper_bound
== 0)
3889 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE
);
3890 INSERT_JUMP (jump
, laststart
, b
+ 1
3891 + OFFSET_ADDRESS_SIZE
);
3892 b
+= 1 + OFFSET_ADDRESS_SIZE
;
3895 /* Otherwise, we have a nontrivial interval. When
3896 we're all done, the pattern will look like:
3897 set_number_at <jump count> <upper bound>
3898 set_number_at <succeed_n count> <lower bound>
3899 succeed_n <after jump addr> <succeed_n count>
3901 jump_n <succeed_n addr> <jump count>
3902 (The upper bound and `jump_n' are omitted if
3903 `upper_bound' is 1, though.) */
3905 { /* If the upper bound is > 1, we need to insert
3906 more at the end of the loop. */
3907 unsigned nbytes
= 2 + 4 * OFFSET_ADDRESS_SIZE
+
3908 (upper_bound
> 1) * (2 + 4 * OFFSET_ADDRESS_SIZE
);
3910 GET_BUFFER_SPACE (nbytes
);
3912 /* Initialize lower bound of the `succeed_n', even
3913 though it will be set during matching by its
3914 attendant `set_number_at' (inserted next),
3915 because `re_compile_fastmap' needs to know.
3916 Jump to the `jump_n' we might insert below. */
3917 INSERT_JUMP2 (succeed_n
, laststart
,
3918 b
+ 1 + 2 * OFFSET_ADDRESS_SIZE
3919 + (upper_bound
> 1) * (1 + 2 * OFFSET_ADDRESS_SIZE
)
3921 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3923 /* Code to initialize the lower bound. Insert
3924 before the `succeed_n'. The `5' is the last two
3925 bytes of this `set_number_at', plus 3 bytes of
3926 the following `succeed_n'. */
3927 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3928 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3929 of the following `succeed_n'. */
3930 PREFIX(insert_op2
) (set_number_at
, laststart
, 1
3931 + 2 * OFFSET_ADDRESS_SIZE
, lower_bound
, b
);
3932 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3934 if (upper_bound
> 1)
3935 { /* More than one repetition is allowed, so
3936 append a backward jump to the `succeed_n'
3937 that starts this interval.
3939 When we've reached this during matching,
3940 we'll have matched the interval once, so
3941 jump back only `upper_bound - 1' times. */
3942 STORE_JUMP2 (jump_n
, b
, laststart
3943 + 2 * OFFSET_ADDRESS_SIZE
+ 1,
3945 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3947 /* The location we want to set is the second
3948 parameter of the `jump_n'; that is `b-2' as
3949 an absolute address. `laststart' will be
3950 the `set_number_at' we're about to insert;
3951 `laststart+3' the number to set, the source
3952 for the relative address. But we are
3953 inserting into the middle of the pattern --
3954 so everything is getting moved up by 5.
3955 Conclusion: (b - 2) - (laststart + 3) + 5,
3956 i.e., b - laststart.
3958 We insert this at the beginning of the loop
3959 so that if we fail during matching, we'll
3960 reinitialize the bounds. */
3961 PREFIX(insert_op2
) (set_number_at
, laststart
,
3963 upper_bound
- 1, b
);
3964 b
+= 1 + 2 * OFFSET_ADDRESS_SIZE
;
3971 if (!(syntax
& RE_INVALID_INTERVAL_ORD
))
3972 FREE_STACK_RETURN (p
== pend
? REG_EBRACE
: REG_BADBR
);
3974 /* Match the characters as literals. */
3977 if (syntax
& RE_NO_BK_BRACES
)
3980 goto normal_backslash
;
3984 /* There is no way to specify the before_dot and after_dot
3985 operators. rms says this is ok. --karl */
3993 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3999 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
4005 if (syntax
& RE_NO_GNU_OPS
)
4008 BUF_PUSH (wordchar
);
4013 if (syntax
& RE_NO_GNU_OPS
)
4016 BUF_PUSH (notwordchar
);
4021 if (syntax
& RE_NO_GNU_OPS
)
4027 if (syntax
& RE_NO_GNU_OPS
)
4033 if (syntax
& RE_NO_GNU_OPS
)
4035 BUF_PUSH (wordbound
);
4039 if (syntax
& RE_NO_GNU_OPS
)
4041 BUF_PUSH (notwordbound
);
4045 if (syntax
& RE_NO_GNU_OPS
)
4051 if (syntax
& RE_NO_GNU_OPS
)
4056 case '1': case '2': case '3': case '4': case '5':
4057 case '6': case '7': case '8': case '9':
4058 if (syntax
& RE_NO_BK_REFS
)
4064 FREE_STACK_RETURN (REG_ESUBREG
);
4066 /* Can't back reference to a subexpression if inside of it. */
4067 if (group_in_compile_stack (compile_stack
, (regnum_t
) c1
))
4071 BUF_PUSH_2 (duplicate
, c1
);
4077 if (syntax
& RE_BK_PLUS_QM
)
4080 goto normal_backslash
;
4084 /* You might think it would be useful for \ to mean
4085 not to translate; but if we don't translate it
4086 it will never match anything. */
4094 /* Expects the character in `c'. */
4096 /* If no exactn currently being built. */
4099 /* If last exactn handle binary(or character) and
4100 new exactn handle character(or binary). */
4101 || is_exactn_bin
!= is_binary
[p
- 1 - pattern
]
4104 /* If last exactn not at current position. */
4105 || pending_exact
+ *pending_exact
+ 1 != b
4107 /* We have only one byte following the exactn for the count. */
4108 || *pending_exact
== (1 << BYTEWIDTH
) - 1
4110 /* If followed by a repetition operator. */
4111 || *p
== '*' || *p
== '^'
4112 || ((syntax
& RE_BK_PLUS_QM
)
4113 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
4114 : (*p
== '+' || *p
== '?'))
4115 || ((syntax
& RE_INTERVALS
)
4116 && ((syntax
& RE_NO_BK_BRACES
)
4118 : (p
[0] == '\\' && p
[1] == '{'))))
4120 /* Start building a new exactn. */
4125 /* Is this exactn binary data or character? */
4126 is_exactn_bin
= is_binary
[p
- 1 - pattern
];
4128 BUF_PUSH_2 (exactn_bin
, 0);
4130 BUF_PUSH_2 (exactn
, 0);
4132 BUF_PUSH_2 (exactn
, 0);
4134 pending_exact
= b
- 1;
4141 } /* while p != pend */
4144 /* Through the pattern now. */
4147 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
4149 if (!COMPILE_STACK_EMPTY
)
4150 FREE_STACK_RETURN (REG_EPAREN
);
4152 /* If we don't want backtracking, force success
4153 the first time we reach the end of the compiled pattern. */
4154 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
4162 free (compile_stack
.stack
);
4164 /* We have succeeded; set the length of the buffer. */
4166 bufp
->used
= (uintptr_t) b
- (uintptr_t) COMPILED_BUFFER_VAR
;
4168 bufp
->used
= b
- bufp
->buffer
;
4174 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4175 PREFIX(print_compiled_pattern
) (bufp
);
4179 #ifndef MATCH_MAY_ALLOCATE
4180 /* Initialize the failure stack to the largest possible stack. This
4181 isn't necessary unless we're trying to avoid calling alloca in
4182 the search and match routines. */
4184 int num_regs
= bufp
->re_nsub
+ 1;
4186 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4187 is strictly greater than re_max_failures, the largest possible stack
4188 is 2 * re_max_failures failure points. */
4189 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
4191 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
4194 if (! fail_stack
.stack
)
4196 = (PREFIX(fail_stack_elt_t
) *) xmalloc (fail_stack
.size
4197 * sizeof (PREFIX(fail_stack_elt_t
)));
4200 = (PREFIX(fail_stack_elt_t
) *) xrealloc (fail_stack
.stack
,
4202 * sizeof (PREFIX(fail_stack_elt_t
))));
4203 # else /* not emacs */
4204 if (! fail_stack
.stack
)
4206 = (PREFIX(fail_stack_elt_t
) *) malloc (fail_stack
.size
4207 * sizeof (PREFIX(fail_stack_elt_t
)));
4210 = (PREFIX(fail_stack_elt_t
) *) realloc (fail_stack
.stack
,
4212 * sizeof (PREFIX(fail_stack_elt_t
))));
4213 # endif /* not emacs */
4216 PREFIX(regex_grow_registers
) (num_regs
);
4218 #endif /* not MATCH_MAY_ALLOCATE */
4221 } /* regex_compile */
4223 /* Subroutines for `regex_compile'. */
4225 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4226 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4229 PREFIX(store_op1
) (re_opcode_t op
, UCHAR_T
*loc
, int arg
)
4231 *loc
= (UCHAR_T
) op
;
4232 STORE_NUMBER (loc
+ 1, arg
);
4236 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4237 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4240 PREFIX(store_op2
) (re_opcode_t op
, UCHAR_T
*loc
, int arg1
, int arg2
)
4242 *loc
= (UCHAR_T
) op
;
4243 STORE_NUMBER (loc
+ 1, arg1
);
4244 STORE_NUMBER (loc
+ 1 + OFFSET_ADDRESS_SIZE
, arg2
);
4248 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4249 for OP followed by two-byte integer parameter ARG. */
4250 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4253 PREFIX(insert_op1
) (re_opcode_t op
, UCHAR_T
*loc
, int arg
, UCHAR_T
*end
)
4255 register UCHAR_T
*pfrom
= end
;
4256 register UCHAR_T
*pto
= end
+ 1 + OFFSET_ADDRESS_SIZE
;
4258 while (pfrom
!= loc
)
4261 PREFIX(store_op1
) (op
, loc
, arg
);
4265 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4266 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4269 PREFIX(insert_op2
) (re_opcode_t op
, UCHAR_T
*loc
, int arg1
,
4270 int arg2
, UCHAR_T
*end
)
4272 register UCHAR_T
*pfrom
= end
;
4273 register UCHAR_T
*pto
= end
+ 1 + 2 * OFFSET_ADDRESS_SIZE
;
4275 while (pfrom
!= loc
)
4278 PREFIX(store_op2
) (op
, loc
, arg1
, arg2
);
4282 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4283 after an alternative or a begin-subexpression. We assume there is at
4284 least one character before the ^. */
4287 PREFIX(at_begline_loc_p
) (const CHAR_T
*pattern
, const CHAR_T
*p
,
4288 reg_syntax_t syntax
)
4290 const CHAR_T
*prev
= p
- 2;
4291 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
4294 /* After a subexpression? */
4295 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
4296 /* After an alternative? */
4297 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
4301 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4302 at least one character after the $, i.e., `P < PEND'. */
4305 PREFIX(at_endline_loc_p
) (const CHAR_T
*p
, const CHAR_T
*pend
,
4306 reg_syntax_t syntax
)
4308 const CHAR_T
*next
= p
;
4309 boolean next_backslash
= *next
== '\\';
4310 const CHAR_T
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
4313 /* Before a subexpression? */
4314 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
4315 : next_backslash
&& next_next
&& *next_next
== ')')
4316 /* Before an alternative? */
4317 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
4318 : next_backslash
&& next_next
&& *next_next
== '|');
4321 #else /* not INSIDE_RECURSION */
4323 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4324 false if it's not. */
4327 group_in_compile_stack (compile_stack_type compile_stack
, regnum_t regnum
)
4331 for (this_element
= compile_stack
.avail
- 1;
4334 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
4339 #endif /* not INSIDE_RECURSION */
4341 #ifdef INSIDE_RECURSION
4344 /* This insert space, which size is "num", into the pattern at "loc".
4345 "end" must point the end of the allocated buffer. */
4347 insert_space (int num
, CHAR_T
*loc
, CHAR_T
*end
)
4349 register CHAR_T
*pto
= end
;
4350 register CHAR_T
*pfrom
= end
- num
;
4352 while (pfrom
>= loc
)
4358 static reg_errcode_t
4359 wcs_compile_range (CHAR_T range_start_char
, const CHAR_T
**p_ptr
,
4360 const CHAR_T
*pend
, RE_TRANSLATE_TYPE translate
,
4361 reg_syntax_t syntax
, CHAR_T
*b
, CHAR_T
*char_set
)
4363 const CHAR_T
*p
= *p_ptr
;
4364 CHAR_T range_start
, range_end
;
4368 uint32_t start_val
, end_val
;
4374 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
4377 const char *collseq
= (const char *) _NL_CURRENT(LC_COLLATE
,
4378 _NL_COLLATE_COLLSEQWC
);
4379 const unsigned char *extra
= (const unsigned char *)
4380 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
4382 if (range_start_char
< -1)
4384 /* range_start is a collating symbol. */
4386 /* Retreive the index and get collation sequence value. */
4387 wextra
= (int32_t*)(extra
+ char_set
[-range_start_char
]);
4388 start_val
= wextra
[1 + *wextra
];
4391 start_val
= collseq_table_lookup(collseq
, TRANSLATE(range_start_char
));
4393 end_val
= collseq_table_lookup (collseq
, TRANSLATE (p
[0]));
4395 /* Report an error if the range is empty and the syntax prohibits
4397 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4398 && (start_val
> end_val
))? REG_ERANGE
: REG_NOERROR
;
4400 /* Insert space to the end of the char_ranges. */
4401 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4402 *(b
- char_set
[5] - 2) = (wchar_t)start_val
;
4403 *(b
- char_set
[5] - 1) = (wchar_t)end_val
;
4404 char_set
[4]++; /* ranges_index */
4409 range_start
= (range_start_char
>= 0)? TRANSLATE (range_start_char
):
4411 range_end
= TRANSLATE (p
[0]);
4412 /* Report an error if the range is empty and the syntax prohibits
4414 ret
= ((syntax
& RE_NO_EMPTY_RANGES
)
4415 && (range_start
> range_end
))? REG_ERANGE
: REG_NOERROR
;
4417 /* Insert space to the end of the char_ranges. */
4418 insert_space(2, b
- char_set
[5] - 2, b
- 1);
4419 *(b
- char_set
[5] - 2) = range_start
;
4420 *(b
- char_set
[5] - 1) = range_end
;
4421 char_set
[4]++; /* ranges_index */
4423 /* Have to increment the pointer into the pattern string, so the
4424 caller isn't still at the ending character. */
4430 /* Read the ending character of a range (in a bracket expression) from the
4431 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4432 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4433 Then we set the translation of all bits between the starting and
4434 ending characters (inclusive) in the compiled pattern B.
4436 Return an error code.
4438 We use these short variable names so we can use the same macros as
4439 `regex_compile' itself. */
4441 static reg_errcode_t
4442 byte_compile_range (unsigned int range_start_char
, const char **p_ptr
,
4443 const char *pend
, RE_TRANSLATE_TYPE translate
,
4444 reg_syntax_t syntax
, unsigned char *b
)
4447 const char *p
= *p_ptr
;
4450 const unsigned char *collseq
;
4451 unsigned int start_colseq
;
4452 unsigned int end_colseq
;
4460 /* Have to increment the pointer into the pattern string, so the
4461 caller isn't still at the ending character. */
4464 /* Report an error if the range is empty and the syntax prohibits this. */
4465 ret
= syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
4468 collseq
= (const unsigned char *) _NL_CURRENT (LC_COLLATE
,
4469 _NL_COLLATE_COLLSEQMB
);
4471 start_colseq
= collseq
[(unsigned char) TRANSLATE (range_start_char
)];
4472 end_colseq
= collseq
[(unsigned char) TRANSLATE (p
[0])];
4473 for (this_char
= 0; this_char
<= (unsigned char) -1; ++this_char
)
4475 unsigned int this_colseq
= collseq
[(unsigned char) TRANSLATE (this_char
)];
4477 if (start_colseq
<= this_colseq
&& this_colseq
<= end_colseq
)
4479 SET_LIST_BIT (TRANSLATE (this_char
));
4484 /* Here we see why `this_char' has to be larger than an `unsigned
4485 char' -- we would otherwise go into an infinite loop, since all
4486 characters <= 0xff. */
4487 range_start_char
= TRANSLATE (range_start_char
);
4488 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4489 and some compilers cast it to int implicitly, so following for_loop
4490 may fall to (almost) infinite loop.
4491 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4492 To avoid this, we cast p[0] to unsigned int and truncate it. */
4493 end_char
= ((unsigned)TRANSLATE(p
[0]) & ((1 << BYTEWIDTH
) - 1));
4495 for (this_char
= range_start_char
; this_char
<= end_char
; ++this_char
)
4497 SET_LIST_BIT (TRANSLATE (this_char
));
4506 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4507 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4508 characters can start a string that matches the pattern. This fastmap
4509 is used by re_search to skip quickly over impossible starting points.
4511 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4512 area as BUFP->fastmap.
4514 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4517 Returns 0 if we succeed, -2 if an internal error. */
4520 /* local function for re_compile_fastmap.
4521 truncate wchar_t character to char. */
4522 static unsigned char truncate_wchar (CHAR_T c
);
4524 static unsigned char
4525 truncate_wchar (CHAR_T c
)
4527 unsigned char buf
[MB_CUR_MAX
];
4530 memset (&state
, '\0', sizeof (state
));
4532 retval
= __wcrtomb (buf
, c
, &state
);
4534 retval
= wcrtomb (buf
, c
, &state
);
4536 return retval
> 0 ? buf
[0] : (unsigned char) c
;
4541 PREFIX(re_compile_fastmap
) (struct re_pattern_buffer
*bufp
)
4544 #ifdef MATCH_MAY_ALLOCATE
4545 PREFIX(fail_stack_type
) fail_stack
;
4547 #ifndef REGEX_MALLOC
4551 register char *fastmap
= bufp
->fastmap
;
4554 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4555 pattern to (char*) in regex_compile. */
4556 UCHAR_T
*pattern
= (UCHAR_T
*)bufp
->buffer
;
4557 register UCHAR_T
*pend
= (UCHAR_T
*) (bufp
->buffer
+ bufp
->used
);
4559 UCHAR_T
*pattern
= bufp
->buffer
;
4560 register UCHAR_T
*pend
= pattern
+ bufp
->used
;
4562 UCHAR_T
*p
= pattern
;
4565 /* This holds the pointer to the failure stack, when
4566 it is allocated relocatably. */
4567 fail_stack_elt_t
*failure_stack_ptr
;
4570 /* Assume that each path through the pattern can be null until
4571 proven otherwise. We set this false at the bottom of switch
4572 statement, to which we get only if a particular path doesn't
4573 match the empty string. */
4574 boolean path_can_be_null
= true;
4576 /* We aren't doing a `succeed_n' to begin with. */
4577 boolean succeed_n_p
= false;
4579 assert (fastmap
!= NULL
&& p
!= NULL
);
4582 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4583 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4584 bufp
->can_be_null
= 0;
4588 if (p
== pend
|| *p
== (UCHAR_T
) succeed
)
4590 /* We have reached the (effective) end of pattern. */
4591 if (!FAIL_STACK_EMPTY ())
4593 bufp
->can_be_null
|= path_can_be_null
;
4595 /* Reset for next path. */
4596 path_can_be_null
= true;
4598 p
= fail_stack
.stack
[--fail_stack
.avail
].pointer
;
4606 /* We should never be about to go beyond the end of the pattern. */
4609 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4612 /* I guess the idea here is to simply not bother with a fastmap
4613 if a backreference is used, since it's too hard to figure out
4614 the fastmap for the corresponding group. Setting
4615 `can_be_null' stops `re_search_2' from using the fastmap, so
4616 that is all we do. */
4618 bufp
->can_be_null
= 1;
4622 /* Following are the cases which match a character. These end
4627 fastmap
[truncate_wchar(p
[1])] = 1;
4641 /* It is hard to distinguish fastmap from (multi byte) characters
4642 which depends on current locale. */
4647 bufp
->can_be_null
= 1;
4651 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4652 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
4658 /* Chars beyond end of map must be allowed. */
4659 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
4662 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
4663 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
4669 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4670 if (SYNTAX (j
) == Sword
)
4676 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4677 if (SYNTAX (j
) != Sword
)
4684 int fastmap_newline
= fastmap
['\n'];
4686 /* `.' matches anything ... */
4687 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4690 /* ... except perhaps newline. */
4691 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
4692 fastmap
['\n'] = fastmap_newline
;
4694 /* Return if we have already set `can_be_null'; if we have,
4695 then the fastmap is irrelevant. Something's wrong here. */
4696 else if (bufp
->can_be_null
)
4699 /* Otherwise, have to check alternative paths. */
4706 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4707 if (SYNTAX (j
) == (enum syntaxcode
) k
)
4714 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4715 if (SYNTAX (j
) != (enum syntaxcode
) k
)
4720 /* All cases after this match the empty string. These end with
4740 case push_dummy_failure
:
4745 case pop_failure_jump
:
4746 case maybe_pop_jump
:
4749 case dummy_failure_jump
:
4750 EXTRACT_NUMBER_AND_INCR (j
, p
);
4755 /* Jump backward implies we just went through the body of a
4756 loop and matched nothing. Opcode jumped to should be
4757 `on_failure_jump' or `succeed_n'. Just treat it like an
4758 ordinary jump. For a * loop, it has pushed its failure
4759 point already; if so, discard that as redundant. */
4760 if ((re_opcode_t
) *p
!= on_failure_jump
4761 && (re_opcode_t
) *p
!= succeed_n
)
4765 EXTRACT_NUMBER_AND_INCR (j
, p
);
4768 /* If what's on the stack is where we are now, pop it. */
4769 if (!FAIL_STACK_EMPTY ()
4770 && fail_stack
.stack
[fail_stack
.avail
- 1].pointer
== p
)
4776 case on_failure_jump
:
4777 case on_failure_keep_string_jump
:
4778 handle_on_failure_jump
:
4779 EXTRACT_NUMBER_AND_INCR (j
, p
);
4781 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4782 end of the pattern. We don't want to push such a point,
4783 since when we restore it above, entering the switch will
4784 increment `p' past the end of the pattern. We don't need
4785 to push such a point since we obviously won't find any more
4786 fastmap entries beyond `pend'. Such a pattern can match
4787 the null string, though. */
4790 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
4792 RESET_FAIL_STACK ();
4797 bufp
->can_be_null
= 1;
4801 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
4802 succeed_n_p
= false;
4809 /* Get to the number of times to succeed. */
4810 p
+= OFFSET_ADDRESS_SIZE
;
4812 /* Increment p past the n for when k != 0. */
4813 EXTRACT_NUMBER_AND_INCR (k
, p
);
4816 p
-= 2 * OFFSET_ADDRESS_SIZE
;
4817 succeed_n_p
= true; /* Spaghetti code alert. */
4818 goto handle_on_failure_jump
;
4824 p
+= 2 * OFFSET_ADDRESS_SIZE
;
4835 abort (); /* We have listed all the cases. */
4838 /* Getting here means we have found the possible starting
4839 characters for one path of the pattern -- and that the empty
4840 string does not match. We need not follow this path further.
4841 Instead, look at the next alternative (remembered on the
4842 stack), or quit if no more. The test at the top of the loop
4843 does these things. */
4844 path_can_be_null
= false;
4848 /* Set `can_be_null' for the last path (also the first path, if the
4849 pattern is empty). */
4850 bufp
->can_be_null
|= path_can_be_null
;
4853 RESET_FAIL_STACK ();
4857 #else /* not INSIDE_RECURSION */
4860 re_compile_fastmap (struct re_pattern_buffer
*bufp
)
4863 if (MB_CUR_MAX
!= 1)
4864 return wcs_re_compile_fastmap(bufp
);
4867 return byte_re_compile_fastmap(bufp
);
4868 } /* re_compile_fastmap */
4870 weak_alias (__re_compile_fastmap
, re_compile_fastmap
)
4874 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4875 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4876 this memory for recording register information. STARTS and ENDS
4877 must be allocated using the malloc library routine, and must each
4878 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4880 If NUM_REGS == 0, then subsequent matches should allocate their own
4883 Unless this function is called, the first search or match using
4884 PATTERN_BUFFER will allocate its own register data, without
4885 freeing the old data. */
4888 re_set_registers (struct re_pattern_buffer
*bufp
,
4889 struct re_registers
*regs
, unsigned num_regs
,
4890 regoff_t
*starts
, regoff_t
*ends
)
4894 bufp
->regs_allocated
= REGS_REALLOCATE
;
4895 regs
->num_regs
= num_regs
;
4896 regs
->start
= starts
;
4901 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4903 regs
->start
= regs
->end
= (regoff_t
*) 0;
4907 weak_alias (__re_set_registers
, re_set_registers
)
4910 /* Searching routines. */
4912 /* Like re_search_2, below, but only one string is specified, and
4913 doesn't let you say where to stop matching. */
4916 re_search (struct re_pattern_buffer
*bufp
, const char *string
, int size
,
4917 int startpos
, int range
, struct re_registers
*regs
)
4919 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4923 weak_alias (__re_search
, re_search
)
4927 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4928 virtual concatenation of STRING1 and STRING2, starting first at index
4929 STARTPOS, then at STARTPOS + 1, and so on.
4931 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4933 RANGE is how far to scan while trying to match. RANGE = 0 means try
4934 only at STARTPOS; in general, the last start tried is STARTPOS +
4937 In REGS, return the indices of the virtual concatenation of STRING1
4938 and STRING2 that matched the entire BUFP->buffer and its contained
4941 Do not consider matching one past the index STOP in the virtual
4942 concatenation of STRING1 and STRING2.
4944 We return either the position in the strings at which the match was
4945 found, -1 if no match, or -2 if error (such as failure
4949 re_search_2 (struct re_pattern_buffer
*bufp
, const char *string1
, int size1
,
4950 const char *string2
, int size2
, int startpos
, int range
,
4951 struct re_registers
*regs
, int stop
)
4954 if (MB_CUR_MAX
!= 1)
4955 return wcs_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
4959 return byte_re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
,
4963 weak_alias (__re_search_2
, re_search_2
)
4966 #endif /* not INSIDE_RECURSION */
4968 #ifdef INSIDE_RECURSION
4970 #ifdef MATCH_MAY_ALLOCATE
4971 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4973 # define FREE_VAR(var) free (var); var = NULL
4977 # define MAX_ALLOCA_SIZE 2000
4979 # define FREE_WCS_BUFFERS() \
4981 if (size1 > MAX_ALLOCA_SIZE) \
4983 free (wcs_string1); \
4984 free (mbs_offset1); \
4988 FREE_VAR (wcs_string1); \
4989 FREE_VAR (mbs_offset1); \
4991 if (size2 > MAX_ALLOCA_SIZE) \
4993 free (wcs_string2); \
4994 free (mbs_offset2); \
4998 FREE_VAR (wcs_string2); \
4999 FREE_VAR (mbs_offset2); \
5007 PREFIX(re_search_2
) (struct re_pattern_buffer
*bufp
, const char *string1
,
5008 int size1
, const char *string2
, int size2
,
5009 int startpos
, int range
,
5010 struct re_registers
*regs
, int stop
)
5013 register char *fastmap
= bufp
->fastmap
;
5014 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5015 int total_size
= size1
+ size2
;
5016 int endpos
= startpos
+ range
;
5018 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5019 wchar_t *wcs_string1
= NULL
, *wcs_string2
= NULL
;
5020 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5021 int wcs_size1
= 0, wcs_size2
= 0;
5022 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5023 int *mbs_offset1
= NULL
, *mbs_offset2
= NULL
;
5024 /* They hold whether each wchar_t is binary data or not. */
5025 char *is_binary
= NULL
;
5028 /* Check for out-of-range STARTPOS. */
5029 if (startpos
< 0 || startpos
> total_size
)
5032 /* Fix up RANGE if it might eventually take us outside
5033 the virtual concatenation of STRING1 and STRING2.
5034 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5036 range
= 0 - startpos
;
5037 else if (endpos
> total_size
)
5038 range
= total_size
- startpos
;
5040 /* If the search isn't to be a backwards one, don't waste time in a
5041 search for a pattern that must be anchored. */
5042 if (bufp
->used
> 0 && range
> 0
5043 && ((re_opcode_t
) bufp
->buffer
[0] == begbuf
5044 /* `begline' is like `begbuf' if it cannot match at newlines. */
5045 || ((re_opcode_t
) bufp
->buffer
[0] == begline
5046 && !bufp
->newline_anchor
)))
5055 /* In a forward search for something that starts with \=.
5056 don't keep searching past point. */
5057 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
5059 range
= PT
- startpos
;
5065 /* Update the fastmap now if not correct already. */
5066 if (fastmap
&& !bufp
->fastmap_accurate
)
5067 if (re_compile_fastmap (bufp
) == -2)
5071 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5072 fill them with converted string. */
5075 if (size1
> MAX_ALLOCA_SIZE
)
5077 wcs_string1
= TALLOC (size1
+ 1, CHAR_T
);
5078 mbs_offset1
= TALLOC (size1
+ 1, int);
5079 is_binary
= TALLOC (size1
+ 1, char);
5083 wcs_string1
= REGEX_TALLOC (size1
+ 1, CHAR_T
);
5084 mbs_offset1
= REGEX_TALLOC (size1
+ 1, int);
5085 is_binary
= REGEX_TALLOC (size1
+ 1, char);
5087 if (!wcs_string1
|| !mbs_offset1
|| !is_binary
)
5089 if (size1
> MAX_ALLOCA_SIZE
)
5097 FREE_VAR (wcs_string1
);
5098 FREE_VAR (mbs_offset1
);
5099 FREE_VAR (is_binary
);
5103 wcs_size1
= convert_mbs_to_wcs(wcs_string1
, string1
, size1
,
5104 mbs_offset1
, is_binary
);
5105 wcs_string1
[wcs_size1
] = L
'\0'; /* for a sentinel */
5106 if (size1
> MAX_ALLOCA_SIZE
)
5109 FREE_VAR (is_binary
);
5113 if (size2
> MAX_ALLOCA_SIZE
)
5115 wcs_string2
= TALLOC (size2
+ 1, CHAR_T
);
5116 mbs_offset2
= TALLOC (size2
+ 1, int);
5117 is_binary
= TALLOC (size2
+ 1, char);
5121 wcs_string2
= REGEX_TALLOC (size2
+ 1, CHAR_T
);
5122 mbs_offset2
= REGEX_TALLOC (size2
+ 1, int);
5123 is_binary
= REGEX_TALLOC (size2
+ 1, char);
5125 if (!wcs_string2
|| !mbs_offset2
|| !is_binary
)
5127 FREE_WCS_BUFFERS ();
5128 if (size2
> MAX_ALLOCA_SIZE
)
5131 FREE_VAR (is_binary
);
5134 wcs_size2
= convert_mbs_to_wcs(wcs_string2
, string2
, size2
,
5135 mbs_offset2
, is_binary
);
5136 wcs_string2
[wcs_size2
] = L
'\0'; /* for a sentinel */
5137 if (size2
> MAX_ALLOCA_SIZE
)
5140 FREE_VAR (is_binary
);
5145 /* Loop through the string, looking for a place to start matching. */
5148 /* If a fastmap is supplied, skip quickly over characters that
5149 cannot be the start of a match. If the pattern can match the
5150 null string, however, we don't need to skip characters; we want
5151 the first null string. */
5152 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
5154 if (range
> 0) /* Searching forwards. */
5156 register const char *d
;
5157 register int lim
= 0;
5160 if (startpos
< size1
&& startpos
+ range
>= size1
)
5161 lim
= range
- (size1
- startpos
);
5163 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
5165 /* Written out as an if-else to avoid testing `translate'
5169 && !fastmap
[(unsigned char)
5170 translate
[(unsigned char) *d
++]])
5173 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
5176 startpos
+= irange
- range
;
5178 else /* Searching backwards. */
5180 register CHAR_T c
= (size1
== 0 || startpos
>= size1
5181 ? string2
[startpos
- size1
]
5182 : string1
[startpos
]);
5184 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
5189 /* If can't match the null string, and that's all we have left, fail. */
5190 if (range
>= 0 && startpos
== total_size
&& fastmap
5191 && !bufp
->can_be_null
)
5194 FREE_WCS_BUFFERS ();
5200 val
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
,
5201 size2
, startpos
, regs
, stop
,
5202 wcs_string1
, wcs_size1
,
5203 wcs_string2
, wcs_size2
,
5204 mbs_offset1
, mbs_offset2
);
5206 val
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
,
5207 size2
, startpos
, regs
, stop
);
5210 #ifndef REGEX_MALLOC
5219 FREE_WCS_BUFFERS ();
5227 FREE_WCS_BUFFERS ();
5247 FREE_WCS_BUFFERS ();
5253 /* This converts PTR, a pointer into one of the search wchar_t strings
5254 `string1' and `string2' into an multibyte string offset from the
5255 beginning of that string. We use mbs_offset to optimize.
5256 See convert_mbs_to_wcs. */
5257 # define POINTER_TO_OFFSET(ptr) \
5258 (FIRST_STRING_P (ptr) \
5259 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5260 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5263 /* This converts PTR, a pointer into one of the search strings `string1'
5264 and `string2' into an offset from the beginning of that string. */
5265 # define POINTER_TO_OFFSET(ptr) \
5266 (FIRST_STRING_P (ptr) \
5267 ? ((regoff_t) ((ptr) - string1)) \
5268 : ((regoff_t) ((ptr) - string2 + size1)))
5271 /* Macros for dealing with the split strings in re_match_2. */
5273 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5275 /* Call before fetching a character with *d. This switches over to
5276 string2 if necessary. */
5277 #define PREFETCH() \
5280 /* End of string2 => fail. */ \
5281 if (dend == end_match_2) \
5283 /* End of string1 => advance to string2. */ \
5285 dend = end_match_2; \
5288 /* Test if at very beginning or at very end of the virtual concatenation
5289 of `string1' and `string2'. If only one string, it's `string2'. */
5290 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5291 #define AT_STRINGS_END(d) ((d) == end2)
5294 /* Test if D points to a character which is word-constituent. We have
5295 two special cases to check for: if past the end of string1, look at
5296 the first character in string2; and if before the beginning of
5297 string2, look at the last character in string1. */
5299 /* Use internationalized API instead of SYNTAX. */
5300 # define WORDCHAR_P(d) \
5301 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5302 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5303 || ((d) == end1 ? *string2 \
5304 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5306 # define WORDCHAR_P(d) \
5307 (SYNTAX ((d) == end1 ? *string2 \
5308 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5312 /* Disabled due to a compiler bug -- see comment at case wordbound */
5314 /* Test if the character before D and the one at D differ with respect
5315 to being word-constituent. */
5316 #define AT_WORD_BOUNDARY(d) \
5317 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5318 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5321 /* Free everything we malloc. */
5322 #ifdef MATCH_MAY_ALLOCATE
5324 # define FREE_VARIABLES() \
5326 REGEX_FREE_STACK (fail_stack.stack); \
5327 FREE_VAR (regstart); \
5328 FREE_VAR (regend); \
5329 FREE_VAR (old_regstart); \
5330 FREE_VAR (old_regend); \
5331 FREE_VAR (best_regstart); \
5332 FREE_VAR (best_regend); \
5333 FREE_VAR (reg_info); \
5334 FREE_VAR (reg_dummy); \
5335 FREE_VAR (reg_info_dummy); \
5336 if (!cant_free_wcs_buf) \
5338 FREE_VAR (string1); \
5339 FREE_VAR (string2); \
5340 FREE_VAR (mbs_offset1); \
5341 FREE_VAR (mbs_offset2); \
5345 # define FREE_VARIABLES() \
5347 REGEX_FREE_STACK (fail_stack.stack); \
5348 FREE_VAR (regstart); \
5349 FREE_VAR (regend); \
5350 FREE_VAR (old_regstart); \
5351 FREE_VAR (old_regend); \
5352 FREE_VAR (best_regstart); \
5353 FREE_VAR (best_regend); \
5354 FREE_VAR (reg_info); \
5355 FREE_VAR (reg_dummy); \
5356 FREE_VAR (reg_info_dummy); \
5361 # define FREE_VARIABLES() \
5363 if (!cant_free_wcs_buf) \
5365 FREE_VAR (string1); \
5366 FREE_VAR (string2); \
5367 FREE_VAR (mbs_offset1); \
5368 FREE_VAR (mbs_offset2); \
5372 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5374 #endif /* not MATCH_MAY_ALLOCATE */
5376 /* These values must meet several constraints. They must not be valid
5377 register values; since we have a limit of 255 registers (because
5378 we use only one byte in the pattern for the register number), we can
5379 use numbers larger than 255. They must differ by 1, because of
5380 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5381 be larger than the value for the highest register, so we do not try
5382 to actually save any registers when none are active. */
5383 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5384 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5386 #else /* not INSIDE_RECURSION */
5387 /* Matching routines. */
5389 #ifndef emacs /* Emacs never uses this. */
5390 /* re_match is like re_match_2 except it takes only a single string. */
5393 re_match (struct re_pattern_buffer
*bufp
, const char *string
,
5394 int size
, int pos
, struct re_registers
*regs
)
5398 if (MB_CUR_MAX
!= 1)
5399 result
= wcs_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5401 NULL
, 0, NULL
, 0, NULL
, NULL
);
5404 result
= byte_re_match_2_internal (bufp
, NULL
, 0, string
, size
,
5406 # ifndef REGEX_MALLOC
5414 weak_alias (__re_match
, re_match
)
5416 #endif /* not emacs */
5418 #endif /* not INSIDE_RECURSION */
5420 #ifdef INSIDE_RECURSION
5421 static boolean
PREFIX(group_match_null_string_p
) (UCHAR_T
**p
,
5423 PREFIX(register_info_type
) *reg_info
);
5424 static boolean
PREFIX(alt_match_null_string_p
) (UCHAR_T
*p
,
5426 PREFIX(register_info_type
) *reg_info
);
5427 static boolean
PREFIX(common_op_match_null_string_p
) (UCHAR_T
**p
,
5429 PREFIX(register_info_type
) *reg_info
);
5430 static int PREFIX(bcmp_translate
) (const CHAR_T
*s1
, const CHAR_T
*s2
,
5431 int len
, char *translate
);
5432 #else /* not INSIDE_RECURSION */
5434 /* re_match_2 matches the compiled pattern in BUFP against the
5435 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5436 and SIZE2, respectively). We start matching at POS, and stop
5439 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5440 store offsets for the substring each group matched in REGS. See the
5441 documentation for exactly how many groups we fill.
5443 We return -1 if no match, -2 if an internal error (such as the
5444 failure stack overflowing). Otherwise, we return the length of the
5445 matched substring. */
5448 re_match_2 (struct re_pattern_buffer
*bufp
, const char *string1
, int size1
,
5449 const char *string2
, int size2
, int pos
,
5450 struct re_registers
*regs
, int stop
)
5454 if (MB_CUR_MAX
!= 1)
5455 result
= wcs_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5457 NULL
, 0, NULL
, 0, NULL
, NULL
);
5460 result
= byte_re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
5463 #ifndef REGEX_MALLOC
5471 weak_alias (__re_match_2
, re_match_2
)
5474 #endif /* not INSIDE_RECURSION */
5476 #ifdef INSIDE_RECURSION
5479 static int count_mbs_length (int *, int);
5481 /* This check the substring (from 0, to length) of the multibyte string,
5482 to which offset_buffer correspond. And count how many wchar_t_characters
5483 the substring occupy. We use offset_buffer to optimization.
5484 See convert_mbs_to_wcs. */
5487 count_mbs_length(int *offset_buffer
, int length
)
5491 /* Check whether the size is valid. */
5495 if (offset_buffer
== NULL
)
5498 /* If there are no multibyte character, offset_buffer[i] == i.
5499 Optmize for this case. */
5500 if (offset_buffer
[length
] == length
)
5503 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5509 int middle
= (lower
+ upper
) / 2;
5510 if (middle
== lower
|| middle
== upper
)
5512 if (offset_buffer
[middle
] > length
)
5514 else if (offset_buffer
[middle
] < length
)
5524 /* This is a separate function so that we can force an alloca cleanup
5528 wcs_re_match_2_internal (struct re_pattern_buffer
*bufp
,
5529 const char *cstring1
, int csize1
,
5530 const char *cstring2
, int csize2
,
5532 struct re_registers
*regs
,
5534 /* string1 == string2 == NULL means string1/2, size1/2 and
5535 mbs_offset1/2 need seting up in this function. */
5536 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5537 wchar_t *string1
, int size1
,
5538 wchar_t *string2
, int size2
,
5539 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5540 int *mbs_offset1
, int *mbs_offset2
)
5543 byte_re_match_2_internal (struct re_pattern_buffer
*bufp
,
5544 const char *string1
, int size1
,
5545 const char *string2
, int size2
,
5547 struct re_registers
*regs
, int stop
)
5550 /* General temporaries. */
5554 /* They hold whether each wchar_t is binary data or not. */
5555 char *is_binary
= NULL
;
5556 /* If true, we can't free string1/2, mbs_offset1/2. */
5557 int cant_free_wcs_buf
= 1;
5560 /* Just past the end of the corresponding string. */
5561 const CHAR_T
*end1
, *end2
;
5563 /* Pointers into string1 and string2, just past the last characters in
5564 each to consider matching. */
5565 const CHAR_T
*end_match_1
, *end_match_2
;
5567 /* Where we are in the data, and the end of the current string. */
5568 const CHAR_T
*d
, *dend
;
5570 /* Where we are in the pattern, and the end of the pattern. */
5572 UCHAR_T
*pattern
, *p
;
5573 register UCHAR_T
*pend
;
5575 UCHAR_T
*p
= bufp
->buffer
;
5576 register UCHAR_T
*pend
= p
+ bufp
->used
;
5579 /* Mark the opcode just after a start_memory, so we can test for an
5580 empty subpattern when we get to the stop_memory. */
5581 UCHAR_T
*just_past_start_mem
= 0;
5583 /* We use this to map every character in the string. */
5584 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
5586 /* Failure point stack. Each place that can handle a failure further
5587 down the line pushes a failure point on this stack. It consists of
5588 restart, regend, and reg_info for all registers corresponding to
5589 the subexpressions we're currently inside, plus the number of such
5590 registers, and, finally, two char *'s. The first char * is where
5591 to resume scanning the pattern; the second one is where to resume
5592 scanning the strings. If the latter is zero, the failure point is
5593 a ``dummy''; if a failure happens and the failure point is a dummy,
5594 it gets discarded and the next next one is tried. */
5595 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5596 PREFIX(fail_stack_type
) fail_stack
;
5599 static unsigned failure_id
;
5600 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
5604 /* This holds the pointer to the failure stack, when
5605 it is allocated relocatably. */
5606 fail_stack_elt_t
*failure_stack_ptr
;
5609 /* We fill all the registers internally, independent of what we
5610 return, for use in backreferences. The number here includes
5611 an element for register zero. */
5612 size_t num_regs
= bufp
->re_nsub
+ 1;
5614 /* The currently active registers. */
5615 active_reg_t lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
5616 active_reg_t highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
5618 /* Information on the contents of registers. These are pointers into
5619 the input strings; they record just what was matched (on this
5620 attempt) by a subexpression part of the pattern, that is, the
5621 regnum-th regstart pointer points to where in the pattern we began
5622 matching and the regnum-th regend points to right after where we
5623 stopped matching the regnum-th subexpression. (The zeroth register
5624 keeps track of what the whole pattern matches.) */
5625 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5626 const CHAR_T
**regstart
, **regend
;
5629 /* If a group that's operated upon by a repetition operator fails to
5630 match anything, then the register for its start will need to be
5631 restored because it will have been set to wherever in the string we
5632 are when we last see its open-group operator. Similarly for a
5634 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5635 const CHAR_T
**old_regstart
, **old_regend
;
5638 /* The is_active field of reg_info helps us keep track of which (possibly
5639 nested) subexpressions we are currently in. The matched_something
5640 field of reg_info[reg_num] helps us tell whether or not we have
5641 matched any of the pattern so far this time through the reg_num-th
5642 subexpression. These two fields get reset each time through any
5643 loop their register is in. */
5644 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5645 PREFIX(register_info_type
) *reg_info
;
5648 /* The following record the register info as found in the above
5649 variables when we find a match better than any we've seen before.
5650 This happens as we backtrack through the failure points, which in
5651 turn happens only if we have not yet matched the entire string. */
5652 unsigned best_regs_set
= false;
5653 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5654 const CHAR_T
**best_regstart
, **best_regend
;
5657 /* Logically, this is `best_regend[0]'. But we don't want to have to
5658 allocate space for that if we're not allocating space for anything
5659 else (see below). Also, we never need info about register 0 for
5660 any of the other register vectors, and it seems rather a kludge to
5661 treat `best_regend' differently than the rest. So we keep track of
5662 the end of the best match so far in a separate variable. We
5663 initialize this to NULL so that when we backtrack the first time
5664 and need to test it, it's not garbage. */
5665 const CHAR_T
*match_end
= NULL
;
5667 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5668 int set_regs_matched_done
= 0;
5670 /* Used when we pop values we don't care about. */
5671 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5672 const CHAR_T
**reg_dummy
;
5673 PREFIX(register_info_type
) *reg_info_dummy
;
5677 /* Counts the total number of registers pushed. */
5678 unsigned num_regs_pushed
= 0;
5681 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5685 #ifdef MATCH_MAY_ALLOCATE
5686 /* Do not bother to initialize all the register variables if there are
5687 no groups in the pattern, as it takes a fair amount of time. If
5688 there are groups, we include space for register 0 (the whole
5689 pattern), even though we never use it, since it simplifies the
5690 array indexing. We should fix this. */
5693 regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5694 regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5695 old_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5696 old_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5697 best_regstart
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5698 best_regend
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5699 reg_info
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5700 reg_dummy
= REGEX_TALLOC (num_regs
, const CHAR_T
*);
5701 reg_info_dummy
= REGEX_TALLOC (num_regs
, PREFIX(register_info_type
));
5703 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
5704 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
5712 /* We must initialize all our variables to NULL, so that
5713 `FREE_VARIABLES' doesn't try to free them. */
5714 regstart
= regend
= old_regstart
= old_regend
= best_regstart
5715 = best_regend
= reg_dummy
= NULL
;
5716 reg_info
= reg_info_dummy
= (PREFIX(register_info_type
) *) NULL
;
5718 #endif /* MATCH_MAY_ALLOCATE */
5720 /* The starting position is bogus. */
5722 if (pos
< 0 || pos
> csize1
+ csize2
)
5724 if (pos
< 0 || pos
> size1
+ size2
)
5732 /* Allocate wchar_t array for string1 and string2 and
5733 fill them with converted string. */
5734 if (string1
== NULL
&& string2
== NULL
)
5736 /* We need seting up buffers here. */
5738 /* We must free wcs buffers in this function. */
5739 cant_free_wcs_buf
= 0;
5743 string1
= REGEX_TALLOC (csize1
+ 1, CHAR_T
);
5744 mbs_offset1
= REGEX_TALLOC (csize1
+ 1, int);
5745 is_binary
= REGEX_TALLOC (csize1
+ 1, char);
5746 if (!string1
|| !mbs_offset1
|| !is_binary
)
5749 FREE_VAR (mbs_offset1
);
5750 FREE_VAR (is_binary
);
5756 string2
= REGEX_TALLOC (csize2
+ 1, CHAR_T
);
5757 mbs_offset2
= REGEX_TALLOC (csize2
+ 1, int);
5758 is_binary
= REGEX_TALLOC (csize2
+ 1, char);
5759 if (!string2
|| !mbs_offset2
|| !is_binary
)
5762 FREE_VAR (mbs_offset1
);
5764 FREE_VAR (mbs_offset2
);
5765 FREE_VAR (is_binary
);
5768 size2
= convert_mbs_to_wcs(string2
, cstring2
, csize2
,
5769 mbs_offset2
, is_binary
);
5770 string2
[size2
] = L
'\0'; /* for a sentinel */
5771 FREE_VAR (is_binary
);
5775 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5776 pattern to (char*) in regex_compile. */
5777 p
= pattern
= (CHAR_T
*)bufp
->buffer
;
5778 pend
= (CHAR_T
*)(bufp
->buffer
+ bufp
->used
);
5782 /* Initialize subexpression text positions to -1 to mark ones that no
5783 start_memory/stop_memory has been seen for. Also initialize the
5784 register information struct. */
5785 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5787 regstart
[mcnt
] = regend
[mcnt
]
5788 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
5790 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
5791 IS_ACTIVE (reg_info
[mcnt
]) = 0;
5792 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5793 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
5796 /* We move `string1' into `string2' if the latter's empty -- but not if
5797 `string1' is null. */
5798 if (size2
== 0 && string1
!= NULL
)
5805 mbs_offset2
= mbs_offset1
;
5811 end1
= string1
+ size1
;
5812 end2
= string2
+ size2
;
5814 /* Compute where to stop matching, within the two strings. */
5818 mcnt
= count_mbs_length(mbs_offset1
, stop
);
5819 end_match_1
= string1
+ mcnt
;
5820 end_match_2
= string2
;
5824 if (stop
> csize1
+ csize2
)
5825 stop
= csize1
+ csize2
;
5827 mcnt
= count_mbs_length(mbs_offset2
, stop
-csize1
);
5828 end_match_2
= string2
+ mcnt
;
5831 { /* count_mbs_length return error. */
5838 end_match_1
= string1
+ stop
;
5839 end_match_2
= string2
;
5844 end_match_2
= string2
+ stop
- size1
;
5848 /* `p' scans through the pattern as `d' scans through the data.
5849 `dend' is the end of the input string that `d' points within. `d'
5850 is advanced into the following input string whenever necessary, but
5851 this happens before fetching; therefore, at the beginning of the
5852 loop, `d' can be pointing at the end of a string, but it cannot
5855 if (size1
> 0 && pos
<= csize1
)
5857 mcnt
= count_mbs_length(mbs_offset1
, pos
);
5863 mcnt
= count_mbs_length(mbs_offset2
, pos
-csize1
);
5869 { /* count_mbs_length return error. */
5874 if (size1
> 0 && pos
<= size1
)
5881 d
= string2
+ pos
- size1
;
5886 DEBUG_PRINT1 ("The compiled pattern is:\n");
5887 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5888 DEBUG_PRINT1 ("The string to match is: `");
5889 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5890 DEBUG_PRINT1 ("'\n");
5892 /* This loops over pattern commands. It exits by returning from the
5893 function if the match is complete, or it drops through if the match
5894 fails at this starting point in the input data. */
5898 DEBUG_PRINT2 ("\n%p: ", p
);
5900 DEBUG_PRINT2 ("\n0x%x: ", p
);
5904 { /* End of pattern means we might have succeeded. */
5905 DEBUG_PRINT1 ("end of pattern ... ");
5907 /* If we haven't matched the entire string, and we want the
5908 longest match, try backtracking. */
5909 if (d
!= end_match_2
)
5911 /* 1 if this match ends in the same string (string1 or string2)
5912 as the best previous match. */
5915 /* 1 if this match is the best seen so far. */
5916 boolean best_match_p
;
5918 same_str_p
= (FIRST_STRING_P (match_end
)
5919 == MATCHING_IN_FIRST_STRING
);
5921 /* AIX compiler got confused when this was combined
5922 with the previous declaration. */
5924 best_match_p
= d
> match_end
;
5926 best_match_p
= !MATCHING_IN_FIRST_STRING
;
5928 DEBUG_PRINT1 ("backtracking.\n");
5930 if (!FAIL_STACK_EMPTY ())
5931 { /* More failure points to try. */
5933 /* If exceeds best match so far, save it. */
5934 if (!best_regs_set
|| best_match_p
)
5936 best_regs_set
= true;
5939 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5941 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5943 best_regstart
[mcnt
] = regstart
[mcnt
];
5944 best_regend
[mcnt
] = regend
[mcnt
];
5950 /* If no failure points, don't restore garbage. And if
5951 last match is real best match, don't restore second
5953 else if (best_regs_set
&& !best_match_p
)
5956 /* Restore best match. It may happen that `dend ==
5957 end_match_1' while the restored d is in string2.
5958 For example, the pattern `x.*y.*z' against the
5959 strings `x-' and `y-z-', if the two strings are
5960 not consecutive in memory. */
5961 DEBUG_PRINT1 ("Restoring best registers.\n");
5964 dend
= ((d
>= string1
&& d
<= end1
)
5965 ? end_match_1
: end_match_2
);
5967 for (mcnt
= 1; (unsigned) mcnt
< num_regs
; mcnt
++)
5969 regstart
[mcnt
] = best_regstart
[mcnt
];
5970 regend
[mcnt
] = best_regend
[mcnt
];
5973 } /* d != end_match_2 */
5976 DEBUG_PRINT1 ("Accepting match.\n");
5977 /* If caller wants register contents data back, do it. */
5978 if (regs
&& !bufp
->no_sub
)
5980 /* Have the register data arrays been allocated? */
5981 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5982 { /* No. So allocate them with malloc. We need one
5983 extra element beyond `num_regs' for the `-1' marker
5985 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5986 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5987 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5988 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5993 bufp
->regs_allocated
= REGS_REALLOCATE
;
5995 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5996 { /* Yes. If we need more elements than were already
5997 allocated, reallocate them. If we need fewer, just
5999 if (regs
->num_regs
< num_regs
+ 1)
6001 regs
->num_regs
= num_regs
+ 1;
6002 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
6003 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
6004 if (regs
->start
== NULL
|| regs
->end
== NULL
)
6013 /* These braces fend off a "empty body in an else-statement"
6014 warning under GCC when assert expands to nothing. */
6015 assert (bufp
->regs_allocated
== REGS_FIXED
);
6018 /* Convert the pointer data in `regstart' and `regend' to
6019 indices. Register zero has to be set differently,
6020 since we haven't kept track of any info for it. */
6021 if (regs
->num_regs
> 0)
6023 regs
->start
[0] = pos
;
6025 if (MATCHING_IN_FIRST_STRING
)
6026 regs
->end
[0] = mbs_offset1
!= NULL
?
6027 mbs_offset1
[d
-string1
] : 0;
6029 regs
->end
[0] = csize1
+ (mbs_offset2
!= NULL
?
6030 mbs_offset2
[d
-string2
] : 0);
6032 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
6033 ? ((regoff_t
) (d
- string1
))
6034 : ((regoff_t
) (d
- string2
+ size1
)));
6038 /* Go through the first `min (num_regs, regs->num_regs)'
6039 registers, since that is all we initialized. */
6040 for (mcnt
= 1; (unsigned) mcnt
< MIN (num_regs
, regs
->num_regs
);
6043 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
6044 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6048 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
6050 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
6054 /* If the regs structure we return has more elements than
6055 were in the pattern, set the extra elements to -1. If
6056 we (re)allocated the registers, this is the case,
6057 because we always allocate enough to have at least one
6059 for (mcnt
= num_regs
; (unsigned) mcnt
< regs
->num_regs
; mcnt
++)
6060 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
6061 } /* regs && !bufp->no_sub */
6063 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6064 nfailure_points_pushed
, nfailure_points_popped
,
6065 nfailure_points_pushed
- nfailure_points_popped
);
6066 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
6069 if (MATCHING_IN_FIRST_STRING
)
6070 mcnt
= mbs_offset1
!= NULL
? mbs_offset1
[d
-string1
] : 0;
6072 mcnt
= (mbs_offset2
!= NULL
? mbs_offset2
[d
-string2
] : 0) +
6076 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
6081 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
6087 /* Otherwise match next pattern command. */
6088 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
6090 /* Ignore these. Used to ignore the n of succeed_n's which
6091 currently have n == 0. */
6093 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6097 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6100 /* Match the next n pattern characters exactly. The following
6101 byte in the pattern defines n, and the n bytes after that
6102 are the characters to match. */
6108 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
6110 /* This is written out as an if-else so we don't waste time
6111 testing `translate' inside the loop. */
6120 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6126 if (*d
++ != (CHAR_T
) *p
++)
6130 if ((UCHAR_T
) translate
[(unsigned char) *d
++]
6142 if (*d
++ != (CHAR_T
) *p
++) goto fail
;
6146 SET_REGS_MATCHED ();
6150 /* Match any character except possibly a newline or a null. */
6152 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6156 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
6157 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
6160 SET_REGS_MATCHED ();
6161 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d
);
6171 unsigned int i
, char_class_length
, coll_symbol_length
,
6172 equiv_class_length
, ranges_length
, chars_length
, length
;
6173 CHAR_T
*workp
, *workp2
, *charset_top
;
6174 #define WORK_BUFFER_SIZE 128
6175 CHAR_T str_buf
[WORK_BUFFER_SIZE
];
6180 boolean negate
= (re_opcode_t
) *(p
- 1) == charset_not
;
6182 DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate
? "_not" : "");
6184 c
= TRANSLATE (*d
); /* The character to match. */
6187 nrules
= _NL_CURRENT_WORD (LC_COLLATE
, _NL_COLLATE_NRULES
);
6189 charset_top
= p
- 1;
6190 char_class_length
= *p
++;
6191 coll_symbol_length
= *p
++;
6192 equiv_class_length
= *p
++;
6193 ranges_length
= *p
++;
6194 chars_length
= *p
++;
6195 /* p points charset[6], so the address of the next instruction
6196 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6197 where l=length of char_classes, m=length of collating_symbol,
6198 n=equivalence_class, o=length of char_range,
6199 p'=length of character. */
6201 /* Update p to indicate the next instruction. */
6202 p
+= char_class_length
+ coll_symbol_length
+ equiv_class_length
+
6203 2*ranges_length
+ chars_length
;
6205 /* match with char_class? */
6206 for (i
= 0; i
< char_class_length
; i
+= CHAR_CLASS_SIZE
)
6209 uintptr_t alignedp
= ((uintptr_t)workp
6210 + __alignof__(wctype_t) - 1)
6211 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6212 wctype
= *((wctype_t*)alignedp
);
6213 workp
+= CHAR_CLASS_SIZE
;
6215 if (__iswctype((wint_t)c
, wctype
))
6216 goto char_set_matched
;
6218 if (iswctype((wint_t)c
, wctype
))
6219 goto char_set_matched
;
6223 /* match with collating_symbol? */
6227 const unsigned char *extra
= (const unsigned char *)
6228 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_SYMB_EXTRAMB
);
6230 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;
6234 wextra
= (int32_t*)(extra
+ *workp
++);
6235 for (i
= 0; i
< *wextra
; ++i
)
6236 if (TRANSLATE(d
[i
]) != wextra
[1 + i
])
6241 /* Update d, however d will be incremented at
6242 char_set_matched:, we decrement d here. */
6244 goto char_set_matched
;
6248 else /* (nrules == 0) */
6250 /* If we can't look up collation data, we use wcscoll
6253 for (workp2
= workp
+ coll_symbol_length
; workp
< workp2
;)
6255 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6257 length
= __wcslen (workp
);
6259 length
= wcslen (workp
);
6262 /* If wcscoll(the collating symbol, whole string) > 0,
6263 any substring of the string never match with the
6264 collating symbol. */
6266 if (__wcscoll (workp
, d
) > 0)
6268 if (wcscoll (workp
, d
) > 0)
6271 workp
+= length
+ 1;
6275 /* First, we compare the collating symbol with
6276 the first character of the string.
6277 If it don't match, we add the next character to
6278 the compare buffer in turn. */
6279 for (i
= 0 ; i
< WORK_BUFFER_SIZE
-1 ; i
++, d
++)
6284 if (dend
== end_match_2
)
6290 /* add next character to the compare buffer. */
6291 str_buf
[i
] = TRANSLATE(*d
);
6292 str_buf
[i
+1] = '\0';
6295 match
= __wcscoll (workp
, str_buf
);
6297 match
= wcscoll (workp
, str_buf
);
6300 goto char_set_matched
;
6303 /* (str_buf > workp) indicate (str_buf + X > workp),
6304 because for all X (str_buf + X > str_buf).
6305 So we don't need continue this loop. */
6308 /* Otherwise(str_buf < workp),
6309 (str_buf+next_character) may equals (workp).
6310 So we continue this loop. */
6315 workp
+= length
+ 1;
6318 /* match with equivalence_class? */
6322 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6323 /* Try to match the equivalence class against
6324 those known to the collate implementation. */
6325 const int32_t *table
;
6326 const int32_t *weights
;
6327 const int32_t *extra
;
6328 const int32_t *indirect
;
6333 /* This #include defines a local function! */
6334 # include <locale/weightwc.h>
6336 table
= (const int32_t *)
6337 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_TABLEWC
);
6338 weights
= (const wint_t *)
6339 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_WEIGHTWC
);
6340 extra
= (const wint_t *)
6341 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_EXTRAWC
);
6342 indirect
= (const int32_t *)
6343 _NL_CURRENT (LC_COLLATE
, _NL_COLLATE_INDIRECTWC
);
6345 /* Write 1 collating element to str_buf, and
6349 for (i
= 0 ; idx2
== 0 && i
< WORK_BUFFER_SIZE
- 1; i
++)
6351 cp
= (wint_t*)str_buf
;
6354 if (dend
== end_match_2
)
6359 str_buf
[i
] = TRANSLATE(*(d
+i
));
6360 str_buf
[i
+1] = '\0'; /* sentinel */
6361 idx2
= findidx ((const wint_t**)&cp
);
6364 /* Update d, however d will be incremented at
6365 char_set_matched:, we decrement d here. */
6366 d
= backup_d
+ ((wchar_t*)cp
- (wchar_t*)str_buf
- 1);
6369 if (dend
== end_match_2
)
6378 len
= weights
[idx2
];
6380 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;
6383 idx
= (int32_t)*workp
;
6384 /* We already checked idx != 0 in regex_compile. */
6386 if (idx2
!= 0 && len
== weights
[idx
])
6389 while (cnt
< len
&& (weights
[idx
+ 1 + cnt
]
6390 == weights
[idx2
+ 1 + cnt
]))
6394 goto char_set_matched
;
6401 else /* (nrules == 0) */
6403 /* If we can't look up collation data, we use wcscoll
6406 for (workp2
= workp
+ equiv_class_length
; workp
< workp2
;)
6408 const CHAR_T
*backup_d
= d
, *backup_dend
= dend
;
6410 length
= __wcslen (workp
);
6412 length
= wcslen (workp
);
6415 /* If wcscoll(the collating symbol, whole string) > 0,
6416 any substring of the string never match with the
6417 collating symbol. */
6419 if (__wcscoll (workp
, d
) > 0)
6421 if (wcscoll (workp
, d
) > 0)
6424 workp
+= length
+ 1;
6428 /* First, we compare the equivalence class with
6429 the first character of the string.
6430 If it don't match, we add the next character to
6431 the compare buffer in turn. */
6432 for (i
= 0 ; i
< WORK_BUFFER_SIZE
- 1 ; i
++, d
++)
6437 if (dend
== end_match_2
)
6443 /* add next character to the compare buffer. */
6444 str_buf
[i
] = TRANSLATE(*d
);
6445 str_buf
[i
+1] = '\0';
6448 match
= __wcscoll (workp
, str_buf
);
6450 match
= wcscoll (workp
, str_buf
);
6454 goto char_set_matched
;
6457 /* (str_buf > workp) indicate (str_buf + X > workp),
6458 because for all X (str_buf + X > str_buf).
6459 So we don't need continue this loop. */
6462 /* Otherwise(str_buf < workp),
6463 (str_buf+next_character) may equals (workp).
6464 So we continue this loop. */
6469 workp
+= length
+ 1;
6473 /* match with char_range? */
6477 uint32_t collseqval
;
6478 const char *collseq
= (const char *)
6479 _NL_CURRENT(LC_COLLATE
, _NL_COLLATE_COLLSEQWC
);
6481 collseqval
= collseq_table_lookup (collseq
, c
);
6483 for (; workp
< p
- chars_length
;)
6485 uint32_t start_val
, end_val
;
6487 /* We already compute the collation sequence value
6488 of the characters (or collating symbols). */
6489 start_val
= (uint32_t) *workp
++; /* range_start */
6490 end_val
= (uint32_t) *workp
++; /* range_end */
6492 if (start_val
<= collseqval
&& collseqval
<= end_val
)
6493 goto char_set_matched
;
6499 /* We set range_start_char at str_buf[0], range_end_char
6500 at str_buf[4], and compared char at str_buf[2]. */
6505 for (; workp
< p
- chars_length
;)
6507 wchar_t *range_start_char
, *range_end_char
;
6509 /* match if (range_start_char <= c <= range_end_char). */
6511 /* If range_start(or end) < 0, we assume -range_start(end)
6512 is the offset of the collating symbol which is specified
6513 as the character of the range start(end). */
6517 range_start_char
= charset_top
- (*workp
++);
6520 str_buf
[0] = *workp
++;
6521 range_start_char
= str_buf
;
6526 range_end_char
= charset_top
- (*workp
++);
6529 str_buf
[4] = *workp
++;
6530 range_end_char
= str_buf
+ 4;
6534 if (__wcscoll (range_start_char
, str_buf
+2) <= 0
6535 && __wcscoll (str_buf
+2, range_end_char
) <= 0)
6537 if (wcscoll (range_start_char
, str_buf
+2) <= 0
6538 && wcscoll (str_buf
+2, range_end_char
) <= 0)
6540 goto char_set_matched
;
6544 /* match with char? */
6545 for (; workp
< p
; workp
++)
6547 goto char_set_matched
;
6552 if (negate
) goto fail
;
6554 /* Cast to `unsigned' instead of `unsigned char' in case the
6555 bit list is a full 32 bytes long. */
6556 if (c
< (unsigned) (*p
* BYTEWIDTH
)
6557 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
6562 if (!negate
) goto fail
;
6563 #undef WORK_BUFFER_SIZE
6565 SET_REGS_MATCHED ();
6571 /* The beginning of a group is represented by start_memory.
6572 The arguments are the register number in the next byte, and the
6573 number of groups inner to this one in the next. The text
6574 matched within the group is recorded (in the internal
6575 registers data structure) under the register number. */
6577 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6578 (long int) *p
, (long int) p
[1]);
6580 /* Find out if this group can match the empty string. */
6581 p1
= p
; /* To send to group_match_null_string_p. */
6583 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
6584 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6585 = PREFIX(group_match_null_string_p
) (&p1
, pend
, reg_info
);
6587 /* Save the position in the string where we were the last time
6588 we were at this open-group operator in case the group is
6589 operated upon by a repetition operator, e.g., with `(a*)*b'
6590 against `ab'; then we want to ignore where we are now in
6591 the string in case this attempt to match fails. */
6592 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6593 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
6595 DEBUG_PRINT2 (" old_regstart: %d\n",
6596 POINTER_TO_OFFSET (old_regstart
[*p
]));
6599 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
6601 IS_ACTIVE (reg_info
[*p
]) = 1;
6602 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6604 /* Clear this whenever we change the register activity status. */
6605 set_regs_matched_done
= 0;
6607 /* This is the new highest active register. */
6608 highest_active_reg
= *p
;
6610 /* If nothing was active before, this is the new lowest active
6612 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6613 lowest_active_reg
= *p
;
6615 /* Move past the register number and inner group count. */
6617 just_past_start_mem
= p
;
6622 /* The stop_memory opcode represents the end of a group. Its
6623 arguments are the same as start_memory's: the register
6624 number, and the number of inner groups. */
6626 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6627 (long int) *p
, (long int) p
[1]);
6629 /* We need to save the string position the last time we were at
6630 this close-group operator in case the group is operated
6631 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6632 against `aba'; then we want to ignore where we are now in
6633 the string in case this attempt to match fails. */
6634 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
6635 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
6637 DEBUG_PRINT2 (" old_regend: %d\n",
6638 POINTER_TO_OFFSET (old_regend
[*p
]));
6641 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
6643 /* This register isn't active anymore. */
6644 IS_ACTIVE (reg_info
[*p
]) = 0;
6646 /* Clear this whenever we change the register activity status. */
6647 set_regs_matched_done
= 0;
6649 /* If this was the only register active, nothing is active
6651 if (lowest_active_reg
== highest_active_reg
)
6653 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6654 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6657 { /* We must scan for the new highest active register, since
6658 it isn't necessarily one less than now: consider
6659 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6660 new highest active register is 1. */
6662 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
6665 /* If we end up at register zero, that means that we saved
6666 the registers as the result of an `on_failure_jump', not
6667 a `start_memory', and we jumped to past the innermost
6668 `stop_memory'. For example, in ((.)*) we save
6669 registers 1 and 2 as a result of the *, but when we pop
6670 back to the second ), we are at the stop_memory 1.
6671 Thus, nothing is active. */
6674 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
6675 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
6678 highest_active_reg
= r
;
6681 /* If just failed to match something this time around with a
6682 group that's operated on by a repetition operator, try to
6683 force exit from the ``loop'', and restore the register
6684 information for this group that we had before trying this
6686 if ((!MATCHED_SOMETHING (reg_info
[*p
])
6687 || just_past_start_mem
== p
- 1)
6690 boolean is_a_jump_n
= false;
6694 switch ((re_opcode_t
) *p1
++)
6698 case pop_failure_jump
:
6699 case maybe_pop_jump
:
6701 case dummy_failure_jump
:
6702 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6704 p1
+= OFFSET_ADDRESS_SIZE
;
6712 /* If the next operation is a jump backwards in the pattern
6713 to an on_failure_jump right before the start_memory
6714 corresponding to this stop_memory, exit from the loop
6715 by forcing a failure after pushing on the stack the
6716 on_failure_jump's jump in the pattern, and d. */
6717 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
6718 && (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == start_memory
6719 && p1
[2+OFFSET_ADDRESS_SIZE
] == *p
)
6721 /* If this group ever matched anything, then restore
6722 what its registers were before trying this last
6723 failed match, e.g., with `(a*)*b' against `ab' for
6724 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6725 against `aba' for regend[3].
6727 Also restore the registers for inner groups for,
6728 e.g., `((a*)(b*))*' against `aba' (register 3 would
6729 otherwise get trashed). */
6731 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
6735 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
6737 /* Restore this and inner groups' (if any) registers. */
6738 for (r
= *p
; r
< (unsigned) *p
+ (unsigned) *(p
+ 1);
6741 regstart
[r
] = old_regstart
[r
];
6743 /* xx why this test? */
6744 if (old_regend
[r
] >= regstart
[r
])
6745 regend
[r
] = old_regend
[r
];
6749 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
6750 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
6756 /* Move past the register number and the inner group count. */
6761 /* \<digit> has been turned into a `duplicate' command which is
6762 followed by the numeric value of <digit> as the register number. */
6765 register const CHAR_T
*d2
, *dend2
;
6766 int regno
= *p
++; /* Get which register to match against. */
6767 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
6769 /* Can't back reference a group which we've never matched. */
6770 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
6773 /* Where in input to try to start matching. */
6774 d2
= regstart
[regno
];
6776 /* Where to stop matching; if both the place to start and
6777 the place to stop matching are in the same string, then
6778 set to the place to stop, otherwise, for now have to use
6779 the end of the first string. */
6781 dend2
= ((FIRST_STRING_P (regstart
[regno
])
6782 == FIRST_STRING_P (regend
[regno
]))
6783 ? regend
[regno
] : end_match_1
);
6786 /* If necessary, advance to next segment in register
6790 if (dend2
== end_match_2
) break;
6791 if (dend2
== regend
[regno
]) break;
6793 /* End of string1 => advance to string2. */
6795 dend2
= regend
[regno
];
6797 /* At end of register contents => success */
6798 if (d2
== dend2
) break;
6800 /* If necessary, advance to next segment in data. */
6803 /* How many characters left in this segment to match. */
6806 /* Want how many consecutive characters we can match in
6807 one shot, so, if necessary, adjust the count. */
6808 if (mcnt
> dend2
- d2
)
6811 /* Compare that many; failure if mismatch, else move
6814 ? PREFIX(bcmp_translate
) (d
, d2
, mcnt
, translate
)
6815 : memcmp (d
, d2
, mcnt
*sizeof(UCHAR_T
)))
6817 d
+= mcnt
, d2
+= mcnt
;
6819 /* Do this because we've match some characters. */
6820 SET_REGS_MATCHED ();
6826 /* begline matches the empty string at the beginning of the string
6827 (unless `not_bol' is set in `bufp'), and, if
6828 `newline_anchor' is set, after newlines. */
6830 DEBUG_PRINT1 ("EXECUTING begline.\n");
6832 if (AT_STRINGS_BEG (d
))
6834 if (!bufp
->not_bol
) break;
6836 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
6840 /* In all other cases, we fail. */
6844 /* endline is the dual of begline. */
6846 DEBUG_PRINT1 ("EXECUTING endline.\n");
6848 if (AT_STRINGS_END (d
))
6850 if (!bufp
->not_eol
) break;
6853 /* We have to ``prefetch'' the next character. */
6854 else if ((d
== end1
? *string2
: *d
) == '\n'
6855 && bufp
->newline_anchor
)
6862 /* Match at the very beginning of the data. */
6864 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6865 if (AT_STRINGS_BEG (d
))
6870 /* Match at the very end of the data. */
6872 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6873 if (AT_STRINGS_END (d
))
6878 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6879 pushes NULL as the value for the string on the stack. Then
6880 `pop_failure_point' will keep the current value for the
6881 string, instead of restoring it. To see why, consider
6882 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6883 then the . fails against the \n. But the next thing we want
6884 to do is match the \n against the \n; if we restored the
6885 string value, we would be back at the foo.
6887 Because this is used only in specific cases, we don't need to
6888 check all the things that `on_failure_jump' does, to make
6889 sure the right things get saved on the stack. Hence we don't
6890 share its code. The only reason to push anything on the
6891 stack at all is that otherwise we would have to change
6892 `anychar's code to do something besides goto fail in this
6893 case; that seems worse than this. */
6894 case on_failure_keep_string_jump
:
6895 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6897 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6899 DEBUG_PRINT3 (" %d (to %p):\n", mcnt
, p
+ mcnt
);
6901 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
6904 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
6908 /* Uses of on_failure_jump:
6910 Each alternative starts with an on_failure_jump that points
6911 to the beginning of the next alternative. Each alternative
6912 except the last ends with a jump that in effect jumps past
6913 the rest of the alternatives. (They really jump to the
6914 ending jump of the following alternative, because tensioning
6915 these jumps is a hassle.)
6917 Repeats start with an on_failure_jump that points past both
6918 the repetition text and either the following jump or
6919 pop_failure_jump back to this on_failure_jump. */
6920 case on_failure_jump
:
6922 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6924 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6926 DEBUG_PRINT3 (" %d (to %p)", mcnt
, p
+ mcnt
);
6928 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
6931 /* If this on_failure_jump comes right before a group (i.e.,
6932 the original * applied to a group), save the information
6933 for that group and all inner ones, so that if we fail back
6934 to this point, the group's information will be correct.
6935 For example, in \(a*\)*\1, we need the preceding group,
6936 and in \(zz\(a*\)b*\)\2, we need the inner group. */
6938 /* We can't use `p' to check ahead because we push
6939 a failure point to `p + mcnt' after we do this. */
6942 /* We need to skip no_op's before we look for the
6943 start_memory in case this on_failure_jump is happening as
6944 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6946 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
6949 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
6951 /* We have a new highest active register now. This will
6952 get reset at the start_memory we are about to get to,
6953 but we will have saved all the registers relevant to
6954 this repetition op, as described above. */
6955 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
6956 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
6957 lowest_active_reg
= *(p1
+ 1);
6960 DEBUG_PRINT1 (":\n");
6961 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
6965 /* A smart repeat ends with `maybe_pop_jump'.
6966 We change it to either `pop_failure_jump' or `jump'. */
6967 case maybe_pop_jump
:
6968 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
6969 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
6971 register UCHAR_T
*p2
= p
;
6973 /* Compare the beginning of the repeat with what in the
6974 pattern follows its end. If we can establish that there
6975 is nothing that they would both match, i.e., that we
6976 would have to backtrack because of (as in, e.g., `a*a')
6977 then we can change to pop_failure_jump, because we'll
6978 never have to backtrack.
6980 This is not true in the case of alternatives: in
6981 `(a|ab)*' we do need to backtrack to the `ab' alternative
6982 (e.g., if the string was `ab'). But instead of trying to
6983 detect that here, the alternative has put on a dummy
6984 failure point which is what we will end up popping. */
6986 /* Skip over open/close-group commands.
6987 If what follows this loop is a ...+ construct,
6988 look at what begins its body, since we will have to
6989 match at least one of that. */
6993 && ((re_opcode_t
) *p2
== stop_memory
6994 || (re_opcode_t
) *p2
== start_memory
))
6996 else if (p2
+ 2 + 2 * OFFSET_ADDRESS_SIZE
< pend
6997 && (re_opcode_t
) *p2
== dummy_failure_jump
)
6998 p2
+= 2 + 2 * OFFSET_ADDRESS_SIZE
;
7004 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7005 to the `maybe_finalize_jump' of this case. Examine what
7008 /* If we're at the end of the pattern, we can change. */
7011 /* Consider what happens when matching ":\(.*\)"
7012 against ":/". I don't really understand this code
7014 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7017 (" End of pattern: change to `pop_failure_jump'.\n");
7020 else if ((re_opcode_t
) *p2
== exactn
7022 || (re_opcode_t
) *p2
== exactn_bin
7024 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
7027 = *p2
== (UCHAR_T
) endline
? '\n' : p2
[2];
7029 if (((re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn
7031 || (re_opcode_t
) p1
[1+OFFSET_ADDRESS_SIZE
] == exactn_bin
7033 ) && p1
[3+OFFSET_ADDRESS_SIZE
] != c
)
7035 p
[-(1+OFFSET_ADDRESS_SIZE
)] = (UCHAR_T
)
7038 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7040 (wint_t) p1
[3+OFFSET_ADDRESS_SIZE
]);
7042 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7044 (char) p1
[3+OFFSET_ADDRESS_SIZE
]);
7049 else if ((re_opcode_t
) p1
[3] == charset
7050 || (re_opcode_t
) p1
[3] == charset_not
)
7052 int negate
= (re_opcode_t
) p1
[3] == charset_not
;
7054 if (c
< (unsigned) (p1
[4] * BYTEWIDTH
)
7055 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
7058 /* `negate' is equal to 1 if c would match, which means
7059 that we can't change to pop_failure_jump. */
7062 p
[-3] = (unsigned char) pop_failure_jump
;
7063 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7066 #endif /* not WCHAR */
7069 else if ((re_opcode_t
) *p2
== charset
)
7071 /* We win if the first character of the loop is not part
7073 if ((re_opcode_t
) p1
[3] == exactn
7074 && ! ((int) p2
[1] * BYTEWIDTH
> (int) p1
[5]
7075 && (p2
[2 + p1
[5] / BYTEWIDTH
]
7076 & (1 << (p1
[5] % BYTEWIDTH
)))))
7078 p
[-3] = (unsigned char) pop_failure_jump
;
7079 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7082 else if ((re_opcode_t
) p1
[3] == charset_not
)
7085 /* We win if the charset_not inside the loop
7086 lists every character listed in the charset after. */
7087 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
7088 if (! (p2
[2 + idx
] == 0
7089 || (idx
< (int) p1
[4]
7090 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
7095 p
[-3] = (unsigned char) pop_failure_jump
;
7096 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7099 else if ((re_opcode_t
) p1
[3] == charset
)
7102 /* We win if the charset inside the loop
7103 has no overlap with the one after the loop. */
7105 idx
< (int) p2
[1] && idx
< (int) p1
[4];
7107 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
7110 if (idx
== p2
[1] || idx
== p1
[4])
7112 p
[-3] = (unsigned char) pop_failure_jump
;
7113 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7117 #endif /* not WCHAR */
7119 p
-= OFFSET_ADDRESS_SIZE
; /* Point at relative address again. */
7120 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
7122 p
[-1] = (UCHAR_T
) jump
;
7123 DEBUG_PRINT1 (" Match => jump.\n");
7124 goto unconditional_jump
;
7126 /* Note fall through. */
7129 /* The end of a simple repeat has a pop_failure_jump back to
7130 its matching on_failure_jump, where the latter will push a
7131 failure point. The pop_failure_jump takes off failure
7132 points put on by this pop_failure_jump's matching
7133 on_failure_jump; we got through the pattern to here from the
7134 matching on_failure_jump, so didn't fail. */
7135 case pop_failure_jump
:
7137 /* We need to pass separate storage for the lowest and
7138 highest registers, even though we don't care about the
7139 actual values. Otherwise, we will restore only one
7140 register from the stack, since lowest will == highest in
7141 `pop_failure_point'. */
7142 active_reg_t dummy_low_reg
, dummy_high_reg
;
7143 UCHAR_T
*pdummy ATTRIBUTE_UNUSED
= NULL
;
7144 const CHAR_T
*sdummy ATTRIBUTE_UNUSED
= NULL
;
7146 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7147 POP_FAILURE_POINT (sdummy
, pdummy
,
7148 dummy_low_reg
, dummy_high_reg
,
7149 reg_dummy
, reg_dummy
, reg_info_dummy
);
7151 /* Note fall through. */
7155 DEBUG_PRINT2 ("\n%p: ", p
);
7157 DEBUG_PRINT2 ("\n0x%x: ", p
);
7159 /* Note fall through. */
7161 /* Unconditionally jump (without popping any failure points). */
7163 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
7164 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
7165 p
+= mcnt
; /* Do the jump. */
7167 DEBUG_PRINT2 ("(to %p).\n", p
);
7169 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
7174 /* We need this opcode so we can detect where alternatives end
7175 in `group_match_null_string_p' et al. */
7177 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7178 goto unconditional_jump
;
7181 /* Normally, the on_failure_jump pushes a failure point, which
7182 then gets popped at pop_failure_jump. We will end up at
7183 pop_failure_jump, also, and with a pattern of, say, `a+', we
7184 are skipping over the on_failure_jump, so we have to push
7185 something meaningless for pop_failure_jump to pop. */
7186 case dummy_failure_jump
:
7187 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7188 /* It doesn't matter what we push for the string here. What
7189 the code at `fail' tests is the value for the pattern. */
7190 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7191 goto unconditional_jump
;
7194 /* At the end of an alternative, we need to push a dummy failure
7195 point in case we are followed by a `pop_failure_jump', because
7196 we don't want the failure point for the alternative to be
7197 popped. For example, matching `(a|ab)*' against `aab'
7198 requires that we match the `ab' alternative. */
7199 case push_dummy_failure
:
7200 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7201 /* See comments just above at `dummy_failure_jump' about the
7203 PUSH_FAILURE_POINT (NULL
, NULL
, -2);
7206 /* Have to succeed matching what follows at least n times.
7207 After that, handle like `on_failure_jump'. */
7209 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7210 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
7213 /* Originally, this is how many times we HAVE to succeed. */
7217 p
+= OFFSET_ADDRESS_SIZE
;
7218 STORE_NUMBER_AND_INCR (p
, mcnt
);
7220 DEBUG_PRINT3 (" Setting %p to %d.\n", p
- OFFSET_ADDRESS_SIZE
7223 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
- OFFSET_ADDRESS_SIZE
7230 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7231 p
+ OFFSET_ADDRESS_SIZE
);
7233 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7234 p
+ OFFSET_ADDRESS_SIZE
);
7238 p
[1] = (UCHAR_T
) no_op
;
7240 p
[2] = (UCHAR_T
) no_op
;
7241 p
[3] = (UCHAR_T
) no_op
;
7248 EXTRACT_NUMBER (mcnt
, p
+ OFFSET_ADDRESS_SIZE
);
7249 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
7251 /* Originally, this is how many times we CAN jump. */
7255 STORE_NUMBER (p
+ OFFSET_ADDRESS_SIZE
, mcnt
);
7258 DEBUG_PRINT3 (" Setting %p to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7261 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
+ OFFSET_ADDRESS_SIZE
,
7264 goto unconditional_jump
;
7266 /* If don't have to jump any more, skip over the rest of command. */
7268 p
+= 2 * OFFSET_ADDRESS_SIZE
;
7273 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7275 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7277 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
7279 DEBUG_PRINT3 (" Setting %p to %d.\n", p1
, mcnt
);
7281 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
7283 STORE_NUMBER (p1
, mcnt
);
7288 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7289 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7290 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7291 macro and introducing temporary variables works around the bug. */
7294 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7295 if (AT_WORD_BOUNDARY (d
))
7300 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7301 if (AT_WORD_BOUNDARY (d
))
7307 boolean prevchar
, thischar
;
7309 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7310 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7313 prevchar
= WORDCHAR_P (d
- 1);
7314 thischar
= WORDCHAR_P (d
);
7315 if (prevchar
!= thischar
)
7322 boolean prevchar
, thischar
;
7324 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7325 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
7328 prevchar
= WORDCHAR_P (d
- 1);
7329 thischar
= WORDCHAR_P (d
);
7330 if (prevchar
!= thischar
)
7337 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7338 if (!AT_STRINGS_END (d
) && WORDCHAR_P (d
)
7339 && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
7344 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7345 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
7346 && (AT_STRINGS_END (d
) || !WORDCHAR_P (d
)))
7352 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7353 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
7358 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7359 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
7364 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7365 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
7370 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
7375 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7379 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7381 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
7383 SET_REGS_MATCHED ();
7387 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
7389 goto matchnotsyntax
;
7392 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7396 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7398 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
7400 SET_REGS_MATCHED ();
7403 #else /* not emacs */
7405 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7407 if (!WORDCHAR_P (d
))
7409 SET_REGS_MATCHED ();
7414 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7418 SET_REGS_MATCHED ();
7421 #endif /* not emacs */
7426 continue; /* Successfully executed one pattern command; keep going. */
7429 /* We goto here if a matching operation fails. */
7431 if (!FAIL_STACK_EMPTY ())
7432 { /* A restart point is known. Restore to that state. */
7433 DEBUG_PRINT1 ("\nFAIL:\n");
7434 POP_FAILURE_POINT (d
, p
,
7435 lowest_active_reg
, highest_active_reg
,
7436 regstart
, regend
, reg_info
);
7438 /* If this failure point is a dummy, try the next one. */
7442 /* If we failed to the end of the pattern, don't examine *p. */
7446 boolean is_a_jump_n
= false;
7448 /* If failed to a backwards jump that's part of a repetition
7449 loop, need to pop this failure point and use the next one. */
7450 switch ((re_opcode_t
) *p
)
7454 case maybe_pop_jump
:
7455 case pop_failure_jump
:
7458 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7461 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
7463 && (re_opcode_t
) *p1
== on_failure_jump
))
7471 if (d
>= string1
&& d
<= end1
)
7475 break; /* Matching at this starting point really fails. */
7479 goto restore_best_regs
;
7483 return -1; /* Failure to match. */
7486 /* Subroutine definitions for re_match_2. */
7489 /* We are passed P pointing to a register number after a start_memory.
7491 Return true if the pattern up to the corresponding stop_memory can
7492 match the empty string, and false otherwise.
7494 If we find the matching stop_memory, sets P to point to one past its number.
7495 Otherwise, sets P to an undefined byte less than or equal to END.
7497 We don't handle duplicates properly (yet). */
7500 PREFIX(group_match_null_string_p
) (UCHAR_T
**p
, UCHAR_T
*end
,
7501 PREFIX(register_info_type
) *reg_info
)
7504 /* Point to after the args to the start_memory. */
7505 UCHAR_T
*p1
= *p
+ 2;
7509 /* Skip over opcodes that can match nothing, and return true or
7510 false, as appropriate, when we get to one that can't, or to the
7511 matching stop_memory. */
7513 switch ((re_opcode_t
) *p1
)
7515 /* Could be either a loop or a series of alternatives. */
7516 case on_failure_jump
:
7518 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7520 /* If the next operation is not a jump backwards in the
7525 /* Go through the on_failure_jumps of the alternatives,
7526 seeing if any of the alternatives cannot match nothing.
7527 The last alternative starts with only a jump,
7528 whereas the rest start with on_failure_jump and end
7529 with a jump, e.g., here is the pattern for `a|b|c':
7531 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7532 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7535 So, we have to first go through the first (n-1)
7536 alternatives and then deal with the last one separately. */
7539 /* Deal with the first (n-1) alternatives, which start
7540 with an on_failure_jump (see above) that jumps to right
7541 past a jump_past_alt. */
7543 while ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] ==
7546 /* `mcnt' holds how many bytes long the alternative
7547 is, including the ending `jump_past_alt' and
7550 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
-
7551 (1 + OFFSET_ADDRESS_SIZE
),
7555 /* Move to right after this alternative, including the
7559 /* Break if it's the beginning of an n-th alternative
7560 that doesn't begin with an on_failure_jump. */
7561 if ((re_opcode_t
) *p1
!= on_failure_jump
)
7564 /* Still have to check that it's not an n-th
7565 alternative that starts with an on_failure_jump. */
7567 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7568 if ((re_opcode_t
) p1
[mcnt
-(1+OFFSET_ADDRESS_SIZE
)] !=
7571 /* Get to the beginning of the n-th alternative. */
7572 p1
-= 1 + OFFSET_ADDRESS_SIZE
;
7577 /* Deal with the last alternative: go back and get number
7578 of the `jump_past_alt' just before it. `mcnt' contains
7579 the length of the alternative. */
7580 EXTRACT_NUMBER (mcnt
, p1
- OFFSET_ADDRESS_SIZE
);
7582 if (!PREFIX(alt_match_null_string_p
) (p1
, p1
+ mcnt
, reg_info
))
7585 p1
+= mcnt
; /* Get past the n-th alternative. */
7591 assert (p1
[1] == **p
);
7597 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7600 } /* while p1 < end */
7603 } /* group_match_null_string_p */
7606 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7607 It expects P to be the first byte of a single alternative and END one
7608 byte past the last. The alternative can contain groups. */
7611 PREFIX(alt_match_null_string_p
) (UCHAR_T
*p
, UCHAR_T
*end
,
7612 PREFIX(register_info_type
) *reg_info
)
7619 /* Skip over opcodes that can match nothing, and break when we get
7620 to one that can't. */
7622 switch ((re_opcode_t
) *p1
)
7625 case on_failure_jump
:
7627 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7632 if (!PREFIX(common_op_match_null_string_p
) (&p1
, end
, reg_info
))
7635 } /* while p1 < end */
7638 } /* alt_match_null_string_p */
7641 /* Deals with the ops common to group_match_null_string_p and
7642 alt_match_null_string_p.
7644 Sets P to one after the op and its arguments, if any. */
7647 PREFIX(common_op_match_null_string_p
) (UCHAR_T
**p
, UCHAR_T
*end
,
7648 PREFIX(register_info_type
) *reg_info
)
7655 switch ((re_opcode_t
) *p1
++)
7675 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
7676 ret
= PREFIX(group_match_null_string_p
) (&p1
, end
, reg_info
);
7678 /* Have to set this here in case we're checking a group which
7679 contains a group and a back reference to it. */
7681 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
7682 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
7688 /* If this is an optimized succeed_n for zero times, make the jump. */
7690 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7698 /* Get to the number of times to succeed. */
7699 p1
+= OFFSET_ADDRESS_SIZE
;
7700 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7704 p1
-= 2 * OFFSET_ADDRESS_SIZE
;
7705 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
7713 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
7718 p1
+= 2 * OFFSET_ADDRESS_SIZE
;
7721 /* All other opcodes mean we cannot match the empty string. */
7727 } /* common_op_match_null_string_p */
7730 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7731 bytes; nonzero otherwise. */
7734 PREFIX(bcmp_translate
) (const CHAR_T
*s1
, const CHAR_T
*s2
, register int len
,
7735 RE_TRANSLATE_TYPE translate
)
7737 register const UCHAR_T
*p1
= (const UCHAR_T
*) s1
;
7738 register const UCHAR_T
*p2
= (const UCHAR_T
*) s2
;
7742 if (((*p1
<=0xff)?translate
[*p1
++]:*p1
++)
7743 != ((*p2
<=0xff)?translate
[*p2
++]:*p2
++))
7746 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
7754 #else /* not INSIDE_RECURSION */
7756 /* Entry points for GNU code. */
7758 /* re_compile_pattern is the GNU regular expression compiler: it
7759 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7760 Returns 0 if the pattern was valid, otherwise an error string.
7762 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7763 are set in BUFP on entry.
7765 We call regex_compile to do the actual compilation. */
7768 re_compile_pattern (const char *pattern
, size_t length
,
7769 struct re_pattern_buffer
*bufp
)
7773 /* GNU code is written to assume at least RE_NREGS registers will be set
7774 (and at least one extra will be -1). */
7775 bufp
->regs_allocated
= REGS_UNALLOCATED
;
7777 /* And GNU code determines whether or not to get register information
7778 by passing null for the REGS argument to re_match, etc., not by
7782 /* Match anchors at newline. */
7783 bufp
->newline_anchor
= 1;
7786 if (MB_CUR_MAX
!= 1)
7787 ret
= wcs_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7790 ret
= byte_regex_compile (pattern
, length
, re_syntax_options
, bufp
);
7794 return gettext (re_error_msgid
[(int) ret
]);
7797 weak_alias (__re_compile_pattern
, re_compile_pattern
)
7800 /* Entry points compatible with 4.2 BSD regex library. We don't define
7801 them unless specifically requested. */
7803 #if defined _REGEX_RE_COMP || defined _LIBC
7805 /* BSD has one and only one pattern buffer. */
7806 static struct re_pattern_buffer re_comp_buf
;
7810 /* Make these definitions weak in libc, so POSIX programs can redefine
7811 these names if they don't use our functions, and still use
7812 regcomp/regexec below without link errors. */
7815 re_comp (const char *s
)
7821 if (!re_comp_buf
.buffer
)
7822 return (char *) gettext ("No previous regular expression");
7826 if (!re_comp_buf
.buffer
)
7828 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
7829 if (re_comp_buf
.buffer
== NULL
)
7830 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
7831 re_comp_buf
.allocated
= 200;
7833 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
7834 if (re_comp_buf
.fastmap
== NULL
)
7835 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
7838 /* Since `re_exec' always passes NULL for the `regs' argument, we
7839 don't need to initialize the pattern buffer fields which affect it. */
7841 /* Match anchors at newlines. */
7842 re_comp_buf
.newline_anchor
= 1;
7845 if (MB_CUR_MAX
!= 1)
7846 ret
= wcs_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
7849 ret
= byte_regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
7854 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7855 return (char *) gettext (re_error_msgid
[(int) ret
]);
7863 re_exec (const char *s
)
7865 const int len
= strlen (s
);
7867 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
7870 #endif /* _REGEX_RE_COMP */
7872 /* POSIX.2 functions. Don't define these for Emacs. */
7876 /* regcomp takes a regular expression as a string and compiles it.
7878 PREG is a regex_t *. We do not expect any fields to be initialized,
7879 since POSIX says we shouldn't. Thus, we set
7881 `buffer' to the compiled pattern;
7882 `used' to the length of the compiled pattern;
7883 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7884 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7885 RE_SYNTAX_POSIX_BASIC;
7886 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7887 `fastmap' to an allocated space for the fastmap;
7888 `fastmap_accurate' to zero;
7889 `re_nsub' to the number of subexpressions in PATTERN.
7891 PATTERN is the address of the pattern string.
7893 CFLAGS is a series of bits which affect compilation.
7895 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7896 use POSIX basic syntax.
7898 If REG_NEWLINE is set, then . and [^...] don't match newline.
7899 Also, regexec will try a match beginning after every newline.
7901 If REG_ICASE is set, then we considers upper- and lowercase
7902 versions of letters to be equivalent when matching.
7904 If REG_NOSUB is set, then when PREG is passed to regexec, that
7905 routine will report only success or failure, and nothing about the
7908 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
7909 the return codes and their meanings.) */
7912 regcomp (regex_t
*preg
, const char *pattern
, int cflags
)
7916 = (cflags
& REG_EXTENDED
) ?
7917 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
7919 /* regex_compile will allocate the space for the compiled pattern. */
7921 preg
->allocated
= 0;
7924 /* Try to allocate space for the fastmap. */
7925 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
7927 if (cflags
& REG_ICASE
)
7932 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
7933 * sizeof (*(RE_TRANSLATE_TYPE
)0));
7934 if (preg
->translate
== NULL
)
7935 return (int) REG_ESPACE
;
7937 /* Map uppercase characters to corresponding lowercase ones. */
7938 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
7939 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
7942 preg
->translate
= NULL
;
7944 /* If REG_NEWLINE is set, newlines are treated differently. */
7945 if (cflags
& REG_NEWLINE
)
7946 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
7947 syntax
&= ~RE_DOT_NEWLINE
;
7948 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
7949 /* It also changes the matching behavior. */
7950 preg
->newline_anchor
= 1;
7953 preg
->newline_anchor
= 0;
7955 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
7957 /* POSIX says a null character in the pattern terminates it, so we
7958 can use strlen here in compiling the pattern. */
7960 if (MB_CUR_MAX
!= 1)
7961 ret
= wcs_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
7964 ret
= byte_regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
7966 /* POSIX doesn't distinguish between an unmatched open-group and an
7967 unmatched close-group: both are REG_EPAREN. */
7968 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
7970 if (ret
== REG_NOERROR
&& preg
->fastmap
)
7972 /* Compute the fastmap now, since regexec cannot modify the pattern
7974 if (re_compile_fastmap (preg
) == -2)
7976 /* Some error occurred while computing the fastmap, just forget
7978 free (preg
->fastmap
);
7979 preg
->fastmap
= NULL
;
7986 weak_alias (__regcomp
, regcomp
)
7990 /* regexec searches for a given pattern, specified by PREG, in the
7993 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7994 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
7995 least NMATCH elements, and we set them to the offsets of the
7996 corresponding matched substrings.
7998 EFLAGS specifies `execution flags' which affect matching: if
7999 REG_NOTBOL is set, then ^ does not match at the beginning of the
8000 string; if REG_NOTEOL is set, then $ does not match at the end.
8002 We return 0 if we find a match and REG_NOMATCH if not. */
8005 regexec (const regex_t
*preg
, const char *string
, size_t nmatch
,
8006 regmatch_t pmatch
[], int eflags
)
8009 struct re_registers regs
;
8010 regex_t private_preg
;
8011 int len
= strlen (string
);
8012 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
8014 private_preg
= *preg
;
8016 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
8017 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
8019 /* The user has told us exactly how many registers to return
8020 information about, via `nmatch'. We have to pass that on to the
8021 matching routines. */
8022 private_preg
.regs_allocated
= REGS_FIXED
;
8026 regs
.num_regs
= nmatch
;
8027 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
8028 if (regs
.start
== NULL
)
8029 return (int) REG_NOMATCH
;
8030 regs
.end
= regs
.start
+ nmatch
;
8033 /* Perform the searching operation. */
8034 ret
= re_search (&private_preg
, string
, len
,
8035 /* start: */ 0, /* range: */ len
,
8036 want_reg_info
? ®s
: (struct re_registers
*) 0);
8038 /* Copy the register information to the POSIX structure. */
8045 for (r
= 0; r
< nmatch
; r
++)
8047 pmatch
[r
].rm_so
= regs
.start
[r
];
8048 pmatch
[r
].rm_eo
= regs
.end
[r
];
8052 /* If we needed the temporary register info, free the space now. */
8056 /* We want zero return to mean success, unlike `re_search'. */
8057 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
8060 weak_alias (__regexec
, regexec
)
8064 /* Returns a message corresponding to an error code, ERRCODE, returned
8065 from either regcomp or regexec. We don't use PREG here. */
8068 regerror (int errcode
, const regex_t
*preg ATTRIBUTE_UNUSED
,
8069 char *errbuf
, size_t errbuf_size
)
8075 || errcode
>= (int) (sizeof (re_error_msgid
)
8076 / sizeof (re_error_msgid
[0])))
8077 /* Only error codes returned by the rest of the code should be passed
8078 to this routine. If we are given anything else, or if other regex
8079 code generates an invalid error code, then the program has a bug.
8080 Dump core so we can fix it. */
8083 msg
= gettext (re_error_msgid
[errcode
]);
8085 msg_size
= strlen (msg
) + 1; /* Includes the null. */
8087 if (errbuf_size
!= 0)
8089 if (msg_size
> errbuf_size
)
8091 #if defined HAVE_MEMPCPY || defined _LIBC
8092 *((char *) mempcpy (errbuf
, msg
, errbuf_size
- 1)) = '\0';
8094 memcpy (errbuf
, msg
, errbuf_size
- 1);
8095 errbuf
[errbuf_size
- 1] = 0;
8099 memcpy (errbuf
, msg
, msg_size
);
8105 weak_alias (__regerror
, regerror
)
8109 /* Free dynamically allocated space used by PREG. */
8112 regfree (regex_t
*preg
)
8114 free (preg
->buffer
);
8115 preg
->buffer
= NULL
;
8117 preg
->allocated
= 0;
8120 free (preg
->fastmap
);
8121 preg
->fastmap
= NULL
;
8122 preg
->fastmap_accurate
= 0;
8124 free (preg
->translate
);
8125 preg
->translate
= NULL
;
8128 weak_alias (__regfree
, regfree
)
8131 #endif /* not emacs */
8133 #endif /* not INSIDE_RECURSION */
8137 #undef STORE_NUMBER_AND_INCR
8138 #undef EXTRACT_NUMBER
8139 #undef EXTRACT_NUMBER_AND_INCR
8141 #undef DEBUG_PRINT_COMPILED_PATTERN
8142 #undef DEBUG_PRINT_DOUBLE_STRING
8144 #undef INIT_FAIL_STACK
8145 #undef RESET_FAIL_STACK
8146 #undef DOUBLE_FAIL_STACK
8147 #undef PUSH_PATTERN_OP
8148 #undef PUSH_FAILURE_POINTER
8149 #undef PUSH_FAILURE_INT
8150 #undef PUSH_FAILURE_ELT
8151 #undef POP_FAILURE_POINTER
8152 #undef POP_FAILURE_INT
8153 #undef POP_FAILURE_ELT
8156 #undef PUSH_FAILURE_POINT
8157 #undef POP_FAILURE_POINT
8159 #undef REG_UNSET_VALUE
8167 #undef INIT_BUF_SIZE
8168 #undef GET_BUFFER_SPACE
8176 #undef EXTEND_BUFFER
8177 #undef GET_UNSIGNED_NUMBER
8178 #undef FREE_STACK_RETURN
8180 # undef POINTER_TO_OFFSET
8181 # undef MATCHING_IN_FRST_STRING
8183 # undef AT_STRINGS_BEG
8184 # undef AT_STRINGS_END
8187 # undef FREE_VARIABLES
8188 # undef NO_HIGHEST_ACTIVE_REG
8189 # undef NO_LOWEST_ACTIVE_REG
8193 # undef COMPILED_BUFFER_VAR
8194 # undef OFFSET_ADDRESS_SIZE
8195 # undef CHAR_CLASS_SIZE
8202 # define DEFINED_ONCE