* c-decl.c (start_function): Set DECL_ARTIFICIAL and DECL_IGNORED_P
[official-gcc.git] / gcc / reg-stack.c
blob5eb253ffe0f68dcae5cf3d3aa2d7db87de50bfd2
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180 static GTY(()) varray_type stack_regs_mentioned_data;
182 #ifdef STACK_REGS
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
193 REG_SET indicates which registers are live. */
195 typedef struct stack_def
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
200 } *stack;
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
205 typedef struct block_info_def
207 struct stack_def stack_in; /* Input stack configuration. */
208 struct stack_def stack_out; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
211 int predecessors; /* Number of predecessors that needs
212 to be visited. */
213 } *block_info;
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
217 /* Passed to change_stack to indicate where to emit insns. */
218 enum emit_where
220 EMIT_AFTER,
221 EMIT_BEFORE
224 /* The block we're currently working on. */
225 static basic_block current_block;
227 /* This is the register file for all register after conversion. */
228 static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
234 /* Used to initialize uninitialized registers. */
235 static rtx not_a_num;
237 /* Forward declarations */
239 static int stack_regs_mentioned_p (rtx pat);
240 static void straighten_stack (rtx, stack);
241 static void pop_stack (stack, int);
242 static rtx *get_true_reg (rtx *);
244 static int check_asm_stack_operands (rtx);
245 static int get_asm_operand_n_inputs (rtx);
246 static rtx stack_result (tree);
247 static void replace_reg (rtx *, int);
248 static void remove_regno_note (rtx, enum reg_note, unsigned int);
249 static int get_hard_regnum (stack, rtx);
250 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
251 static void emit_swap_insn (rtx, stack, rtx);
252 static void swap_to_top(rtx, stack, rtx, rtx);
253 static bool move_for_stack_reg (rtx, stack, rtx);
254 static int swap_rtx_condition_1 (rtx);
255 static int swap_rtx_condition (rtx);
256 static void compare_for_stack_reg (rtx, stack, rtx);
257 static bool subst_stack_regs_pat (rtx, stack, rtx);
258 static void subst_asm_stack_regs (rtx, stack);
259 static bool subst_stack_regs (rtx, stack);
260 static void change_stack (rtx, stack, stack, enum emit_where);
261 static int convert_regs_entry (void);
262 static void convert_regs_exit (void);
263 static int convert_regs_1 (FILE *, basic_block);
264 static int convert_regs_2 (FILE *, basic_block);
265 static int convert_regs (FILE *);
266 static void print_stack (FILE *, stack);
267 static rtx next_flags_user (rtx);
268 static void record_label_references (rtx, rtx);
269 static bool compensate_edge (edge, FILE *);
271 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
273 static int
274 stack_regs_mentioned_p (rtx pat)
276 const char *fmt;
277 int i;
279 if (STACK_REG_P (pat))
280 return 1;
282 fmt = GET_RTX_FORMAT (GET_CODE (pat));
283 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
285 if (fmt[i] == 'E')
287 int j;
289 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
290 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
291 return 1;
293 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
294 return 1;
297 return 0;
300 /* Return nonzero if INSN mentions stacked registers, else return zero. */
303 stack_regs_mentioned (rtx insn)
305 unsigned int uid, max;
306 int test;
308 if (! INSN_P (insn) || !stack_regs_mentioned_data)
309 return 0;
311 uid = INSN_UID (insn);
312 max = VARRAY_SIZE (stack_regs_mentioned_data);
313 if (uid >= max)
315 /* Allocate some extra size to avoid too many reallocs, but
316 do not grow too quickly. */
317 max = uid + uid / 20;
318 VARRAY_GROW (stack_regs_mentioned_data, max);
321 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
322 if (test == 0)
324 /* This insn has yet to be examined. Do so now. */
325 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
326 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
329 return test == 1;
332 static rtx ix86_flags_rtx;
334 static rtx
335 next_flags_user (rtx insn)
337 /* Search forward looking for the first use of this value.
338 Stop at block boundaries. */
340 while (insn != BB_END (current_block))
342 insn = NEXT_INSN (insn);
344 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
345 return insn;
347 if (CALL_P (insn))
348 return NULL_RTX;
350 return NULL_RTX;
353 /* Reorganize the stack into ascending numbers,
354 after this insn. */
356 static void
357 straighten_stack (rtx insn, stack regstack)
359 struct stack_def temp_stack;
360 int top;
362 /* If there is only a single register on the stack, then the stack is
363 already in increasing order and no reorganization is needed.
365 Similarly if the stack is empty. */
366 if (regstack->top <= 0)
367 return;
369 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
371 for (top = temp_stack.top = regstack->top; top >= 0; top--)
372 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
374 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
377 /* Pop a register from the stack. */
379 static void
380 pop_stack (stack regstack, int regno)
382 int top = regstack->top;
384 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
385 regstack->top--;
386 /* If regno was not at the top of stack then adjust stack. */
387 if (regstack->reg [top] != regno)
389 int i;
390 for (i = regstack->top; i >= 0; i--)
391 if (regstack->reg [i] == regno)
393 int j;
394 for (j = i; j < top; j++)
395 regstack->reg [j] = regstack->reg [j + 1];
396 break;
401 /* Convert register usage from "flat" register file usage to a "stack
402 register file. FILE is the dump file, if used.
404 Construct a CFG and run life analysis. Then convert each insn one
405 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
406 code duplication created when the converter inserts pop insns on
407 the edges. */
409 bool
410 reg_to_stack (FILE *file)
412 basic_block bb;
413 int i;
414 int max_uid;
416 /* Clean up previous run. */
417 stack_regs_mentioned_data = 0;
419 /* See if there is something to do. Flow analysis is quite
420 expensive so we might save some compilation time. */
421 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
422 if (regs_ever_live[i])
423 break;
424 if (i > LAST_STACK_REG)
425 return false;
427 /* Ok, floating point instructions exist. If not optimizing,
428 build the CFG and run life analysis.
429 Also need to rebuild life when superblock scheduling is done
430 as it don't update liveness yet. */
431 if (!optimize
432 || (flag_sched2_use_superblocks
433 && flag_schedule_insns_after_reload))
435 count_or_remove_death_notes (NULL, 1);
436 life_analysis (file, PROP_DEATH_NOTES);
438 mark_dfs_back_edges ();
440 /* Set up block info for each basic block. */
441 alloc_aux_for_blocks (sizeof (struct block_info_def));
442 FOR_EACH_BB_REVERSE (bb)
444 edge e;
445 for (e = bb->pred; e; e = e->pred_next)
446 if (!(e->flags & EDGE_DFS_BACK)
447 && e->src != ENTRY_BLOCK_PTR)
448 BLOCK_INFO (bb)->predecessors++;
451 /* Create the replacement registers up front. */
452 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
454 enum machine_mode mode;
455 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
456 mode != VOIDmode;
457 mode = GET_MODE_WIDER_MODE (mode))
458 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
459 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
460 mode != VOIDmode;
461 mode = GET_MODE_WIDER_MODE (mode))
462 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
465 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
467 /* A QNaN for initializing uninitialized variables.
469 ??? We can't load from constant memory in PIC mode, because
470 we're inserting these instructions before the prologue and
471 the PIC register hasn't been set up. In that case, fall back
472 on zero, which we can get from `ldz'. */
474 if (flag_pic)
475 not_a_num = CONST0_RTX (SFmode);
476 else
478 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
479 not_a_num = force_const_mem (SFmode, not_a_num);
482 /* Allocate a cache for stack_regs_mentioned. */
483 max_uid = get_max_uid ();
484 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
485 "stack_regs_mentioned cache");
487 convert_regs (file);
489 free_aux_for_blocks ();
490 return true;
493 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
494 label's chain of references, and note which insn contains each
495 reference. */
497 static void
498 record_label_references (rtx insn, rtx pat)
500 enum rtx_code code = GET_CODE (pat);
501 int i;
502 const char *fmt;
504 if (code == LABEL_REF)
506 rtx label = XEXP (pat, 0);
507 rtx ref;
509 if (!LABEL_P (label))
510 abort ();
512 /* If this is an undefined label, LABEL_REFS (label) contains
513 garbage. */
514 if (INSN_UID (label) == 0)
515 return;
517 /* Don't make a duplicate in the code_label's chain. */
519 for (ref = LABEL_REFS (label);
520 ref && ref != label;
521 ref = LABEL_NEXTREF (ref))
522 if (CONTAINING_INSN (ref) == insn)
523 return;
525 CONTAINING_INSN (pat) = insn;
526 LABEL_NEXTREF (pat) = LABEL_REFS (label);
527 LABEL_REFS (label) = pat;
529 return;
532 fmt = GET_RTX_FORMAT (code);
533 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
535 if (fmt[i] == 'e')
536 record_label_references (insn, XEXP (pat, i));
537 if (fmt[i] == 'E')
539 int j;
540 for (j = 0; j < XVECLEN (pat, i); j++)
541 record_label_references (insn, XVECEXP (pat, i, j));
546 /* Return a pointer to the REG expression within PAT. If PAT is not a
547 REG, possible enclosed by a conversion rtx, return the inner part of
548 PAT that stopped the search. */
550 static rtx *
551 get_true_reg (rtx *pat)
553 for (;;)
554 switch (GET_CODE (*pat))
556 case SUBREG:
557 /* Eliminate FP subregister accesses in favor of the
558 actual FP register in use. */
560 rtx subreg;
561 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
563 int regno_off = subreg_regno_offset (REGNO (subreg),
564 GET_MODE (subreg),
565 SUBREG_BYTE (*pat),
566 GET_MODE (*pat));
567 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
568 GET_MODE (subreg));
569 default:
570 return pat;
573 case FLOAT:
574 case FIX:
575 case FLOAT_EXTEND:
576 pat = & XEXP (*pat, 0);
577 break;
579 case FLOAT_TRUNCATE:
580 if (!flag_unsafe_math_optimizations)
581 return pat;
582 pat = & XEXP (*pat, 0);
583 break;
587 /* Set if we find any malformed asms in a block. */
588 static bool any_malformed_asm;
590 /* There are many rules that an asm statement for stack-like regs must
591 follow. Those rules are explained at the top of this file: the rule
592 numbers below refer to that explanation. */
594 static int
595 check_asm_stack_operands (rtx insn)
597 int i;
598 int n_clobbers;
599 int malformed_asm = 0;
600 rtx body = PATTERN (insn);
602 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
603 char implicitly_dies[FIRST_PSEUDO_REGISTER];
604 int alt;
606 rtx *clobber_reg = 0;
607 int n_inputs, n_outputs;
609 /* Find out what the constraints require. If no constraint
610 alternative matches, this asm is malformed. */
611 extract_insn (insn);
612 constrain_operands (1);
613 alt = which_alternative;
615 preprocess_constraints ();
617 n_inputs = get_asm_operand_n_inputs (body);
618 n_outputs = recog_data.n_operands - n_inputs;
620 if (alt < 0)
622 malformed_asm = 1;
623 /* Avoid further trouble with this insn. */
624 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
625 return 0;
628 /* Strip SUBREGs here to make the following code simpler. */
629 for (i = 0; i < recog_data.n_operands; i++)
630 if (GET_CODE (recog_data.operand[i]) == SUBREG
631 && REG_P (SUBREG_REG (recog_data.operand[i])))
632 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
634 /* Set up CLOBBER_REG. */
636 n_clobbers = 0;
638 if (GET_CODE (body) == PARALLEL)
640 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
642 for (i = 0; i < XVECLEN (body, 0); i++)
643 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
645 rtx clobber = XVECEXP (body, 0, i);
646 rtx reg = XEXP (clobber, 0);
648 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
649 reg = SUBREG_REG (reg);
651 if (STACK_REG_P (reg))
653 clobber_reg[n_clobbers] = reg;
654 n_clobbers++;
659 /* Enforce rule #4: Output operands must specifically indicate which
660 reg an output appears in after an asm. "=f" is not allowed: the
661 operand constraints must select a class with a single reg.
663 Also enforce rule #5: Output operands must start at the top of
664 the reg-stack: output operands may not "skip" a reg. */
666 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
667 for (i = 0; i < n_outputs; i++)
668 if (STACK_REG_P (recog_data.operand[i]))
670 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
672 error_for_asm (insn, "output constraint %d must specify a single register", i);
673 malformed_asm = 1;
675 else
677 int j;
679 for (j = 0; j < n_clobbers; j++)
680 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
682 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
683 i, reg_names [REGNO (clobber_reg[j])]);
684 malformed_asm = 1;
685 break;
687 if (j == n_clobbers)
688 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
693 /* Search for first non-popped reg. */
694 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
695 if (! reg_used_as_output[i])
696 break;
698 /* If there are any other popped regs, that's an error. */
699 for (; i < LAST_STACK_REG + 1; i++)
700 if (reg_used_as_output[i])
701 break;
703 if (i != LAST_STACK_REG + 1)
705 error_for_asm (insn, "output regs must be grouped at top of stack");
706 malformed_asm = 1;
709 /* Enforce rule #2: All implicitly popped input regs must be closer
710 to the top of the reg-stack than any input that is not implicitly
711 popped. */
713 memset (implicitly_dies, 0, sizeof (implicitly_dies));
714 for (i = n_outputs; i < n_outputs + n_inputs; i++)
715 if (STACK_REG_P (recog_data.operand[i]))
717 /* An input reg is implicitly popped if it is tied to an
718 output, or if there is a CLOBBER for it. */
719 int j;
721 for (j = 0; j < n_clobbers; j++)
722 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
723 break;
725 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
726 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
729 /* Search for first non-popped reg. */
730 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
731 if (! implicitly_dies[i])
732 break;
734 /* If there are any other popped regs, that's an error. */
735 for (; i < LAST_STACK_REG + 1; i++)
736 if (implicitly_dies[i])
737 break;
739 if (i != LAST_STACK_REG + 1)
741 error_for_asm (insn,
742 "implicitly popped regs must be grouped at top of stack");
743 malformed_asm = 1;
746 /* Enforce rule #3: If any input operand uses the "f" constraint, all
747 output constraints must use the "&" earlyclobber.
749 ??? Detect this more deterministically by having constrain_asm_operands
750 record any earlyclobber. */
752 for (i = n_outputs; i < n_outputs + n_inputs; i++)
753 if (recog_op_alt[i][alt].matches == -1)
755 int j;
757 for (j = 0; j < n_outputs; j++)
758 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
760 error_for_asm (insn,
761 "output operand %d must use `&' constraint", j);
762 malformed_asm = 1;
766 if (malformed_asm)
768 /* Avoid further trouble with this insn. */
769 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
770 any_malformed_asm = true;
771 return 0;
774 return 1;
777 /* Calculate the number of inputs and outputs in BODY, an
778 asm_operands. N_OPERANDS is the total number of operands, and
779 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
780 placed. */
782 static int
783 get_asm_operand_n_inputs (rtx body)
785 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
786 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
788 else if (GET_CODE (body) == ASM_OPERANDS)
789 return ASM_OPERANDS_INPUT_LENGTH (body);
791 else if (GET_CODE (body) == PARALLEL
792 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
793 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
795 else if (GET_CODE (body) == PARALLEL
796 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
797 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
799 abort ();
802 /* If current function returns its result in an fp stack register,
803 return the REG. Otherwise, return 0. */
805 static rtx
806 stack_result (tree decl)
808 rtx result;
810 /* If the value is supposed to be returned in memory, then clearly
811 it is not returned in a stack register. */
812 if (aggregate_value_p (DECL_RESULT (decl), decl))
813 return 0;
815 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
816 if (result != 0)
818 #ifdef FUNCTION_OUTGOING_VALUE
819 result
820 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
821 #else
822 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
823 #endif
826 return result != 0 && STACK_REG_P (result) ? result : 0;
831 * This section deals with stack register substitution, and forms the second
832 * pass over the RTL.
835 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
836 the desired hard REGNO. */
838 static void
839 replace_reg (rtx *reg, int regno)
841 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
842 || ! STACK_REG_P (*reg))
843 abort ();
845 switch (GET_MODE_CLASS (GET_MODE (*reg)))
847 default: abort ();
848 case MODE_FLOAT:
849 case MODE_COMPLEX_FLOAT:;
852 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
855 /* Remove a note of type NOTE, which must be found, for register
856 number REGNO from INSN. Remove only one such note. */
858 static void
859 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
861 rtx *note_link, this;
863 note_link = &REG_NOTES (insn);
864 for (this = *note_link; this; this = XEXP (this, 1))
865 if (REG_NOTE_KIND (this) == note
866 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
868 *note_link = XEXP (this, 1);
869 return;
871 else
872 note_link = &XEXP (this, 1);
874 abort ();
877 /* Find the hard register number of virtual register REG in REGSTACK.
878 The hard register number is relative to the top of the stack. -1 is
879 returned if the register is not found. */
881 static int
882 get_hard_regnum (stack regstack, rtx reg)
884 int i;
886 if (! STACK_REG_P (reg))
887 abort ();
889 for (i = regstack->top; i >= 0; i--)
890 if (regstack->reg[i] == REGNO (reg))
891 break;
893 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
896 /* Emit an insn to pop virtual register REG before or after INSN.
897 REGSTACK is the stack state after INSN and is updated to reflect this
898 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
899 is represented as a SET whose destination is the register to be popped
900 and source is the top of stack. A death note for the top of stack
901 cases the movdf pattern to pop. */
903 static rtx
904 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
906 rtx pop_insn, pop_rtx;
907 int hard_regno;
909 /* For complex types take care to pop both halves. These may survive in
910 CLOBBER and USE expressions. */
911 if (COMPLEX_MODE_P (GET_MODE (reg)))
913 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
914 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
916 pop_insn = NULL_RTX;
917 if (get_hard_regnum (regstack, reg1) >= 0)
918 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
919 if (get_hard_regnum (regstack, reg2) >= 0)
920 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
921 if (!pop_insn)
922 abort ();
923 return pop_insn;
926 hard_regno = get_hard_regnum (regstack, reg);
928 if (hard_regno < FIRST_STACK_REG)
929 abort ();
931 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
932 FP_MODE_REG (FIRST_STACK_REG, DFmode));
934 if (where == EMIT_AFTER)
935 pop_insn = emit_insn_after (pop_rtx, insn);
936 else
937 pop_insn = emit_insn_before (pop_rtx, insn);
939 REG_NOTES (pop_insn)
940 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
941 REG_NOTES (pop_insn));
943 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
944 = regstack->reg[regstack->top];
945 regstack->top -= 1;
946 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
948 return pop_insn;
951 /* Emit an insn before or after INSN to swap virtual register REG with
952 the top of stack. REGSTACK is the stack state before the swap, and
953 is updated to reflect the swap. A swap insn is represented as a
954 PARALLEL of two patterns: each pattern moves one reg to the other.
956 If REG is already at the top of the stack, no insn is emitted. */
958 static void
959 emit_swap_insn (rtx insn, stack regstack, rtx reg)
961 int hard_regno;
962 rtx swap_rtx;
963 int tmp, other_reg; /* swap regno temps */
964 rtx i1; /* the stack-reg insn prior to INSN */
965 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
967 hard_regno = get_hard_regnum (regstack, reg);
969 if (hard_regno < FIRST_STACK_REG)
970 abort ();
971 if (hard_regno == FIRST_STACK_REG)
972 return;
974 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
976 tmp = regstack->reg[other_reg];
977 regstack->reg[other_reg] = regstack->reg[regstack->top];
978 regstack->reg[regstack->top] = tmp;
980 /* Find the previous insn involving stack regs, but don't pass a
981 block boundary. */
982 i1 = NULL;
983 if (current_block && insn != BB_HEAD (current_block))
985 rtx tmp = PREV_INSN (insn);
986 rtx limit = PREV_INSN (BB_HEAD (current_block));
987 while (tmp != limit)
989 if (LABEL_P (tmp)
990 || CALL_P (tmp)
991 || NOTE_INSN_BASIC_BLOCK_P (tmp)
992 || (NONJUMP_INSN_P (tmp)
993 && stack_regs_mentioned (tmp)))
995 i1 = tmp;
996 break;
998 tmp = PREV_INSN (tmp);
1002 if (i1 != NULL_RTX
1003 && (i1set = single_set (i1)) != NULL_RTX)
1005 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1006 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1008 /* If the previous register stack push was from the reg we are to
1009 swap with, omit the swap. */
1011 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
1012 && REG_P (i1src)
1013 && REGNO (i1src) == (unsigned) hard_regno - 1
1014 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1015 return;
1017 /* If the previous insn wrote to the reg we are to swap with,
1018 omit the swap. */
1020 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
1021 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
1022 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1023 return;
1026 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1027 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1029 if (i1)
1030 emit_insn_after (swap_rtx, i1);
1031 else if (current_block)
1032 emit_insn_before (swap_rtx, BB_HEAD (current_block));
1033 else
1034 emit_insn_before (swap_rtx, insn);
1037 /* Emit an insns before INSN to swap virtual register SRC1 with
1038 the top of stack and virtual register SRC2 with second stack
1039 slot. REGSTACK is the stack state before the swaps, and
1040 is updated to reflect the swaps. A swap insn is represented as a
1041 PARALLEL of two patterns: each pattern moves one reg to the other.
1043 If SRC1 and/or SRC2 are already at the right place, no swap insn
1044 is emitted. */
1046 static void
1047 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
1049 struct stack_def temp_stack;
1050 int regno, j, k, temp;
1052 temp_stack = *regstack;
1054 /* Place operand 1 at the top of stack. */
1055 regno = get_hard_regnum (&temp_stack, src1);
1056 if (regno < 0)
1057 abort ();
1058 if (regno != FIRST_STACK_REG)
1060 k = temp_stack.top - (regno - FIRST_STACK_REG);
1061 j = temp_stack.top;
1063 temp = temp_stack.reg[k];
1064 temp_stack.reg[k] = temp_stack.reg[j];
1065 temp_stack.reg[j] = temp;
1068 /* Place operand 2 next on the stack. */
1069 regno = get_hard_regnum (&temp_stack, src2);
1070 if (regno < 0)
1071 abort ();
1072 if (regno != FIRST_STACK_REG + 1)
1074 k = temp_stack.top - (regno - FIRST_STACK_REG);
1075 j = temp_stack.top - 1;
1077 temp = temp_stack.reg[k];
1078 temp_stack.reg[k] = temp_stack.reg[j];
1079 temp_stack.reg[j] = temp;
1082 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1085 /* Handle a move to or from a stack register in PAT, which is in INSN.
1086 REGSTACK is the current stack. Return whether a control flow insn
1087 was deleted in the process. */
1089 static bool
1090 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
1092 rtx *psrc = get_true_reg (&SET_SRC (pat));
1093 rtx *pdest = get_true_reg (&SET_DEST (pat));
1094 rtx src, dest;
1095 rtx note;
1096 bool control_flow_insn_deleted = false;
1098 src = *psrc; dest = *pdest;
1100 if (STACK_REG_P (src) && STACK_REG_P (dest))
1102 /* Write from one stack reg to another. If SRC dies here, then
1103 just change the register mapping and delete the insn. */
1105 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1106 if (note)
1108 int i;
1110 /* If this is a no-op move, there must not be a REG_DEAD note. */
1111 if (REGNO (src) == REGNO (dest))
1112 abort ();
1114 for (i = regstack->top; i >= 0; i--)
1115 if (regstack->reg[i] == REGNO (src))
1116 break;
1118 /* The source must be live, and the dest must be dead. */
1119 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1120 abort ();
1122 /* It is possible that the dest is unused after this insn.
1123 If so, just pop the src. */
1125 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1126 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1127 else
1129 regstack->reg[i] = REGNO (dest);
1130 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1131 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1134 control_flow_insn_deleted |= control_flow_insn_p (insn);
1135 delete_insn (insn);
1136 return control_flow_insn_deleted;
1139 /* The source reg does not die. */
1141 /* If this appears to be a no-op move, delete it, or else it
1142 will confuse the machine description output patterns. But if
1143 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1144 for REG_UNUSED will not work for deleted insns. */
1146 if (REGNO (src) == REGNO (dest))
1148 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1149 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1151 control_flow_insn_deleted |= control_flow_insn_p (insn);
1152 delete_insn (insn);
1153 return control_flow_insn_deleted;
1156 /* The destination ought to be dead. */
1157 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1158 abort ();
1160 replace_reg (psrc, get_hard_regnum (regstack, src));
1162 regstack->reg[++regstack->top] = REGNO (dest);
1163 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1164 replace_reg (pdest, FIRST_STACK_REG);
1166 else if (STACK_REG_P (src))
1168 /* Save from a stack reg to MEM, or possibly integer reg. Since
1169 only top of stack may be saved, emit an exchange first if
1170 needs be. */
1172 emit_swap_insn (insn, regstack, src);
1174 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1175 if (note)
1177 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1178 regstack->top--;
1179 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1181 else if ((GET_MODE (src) == XFmode)
1182 && regstack->top < REG_STACK_SIZE - 1)
1184 /* A 387 cannot write an XFmode value to a MEM without
1185 clobbering the source reg. The output code can handle
1186 this by reading back the value from the MEM.
1187 But it is more efficient to use a temp register if one is
1188 available. Push the source value here if the register
1189 stack is not full, and then write the value to memory via
1190 a pop. */
1191 rtx push_rtx, push_insn;
1192 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1194 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1195 push_insn = emit_insn_before (push_rtx, insn);
1196 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1197 REG_NOTES (insn));
1200 replace_reg (psrc, FIRST_STACK_REG);
1202 else if (STACK_REG_P (dest))
1204 /* Load from MEM, or possibly integer REG or constant, into the
1205 stack regs. The actual target is always the top of the
1206 stack. The stack mapping is changed to reflect that DEST is
1207 now at top of stack. */
1209 /* The destination ought to be dead. */
1210 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1211 abort ();
1213 if (regstack->top >= REG_STACK_SIZE)
1214 abort ();
1216 regstack->reg[++regstack->top] = REGNO (dest);
1217 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1218 replace_reg (pdest, FIRST_STACK_REG);
1220 else
1221 abort ();
1223 return control_flow_insn_deleted;
1226 /* Swap the condition on a branch, if there is one. Return true if we
1227 found a condition to swap. False if the condition was not used as
1228 such. */
1230 static int
1231 swap_rtx_condition_1 (rtx pat)
1233 const char *fmt;
1234 int i, r = 0;
1236 if (COMPARISON_P (pat))
1238 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1239 r = 1;
1241 else
1243 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1244 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1246 if (fmt[i] == 'E')
1248 int j;
1250 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1251 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1253 else if (fmt[i] == 'e')
1254 r |= swap_rtx_condition_1 (XEXP (pat, i));
1258 return r;
1261 static int
1262 swap_rtx_condition (rtx insn)
1264 rtx pat = PATTERN (insn);
1266 /* We're looking for a single set to cc0 or an HImode temporary. */
1268 if (GET_CODE (pat) == SET
1269 && REG_P (SET_DEST (pat))
1270 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1272 insn = next_flags_user (insn);
1273 if (insn == NULL_RTX)
1274 return 0;
1275 pat = PATTERN (insn);
1278 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1279 not doing anything with the cc value right now. We may be able to
1280 search for one though. */
1282 if (GET_CODE (pat) == SET
1283 && GET_CODE (SET_SRC (pat)) == UNSPEC
1284 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1286 rtx dest = SET_DEST (pat);
1288 /* Search forward looking for the first use of this value.
1289 Stop at block boundaries. */
1290 while (insn != BB_END (current_block))
1292 insn = NEXT_INSN (insn);
1293 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1294 break;
1295 if (CALL_P (insn))
1296 return 0;
1299 /* So we've found the insn using this value. If it is anything
1300 other than sahf, aka unspec 10, or the value does not die
1301 (meaning we'd have to search further), then we must give up. */
1302 pat = PATTERN (insn);
1303 if (GET_CODE (pat) != SET
1304 || GET_CODE (SET_SRC (pat)) != UNSPEC
1305 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1306 || ! dead_or_set_p (insn, dest))
1307 return 0;
1309 /* Now we are prepared to handle this as a normal cc0 setter. */
1310 insn = next_flags_user (insn);
1311 if (insn == NULL_RTX)
1312 return 0;
1313 pat = PATTERN (insn);
1316 if (swap_rtx_condition_1 (pat))
1318 int fail = 0;
1319 INSN_CODE (insn) = -1;
1320 if (recog_memoized (insn) == -1)
1321 fail = 1;
1322 /* In case the flags don't die here, recurse to try fix
1323 following user too. */
1324 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1326 insn = next_flags_user (insn);
1327 if (!insn || !swap_rtx_condition (insn))
1328 fail = 1;
1330 if (fail)
1332 swap_rtx_condition_1 (pat);
1333 return 0;
1335 return 1;
1337 return 0;
1340 /* Handle a comparison. Special care needs to be taken to avoid
1341 causing comparisons that a 387 cannot do correctly, such as EQ.
1343 Also, a pop insn may need to be emitted. The 387 does have an
1344 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1345 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1346 set up. */
1348 static void
1349 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1351 rtx *src1, *src2;
1352 rtx src1_note, src2_note;
1353 rtx flags_user;
1355 src1 = get_true_reg (&XEXP (pat_src, 0));
1356 src2 = get_true_reg (&XEXP (pat_src, 1));
1357 flags_user = next_flags_user (insn);
1359 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1360 registers that die in this insn - move those to stack top first. */
1361 if ((! STACK_REG_P (*src1)
1362 || (STACK_REG_P (*src2)
1363 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1364 && swap_rtx_condition (insn))
1366 rtx temp;
1367 temp = XEXP (pat_src, 0);
1368 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1369 XEXP (pat_src, 1) = temp;
1371 src1 = get_true_reg (&XEXP (pat_src, 0));
1372 src2 = get_true_reg (&XEXP (pat_src, 1));
1374 INSN_CODE (insn) = -1;
1377 /* We will fix any death note later. */
1379 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1381 if (STACK_REG_P (*src2))
1382 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1383 else
1384 src2_note = NULL_RTX;
1386 emit_swap_insn (insn, regstack, *src1);
1388 replace_reg (src1, FIRST_STACK_REG);
1390 if (STACK_REG_P (*src2))
1391 replace_reg (src2, get_hard_regnum (regstack, *src2));
1393 if (src1_note)
1395 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1396 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1399 /* If the second operand dies, handle that. But if the operands are
1400 the same stack register, don't bother, because only one death is
1401 needed, and it was just handled. */
1403 if (src2_note
1404 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1405 && REGNO (*src1) == REGNO (*src2)))
1407 /* As a special case, two regs may die in this insn if src2 is
1408 next to top of stack and the top of stack also dies. Since
1409 we have already popped src1, "next to top of stack" is really
1410 at top (FIRST_STACK_REG) now. */
1412 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1413 && src1_note)
1415 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1416 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1418 else
1420 /* The 386 can only represent death of the first operand in
1421 the case handled above. In all other cases, emit a separate
1422 pop and remove the death note from here. */
1424 /* link_cc0_insns (insn); */
1426 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1428 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1429 EMIT_AFTER);
1434 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1435 is the current register layout. Return whether a control flow insn
1436 was deleted in the process. */
1438 static bool
1439 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1441 rtx *dest, *src;
1442 bool control_flow_insn_deleted = false;
1444 switch (GET_CODE (pat))
1446 case USE:
1447 /* Deaths in USE insns can happen in non optimizing compilation.
1448 Handle them by popping the dying register. */
1449 src = get_true_reg (&XEXP (pat, 0));
1450 if (STACK_REG_P (*src)
1451 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1453 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1454 return control_flow_insn_deleted;
1456 /* ??? Uninitialized USE should not happen. */
1457 else if (get_hard_regnum (regstack, *src) == -1)
1458 abort ();
1459 break;
1461 case CLOBBER:
1463 rtx note;
1465 dest = get_true_reg (&XEXP (pat, 0));
1466 if (STACK_REG_P (*dest))
1468 note = find_reg_note (insn, REG_DEAD, *dest);
1470 if (pat != PATTERN (insn))
1472 /* The fix_truncdi_1 pattern wants to be able to allocate
1473 it's own scratch register. It does this by clobbering
1474 an fp reg so that it is assured of an empty reg-stack
1475 register. If the register is live, kill it now.
1476 Remove the DEAD/UNUSED note so we don't try to kill it
1477 later too. */
1479 if (note)
1480 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1481 else
1483 note = find_reg_note (insn, REG_UNUSED, *dest);
1484 if (!note)
1485 abort ();
1487 remove_note (insn, note);
1488 replace_reg (dest, FIRST_STACK_REG + 1);
1490 else
1492 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1493 indicates an uninitialized value. Because reload removed
1494 all other clobbers, this must be due to a function
1495 returning without a value. Load up a NaN. */
1497 if (! note
1498 && get_hard_regnum (regstack, *dest) == -1)
1500 pat = gen_rtx_SET (VOIDmode,
1501 FP_MODE_REG (REGNO (*dest), SFmode),
1502 not_a_num);
1503 PATTERN (insn) = pat;
1504 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1506 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1507 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1509 pat = gen_rtx_SET (VOIDmode,
1510 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1511 not_a_num);
1512 PATTERN (insn) = pat;
1513 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1517 break;
1520 case SET:
1522 rtx *src1 = (rtx *) 0, *src2;
1523 rtx src1_note, src2_note;
1524 rtx pat_src;
1526 dest = get_true_reg (&SET_DEST (pat));
1527 src = get_true_reg (&SET_SRC (pat));
1528 pat_src = SET_SRC (pat);
1530 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1531 if (STACK_REG_P (*src)
1532 || (STACK_REG_P (*dest)
1533 && (REG_P (*src) || MEM_P (*src)
1534 || GET_CODE (*src) == CONST_DOUBLE)))
1536 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1537 break;
1540 switch (GET_CODE (pat_src))
1542 case COMPARE:
1543 compare_for_stack_reg (insn, regstack, pat_src);
1544 break;
1546 case CALL:
1548 int count;
1549 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1550 --count >= 0;)
1552 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1553 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1556 replace_reg (dest, FIRST_STACK_REG);
1557 break;
1559 case REG:
1560 /* This is a `tstM2' case. */
1561 if (*dest != cc0_rtx)
1562 abort ();
1563 src1 = src;
1565 /* Fall through. */
1567 case FLOAT_TRUNCATE:
1568 case SQRT:
1569 case ABS:
1570 case NEG:
1571 /* These insns only operate on the top of the stack. DEST might
1572 be cc0_rtx if we're processing a tstM pattern. Also, it's
1573 possible that the tstM case results in a REG_DEAD note on the
1574 source. */
1576 if (src1 == 0)
1577 src1 = get_true_reg (&XEXP (pat_src, 0));
1579 emit_swap_insn (insn, regstack, *src1);
1581 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1583 if (STACK_REG_P (*dest))
1584 replace_reg (dest, FIRST_STACK_REG);
1586 if (src1_note)
1588 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1589 regstack->top--;
1590 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1593 replace_reg (src1, FIRST_STACK_REG);
1594 break;
1596 case MINUS:
1597 case DIV:
1598 /* On i386, reversed forms of subM3 and divM3 exist for
1599 MODE_FLOAT, so the same code that works for addM3 and mulM3
1600 can be used. */
1601 case MULT:
1602 case PLUS:
1603 /* These insns can accept the top of stack as a destination
1604 from a stack reg or mem, or can use the top of stack as a
1605 source and some other stack register (possibly top of stack)
1606 as a destination. */
1608 src1 = get_true_reg (&XEXP (pat_src, 0));
1609 src2 = get_true_reg (&XEXP (pat_src, 1));
1611 /* We will fix any death note later. */
1613 if (STACK_REG_P (*src1))
1614 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1615 else
1616 src1_note = NULL_RTX;
1617 if (STACK_REG_P (*src2))
1618 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1619 else
1620 src2_note = NULL_RTX;
1622 /* If either operand is not a stack register, then the dest
1623 must be top of stack. */
1625 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1626 emit_swap_insn (insn, regstack, *dest);
1627 else
1629 /* Both operands are REG. If neither operand is already
1630 at the top of stack, choose to make the one that is the dest
1631 the new top of stack. */
1633 int src1_hard_regnum, src2_hard_regnum;
1635 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1636 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1637 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1638 abort ();
1640 if (src1_hard_regnum != FIRST_STACK_REG
1641 && src2_hard_regnum != FIRST_STACK_REG)
1642 emit_swap_insn (insn, regstack, *dest);
1645 if (STACK_REG_P (*src1))
1646 replace_reg (src1, get_hard_regnum (regstack, *src1));
1647 if (STACK_REG_P (*src2))
1648 replace_reg (src2, get_hard_regnum (regstack, *src2));
1650 if (src1_note)
1652 rtx src1_reg = XEXP (src1_note, 0);
1654 /* If the register that dies is at the top of stack, then
1655 the destination is somewhere else - merely substitute it.
1656 But if the reg that dies is not at top of stack, then
1657 move the top of stack to the dead reg, as though we had
1658 done the insn and then a store-with-pop. */
1660 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1662 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1663 replace_reg (dest, get_hard_regnum (regstack, *dest));
1665 else
1667 int regno = get_hard_regnum (regstack, src1_reg);
1669 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1670 replace_reg (dest, regno);
1672 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1673 = regstack->reg[regstack->top];
1676 CLEAR_HARD_REG_BIT (regstack->reg_set,
1677 REGNO (XEXP (src1_note, 0)));
1678 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1679 regstack->top--;
1681 else if (src2_note)
1683 rtx src2_reg = XEXP (src2_note, 0);
1684 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1686 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1687 replace_reg (dest, get_hard_regnum (regstack, *dest));
1689 else
1691 int regno = get_hard_regnum (regstack, src2_reg);
1693 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1694 replace_reg (dest, regno);
1696 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1697 = regstack->reg[regstack->top];
1700 CLEAR_HARD_REG_BIT (regstack->reg_set,
1701 REGNO (XEXP (src2_note, 0)));
1702 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1703 regstack->top--;
1705 else
1707 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1708 replace_reg (dest, get_hard_regnum (regstack, *dest));
1711 /* Keep operand 1 matching with destination. */
1712 if (COMMUTATIVE_ARITH_P (pat_src)
1713 && REG_P (*src1) && REG_P (*src2)
1714 && REGNO (*src1) != REGNO (*dest))
1716 int tmp = REGNO (*src1);
1717 replace_reg (src1, REGNO (*src2));
1718 replace_reg (src2, tmp);
1720 break;
1722 case UNSPEC:
1723 switch (XINT (pat_src, 1))
1725 case UNSPEC_SIN:
1726 case UNSPEC_COS:
1727 case UNSPEC_FRNDINT:
1728 case UNSPEC_F2XM1:
1729 /* These insns only operate on the top of the stack. */
1731 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1733 emit_swap_insn (insn, regstack, *src1);
1735 /* Input should never die, it is
1736 replaced with output. */
1737 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1738 if (src1_note)
1739 abort();
1741 if (STACK_REG_P (*dest))
1742 replace_reg (dest, FIRST_STACK_REG);
1744 replace_reg (src1, FIRST_STACK_REG);
1745 break;
1747 case UNSPEC_FPATAN:
1748 case UNSPEC_FYL2X:
1749 case UNSPEC_FYL2XP1:
1750 /* These insns operate on the top two stack slots. */
1752 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1753 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1755 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1756 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1758 swap_to_top (insn, regstack, *src1, *src2);
1760 replace_reg (src1, FIRST_STACK_REG);
1761 replace_reg (src2, FIRST_STACK_REG + 1);
1763 if (src1_note)
1764 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1765 if (src2_note)
1766 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1768 /* Pop both input operands from the stack. */
1769 CLEAR_HARD_REG_BIT (regstack->reg_set,
1770 regstack->reg[regstack->top]);
1771 CLEAR_HARD_REG_BIT (regstack->reg_set,
1772 regstack->reg[regstack->top - 1]);
1773 regstack->top -= 2;
1775 /* Push the result back onto the stack. */
1776 regstack->reg[++regstack->top] = REGNO (*dest);
1777 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1778 replace_reg (dest, FIRST_STACK_REG);
1779 break;
1781 case UNSPEC_FSCALE_FRACT:
1782 case UNSPEC_FPREM_F:
1783 case UNSPEC_FPREM1_F:
1784 /* These insns operate on the top two stack slots.
1785 first part of double input, double output insn. */
1787 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1788 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1790 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1791 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1793 /* Inputs should never die, they are
1794 replaced with outputs. */
1795 if ((src1_note) || (src2_note))
1796 abort();
1798 swap_to_top (insn, regstack, *src1, *src2);
1800 /* Push the result back onto stack. Empty stack slot
1801 will be filled in second part of insn. */
1802 if (STACK_REG_P (*dest)) {
1803 regstack->reg[regstack->top] = REGNO (*dest);
1804 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1805 replace_reg (dest, FIRST_STACK_REG);
1808 replace_reg (src1, FIRST_STACK_REG);
1809 replace_reg (src2, FIRST_STACK_REG + 1);
1810 break;
1812 case UNSPEC_FSCALE_EXP:
1813 case UNSPEC_FPREM_U:
1814 case UNSPEC_FPREM1_U:
1815 /* These insns operate on the top two stack slots./
1816 second part of double input, double output insn. */
1818 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1819 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1821 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1822 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1824 /* Inputs should never die, they are
1825 replaced with outputs. */
1826 if ((src1_note) || (src2_note))
1827 abort();
1829 swap_to_top (insn, regstack, *src1, *src2);
1831 /* Push the result back onto stack. Fill empty slot from
1832 first part of insn and fix top of stack pointer. */
1833 if (STACK_REG_P (*dest)) {
1834 regstack->reg[regstack->top - 1] = REGNO (*dest);
1835 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1836 replace_reg (dest, FIRST_STACK_REG + 1);
1839 replace_reg (src1, FIRST_STACK_REG);
1840 replace_reg (src2, FIRST_STACK_REG + 1);
1841 break;
1843 case UNSPEC_SINCOS_COS:
1844 case UNSPEC_TAN_ONE:
1845 case UNSPEC_XTRACT_FRACT:
1846 /* These insns operate on the top two stack slots,
1847 first part of one input, double output insn. */
1849 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1851 emit_swap_insn (insn, regstack, *src1);
1853 /* Input should never die, it is
1854 replaced with output. */
1855 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1856 if (src1_note)
1857 abort();
1859 /* Push the result back onto stack. Empty stack slot
1860 will be filled in second part of insn. */
1861 if (STACK_REG_P (*dest)) {
1862 regstack->reg[regstack->top + 1] = REGNO (*dest);
1863 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1864 replace_reg (dest, FIRST_STACK_REG);
1867 replace_reg (src1, FIRST_STACK_REG);
1868 break;
1870 case UNSPEC_SINCOS_SIN:
1871 case UNSPEC_TAN_TAN:
1872 case UNSPEC_XTRACT_EXP:
1873 /* These insns operate on the top two stack slots,
1874 second part of one input, double output insn. */
1876 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1878 emit_swap_insn (insn, regstack, *src1);
1880 /* Input should never die, it is
1881 replaced with output. */
1882 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1883 if (src1_note)
1884 abort();
1886 /* Push the result back onto stack. Fill empty slot from
1887 first part of insn and fix top of stack pointer. */
1888 if (STACK_REG_P (*dest)) {
1889 regstack->reg[regstack->top] = REGNO (*dest);
1890 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1891 replace_reg (dest, FIRST_STACK_REG + 1);
1893 regstack->top++;
1896 replace_reg (src1, FIRST_STACK_REG);
1897 break;
1899 case UNSPEC_SAHF:
1900 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1901 The combination matches the PPRO fcomi instruction. */
1903 pat_src = XVECEXP (pat_src, 0, 0);
1904 if (GET_CODE (pat_src) != UNSPEC
1905 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
1906 abort ();
1907 /* Fall through. */
1909 case UNSPEC_FNSTSW:
1910 /* Combined fcomp+fnstsw generated for doing well with
1911 CSE. When optimizing this would have been broken
1912 up before now. */
1914 pat_src = XVECEXP (pat_src, 0, 0);
1915 if (GET_CODE (pat_src) != COMPARE)
1916 abort ();
1918 compare_for_stack_reg (insn, regstack, pat_src);
1919 break;
1921 default:
1922 abort ();
1924 break;
1926 case IF_THEN_ELSE:
1927 /* This insn requires the top of stack to be the destination. */
1929 src1 = get_true_reg (&XEXP (pat_src, 1));
1930 src2 = get_true_reg (&XEXP (pat_src, 2));
1932 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1933 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1935 /* If the comparison operator is an FP comparison operator,
1936 it is handled correctly by compare_for_stack_reg () who
1937 will move the destination to the top of stack. But if the
1938 comparison operator is not an FP comparison operator, we
1939 have to handle it here. */
1940 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1941 && REGNO (*dest) != regstack->reg[regstack->top])
1943 /* In case one of operands is the top of stack and the operands
1944 dies, it is safe to make it the destination operand by
1945 reversing the direction of cmove and avoid fxch. */
1946 if ((REGNO (*src1) == regstack->reg[regstack->top]
1947 && src1_note)
1948 || (REGNO (*src2) == regstack->reg[regstack->top]
1949 && src2_note))
1951 int idx1 = (get_hard_regnum (regstack, *src1)
1952 - FIRST_STACK_REG);
1953 int idx2 = (get_hard_regnum (regstack, *src2)
1954 - FIRST_STACK_REG);
1956 /* Make reg-stack believe that the operands are already
1957 swapped on the stack */
1958 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1959 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1961 /* Reverse condition to compensate the operand swap.
1962 i386 do have comparison always reversible. */
1963 PUT_CODE (XEXP (pat_src, 0),
1964 reversed_comparison_code (XEXP (pat_src, 0), insn));
1966 else
1967 emit_swap_insn (insn, regstack, *dest);
1971 rtx src_note [3];
1972 int i;
1974 src_note[0] = 0;
1975 src_note[1] = src1_note;
1976 src_note[2] = src2_note;
1978 if (STACK_REG_P (*src1))
1979 replace_reg (src1, get_hard_regnum (regstack, *src1));
1980 if (STACK_REG_P (*src2))
1981 replace_reg (src2, get_hard_regnum (regstack, *src2));
1983 for (i = 1; i <= 2; i++)
1984 if (src_note [i])
1986 int regno = REGNO (XEXP (src_note[i], 0));
1988 /* If the register that dies is not at the top of
1989 stack, then move the top of stack to the dead reg */
1990 if (regno != regstack->reg[regstack->top])
1992 remove_regno_note (insn, REG_DEAD, regno);
1993 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1994 EMIT_AFTER);
1996 else
1997 /* Top of stack never dies, as it is the
1998 destination. */
1999 abort ();
2003 /* Make dest the top of stack. Add dest to regstack if
2004 not present. */
2005 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2006 regstack->reg[++regstack->top] = REGNO (*dest);
2007 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2008 replace_reg (dest, FIRST_STACK_REG);
2009 break;
2011 default:
2012 abort ();
2014 break;
2017 default:
2018 break;
2021 return control_flow_insn_deleted;
2024 /* Substitute hard regnums for any stack regs in INSN, which has
2025 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2026 before the insn, and is updated with changes made here.
2028 There are several requirements and assumptions about the use of
2029 stack-like regs in asm statements. These rules are enforced by
2030 record_asm_stack_regs; see comments there for details. Any
2031 asm_operands left in the RTL at this point may be assume to meet the
2032 requirements, since record_asm_stack_regs removes any problem asm. */
2034 static void
2035 subst_asm_stack_regs (rtx insn, stack regstack)
2037 rtx body = PATTERN (insn);
2038 int alt;
2040 rtx *note_reg; /* Array of note contents */
2041 rtx **note_loc; /* Address of REG field of each note */
2042 enum reg_note *note_kind; /* The type of each note */
2044 rtx *clobber_reg = 0;
2045 rtx **clobber_loc = 0;
2047 struct stack_def temp_stack;
2048 int n_notes;
2049 int n_clobbers;
2050 rtx note;
2051 int i;
2052 int n_inputs, n_outputs;
2054 if (! check_asm_stack_operands (insn))
2055 return;
2057 /* Find out what the constraints required. If no constraint
2058 alternative matches, that is a compiler bug: we should have caught
2059 such an insn in check_asm_stack_operands. */
2060 extract_insn (insn);
2061 constrain_operands (1);
2062 alt = which_alternative;
2064 preprocess_constraints ();
2066 n_inputs = get_asm_operand_n_inputs (body);
2067 n_outputs = recog_data.n_operands - n_inputs;
2069 if (alt < 0)
2070 abort ();
2072 /* Strip SUBREGs here to make the following code simpler. */
2073 for (i = 0; i < recog_data.n_operands; i++)
2074 if (GET_CODE (recog_data.operand[i]) == SUBREG
2075 && REG_P (SUBREG_REG (recog_data.operand[i])))
2077 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2078 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2081 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2083 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2084 i++;
2086 note_reg = alloca (i * sizeof (rtx));
2087 note_loc = alloca (i * sizeof (rtx *));
2088 note_kind = alloca (i * sizeof (enum reg_note));
2090 n_notes = 0;
2091 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2093 rtx reg = XEXP (note, 0);
2094 rtx *loc = & XEXP (note, 0);
2096 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2098 loc = & SUBREG_REG (reg);
2099 reg = SUBREG_REG (reg);
2102 if (STACK_REG_P (reg)
2103 && (REG_NOTE_KIND (note) == REG_DEAD
2104 || REG_NOTE_KIND (note) == REG_UNUSED))
2106 note_reg[n_notes] = reg;
2107 note_loc[n_notes] = loc;
2108 note_kind[n_notes] = REG_NOTE_KIND (note);
2109 n_notes++;
2113 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2115 n_clobbers = 0;
2117 if (GET_CODE (body) == PARALLEL)
2119 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2120 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2122 for (i = 0; i < XVECLEN (body, 0); i++)
2123 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2125 rtx clobber = XVECEXP (body, 0, i);
2126 rtx reg = XEXP (clobber, 0);
2127 rtx *loc = & XEXP (clobber, 0);
2129 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2131 loc = & SUBREG_REG (reg);
2132 reg = SUBREG_REG (reg);
2135 if (STACK_REG_P (reg))
2137 clobber_reg[n_clobbers] = reg;
2138 clobber_loc[n_clobbers] = loc;
2139 n_clobbers++;
2144 temp_stack = *regstack;
2146 /* Put the input regs into the desired place in TEMP_STACK. */
2148 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2149 if (STACK_REG_P (recog_data.operand[i])
2150 && reg_class_subset_p (recog_op_alt[i][alt].class,
2151 FLOAT_REGS)
2152 && recog_op_alt[i][alt].class != FLOAT_REGS)
2154 /* If an operand needs to be in a particular reg in
2155 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2156 these constraints are for single register classes, and
2157 reload guaranteed that operand[i] is already in that class,
2158 we can just use REGNO (recog_data.operand[i]) to know which
2159 actual reg this operand needs to be in. */
2161 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2163 if (regno < 0)
2164 abort ();
2166 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2168 /* recog_data.operand[i] is not in the right place. Find
2169 it and swap it with whatever is already in I's place.
2170 K is where recog_data.operand[i] is now. J is where it
2171 should be. */
2172 int j, k, temp;
2174 k = temp_stack.top - (regno - FIRST_STACK_REG);
2175 j = (temp_stack.top
2176 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2178 temp = temp_stack.reg[k];
2179 temp_stack.reg[k] = temp_stack.reg[j];
2180 temp_stack.reg[j] = temp;
2184 /* Emit insns before INSN to make sure the reg-stack is in the right
2185 order. */
2187 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2189 /* Make the needed input register substitutions. Do death notes and
2190 clobbers too, because these are for inputs, not outputs. */
2192 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2193 if (STACK_REG_P (recog_data.operand[i]))
2195 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2197 if (regnum < 0)
2198 abort ();
2200 replace_reg (recog_data.operand_loc[i], regnum);
2203 for (i = 0; i < n_notes; i++)
2204 if (note_kind[i] == REG_DEAD)
2206 int regnum = get_hard_regnum (regstack, note_reg[i]);
2208 if (regnum < 0)
2209 abort ();
2211 replace_reg (note_loc[i], regnum);
2214 for (i = 0; i < n_clobbers; i++)
2216 /* It's OK for a CLOBBER to reference a reg that is not live.
2217 Don't try to replace it in that case. */
2218 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2220 if (regnum >= 0)
2222 /* Sigh - clobbers always have QImode. But replace_reg knows
2223 that these regs can't be MODE_INT and will abort. Just put
2224 the right reg there without calling replace_reg. */
2226 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2230 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2232 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2233 if (STACK_REG_P (recog_data.operand[i]))
2235 /* An input reg is implicitly popped if it is tied to an
2236 output, or if there is a CLOBBER for it. */
2237 int j;
2239 for (j = 0; j < n_clobbers; j++)
2240 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2241 break;
2243 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2245 /* recog_data.operand[i] might not be at the top of stack.
2246 But that's OK, because all we need to do is pop the
2247 right number of regs off of the top of the reg-stack.
2248 record_asm_stack_regs guaranteed that all implicitly
2249 popped regs were grouped at the top of the reg-stack. */
2251 CLEAR_HARD_REG_BIT (regstack->reg_set,
2252 regstack->reg[regstack->top]);
2253 regstack->top--;
2257 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2258 Note that there isn't any need to substitute register numbers.
2259 ??? Explain why this is true. */
2261 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2263 /* See if there is an output for this hard reg. */
2264 int j;
2266 for (j = 0; j < n_outputs; j++)
2267 if (STACK_REG_P (recog_data.operand[j])
2268 && REGNO (recog_data.operand[j]) == (unsigned) i)
2270 regstack->reg[++regstack->top] = i;
2271 SET_HARD_REG_BIT (regstack->reg_set, i);
2272 break;
2276 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2277 input that the asm didn't implicitly pop. If the asm didn't
2278 implicitly pop an input reg, that reg will still be live.
2280 Note that we can't use find_regno_note here: the register numbers
2281 in the death notes have already been substituted. */
2283 for (i = 0; i < n_outputs; i++)
2284 if (STACK_REG_P (recog_data.operand[i]))
2286 int j;
2288 for (j = 0; j < n_notes; j++)
2289 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2290 && note_kind[j] == REG_UNUSED)
2292 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2293 EMIT_AFTER);
2294 break;
2298 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2299 if (STACK_REG_P (recog_data.operand[i]))
2301 int j;
2303 for (j = 0; j < n_notes; j++)
2304 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2305 && note_kind[j] == REG_DEAD
2306 && TEST_HARD_REG_BIT (regstack->reg_set,
2307 REGNO (recog_data.operand[i])))
2309 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2310 EMIT_AFTER);
2311 break;
2316 /* Substitute stack hard reg numbers for stack virtual registers in
2317 INSN. Non-stack register numbers are not changed. REGSTACK is the
2318 current stack content. Insns may be emitted as needed to arrange the
2319 stack for the 387 based on the contents of the insn. Return whether
2320 a control flow insn was deleted in the process. */
2322 static bool
2323 subst_stack_regs (rtx insn, stack regstack)
2325 rtx *note_link, note;
2326 bool control_flow_insn_deleted = false;
2327 int i;
2329 if (CALL_P (insn))
2331 int top = regstack->top;
2333 /* If there are any floating point parameters to be passed in
2334 registers for this call, make sure they are in the right
2335 order. */
2337 if (top >= 0)
2339 straighten_stack (PREV_INSN (insn), regstack);
2341 /* Now mark the arguments as dead after the call. */
2343 while (regstack->top >= 0)
2345 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2346 regstack->top--;
2351 /* Do the actual substitution if any stack regs are mentioned.
2352 Since we only record whether entire insn mentions stack regs, and
2353 subst_stack_regs_pat only works for patterns that contain stack regs,
2354 we must check each pattern in a parallel here. A call_value_pop could
2355 fail otherwise. */
2357 if (stack_regs_mentioned (insn))
2359 int n_operands = asm_noperands (PATTERN (insn));
2360 if (n_operands >= 0)
2362 /* This insn is an `asm' with operands. Decode the operands,
2363 decide how many are inputs, and do register substitution.
2364 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2366 subst_asm_stack_regs (insn, regstack);
2367 return control_flow_insn_deleted;
2370 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2371 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2373 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2375 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2376 XVECEXP (PATTERN (insn), 0, i)
2377 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2378 control_flow_insn_deleted
2379 |= subst_stack_regs_pat (insn, regstack,
2380 XVECEXP (PATTERN (insn), 0, i));
2383 else
2384 control_flow_insn_deleted
2385 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2388 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2389 REG_UNUSED will already have been dealt with, so just return. */
2391 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2392 return control_flow_insn_deleted;
2394 /* If there is a REG_UNUSED note on a stack register on this insn,
2395 the indicated reg must be popped. The REG_UNUSED note is removed,
2396 since the form of the newly emitted pop insn references the reg,
2397 making it no longer `unset'. */
2399 note_link = &REG_NOTES (insn);
2400 for (note = *note_link; note; note = XEXP (note, 1))
2401 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2403 *note_link = XEXP (note, 1);
2404 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2406 else
2407 note_link = &XEXP (note, 1);
2409 return control_flow_insn_deleted;
2412 /* Change the organization of the stack so that it fits a new basic
2413 block. Some registers might have to be popped, but there can never be
2414 a register live in the new block that is not now live.
2416 Insert any needed insns before or after INSN, as indicated by
2417 WHERE. OLD is the original stack layout, and NEW is the desired
2418 form. OLD is updated to reflect the code emitted, ie, it will be
2419 the same as NEW upon return.
2421 This function will not preserve block_end[]. But that information
2422 is no longer needed once this has executed. */
2424 static void
2425 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2427 int reg;
2428 int update_end = 0;
2430 /* We will be inserting new insns "backwards". If we are to insert
2431 after INSN, find the next insn, and insert before it. */
2433 if (where == EMIT_AFTER)
2435 if (current_block && BB_END (current_block) == insn)
2436 update_end = 1;
2437 insn = NEXT_INSN (insn);
2440 /* Pop any registers that are not needed in the new block. */
2442 for (reg = old->top; reg >= 0; reg--)
2443 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2444 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2445 EMIT_BEFORE);
2447 if (new->top == -2)
2449 /* If the new block has never been processed, then it can inherit
2450 the old stack order. */
2452 new->top = old->top;
2453 memcpy (new->reg, old->reg, sizeof (new->reg));
2455 else
2457 /* This block has been entered before, and we must match the
2458 previously selected stack order. */
2460 /* By now, the only difference should be the order of the stack,
2461 not their depth or liveliness. */
2463 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2464 abort ();
2465 win:
2466 if (old->top != new->top)
2467 abort ();
2469 /* If the stack is not empty (new->top != -1), loop here emitting
2470 swaps until the stack is correct.
2472 The worst case number of swaps emitted is N + 2, where N is the
2473 depth of the stack. In some cases, the reg at the top of
2474 stack may be correct, but swapped anyway in order to fix
2475 other regs. But since we never swap any other reg away from
2476 its correct slot, this algorithm will converge. */
2478 if (new->top != -1)
2481 /* Swap the reg at top of stack into the position it is
2482 supposed to be in, until the correct top of stack appears. */
2484 while (old->reg[old->top] != new->reg[new->top])
2486 for (reg = new->top; reg >= 0; reg--)
2487 if (new->reg[reg] == old->reg[old->top])
2488 break;
2490 if (reg == -1)
2491 abort ();
2493 emit_swap_insn (insn, old,
2494 FP_MODE_REG (old->reg[reg], DFmode));
2497 /* See if any regs remain incorrect. If so, bring an
2498 incorrect reg to the top of stack, and let the while loop
2499 above fix it. */
2501 for (reg = new->top; reg >= 0; reg--)
2502 if (new->reg[reg] != old->reg[reg])
2504 emit_swap_insn (insn, old,
2505 FP_MODE_REG (old->reg[reg], DFmode));
2506 break;
2508 } while (reg >= 0);
2510 /* At this point there must be no differences. */
2512 for (reg = old->top; reg >= 0; reg--)
2513 if (old->reg[reg] != new->reg[reg])
2514 abort ();
2517 if (update_end)
2518 BB_END (current_block) = PREV_INSN (insn);
2521 /* Print stack configuration. */
2523 static void
2524 print_stack (FILE *file, stack s)
2526 if (! file)
2527 return;
2529 if (s->top == -2)
2530 fprintf (file, "uninitialized\n");
2531 else if (s->top == -1)
2532 fprintf (file, "empty\n");
2533 else
2535 int i;
2536 fputs ("[ ", file);
2537 for (i = 0; i <= s->top; ++i)
2538 fprintf (file, "%d ", s->reg[i]);
2539 fputs ("]\n", file);
2543 /* This function was doing life analysis. We now let the regular live
2544 code do it's job, so we only need to check some extra invariants
2545 that reg-stack expects. Primary among these being that all registers
2546 are initialized before use.
2548 The function returns true when code was emitted to CFG edges and
2549 commit_edge_insertions needs to be called. */
2551 static int
2552 convert_regs_entry (void)
2554 int inserted = 0;
2555 edge e;
2556 basic_block block;
2558 FOR_EACH_BB_REVERSE (block)
2560 block_info bi = BLOCK_INFO (block);
2561 int reg;
2563 /* Set current register status at last instruction `uninitialized'. */
2564 bi->stack_in.top = -2;
2566 /* Copy live_at_end and live_at_start into temporaries. */
2567 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2569 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2570 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2571 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2572 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2576 /* Load something into each stack register live at function entry.
2577 Such live registers can be caused by uninitialized variables or
2578 functions not returning values on all paths. In order to keep
2579 the push/pop code happy, and to not scrog the register stack, we
2580 must put something in these registers. Use a QNaN.
2582 Note that we are inserting converted code here. This code is
2583 never seen by the convert_regs pass. */
2585 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2587 basic_block block = e->dest;
2588 block_info bi = BLOCK_INFO (block);
2589 int reg, top = -1;
2591 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2592 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2594 rtx init;
2596 bi->stack_in.reg[++top] = reg;
2598 init = gen_rtx_SET (VOIDmode,
2599 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2600 not_a_num);
2601 insert_insn_on_edge (init, e);
2602 inserted = 1;
2605 bi->stack_in.top = top;
2608 return inserted;
2611 /* Construct the desired stack for function exit. This will either
2612 be `empty', or the function return value at top-of-stack. */
2614 static void
2615 convert_regs_exit (void)
2617 int value_reg_low, value_reg_high;
2618 stack output_stack;
2619 rtx retvalue;
2621 retvalue = stack_result (current_function_decl);
2622 value_reg_low = value_reg_high = -1;
2623 if (retvalue)
2625 value_reg_low = REGNO (retvalue);
2626 value_reg_high = value_reg_low
2627 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2630 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2631 if (value_reg_low == -1)
2632 output_stack->top = -1;
2633 else
2635 int reg;
2637 output_stack->top = value_reg_high - value_reg_low;
2638 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2640 output_stack->reg[value_reg_high - reg] = reg;
2641 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2646 /* Adjust the stack of this block on exit to match the stack of the
2647 target block, or copy stack info into the stack of the successor
2648 of the successor hasn't been processed yet. */
2649 static bool
2650 compensate_edge (edge e, FILE *file)
2652 basic_block block = e->src, target = e->dest;
2653 block_info bi = BLOCK_INFO (block);
2654 struct stack_def regstack, tmpstack;
2655 stack target_stack = &BLOCK_INFO (target)->stack_in;
2656 int reg;
2658 current_block = block;
2659 regstack = bi->stack_out;
2660 if (file)
2661 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2663 if (target_stack->top == -2)
2665 /* The target block hasn't had a stack order selected.
2666 We need merely ensure that no pops are needed. */
2667 for (reg = regstack.top; reg >= 0; --reg)
2668 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2669 break;
2671 if (reg == -1)
2673 if (file)
2674 fprintf (file, "new block; copying stack position\n");
2676 /* change_stack kills values in regstack. */
2677 tmpstack = regstack;
2679 change_stack (BB_END (block), &tmpstack, target_stack, EMIT_AFTER);
2680 return false;
2683 if (file)
2684 fprintf (file, "new block; pops needed\n");
2686 else
2688 if (target_stack->top == regstack.top)
2690 for (reg = target_stack->top; reg >= 0; --reg)
2691 if (target_stack->reg[reg] != regstack.reg[reg])
2692 break;
2694 if (reg == -1)
2696 if (file)
2697 fprintf (file, "no changes needed\n");
2698 return false;
2702 if (file)
2704 fprintf (file, "correcting stack to ");
2705 print_stack (file, target_stack);
2709 /* Care for non-call EH edges specially. The normal return path have
2710 values in registers. These will be popped en masse by the unwind
2711 library. */
2712 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2713 target_stack->top = -1;
2715 /* Other calls may appear to have values live in st(0), but the
2716 abnormal return path will not have actually loaded the values. */
2717 else if (e->flags & EDGE_ABNORMAL_CALL)
2719 /* Assert that the lifetimes are as we expect -- one value
2720 live at st(0) on the end of the source block, and no
2721 values live at the beginning of the destination block. */
2722 HARD_REG_SET tmp;
2724 CLEAR_HARD_REG_SET (tmp);
2725 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2726 abort ();
2727 eh1:
2729 /* We are sure that there is st(0) live, otherwise we won't compensate.
2730 For complex return values, we may have st(1) live as well. */
2731 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2732 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2733 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
2734 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2735 abort ();
2736 eh2:
2738 target_stack->top = -1;
2741 /* It is better to output directly to the end of the block
2742 instead of to the edge, because emit_swap can do minimal
2743 insn scheduling. We can do this when there is only one
2744 edge out, and it is not abnormal. */
2745 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2747 /* change_stack kills values in regstack. */
2748 tmpstack = regstack;
2750 change_stack (BB_END (block), &tmpstack, target_stack,
2751 (JUMP_P (BB_END (block))
2752 ? EMIT_BEFORE : EMIT_AFTER));
2754 else
2756 rtx seq, after;
2758 /* We don't support abnormal edges. Global takes care to
2759 avoid any live register across them, so we should never
2760 have to insert instructions on such edges. */
2761 if (e->flags & EDGE_ABNORMAL)
2762 abort ();
2764 current_block = NULL;
2765 start_sequence ();
2767 /* ??? change_stack needs some point to emit insns after. */
2768 after = emit_note (NOTE_INSN_DELETED);
2770 tmpstack = regstack;
2771 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2773 seq = get_insns ();
2774 end_sequence ();
2776 insert_insn_on_edge (seq, e);
2777 return true;
2779 return false;
2782 /* Convert stack register references in one block. */
2784 static int
2785 convert_regs_1 (FILE *file, basic_block block)
2787 struct stack_def regstack;
2788 block_info bi = BLOCK_INFO (block);
2789 int deleted, inserted, reg;
2790 rtx insn, next;
2791 edge e, beste = NULL;
2792 bool control_flow_insn_deleted = false;
2794 inserted = 0;
2795 deleted = 0;
2796 any_malformed_asm = false;
2798 /* Find the edge we will copy stack from. It should be the most frequent
2799 one as it will get cheapest after compensation code is generated,
2800 if multiple such exists, take one with largest count, prefer critical
2801 one (as splitting critical edges is more expensive), or one with lowest
2802 index, to avoid random changes with different orders of the edges. */
2803 for (e = block->pred; e ; e = e->pred_next)
2805 if (e->flags & EDGE_DFS_BACK)
2807 else if (! beste)
2808 beste = e;
2809 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2810 beste = e;
2811 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2813 else if (beste->count < e->count)
2814 beste = e;
2815 else if (beste->count > e->count)
2817 else if ((EDGE_CRITICAL_P (e) != 0)
2818 != (EDGE_CRITICAL_P (beste) != 0))
2820 if (EDGE_CRITICAL_P (e))
2821 beste = e;
2823 else if (e->src->index < beste->src->index)
2824 beste = e;
2827 /* Initialize stack at block entry. */
2828 if (bi->stack_in.top == -2)
2830 if (beste)
2831 inserted |= compensate_edge (beste, file);
2832 else
2834 /* No predecessors. Create an arbitrary input stack. */
2835 int reg;
2837 bi->stack_in.top = -1;
2838 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2839 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2840 bi->stack_in.reg[++bi->stack_in.top] = reg;
2843 else
2844 /* Entry blocks do have stack already initialized. */
2845 beste = NULL;
2847 current_block = block;
2849 if (file)
2851 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2852 print_stack (file, &bi->stack_in);
2855 /* Process all insns in this block. Keep track of NEXT so that we
2856 don't process insns emitted while substituting in INSN. */
2857 next = BB_HEAD (block);
2858 regstack = bi->stack_in;
2861 insn = next;
2862 next = NEXT_INSN (insn);
2864 /* Ensure we have not missed a block boundary. */
2865 if (next == NULL)
2866 abort ();
2867 if (insn == BB_END (block))
2868 next = NULL;
2870 /* Don't bother processing unless there is a stack reg
2871 mentioned or if it's a CALL_INSN. */
2872 if (stack_regs_mentioned (insn)
2873 || CALL_P (insn))
2875 if (file)
2877 fprintf (file, " insn %d input stack: ",
2878 INSN_UID (insn));
2879 print_stack (file, &regstack);
2881 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2884 while (next);
2886 if (file)
2888 fprintf (file, "Expected live registers [");
2889 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2890 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2891 fprintf (file, " %d", reg);
2892 fprintf (file, " ]\nOutput stack: ");
2893 print_stack (file, &regstack);
2896 insn = BB_END (block);
2897 if (JUMP_P (insn))
2898 insn = PREV_INSN (insn);
2900 /* If the function is declared to return a value, but it returns one
2901 in only some cases, some registers might come live here. Emit
2902 necessary moves for them. */
2904 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2906 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2907 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2909 rtx set;
2911 if (file)
2913 fprintf (file, "Emitting insn initializing reg %d\n",
2914 reg);
2917 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2918 not_a_num);
2919 insn = emit_insn_after (set, insn);
2920 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2924 /* Amongst the insns possibly deleted during the substitution process above,
2925 might have been the only trapping insn in the block. We purge the now
2926 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2927 called at the end of convert_regs. The order in which we process the
2928 blocks ensures that we never delete an already processed edge.
2930 Note that, at this point, the CFG may have been damaged by the emission
2931 of instructions after an abnormal call, which moves the basic block end
2932 (and is the reason why we call fixup_abnormal_edges later). So we must
2933 be sure that the trapping insn has been deleted before trying to purge
2934 dead edges, otherwise we risk purging valid edges.
2936 ??? We are normally supposed not to delete trapping insns, so we pretend
2937 that the insns deleted above don't actually trap. It would have been
2938 better to detect this earlier and avoid creating the EH edge in the first
2939 place, still, but we don't have enough information at that time. */
2941 if (control_flow_insn_deleted)
2942 purge_dead_edges (block);
2944 /* Something failed if the stack lives don't match. If we had malformed
2945 asms, we zapped the instruction itself, but that didn't produce the
2946 same pattern of register kills as before. */
2947 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2948 if (!any_malformed_asm)
2949 abort ();
2950 win:
2951 bi->stack_out = regstack;
2953 /* Compensate the back edges, as those wasn't visited yet. */
2954 for (e = block->succ; e ; e = e->succ_next)
2956 if (e->flags & EDGE_DFS_BACK
2957 || (e->dest == EXIT_BLOCK_PTR))
2959 if (!BLOCK_INFO (e->dest)->done
2960 && e->dest != block)
2961 abort ();
2962 inserted |= compensate_edge (e, file);
2965 for (e = block->pred; e ; e = e->pred_next)
2967 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2968 && e->src != ENTRY_BLOCK_PTR)
2970 if (!BLOCK_INFO (e->src)->done)
2971 abort ();
2972 inserted |= compensate_edge (e, file);
2976 return inserted;
2979 /* Convert registers in all blocks reachable from BLOCK. */
2981 static int
2982 convert_regs_2 (FILE *file, basic_block block)
2984 basic_block *stack, *sp;
2985 int inserted;
2987 /* We process the blocks in a top-down manner, in a way such that one block
2988 is only processed after all its predecessors. The number of predecessors
2989 of every block has already been computed. */
2991 stack = xmalloc (sizeof (*stack) * n_basic_blocks);
2992 sp = stack;
2994 *sp++ = block;
2996 inserted = 0;
2999 edge e;
3001 block = *--sp;
3003 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3004 some dead EH outgoing edge after the deletion of the trapping
3005 insn inside the block. Since the number of predecessors of
3006 BLOCK's successors was computed based on the initial edge set,
3007 we check the necessity to process some of these successors
3008 before such an edge deletion may happen. However, there is
3009 a pitfall: if BLOCK is the only predecessor of a successor and
3010 the edge between them happens to be deleted, the successor
3011 becomes unreachable and should not be processed. The problem
3012 is that there is no way to preventively detect this case so we
3013 stack the successor in all cases and hand over the task of
3014 fixing up the discrepancy to convert_regs_1. */
3016 for (e = block->succ; e ; e = e->succ_next)
3017 if (! (e->flags & EDGE_DFS_BACK))
3019 BLOCK_INFO (e->dest)->predecessors--;
3020 if (!BLOCK_INFO (e->dest)->predecessors)
3021 *sp++ = e->dest;
3024 inserted |= convert_regs_1 (file, block);
3025 BLOCK_INFO (block)->done = 1;
3027 while (sp != stack);
3029 return inserted;
3032 /* Traverse all basic blocks in a function, converting the register
3033 references in each insn from the "flat" register file that gcc uses,
3034 to the stack-like registers the 387 uses. */
3036 static int
3037 convert_regs (FILE *file)
3039 int inserted;
3040 basic_block b;
3041 edge e;
3043 /* Initialize uninitialized registers on function entry. */
3044 inserted = convert_regs_entry ();
3046 /* Construct the desired stack for function exit. */
3047 convert_regs_exit ();
3048 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3050 /* ??? Future: process inner loops first, and give them arbitrary
3051 initial stacks which emit_swap_insn can modify. This ought to
3052 prevent double fxch that often appears at the head of a loop. */
3054 /* Process all blocks reachable from all entry points. */
3055 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
3056 inserted |= convert_regs_2 (file, e->dest);
3058 /* ??? Process all unreachable blocks. Though there's no excuse
3059 for keeping these even when not optimizing. */
3060 FOR_EACH_BB (b)
3062 block_info bi = BLOCK_INFO (b);
3064 if (! bi->done)
3065 inserted |= convert_regs_2 (file, b);
3067 clear_aux_for_blocks ();
3069 fixup_abnormal_edges ();
3070 if (inserted)
3071 commit_edge_insertions ();
3073 if (file)
3074 fputc ('\n', file);
3076 return inserted;
3078 #endif /* STACK_REGS */
3080 #include "gt-reg-stack.h"