1 /* A type-safe hash table template.
2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's htab_t in hashtab.h.
28 Users of the hash table generally need to be aware of three types.
30 1. The type being placed into the hash table. This type is called
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
37 - A typedef named 'value_type' to the value type (from above).
39 - A static member function named 'hash' that takes a value_type
40 (or 'const value_type &') and returns a hashval_t value.
42 - A typedef named 'compare_type' that is used to test when a value
43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
47 - A static member function named 'equal' that takes a value_type
48 and a compare_type, and returns a bool. Both arguments can be
51 - A static function named 'remove' that takes an value_type pointer
52 and frees the memory allocated by it. This function is used when
53 individual elements of the table need to be disposed of (e.g.,
54 when deleting a hash table, removing elements from the table, etc).
56 - An optional static function named 'keep_cache_entry'. This
57 function is provided only for garbage-collected elements that
58 are not marked by the normal gc mark pass. It describes what
59 what should happen to the element at the end of the gc mark phase.
60 The return value should be:
61 - 0 if the element should be deleted
62 - 1 if the element should be kept and needs to be marked
63 - -1 if the element should be kept and is already marked.
64 Returning -1 rather than 1 is purely an optimization.
66 3. The type of the hash table itself. (More later.)
68 In very special circumstances, users may need to know about a fourth type.
70 4. The template type used to describe how hash table memory
71 is allocated. This type is called the allocator type. It is
72 parameterized on the value type. It provides two functions:
74 - A static member function named 'data_alloc'. This function
75 allocates the data elements in the table.
77 - A static member function named 'data_free'. This function
78 deallocates the data elements in the table.
80 Hash table are instantiated with two type arguments.
82 * The descriptor type, (2) above.
84 * The allocator type, (4) above. In general, you will not need to
85 provide your own allocator type. By default, hash tables will use
86 the class template xcallocator, which uses malloc/free for allocation.
89 DEFINING A DESCRIPTOR TYPE
91 The first task in using the hash table is to describe the element type.
92 We compose this into a few steps.
94 1. Decide on a removal policy for values stored in the table.
95 hash-traits.h provides class templates for the four most common
98 * typed_free_remove implements the static 'remove' member function
101 * typed_noop_remove implements the static 'remove' member function
104 * ggc_remove implements the static 'remove' member by doing nothing,
105 but instead provides routines for gc marking and for PCH streaming.
106 Use this for garbage-collected data that needs to be preserved across
109 * ggc_cache_remove is like ggc_remove, except that it does not
110 mark the entries during the normal gc mark phase. Instead it
111 uses 'keep_cache_entry' (described above) to keep elements that
112 were not collected and delete those that were. Use this for
113 garbage-collected caches that should not in themselves stop
114 the data from being collected.
116 You can use these policies by simply deriving the descriptor type
117 from one of those class template, with the appropriate argument.
119 Otherwise, you need to write the static 'remove' member function
120 in the descriptor class.
122 2. Choose a hash function. Write the static 'hash' member function.
124 3. Decide whether the lookup function should take as input an object
125 of type value_type or something more restricted. Define compare_type
128 4. Choose an equality testing function 'equal' that compares a value_type
131 If your elements are pointers, it is usually easiest to start with one
132 of the generic pointer descriptors described below and override the bits
135 AN EXAMPLE DESCRIPTOR TYPE
137 Suppose you want to put some_type into the hash table. You could define
138 the descriptor type as follows.
140 struct some_type_hasher : nofree_ptr_hash <some_type>
141 // Deriving from nofree_ptr_hash means that we get a 'remove' that does
142 // nothing. This choice is good for raw values.
144 static inline hashval_t hash (const value_type *);
145 static inline bool equal (const value_type *, const compare_type *);
149 some_type_hasher::hash (const value_type *e)
150 { ... compute and return a hash value for E ... }
153 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
154 { ... compare P1 vs P2. Return true if they are the 'same' ... }
157 AN EXAMPLE HASH_TABLE DECLARATION
159 To instantiate a hash table for some_type:
161 hash_table <some_type_hasher> some_type_hash_table;
163 There is no need to mention some_type directly, as the hash table will
164 obtain it using some_type_hasher::value_type.
166 You can then use any of the functions in hash_table's public interface.
167 See hash_table for details. The interface is very similar to libiberty's
170 If a hash table is used only in some rare cases, it is possible
171 to construct the hash_table lazily before first use. This is done
174 hash_table <some_type_hasher, true> some_type_hash_table;
176 which will cause whatever methods actually need the allocated entries
177 array to allocate it later.
180 EASY DESCRIPTORS FOR POINTERS
182 There are four descriptors for pointer elements, one for each of
183 the removal policies above:
185 * nofree_ptr_hash (based on typed_noop_remove)
186 * free_ptr_hash (based on typed_free_remove)
187 * ggc_ptr_hash (based on ggc_remove)
188 * ggc_cache_ptr_hash (based on ggc_cache_remove)
190 These descriptors hash and compare elements by their pointer value,
191 rather than what they point to. So, to instantiate a hash table over
192 pointers to whatever_type, without freeing the whatever_types, use:
194 hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
199 The hash table provides standard C++ iterators. For example, consider a
200 hash table of some_info. We wish to consume each element of the table:
202 extern void consume (some_info *);
204 We define a convenience typedef and the hash table:
206 typedef hash_table <some_info_hasher> info_table_type;
207 info_table_type info_table;
209 Then we write the loop in typical C++ style:
211 for (info_table_type::iterator iter = info_table.begin ();
212 iter != info_table.end ();
214 if ((*iter).status == INFO_READY)
217 Or with common sub-expression elimination:
219 for (info_table_type::iterator iter = info_table.begin ();
220 iter != info_table.end ();
223 some_info &elem = *iter;
224 if (elem.status == INFO_READY)
228 One can also use a more typical GCC style:
230 typedef some_info *some_info_p;
232 info_table_type::iterator iter;
233 FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
234 if (elem_ptr->status == INFO_READY)
240 #ifndef TYPED_HASHTAB_H
241 #define TYPED_HASHTAB_H
243 #include "statistics.h"
248 #include "mem-stats-traits.h"
249 #include "hash-traits.h"
250 #include "hash-map-traits.h"
252 template<typename
, typename
, typename
> class hash_map
;
253 template<typename
, bool, typename
> class hash_set
;
255 /* The ordinary memory allocator. */
256 /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
258 template <typename Type
>
261 static Type
*data_alloc (size_t count
);
262 static void data_free (Type
*memory
);
266 /* Allocate memory for COUNT data blocks. */
268 template <typename Type
>
270 xcallocator
<Type
>::data_alloc (size_t count
)
272 return static_cast <Type
*> (xcalloc (count
, sizeof (Type
)));
276 /* Free memory for data blocks. */
278 template <typename Type
>
280 xcallocator
<Type
>::data_free (Type
*memory
)
282 return ::free (memory
);
286 /* Table of primes and their inversion information. */
292 hashval_t inv_m2
; /* inverse of prime-2 */
296 extern struct prime_ent
const prime_tab
[];
299 /* Functions for computing hash table indexes. */
301 extern unsigned int hash_table_higher_prime_index (unsigned long n
)
304 /* Return X % Y using multiplicative inverse values INV and SHIFT.
306 The multiplicative inverses computed above are for 32-bit types,
307 and requires that we be able to compute a highpart multiply.
309 FIX: I am not at all convinced that
310 3 loads, 2 multiplications, 3 shifts, and 3 additions
313 on modern systems running a compiler. */
316 mul_mod (hashval_t x
, hashval_t y
, hashval_t inv
, int shift
)
318 hashval_t t1
, t2
, t3
, t4
, q
, r
;
320 t1
= ((uint64_t)x
* inv
) >> 32;
330 /* Compute the primary table index for HASH given current prime index. */
333 hash_table_mod1 (hashval_t hash
, unsigned int index
)
335 const struct prime_ent
*p
= &prime_tab
[index
];
336 gcc_checking_assert (sizeof (hashval_t
) * CHAR_BIT
<= 32);
337 return mul_mod (hash
, p
->prime
, p
->inv
, p
->shift
);
340 /* Compute the secondary table index for HASH given current prime index. */
343 hash_table_mod2 (hashval_t hash
, unsigned int index
)
345 const struct prime_ent
*p
= &prime_tab
[index
];
346 gcc_checking_assert (sizeof (hashval_t
) * CHAR_BIT
<= 32);
347 return 1 + mul_mod (hash
, p
->prime
- 2, p
->inv_m2
, p
->shift
);
352 /* User-facing hash table type.
354 The table stores elements of type Descriptor::value_type and uses
355 the static descriptor functions described at the top of the file
356 to hash, compare and remove elements.
358 Specify the template Allocator to allocate and free memory.
359 The default is xcallocator.
361 Storage is an implementation detail and should not be used outside the
365 template <typename Descriptor
, bool Lazy
= false,
366 template<typename Type
> class Allocator
= xcallocator
>
369 typedef typename
Descriptor::value_type value_type
;
370 typedef typename
Descriptor::compare_type compare_type
;
373 explicit hash_table (size_t, bool ggc
= false,
374 bool gather_mem_stats
= GATHER_STATISTICS
,
375 mem_alloc_origin origin
= HASH_TABLE_ORIGIN
377 explicit hash_table (const hash_table
&, bool ggc
= false,
378 bool gather_mem_stats
= GATHER_STATISTICS
,
379 mem_alloc_origin origin
= HASH_TABLE_ORIGIN
383 /* Create a hash_table in gc memory. */
385 create_ggc (size_t n CXX_MEM_STAT_INFO
)
387 hash_table
*table
= ggc_alloc
<hash_table
> ();
388 new (table
) hash_table (n
, true, GATHER_STATISTICS
,
389 HASH_TABLE_ORIGIN PASS_MEM_STAT
);
393 /* Current size (in entries) of the hash table. */
394 size_t size () const { return m_size
; }
396 /* Return the current number of elements in this hash table. */
397 size_t elements () const { return m_n_elements
- m_n_deleted
; }
399 /* Return the current number of elements in this hash table. */
400 size_t elements_with_deleted () const { return m_n_elements
; }
402 /* This function clears all entries in this hash table. */
403 void empty () { if (elements ()) empty_slow (); }
405 /* Return true when there are no elements in this hash table. */
406 bool is_empty () const { return elements () == 0; }
408 /* This function clears a specified SLOT in a hash table. It is
409 useful when you've already done the lookup and don't want to do it
411 void clear_slot (value_type
*);
413 /* This function searches for a hash table entry equal to the given
414 COMPARABLE element starting with the given HASH value. It cannot
415 be used to insert or delete an element. */
416 value_type
&find_with_hash (const compare_type
&, hashval_t
);
418 /* Like find_slot_with_hash, but compute the hash value from the element. */
419 value_type
&find (const value_type
&value
)
421 return find_with_hash (value
, Descriptor::hash (value
));
424 value_type
*find_slot (const value_type
&value
, insert_option insert
)
426 return find_slot_with_hash (value
, Descriptor::hash (value
), insert
);
429 /* This function searches for a hash table slot containing an entry
430 equal to the given COMPARABLE element and starting with the given
431 HASH. To delete an entry, call this with insert=NO_INSERT, then
432 call clear_slot on the slot returned (possibly after doing some
433 checks). To insert an entry, call this with insert=INSERT, then
434 write the value you want into the returned slot. When inserting an
435 entry, NULL may be returned if memory allocation fails. */
436 value_type
*find_slot_with_hash (const compare_type
&comparable
,
437 hashval_t hash
, enum insert_option insert
);
439 /* This function deletes an element with the given COMPARABLE value
440 from hash table starting with the given HASH. If there is no
441 matching element in the hash table, this function does nothing. */
442 void remove_elt_with_hash (const compare_type
&, hashval_t
);
444 /* Like remove_elt_with_hash, but compute the hash value from the
446 void remove_elt (const value_type
&value
)
448 remove_elt_with_hash (value
, Descriptor::hash (value
));
451 /* This function scans over the entire hash table calling CALLBACK for
452 each live entry. If CALLBACK returns false, the iteration stops.
453 ARGUMENT is passed as CALLBACK's second argument. */
454 template <typename Argument
,
455 int (*Callback
) (value_type
*slot
, Argument argument
)>
456 void traverse_noresize (Argument argument
);
458 /* Like traverse_noresize, but does resize the table when it is too empty
459 to improve effectivity of subsequent calls. */
460 template <typename Argument
,
461 int (*Callback
) (value_type
*slot
, Argument argument
)>
462 void traverse (Argument argument
);
467 iterator () : m_slot (NULL
), m_limit (NULL
) {}
469 iterator (value_type
*slot
, value_type
*limit
) :
470 m_slot (slot
), m_limit (limit
) {}
472 inline value_type
&operator * () { return *m_slot
; }
474 inline iterator
&operator ++ ();
475 bool operator != (const iterator
&other
) const
477 return m_slot
!= other
.m_slot
|| m_limit
!= other
.m_limit
;
485 iterator
begin () const
487 if (Lazy
&& m_entries
== NULL
)
489 iterator
iter (m_entries
, m_entries
+ m_size
);
494 iterator
end () const { return iterator (); }
496 double collisions () const
498 return m_searches
? static_cast <double> (m_collisions
) / m_searches
: 0;
502 template<typename T
> friend void gt_ggc_mx (hash_table
<T
> *);
503 template<typename T
> friend void gt_pch_nx (hash_table
<T
> *);
504 template<typename T
> friend void
505 hashtab_entry_note_pointers (void *, void *, gt_pointer_operator
, void *);
506 template<typename T
, typename U
, typename V
> friend void
507 gt_pch_nx (hash_map
<T
, U
, V
> *, gt_pointer_operator
, void *);
508 template<typename T
, typename U
>
509 friend void gt_pch_nx (hash_set
<T
, false, U
> *, gt_pointer_operator
, void *);
510 template<typename T
> friend void gt_pch_nx (hash_table
<T
> *,
511 gt_pointer_operator
, void *);
513 template<typename T
> friend void gt_cleare_cache (hash_table
<T
> *);
517 value_type
*alloc_entries (size_t n CXX_MEM_STAT_INFO
) const;
518 value_type
*find_empty_slot_for_expand (hashval_t
);
519 bool too_empty_p (unsigned int);
521 static bool is_deleted (value_type
&v
)
523 return Descriptor::is_deleted (v
);
526 static bool is_empty (value_type
&v
)
528 return Descriptor::is_empty (v
);
531 static void mark_deleted (value_type
&v
)
533 Descriptor::mark_deleted (v
);
536 static void mark_empty (value_type
&v
)
538 Descriptor::mark_empty (v
);
542 typename
Descriptor::value_type
*m_entries
;
546 /* Current number of elements including also deleted elements. */
549 /* Current number of deleted elements in the table. */
552 /* The following member is used for debugging. Its value is number
553 of all calls of `htab_find_slot' for the hash table. */
554 unsigned int m_searches
;
556 /* The following member is used for debugging. Its value is number
557 of collisions fixed for time of work with the hash table. */
558 unsigned int m_collisions
;
560 /* Current size (in entries) of the hash table, as an index into the
562 unsigned int m_size_prime_index
;
564 /* if m_entries is stored in ggc memory. */
567 /* If we should gather memory statistics for the table. */
568 #if GATHER_STATISTICS
569 bool m_gather_mem_stats
;
571 static const bool m_gather_mem_stats
= false;
575 /* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
576 mem-stats.h after hash_table declaration. */
578 #include "mem-stats.h"
579 #include "hash-map.h"
581 extern mem_alloc_description
<mem_usage
>& hash_table_usage (void);
583 /* Support function for statistics. */
584 extern void dump_hash_table_loc_statistics (void);
586 template<typename Descriptor
, bool Lazy
,
587 template<typename Type
> class Allocator
>
588 hash_table
<Descriptor
, Lazy
, Allocator
>::hash_table (size_t size
, bool ggc
,
589 bool gather_mem_stats
591 mem_alloc_origin origin
593 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
595 #if GATHER_STATISTICS
596 , m_gather_mem_stats (gather_mem_stats
)
599 unsigned int size_prime_index
;
601 size_prime_index
= hash_table_higher_prime_index (size
);
602 size
= prime_tab
[size_prime_index
].prime
;
604 if (m_gather_mem_stats
)
605 hash_table_usage ().register_descriptor (this, origin
, ggc
606 FINAL_PASS_MEM_STAT
);
611 m_entries
= alloc_entries (size PASS_MEM_STAT
);
613 m_size_prime_index
= size_prime_index
;
616 template<typename Descriptor
, bool Lazy
,
617 template<typename Type
> class Allocator
>
618 hash_table
<Descriptor
, Lazy
, Allocator
>::hash_table (const hash_table
&h
,
620 bool gather_mem_stats
622 mem_alloc_origin origin
624 m_n_elements (h
.m_n_elements
), m_n_deleted (h
.m_n_deleted
),
625 m_searches (0), m_collisions (0), m_ggc (ggc
)
626 #if GATHER_STATISTICS
627 , m_gather_mem_stats (gather_mem_stats
)
630 size_t size
= h
.m_size
;
632 if (m_gather_mem_stats
)
633 hash_table_usage ().register_descriptor (this, origin
, ggc
634 FINAL_PASS_MEM_STAT
);
636 if (Lazy
&& h
.m_entries
== NULL
)
640 value_type
*nentries
= alloc_entries (size PASS_MEM_STAT
);
641 for (size_t i
= 0; i
< size
; ++i
)
643 value_type
&entry
= h
.m_entries
[i
];
644 if (is_deleted (entry
))
645 mark_deleted (nentries
[i
]);
646 else if (!is_empty (entry
))
649 m_entries
= nentries
;
652 m_size_prime_index
= h
.m_size_prime_index
;
655 template<typename Descriptor
, bool Lazy
,
656 template<typename Type
> class Allocator
>
657 hash_table
<Descriptor
, Lazy
, Allocator
>::~hash_table ()
659 if (!Lazy
|| m_entries
)
661 for (size_t i
= m_size
- 1; i
< m_size
; i
--)
662 if (!is_empty (m_entries
[i
]) && !is_deleted (m_entries
[i
]))
663 Descriptor::remove (m_entries
[i
]);
666 Allocator
<value_type
> ::data_free (m_entries
);
668 ggc_free (m_entries
);
669 if (m_gather_mem_stats
)
670 hash_table_usage ().release_instance_overhead (this,
674 else if (m_gather_mem_stats
)
675 hash_table_usage ().unregister_descriptor (this);
678 /* This function returns an array of empty hash table elements. */
680 template<typename Descriptor
, bool Lazy
,
681 template<typename Type
> class Allocator
>
682 inline typename hash_table
<Descriptor
, Lazy
, Allocator
>::value_type
*
683 hash_table
<Descriptor
, Lazy
,
684 Allocator
>::alloc_entries (size_t n MEM_STAT_DECL
) const
686 value_type
*nentries
;
688 if (m_gather_mem_stats
)
689 hash_table_usage ().register_instance_overhead (sizeof (value_type
) * n
, this);
692 nentries
= Allocator
<value_type
> ::data_alloc (n
);
694 nentries
= ::ggc_cleared_vec_alloc
<value_type
> (n PASS_MEM_STAT
);
696 gcc_assert (nentries
!= NULL
);
697 for (size_t i
= 0; i
< n
; i
++)
698 mark_empty (nentries
[i
]);
703 /* Similar to find_slot, but without several unwanted side effects:
704 - Does not call equal when it finds an existing entry.
705 - Does not change the count of elements/searches/collisions in the
707 This function also assumes there are no deleted entries in the table.
708 HASH is the hash value for the element to be inserted. */
710 template<typename Descriptor
, bool Lazy
,
711 template<typename Type
> class Allocator
>
712 typename hash_table
<Descriptor
, Lazy
, Allocator
>::value_type
*
713 hash_table
<Descriptor
, Lazy
,
714 Allocator
>::find_empty_slot_for_expand (hashval_t hash
)
716 hashval_t index
= hash_table_mod1 (hash
, m_size_prime_index
);
717 size_t size
= m_size
;
718 value_type
*slot
= m_entries
+ index
;
721 if (is_empty (*slot
))
723 gcc_checking_assert (!is_deleted (*slot
));
725 hash2
= hash_table_mod2 (hash
, m_size_prime_index
);
732 slot
= m_entries
+ index
;
733 if (is_empty (*slot
))
735 gcc_checking_assert (!is_deleted (*slot
));
739 /* Return true if the current table is excessively big for ELTS elements. */
741 template<typename Descriptor
, bool Lazy
,
742 template<typename Type
> class Allocator
>
744 hash_table
<Descriptor
, Lazy
, Allocator
>::too_empty_p (unsigned int elts
)
746 return elts
* 8 < m_size
&& m_size
> 32;
749 /* The following function changes size of memory allocated for the
750 entries and repeatedly inserts the table elements. The occupancy
751 of the table after the call will be about 50%. Naturally the hash
752 table must already exist. Remember also that the place of the
753 table entries is changed. If memory allocation fails, this function
756 template<typename Descriptor
, bool Lazy
,
757 template<typename Type
> class Allocator
>
759 hash_table
<Descriptor
, Lazy
, Allocator
>::expand ()
761 value_type
*oentries
= m_entries
;
762 unsigned int oindex
= m_size_prime_index
;
763 size_t osize
= size ();
764 value_type
*olimit
= oentries
+ osize
;
765 size_t elts
= elements ();
767 /* Resize only when table after removal of unused elements is either
768 too full or too empty. */
771 if (elts
* 2 > osize
|| too_empty_p (elts
))
773 nindex
= hash_table_higher_prime_index (elts
* 2);
774 nsize
= prime_tab
[nindex
].prime
;
782 value_type
*nentries
= alloc_entries (nsize
);
784 if (m_gather_mem_stats
)
785 hash_table_usage ().release_instance_overhead (this, sizeof (value_type
)
788 m_entries
= nentries
;
790 m_size_prime_index
= nindex
;
791 m_n_elements
-= m_n_deleted
;
794 value_type
*p
= oentries
;
799 if (!is_empty (x
) && !is_deleted (x
))
801 value_type
*q
= find_empty_slot_for_expand (Descriptor::hash (x
));
811 Allocator
<value_type
> ::data_free (oentries
);
816 /* Implements empty() in cases where it isn't a no-op. */
818 template<typename Descriptor
, bool Lazy
,
819 template<typename Type
> class Allocator
>
821 hash_table
<Descriptor
, Lazy
, Allocator
>::empty_slow ()
823 size_t size
= m_size
;
825 value_type
*entries
= m_entries
;
828 for (i
= size
- 1; i
>= 0; i
--)
829 if (!is_empty (entries
[i
]) && !is_deleted (entries
[i
]))
830 Descriptor::remove (entries
[i
]);
832 /* Instead of clearing megabyte, downsize the table. */
833 if (size
> 1024*1024 / sizeof (value_type
))
834 nsize
= 1024 / sizeof (value_type
);
835 else if (too_empty_p (m_n_elements
))
836 nsize
= m_n_elements
* 2;
840 int nindex
= hash_table_higher_prime_index (nsize
);
841 int nsize
= prime_tab
[nindex
].prime
;
844 Allocator
<value_type
> ::data_free (m_entries
);
846 ggc_free (m_entries
);
848 m_entries
= alloc_entries (nsize
);
850 m_size_prime_index
= nindex
;
854 #ifndef BROKEN_VALUE_INITIALIZATION
855 for ( ; size
; ++entries
, --size
)
856 *entries
= value_type ();
858 memset (entries
, 0, size
* sizeof (value_type
));
865 /* This function clears a specified SLOT in a hash table. It is
866 useful when you've already done the lookup and don't want to do it
869 template<typename Descriptor
, bool Lazy
,
870 template<typename Type
> class Allocator
>
872 hash_table
<Descriptor
, Lazy
, Allocator
>::clear_slot (value_type
*slot
)
874 gcc_checking_assert (!(slot
< m_entries
|| slot
>= m_entries
+ size ()
875 || is_empty (*slot
) || is_deleted (*slot
)));
877 Descriptor::remove (*slot
);
879 mark_deleted (*slot
);
883 /* This function searches for a hash table entry equal to the given
884 COMPARABLE element starting with the given HASH value. It cannot
885 be used to insert or delete an element. */
887 template<typename Descriptor
, bool Lazy
,
888 template<typename Type
> class Allocator
>
889 typename hash_table
<Descriptor
, Lazy
, Allocator
>::value_type
&
890 hash_table
<Descriptor
, Lazy
, Allocator
>
891 ::find_with_hash (const compare_type
&comparable
, hashval_t hash
)
894 size_t size
= m_size
;
895 hashval_t index
= hash_table_mod1 (hash
, m_size_prime_index
);
897 if (Lazy
&& m_entries
== NULL
)
898 m_entries
= alloc_entries (size
);
899 value_type
*entry
= &m_entries
[index
];
900 if (is_empty (*entry
)
901 || (!is_deleted (*entry
) && Descriptor::equal (*entry
, comparable
)))
904 hashval_t hash2
= hash_table_mod2 (hash
, m_size_prime_index
);
912 entry
= &m_entries
[index
];
913 if (is_empty (*entry
)
914 || (!is_deleted (*entry
) && Descriptor::equal (*entry
, comparable
)))
919 /* This function searches for a hash table slot containing an entry
920 equal to the given COMPARABLE element and starting with the given
921 HASH. To delete an entry, call this with insert=NO_INSERT, then
922 call clear_slot on the slot returned (possibly after doing some
923 checks). To insert an entry, call this with insert=INSERT, then
924 write the value you want into the returned slot. When inserting an
925 entry, NULL may be returned if memory allocation fails. */
927 template<typename Descriptor
, bool Lazy
,
928 template<typename Type
> class Allocator
>
929 typename hash_table
<Descriptor
, Lazy
, Allocator
>::value_type
*
930 hash_table
<Descriptor
, Lazy
, Allocator
>
931 ::find_slot_with_hash (const compare_type
&comparable
, hashval_t hash
,
932 enum insert_option insert
)
934 if (Lazy
&& m_entries
== NULL
)
936 if (insert
== INSERT
)
937 m_entries
= alloc_entries (m_size
);
941 if (insert
== INSERT
&& m_size
* 3 <= m_n_elements
* 4)
946 value_type
*first_deleted_slot
= NULL
;
947 hashval_t index
= hash_table_mod1 (hash
, m_size_prime_index
);
948 hashval_t hash2
= hash_table_mod2 (hash
, m_size_prime_index
);
949 value_type
*entry
= &m_entries
[index
];
950 size_t size
= m_size
;
951 if (is_empty (*entry
))
953 else if (is_deleted (*entry
))
954 first_deleted_slot
= &m_entries
[index
];
955 else if (Descriptor::equal (*entry
, comparable
))
956 return &m_entries
[index
];
965 entry
= &m_entries
[index
];
966 if (is_empty (*entry
))
968 else if (is_deleted (*entry
))
970 if (!first_deleted_slot
)
971 first_deleted_slot
= &m_entries
[index
];
973 else if (Descriptor::equal (*entry
, comparable
))
974 return &m_entries
[index
];
978 if (insert
== NO_INSERT
)
981 if (first_deleted_slot
)
984 mark_empty (*first_deleted_slot
);
985 return first_deleted_slot
;
989 return &m_entries
[index
];
992 /* This function deletes an element with the given COMPARABLE value
993 from hash table starting with the given HASH. If there is no
994 matching element in the hash table, this function does nothing. */
996 template<typename Descriptor
, bool Lazy
,
997 template<typename Type
> class Allocator
>
999 hash_table
<Descriptor
, Lazy
, Allocator
>
1000 ::remove_elt_with_hash (const compare_type
&comparable
, hashval_t hash
)
1002 value_type
*slot
= find_slot_with_hash (comparable
, hash
, NO_INSERT
);
1006 Descriptor::remove (*slot
);
1008 mark_deleted (*slot
);
1012 /* This function scans over the entire hash table calling CALLBACK for
1013 each live entry. If CALLBACK returns false, the iteration stops.
1014 ARGUMENT is passed as CALLBACK's second argument. */
1016 template<typename Descriptor
, bool Lazy
,
1017 template<typename Type
> class Allocator
>
1018 template<typename Argument
,
1020 (typename hash_table
<Descriptor
, Lazy
, Allocator
>::value_type
*slot
,
1023 hash_table
<Descriptor
, Lazy
, Allocator
>::traverse_noresize (Argument argument
)
1025 if (Lazy
&& m_entries
== NULL
)
1028 value_type
*slot
= m_entries
;
1029 value_type
*limit
= slot
+ size ();
1033 value_type
&x
= *slot
;
1035 if (!is_empty (x
) && !is_deleted (x
))
1036 if (! Callback (slot
, argument
))
1039 while (++slot
< limit
);
1042 /* Like traverse_noresize, but does resize the table when it is too empty
1043 to improve effectivity of subsequent calls. */
1045 template <typename Descriptor
, bool Lazy
,
1046 template <typename Type
> class Allocator
>
1047 template <typename Argument
,
1049 (typename hash_table
<Descriptor
, Lazy
, Allocator
>::value_type
*slot
,
1052 hash_table
<Descriptor
, Lazy
, Allocator
>::traverse (Argument argument
)
1054 if (too_empty_p (elements ()) && (!Lazy
|| m_entries
))
1057 traverse_noresize
<Argument
, Callback
> (argument
);
1060 /* Slide down the iterator slots until an active entry is found. */
1062 template<typename Descriptor
, bool Lazy
,
1063 template<typename Type
> class Allocator
>
1065 hash_table
<Descriptor
, Lazy
, Allocator
>::iterator::slide ()
1067 for ( ; m_slot
< m_limit
; ++m_slot
)
1069 value_type
&x
= *m_slot
;
1070 if (!is_empty (x
) && !is_deleted (x
))
1077 /* Bump the iterator. */
1079 template<typename Descriptor
, bool Lazy
,
1080 template<typename Type
> class Allocator
>
1081 inline typename hash_table
<Descriptor
, Lazy
, Allocator
>::iterator
&
1082 hash_table
<Descriptor
, Lazy
, Allocator
>::iterator::operator ++ ()
1090 /* Iterate through the elements of hash_table HTAB,
1091 using hash_table <....>::iterator ITER,
1092 storing each element in RESULT, which is of type TYPE. */
1094 #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
1095 for ((ITER) = (HTAB).begin (); \
1096 (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
1099 /* ggc walking routines. */
1101 template<typename E
>
1103 gt_ggc_mx (hash_table
<E
> *h
)
1105 typedef hash_table
<E
> table
;
1107 if (!ggc_test_and_set_mark (h
->m_entries
))
1110 for (size_t i
= 0; i
< h
->m_size
; i
++)
1112 if (table::is_empty (h
->m_entries
[i
])
1113 || table::is_deleted (h
->m_entries
[i
]))
1116 /* Use ggc_maxbe_mx so we don't mark right away for cache tables; we'll
1117 mark in gt_cleare_cache if appropriate. */
1118 E::ggc_maybe_mx (h
->m_entries
[i
]);
1122 template<typename D
>
1124 hashtab_entry_note_pointers (void *obj
, void *h
, gt_pointer_operator op
,
1127 hash_table
<D
> *map
= static_cast<hash_table
<D
> *> (h
);
1128 gcc_checking_assert (map
->m_entries
== obj
);
1129 for (size_t i
= 0; i
< map
->m_size
; i
++)
1131 typedef hash_table
<D
> table
;
1132 if (table::is_empty (map
->m_entries
[i
])
1133 || table::is_deleted (map
->m_entries
[i
]))
1136 D::pch_nx (map
->m_entries
[i
], op
, cookie
);
1140 template<typename D
>
1142 gt_pch_nx (hash_table
<D
> *h
)
1145 = gt_pch_note_object (h
->m_entries
, h
, hashtab_entry_note_pointers
<D
>);
1146 gcc_checking_assert (success
);
1147 for (size_t i
= 0; i
< h
->m_size
; i
++)
1149 if (hash_table
<D
>::is_empty (h
->m_entries
[i
])
1150 || hash_table
<D
>::is_deleted (h
->m_entries
[i
]))
1153 D::pch_nx (h
->m_entries
[i
]);
1157 template<typename D
>
1159 gt_pch_nx (hash_table
<D
> *h
, gt_pointer_operator op
, void *cookie
)
1161 op (&h
->m_entries
, cookie
);
1164 template<typename H
>
1166 gt_cleare_cache (hash_table
<H
> *h
)
1168 typedef hash_table
<H
> table
;
1172 for (typename
table::iterator iter
= h
->begin (); iter
!= h
->end (); ++iter
)
1173 if (!table::is_empty (*iter
) && !table::is_deleted (*iter
))
1175 int res
= H::keep_cache_entry (*iter
);
1177 h
->clear_slot (&*iter
);
1183 #endif /* TYPED_HASHTAB_H */