Merge from mainline
[official-gcc.git] / gcc / haifa-sched.c
blob7eb079b34445f1585cfa65a21db5a5a4821aa116
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
57 Function unit conflicts are resolved during forward list scheduling
58 by tracking the time when each insn is committed to the schedule
59 and from that, the time the function units it uses must be free.
60 As insns on the ready list are considered for scheduling, those
61 that would result in a blockage of the already committed insns are
62 queued until no blockage will result.
64 The following list shows the order in which we want to break ties
65 among insns in the ready list:
67 1. choose insn with the longest path to end of bb, ties
68 broken by
69 2. choose insn with least contribution to register pressure,
70 ties broken by
71 3. prefer in-block upon interblock motion, ties broken by
72 4. prefer useful upon speculative motion, ties broken by
73 5. choose insn with largest control flow probability, ties
74 broken by
75 6. choose insn with the least dependences upon the previously
76 scheduled insn, or finally
77 7 choose the insn which has the most insns dependent on it.
78 8. choose insn with lowest UID.
80 Memory references complicate matters. Only if we can be certain
81 that memory references are not part of the data dependency graph
82 (via true, anti, or output dependence), can we move operations past
83 memory references. To first approximation, reads can be done
84 independently, while writes introduce dependencies. Better
85 approximations will yield fewer dependencies.
87 Before reload, an extended analysis of interblock data dependences
88 is required for interblock scheduling. This is performed in
89 compute_block_backward_dependences ().
91 Dependencies set up by memory references are treated in exactly the
92 same way as other dependencies, by using LOG_LINKS backward
93 dependences. LOG_LINKS are translated into INSN_DEPEND forward
94 dependences for the purpose of forward list scheduling.
96 Having optimized the critical path, we may have also unduly
97 extended the lifetimes of some registers. If an operation requires
98 that constants be loaded into registers, it is certainly desirable
99 to load those constants as early as necessary, but no earlier.
100 I.e., it will not do to load up a bunch of registers at the
101 beginning of a basic block only to use them at the end, if they
102 could be loaded later, since this may result in excessive register
103 utilization.
105 Note that since branches are never in basic blocks, but only end
106 basic blocks, this pass will not move branches. But that is ok,
107 since we can use GNU's delayed branch scheduling pass to take care
108 of this case.
110 Also note that no further optimizations based on algebraic
111 identities are performed, so this pass would be a good one to
112 perform instruction splitting, such as breaking up a multiply
113 instruction into shifts and adds where that is profitable.
115 Given the memory aliasing analysis that this pass should perform,
116 it should be possible to remove redundant stores to memory, and to
117 load values from registers instead of hitting memory.
119 Before reload, speculative insns are moved only if a 'proof' exists
120 that no exception will be caused by this, and if no live registers
121 exist that inhibit the motion (live registers constraints are not
122 represented by data dependence edges).
124 This pass must update information that subsequent passes expect to
125 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
126 reg_n_calls_crossed, and reg_live_length. Also, BLOCK_HEAD,
127 BLOCK_END.
129 The information in the line number notes is carefully retained by
130 this pass. Notes that refer to the starting and ending of
131 exception regions are also carefully retained by this pass. All
132 other NOTE insns are grouped in their same relative order at the
133 beginning of basic blocks and regions that have been scheduled. */
135 #include "config.h"
136 #include "system.h"
137 #include "toplev.h"
138 #include "rtl.h"
139 #include "tm_p.h"
140 #include "hard-reg-set.h"
141 #include "basic-block.h"
142 #include "regs.h"
143 #include "function.h"
144 #include "flags.h"
145 #include "insn-config.h"
146 #include "insn-attr.h"
147 #include "except.h"
148 #include "toplev.h"
149 #include "recog.h"
150 #include "sched-int.h"
151 #include "target.h"
153 #ifdef INSN_SCHEDULING
155 /* issue_rate is the number of insns that can be scheduled in the same
156 machine cycle. It can be defined in the config/mach/mach.h file,
157 otherwise we set it to 1. */
159 static int issue_rate;
161 /* If the following variable value is non zero, the scheduler inserts
162 bubbles (nop insns). The value of variable affects on scheduler
163 behavior only if automaton pipeline interface with multipass
164 scheduling is used and hook dfa_bubble is defined. */
165 int insert_schedule_bubbles_p = 0;
167 /* sched-verbose controls the amount of debugging output the
168 scheduler prints. It is controlled by -fsched-verbose=N:
169 N>0 and no -DSR : the output is directed to stderr.
170 N>=10 will direct the printouts to stderr (regardless of -dSR).
171 N=1: same as -dSR.
172 N=2: bb's probabilities, detailed ready list info, unit/insn info.
173 N=3: rtl at abort point, control-flow, regions info.
174 N=5: dependences info. */
176 static int sched_verbose_param = 0;
177 int sched_verbose = 0;
179 /* Debugging file. All printouts are sent to dump, which is always set,
180 either to stderr, or to the dump listing file (-dRS). */
181 FILE *sched_dump = 0;
183 /* Highest uid before scheduling. */
184 static int old_max_uid;
186 /* fix_sched_param() is called from toplev.c upon detection
187 of the -fsched-verbose=N option. */
189 void
190 fix_sched_param (param, val)
191 const char *param, *val;
193 if (!strcmp (param, "verbose"))
194 sched_verbose_param = atoi (val);
195 else
196 warning ("fix_sched_param: unknown param: %s", param);
199 struct haifa_insn_data *h_i_d;
201 #define DONE_PRIORITY -1
202 #define MAX_PRIORITY 0x7fffffff
203 #define TAIL_PRIORITY 0x7ffffffe
204 #define LAUNCH_PRIORITY 0x7f000001
205 #define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
206 #define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
208 #define LINE_NOTE(INSN) (h_i_d[INSN_UID (INSN)].line_note)
209 #define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
211 /* Vector indexed by basic block number giving the starting line-number
212 for each basic block. */
213 static rtx *line_note_head;
215 /* List of important notes we must keep around. This is a pointer to the
216 last element in the list. */
217 static rtx note_list;
219 /* Queues, etc. */
221 /* An instruction is ready to be scheduled when all insns preceding it
222 have already been scheduled. It is important to ensure that all
223 insns which use its result will not be executed until its result
224 has been computed. An insn is maintained in one of four structures:
226 (P) the "Pending" set of insns which cannot be scheduled until
227 their dependencies have been satisfied.
228 (Q) the "Queued" set of insns that can be scheduled when sufficient
229 time has passed.
230 (R) the "Ready" list of unscheduled, uncommitted insns.
231 (S) the "Scheduled" list of insns.
233 Initially, all insns are either "Pending" or "Ready" depending on
234 whether their dependencies are satisfied.
236 Insns move from the "Ready" list to the "Scheduled" list as they
237 are committed to the schedule. As this occurs, the insns in the
238 "Pending" list have their dependencies satisfied and move to either
239 the "Ready" list or the "Queued" set depending on whether
240 sufficient time has passed to make them ready. As time passes,
241 insns move from the "Queued" set to the "Ready" list. Insns may
242 move from the "Ready" list to the "Queued" set if they are blocked
243 due to a function unit conflict.
245 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
246 insns, i.e., those that are ready, queued, and pending.
247 The "Queued" set (Q) is implemented by the variable `insn_queue'.
248 The "Ready" list (R) is implemented by the variables `ready' and
249 `n_ready'.
250 The "Scheduled" list (S) is the new insn chain built by this pass.
252 The transition (R->S) is implemented in the scheduling loop in
253 `schedule_block' when the best insn to schedule is chosen.
254 The transition (R->Q) is implemented in `queue_insn' when an
255 insn is found to have a function unit conflict with the already
256 committed insns.
257 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
258 insns move from the ready list to the scheduled list.
259 The transition (Q->R) is implemented in 'queue_to_insn' as time
260 passes or stalls are introduced. */
262 /* Implement a circular buffer to delay instructions until sufficient
263 time has passed. For the old pipeline description interface,
264 INSN_QUEUE_SIZE is a power of two larger than MAX_BLOCKAGE and
265 MAX_READY_COST computed by genattr.c. For the new pipeline
266 description interface, MAX_INSN_QUEUE_INDEX is a power of two minus
267 one which is larger than maximal time of instruction execution
268 computed by genattr.c on the base maximal time of functional unit
269 reservations and geting a result. This is the longest time an
270 insn may be queued. */
272 #define MAX_INSN_QUEUE_INDEX max_insn_queue_index_macro_value
274 static rtx *insn_queue;
275 static int q_ptr = 0;
276 static int q_size = 0;
277 #define NEXT_Q(X) (((X)+1) & MAX_INSN_QUEUE_INDEX)
278 #define NEXT_Q_AFTER(X, C) (((X)+C) & MAX_INSN_QUEUE_INDEX)
280 /* The following variable defines value for macro
281 MAX_INSN_QUEUE_INDEX. */
282 static int max_insn_queue_index_macro_value;
284 /* The following variable value refers for all current and future
285 reservations of the processor units. */
286 state_t curr_state;
288 /* The following variable value is size of memory representing all
289 current and future reservations of the processor units. It is used
290 only by DFA based scheduler. */
291 static size_t dfa_state_size;
293 /* The following array is used to find the best insn from ready when
294 the automaton pipeline interface is used. */
295 static char *ready_try;
297 /* Describe the ready list of the scheduler.
298 VEC holds space enough for all insns in the current region. VECLEN
299 says how many exactly.
300 FIRST is the index of the element with the highest priority; i.e. the
301 last one in the ready list, since elements are ordered by ascending
302 priority.
303 N_READY determines how many insns are on the ready list. */
305 struct ready_list
307 rtx *vec;
308 int veclen;
309 int first;
310 int n_ready;
313 /* Forward declarations. */
315 /* The scheduler using only DFA description should never use the
316 following five functions: */
317 static unsigned int blockage_range PARAMS ((int, rtx));
318 static void clear_units PARAMS ((void));
319 static void schedule_unit PARAMS ((int, rtx, int));
320 static int actual_hazard PARAMS ((int, rtx, int, int));
321 static int potential_hazard PARAMS ((int, rtx, int));
323 static int priority PARAMS ((rtx));
324 static int rank_for_schedule PARAMS ((const PTR, const PTR));
325 static void swap_sort PARAMS ((rtx *, int));
326 static void queue_insn PARAMS ((rtx, int));
327 static void schedule_insn PARAMS ((rtx, struct ready_list *, int));
328 static void find_insn_reg_weight PARAMS ((int));
329 static void adjust_priority PARAMS ((rtx));
330 static void advance_one_cycle PARAMS ((void));
332 /* Notes handling mechanism:
333 =========================
334 Generally, NOTES are saved before scheduling and restored after scheduling.
335 The scheduler distinguishes between three types of notes:
337 (1) LINE_NUMBER notes, generated and used for debugging. Here,
338 before scheduling a region, a pointer to the LINE_NUMBER note is
339 added to the insn following it (in save_line_notes()), and the note
340 is removed (in rm_line_notes() and unlink_line_notes()). After
341 scheduling the region, this pointer is used for regeneration of
342 the LINE_NUMBER note (in restore_line_notes()).
344 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
345 Before scheduling a region, a pointer to the note is added to the insn
346 that follows or precedes it. (This happens as part of the data dependence
347 computation). After scheduling an insn, the pointer contained in it is
348 used for regenerating the corresponding note (in reemit_notes).
350 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
351 these notes are put in a list (in rm_other_notes() and
352 unlink_other_notes ()). After scheduling the block, these notes are
353 inserted at the beginning of the block (in schedule_block()). */
355 static rtx unlink_other_notes PARAMS ((rtx, rtx));
356 static rtx unlink_line_notes PARAMS ((rtx, rtx));
357 static rtx reemit_notes PARAMS ((rtx, rtx));
359 static rtx *ready_lastpos PARAMS ((struct ready_list *));
360 static void ready_sort PARAMS ((struct ready_list *));
361 static rtx ready_remove_first PARAMS ((struct ready_list *));
363 static void queue_to_ready PARAMS ((struct ready_list *));
365 static void debug_ready_list PARAMS ((struct ready_list *));
367 static rtx move_insn1 PARAMS ((rtx, rtx));
368 static rtx move_insn PARAMS ((rtx, rtx));
370 /* The following functions are used to implement multi-pass scheduling
371 on the first cycle. It is used only for DFA based scheduler. */
372 static rtx ready_element PARAMS ((struct ready_list *, int));
373 static rtx ready_remove PARAMS ((struct ready_list *, int));
374 static int max_issue PARAMS ((struct ready_list *, state_t, int *));
376 static rtx choose_ready PARAMS ((struct ready_list *));
378 #endif /* INSN_SCHEDULING */
380 /* Point to state used for the current scheduling pass. */
381 struct sched_info *current_sched_info;
383 #ifndef INSN_SCHEDULING
384 void
385 schedule_insns (dump_file)
386 FILE *dump_file ATTRIBUTE_UNUSED;
389 #else
391 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
392 so that insns independent of the last scheduled insn will be preferred
393 over dependent instructions. */
395 static rtx last_scheduled_insn;
397 /* Compute the function units used by INSN. This caches the value
398 returned by function_units_used. A function unit is encoded as the
399 unit number if the value is non-negative and the compliment of a
400 mask if the value is negative. A function unit index is the
401 non-negative encoding. The scheduler using only DFA description
402 should never use the following function. */
404 HAIFA_INLINE int
405 insn_unit (insn)
406 rtx insn;
408 int unit = INSN_UNIT (insn);
410 if (unit == 0)
412 recog_memoized (insn);
414 /* A USE insn, or something else we don't need to understand.
415 We can't pass these directly to function_units_used because it will
416 trigger a fatal error for unrecognizable insns. */
417 if (INSN_CODE (insn) < 0)
418 unit = -1;
419 else
421 unit = function_units_used (insn);
422 /* Increment non-negative values so we can cache zero. */
423 if (unit >= 0)
424 unit++;
426 /* We only cache 16 bits of the result, so if the value is out of
427 range, don't cache it. */
428 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
429 || unit >= 0
430 || (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
431 INSN_UNIT (insn) = unit;
433 return (unit > 0 ? unit - 1 : unit);
436 /* Compute the blockage range for executing INSN on UNIT. This caches
437 the value returned by the blockage_range_function for the unit.
438 These values are encoded in an int where the upper half gives the
439 minimum value and the lower half gives the maximum value. The
440 scheduler using only DFA description should never use the following
441 function. */
443 HAIFA_INLINE static unsigned int
444 blockage_range (unit, insn)
445 int unit;
446 rtx insn;
448 unsigned int blockage = INSN_BLOCKAGE (insn);
449 unsigned int range;
451 if ((int) UNIT_BLOCKED (blockage) != unit + 1)
453 range = function_units[unit].blockage_range_function (insn);
454 /* We only cache the blockage range for one unit and then only if
455 the values fit. */
456 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
457 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
459 else
460 range = BLOCKAGE_RANGE (blockage);
462 return range;
465 /* A vector indexed by function unit instance giving the last insn to
466 use the unit. The value of the function unit instance index for
467 unit U instance I is (U + I * FUNCTION_UNITS_SIZE). The scheduler
468 using only DFA description should never use the following variable. */
469 #if FUNCTION_UNITS_SIZE
470 static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
471 #else
472 static rtx unit_last_insn[1];
473 #endif
475 /* A vector indexed by function unit instance giving the minimum time
476 when the unit will unblock based on the maximum blockage cost. The
477 scheduler using only DFA description should never use the following
478 variable. */
479 #if FUNCTION_UNITS_SIZE
480 static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
481 #else
482 static int unit_tick[1];
483 #endif
485 /* A vector indexed by function unit number giving the number of insns
486 that remain to use the unit. The scheduler using only DFA
487 description should never use the following variable. */
488 #if FUNCTION_UNITS_SIZE
489 static int unit_n_insns[FUNCTION_UNITS_SIZE];
490 #else
491 static int unit_n_insns[1];
492 #endif
494 /* Access the unit_last_insn array. Used by the visualization code.
495 The scheduler using only DFA description should never use the
496 following function. */
499 get_unit_last_insn (instance)
500 int instance;
502 return unit_last_insn[instance];
505 /* Reset the function unit state to the null state. */
507 static void
508 clear_units ()
510 memset ((char *) unit_last_insn, 0, sizeof (unit_last_insn));
511 memset ((char *) unit_tick, 0, sizeof (unit_tick));
512 memset ((char *) unit_n_insns, 0, sizeof (unit_n_insns));
515 /* Return the issue-delay of an insn. The scheduler using only DFA
516 description should never use the following function. */
518 HAIFA_INLINE int
519 insn_issue_delay (insn)
520 rtx insn;
522 int i, delay = 0;
523 int unit = insn_unit (insn);
525 /* Efficiency note: in fact, we are working 'hard' to compute a
526 value that was available in md file, and is not available in
527 function_units[] structure. It would be nice to have this
528 value there, too. */
529 if (unit >= 0)
531 if (function_units[unit].blockage_range_function &&
532 function_units[unit].blockage_function)
533 delay = function_units[unit].blockage_function (insn, insn);
535 else
536 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
537 if ((unit & 1) != 0 && function_units[i].blockage_range_function
538 && function_units[i].blockage_function)
539 delay = MAX (delay, function_units[i].blockage_function (insn, insn));
541 return delay;
544 /* Return the actual hazard cost of executing INSN on the unit UNIT,
545 instance INSTANCE at time CLOCK if the previous actual hazard cost
546 was COST. The scheduler using only DFA description should never
547 use the following function. */
549 HAIFA_INLINE int
550 actual_hazard_this_instance (unit, instance, insn, clock, cost)
551 int unit, instance, clock, cost;
552 rtx insn;
554 int tick = unit_tick[instance]; /* Issue time of the last issued insn. */
556 if (tick - clock > cost)
558 /* The scheduler is operating forward, so unit's last insn is the
559 executing insn and INSN is the candidate insn. We want a
560 more exact measure of the blockage if we execute INSN at CLOCK
561 given when we committed the execution of the unit's last insn.
563 The blockage value is given by either the unit's max blockage
564 constant, blockage range function, or blockage function. Use
565 the most exact form for the given unit. */
567 if (function_units[unit].blockage_range_function)
569 if (function_units[unit].blockage_function)
570 tick += (function_units[unit].blockage_function
571 (unit_last_insn[instance], insn)
572 - function_units[unit].max_blockage);
573 else
574 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
575 - function_units[unit].max_blockage);
577 if (tick - clock > cost)
578 cost = tick - clock;
580 return cost;
583 /* Record INSN as having begun execution on the units encoded by UNIT
584 at time CLOCK. The scheduler using only DFA description should
585 never use the following function. */
587 HAIFA_INLINE static void
588 schedule_unit (unit, insn, clock)
589 int unit, clock;
590 rtx insn;
592 int i;
594 if (unit >= 0)
596 int instance = unit;
597 #if MAX_MULTIPLICITY > 1
598 /* Find the first free instance of the function unit and use that
599 one. We assume that one is free. */
600 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
602 if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
603 break;
604 instance += FUNCTION_UNITS_SIZE;
606 #endif
607 unit_last_insn[instance] = insn;
608 unit_tick[instance] = (clock + function_units[unit].max_blockage);
610 else
611 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
612 if ((unit & 1) != 0)
613 schedule_unit (i, insn, clock);
616 /* Return the actual hazard cost of executing INSN on the units
617 encoded by UNIT at time CLOCK if the previous actual hazard cost
618 was COST. The scheduler using only DFA description should never
619 use the following function. */
621 HAIFA_INLINE static int
622 actual_hazard (unit, insn, clock, cost)
623 int unit, clock, cost;
624 rtx insn;
626 int i;
628 if (unit >= 0)
630 /* Find the instance of the function unit with the minimum hazard. */
631 int instance = unit;
632 int best_cost = actual_hazard_this_instance (unit, instance, insn,
633 clock, cost);
634 #if MAX_MULTIPLICITY > 1
635 int this_cost;
637 if (best_cost > cost)
639 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
641 instance += FUNCTION_UNITS_SIZE;
642 this_cost = actual_hazard_this_instance (unit, instance, insn,
643 clock, cost);
644 if (this_cost < best_cost)
646 best_cost = this_cost;
647 if (this_cost <= cost)
648 break;
652 #endif
653 cost = MAX (cost, best_cost);
655 else
656 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
657 if ((unit & 1) != 0)
658 cost = actual_hazard (i, insn, clock, cost);
660 return cost;
663 /* Return the potential hazard cost of executing an instruction on the
664 units encoded by UNIT if the previous potential hazard cost was
665 COST. An insn with a large blockage time is chosen in preference
666 to one with a smaller time; an insn that uses a unit that is more
667 likely to be used is chosen in preference to one with a unit that
668 is less used. We are trying to minimize a subsequent actual
669 hazard. The scheduler using only DFA description should never use
670 the following function. */
672 HAIFA_INLINE static int
673 potential_hazard (unit, insn, cost)
674 int unit, cost;
675 rtx insn;
677 int i, ncost;
678 unsigned int minb, maxb;
680 if (unit >= 0)
682 minb = maxb = function_units[unit].max_blockage;
683 if (maxb > 1)
685 if (function_units[unit].blockage_range_function)
687 maxb = minb = blockage_range (unit, insn);
688 maxb = MAX_BLOCKAGE_COST (maxb);
689 minb = MIN_BLOCKAGE_COST (minb);
692 if (maxb > 1)
694 /* Make the number of instructions left dominate. Make the
695 minimum delay dominate the maximum delay. If all these
696 are the same, use the unit number to add an arbitrary
697 ordering. Other terms can be added. */
698 ncost = minb * 0x40 + maxb;
699 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
700 if (ncost > cost)
701 cost = ncost;
705 else
706 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
707 if ((unit & 1) != 0)
708 cost = potential_hazard (i, insn, cost);
710 return cost;
713 /* Compute cost of executing INSN given the dependence LINK on the insn USED.
714 This is the number of cycles between instruction issue and
715 instruction results. */
717 HAIFA_INLINE int
718 insn_cost (insn, link, used)
719 rtx insn, link, used;
721 int cost = INSN_COST (insn);
723 if (cost < 0)
725 /* A USE insn, or something else we don't need to
726 understand. We can't pass these directly to
727 result_ready_cost or insn_default_latency because it will
728 trigger a fatal error for unrecognizable insns. */
729 if (recog_memoized (insn) < 0)
731 INSN_COST (insn) = 0;
732 return 0;
734 else
736 if (targetm.sched.use_dfa_pipeline_interface
737 && (*targetm.sched.use_dfa_pipeline_interface) ())
738 cost = insn_default_latency (insn);
739 else
740 cost = result_ready_cost (insn);
742 if (cost < 0)
743 cost = 0;
745 INSN_COST (insn) = cost;
749 /* In this case estimate cost without caring how insn is used. */
750 if (link == 0 || used == 0)
751 return cost;
753 /* A USE insn should never require the value used to be computed.
754 This allows the computation of a function's result and parameter
755 values to overlap the return and call. */
756 if (recog_memoized (used) < 0)
757 cost = 0;
758 else
760 if (targetm.sched.use_dfa_pipeline_interface
761 && (*targetm.sched.use_dfa_pipeline_interface) ())
763 if (INSN_CODE (insn) >= 0)
765 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
766 cost = 0;
767 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
769 cost = (insn_default_latency (insn)
770 - insn_default_latency (used));
771 if (cost <= 0)
772 cost = 1;
774 else if (bypass_p (insn))
775 cost = insn_latency (insn, used);
779 if (targetm.sched.adjust_cost)
780 cost = (*targetm.sched.adjust_cost) (used, link, insn, cost);
782 if (cost < 0)
783 cost = 0;
786 return cost;
789 /* Compute the priority number for INSN. */
791 static int
792 priority (insn)
793 rtx insn;
795 rtx link;
797 if (! INSN_P (insn))
798 return 0;
800 if (! INSN_PRIORITY_KNOWN (insn))
802 int this_priority = 0;
804 if (INSN_DEPEND (insn) == 0)
805 this_priority = insn_cost (insn, 0, 0);
806 else
808 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
810 rtx next;
811 int next_priority;
813 if (RTX_INTEGRATED_P (link))
814 continue;
816 next = XEXP (link, 0);
818 /* Critical path is meaningful in block boundaries only. */
819 if (! (*current_sched_info->contributes_to_priority) (next, insn))
820 continue;
822 next_priority = insn_cost (insn, link, next) + priority (next);
823 if (next_priority > this_priority)
824 this_priority = next_priority;
827 INSN_PRIORITY (insn) = this_priority;
828 INSN_PRIORITY_KNOWN (insn) = 1;
831 return INSN_PRIORITY (insn);
834 /* Macros and functions for keeping the priority queue sorted, and
835 dealing with queueing and dequeueing of instructions. */
837 #define SCHED_SORT(READY, N_READY) \
838 do { if ((N_READY) == 2) \
839 swap_sort (READY, N_READY); \
840 else if ((N_READY) > 2) \
841 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
842 while (0)
844 /* Returns a positive value if x is preferred; returns a negative value if
845 y is preferred. Should never return 0, since that will make the sort
846 unstable. */
848 static int
849 rank_for_schedule (x, y)
850 const PTR x;
851 const PTR y;
853 rtx tmp = *(const rtx *) y;
854 rtx tmp2 = *(const rtx *) x;
855 rtx link;
856 int tmp_class, tmp2_class, depend_count1, depend_count2;
857 int val, priority_val, weight_val, info_val;
859 /* Prefer insn with higher priority. */
860 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
861 if (priority_val)
862 return priority_val;
864 /* Prefer an insn with smaller contribution to registers-pressure. */
865 if (!reload_completed &&
866 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
867 return (weight_val);
869 info_val = (*current_sched_info->rank) (tmp, tmp2);
870 if (info_val)
871 return info_val;
873 /* Compare insns based on their relation to the last-scheduled-insn. */
874 if (last_scheduled_insn)
876 /* Classify the instructions into three classes:
877 1) Data dependent on last schedule insn.
878 2) Anti/Output dependent on last scheduled insn.
879 3) Independent of last scheduled insn, or has latency of one.
880 Choose the insn from the highest numbered class if different. */
881 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
882 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
883 tmp_class = 3;
884 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
885 tmp_class = 1;
886 else
887 tmp_class = 2;
889 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
890 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
891 tmp2_class = 3;
892 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
893 tmp2_class = 1;
894 else
895 tmp2_class = 2;
897 if ((val = tmp2_class - tmp_class))
898 return val;
901 /* Prefer the insn which has more later insns that depend on it.
902 This gives the scheduler more freedom when scheduling later
903 instructions at the expense of added register pressure. */
904 depend_count1 = 0;
905 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
906 depend_count1++;
908 depend_count2 = 0;
909 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
910 depend_count2++;
912 val = depend_count2 - depend_count1;
913 if (val)
914 return val;
916 /* If insns are equally good, sort by INSN_LUID (original insn order),
917 so that we make the sort stable. This minimizes instruction movement,
918 thus minimizing sched's effect on debugging and cross-jumping. */
919 return INSN_LUID (tmp) - INSN_LUID (tmp2);
922 /* Resort the array A in which only element at index N may be out of order. */
924 HAIFA_INLINE static void
925 swap_sort (a, n)
926 rtx *a;
927 int n;
929 rtx insn = a[n - 1];
930 int i = n - 2;
932 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
934 a[i + 1] = a[i];
935 i -= 1;
937 a[i + 1] = insn;
940 /* Add INSN to the insn queue so that it can be executed at least
941 N_CYCLES after the currently executing insn. Preserve insns
942 chain for debugging purposes. */
944 HAIFA_INLINE static void
945 queue_insn (insn, n_cycles)
946 rtx insn;
947 int n_cycles;
949 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
950 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
951 insn_queue[next_q] = link;
952 q_size += 1;
954 if (sched_verbose >= 2)
956 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
957 (*current_sched_info->print_insn) (insn, 0));
959 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
963 /* Return a pointer to the bottom of the ready list, i.e. the insn
964 with the lowest priority. */
966 HAIFA_INLINE static rtx *
967 ready_lastpos (ready)
968 struct ready_list *ready;
970 if (ready->n_ready == 0)
971 abort ();
972 return ready->vec + ready->first - ready->n_ready + 1;
975 /* Add an element INSN to the ready list so that it ends up with the lowest
976 priority. */
978 HAIFA_INLINE void
979 ready_add (ready, insn)
980 struct ready_list *ready;
981 rtx insn;
983 if (ready->first == ready->n_ready)
985 memmove (ready->vec + ready->veclen - ready->n_ready,
986 ready_lastpos (ready),
987 ready->n_ready * sizeof (rtx));
988 ready->first = ready->veclen - 1;
990 ready->vec[ready->first - ready->n_ready] = insn;
991 ready->n_ready++;
994 /* Remove the element with the highest priority from the ready list and
995 return it. */
997 HAIFA_INLINE static rtx
998 ready_remove_first (ready)
999 struct ready_list *ready;
1001 rtx t;
1002 if (ready->n_ready == 0)
1003 abort ();
1004 t = ready->vec[ready->first--];
1005 ready->n_ready--;
1006 /* If the queue becomes empty, reset it. */
1007 if (ready->n_ready == 0)
1008 ready->first = ready->veclen - 1;
1009 return t;
1012 /* The following code implements multi-pass scheduling for the first
1013 cycle. In other words, we will try to choose ready insn which
1014 permits to start maximum number of insns on the same cycle. */
1016 /* Return a pointer to the element INDEX from the ready. INDEX for
1017 insn with the highest priority is 0, and the lowest priority has
1018 N_READY - 1. */
1020 HAIFA_INLINE static rtx
1021 ready_element (ready, index)
1022 struct ready_list *ready;
1023 int index;
1025 if (ready->n_ready == 0 || index >= ready->n_ready)
1026 abort ();
1027 return ready->vec[ready->first - index];
1030 /* Remove the element INDEX from the ready list and return it. INDEX
1031 for insn with the highest priority is 0, and the lowest priority
1032 has N_READY - 1. */
1034 HAIFA_INLINE static rtx
1035 ready_remove (ready, index)
1036 struct ready_list *ready;
1037 int index;
1039 rtx t;
1040 int i;
1042 if (index == 0)
1043 return ready_remove_first (ready);
1044 if (ready->n_ready == 0 || index >= ready->n_ready)
1045 abort ();
1046 t = ready->vec[ready->first - index];
1047 ready->n_ready--;
1048 for (i = index; i < ready->n_ready; i++)
1049 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1050 return t;
1054 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1055 macro. */
1057 HAIFA_INLINE static void
1058 ready_sort (ready)
1059 struct ready_list *ready;
1061 rtx *first = ready_lastpos (ready);
1062 SCHED_SORT (first, ready->n_ready);
1065 /* PREV is an insn that is ready to execute. Adjust its priority if that
1066 will help shorten or lengthen register lifetimes as appropriate. Also
1067 provide a hook for the target to tweek itself. */
1069 HAIFA_INLINE static void
1070 adjust_priority (prev)
1071 rtx prev;
1073 /* ??? There used to be code here to try and estimate how an insn
1074 affected register lifetimes, but it did it by looking at REG_DEAD
1075 notes, which we removed in schedule_region. Nor did it try to
1076 take into account register pressure or anything useful like that.
1078 Revisit when we have a machine model to work with and not before. */
1080 if (targetm.sched.adjust_priority)
1081 INSN_PRIORITY (prev) =
1082 (*targetm.sched.adjust_priority) (prev, INSN_PRIORITY (prev));
1085 /* Advance time on one cycle. */
1086 HAIFA_INLINE static void
1087 advance_one_cycle ()
1089 if (targetm.sched.use_dfa_pipeline_interface
1090 && (*targetm.sched.use_dfa_pipeline_interface) ())
1092 if (targetm.sched.dfa_pre_cycle_insn)
1093 state_transition (curr_state,
1094 (*targetm.sched.dfa_pre_cycle_insn) ());
1096 state_transition (curr_state, NULL);
1098 if (targetm.sched.dfa_post_cycle_insn)
1099 state_transition (curr_state,
1100 (*targetm.sched.dfa_post_cycle_insn) ());
1104 /* Clock at which the previous instruction was issued. */
1105 static int last_clock_var;
1107 /* INSN is the "currently executing insn". Launch each insn which was
1108 waiting on INSN. READY is the ready list which contains the insns
1109 that are ready to fire. CLOCK is the current cycle.
1112 static void
1113 schedule_insn (insn, ready, clock)
1114 rtx insn;
1115 struct ready_list *ready;
1116 int clock;
1118 rtx link;
1119 int unit = 0;
1121 if (!targetm.sched.use_dfa_pipeline_interface
1122 || !(*targetm.sched.use_dfa_pipeline_interface) ())
1123 unit = insn_unit (insn);
1125 if (targetm.sched.use_dfa_pipeline_interface
1126 && (*targetm.sched.use_dfa_pipeline_interface) ()
1127 && sched_verbose >= 1)
1129 char buf[2048];
1131 print_insn (buf, insn, 0);
1132 buf[40]=0;
1133 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock, buf);
1135 if (recog_memoized (insn) < 0)
1136 fprintf (sched_dump, "nothing");
1137 else
1138 print_reservation (sched_dump, insn);
1139 fputc ('\n', sched_dump);
1141 else if (sched_verbose >= 2)
1143 fprintf (sched_dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ",
1144 INSN_UID (insn));
1145 insn_print_units (insn);
1146 fputc ('\n', sched_dump);
1149 if (!targetm.sched.use_dfa_pipeline_interface
1150 || !(*targetm.sched.use_dfa_pipeline_interface) ())
1152 if (sched_verbose && unit == -1)
1153 visualize_no_unit (insn);
1156 if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
1157 schedule_unit (unit, insn, clock);
1159 if (INSN_DEPEND (insn) == 0)
1160 return;
1163 for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
1165 rtx next = XEXP (link, 0);
1166 int cost = insn_cost (insn, link, next);
1168 INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
1170 if ((INSN_DEP_COUNT (next) -= 1) == 0)
1172 int effective_cost = INSN_TICK (next) - clock;
1174 if (! (*current_sched_info->new_ready) (next))
1175 continue;
1177 if (sched_verbose >= 2)
1179 fprintf (sched_dump, ";;\t\tdependences resolved: insn %s ",
1180 (*current_sched_info->print_insn) (next, 0));
1182 if (effective_cost < 1)
1183 fprintf (sched_dump, "into ready\n");
1184 else
1185 fprintf (sched_dump, "into queue with cost=%d\n", effective_cost);
1188 /* Adjust the priority of NEXT and either put it on the ready
1189 list or queue it. */
1190 adjust_priority (next);
1191 if (effective_cost < 1)
1192 ready_add (ready, next);
1193 else
1194 queue_insn (next, effective_cost);
1198 /* Annotate the instruction with issue information -- TImode
1199 indicates that the instruction is expected not to be able
1200 to issue on the same cycle as the previous insn. A machine
1201 may use this information to decide how the instruction should
1202 be aligned. */
1203 if (reload_completed && issue_rate > 1
1204 && GET_CODE (PATTERN (insn)) != USE
1205 && GET_CODE (PATTERN (insn)) != CLOBBER)
1207 PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
1208 last_clock_var = clock;
1212 /* Functions for handling of notes. */
1214 /* Delete notes beginning with INSN and put them in the chain
1215 of notes ended by NOTE_LIST.
1216 Returns the insn following the notes. */
1218 static rtx
1219 unlink_other_notes (insn, tail)
1220 rtx insn, tail;
1222 rtx prev = PREV_INSN (insn);
1224 while (insn != tail && GET_CODE (insn) == NOTE)
1226 rtx next = NEXT_INSN (insn);
1227 /* Delete the note from its current position. */
1228 if (prev)
1229 NEXT_INSN (prev) = next;
1230 if (next)
1231 PREV_INSN (next) = prev;
1233 /* See sched_analyze to see how these are handled. */
1234 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
1235 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
1236 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1237 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
1239 /* Insert the note at the end of the notes list. */
1240 PREV_INSN (insn) = note_list;
1241 if (note_list)
1242 NEXT_INSN (note_list) = insn;
1243 note_list = insn;
1246 insn = next;
1248 return insn;
1251 /* Delete line notes beginning with INSN. Record line-number notes so
1252 they can be reused. Returns the insn following the notes. */
1254 static rtx
1255 unlink_line_notes (insn, tail)
1256 rtx insn, tail;
1258 rtx prev = PREV_INSN (insn);
1260 while (insn != tail && GET_CODE (insn) == NOTE)
1262 rtx next = NEXT_INSN (insn);
1264 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
1266 /* Delete the note from its current position. */
1267 if (prev)
1268 NEXT_INSN (prev) = next;
1269 if (next)
1270 PREV_INSN (next) = prev;
1272 /* Record line-number notes so they can be reused. */
1273 LINE_NOTE (insn) = insn;
1275 else
1276 prev = insn;
1278 insn = next;
1280 return insn;
1283 /* Return the head and tail pointers of BB. */
1285 void
1286 get_block_head_tail (b, headp, tailp)
1287 int b;
1288 rtx *headp;
1289 rtx *tailp;
1291 /* HEAD and TAIL delimit the basic block being scheduled. */
1292 rtx head = BLOCK_HEAD (b);
1293 rtx tail = BLOCK_END (b);
1295 /* Don't include any notes or labels at the beginning of the
1296 basic block, or notes at the ends of basic blocks. */
1297 while (head != tail)
1299 if (GET_CODE (head) == NOTE)
1300 head = NEXT_INSN (head);
1301 else if (GET_CODE (tail) == NOTE)
1302 tail = PREV_INSN (tail);
1303 else if (GET_CODE (head) == CODE_LABEL)
1304 head = NEXT_INSN (head);
1305 else
1306 break;
1309 *headp = head;
1310 *tailp = tail;
1313 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1316 no_real_insns_p (head, tail)
1317 rtx head, tail;
1319 while (head != NEXT_INSN (tail))
1321 if (GET_CODE (head) != NOTE && GET_CODE (head) != CODE_LABEL)
1322 return 0;
1323 head = NEXT_INSN (head);
1325 return 1;
1328 /* Delete line notes from one block. Save them so they can be later restored
1329 (in restore_line_notes). HEAD and TAIL are the boundaries of the
1330 block in which notes should be processed. */
1332 void
1333 rm_line_notes (head, tail)
1334 rtx head, tail;
1336 rtx next_tail;
1337 rtx insn;
1339 next_tail = NEXT_INSN (tail);
1340 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1342 rtx prev;
1344 /* Farm out notes, and maybe save them in NOTE_LIST.
1345 This is needed to keep the debugger from
1346 getting completely deranged. */
1347 if (GET_CODE (insn) == NOTE)
1349 prev = insn;
1350 insn = unlink_line_notes (insn, next_tail);
1352 if (prev == tail)
1353 abort ();
1354 if (prev == head)
1355 abort ();
1356 if (insn == next_tail)
1357 abort ();
1362 /* Save line number notes for each insn in block B. HEAD and TAIL are
1363 the boundaries of the block in which notes should be processed. */
1365 void
1366 save_line_notes (b, head, tail)
1367 int b;
1368 rtx head, tail;
1370 rtx next_tail;
1372 /* We must use the true line number for the first insn in the block
1373 that was computed and saved at the start of this pass. We can't
1374 use the current line number, because scheduling of the previous
1375 block may have changed the current line number. */
1377 rtx line = line_note_head[b];
1378 rtx insn;
1380 next_tail = NEXT_INSN (tail);
1382 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1383 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1384 line = insn;
1385 else
1386 LINE_NOTE (insn) = line;
1389 /* After a block was scheduled, insert line notes into the insns list.
1390 HEAD and TAIL are the boundaries of the block in which notes should
1391 be processed. */
1393 void
1394 restore_line_notes (head, tail)
1395 rtx head, tail;
1397 rtx line, note, prev, new;
1398 int added_notes = 0;
1399 rtx next_tail, insn;
1401 head = head;
1402 next_tail = NEXT_INSN (tail);
1404 /* Determine the current line-number. We want to know the current
1405 line number of the first insn of the block here, in case it is
1406 different from the true line number that was saved earlier. If
1407 different, then we need a line number note before the first insn
1408 of this block. If it happens to be the same, then we don't want to
1409 emit another line number note here. */
1410 for (line = head; line; line = PREV_INSN (line))
1411 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1412 break;
1414 /* Walk the insns keeping track of the current line-number and inserting
1415 the line-number notes as needed. */
1416 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1417 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1418 line = insn;
1419 /* This used to emit line number notes before every non-deleted note.
1420 However, this confuses a debugger, because line notes not separated
1421 by real instructions all end up at the same address. I can find no
1422 use for line number notes before other notes, so none are emitted. */
1423 else if (GET_CODE (insn) != NOTE
1424 && INSN_UID (insn) < old_max_uid
1425 && (note = LINE_NOTE (insn)) != 0
1426 && note != line
1427 && (line == 0
1428 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
1429 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
1431 line = note;
1432 prev = PREV_INSN (insn);
1433 if (LINE_NOTE (note))
1435 /* Re-use the original line-number note. */
1436 LINE_NOTE (note) = 0;
1437 PREV_INSN (note) = prev;
1438 NEXT_INSN (prev) = note;
1439 PREV_INSN (insn) = note;
1440 NEXT_INSN (note) = insn;
1442 else
1444 added_notes++;
1445 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
1446 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
1447 RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
1450 if (sched_verbose && added_notes)
1451 fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
1454 /* After scheduling the function, delete redundant line notes from the
1455 insns list. */
1457 void
1458 rm_redundant_line_notes ()
1460 rtx line = 0;
1461 rtx insn = get_insns ();
1462 int active_insn = 0;
1463 int notes = 0;
1465 /* Walk the insns deleting redundant line-number notes. Many of these
1466 are already present. The remainder tend to occur at basic
1467 block boundaries. */
1468 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1469 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1471 /* If there are no active insns following, INSN is redundant. */
1472 if (active_insn == 0)
1474 notes++;
1475 NOTE_SOURCE_FILE (insn) = 0;
1476 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1478 /* If the line number is unchanged, LINE is redundant. */
1479 else if (line
1480 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
1481 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
1483 notes++;
1484 NOTE_SOURCE_FILE (line) = 0;
1485 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
1486 line = insn;
1488 else
1489 line = insn;
1490 active_insn = 0;
1492 else if (!((GET_CODE (insn) == NOTE
1493 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
1494 || (GET_CODE (insn) == INSN
1495 && (GET_CODE (PATTERN (insn)) == USE
1496 || GET_CODE (PATTERN (insn)) == CLOBBER))))
1497 active_insn++;
1499 if (sched_verbose && notes)
1500 fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
1503 /* Delete notes between HEAD and TAIL and put them in the chain
1504 of notes ended by NOTE_LIST. */
1506 void
1507 rm_other_notes (head, tail)
1508 rtx head;
1509 rtx tail;
1511 rtx next_tail;
1512 rtx insn;
1514 note_list = 0;
1515 if (head == tail && (! INSN_P (head)))
1516 return;
1518 next_tail = NEXT_INSN (tail);
1519 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1521 rtx prev;
1523 /* Farm out notes, and maybe save them in NOTE_LIST.
1524 This is needed to keep the debugger from
1525 getting completely deranged. */
1526 if (GET_CODE (insn) == NOTE)
1528 prev = insn;
1530 insn = unlink_other_notes (insn, next_tail);
1532 if (prev == tail)
1533 abort ();
1534 if (prev == head)
1535 abort ();
1536 if (insn == next_tail)
1537 abort ();
1542 /* Functions for computation of registers live/usage info. */
1544 /* Calculate INSN_REG_WEIGHT for all insns of a block. */
1546 static void
1547 find_insn_reg_weight (b)
1548 int b;
1550 rtx insn, next_tail, head, tail;
1552 get_block_head_tail (b, &head, &tail);
1553 next_tail = NEXT_INSN (tail);
1555 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1557 int reg_weight = 0;
1558 rtx x;
1560 /* Handle register life information. */
1561 if (! INSN_P (insn))
1562 continue;
1564 /* Increment weight for each register born here. */
1565 x = PATTERN (insn);
1566 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1567 && register_operand (SET_DEST (x), VOIDmode))
1568 reg_weight++;
1569 else if (GET_CODE (x) == PARALLEL)
1571 int j;
1572 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1574 x = XVECEXP (PATTERN (insn), 0, j);
1575 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1576 && register_operand (SET_DEST (x), VOIDmode))
1577 reg_weight++;
1581 /* Decrement weight for each register that dies here. */
1582 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1584 if (REG_NOTE_KIND (x) == REG_DEAD
1585 || REG_NOTE_KIND (x) == REG_UNUSED)
1586 reg_weight--;
1589 INSN_REG_WEIGHT (insn) = reg_weight;
1593 /* Scheduling clock, modified in schedule_block() and queue_to_ready (). */
1594 static int clock_var;
1596 /* Move insns that became ready to fire from queue to ready list. */
1598 static void
1599 queue_to_ready (ready)
1600 struct ready_list *ready;
1602 rtx insn;
1603 rtx link;
1605 q_ptr = NEXT_Q (q_ptr);
1607 /* Add all pending insns that can be scheduled without stalls to the
1608 ready list. */
1609 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1611 insn = XEXP (link, 0);
1612 q_size -= 1;
1614 if (sched_verbose >= 2)
1615 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1616 (*current_sched_info->print_insn) (insn, 0));
1618 ready_add (ready, insn);
1619 if (sched_verbose >= 2)
1620 fprintf (sched_dump, "moving to ready without stalls\n");
1622 insn_queue[q_ptr] = 0;
1624 /* If there are no ready insns, stall until one is ready and add all
1625 of the pending insns at that point to the ready list. */
1626 if (ready->n_ready == 0)
1628 int stalls;
1630 for (stalls = 1; stalls <= MAX_INSN_QUEUE_INDEX; stalls++)
1632 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1634 for (; link; link = XEXP (link, 1))
1636 insn = XEXP (link, 0);
1637 q_size -= 1;
1639 if (sched_verbose >= 2)
1640 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1641 (*current_sched_info->print_insn) (insn, 0));
1643 ready_add (ready, insn);
1644 if (sched_verbose >= 2)
1645 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1647 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
1649 advance_one_cycle ();
1651 break;
1654 advance_one_cycle ();
1657 if ((!targetm.sched.use_dfa_pipeline_interface
1658 || !(*targetm.sched.use_dfa_pipeline_interface) ())
1659 && sched_verbose && stalls)
1660 visualize_stall_cycles (stalls);
1662 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1663 clock_var += stalls;
1667 /* Print the ready list for debugging purposes. Callable from debugger. */
1669 static void
1670 debug_ready_list (ready)
1671 struct ready_list *ready;
1673 rtx *p;
1674 int i;
1676 if (ready->n_ready == 0)
1678 fprintf (sched_dump, "\n");
1679 return;
1682 p = ready_lastpos (ready);
1683 for (i = 0; i < ready->n_ready; i++)
1684 fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
1685 fprintf (sched_dump, "\n");
1688 /* move_insn1: Remove INSN from insn chain, and link it after LAST insn. */
1690 static rtx
1691 move_insn1 (insn, last)
1692 rtx insn, last;
1694 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1695 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1697 NEXT_INSN (insn) = NEXT_INSN (last);
1698 PREV_INSN (NEXT_INSN (last)) = insn;
1700 NEXT_INSN (last) = insn;
1701 PREV_INSN (insn) = last;
1703 return insn;
1706 /* Search INSN for REG_SAVE_NOTE note pairs for
1707 NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
1708 NOTEs. The REG_SAVE_NOTE note following first one is contains the
1709 saved value for NOTE_BLOCK_NUMBER which is useful for
1710 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
1711 output by the instruction scheduler. Return the new value of LAST. */
1713 static rtx
1714 reemit_notes (insn, last)
1715 rtx insn;
1716 rtx last;
1718 rtx note, retval;
1720 retval = last;
1721 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1723 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1725 enum insn_note note_type = INTVAL (XEXP (note, 0));
1727 last = emit_note_before (note_type, last);
1728 remove_note (insn, note);
1729 note = XEXP (note, 1);
1730 if (note_type == NOTE_INSN_EH_REGION_BEG
1731 || note_type == NOTE_INSN_EH_REGION_END)
1732 NOTE_EH_HANDLER (last) = INTVAL (XEXP (note, 0));
1733 remove_note (insn, note);
1736 return retval;
1739 /* Move INSN, and all insns which should be issued before it,
1740 due to SCHED_GROUP_P flag. Reemit notes if needed.
1742 Return the last insn emitted by the scheduler, which is the
1743 return value from the first call to reemit_notes. */
1745 static rtx
1746 move_insn (insn, last)
1747 rtx insn, last;
1749 rtx retval = NULL;
1751 /* If INSN has SCHED_GROUP_P set, then issue it and any other
1752 insns with SCHED_GROUP_P set first. */
1753 while (SCHED_GROUP_P (insn))
1755 rtx prev = PREV_INSN (insn);
1757 /* Move a SCHED_GROUP_P insn. */
1758 move_insn1 (insn, last);
1759 /* If this is the first call to reemit_notes, then record
1760 its return value. */
1761 if (retval == NULL_RTX)
1762 retval = reemit_notes (insn, insn);
1763 else
1764 reemit_notes (insn, insn);
1765 /* Consume SCHED_GROUP_P flag. */
1766 SCHED_GROUP_P (insn) = 0;
1767 insn = prev;
1770 /* Now move the first non SCHED_GROUP_P insn. */
1771 move_insn1 (insn, last);
1773 /* If this is the first call to reemit_notes, then record
1774 its return value. */
1775 if (retval == NULL_RTX)
1776 retval = reemit_notes (insn, insn);
1777 else
1778 reemit_notes (insn, insn);
1780 return retval;
1783 /* The following function returns maximal (or close to maximal) number
1784 of insns which can be issued on the same cycle and one of which
1785 insns is insns with the best rank (the last insn in READY). To
1786 make this function tries different samples of ready insns. READY
1787 is current queue `ready'. Global array READY_TRY reflects what
1788 insns are already issued in this try. STATE is current processor
1789 state. If the function returns nonzero, INDEX will contain index
1790 of the best insn in READY. The following function is used only for
1791 first cycle multipass scheduling. */
1793 static int
1794 max_issue (ready, state, index)
1795 struct ready_list *ready;
1796 state_t state;
1797 int *index;
1799 int i, best, n, temp_index, delay;
1800 state_t temp_state;
1801 rtx insn;
1802 int max_lookahead = (*targetm.sched.first_cycle_multipass_dfa_lookahead) ();
1804 if (state_dead_lock_p (state))
1805 return 0;
1807 temp_state = alloca (dfa_state_size);
1808 best = 0;
1810 for (i = 0; i < ready->n_ready; i++)
1811 if (!ready_try [i])
1813 insn = ready_element (ready, i);
1815 if (INSN_CODE (insn) < 0)
1816 continue;
1818 memcpy (temp_state, state, dfa_state_size);
1820 delay = state_transition (temp_state, insn);
1822 if (delay == 0)
1824 if (!targetm.sched.dfa_bubble)
1825 continue;
1826 else
1828 int j;
1829 rtx bubble;
1831 for (j = 0;
1832 (bubble = (*targetm.sched.dfa_bubble) (j)) != NULL_RTX;
1833 j++)
1834 if (state_transition (temp_state, bubble) < 0
1835 && state_transition (temp_state, insn) < 0)
1836 break;
1838 if (bubble == NULL_RTX)
1839 continue;
1842 else if (delay > 0)
1843 continue;
1845 --max_lookahead;
1847 if (max_lookahead < 0)
1848 break;
1850 ready_try [i] = 1;
1852 n = max_issue (ready, temp_state, &temp_index);
1853 if (n > 0 || ready_try[0])
1854 n += 1;
1856 if (best < n)
1858 best = n;
1859 *index = i;
1861 ready_try [i] = 0;
1864 return best;
1867 /* The following function chooses insn from READY and modifies
1868 *N_READY and READY. The following function is used only for first
1869 cycle multipass scheduling. */
1871 static rtx
1872 choose_ready (ready)
1873 struct ready_list *ready;
1875 if (!targetm.sched.first_cycle_multipass_dfa_lookahead
1876 || (*targetm.sched.first_cycle_multipass_dfa_lookahead) () <= 0)
1877 return ready_remove_first (ready);
1878 else
1880 /* Try to choose the better insn. */
1881 int index;
1883 if (max_issue (ready, curr_state, &index) == 0)
1884 return ready_remove_first (ready);
1885 else
1886 return ready_remove (ready, index);
1890 /* Called from backends from targetm.sched.reorder to emit stuff into
1891 the instruction stream. */
1894 sched_emit_insn (pat)
1895 rtx pat;
1897 rtx insn = emit_insn_after (pat, last_scheduled_insn);
1898 last_scheduled_insn = insn;
1899 return insn;
1902 /* Use forward list scheduling to rearrange insns of block B in region RGN,
1903 possibly bringing insns from subsequent blocks in the same region. */
1905 void
1906 schedule_block (b, rgn_n_insns)
1907 int b;
1908 int rgn_n_insns;
1910 struct ready_list ready;
1911 int first_cycle_insn_p;
1912 int can_issue_more;
1913 state_t temp_state = NULL; /* It is used for multipass scheduling. */
1915 /* Head/tail info for this block. */
1916 rtx prev_head = current_sched_info->prev_head;
1917 rtx next_tail = current_sched_info->next_tail;
1918 rtx head = NEXT_INSN (prev_head);
1919 rtx tail = PREV_INSN (next_tail);
1921 /* We used to have code to avoid getting parameters moved from hard
1922 argument registers into pseudos.
1924 However, it was removed when it proved to be of marginal benefit
1925 and caused problems because schedule_block and compute_forward_dependences
1926 had different notions of what the "head" insn was. */
1928 if (head == tail && (! INSN_P (head)))
1929 abort ();
1931 /* Debug info. */
1932 if (sched_verbose)
1934 fprintf (sched_dump, ";; ======================================================\n");
1935 fprintf (sched_dump,
1936 ";; -- basic block %d from %d to %d -- %s reload\n",
1937 b, INSN_UID (head), INSN_UID (tail),
1938 (reload_completed ? "after" : "before"));
1939 fprintf (sched_dump, ";; ======================================================\n");
1940 fprintf (sched_dump, "\n");
1942 visualize_alloc ();
1943 init_block_visualization ();
1946 if (targetm.sched.use_dfa_pipeline_interface
1947 && (*targetm.sched.use_dfa_pipeline_interface) ())
1948 state_reset (curr_state);
1949 else
1950 clear_units ();
1952 /* Allocate the ready list. */
1953 ready.veclen = rgn_n_insns + 1 + issue_rate;
1954 ready.first = ready.veclen - 1;
1955 ready.vec = (rtx *) xmalloc (ready.veclen * sizeof (rtx));
1956 ready.n_ready = 0;
1958 if (targetm.sched.use_dfa_pipeline_interface
1959 && (*targetm.sched.use_dfa_pipeline_interface) ())
1961 /* It is used for first cycle multipass scheduling. */
1962 temp_state = alloca (dfa_state_size);
1963 ready_try = (char *) xmalloc ((rgn_n_insns + 1) * sizeof (char));
1964 memset (ready_try, 0, (rgn_n_insns + 1) * sizeof (char));
1967 (*current_sched_info->init_ready_list) (&ready);
1969 if (targetm.sched.md_init)
1970 (*targetm.sched.md_init) (sched_dump, sched_verbose, ready.veclen);
1972 /* We start inserting insns after PREV_HEAD. */
1973 last_scheduled_insn = prev_head;
1975 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
1976 queue. */
1977 q_ptr = 0;
1978 q_size = 0;
1980 if (!targetm.sched.use_dfa_pipeline_interface
1981 || !(*targetm.sched.use_dfa_pipeline_interface) ())
1982 max_insn_queue_index_macro_value = INSN_QUEUE_SIZE - 1;
1983 else
1984 max_insn_queue_index_macro_value = max_insn_queue_index;
1986 insn_queue = (rtx *) alloca ((MAX_INSN_QUEUE_INDEX + 1) * sizeof (rtx));
1987 memset ((char *) insn_queue, 0, (MAX_INSN_QUEUE_INDEX + 1) * sizeof (rtx));
1988 last_clock_var = -1;
1990 /* Start just before the beginning of time. */
1991 clock_var = -1;
1993 /* Loop until all the insns in BB are scheduled. */
1994 while ((*current_sched_info->schedule_more_p) ())
1996 clock_var++;
1998 advance_one_cycle ();
2000 /* Add to the ready list all pending insns that can be issued now.
2001 If there are no ready insns, increment clock until one
2002 is ready and add all pending insns at that point to the ready
2003 list. */
2004 queue_to_ready (&ready);
2006 if (ready.n_ready == 0)
2007 abort ();
2009 if (sched_verbose >= 2)
2011 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
2012 debug_ready_list (&ready);
2015 /* Sort the ready list based on priority. */
2016 ready_sort (&ready);
2018 /* Allow the target to reorder the list, typically for
2019 better instruction bundling. */
2020 if (targetm.sched.reorder)
2021 can_issue_more =
2022 (*targetm.sched.reorder) (sched_dump, sched_verbose,
2023 ready_lastpos (&ready),
2024 &ready.n_ready, clock_var);
2025 else
2026 can_issue_more = issue_rate;
2028 first_cycle_insn_p = 1;
2029 for (;;)
2031 rtx insn;
2032 int cost;
2034 if (sched_verbose >= 2)
2036 fprintf (sched_dump, ";;\tReady list (t =%3d): ",
2037 clock_var);
2038 debug_ready_list (&ready);
2041 if (!targetm.sched.use_dfa_pipeline_interface
2042 || !(*targetm.sched.use_dfa_pipeline_interface) ())
2044 if (ready.n_ready == 0 || !can_issue_more
2045 || !(*current_sched_info->schedule_more_p) ())
2046 break;
2047 insn = choose_ready (&ready);
2048 cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
2050 else
2052 if (ready.n_ready == 0 || !can_issue_more
2053 || state_dead_lock_p (curr_state)
2054 || !(*current_sched_info->schedule_more_p) ())
2055 break;
2057 /* Select and remove the insn from the ready list. */
2058 insn = choose_ready (&ready);
2060 memcpy (temp_state, curr_state, dfa_state_size);
2061 if (recog_memoized (insn) < 0)
2063 if (!first_cycle_insn_p
2064 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
2065 || asm_noperands (PATTERN (insn)) >= 0))
2066 /* This is asm insn which is tryed to be issued on the
2067 cycle not first. Issue it on the next cycle. */
2068 cost = 1;
2069 else
2070 /* A USE insn, or something else we don't need to
2071 understand. We can't pass these directly to
2072 state_transition because it will trigger a
2073 fatal error for unrecognizable insns. */
2074 cost = 0;
2076 else
2078 cost = state_transition (temp_state, insn);
2080 if (targetm.sched.first_cycle_multipass_dfa_lookahead
2081 && targetm.sched.dfa_bubble)
2083 if (cost == 0)
2085 int j;
2086 rtx bubble;
2088 for (j = 0;
2089 (bubble = (*targetm.sched.dfa_bubble) (j))
2090 != NULL_RTX;
2091 j++)
2093 memcpy (temp_state, curr_state, dfa_state_size);
2095 if (state_transition (temp_state, bubble) < 0
2096 && state_transition (temp_state, insn) < 0)
2097 break;
2100 if (bubble != NULL_RTX)
2102 if (insert_schedule_bubbles_p)
2104 rtx copy;
2106 copy = copy_rtx (PATTERN (bubble));
2107 emit_insn_after (copy, last_scheduled_insn);
2108 last_scheduled_insn
2109 = NEXT_INSN (last_scheduled_insn);
2110 INSN_CODE (last_scheduled_insn)
2111 = INSN_CODE (bubble);
2113 /* Annotate the same for the first insns
2114 scheduling by using mode. */
2115 PUT_MODE (last_scheduled_insn,
2116 (clock_var > last_clock_var
2117 ? clock_var - last_clock_var
2118 : VOIDmode));
2119 last_clock_var = clock_var;
2121 if (sched_verbose >= 2)
2123 fprintf (sched_dump,
2124 ";;\t\t--> scheduling bubble insn <<<%d>>>:reservation ",
2125 INSN_UID (last_scheduled_insn));
2127 if (recog_memoized (last_scheduled_insn)
2128 < 0)
2129 fprintf (sched_dump, "nothing");
2130 else
2131 print_reservation
2132 (sched_dump, last_scheduled_insn);
2134 fprintf (sched_dump, "\n");
2137 cost = -1;
2142 if (cost < 0)
2143 cost = 0;
2144 else if (cost == 0)
2145 cost = 1;
2150 if (cost >= 1)
2152 queue_insn (insn, cost);
2153 continue;
2156 if (! (*current_sched_info->can_schedule_ready_p) (insn))
2157 goto next;
2159 last_scheduled_insn = move_insn (insn, last_scheduled_insn);
2161 if (targetm.sched.use_dfa_pipeline_interface
2162 && (*targetm.sched.use_dfa_pipeline_interface) ())
2163 memcpy (curr_state, temp_state, dfa_state_size);
2165 if (targetm.sched.variable_issue)
2166 can_issue_more =
2167 (*targetm.sched.variable_issue) (sched_dump, sched_verbose,
2168 insn, can_issue_more);
2169 /* A naked CLOBBER or USE generates no instruction, so do
2170 not count them against the issue rate. */
2171 else if (GET_CODE (PATTERN (insn)) != USE
2172 && GET_CODE (PATTERN (insn)) != CLOBBER)
2173 can_issue_more--;
2175 schedule_insn (insn, &ready, clock_var);
2177 next:
2178 first_cycle_insn_p = 0;
2180 if (targetm.sched.reorder2)
2182 /* Sort the ready list based on priority. */
2183 if (ready.n_ready > 0)
2184 ready_sort (&ready);
2185 can_issue_more =
2186 (*targetm.sched.reorder2) (sched_dump,sched_verbose,
2187 ready.n_ready
2188 ? ready_lastpos (&ready) : NULL,
2189 &ready.n_ready, clock_var);
2193 if ((!targetm.sched.use_dfa_pipeline_interface
2194 || !(*targetm.sched.use_dfa_pipeline_interface) ())
2195 && sched_verbose)
2196 /* Debug info. */
2197 visualize_scheduled_insns (clock_var);
2200 if (targetm.sched.md_finish)
2201 (*targetm.sched.md_finish) (sched_dump, sched_verbose);
2203 /* Debug info. */
2204 if (sched_verbose)
2206 fprintf (sched_dump, ";;\tReady list (final): ");
2207 debug_ready_list (&ready);
2208 if (!targetm.sched.use_dfa_pipeline_interface
2209 || !(*targetm.sched.use_dfa_pipeline_interface) ())
2210 print_block_visualization ("");
2213 /* Sanity check -- queue must be empty now. Meaningless if region has
2214 multiple bbs. */
2215 if (current_sched_info->queue_must_finish_empty && q_size != 0)
2216 abort ();
2218 /* Update head/tail boundaries. */
2219 head = NEXT_INSN (prev_head);
2220 tail = last_scheduled_insn;
2222 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
2223 previously found among the insns. Insert them at the beginning
2224 of the insns. */
2225 if (note_list != 0)
2227 rtx note_head = note_list;
2229 while (PREV_INSN (note_head))
2231 note_head = PREV_INSN (note_head);
2234 PREV_INSN (note_head) = PREV_INSN (head);
2235 NEXT_INSN (PREV_INSN (head)) = note_head;
2236 PREV_INSN (head) = note_list;
2237 NEXT_INSN (note_list) = head;
2238 head = note_head;
2241 /* Debugging. */
2242 if (sched_verbose)
2244 fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
2245 clock_var, INSN_UID (head));
2246 fprintf (sched_dump, ";; new tail = %d\n\n",
2247 INSN_UID (tail));
2248 visualize_free ();
2251 current_sched_info->head = head;
2252 current_sched_info->tail = tail;
2254 free (ready.vec);
2256 if (targetm.sched.use_dfa_pipeline_interface
2257 && (*targetm.sched.use_dfa_pipeline_interface) ())
2258 free (ready_try);
2261 /* Set_priorities: compute priority of each insn in the block. */
2264 set_priorities (head, tail)
2265 rtx head, tail;
2267 rtx insn;
2268 int n_insn;
2270 rtx prev_head;
2272 prev_head = PREV_INSN (head);
2274 if (head == tail && (! INSN_P (head)))
2275 return 0;
2277 n_insn = 0;
2278 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
2280 if (GET_CODE (insn) == NOTE)
2281 continue;
2283 if (!(SCHED_GROUP_P (insn)))
2284 n_insn++;
2285 (void) priority (insn);
2288 return n_insn;
2291 /* Initialize some global state for the scheduler. DUMP_FILE is to be used
2292 for debugging output. */
2294 void
2295 sched_init (dump_file)
2296 FILE *dump_file;
2298 int luid;
2299 basic_block b;
2300 rtx insn;
2301 int i;
2303 /* Disable speculative loads in their presence if cc0 defined. */
2304 #ifdef HAVE_cc0
2305 flag_schedule_speculative_load = 0;
2306 #endif
2308 /* Set dump and sched_verbose for the desired debugging output. If no
2309 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
2310 For -fsched-verbose=N, N>=10, print everything to stderr. */
2311 sched_verbose = sched_verbose_param;
2312 if (sched_verbose_param == 0 && dump_file)
2313 sched_verbose = 1;
2314 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
2315 ? stderr : dump_file);
2317 /* Initialize issue_rate. */
2318 if (targetm.sched.issue_rate)
2319 issue_rate = (*targetm.sched.issue_rate) ();
2320 else
2321 issue_rate = 1;
2323 /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
2324 pseudos which do not cross calls. */
2325 old_max_uid = get_max_uid () + 1;
2327 h_i_d = (struct haifa_insn_data *) xcalloc (old_max_uid, sizeof (*h_i_d));
2329 for (i = 0; i < old_max_uid; i++)
2330 h_i_d [i].cost = -1;
2332 if (targetm.sched.use_dfa_pipeline_interface
2333 && (*targetm.sched.use_dfa_pipeline_interface) ())
2335 if (targetm.sched.init_dfa_pre_cycle_insn)
2336 (*targetm.sched.init_dfa_pre_cycle_insn) ();
2338 if (targetm.sched.init_dfa_post_cycle_insn)
2339 (*targetm.sched.init_dfa_post_cycle_insn) ();
2341 if (targetm.sched.first_cycle_multipass_dfa_lookahead
2342 && targetm.sched.init_dfa_bubbles)
2343 (*targetm.sched.init_dfa_bubbles) ();
2345 dfa_start ();
2346 dfa_state_size = state_size ();
2347 curr_state = xmalloc (dfa_state_size);
2350 h_i_d[0].luid = 0;
2351 luid = 1;
2352 FOR_EACH_BB (b)
2353 for (insn = b->head;; insn = NEXT_INSN (insn))
2355 INSN_LUID (insn) = luid;
2357 /* Increment the next luid, unless this is a note. We don't
2358 really need separate IDs for notes and we don't want to
2359 schedule differently depending on whether or not there are
2360 line-number notes, i.e., depending on whether or not we're
2361 generating debugging information. */
2362 if (GET_CODE (insn) != NOTE)
2363 ++luid;
2365 if (insn == b->end)
2366 break;
2369 init_dependency_caches (luid);
2371 init_alias_analysis ();
2373 if (write_symbols != NO_DEBUG)
2375 rtx line;
2377 line_note_head = (rtx *) xcalloc (last_basic_block, sizeof (rtx));
2379 /* Save-line-note-head:
2380 Determine the line-number at the start of each basic block.
2381 This must be computed and saved now, because after a basic block's
2382 predecessor has been scheduled, it is impossible to accurately
2383 determine the correct line number for the first insn of the block. */
2385 FOR_EACH_BB (b)
2387 for (line = b->head; line; line = PREV_INSN (line))
2388 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
2390 line_note_head[b->index] = line;
2391 break;
2393 /* Do a forward search as well, since we won't get to see the first
2394 notes in a basic block. */
2395 for (line = b->head; line; line = NEXT_INSN (line))
2397 if (INSN_P (line))
2398 break;
2399 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
2400 line_note_head[b->index] = line;
2405 if ((!targetm.sched.use_dfa_pipeline_interface
2406 || !(*targetm.sched.use_dfa_pipeline_interface) ())
2407 && sched_verbose)
2408 /* Find units used in this function, for visualization. */
2409 init_target_units ();
2411 /* ??? Add a NOTE after the last insn of the last basic block. It is not
2412 known why this is done. */
2414 insn = EXIT_BLOCK_PTR->prev_bb->end;
2415 if (NEXT_INSN (insn) == 0
2416 || (GET_CODE (insn) != NOTE
2417 && GET_CODE (insn) != CODE_LABEL
2418 /* Don't emit a NOTE if it would end up before a BARRIER. */
2419 && GET_CODE (NEXT_INSN (insn)) != BARRIER))
2421 emit_note_after (NOTE_INSN_DELETED, EXIT_BLOCK_PTR->prev_bb->end);
2422 /* Make insn to appear outside BB. */
2423 EXIT_BLOCK_PTR->prev_bb->end = PREV_INSN (EXIT_BLOCK_PTR->prev_bb->end);
2426 /* Compute INSN_REG_WEIGHT for all blocks. We must do this before
2427 removing death notes. */
2428 FOR_EACH_BB_REVERSE (b)
2429 find_insn_reg_weight (b->index);
2432 /* Free global data used during insn scheduling. */
2434 void
2435 sched_finish ()
2437 free (h_i_d);
2439 if (targetm.sched.use_dfa_pipeline_interface
2440 && (*targetm.sched.use_dfa_pipeline_interface) ())
2442 free (curr_state);
2443 dfa_finish ();
2445 free_dependency_caches ();
2446 end_alias_analysis ();
2447 if (write_symbols != NO_DEBUG)
2448 free (line_note_head);
2450 #endif /* INSN_SCHEDULING */