1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
55 #include "basic-block.h"
58 #include "langhooks.h"
60 /* Commonly used modes. */
62 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
71 static int label_num
= 1;
73 /* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
77 static int last_label_num
;
79 /* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
82 static int base_label_num
;
84 /* Nonzero means do not generate NOTEs for source line numbers. */
86 static int no_line_numbers
;
88 /* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these are unique; no other rtx-object will be equal to any
93 rtx global_rtl
[GR_MAX
];
95 /* Commonly used RTL for hard registers. These objects are not necessarily
96 unique, so we allocate them separately from global_rtl. They are
97 initialized once per compilation unit, then copied into regno_reg_rtx
98 at the beginning of each function. */
99 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
101 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
102 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
103 record a copy of const[012]_rtx. */
105 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
109 REAL_VALUE_TYPE dconst0
;
110 REAL_VALUE_TYPE dconst1
;
111 REAL_VALUE_TYPE dconst2
;
112 REAL_VALUE_TYPE dconstm1
;
114 /* All references to the following fixed hard registers go through
115 these unique rtl objects. On machines where the frame-pointer and
116 arg-pointer are the same register, they use the same unique object.
118 After register allocation, other rtl objects which used to be pseudo-regs
119 may be clobbered to refer to the frame-pointer register.
120 But references that were originally to the frame-pointer can be
121 distinguished from the others because they contain frame_pointer_rtx.
123 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
124 tricky: until register elimination has taken place hard_frame_pointer_rtx
125 should be used if it is being set, and frame_pointer_rtx otherwise. After
126 register elimination hard_frame_pointer_rtx should always be used.
127 On machines where the two registers are same (most) then these are the
130 In an inline procedure, the stack and frame pointer rtxs may not be
131 used for anything else. */
132 rtx struct_value_rtx
; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
133 rtx struct_value_incoming_rtx
; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
134 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
135 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
136 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
138 /* This is used to implement __builtin_return_address for some machines.
139 See for instance the MIPS port. */
140 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
142 /* We make one copy of (const_int C) where C is in
143 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144 to save space during the compilation and simplify comparisons of
147 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
149 /* A hash table storing CONST_INTs whose absolute value is greater
150 than MAX_SAVED_CONST_INT. */
152 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
153 htab_t const_int_htab
;
155 /* A hash table storing memory attribute structures. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
157 htab_t mem_attrs_htab
;
159 /* A hash table storing all CONST_DOUBLEs. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
161 htab_t const_double_htab
;
163 #define first_insn (cfun->emit->x_first_insn)
164 #define last_insn (cfun->emit->x_last_insn)
165 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
166 #define last_linenum (cfun->emit->x_last_linenum)
167 #define last_filename (cfun->emit->x_last_filename)
168 #define first_label_num (cfun->emit->x_first_label_num)
170 static rtx make_jump_insn_raw
PARAMS ((rtx
));
171 static rtx make_call_insn_raw
PARAMS ((rtx
));
172 static rtx find_line_note
PARAMS ((rtx
));
173 static rtx change_address_1
PARAMS ((rtx
, enum machine_mode
, rtx
,
175 static void unshare_all_rtl_1
PARAMS ((rtx
));
176 static void unshare_all_decls
PARAMS ((tree
));
177 static void reset_used_decls
PARAMS ((tree
));
178 static void mark_label_nuses
PARAMS ((rtx
));
179 static hashval_t const_int_htab_hash
PARAMS ((const void *));
180 static int const_int_htab_eq
PARAMS ((const void *,
182 static hashval_t const_double_htab_hash
PARAMS ((const void *));
183 static int const_double_htab_eq
PARAMS ((const void *,
185 static rtx lookup_const_double
PARAMS ((rtx
));
186 static hashval_t mem_attrs_htab_hash
PARAMS ((const void *));
187 static int mem_attrs_htab_eq
PARAMS ((const void *,
189 static mem_attrs
*get_mem_attrs
PARAMS ((HOST_WIDE_INT
, tree
, rtx
,
192 static tree component_ref_for_mem_expr
PARAMS ((tree
));
193 static rtx gen_const_vector_0
PARAMS ((enum machine_mode
));
195 /* Probability of the conditional branch currently proceeded by try_split.
196 Set to -1 otherwise. */
197 int split_branch_probability
= -1;
199 /* Returns a hash code for X (which is a really a CONST_INT). */
202 const_int_htab_hash (x
)
205 return (hashval_t
) INTVAL ((struct rtx_def
*) x
);
208 /* Returns non-zero if the value represented by X (which is really a
209 CONST_INT) is the same as that given by Y (which is really a
213 const_int_htab_eq (x
, y
)
217 return (INTVAL ((rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
220 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
222 const_double_htab_hash (x
)
229 for (i
= 0; i
< sizeof(CONST_DOUBLE_FORMAT
)-1; i
++)
230 h
^= XWINT (value
, i
);
234 /* Returns non-zero if the value represented by X (really a ...)
235 is the same as that represented by Y (really a ...) */
237 const_double_htab_eq (x
, y
)
241 rtx a
= (rtx
)x
, b
= (rtx
)y
;
244 if (GET_MODE (a
) != GET_MODE (b
))
246 for (i
= 0; i
< sizeof(CONST_DOUBLE_FORMAT
)-1; i
++)
247 if (XWINT (a
, i
) != XWINT (b
, i
))
253 /* Returns a hash code for X (which is a really a mem_attrs *). */
256 mem_attrs_htab_hash (x
)
259 mem_attrs
*p
= (mem_attrs
*) x
;
261 return (p
->alias
^ (p
->align
* 1000)
262 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
263 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
267 /* Returns non-zero if the value represented by X (which is really a
268 mem_attrs *) is the same as that given by Y (which is also really a
272 mem_attrs_htab_eq (x
, y
)
276 mem_attrs
*p
= (mem_attrs
*) x
;
277 mem_attrs
*q
= (mem_attrs
*) y
;
279 return (p
->alias
== q
->alias
&& p
->expr
== q
->expr
&& p
->offset
== q
->offset
280 && p
->size
== q
->size
&& p
->align
== q
->align
);
283 /* Allocate a new mem_attrs structure and insert it into the hash table if
284 one identical to it is not already in the table. We are doing this for
288 get_mem_attrs (alias
, expr
, offset
, size
, align
, mode
)
294 enum machine_mode mode
;
299 /* If everything is the default, we can just return zero. */
300 if (alias
== 0 && expr
== 0 && offset
== 0
302 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
303 && (align
== BITS_PER_UNIT
305 && mode
!= BLKmode
&& align
== GET_MODE_ALIGNMENT (mode
))))
310 attrs
.offset
= offset
;
314 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
317 *slot
= ggc_alloc (sizeof (mem_attrs
));
318 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
324 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
325 don't attempt to share with the various global pieces of rtl (such as
326 frame_pointer_rtx). */
329 gen_raw_REG (mode
, regno
)
330 enum machine_mode mode
;
333 rtx x
= gen_rtx_raw_REG (mode
, regno
);
334 ORIGINAL_REGNO (x
) = regno
;
338 /* There are some RTL codes that require special attention; the generation
339 functions do the raw handling. If you add to this list, modify
340 special_rtx in gengenrtl.c as well. */
343 gen_rtx_CONST_INT (mode
, arg
)
344 enum machine_mode mode ATTRIBUTE_UNUSED
;
349 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
350 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
352 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
353 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
354 return const_true_rtx
;
357 /* Look up the CONST_INT in the hash table. */
358 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
359 (hashval_t
) arg
, INSERT
);
361 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
367 gen_int_mode (c
, mode
)
369 enum machine_mode mode
;
371 return GEN_INT (trunc_int_for_mode (c
, mode
));
374 /* CONST_DOUBLEs might be created from pairs of integers, or from
375 REAL_VALUE_TYPEs. Also, their length is known only at run time,
376 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
378 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
379 hash table. If so, return its counterpart; otherwise add it
380 to the hash table and return it. */
382 lookup_const_double (real
)
385 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
392 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
393 VALUE in mode MODE. */
395 const_double_from_real_value (value
, mode
)
396 REAL_VALUE_TYPE value
;
397 enum machine_mode mode
;
399 rtx real
= rtx_alloc (CONST_DOUBLE
);
400 PUT_MODE (real
, mode
);
402 memcpy (&CONST_DOUBLE_LOW (real
), &value
, sizeof (REAL_VALUE_TYPE
));
404 return lookup_const_double (real
);
407 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
408 of ints: I0 is the low-order word and I1 is the high-order word.
409 Do not use this routine for non-integer modes; convert to
410 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
413 immed_double_const (i0
, i1
, mode
)
414 HOST_WIDE_INT i0
, i1
;
415 enum machine_mode mode
;
420 if (mode
!= VOIDmode
)
423 if (GET_MODE_CLASS (mode
) != MODE_INT
424 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
425 /* We can get a 0 for an error mark. */
426 && GET_MODE_CLASS (mode
) != MODE_VECTOR_INT
427 && GET_MODE_CLASS (mode
) != MODE_VECTOR_FLOAT
)
430 /* We clear out all bits that don't belong in MODE, unless they and
431 our sign bit are all one. So we get either a reasonable negative
432 value or a reasonable unsigned value for this mode. */
433 width
= GET_MODE_BITSIZE (mode
);
434 if (width
< HOST_BITS_PER_WIDE_INT
435 && ((i0
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
436 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
437 i0
&= ((HOST_WIDE_INT
) 1 << width
) - 1, i1
= 0;
438 else if (width
== HOST_BITS_PER_WIDE_INT
439 && ! (i1
== ~0 && i0
< 0))
441 else if (width
> 2 * HOST_BITS_PER_WIDE_INT
)
442 /* We cannot represent this value as a constant. */
445 /* If this would be an entire word for the target, but is not for
446 the host, then sign-extend on the host so that the number will
447 look the same way on the host that it would on the target.
449 For example, when building a 64 bit alpha hosted 32 bit sparc
450 targeted compiler, then we want the 32 bit unsigned value -1 to be
451 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
452 The latter confuses the sparc backend. */
454 if (width
< HOST_BITS_PER_WIDE_INT
455 && (i0
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
456 i0
|= ((HOST_WIDE_INT
) (-1) << width
);
458 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
461 ??? Strictly speaking, this is wrong if we create a CONST_INT for
462 a large unsigned constant with the size of MODE being
463 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
464 in a wider mode. In that case we will mis-interpret it as a
467 Unfortunately, the only alternative is to make a CONST_DOUBLE for
468 any constant in any mode if it is an unsigned constant larger
469 than the maximum signed integer in an int on the host. However,
470 doing this will break everyone that always expects to see a
471 CONST_INT for SImode and smaller.
473 We have always been making CONST_INTs in this case, so nothing
474 new is being broken. */
476 if (width
<= HOST_BITS_PER_WIDE_INT
)
477 i1
= (i0
< 0) ? ~(HOST_WIDE_INT
) 0 : 0;
480 /* If this integer fits in one word, return a CONST_INT. */
481 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
484 /* We use VOIDmode for integers. */
485 value
= rtx_alloc (CONST_DOUBLE
);
486 PUT_MODE (value
, VOIDmode
);
488 CONST_DOUBLE_LOW (value
) = i0
;
489 CONST_DOUBLE_HIGH (value
) = i1
;
491 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
492 XWINT (value
, i
) = 0;
494 return lookup_const_double (value
);
498 gen_rtx_REG (mode
, regno
)
499 enum machine_mode mode
;
502 /* In case the MD file explicitly references the frame pointer, have
503 all such references point to the same frame pointer. This is
504 used during frame pointer elimination to distinguish the explicit
505 references to these registers from pseudos that happened to be
508 If we have eliminated the frame pointer or arg pointer, we will
509 be using it as a normal register, for example as a spill
510 register. In such cases, we might be accessing it in a mode that
511 is not Pmode and therefore cannot use the pre-allocated rtx.
513 Also don't do this when we are making new REGs in reload, since
514 we don't want to get confused with the real pointers. */
516 if (mode
== Pmode
&& !reload_in_progress
)
518 if (regno
== FRAME_POINTER_REGNUM
)
519 return frame_pointer_rtx
;
520 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
521 if (regno
== HARD_FRAME_POINTER_REGNUM
)
522 return hard_frame_pointer_rtx
;
524 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
525 if (regno
== ARG_POINTER_REGNUM
)
526 return arg_pointer_rtx
;
528 #ifdef RETURN_ADDRESS_POINTER_REGNUM
529 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
530 return return_address_pointer_rtx
;
532 if (regno
== PIC_OFFSET_TABLE_REGNUM
533 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
534 return pic_offset_table_rtx
;
535 if (regno
== STACK_POINTER_REGNUM
)
536 return stack_pointer_rtx
;
540 /* If the per-function register table has been set up, try to re-use
541 an existing entry in that table to avoid useless generation of RTL.
543 This code is disabled for now until we can fix the various backends
544 which depend on having non-shared hard registers in some cases. Long
545 term we want to re-enable this code as it can significantly cut down
546 on the amount of useless RTL that gets generated. */
550 && regno
< FIRST_PSEUDO_REGISTER
551 && reg_raw_mode
[regno
] == mode
)
552 return regno_reg_rtx
[regno
];
555 return gen_raw_REG (mode
, regno
);
559 gen_rtx_MEM (mode
, addr
)
560 enum machine_mode mode
;
563 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
565 /* This field is not cleared by the mere allocation of the rtx, so
573 gen_rtx_SUBREG (mode
, reg
, offset
)
574 enum machine_mode mode
;
578 /* This is the most common failure type.
579 Catch it early so we can see who does it. */
580 if ((offset
% GET_MODE_SIZE (mode
)) != 0)
583 /* This check isn't usable right now because combine will
584 throw arbitrary crap like a CALL into a SUBREG in
585 gen_lowpart_for_combine so we must just eat it. */
587 /* Check for this too. */
588 if (offset
>= GET_MODE_SIZE (GET_MODE (reg
)))
591 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
594 /* Generate a SUBREG representing the least-significant part of REG if MODE
595 is smaller than mode of REG, otherwise paradoxical SUBREG. */
598 gen_lowpart_SUBREG (mode
, reg
)
599 enum machine_mode mode
;
602 enum machine_mode inmode
;
604 inmode
= GET_MODE (reg
);
605 if (inmode
== VOIDmode
)
607 return gen_rtx_SUBREG (mode
, reg
,
608 subreg_lowpart_offset (mode
, inmode
));
611 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
613 ** This routine generates an RTX of the size specified by
614 ** <code>, which is an RTX code. The RTX structure is initialized
615 ** from the arguments <element1> through <elementn>, which are
616 ** interpreted according to the specific RTX type's format. The
617 ** special machine mode associated with the rtx (if any) is specified
620 ** gen_rtx can be invoked in a way which resembles the lisp-like
621 ** rtx it will generate. For example, the following rtx structure:
623 ** (plus:QI (mem:QI (reg:SI 1))
624 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
626 ** ...would be generated by the following C code:
628 ** gen_rtx (PLUS, QImode,
629 ** gen_rtx (MEM, QImode,
630 ** gen_rtx (REG, SImode, 1)),
631 ** gen_rtx (MEM, QImode,
632 ** gen_rtx (PLUS, SImode,
633 ** gen_rtx (REG, SImode, 2),
634 ** gen_rtx (REG, SImode, 3)))),
639 gen_rtx
VPARAMS ((enum rtx_code code
, enum machine_mode mode
, ...))
641 int i
; /* Array indices... */
642 const char *fmt
; /* Current rtx's format... */
643 rtx rt_val
; /* RTX to return to caller... */
646 VA_FIXEDARG (p
, enum rtx_code
, code
);
647 VA_FIXEDARG (p
, enum machine_mode
, mode
);
652 rt_val
= gen_rtx_CONST_INT (mode
, va_arg (p
, HOST_WIDE_INT
));
657 HOST_WIDE_INT arg0
= va_arg (p
, HOST_WIDE_INT
);
658 HOST_WIDE_INT arg1
= va_arg (p
, HOST_WIDE_INT
);
660 rt_val
= immed_double_const (arg0
, arg1
, mode
);
665 rt_val
= gen_rtx_REG (mode
, va_arg (p
, int));
669 rt_val
= gen_rtx_MEM (mode
, va_arg (p
, rtx
));
673 rt_val
= rtx_alloc (code
); /* Allocate the storage space. */
674 rt_val
->mode
= mode
; /* Store the machine mode... */
676 fmt
= GET_RTX_FORMAT (code
); /* Find the right format... */
677 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
681 case '0': /* Unused field. */
684 case 'i': /* An integer? */
685 XINT (rt_val
, i
) = va_arg (p
, int);
688 case 'w': /* A wide integer? */
689 XWINT (rt_val
, i
) = va_arg (p
, HOST_WIDE_INT
);
692 case 's': /* A string? */
693 XSTR (rt_val
, i
) = va_arg (p
, char *);
696 case 'e': /* An expression? */
697 case 'u': /* An insn? Same except when printing. */
698 XEXP (rt_val
, i
) = va_arg (p
, rtx
);
701 case 'E': /* An RTX vector? */
702 XVEC (rt_val
, i
) = va_arg (p
, rtvec
);
705 case 'b': /* A bitmap? */
706 XBITMAP (rt_val
, i
) = va_arg (p
, bitmap
);
709 case 't': /* A tree? */
710 XTREE (rt_val
, i
) = va_arg (p
, tree
);
724 /* gen_rtvec (n, [rt1, ..., rtn])
726 ** This routine creates an rtvec and stores within it the
727 ** pointers to rtx's which are its arguments.
732 gen_rtvec
VPARAMS ((int n
, ...))
738 VA_FIXEDARG (p
, int, n
);
741 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
743 vector
= (rtx
*) alloca (n
* sizeof (rtx
));
745 for (i
= 0; i
< n
; i
++)
746 vector
[i
] = va_arg (p
, rtx
);
748 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
752 return gen_rtvec_v (save_n
, vector
);
756 gen_rtvec_v (n
, argp
)
764 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
766 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
768 for (i
= 0; i
< n
; i
++)
769 rt_val
->elem
[i
] = *argp
++;
774 /* Generate a REG rtx for a new pseudo register of mode MODE.
775 This pseudo is assigned the next sequential register number. */
779 enum machine_mode mode
;
781 struct function
*f
= cfun
;
784 /* Don't let anything called after initial flow analysis create new
789 if (generating_concat_p
790 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
791 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
793 /* For complex modes, don't make a single pseudo.
794 Instead, make a CONCAT of two pseudos.
795 This allows noncontiguous allocation of the real and imaginary parts,
796 which makes much better code. Besides, allocating DCmode
797 pseudos overstrains reload on some machines like the 386. */
798 rtx realpart
, imagpart
;
799 int size
= GET_MODE_UNIT_SIZE (mode
);
800 enum machine_mode partmode
801 = mode_for_size (size
* BITS_PER_UNIT
,
802 (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
803 ? MODE_FLOAT
: MODE_INT
),
806 realpart
= gen_reg_rtx (partmode
);
807 imagpart
= gen_reg_rtx (partmode
);
808 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
811 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
812 enough to have an element for this pseudo reg number. */
814 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
816 int old_size
= f
->emit
->regno_pointer_align_length
;
821 new = ggc_realloc (f
->emit
->regno_pointer_align
, old_size
* 2);
822 memset (new + old_size
, 0, old_size
);
823 f
->emit
->regno_pointer_align
= (unsigned char *) new;
825 new1
= (rtx
*) ggc_realloc (f
->emit
->x_regno_reg_rtx
,
826 old_size
* 2 * sizeof (rtx
));
827 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
828 regno_reg_rtx
= new1
;
830 new2
= (tree
*) ggc_realloc (f
->emit
->regno_decl
,
831 old_size
* 2 * sizeof (tree
));
832 memset (new2
+ old_size
, 0, old_size
* sizeof (tree
));
833 f
->emit
->regno_decl
= new2
;
835 f
->emit
->regno_pointer_align_length
= old_size
* 2;
838 val
= gen_raw_REG (mode
, reg_rtx_no
);
839 regno_reg_rtx
[reg_rtx_no
++] = val
;
843 /* Identify REG (which may be a CONCAT) as a user register. */
849 if (GET_CODE (reg
) == CONCAT
)
851 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
852 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
854 else if (GET_CODE (reg
) == REG
)
855 REG_USERVAR_P (reg
) = 1;
860 /* Identify REG as a probable pointer register and show its alignment
861 as ALIGN, if nonzero. */
864 mark_reg_pointer (reg
, align
)
868 if (! REG_POINTER (reg
))
870 REG_POINTER (reg
) = 1;
873 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
875 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
876 /* We can no-longer be sure just how aligned this pointer is */
877 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
880 /* Return 1 plus largest pseudo reg number used in the current function. */
888 /* Return 1 + the largest label number used so far in the current function. */
893 if (last_label_num
&& label_num
== base_label_num
)
894 return last_label_num
;
898 /* Return first label number used in this function (if any were used). */
901 get_first_label_num ()
903 return first_label_num
;
906 /* Return the final regno of X, which is a SUBREG of a hard
909 subreg_hard_regno (x
, check_mode
)
913 enum machine_mode mode
= GET_MODE (x
);
914 unsigned int byte_offset
, base_regno
, final_regno
;
915 rtx reg
= SUBREG_REG (x
);
917 /* This is where we attempt to catch illegal subregs
918 created by the compiler. */
919 if (GET_CODE (x
) != SUBREG
920 || GET_CODE (reg
) != REG
)
922 base_regno
= REGNO (reg
);
923 if (base_regno
>= FIRST_PSEUDO_REGISTER
)
925 if (check_mode
&& ! HARD_REGNO_MODE_OK (base_regno
, GET_MODE (reg
)))
928 /* Catch non-congruent offsets too. */
929 byte_offset
= SUBREG_BYTE (x
);
930 if ((byte_offset
% GET_MODE_SIZE (mode
)) != 0)
933 final_regno
= subreg_regno (x
);
938 /* Return a value representing some low-order bits of X, where the number
939 of low-order bits is given by MODE. Note that no conversion is done
940 between floating-point and fixed-point values, rather, the bit
941 representation is returned.
943 This function handles the cases in common between gen_lowpart, below,
944 and two variants in cse.c and combine.c. These are the cases that can
945 be safely handled at all points in the compilation.
947 If this is not a case we can handle, return 0. */
950 gen_lowpart_common (mode
, x
)
951 enum machine_mode mode
;
954 int msize
= GET_MODE_SIZE (mode
);
955 int xsize
= GET_MODE_SIZE (GET_MODE (x
));
958 if (GET_MODE (x
) == mode
)
961 /* MODE must occupy no more words than the mode of X. */
962 if (GET_MODE (x
) != VOIDmode
963 && ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
964 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
967 offset
= subreg_lowpart_offset (mode
, GET_MODE (x
));
969 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
970 && (GET_MODE_CLASS (mode
) == MODE_INT
971 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
973 /* If we are getting the low-order part of something that has been
974 sign- or zero-extended, we can either just use the object being
975 extended or make a narrower extension. If we want an even smaller
976 piece than the size of the object being extended, call ourselves
979 This case is used mostly by combine and cse. */
981 if (GET_MODE (XEXP (x
, 0)) == mode
)
983 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
984 return gen_lowpart_common (mode
, XEXP (x
, 0));
985 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
)))
986 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
988 else if (GET_CODE (x
) == SUBREG
|| GET_CODE (x
) == REG
989 || GET_CODE (x
) == CONCAT
)
990 return simplify_gen_subreg (mode
, x
, GET_MODE (x
), offset
);
991 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
992 from the low-order part of the constant. */
993 else if ((GET_MODE_CLASS (mode
) == MODE_INT
994 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
995 && GET_MODE (x
) == VOIDmode
996 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
))
998 /* If MODE is twice the host word size, X is already the desired
999 representation. Otherwise, if MODE is wider than a word, we can't
1000 do this. If MODE is exactly a word, return just one CONST_INT. */
1002 if (GET_MODE_BITSIZE (mode
) >= 2 * HOST_BITS_PER_WIDE_INT
)
1004 else if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
1006 else if (GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_WIDE_INT
)
1007 return (GET_CODE (x
) == CONST_INT
? x
1008 : GEN_INT (CONST_DOUBLE_LOW (x
)));
1011 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
1012 HOST_WIDE_INT val
= (GET_CODE (x
) == CONST_INT
? INTVAL (x
)
1013 : CONST_DOUBLE_LOW (x
));
1015 /* Sign extend to HOST_WIDE_INT. */
1016 val
= trunc_int_for_mode (val
, mode
);
1018 return (GET_CODE (x
) == CONST_INT
&& INTVAL (x
) == val
? x
1023 /* The floating-point emulator can handle all conversions between
1024 FP and integer operands. This simplifies reload because it
1025 doesn't have to deal with constructs like (subreg:DI
1026 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
1027 /* Single-precision floats are always 32-bits and double-precision
1028 floats are always 64-bits. */
1030 else if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1031 && GET_MODE_BITSIZE (mode
) == 32
1032 && GET_CODE (x
) == CONST_INT
)
1038 r
= REAL_VALUE_FROM_TARGET_SINGLE (i
);
1039 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
1041 else if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1042 && GET_MODE_BITSIZE (mode
) == 64
1043 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
1044 && GET_MODE (x
) == VOIDmode
)
1048 HOST_WIDE_INT low
, high
;
1050 if (GET_CODE (x
) == CONST_INT
)
1053 high
= low
>> (HOST_BITS_PER_WIDE_INT
- 1);
1057 low
= CONST_DOUBLE_LOW (x
);
1058 high
= CONST_DOUBLE_HIGH (x
);
1061 #if HOST_BITS_PER_WIDE_INT == 32
1062 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1064 if (WORDS_BIG_ENDIAN
)
1065 i
[0] = high
, i
[1] = low
;
1067 i
[0] = low
, i
[1] = high
;
1072 r
= REAL_VALUE_FROM_TARGET_DOUBLE (i
);
1073 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
1075 else if ((GET_MODE_CLASS (mode
) == MODE_INT
1076 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
1077 && GET_CODE (x
) == CONST_DOUBLE
1078 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
)
1081 long i
[4]; /* Only the low 32 bits of each 'long' are used. */
1082 int endian
= WORDS_BIG_ENDIAN
? 1 : 0;
1084 /* Convert 'r' into an array of four 32-bit words in target word
1086 REAL_VALUE_FROM_CONST_DOUBLE (r
, x
);
1087 switch (GET_MODE_BITSIZE (GET_MODE (x
)))
1090 REAL_VALUE_TO_TARGET_SINGLE (r
, i
[3 * endian
]);
1093 i
[3 - 3 * endian
] = 0;
1096 REAL_VALUE_TO_TARGET_DOUBLE (r
, i
+ 2 * endian
);
1097 i
[2 - 2 * endian
] = 0;
1098 i
[3 - 2 * endian
] = 0;
1101 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
+ endian
);
1102 i
[3 - 3 * endian
] = 0;
1105 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
);
1110 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1112 #if HOST_BITS_PER_WIDE_INT == 32
1113 return immed_double_const (i
[3 * endian
], i
[1 + endian
], mode
);
1115 if (HOST_BITS_PER_WIDE_INT
!= 64)
1118 return immed_double_const ((((unsigned long) i
[3 * endian
])
1119 | ((HOST_WIDE_INT
) i
[1 + endian
] << 32)),
1120 (((unsigned long) i
[2 - endian
])
1121 | ((HOST_WIDE_INT
) i
[3 - 3 * endian
] << 32)),
1126 /* Otherwise, we can't do this. */
1130 /* Return the real part (which has mode MODE) of a complex value X.
1131 This always comes at the low address in memory. */
1134 gen_realpart (mode
, x
)
1135 enum machine_mode mode
;
1138 if (WORDS_BIG_ENDIAN
1139 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1141 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1143 ("can't access real part of complex value in hard register");
1144 else if (WORDS_BIG_ENDIAN
)
1145 return gen_highpart (mode
, x
);
1147 return gen_lowpart (mode
, x
);
1150 /* Return the imaginary part (which has mode MODE) of a complex value X.
1151 This always comes at the high address in memory. */
1154 gen_imagpart (mode
, x
)
1155 enum machine_mode mode
;
1158 if (WORDS_BIG_ENDIAN
)
1159 return gen_lowpart (mode
, x
);
1160 else if (! WORDS_BIG_ENDIAN
1161 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1163 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1165 ("can't access imaginary part of complex value in hard register");
1167 return gen_highpart (mode
, x
);
1170 /* Return 1 iff X, assumed to be a SUBREG,
1171 refers to the real part of the complex value in its containing reg.
1172 Complex values are always stored with the real part in the first word,
1173 regardless of WORDS_BIG_ENDIAN. */
1176 subreg_realpart_p (x
)
1179 if (GET_CODE (x
) != SUBREG
)
1182 return ((unsigned int) SUBREG_BYTE (x
)
1183 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x
))));
1186 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1187 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1188 least-significant part of X.
1189 MODE specifies how big a part of X to return;
1190 it usually should not be larger than a word.
1191 If X is a MEM whose address is a QUEUED, the value may be so also. */
1194 gen_lowpart (mode
, x
)
1195 enum machine_mode mode
;
1198 rtx result
= gen_lowpart_common (mode
, x
);
1202 else if (GET_CODE (x
) == REG
)
1204 /* Must be a hard reg that's not valid in MODE. */
1205 result
= gen_lowpart_common (mode
, copy_to_reg (x
));
1210 else if (GET_CODE (x
) == MEM
)
1212 /* The only additional case we can do is MEM. */
1214 if (WORDS_BIG_ENDIAN
)
1215 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
1216 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1218 if (BYTES_BIG_ENDIAN
)
1219 /* Adjust the address so that the address-after-the-data
1221 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
1222 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
1224 return adjust_address (x
, mode
, offset
);
1226 else if (GET_CODE (x
) == ADDRESSOF
)
1227 return gen_lowpart (mode
, force_reg (GET_MODE (x
), x
));
1232 /* Like `gen_lowpart', but refer to the most significant part.
1233 This is used to access the imaginary part of a complex number. */
1236 gen_highpart (mode
, x
)
1237 enum machine_mode mode
;
1240 unsigned int msize
= GET_MODE_SIZE (mode
);
1243 /* This case loses if X is a subreg. To catch bugs early,
1244 complain if an invalid MODE is used even in other cases. */
1245 if (msize
> UNITS_PER_WORD
1246 && msize
!= GET_MODE_UNIT_SIZE (GET_MODE (x
)))
1249 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1250 subreg_highpart_offset (mode
, GET_MODE (x
)));
1252 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1253 the target if we have a MEM. gen_highpart must return a valid operand,
1254 emitting code if necessary to do so. */
1255 if (result
!= NULL_RTX
&& GET_CODE (result
) == MEM
)
1256 result
= validize_mem (result
);
1263 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1264 be VOIDmode constant. */
1266 gen_highpart_mode (outermode
, innermode
, exp
)
1267 enum machine_mode outermode
, innermode
;
1270 if (GET_MODE (exp
) != VOIDmode
)
1272 if (GET_MODE (exp
) != innermode
)
1274 return gen_highpart (outermode
, exp
);
1276 return simplify_gen_subreg (outermode
, exp
, innermode
,
1277 subreg_highpart_offset (outermode
, innermode
));
1280 /* Return offset in bytes to get OUTERMODE low part
1281 of the value in mode INNERMODE stored in memory in target format. */
1284 subreg_lowpart_offset (outermode
, innermode
)
1285 enum machine_mode outermode
, innermode
;
1287 unsigned int offset
= 0;
1288 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1292 if (WORDS_BIG_ENDIAN
)
1293 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1294 if (BYTES_BIG_ENDIAN
)
1295 offset
+= difference
% UNITS_PER_WORD
;
1301 /* Return offset in bytes to get OUTERMODE high part
1302 of the value in mode INNERMODE stored in memory in target format. */
1304 subreg_highpart_offset (outermode
, innermode
)
1305 enum machine_mode outermode
, innermode
;
1307 unsigned int offset
= 0;
1308 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1310 if (GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
1315 if (! WORDS_BIG_ENDIAN
)
1316 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1317 if (! BYTES_BIG_ENDIAN
)
1318 offset
+= difference
% UNITS_PER_WORD
;
1324 /* Return 1 iff X, assumed to be a SUBREG,
1325 refers to the least significant part of its containing reg.
1326 If X is not a SUBREG, always return 1 (it is its own low part!). */
1329 subreg_lowpart_p (x
)
1332 if (GET_CODE (x
) != SUBREG
)
1334 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1337 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1338 == SUBREG_BYTE (x
));
1342 /* Helper routine for all the constant cases of operand_subword.
1343 Some places invoke this directly. */
1346 constant_subword (op
, offset
, mode
)
1349 enum machine_mode mode
;
1351 int size_ratio
= HOST_BITS_PER_WIDE_INT
/ BITS_PER_WORD
;
1354 /* If OP is already an integer word, return it. */
1355 if (GET_MODE_CLASS (mode
) == MODE_INT
1356 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
)
1359 /* The output is some bits, the width of the target machine's word.
1360 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1362 if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1363 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1364 && GET_MODE_BITSIZE (mode
) == 64
1365 && GET_CODE (op
) == CONST_DOUBLE
)
1370 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1371 REAL_VALUE_TO_TARGET_DOUBLE (rv
, k
);
1373 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1374 which the words are written depends on the word endianness.
1375 ??? This is a potential portability problem and should
1376 be fixed at some point.
1378 We must exercise caution with the sign bit. By definition there
1379 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1380 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1381 So we explicitly mask and sign-extend as necessary. */
1382 if (BITS_PER_WORD
== 32)
1385 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1386 return GEN_INT (val
);
1388 #if HOST_BITS_PER_WIDE_INT >= 64
1389 else if (BITS_PER_WORD
>= 64 && offset
== 0)
1391 val
= k
[! WORDS_BIG_ENDIAN
];
1392 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1393 val
|= (HOST_WIDE_INT
) k
[WORDS_BIG_ENDIAN
] & 0xffffffff;
1394 return GEN_INT (val
);
1397 else if (BITS_PER_WORD
== 16)
1399 val
= k
[offset
>> 1];
1400 if ((offset
& 1) == ! WORDS_BIG_ENDIAN
)
1402 val
= ((val
& 0xffff) ^ 0x8000) - 0x8000;
1403 return GEN_INT (val
);
1408 else if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1409 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1410 && GET_MODE_BITSIZE (mode
) > 64
1411 && GET_CODE (op
) == CONST_DOUBLE
)
1416 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1417 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, k
);
1419 if (BITS_PER_WORD
== 32)
1422 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1423 return GEN_INT (val
);
1425 #if HOST_BITS_PER_WIDE_INT >= 64
1426 else if (BITS_PER_WORD
>= 64 && offset
<= 1)
1428 val
= k
[offset
* 2 + ! WORDS_BIG_ENDIAN
];
1429 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1430 val
|= (HOST_WIDE_INT
) k
[offset
* 2 + WORDS_BIG_ENDIAN
] & 0xffffffff;
1431 return GEN_INT (val
);
1438 /* Single word float is a little harder, since single- and double-word
1439 values often do not have the same high-order bits. We have already
1440 verified that we want the only defined word of the single-word value. */
1441 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1442 && GET_MODE_BITSIZE (mode
) == 32
1443 && GET_CODE (op
) == CONST_DOUBLE
)
1448 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1449 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
1451 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1453 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1455 if (BITS_PER_WORD
== 16)
1457 if ((offset
& 1) == ! WORDS_BIG_ENDIAN
)
1459 val
= ((val
& 0xffff) ^ 0x8000) - 0x8000;
1462 return GEN_INT (val
);
1465 /* The only remaining cases that we can handle are integers.
1466 Convert to proper endianness now since these cases need it.
1467 At this point, offset == 0 means the low-order word.
1469 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1470 in general. However, if OP is (const_int 0), we can just return
1473 if (op
== const0_rtx
)
1476 if (GET_MODE_CLASS (mode
) != MODE_INT
1477 || (GET_CODE (op
) != CONST_INT
&& GET_CODE (op
) != CONST_DOUBLE
)
1478 || BITS_PER_WORD
> HOST_BITS_PER_WIDE_INT
)
1481 if (WORDS_BIG_ENDIAN
)
1482 offset
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
- 1 - offset
;
1484 /* Find out which word on the host machine this value is in and get
1485 it from the constant. */
1486 val
= (offset
/ size_ratio
== 0
1487 ? (GET_CODE (op
) == CONST_INT
? INTVAL (op
) : CONST_DOUBLE_LOW (op
))
1488 : (GET_CODE (op
) == CONST_INT
1489 ? (INTVAL (op
) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op
)));
1491 /* Get the value we want into the low bits of val. */
1492 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
)
1493 val
= ((val
>> ((offset
% size_ratio
) * BITS_PER_WORD
)));
1495 val
= trunc_int_for_mode (val
, word_mode
);
1497 return GEN_INT (val
);
1500 /* Return subword OFFSET of operand OP.
1501 The word number, OFFSET, is interpreted as the word number starting
1502 at the low-order address. OFFSET 0 is the low-order word if not
1503 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1505 If we cannot extract the required word, we return zero. Otherwise,
1506 an rtx corresponding to the requested word will be returned.
1508 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1509 reload has completed, a valid address will always be returned. After
1510 reload, if a valid address cannot be returned, we return zero.
1512 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1513 it is the responsibility of the caller.
1515 MODE is the mode of OP in case it is a CONST_INT.
1517 ??? This is still rather broken for some cases. The problem for the
1518 moment is that all callers of this thing provide no 'goal mode' to
1519 tell us to work with. This exists because all callers were written
1520 in a word based SUBREG world.
1521 Now use of this function can be deprecated by simplify_subreg in most
1526 operand_subword (op
, offset
, validate_address
, mode
)
1528 unsigned int offset
;
1529 int validate_address
;
1530 enum machine_mode mode
;
1532 if (mode
== VOIDmode
)
1533 mode
= GET_MODE (op
);
1535 if (mode
== VOIDmode
)
1538 /* If OP is narrower than a word, fail. */
1540 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1543 /* If we want a word outside OP, return zero. */
1545 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1548 /* Form a new MEM at the requested address. */
1549 if (GET_CODE (op
) == MEM
)
1551 rtx
new = adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1553 if (! validate_address
)
1556 else if (reload_completed
)
1558 if (! strict_memory_address_p (word_mode
, XEXP (new, 0)))
1562 return replace_equiv_address (new, XEXP (new, 0));
1565 /* Rest can be handled by simplify_subreg. */
1566 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1569 /* Similar to `operand_subword', but never return 0. If we can't extract
1570 the required subword, put OP into a register and try again. If that fails,
1571 abort. We always validate the address in this case.
1573 MODE is the mode of OP, in case it is CONST_INT. */
1576 operand_subword_force (op
, offset
, mode
)
1578 unsigned int offset
;
1579 enum machine_mode mode
;
1581 rtx result
= operand_subword (op
, offset
, 1, mode
);
1586 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1588 /* If this is a register which can not be accessed by words, copy it
1589 to a pseudo register. */
1590 if (GET_CODE (op
) == REG
)
1591 op
= copy_to_reg (op
);
1593 op
= force_reg (mode
, op
);
1596 result
= operand_subword (op
, offset
, 1, mode
);
1603 /* Given a compare instruction, swap the operands.
1604 A test instruction is changed into a compare of 0 against the operand. */
1607 reverse_comparison (insn
)
1610 rtx body
= PATTERN (insn
);
1613 if (GET_CODE (body
) == SET
)
1614 comp
= SET_SRC (body
);
1616 comp
= SET_SRC (XVECEXP (body
, 0, 0));
1618 if (GET_CODE (comp
) == COMPARE
)
1620 rtx op0
= XEXP (comp
, 0);
1621 rtx op1
= XEXP (comp
, 1);
1622 XEXP (comp
, 0) = op1
;
1623 XEXP (comp
, 1) = op0
;
1627 rtx
new = gen_rtx_COMPARE (VOIDmode
,
1628 CONST0_RTX (GET_MODE (comp
)), comp
);
1629 if (GET_CODE (body
) == SET
)
1630 SET_SRC (body
) = new;
1632 SET_SRC (XVECEXP (body
, 0, 0)) = new;
1636 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1637 or (2) a component ref of something variable. Represent the later with
1638 a NULL expression. */
1641 component_ref_for_mem_expr (ref
)
1644 tree inner
= TREE_OPERAND (ref
, 0);
1646 if (TREE_CODE (inner
) == COMPONENT_REF
)
1647 inner
= component_ref_for_mem_expr (inner
);
1650 tree placeholder_ptr
= 0;
1652 /* Now remove any conversions: they don't change what the underlying
1653 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1654 while (TREE_CODE (inner
) == NOP_EXPR
|| TREE_CODE (inner
) == CONVERT_EXPR
1655 || TREE_CODE (inner
) == NON_LVALUE_EXPR
1656 || TREE_CODE (inner
) == VIEW_CONVERT_EXPR
1657 || TREE_CODE (inner
) == SAVE_EXPR
1658 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
1659 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
1660 inner
= find_placeholder (inner
, &placeholder_ptr
);
1662 inner
= TREE_OPERAND (inner
, 0);
1664 if (! DECL_P (inner
))
1668 if (inner
== TREE_OPERAND (ref
, 0))
1671 return build (COMPONENT_REF
, TREE_TYPE (ref
), inner
,
1672 TREE_OPERAND (ref
, 1));
1675 /* Given REF, a MEM, and T, either the type of X or the expression
1676 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1677 if we are making a new object of this type. */
1680 set_mem_attributes (ref
, t
, objectp
)
1685 HOST_WIDE_INT alias
= MEM_ALIAS_SET (ref
);
1686 tree expr
= MEM_EXPR (ref
);
1687 rtx offset
= MEM_OFFSET (ref
);
1688 rtx size
= MEM_SIZE (ref
);
1689 unsigned int align
= MEM_ALIGN (ref
);
1692 /* It can happen that type_for_mode was given a mode for which there
1693 is no language-level type. In which case it returns NULL, which
1698 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1700 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1701 wrong answer, as it assumes that DECL_RTL already has the right alias
1702 info. Callers should not set DECL_RTL until after the call to
1703 set_mem_attributes. */
1704 if (DECL_P (t
) && ref
== DECL_RTL_IF_SET (t
))
1707 /* Get the alias set from the expression or type (perhaps using a
1708 front-end routine) and use it. */
1709 alias
= get_alias_set (t
);
1711 MEM_VOLATILE_P (ref
) = TYPE_VOLATILE (type
);
1712 MEM_IN_STRUCT_P (ref
) = AGGREGATE_TYPE_P (type
);
1713 RTX_UNCHANGING_P (ref
)
1714 |= ((lang_hooks
.honor_readonly
1715 && (TYPE_READONLY (type
) || TREE_READONLY (t
)))
1716 || (! TYPE_P (t
) && TREE_CONSTANT (t
)));
1718 /* If we are making an object of this type, or if this is a DECL, we know
1719 that it is a scalar if the type is not an aggregate. */
1720 if ((objectp
|| DECL_P (t
)) && ! AGGREGATE_TYPE_P (type
))
1721 MEM_SCALAR_P (ref
) = 1;
1723 /* We can set the alignment from the type if we are making an object,
1724 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1725 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1726 align
= MAX (align
, TYPE_ALIGN (type
));
1728 /* If the size is known, we can set that. */
1729 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1730 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1732 /* If T is not a type, we may be able to deduce some more information about
1736 maybe_set_unchanging (ref
, t
);
1737 if (TREE_THIS_VOLATILE (t
))
1738 MEM_VOLATILE_P (ref
) = 1;
1740 /* Now remove any conversions: they don't change what the underlying
1741 object is. Likewise for SAVE_EXPR. */
1742 while (TREE_CODE (t
) == NOP_EXPR
|| TREE_CODE (t
) == CONVERT_EXPR
1743 || TREE_CODE (t
) == NON_LVALUE_EXPR
1744 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1745 || TREE_CODE (t
) == SAVE_EXPR
)
1746 t
= TREE_OPERAND (t
, 0);
1748 /* If this expression can't be addressed (e.g., it contains a reference
1749 to a non-addressable field), show we don't change its alias set. */
1750 if (! can_address_p (t
))
1751 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1753 /* If this is a decl, set the attributes of the MEM from it. */
1757 offset
= const0_rtx
;
1758 size
= (DECL_SIZE_UNIT (t
)
1759 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1760 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1761 align
= DECL_ALIGN (t
);
1764 /* If this is a constant, we know the alignment. */
1765 else if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'c')
1767 align
= TYPE_ALIGN (type
);
1768 #ifdef CONSTANT_ALIGNMENT
1769 align
= CONSTANT_ALIGNMENT (t
, align
);
1773 /* If this is a field reference and not a bit-field, record it. */
1774 /* ??? There is some information that can be gleened from bit-fields,
1775 such as the word offset in the structure that might be modified.
1776 But skip it for now. */
1777 else if (TREE_CODE (t
) == COMPONENT_REF
1778 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1780 expr
= component_ref_for_mem_expr (t
);
1781 offset
= const0_rtx
;
1782 /* ??? Any reason the field size would be different than
1783 the size we got from the type? */
1786 /* If this is an array reference, look for an outer field reference. */
1787 else if (TREE_CODE (t
) == ARRAY_REF
)
1789 tree off_tree
= size_zero_node
;
1794 = fold (build (PLUS_EXPR
, sizetype
,
1795 fold (build (MULT_EXPR
, sizetype
,
1796 TREE_OPERAND (t
, 1),
1797 TYPE_SIZE_UNIT (TREE_TYPE (t
)))),
1799 t
= TREE_OPERAND (t
, 0);
1801 while (TREE_CODE (t
) == ARRAY_REF
);
1803 if (TREE_CODE (t
) == COMPONENT_REF
)
1805 expr
= component_ref_for_mem_expr (t
);
1806 if (host_integerp (off_tree
, 1))
1807 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1808 /* ??? Any reason the field size would be different than
1809 the size we got from the type? */
1814 /* Now set the attributes we computed above. */
1816 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1818 /* If this is already known to be a scalar or aggregate, we are done. */
1819 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1822 /* If it is a reference into an aggregate, this is part of an aggregate.
1823 Otherwise we don't know. */
1824 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1825 || TREE_CODE (t
) == ARRAY_RANGE_REF
1826 || TREE_CODE (t
) == BIT_FIELD_REF
)
1827 MEM_IN_STRUCT_P (ref
) = 1;
1830 /* Set the alias set of MEM to SET. */
1833 set_mem_alias_set (mem
, set
)
1837 #ifdef ENABLE_CHECKING
1838 /* If the new and old alias sets don't conflict, something is wrong. */
1839 if (!alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)))
1843 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1844 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1848 /* Set the alignment of MEM to ALIGN bits. */
1851 set_mem_align (mem
, align
)
1855 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1856 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1860 /* Set the expr for MEM to EXPR. */
1863 set_mem_expr (mem
, expr
)
1868 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1869 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1872 /* Set the offset of MEM to OFFSET. */
1875 set_mem_offset (mem
, offset
)
1878 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1879 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1883 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1884 and its address changed to ADDR. (VOIDmode means don't change the mode.
1885 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1886 returned memory location is required to be valid. The memory
1887 attributes are not changed. */
1890 change_address_1 (memref
, mode
, addr
, validate
)
1892 enum machine_mode mode
;
1898 if (GET_CODE (memref
) != MEM
)
1900 if (mode
== VOIDmode
)
1901 mode
= GET_MODE (memref
);
1903 addr
= XEXP (memref
, 0);
1907 if (reload_in_progress
|| reload_completed
)
1909 if (! memory_address_p (mode
, addr
))
1913 addr
= memory_address (mode
, addr
);
1916 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1919 new = gen_rtx_MEM (mode
, addr
);
1920 MEM_COPY_ATTRIBUTES (new, memref
);
1924 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1925 way we are changing MEMREF, so we only preserve the alias set. */
1928 change_address (memref
, mode
, addr
)
1930 enum machine_mode mode
;
1933 rtx
new = change_address_1 (memref
, mode
, addr
, 1);
1934 enum machine_mode mmode
= GET_MODE (new);
1937 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0,
1938 mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
)),
1939 (mmode
== BLKmode
? BITS_PER_UNIT
1940 : GET_MODE_ALIGNMENT (mmode
)),
1946 /* Return a memory reference like MEMREF, but with its mode changed
1947 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1948 nonzero, the memory address is forced to be valid.
1949 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1950 and caller is responsible for adjusting MEMREF base register. */
1953 adjust_address_1 (memref
, mode
, offset
, validate
, adjust
)
1955 enum machine_mode mode
;
1956 HOST_WIDE_INT offset
;
1957 int validate
, adjust
;
1959 rtx addr
= XEXP (memref
, 0);
1961 rtx memoffset
= MEM_OFFSET (memref
);
1963 unsigned int memalign
= MEM_ALIGN (memref
);
1965 /* ??? Prefer to create garbage instead of creating shared rtl.
1966 This may happen even if offset is non-zero -- consider
1967 (plus (plus reg reg) const_int) -- so do this always. */
1968 addr
= copy_rtx (addr
);
1972 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1973 object, we can merge it into the LO_SUM. */
1974 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1976 && (unsigned HOST_WIDE_INT
) offset
1977 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1978 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
1979 plus_constant (XEXP (addr
, 1), offset
));
1981 addr
= plus_constant (addr
, offset
);
1984 new = change_address_1 (memref
, mode
, addr
, validate
);
1986 /* Compute the new values of the memory attributes due to this adjustment.
1987 We add the offsets and update the alignment. */
1989 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
1991 /* Compute the new alignment by taking the MIN of the alignment and the
1992 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1997 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
1999 /* We can compute the size in a number of ways. */
2000 if (GET_MODE (new) != BLKmode
)
2001 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
2002 else if (MEM_SIZE (memref
))
2003 size
= plus_constant (MEM_SIZE (memref
), -offset
);
2005 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
2006 memoffset
, size
, memalign
, GET_MODE (new));
2008 /* At some point, we should validate that this offset is within the object,
2009 if all the appropriate values are known. */
2013 /* Return a memory reference like MEMREF, but with its mode changed
2014 to MODE and its address changed to ADDR, which is assumed to be
2015 MEMREF offseted by OFFSET bytes. If VALIDATE is
2016 nonzero, the memory address is forced to be valid. */
2019 adjust_automodify_address_1 (memref
, mode
, addr
, offset
, validate
)
2021 enum machine_mode mode
;
2023 HOST_WIDE_INT offset
;
2026 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2027 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
2030 /* Return a memory reference like MEMREF, but whose address is changed by
2031 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2032 known to be in OFFSET (possibly 1). */
2035 offset_address (memref
, offset
, pow2
)
2040 rtx
new, addr
= XEXP (memref
, 0);
2042 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
2044 /* At this point we don't know _why_ the address is invalid. It
2045 could have secondary memory refereces, multiplies or anything.
2047 However, if we did go and rearrange things, we can wind up not
2048 being able to recognize the magic around pic_offset_table_rtx.
2049 This stuff is fragile, and is yet another example of why it is
2050 bad to expose PIC machinery too early. */
2051 if (! memory_address_p (GET_MODE (memref
), new)
2052 && GET_CODE (addr
) == PLUS
2053 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2055 addr
= force_reg (GET_MODE (addr
), addr
);
2056 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
2059 update_temp_slot_address (XEXP (memref
, 0), new);
2060 new = change_address_1 (memref
, VOIDmode
, new, 1);
2062 /* Update the alignment to reflect the offset. Reset the offset, which
2065 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
2066 MIN (MEM_ALIGN (memref
),
2067 (unsigned HOST_WIDE_INT
) pow2
* BITS_PER_UNIT
),
2072 /* Return a memory reference like MEMREF, but with its address changed to
2073 ADDR. The caller is asserting that the actual piece of memory pointed
2074 to is the same, just the form of the address is being changed, such as
2075 by putting something into a register. */
2078 replace_equiv_address (memref
, addr
)
2082 /* change_address_1 copies the memory attribute structure without change
2083 and that's exactly what we want here. */
2084 update_temp_slot_address (XEXP (memref
, 0), addr
);
2085 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2088 /* Likewise, but the reference is not required to be valid. */
2091 replace_equiv_address_nv (memref
, addr
)
2095 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2098 /* Return a memory reference like MEMREF, but with its mode widened to
2099 MODE and offset by OFFSET. This would be used by targets that e.g.
2100 cannot issue QImode memory operations and have to use SImode memory
2101 operations plus masking logic. */
2104 widen_memory_access (memref
, mode
, offset
)
2106 enum machine_mode mode
;
2107 HOST_WIDE_INT offset
;
2109 rtx
new = adjust_address_1 (memref
, mode
, offset
, 1, 1);
2110 tree expr
= MEM_EXPR (new);
2111 rtx memoffset
= MEM_OFFSET (new);
2112 unsigned int size
= GET_MODE_SIZE (mode
);
2114 /* If we don't know what offset we were at within the expression, then
2115 we can't know if we've overstepped the bounds. */
2121 if (TREE_CODE (expr
) == COMPONENT_REF
)
2123 tree field
= TREE_OPERAND (expr
, 1);
2125 if (! DECL_SIZE_UNIT (field
))
2131 /* Is the field at least as large as the access? If so, ok,
2132 otherwise strip back to the containing structure. */
2133 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2134 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2135 && INTVAL (memoffset
) >= 0)
2138 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
2144 expr
= TREE_OPERAND (expr
, 0);
2145 memoffset
= (GEN_INT (INTVAL (memoffset
)
2146 + tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
2147 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2150 /* Similarly for the decl. */
2151 else if (DECL_P (expr
)
2152 && DECL_SIZE_UNIT (expr
)
2153 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2154 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2155 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2159 /* The widened memory access overflows the expression, which means
2160 that it could alias another expression. Zap it. */
2167 memoffset
= NULL_RTX
;
2169 /* The widened memory may alias other stuff, so zap the alias set. */
2170 /* ??? Maybe use get_alias_set on any remaining expression. */
2172 MEM_ATTRS (new) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2173 MEM_ALIGN (new), mode
);
2178 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2185 label
= gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2186 NULL
, label_num
++, NULL
, NULL
);
2188 LABEL_NUSES (label
) = 0;
2189 LABEL_ALTERNATE_NAME (label
) = NULL
;
2193 /* For procedure integration. */
2195 /* Install new pointers to the first and last insns in the chain.
2196 Also, set cur_insn_uid to one higher than the last in use.
2197 Used for an inline-procedure after copying the insn chain. */
2200 set_new_first_and_last_insn (first
, last
)
2209 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2210 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2215 /* Set the range of label numbers found in the current function.
2216 This is used when belatedly compiling an inline function. */
2219 set_new_first_and_last_label_num (first
, last
)
2222 base_label_num
= label_num
;
2223 first_label_num
= first
;
2224 last_label_num
= last
;
2227 /* Set the last label number found in the current function.
2228 This is used when belatedly compiling an inline function. */
2231 set_new_last_label_num (last
)
2234 base_label_num
= label_num
;
2235 last_label_num
= last
;
2238 /* Restore all variables describing the current status from the structure *P.
2239 This is used after a nested function. */
2242 restore_emit_status (p
)
2243 struct function
*p ATTRIBUTE_UNUSED
;
2248 /* Go through all the RTL insn bodies and copy any invalid shared
2249 structure. This routine should only be called once. */
2252 unshare_all_rtl (fndecl
, insn
)
2258 /* Make sure that virtual parameters are not shared. */
2259 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
2260 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2262 /* Make sure that virtual stack slots are not shared. */
2263 unshare_all_decls (DECL_INITIAL (fndecl
));
2265 /* Unshare just about everything else. */
2266 unshare_all_rtl_1 (insn
);
2268 /* Make sure the addresses of stack slots found outside the insn chain
2269 (such as, in DECL_RTL of a variable) are not shared
2270 with the insn chain.
2272 This special care is necessary when the stack slot MEM does not
2273 actually appear in the insn chain. If it does appear, its address
2274 is unshared from all else at that point. */
2275 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2278 /* Go through all the RTL insn bodies and copy any invalid shared
2279 structure, again. This is a fairly expensive thing to do so it
2280 should be done sparingly. */
2283 unshare_all_rtl_again (insn
)
2289 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2292 reset_used_flags (PATTERN (p
));
2293 reset_used_flags (REG_NOTES (p
));
2294 reset_used_flags (LOG_LINKS (p
));
2297 /* Make sure that virtual stack slots are not shared. */
2298 reset_used_decls (DECL_INITIAL (cfun
->decl
));
2300 /* Make sure that virtual parameters are not shared. */
2301 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2302 reset_used_flags (DECL_RTL (decl
));
2304 reset_used_flags (stack_slot_list
);
2306 unshare_all_rtl (cfun
->decl
, insn
);
2309 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2310 Assumes the mark bits are cleared at entry. */
2313 unshare_all_rtl_1 (insn
)
2316 for (; insn
; insn
= NEXT_INSN (insn
))
2319 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2320 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2321 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
2325 /* Go through all virtual stack slots of a function and copy any
2326 shared structure. */
2328 unshare_all_decls (blk
)
2333 /* Copy shared decls. */
2334 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2335 if (DECL_RTL_SET_P (t
))
2336 SET_DECL_RTL (t
, copy_rtx_if_shared (DECL_RTL (t
)));
2338 /* Now process sub-blocks. */
2339 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2340 unshare_all_decls (t
);
2343 /* Go through all virtual stack slots of a function and mark them as
2346 reset_used_decls (blk
)
2352 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2353 if (DECL_RTL_SET_P (t
))
2354 reset_used_flags (DECL_RTL (t
));
2356 /* Now process sub-blocks. */
2357 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2358 reset_used_decls (t
);
2361 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2362 placed in the result directly, rather than being copied. MAY_SHARE is
2363 either a MEM of an EXPR_LIST of MEMs. */
2366 copy_most_rtx (orig
, may_share
)
2373 const char *format_ptr
;
2375 if (orig
== may_share
2376 || (GET_CODE (may_share
) == EXPR_LIST
2377 && in_expr_list_p (may_share
, orig
)))
2380 code
= GET_CODE (orig
);
2398 copy
= rtx_alloc (code
);
2399 PUT_MODE (copy
, GET_MODE (orig
));
2400 RTX_FLAG (copy
, in_struct
) = RTX_FLAG (orig
, in_struct
);
2401 RTX_FLAG (copy
, volatil
) = RTX_FLAG (orig
, volatil
);
2402 RTX_FLAG (copy
, unchanging
) = RTX_FLAG (orig
, unchanging
);
2403 RTX_FLAG (copy
, integrated
) = RTX_FLAG (orig
, integrated
);
2404 RTX_FLAG (copy
, frame_related
) = RTX_FLAG (orig
, frame_related
);
2406 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
2408 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
2410 switch (*format_ptr
++)
2413 XEXP (copy
, i
) = XEXP (orig
, i
);
2414 if (XEXP (orig
, i
) != NULL
&& XEXP (orig
, i
) != may_share
)
2415 XEXP (copy
, i
) = copy_most_rtx (XEXP (orig
, i
), may_share
);
2419 XEXP (copy
, i
) = XEXP (orig
, i
);
2424 XVEC (copy
, i
) = XVEC (orig
, i
);
2425 if (XVEC (orig
, i
) != NULL
)
2427 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
2428 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
2429 XVECEXP (copy
, i
, j
)
2430 = copy_most_rtx (XVECEXP (orig
, i
, j
), may_share
);
2435 XWINT (copy
, i
) = XWINT (orig
, i
);
2440 XINT (copy
, i
) = XINT (orig
, i
);
2444 XTREE (copy
, i
) = XTREE (orig
, i
);
2449 XSTR (copy
, i
) = XSTR (orig
, i
);
2453 /* Copy this through the wide int field; that's safest. */
2454 X0WINT (copy
, i
) = X0WINT (orig
, i
);
2464 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2465 Recursively does the same for subexpressions. */
2468 copy_rtx_if_shared (orig
)
2474 const char *format_ptr
;
2480 code
= GET_CODE (x
);
2482 /* These types may be freely shared. */
2496 /* SCRATCH must be shared because they represent distinct values. */
2500 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2501 a LABEL_REF, it isn't sharable. */
2502 if (GET_CODE (XEXP (x
, 0)) == PLUS
2503 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2504 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2513 /* The chain of insns is not being copied. */
2517 /* A MEM is allowed to be shared if its address is constant.
2519 We used to allow sharing of MEMs which referenced
2520 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2521 that can lose. instantiate_virtual_regs will not unshare
2522 the MEMs, and combine may change the structure of the address
2523 because it looks safe and profitable in one context, but
2524 in some other context it creates unrecognizable RTL. */
2525 if (CONSTANT_ADDRESS_P (XEXP (x
, 0)))
2534 /* This rtx may not be shared. If it has already been seen,
2535 replace it with a copy of itself. */
2537 if (RTX_FLAG (x
, used
))
2541 copy
= rtx_alloc (code
);
2543 (sizeof (*copy
) - sizeof (copy
->fld
)
2544 + sizeof (copy
->fld
[0]) * GET_RTX_LENGTH (code
)));
2548 RTX_FLAG (x
, used
) = 1;
2550 /* Now scan the subexpressions recursively.
2551 We can store any replaced subexpressions directly into X
2552 since we know X is not shared! Any vectors in X
2553 must be copied if X was copied. */
2555 format_ptr
= GET_RTX_FORMAT (code
);
2557 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2559 switch (*format_ptr
++)
2562 XEXP (x
, i
) = copy_rtx_if_shared (XEXP (x
, i
));
2566 if (XVEC (x
, i
) != NULL
)
2569 int len
= XVECLEN (x
, i
);
2571 if (copied
&& len
> 0)
2572 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2573 for (j
= 0; j
< len
; j
++)
2574 XVECEXP (x
, i
, j
) = copy_rtx_if_shared (XVECEXP (x
, i
, j
));
2582 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2583 to look for shared sub-parts. */
2586 reset_used_flags (x
)
2591 const char *format_ptr
;
2596 code
= GET_CODE (x
);
2598 /* These types may be freely shared so we needn't do any resetting
2620 /* The chain of insns is not being copied. */
2627 RTX_FLAG (x
, used
) = 0;
2629 format_ptr
= GET_RTX_FORMAT (code
);
2630 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2632 switch (*format_ptr
++)
2635 reset_used_flags (XEXP (x
, i
));
2639 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2640 reset_used_flags (XVECEXP (x
, i
, j
));
2646 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2647 Return X or the rtx for the pseudo reg the value of X was copied into.
2648 OTHER must be valid as a SET_DEST. */
2651 make_safe_from (x
, other
)
2655 switch (GET_CODE (other
))
2658 other
= SUBREG_REG (other
);
2660 case STRICT_LOW_PART
:
2663 other
= XEXP (other
, 0);
2669 if ((GET_CODE (other
) == MEM
2671 && GET_CODE (x
) != REG
2672 && GET_CODE (x
) != SUBREG
)
2673 || (GET_CODE (other
) == REG
2674 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2675 || reg_mentioned_p (other
, x
))))
2677 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2678 emit_move_insn (temp
, x
);
2684 /* Emission of insns (adding them to the doubly-linked list). */
2686 /* Return the first insn of the current sequence or current function. */
2694 /* Specify a new insn as the first in the chain. */
2697 set_first_insn (insn
)
2700 if (PREV_INSN (insn
) != 0)
2705 /* Return the last insn emitted in current sequence or current function. */
2713 /* Specify a new insn as the last in the chain. */
2716 set_last_insn (insn
)
2719 if (NEXT_INSN (insn
) != 0)
2724 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2727 get_last_insn_anywhere ()
2729 struct sequence_stack
*stack
;
2732 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2733 if (stack
->last
!= 0)
2738 /* Return the first nonnote insn emitted in current sequence or current
2739 function. This routine looks inside SEQUENCEs. */
2742 get_first_nonnote_insn ()
2744 rtx insn
= first_insn
;
2748 insn
= next_insn (insn
);
2749 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2756 /* Return the last nonnote insn emitted in current sequence or current
2757 function. This routine looks inside SEQUENCEs. */
2760 get_last_nonnote_insn ()
2762 rtx insn
= last_insn
;
2766 insn
= previous_insn (insn
);
2767 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2774 /* Return a number larger than any instruction's uid in this function. */
2779 return cur_insn_uid
;
2782 /* Renumber instructions so that no instruction UIDs are wasted. */
2785 renumber_insns (stream
)
2790 /* If we're not supposed to renumber instructions, don't. */
2791 if (!flag_renumber_insns
)
2794 /* If there aren't that many instructions, then it's not really
2795 worth renumbering them. */
2796 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2801 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2804 fprintf (stream
, "Renumbering insn %d to %d\n",
2805 INSN_UID (insn
), cur_insn_uid
);
2806 INSN_UID (insn
) = cur_insn_uid
++;
2810 /* Return the next insn. If it is a SEQUENCE, return the first insn
2819 insn
= NEXT_INSN (insn
);
2820 if (insn
&& GET_CODE (insn
) == INSN
2821 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2822 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2828 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2832 previous_insn (insn
)
2837 insn
= PREV_INSN (insn
);
2838 if (insn
&& GET_CODE (insn
) == INSN
2839 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2840 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2846 /* Return the next insn after INSN that is not a NOTE. This routine does not
2847 look inside SEQUENCEs. */
2850 next_nonnote_insn (insn
)
2855 insn
= NEXT_INSN (insn
);
2856 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2863 /* Return the previous insn before INSN that is not a NOTE. This routine does
2864 not look inside SEQUENCEs. */
2867 prev_nonnote_insn (insn
)
2872 insn
= PREV_INSN (insn
);
2873 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2880 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2881 or 0, if there is none. This routine does not look inside
2885 next_real_insn (insn
)
2890 insn
= NEXT_INSN (insn
);
2891 if (insn
== 0 || GET_CODE (insn
) == INSN
2892 || GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
)
2899 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2900 or 0, if there is none. This routine does not look inside
2904 prev_real_insn (insn
)
2909 insn
= PREV_INSN (insn
);
2910 if (insn
== 0 || GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
2911 || GET_CODE (insn
) == JUMP_INSN
)
2918 /* Find the next insn after INSN that really does something. This routine
2919 does not look inside SEQUENCEs. Until reload has completed, this is the
2920 same as next_real_insn. */
2923 active_insn_p (insn
)
2926 return (GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
2927 || (GET_CODE (insn
) == INSN
2928 && (! reload_completed
2929 || (GET_CODE (PATTERN (insn
)) != USE
2930 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
2934 next_active_insn (insn
)
2939 insn
= NEXT_INSN (insn
);
2940 if (insn
== 0 || active_insn_p (insn
))
2947 /* Find the last insn before INSN that really does something. This routine
2948 does not look inside SEQUENCEs. Until reload has completed, this is the
2949 same as prev_real_insn. */
2952 prev_active_insn (insn
)
2957 insn
= PREV_INSN (insn
);
2958 if (insn
== 0 || active_insn_p (insn
))
2965 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2973 insn
= NEXT_INSN (insn
);
2974 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2981 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2989 insn
= PREV_INSN (insn
);
2990 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2998 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2999 and REG_CC_USER notes so we can find it. */
3002 link_cc0_insns (insn
)
3005 rtx user
= next_nonnote_insn (insn
);
3007 if (GET_CODE (user
) == INSN
&& GET_CODE (PATTERN (user
)) == SEQUENCE
)
3008 user
= XVECEXP (PATTERN (user
), 0, 0);
3010 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
3012 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
3015 /* Return the next insn that uses CC0 after INSN, which is assumed to
3016 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3017 applied to the result of this function should yield INSN).
3019 Normally, this is simply the next insn. However, if a REG_CC_USER note
3020 is present, it contains the insn that uses CC0.
3022 Return 0 if we can't find the insn. */
3025 next_cc0_user (insn
)
3028 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3031 return XEXP (note
, 0);
3033 insn
= next_nonnote_insn (insn
);
3034 if (insn
&& GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3035 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3037 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3043 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3044 note, it is the previous insn. */
3047 prev_cc0_setter (insn
)
3050 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3053 return XEXP (note
, 0);
3055 insn
= prev_nonnote_insn (insn
);
3056 if (! sets_cc0_p (PATTERN (insn
)))
3063 /* Increment the label uses for all labels present in rtx. */
3066 mark_label_nuses (x
)
3073 code
= GET_CODE (x
);
3074 if (code
== LABEL_REF
)
3075 LABEL_NUSES (XEXP (x
, 0))++;
3077 fmt
= GET_RTX_FORMAT (code
);
3078 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3081 mark_label_nuses (XEXP (x
, i
));
3082 else if (fmt
[i
] == 'E')
3083 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3084 mark_label_nuses (XVECEXP (x
, i
, j
));
3089 /* Try splitting insns that can be split for better scheduling.
3090 PAT is the pattern which might split.
3091 TRIAL is the insn providing PAT.
3092 LAST is non-zero if we should return the last insn of the sequence produced.
3094 If this routine succeeds in splitting, it returns the first or last
3095 replacement insn depending on the value of LAST. Otherwise, it
3096 returns TRIAL. If the insn to be returned can be split, it will be. */
3099 try_split (pat
, trial
, last
)
3103 rtx before
= PREV_INSN (trial
);
3104 rtx after
= NEXT_INSN (trial
);
3105 int has_barrier
= 0;
3110 if (any_condjump_p (trial
)
3111 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3112 split_branch_probability
= INTVAL (XEXP (note
, 0));
3113 probability
= split_branch_probability
;
3115 seq
= split_insns (pat
, trial
);
3117 split_branch_probability
= -1;
3119 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3120 We may need to handle this specially. */
3121 if (after
&& GET_CODE (after
) == BARRIER
)
3124 after
= NEXT_INSN (after
);
3129 /* Sometimes there will be only one insn in that list, this case will
3130 normally arise only when we want it in turn to be split (SFmode on
3131 the 29k is an example). */
3132 if (NEXT_INSN (seq
) != NULL_RTX
)
3134 rtx insn_last
, insn
;
3137 /* Avoid infinite loop if any insn of the result matches
3138 the original pattern. */
3142 if (INSN_P (insn_last
)
3143 && rtx_equal_p (PATTERN (insn_last
), pat
))
3145 if (NEXT_INSN (insn_last
) == NULL_RTX
)
3147 insn_last
= NEXT_INSN (insn_last
);
3152 while (insn
!= NULL_RTX
)
3154 if (GET_CODE (insn
) == JUMP_INSN
)
3156 mark_jump_label (PATTERN (insn
), insn
, 0);
3158 if (probability
!= -1
3159 && any_condjump_p (insn
)
3160 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3162 /* We can preserve the REG_BR_PROB notes only if exactly
3163 one jump is created, otherwise the machine description
3164 is responsible for this step using
3165 split_branch_probability variable. */
3169 = gen_rtx_EXPR_LIST (REG_BR_PROB
,
3170 GEN_INT (probability
),
3175 insn
= PREV_INSN (insn
);
3178 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3179 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3180 if (GET_CODE (trial
) == CALL_INSN
)
3183 while (insn
!= NULL_RTX
)
3185 if (GET_CODE (insn
) == CALL_INSN
)
3186 CALL_INSN_FUNCTION_USAGE (insn
)
3187 = CALL_INSN_FUNCTION_USAGE (trial
);
3189 insn
= PREV_INSN (insn
);
3193 /* Copy notes, particularly those related to the CFG. */
3194 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3196 switch (REG_NOTE_KIND (note
))
3200 while (insn
!= NULL_RTX
)
3202 if (GET_CODE (insn
) == CALL_INSN
3203 || (flag_non_call_exceptions
3204 && may_trap_p (PATTERN (insn
))))
3206 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3209 insn
= PREV_INSN (insn
);
3215 case REG_ALWAYS_RETURN
:
3217 while (insn
!= NULL_RTX
)
3219 if (GET_CODE (insn
) == CALL_INSN
)
3221 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3224 insn
= PREV_INSN (insn
);
3228 case REG_NON_LOCAL_GOTO
:
3230 while (insn
!= NULL_RTX
)
3232 if (GET_CODE (insn
) == JUMP_INSN
)
3234 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3237 insn
= PREV_INSN (insn
);
3246 /* If there are LABELS inside the split insns increment the
3247 usage count so we don't delete the label. */
3248 if (GET_CODE (trial
) == INSN
)
3251 while (insn
!= NULL_RTX
)
3253 if (GET_CODE (insn
) == INSN
)
3254 mark_label_nuses (PATTERN (insn
));
3256 insn
= PREV_INSN (insn
);
3260 tem
= emit_insn_after_scope (seq
, trial
, INSN_SCOPE (trial
));
3262 delete_insn (trial
);
3264 emit_barrier_after (tem
);
3266 /* Recursively call try_split for each new insn created; by the
3267 time control returns here that insn will be fully split, so
3268 set LAST and continue from the insn after the one returned.
3269 We can't use next_active_insn here since AFTER may be a note.
3270 Ignore deleted insns, which can be occur if not optimizing. */
3271 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3272 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3273 tem
= try_split (PATTERN (tem
), tem
, 1);
3275 /* Avoid infinite loop if the result matches the original pattern. */
3276 else if (rtx_equal_p (PATTERN (seq
), pat
))
3280 PATTERN (trial
) = PATTERN (seq
);
3281 INSN_CODE (trial
) = -1;
3282 try_split (PATTERN (trial
), trial
, last
);
3285 /* Return either the first or the last insn, depending on which was
3288 ? (after
? PREV_INSN (after
) : last_insn
)
3289 : NEXT_INSN (before
);
3295 /* Make and return an INSN rtx, initializing all its slots.
3296 Store PATTERN in the pattern slots. */
3299 make_insn_raw (pattern
)
3304 insn
= rtx_alloc (INSN
);
3306 INSN_UID (insn
) = cur_insn_uid
++;
3307 PATTERN (insn
) = pattern
;
3308 INSN_CODE (insn
) = -1;
3309 LOG_LINKS (insn
) = NULL
;
3310 REG_NOTES (insn
) = NULL
;
3311 INSN_SCOPE (insn
) = NULL
;
3312 BLOCK_FOR_INSN (insn
) = NULL
;
3314 #ifdef ENABLE_RTL_CHECKING
3317 && (returnjump_p (insn
)
3318 || (GET_CODE (insn
) == SET
3319 && SET_DEST (insn
) == pc_rtx
)))
3321 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3329 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3332 make_jump_insn_raw (pattern
)
3337 insn
= rtx_alloc (JUMP_INSN
);
3338 INSN_UID (insn
) = cur_insn_uid
++;
3340 PATTERN (insn
) = pattern
;
3341 INSN_CODE (insn
) = -1;
3342 LOG_LINKS (insn
) = NULL
;
3343 REG_NOTES (insn
) = NULL
;
3344 JUMP_LABEL (insn
) = NULL
;
3345 INSN_SCOPE (insn
) = NULL
;
3346 BLOCK_FOR_INSN (insn
) = NULL
;
3351 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3354 make_call_insn_raw (pattern
)
3359 insn
= rtx_alloc (CALL_INSN
);
3360 INSN_UID (insn
) = cur_insn_uid
++;
3362 PATTERN (insn
) = pattern
;
3363 INSN_CODE (insn
) = -1;
3364 LOG_LINKS (insn
) = NULL
;
3365 REG_NOTES (insn
) = NULL
;
3366 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3367 INSN_SCOPE (insn
) = NULL
;
3368 BLOCK_FOR_INSN (insn
) = NULL
;
3373 /* Add INSN to the end of the doubly-linked list.
3374 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3380 PREV_INSN (insn
) = last_insn
;
3381 NEXT_INSN (insn
) = 0;
3383 if (NULL
!= last_insn
)
3384 NEXT_INSN (last_insn
) = insn
;
3386 if (NULL
== first_insn
)
3392 /* Add INSN into the doubly-linked list after insn AFTER. This and
3393 the next should be the only functions called to insert an insn once
3394 delay slots have been filled since only they know how to update a
3398 add_insn_after (insn
, after
)
3401 rtx next
= NEXT_INSN (after
);
3404 if (optimize
&& INSN_DELETED_P (after
))
3407 NEXT_INSN (insn
) = next
;
3408 PREV_INSN (insn
) = after
;
3412 PREV_INSN (next
) = insn
;
3413 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
3414 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3416 else if (last_insn
== after
)
3420 struct sequence_stack
*stack
= seq_stack
;
3421 /* Scan all pending sequences too. */
3422 for (; stack
; stack
= stack
->next
)
3423 if (after
== stack
->last
)
3433 if (GET_CODE (after
) != BARRIER
3434 && GET_CODE (insn
) != BARRIER
3435 && (bb
= BLOCK_FOR_INSN (after
)))
3437 set_block_for_insn (insn
, bb
);
3439 bb
->flags
|= BB_DIRTY
;
3440 /* Should not happen as first in the BB is always
3441 either NOTE or LABEL. */
3442 if (bb
->end
== after
3443 /* Avoid clobbering of structure when creating new BB. */
3444 && GET_CODE (insn
) != BARRIER
3445 && (GET_CODE (insn
) != NOTE
3446 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3450 NEXT_INSN (after
) = insn
;
3451 if (GET_CODE (after
) == INSN
&& GET_CODE (PATTERN (after
)) == SEQUENCE
)
3453 rtx sequence
= PATTERN (after
);
3454 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3458 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3459 the previous should be the only functions called to insert an insn once
3460 delay slots have been filled since only they know how to update a
3464 add_insn_before (insn
, before
)
3467 rtx prev
= PREV_INSN (before
);
3470 if (optimize
&& INSN_DELETED_P (before
))
3473 PREV_INSN (insn
) = prev
;
3474 NEXT_INSN (insn
) = before
;
3478 NEXT_INSN (prev
) = insn
;
3479 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3481 rtx sequence
= PATTERN (prev
);
3482 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3485 else if (first_insn
== before
)
3489 struct sequence_stack
*stack
= seq_stack
;
3490 /* Scan all pending sequences too. */
3491 for (; stack
; stack
= stack
->next
)
3492 if (before
== stack
->first
)
3494 stack
->first
= insn
;
3502 if (GET_CODE (before
) != BARRIER
3503 && GET_CODE (insn
) != BARRIER
3504 && (bb
= BLOCK_FOR_INSN (before
)))
3506 set_block_for_insn (insn
, bb
);
3508 bb
->flags
|= BB_DIRTY
;
3509 /* Should not happen as first in the BB is always
3510 either NOTE or LABEl. */
3511 if (bb
->head
== insn
3512 /* Avoid clobbering of structure when creating new BB. */
3513 && GET_CODE (insn
) != BARRIER
3514 && (GET_CODE (insn
) != NOTE
3515 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3519 PREV_INSN (before
) = insn
;
3520 if (GET_CODE (before
) == INSN
&& GET_CODE (PATTERN (before
)) == SEQUENCE
)
3521 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3524 /* Remove an insn from its doubly-linked list. This function knows how
3525 to handle sequences. */
3530 rtx next
= NEXT_INSN (insn
);
3531 rtx prev
= PREV_INSN (insn
);
3536 NEXT_INSN (prev
) = next
;
3537 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3539 rtx sequence
= PATTERN (prev
);
3540 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3543 else if (first_insn
== insn
)
3547 struct sequence_stack
*stack
= seq_stack
;
3548 /* Scan all pending sequences too. */
3549 for (; stack
; stack
= stack
->next
)
3550 if (insn
== stack
->first
)
3552 stack
->first
= next
;
3562 PREV_INSN (next
) = prev
;
3563 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
3564 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3566 else if (last_insn
== insn
)
3570 struct sequence_stack
*stack
= seq_stack
;
3571 /* Scan all pending sequences too. */
3572 for (; stack
; stack
= stack
->next
)
3573 if (insn
== stack
->last
)
3582 if (GET_CODE (insn
) != BARRIER
3583 && (bb
= BLOCK_FOR_INSN (insn
)))
3586 bb
->flags
|= BB_DIRTY
;
3587 if (bb
->head
== insn
)
3589 /* Never ever delete the basic block note without deleting whole
3591 if (GET_CODE (insn
) == NOTE
)
3595 if (bb
->end
== insn
)
3600 /* Delete all insns made since FROM.
3601 FROM becomes the new last instruction. */
3604 delete_insns_since (from
)
3610 NEXT_INSN (from
) = 0;
3614 /* This function is deprecated, please use sequences instead.
3616 Move a consecutive bunch of insns to a different place in the chain.
3617 The insns to be moved are those between FROM and TO.
3618 They are moved to a new position after the insn AFTER.
3619 AFTER must not be FROM or TO or any insn in between.
3621 This function does not know about SEQUENCEs and hence should not be
3622 called after delay-slot filling has been done. */
3625 reorder_insns_nobb (from
, to
, after
)
3626 rtx from
, to
, after
;
3628 /* Splice this bunch out of where it is now. */
3629 if (PREV_INSN (from
))
3630 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3632 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3633 if (last_insn
== to
)
3634 last_insn
= PREV_INSN (from
);
3635 if (first_insn
== from
)
3636 first_insn
= NEXT_INSN (to
);
3638 /* Make the new neighbors point to it and it to them. */
3639 if (NEXT_INSN (after
))
3640 PREV_INSN (NEXT_INSN (after
)) = to
;
3642 NEXT_INSN (to
) = NEXT_INSN (after
);
3643 PREV_INSN (from
) = after
;
3644 NEXT_INSN (after
) = from
;
3645 if (after
== last_insn
)
3649 /* Same as function above, but take care to update BB boundaries. */
3651 reorder_insns (from
, to
, after
)
3652 rtx from
, to
, after
;
3654 rtx prev
= PREV_INSN (from
);
3655 basic_block bb
, bb2
;
3657 reorder_insns_nobb (from
, to
, after
);
3659 if (GET_CODE (after
) != BARRIER
3660 && (bb
= BLOCK_FOR_INSN (after
)))
3663 bb
->flags
|= BB_DIRTY
;
3665 if (GET_CODE (from
) != BARRIER
3666 && (bb2
= BLOCK_FOR_INSN (from
)))
3670 bb2
->flags
|= BB_DIRTY
;
3673 if (bb
->end
== after
)
3676 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3677 set_block_for_insn (x
, bb
);
3681 /* Return the line note insn preceding INSN. */
3684 find_line_note (insn
)
3687 if (no_line_numbers
)
3690 for (; insn
; insn
= PREV_INSN (insn
))
3691 if (GET_CODE (insn
) == NOTE
3692 && NOTE_LINE_NUMBER (insn
) >= 0)
3698 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3699 of the moved insns when debugging. This may insert a note between AFTER
3700 and FROM, and another one after TO. */
3703 reorder_insns_with_line_notes (from
, to
, after
)
3704 rtx from
, to
, after
;
3706 rtx from_line
= find_line_note (from
);
3707 rtx after_line
= find_line_note (after
);
3709 reorder_insns (from
, to
, after
);
3711 if (from_line
== after_line
)
3715 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
3716 NOTE_LINE_NUMBER (from_line
),
3719 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
3720 NOTE_LINE_NUMBER (after_line
),
3724 /* Remove unnecessary notes from the instruction stream. */
3727 remove_unnecessary_notes ()
3729 rtx block_stack
= NULL_RTX
;
3730 rtx eh_stack
= NULL_RTX
;
3735 /* We must not remove the first instruction in the function because
3736 the compiler depends on the first instruction being a note. */
3737 for (insn
= NEXT_INSN (get_insns ()); insn
; insn
= next
)
3739 /* Remember what's next. */
3740 next
= NEXT_INSN (insn
);
3742 /* We're only interested in notes. */
3743 if (GET_CODE (insn
) != NOTE
)
3746 switch (NOTE_LINE_NUMBER (insn
))
3748 case NOTE_INSN_DELETED
:
3749 case NOTE_INSN_LOOP_END_TOP_COND
:
3753 case NOTE_INSN_EH_REGION_BEG
:
3754 eh_stack
= alloc_INSN_LIST (insn
, eh_stack
);
3757 case NOTE_INSN_EH_REGION_END
:
3758 /* Too many end notes. */
3759 if (eh_stack
== NULL_RTX
)
3761 /* Mismatched nesting. */
3762 if (NOTE_EH_HANDLER (XEXP (eh_stack
, 0)) != NOTE_EH_HANDLER (insn
))
3765 eh_stack
= XEXP (eh_stack
, 1);
3766 free_INSN_LIST_node (tmp
);
3769 case NOTE_INSN_BLOCK_BEG
:
3770 /* By now, all notes indicating lexical blocks should have
3771 NOTE_BLOCK filled in. */
3772 if (NOTE_BLOCK (insn
) == NULL_TREE
)
3774 block_stack
= alloc_INSN_LIST (insn
, block_stack
);
3777 case NOTE_INSN_BLOCK_END
:
3778 /* Too many end notes. */
3779 if (block_stack
== NULL_RTX
)
3781 /* Mismatched nesting. */
3782 if (NOTE_BLOCK (XEXP (block_stack
, 0)) != NOTE_BLOCK (insn
))
3785 block_stack
= XEXP (block_stack
, 1);
3786 free_INSN_LIST_node (tmp
);
3788 /* Scan back to see if there are any non-note instructions
3789 between INSN and the beginning of this block. If not,
3790 then there is no PC range in the generated code that will
3791 actually be in this block, so there's no point in
3792 remembering the existence of the block. */
3793 for (tmp
= PREV_INSN (insn
); tmp
; tmp
= PREV_INSN (tmp
))
3795 /* This block contains a real instruction. Note that we
3796 don't include labels; if the only thing in the block
3797 is a label, then there are still no PC values that
3798 lie within the block. */
3802 /* We're only interested in NOTEs. */
3803 if (GET_CODE (tmp
) != NOTE
)
3806 if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_BEG
)
3808 /* We just verified that this BLOCK matches us with
3809 the block_stack check above. Never delete the
3810 BLOCK for the outermost scope of the function; we
3811 can refer to names from that scope even if the
3812 block notes are messed up. */
3813 if (! is_body_block (NOTE_BLOCK (insn
))
3814 && (*debug_hooks
->ignore_block
) (NOTE_BLOCK (insn
)))
3821 else if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_END
)
3822 /* There's a nested block. We need to leave the
3823 current block in place since otherwise the debugger
3824 wouldn't be able to show symbols from our block in
3825 the nested block. */
3831 /* Too many begin notes. */
3832 if (block_stack
|| eh_stack
)
3837 /* Emit insn(s) of given code and pattern
3838 at a specified place within the doubly-linked list.
3840 All of the emit_foo global entry points accept an object
3841 X which is either an insn list or a PATTERN of a single
3844 There are thus a few canonical ways to generate code and
3845 emit it at a specific place in the instruction stream. For
3846 example, consider the instruction named SPOT and the fact that
3847 we would like to emit some instructions before SPOT. We might
3851 ... emit the new instructions ...
3852 insns_head = get_insns ();
3855 emit_insn_before (insns_head, SPOT);
3857 It used to be common to generate SEQUENCE rtl instead, but that
3858 is a relic of the past which no longer occurs. The reason is that
3859 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3860 generated would almost certainly die right after it was created. */
3862 /* Make X be output before the instruction BEFORE. */
3865 emit_insn_before (x
, before
)
3871 #ifdef ENABLE_RTL_CHECKING
3872 if (before
== NULL_RTX
)
3879 switch (GET_CODE (x
))
3890 rtx next
= NEXT_INSN (insn
);
3891 add_insn_before (insn
, before
);
3897 #ifdef ENABLE_RTL_CHECKING
3904 last
= make_insn_raw (x
);
3905 add_insn_before (last
, before
);
3912 /* Make an instruction with body X and code JUMP_INSN
3913 and output it before the instruction BEFORE. */
3916 emit_jump_insn_before (x
, before
)
3921 #ifdef ENABLE_RTL_CHECKING
3922 if (before
== NULL_RTX
)
3926 switch (GET_CODE (x
))
3937 rtx next
= NEXT_INSN (insn
);
3938 add_insn_before (insn
, before
);
3944 #ifdef ENABLE_RTL_CHECKING
3951 last
= make_jump_insn_raw (x
);
3952 add_insn_before (last
, before
);
3959 /* Make an instruction with body X and code CALL_INSN
3960 and output it before the instruction BEFORE. */
3963 emit_call_insn_before (x
, before
)
3968 #ifdef ENABLE_RTL_CHECKING
3969 if (before
== NULL_RTX
)
3973 switch (GET_CODE (x
))
3984 rtx next
= NEXT_INSN (insn
);
3985 add_insn_before (insn
, before
);
3991 #ifdef ENABLE_RTL_CHECKING
3998 last
= make_call_insn_raw (x
);
3999 add_insn_before (last
, before
);
4006 /* Make an insn of code BARRIER
4007 and output it before the insn BEFORE. */
4010 emit_barrier_before (before
)
4013 rtx insn
= rtx_alloc (BARRIER
);
4015 INSN_UID (insn
) = cur_insn_uid
++;
4017 add_insn_before (insn
, before
);
4021 /* Emit the label LABEL before the insn BEFORE. */
4024 emit_label_before (label
, before
)
4027 /* This can be called twice for the same label as a result of the
4028 confusion that follows a syntax error! So make it harmless. */
4029 if (INSN_UID (label
) == 0)
4031 INSN_UID (label
) = cur_insn_uid
++;
4032 add_insn_before (label
, before
);
4038 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4041 emit_note_before (subtype
, before
)
4045 rtx note
= rtx_alloc (NOTE
);
4046 INSN_UID (note
) = cur_insn_uid
++;
4047 NOTE_SOURCE_FILE (note
) = 0;
4048 NOTE_LINE_NUMBER (note
) = subtype
;
4049 BLOCK_FOR_INSN (note
) = NULL
;
4051 add_insn_before (note
, before
);
4055 /* Helper for emit_insn_after, handles lists of instructions
4058 static rtx emit_insn_after_1
PARAMS ((rtx
, rtx
));
4061 emit_insn_after_1 (first
, after
)
4068 if (GET_CODE (after
) != BARRIER
4069 && (bb
= BLOCK_FOR_INSN (after
)))
4071 bb
->flags
|= BB_DIRTY
;
4072 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4073 if (GET_CODE (last
) != BARRIER
)
4074 set_block_for_insn (last
, bb
);
4075 if (GET_CODE (last
) != BARRIER
)
4076 set_block_for_insn (last
, bb
);
4077 if (bb
->end
== after
)
4081 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4084 after_after
= NEXT_INSN (after
);
4086 NEXT_INSN (after
) = first
;
4087 PREV_INSN (first
) = after
;
4088 NEXT_INSN (last
) = after_after
;
4090 PREV_INSN (after_after
) = last
;
4092 if (after
== last_insn
)
4097 /* Make X be output after the insn AFTER. */
4100 emit_insn_after (x
, after
)
4105 #ifdef ENABLE_RTL_CHECKING
4106 if (after
== NULL_RTX
)
4113 switch (GET_CODE (x
))
4121 last
= emit_insn_after_1 (x
, after
);
4124 #ifdef ENABLE_RTL_CHECKING
4131 last
= make_insn_raw (x
);
4132 add_insn_after (last
, after
);
4139 /* Similar to emit_insn_after, except that line notes are to be inserted so
4140 as to act as if this insn were at FROM. */
4143 emit_insn_after_with_line_notes (x
, after
, from
)
4146 rtx from_line
= find_line_note (from
);
4147 rtx after_line
= find_line_note (after
);
4148 rtx insn
= emit_insn_after (x
, after
);
4151 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
4152 NOTE_LINE_NUMBER (from_line
),
4156 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
4157 NOTE_LINE_NUMBER (after_line
),
4161 /* Make an insn of code JUMP_INSN with body X
4162 and output it after the insn AFTER. */
4165 emit_jump_insn_after (x
, after
)
4170 #ifdef ENABLE_RTL_CHECKING
4171 if (after
== NULL_RTX
)
4175 switch (GET_CODE (x
))
4183 last
= emit_insn_after_1 (x
, after
);
4186 #ifdef ENABLE_RTL_CHECKING
4193 last
= make_jump_insn_raw (x
);
4194 add_insn_after (last
, after
);
4201 /* Make an instruction with body X and code CALL_INSN
4202 and output it after the instruction AFTER. */
4205 emit_call_insn_after (x
, after
)
4210 #ifdef ENABLE_RTL_CHECKING
4211 if (after
== NULL_RTX
)
4215 switch (GET_CODE (x
))
4223 last
= emit_insn_after_1 (x
, after
);
4226 #ifdef ENABLE_RTL_CHECKING
4233 last
= make_call_insn_raw (x
);
4234 add_insn_after (last
, after
);
4241 /* Make an insn of code BARRIER
4242 and output it after the insn AFTER. */
4245 emit_barrier_after (after
)
4248 rtx insn
= rtx_alloc (BARRIER
);
4250 INSN_UID (insn
) = cur_insn_uid
++;
4252 add_insn_after (insn
, after
);
4256 /* Emit the label LABEL after the insn AFTER. */
4259 emit_label_after (label
, after
)
4262 /* This can be called twice for the same label
4263 as a result of the confusion that follows a syntax error!
4264 So make it harmless. */
4265 if (INSN_UID (label
) == 0)
4267 INSN_UID (label
) = cur_insn_uid
++;
4268 add_insn_after (label
, after
);
4274 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4277 emit_note_after (subtype
, after
)
4281 rtx note
= rtx_alloc (NOTE
);
4282 INSN_UID (note
) = cur_insn_uid
++;
4283 NOTE_SOURCE_FILE (note
) = 0;
4284 NOTE_LINE_NUMBER (note
) = subtype
;
4285 BLOCK_FOR_INSN (note
) = NULL
;
4286 add_insn_after (note
, after
);
4290 /* Emit a line note for FILE and LINE after the insn AFTER. */
4293 emit_line_note_after (file
, line
, after
)
4300 if (no_line_numbers
&& line
> 0)
4306 note
= rtx_alloc (NOTE
);
4307 INSN_UID (note
) = cur_insn_uid
++;
4308 NOTE_SOURCE_FILE (note
) = file
;
4309 NOTE_LINE_NUMBER (note
) = line
;
4310 BLOCK_FOR_INSN (note
) = NULL
;
4311 add_insn_after (note
, after
);
4315 /* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4317 emit_insn_after_scope (pattern
, after
, scope
)
4321 rtx last
= emit_insn_after (pattern
, after
);
4323 after
= NEXT_INSN (after
);
4326 if (active_insn_p (after
))
4327 INSN_SCOPE (after
) = scope
;
4330 after
= NEXT_INSN (after
);
4335 /* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4337 emit_jump_insn_after_scope (pattern
, after
, scope
)
4341 rtx last
= emit_jump_insn_after (pattern
, after
);
4343 after
= NEXT_INSN (after
);
4346 if (active_insn_p (after
))
4347 INSN_SCOPE (after
) = scope
;
4350 after
= NEXT_INSN (after
);
4355 /* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4357 emit_call_insn_after_scope (pattern
, after
, scope
)
4361 rtx last
= emit_call_insn_after (pattern
, after
);
4363 after
= NEXT_INSN (after
);
4366 if (active_insn_p (after
))
4367 INSN_SCOPE (after
) = scope
;
4370 after
= NEXT_INSN (after
);
4375 /* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4377 emit_insn_before_scope (pattern
, before
, scope
)
4378 rtx pattern
, before
;
4381 rtx first
= PREV_INSN (before
);
4382 rtx last
= emit_insn_before (pattern
, before
);
4384 first
= NEXT_INSN (first
);
4387 if (active_insn_p (first
))
4388 INSN_SCOPE (first
) = scope
;
4391 first
= NEXT_INSN (first
);
4396 /* Take X and emit it at the end of the doubly-linked
4399 Returns the last insn emitted. */
4405 rtx last
= last_insn
;
4411 switch (GET_CODE (x
))
4422 rtx next
= NEXT_INSN (insn
);
4429 #ifdef ENABLE_RTL_CHECKING
4436 last
= make_insn_raw (x
);
4444 /* Make an insn of code JUMP_INSN with pattern X
4445 and add it to the end of the doubly-linked list. */
4453 switch (GET_CODE (x
))
4464 rtx next
= NEXT_INSN (insn
);
4471 #ifdef ENABLE_RTL_CHECKING
4478 last
= make_jump_insn_raw (x
);
4486 /* Make an insn of code CALL_INSN with pattern X
4487 and add it to the end of the doubly-linked list. */
4495 switch (GET_CODE (x
))
4503 insn
= emit_insn (x
);
4506 #ifdef ENABLE_RTL_CHECKING
4513 insn
= make_call_insn_raw (x
);
4521 /* Add the label LABEL to the end of the doubly-linked list. */
4527 /* This can be called twice for the same label
4528 as a result of the confusion that follows a syntax error!
4529 So make it harmless. */
4530 if (INSN_UID (label
) == 0)
4532 INSN_UID (label
) = cur_insn_uid
++;
4538 /* Make an insn of code BARRIER
4539 and add it to the end of the doubly-linked list. */
4544 rtx barrier
= rtx_alloc (BARRIER
);
4545 INSN_UID (barrier
) = cur_insn_uid
++;
4550 /* Make an insn of code NOTE
4551 with data-fields specified by FILE and LINE
4552 and add it to the end of the doubly-linked list,
4553 but only if line-numbers are desired for debugging info. */
4556 emit_line_note (file
, line
)
4560 set_file_and_line_for_stmt (file
, line
);
4563 if (no_line_numbers
)
4567 return emit_note (file
, line
);
4570 /* Make an insn of code NOTE
4571 with data-fields specified by FILE and LINE
4572 and add it to the end of the doubly-linked list.
4573 If it is a line-number NOTE, omit it if it matches the previous one. */
4576 emit_note (file
, line
)
4584 if (file
&& last_filename
&& !strcmp (file
, last_filename
)
4585 && line
== last_linenum
)
4587 last_filename
= file
;
4588 last_linenum
= line
;
4591 if (no_line_numbers
&& line
> 0)
4597 note
= rtx_alloc (NOTE
);
4598 INSN_UID (note
) = cur_insn_uid
++;
4599 NOTE_SOURCE_FILE (note
) = file
;
4600 NOTE_LINE_NUMBER (note
) = line
;
4601 BLOCK_FOR_INSN (note
) = NULL
;
4606 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4609 emit_line_note_force (file
, line
)
4614 return emit_line_note (file
, line
);
4617 /* Cause next statement to emit a line note even if the line number
4618 has not changed. This is used at the beginning of a function. */
4621 force_next_line_note ()
4626 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4627 note of this type already exists, remove it first. */
4630 set_unique_reg_note (insn
, kind
, datum
)
4635 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4641 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4642 has multiple sets (some callers assume single_set
4643 means the insn only has one set, when in fact it
4644 means the insn only has one * useful * set). */
4645 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4652 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4653 It serves no useful purpose and breaks eliminate_regs. */
4654 if (GET_CODE (datum
) == ASM_OPERANDS
)
4664 XEXP (note
, 0) = datum
;
4668 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
4669 return REG_NOTES (insn
);
4672 /* Return an indication of which type of insn should have X as a body.
4673 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4679 if (GET_CODE (x
) == CODE_LABEL
)
4681 if (GET_CODE (x
) == CALL
)
4683 if (GET_CODE (x
) == RETURN
)
4685 if (GET_CODE (x
) == SET
)
4687 if (SET_DEST (x
) == pc_rtx
)
4689 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4694 if (GET_CODE (x
) == PARALLEL
)
4697 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4698 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4700 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4701 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4703 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4704 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4710 /* Emit the rtl pattern X as an appropriate kind of insn.
4711 If X is a label, it is simply added into the insn chain. */
4717 enum rtx_code code
= classify_insn (x
);
4719 if (code
== CODE_LABEL
)
4720 return emit_label (x
);
4721 else if (code
== INSN
)
4722 return emit_insn (x
);
4723 else if (code
== JUMP_INSN
)
4725 rtx insn
= emit_jump_insn (x
);
4726 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4727 return emit_barrier ();
4730 else if (code
== CALL_INSN
)
4731 return emit_call_insn (x
);
4736 /* Space for free sequence stack entries. */
4737 static GTY ((deletable (""))) struct sequence_stack
*free_sequence_stack
;
4739 /* Begin emitting insns to a sequence which can be packaged in an
4740 RTL_EXPR. If this sequence will contain something that might cause
4741 the compiler to pop arguments to function calls (because those
4742 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4743 details), use do_pending_stack_adjust before calling this function.
4744 That will ensure that the deferred pops are not accidentally
4745 emitted in the middle of this sequence. */
4750 struct sequence_stack
*tem
;
4752 if (free_sequence_stack
!= NULL
)
4754 tem
= free_sequence_stack
;
4755 free_sequence_stack
= tem
->next
;
4758 tem
= (struct sequence_stack
*) ggc_alloc (sizeof (struct sequence_stack
));
4760 tem
->next
= seq_stack
;
4761 tem
->first
= first_insn
;
4762 tem
->last
= last_insn
;
4763 tem
->sequence_rtl_expr
= seq_rtl_expr
;
4771 /* Similarly, but indicate that this sequence will be placed in T, an
4772 RTL_EXPR. See the documentation for start_sequence for more
4773 information about how to use this function. */
4776 start_sequence_for_rtl_expr (t
)
4784 /* Set up the insn chain starting with FIRST as the current sequence,
4785 saving the previously current one. See the documentation for
4786 start_sequence for more information about how to use this function. */
4789 push_to_sequence (first
)
4796 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4802 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4805 push_to_full_sequence (first
, last
)
4811 /* We really should have the end of the insn chain here. */
4812 if (last
&& NEXT_INSN (last
))
4816 /* Set up the outer-level insn chain
4817 as the current sequence, saving the previously current one. */
4820 push_topmost_sequence ()
4822 struct sequence_stack
*stack
, *top
= NULL
;
4826 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4829 first_insn
= top
->first
;
4830 last_insn
= top
->last
;
4831 seq_rtl_expr
= top
->sequence_rtl_expr
;
4834 /* After emitting to the outer-level insn chain, update the outer-level
4835 insn chain, and restore the previous saved state. */
4838 pop_topmost_sequence ()
4840 struct sequence_stack
*stack
, *top
= NULL
;
4842 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4845 top
->first
= first_insn
;
4846 top
->last
= last_insn
;
4847 /* ??? Why don't we save seq_rtl_expr here? */
4852 /* After emitting to a sequence, restore previous saved state.
4854 To get the contents of the sequence just made, you must call
4855 `get_insns' *before* calling here.
4857 If the compiler might have deferred popping arguments while
4858 generating this sequence, and this sequence will not be immediately
4859 inserted into the instruction stream, use do_pending_stack_adjust
4860 before calling get_insns. That will ensure that the deferred
4861 pops are inserted into this sequence, and not into some random
4862 location in the instruction stream. See INHIBIT_DEFER_POP for more
4863 information about deferred popping of arguments. */
4868 struct sequence_stack
*tem
= seq_stack
;
4870 first_insn
= tem
->first
;
4871 last_insn
= tem
->last
;
4872 seq_rtl_expr
= tem
->sequence_rtl_expr
;
4873 seq_stack
= tem
->next
;
4875 memset (tem
, 0, sizeof (*tem
));
4876 tem
->next
= free_sequence_stack
;
4877 free_sequence_stack
= tem
;
4880 /* This works like end_sequence, but records the old sequence in FIRST
4884 end_full_sequence (first
, last
)
4887 *first
= first_insn
;
4892 /* Return 1 if currently emitting into a sequence. */
4897 return seq_stack
!= 0;
4900 /* Put the various virtual registers into REGNO_REG_RTX. */
4903 init_virtual_regs (es
)
4904 struct emit_status
*es
;
4906 rtx
*ptr
= es
->x_regno_reg_rtx
;
4907 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
4908 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
4909 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
4910 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
4911 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
4915 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4916 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
4917 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
4918 static int copy_insn_n_scratches
;
4920 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4921 copied an ASM_OPERANDS.
4922 In that case, it is the original input-operand vector. */
4923 static rtvec orig_asm_operands_vector
;
4925 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4926 copied an ASM_OPERANDS.
4927 In that case, it is the copied input-operand vector. */
4928 static rtvec copy_asm_operands_vector
;
4930 /* Likewise for the constraints vector. */
4931 static rtvec orig_asm_constraints_vector
;
4932 static rtvec copy_asm_constraints_vector
;
4934 /* Recursively create a new copy of an rtx for copy_insn.
4935 This function differs from copy_rtx in that it handles SCRATCHes and
4936 ASM_OPERANDs properly.
4937 Normally, this function is not used directly; use copy_insn as front end.
4938 However, you could first copy an insn pattern with copy_insn and then use
4939 this function afterwards to properly copy any REG_NOTEs containing
4949 const char *format_ptr
;
4951 code
= GET_CODE (orig
);
4968 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
4969 if (copy_insn_scratch_in
[i
] == orig
)
4970 return copy_insn_scratch_out
[i
];
4974 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4975 a LABEL_REF, it isn't sharable. */
4976 if (GET_CODE (XEXP (orig
, 0)) == PLUS
4977 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
4978 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
4982 /* A MEM with a constant address is not sharable. The problem is that
4983 the constant address may need to be reloaded. If the mem is shared,
4984 then reloading one copy of this mem will cause all copies to appear
4985 to have been reloaded. */
4991 copy
= rtx_alloc (code
);
4993 /* Copy the various flags, and other information. We assume that
4994 all fields need copying, and then clear the fields that should
4995 not be copied. That is the sensible default behavior, and forces
4996 us to explicitly document why we are *not* copying a flag. */
4997 memcpy (copy
, orig
, sizeof (struct rtx_def
) - sizeof (rtunion
));
4999 /* We do not copy the USED flag, which is used as a mark bit during
5000 walks over the RTL. */
5001 RTX_FLAG (copy
, used
) = 0;
5003 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5004 if (GET_RTX_CLASS (code
) == 'i')
5006 RTX_FLAG (copy
, jump
) = 0;
5007 RTX_FLAG (copy
, call
) = 0;
5008 RTX_FLAG (copy
, frame_related
) = 0;
5011 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5013 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5015 copy
->fld
[i
] = orig
->fld
[i
];
5016 switch (*format_ptr
++)
5019 if (XEXP (orig
, i
) != NULL
)
5020 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5025 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5026 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5027 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5028 XVEC (copy
, i
) = copy_asm_operands_vector
;
5029 else if (XVEC (orig
, i
) != NULL
)
5031 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5032 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5033 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5044 /* These are left unchanged. */
5052 if (code
== SCRATCH
)
5054 i
= copy_insn_n_scratches
++;
5055 if (i
>= MAX_RECOG_OPERANDS
)
5057 copy_insn_scratch_in
[i
] = orig
;
5058 copy_insn_scratch_out
[i
] = copy
;
5060 else if (code
== ASM_OPERANDS
)
5062 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5063 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5064 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5065 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5071 /* Create a new copy of an rtx.
5072 This function differs from copy_rtx in that it handles SCRATCHes and
5073 ASM_OPERANDs properly.
5074 INSN doesn't really have to be a full INSN; it could be just the
5080 copy_insn_n_scratches
= 0;
5081 orig_asm_operands_vector
= 0;
5082 orig_asm_constraints_vector
= 0;
5083 copy_asm_operands_vector
= 0;
5084 copy_asm_constraints_vector
= 0;
5085 return copy_insn_1 (insn
);
5088 /* Initialize data structures and variables in this file
5089 before generating rtl for each function. */
5094 struct function
*f
= cfun
;
5096 f
->emit
= (struct emit_status
*) ggc_alloc (sizeof (struct emit_status
));
5099 seq_rtl_expr
= NULL
;
5101 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5104 first_label_num
= label_num
;
5108 /* Init the tables that describe all the pseudo regs. */
5110 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5112 f
->emit
->regno_pointer_align
5113 = (unsigned char *) ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
5114 * sizeof (unsigned char));
5117 = (rtx
*) ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
5121 = (tree
*) ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
5124 /* Put copies of all the hard registers into regno_reg_rtx. */
5125 memcpy (regno_reg_rtx
,
5126 static_regno_reg_rtx
,
5127 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5129 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5130 init_virtual_regs (f
->emit
);
5132 /* Indicate that the virtual registers and stack locations are
5134 REG_POINTER (stack_pointer_rtx
) = 1;
5135 REG_POINTER (frame_pointer_rtx
) = 1;
5136 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5137 REG_POINTER (arg_pointer_rtx
) = 1;
5139 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5140 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5141 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5142 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5143 REG_POINTER (virtual_cfa_rtx
) = 1;
5145 #ifdef STACK_BOUNDARY
5146 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5147 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5148 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5149 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5151 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5152 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5153 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5154 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5155 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5158 #ifdef INIT_EXPANDERS
5163 /* Generate the constant 0. */
5166 gen_const_vector_0 (mode
)
5167 enum machine_mode mode
;
5172 enum machine_mode inner
;
5174 units
= GET_MODE_NUNITS (mode
);
5175 inner
= GET_MODE_INNER (mode
);
5177 v
= rtvec_alloc (units
);
5179 /* We need to call this function after we to set CONST0_RTX first. */
5180 if (!CONST0_RTX (inner
))
5183 for (i
= 0; i
< units
; ++i
)
5184 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
5186 tem
= gen_rtx_CONST_VECTOR (mode
, v
);
5190 /* Create some permanent unique rtl objects shared between all functions.
5191 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5194 init_emit_once (line_numbers
)
5198 enum machine_mode mode
;
5199 enum machine_mode double_mode
;
5201 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5203 const_int_htab
= htab_create (37, const_int_htab_hash
,
5204 const_int_htab_eq
, NULL
);
5206 const_double_htab
= htab_create (37, const_double_htab_hash
,
5207 const_double_htab_eq
, NULL
);
5209 mem_attrs_htab
= htab_create (37, mem_attrs_htab_hash
,
5210 mem_attrs_htab_eq
, NULL
);
5212 no_line_numbers
= ! line_numbers
;
5214 /* Compute the word and byte modes. */
5216 byte_mode
= VOIDmode
;
5217 word_mode
= VOIDmode
;
5218 double_mode
= VOIDmode
;
5220 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5221 mode
= GET_MODE_WIDER_MODE (mode
))
5223 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5224 && byte_mode
== VOIDmode
)
5227 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5228 && word_mode
== VOIDmode
)
5232 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5233 mode
= GET_MODE_WIDER_MODE (mode
))
5235 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5236 && double_mode
== VOIDmode
)
5240 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5242 /* Assign register numbers to the globally defined register rtx.
5243 This must be done at runtime because the register number field
5244 is in a union and some compilers can't initialize unions. */
5246 pc_rtx
= gen_rtx (PC
, VOIDmode
);
5247 cc0_rtx
= gen_rtx (CC0
, VOIDmode
);
5248 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5249 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5250 if (hard_frame_pointer_rtx
== 0)
5251 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
5252 HARD_FRAME_POINTER_REGNUM
);
5253 if (arg_pointer_rtx
== 0)
5254 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5255 virtual_incoming_args_rtx
=
5256 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5257 virtual_stack_vars_rtx
=
5258 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5259 virtual_stack_dynamic_rtx
=
5260 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5261 virtual_outgoing_args_rtx
=
5262 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5263 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5265 /* Initialize RTL for commonly used hard registers. These are
5266 copied into regno_reg_rtx as we begin to compile each function. */
5267 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5268 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5270 #ifdef INIT_EXPANDERS
5271 /* This is to initialize {init|mark|free}_machine_status before the first
5272 call to push_function_context_to. This is needed by the Chill front
5273 end which calls push_function_context_to before the first call to
5274 init_function_start. */
5278 /* Create the unique rtx's for certain rtx codes and operand values. */
5280 /* Don't use gen_rtx here since gen_rtx in this case
5281 tries to use these variables. */
5282 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5283 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5284 gen_rtx_raw_CONST_INT (VOIDmode
, i
);
5286 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5287 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5288 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5290 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5292 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5293 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5294 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5295 REAL_VALUE_FROM_INT (dconstm1
, -1, -1, double_mode
);
5297 for (i
= 0; i
<= 2; i
++)
5299 REAL_VALUE_TYPE
*r
=
5300 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5302 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
5303 mode
= GET_MODE_WIDER_MODE (mode
))
5304 const_tiny_rtx
[i
][(int) mode
] =
5305 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5307 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5309 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
5310 mode
= GET_MODE_WIDER_MODE (mode
))
5311 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5313 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5315 mode
= GET_MODE_WIDER_MODE (mode
))
5316 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5319 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5321 mode
= GET_MODE_WIDER_MODE (mode
))
5322 const_tiny_rtx
[0][(int) mode
] = gen_const_vector_0 (mode
);
5324 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5326 mode
= GET_MODE_WIDER_MODE (mode
))
5327 const_tiny_rtx
[0][(int) mode
] = gen_const_vector_0 (mode
);
5329 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5330 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5331 const_tiny_rtx
[0][i
] = const0_rtx
;
5333 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5334 if (STORE_FLAG_VALUE
== 1)
5335 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5337 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5338 return_address_pointer_rtx
5339 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5343 struct_value_rtx
= STRUCT_VALUE
;
5345 struct_value_rtx
= gen_rtx_REG (Pmode
, STRUCT_VALUE_REGNUM
);
5348 #ifdef STRUCT_VALUE_INCOMING
5349 struct_value_incoming_rtx
= STRUCT_VALUE_INCOMING
;
5351 #ifdef STRUCT_VALUE_INCOMING_REGNUM
5352 struct_value_incoming_rtx
5353 = gen_rtx_REG (Pmode
, STRUCT_VALUE_INCOMING_REGNUM
);
5355 struct_value_incoming_rtx
= struct_value_rtx
;
5359 #ifdef STATIC_CHAIN_REGNUM
5360 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
5362 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5363 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
5364 static_chain_incoming_rtx
5365 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
5368 static_chain_incoming_rtx
= static_chain_rtx
;
5372 static_chain_rtx
= STATIC_CHAIN
;
5374 #ifdef STATIC_CHAIN_INCOMING
5375 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
5377 static_chain_incoming_rtx
= static_chain_rtx
;
5381 if (PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5382 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5385 /* Query and clear/ restore no_line_numbers. This is used by the
5386 switch / case handling in stmt.c to give proper line numbers in
5387 warnings about unreachable code. */
5390 force_line_numbers ()
5392 int old
= no_line_numbers
;
5394 no_line_numbers
= 0;
5396 force_next_line_note ();
5401 restore_line_number_status (old_value
)
5404 no_line_numbers
= old_value
;
5407 /* Produce exact duplicate of insn INSN after AFTER.
5408 Care updating of libcall regions if present. */
5411 emit_copy_of_insn_after (insn
, after
)
5415 rtx note1
, note2
, link
;
5417 switch (GET_CODE (insn
))
5420 new = emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5424 new = emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5428 new = emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5429 if (CALL_INSN_FUNCTION_USAGE (insn
))
5430 CALL_INSN_FUNCTION_USAGE (new)
5431 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5432 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn
);
5433 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn
);
5440 /* Update LABEL_NUSES. */
5441 mark_jump_label (PATTERN (new), new, 0);
5443 INSN_SCOPE (new) = INSN_SCOPE (insn
);
5445 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5447 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5448 if (REG_NOTE_KIND (link
) != REG_LABEL
)
5450 if (GET_CODE (link
) == EXPR_LIST
)
5452 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link
),
5457 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link
),
5462 /* Fix the libcall sequences. */
5463 if ((note1
= find_reg_note (new, REG_RETVAL
, NULL_RTX
)) != NULL
)
5466 while ((note2
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)) == NULL
)
5468 XEXP (note1
, 0) = p
;
5469 XEXP (note2
, 0) = new;
5474 #include "gt-emit-rtl.h"