rephrase text
[official-gcc.git] / gcc / ifcvt.c
blob1f4773a6d459bfd5f427559bce7fc65e3c9098bb
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "real.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
69 #define IFCVT_MULTIPLE_DUMPS 1
71 #define NULL_BLOCK ((basic_block) NULL)
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static basic_block block_fallthru (basic_block);
92 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
93 static rtx cond_exec_get_condition (rtx);
94 static rtx noce_get_condition (rtx, rtx *, bool);
95 static int noce_operand_ok (const_rtx);
96 static void merge_if_block (ce_if_block_t *);
97 static int find_cond_trap (basic_block, edge, edge);
98 static basic_block find_if_header (basic_block, int);
99 static int block_jumps_and_fallthru_p (basic_block, basic_block);
100 static int noce_find_if_block (basic_block, edge, edge, int);
101 static int cond_exec_find_if_block (ce_if_block_t *);
102 static int find_if_case_1 (basic_block, edge, edge);
103 static int find_if_case_2 (basic_block, edge, edge);
104 static int find_memory (rtx *, void *);
105 static int dead_or_predicable (basic_block, basic_block, basic_block,
106 basic_block, int);
107 static void noce_emit_move_insn (rtx, rtx);
108 static rtx block_has_only_trap (basic_block);
110 /* Count the number of non-jump active insns in BB. */
112 static int
113 count_bb_insns (const_basic_block bb)
115 int count = 0;
116 rtx insn = BB_HEAD (bb);
118 while (1)
120 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
121 count++;
123 if (insn == BB_END (bb))
124 break;
125 insn = NEXT_INSN (insn);
128 return count;
131 /* Determine whether the total insn_rtx_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated. */
135 static bool
136 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
138 int count = 0;
139 rtx insn = BB_HEAD (bb);
140 bool speed = optimize_bb_for_speed_p (bb);
142 while (1)
144 if (NONJUMP_INSN_P (insn))
146 int cost = insn_rtx_cost (PATTERN (insn), speed);
147 if (cost == 0)
148 return false;
150 /* If this instruction is the load or set of a "stack" register,
151 such as a floating point register on x87, then the cost of
152 speculatively executing this insn may need to include
153 the additional cost of popping its result off of the
154 register stack. Unfortunately, correctly recognizing and
155 accounting for this additional overhead is tricky, so for
156 now we simply prohibit such speculative execution. */
157 #ifdef STACK_REGS
159 rtx set = single_set (insn);
160 if (set && STACK_REG_P (SET_DEST (set)))
161 return false;
163 #endif
165 count += cost;
166 if (count >= max_cost)
167 return false;
169 else if (CALL_P (insn))
170 return false;
172 if (insn == BB_END (bb))
173 break;
174 insn = NEXT_INSN (insn);
177 return true;
180 /* Return the first non-jump active insn in the basic block. */
182 static rtx
183 first_active_insn (basic_block bb)
185 rtx insn = BB_HEAD (bb);
187 if (LABEL_P (insn))
189 if (insn == BB_END (bb))
190 return NULL_RTX;
191 insn = NEXT_INSN (insn);
194 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
196 if (insn == BB_END (bb))
197 return NULL_RTX;
198 insn = NEXT_INSN (insn);
201 if (JUMP_P (insn))
202 return NULL_RTX;
204 return insn;
207 /* Return the last non-jump active (non-jump) insn in the basic block. */
209 static rtx
210 last_active_insn (basic_block bb, int skip_use_p)
212 rtx insn = BB_END (bb);
213 rtx head = BB_HEAD (bb);
215 while (NOTE_P (insn)
216 || JUMP_P (insn)
217 || DEBUG_INSN_P (insn)
218 || (skip_use_p
219 && NONJUMP_INSN_P (insn)
220 && GET_CODE (PATTERN (insn)) == USE))
222 if (insn == head)
223 return NULL_RTX;
224 insn = PREV_INSN (insn);
227 if (LABEL_P (insn))
228 return NULL_RTX;
230 return insn;
233 /* Return the basic block reached by falling though the basic block BB. */
235 static basic_block
236 block_fallthru (basic_block bb)
238 edge e;
239 edge_iterator ei;
241 FOR_EACH_EDGE (e, ei, bb->succs)
242 if (e->flags & EDGE_FALLTHRU)
243 break;
245 return (e) ? e->dest : NULL_BLOCK;
248 /* Go through a bunch of insns, converting them to conditional
249 execution format if possible. Return TRUE if all of the non-note
250 insns were processed. */
252 static int
253 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
254 /* if block information */rtx start,
255 /* first insn to look at */rtx end,
256 /* last insn to look at */rtx test,
257 /* conditional execution test */rtx prob_val,
258 /* probability of branch taken. */int mod_ok)
260 int must_be_last = FALSE;
261 rtx insn;
262 rtx xtest;
263 rtx pattern;
265 if (!start || !end)
266 return FALSE;
268 for (insn = start; ; insn = NEXT_INSN (insn))
270 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
271 goto insn_done;
273 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
275 /* Remove USE insns that get in the way. */
276 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
278 /* ??? Ug. Actually unlinking the thing is problematic,
279 given what we'd have to coordinate with our callers. */
280 SET_INSN_DELETED (insn);
281 goto insn_done;
284 /* Last insn wasn't last? */
285 if (must_be_last)
286 return FALSE;
288 if (modified_in_p (test, insn))
290 if (!mod_ok)
291 return FALSE;
292 must_be_last = TRUE;
295 /* Now build the conditional form of the instruction. */
296 pattern = PATTERN (insn);
297 xtest = copy_rtx (test);
299 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
300 two conditions. */
301 if (GET_CODE (pattern) == COND_EXEC)
303 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
304 return FALSE;
306 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
307 COND_EXEC_TEST (pattern));
308 pattern = COND_EXEC_CODE (pattern);
311 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
313 /* If the machine needs to modify the insn being conditionally executed,
314 say for example to force a constant integer operand into a temp
315 register, do so here. */
316 #ifdef IFCVT_MODIFY_INSN
317 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
318 if (! pattern)
319 return FALSE;
320 #endif
322 validate_change (insn, &PATTERN (insn), pattern, 1);
324 if (CALL_P (insn) && prob_val)
325 validate_change (insn, &REG_NOTES (insn),
326 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
327 REG_NOTES (insn)), 1);
329 insn_done:
330 if (insn == end)
331 break;
334 return TRUE;
337 /* Return the condition for a jump. Do not do any special processing. */
339 static rtx
340 cond_exec_get_condition (rtx jump)
342 rtx test_if, cond;
344 if (any_condjump_p (jump))
345 test_if = SET_SRC (pc_set (jump));
346 else
347 return NULL_RTX;
348 cond = XEXP (test_if, 0);
350 /* If this branches to JUMP_LABEL when the condition is false,
351 reverse the condition. */
352 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
353 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
355 enum rtx_code rev = reversed_comparison_code (cond, jump);
356 if (rev == UNKNOWN)
357 return NULL_RTX;
359 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
360 XEXP (cond, 1));
363 return cond;
366 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
367 to conditional execution. Return TRUE if we were successful at
368 converting the block. */
370 static int
371 cond_exec_process_if_block (ce_if_block_t * ce_info,
372 /* if block information */int do_multiple_p)
374 basic_block test_bb = ce_info->test_bb; /* last test block */
375 basic_block then_bb = ce_info->then_bb; /* THEN */
376 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
377 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
378 rtx then_start; /* first insn in THEN block */
379 rtx then_end; /* last insn + 1 in THEN block */
380 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
381 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
382 int max; /* max # of insns to convert. */
383 int then_mod_ok; /* whether conditional mods are ok in THEN */
384 rtx true_expr; /* test for else block insns */
385 rtx false_expr; /* test for then block insns */
386 rtx true_prob_val; /* probability of else block */
387 rtx false_prob_val; /* probability of then block */
388 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
389 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
390 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
391 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
392 int then_n_insns, else_n_insns, n_insns;
393 enum rtx_code false_code;
395 /* If test is comprised of && or || elements, and we've failed at handling
396 all of them together, just use the last test if it is the special case of
397 && elements without an ELSE block. */
398 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
400 if (else_bb || ! ce_info->and_and_p)
401 return FALSE;
403 ce_info->test_bb = test_bb = ce_info->last_test_bb;
404 ce_info->num_multiple_test_blocks = 0;
405 ce_info->num_and_and_blocks = 0;
406 ce_info->num_or_or_blocks = 0;
409 /* Find the conditional jump to the ELSE or JOIN part, and isolate
410 the test. */
411 test_expr = cond_exec_get_condition (BB_END (test_bb));
412 if (! test_expr)
413 return FALSE;
415 /* If the conditional jump is more than just a conditional jump,
416 then we can not do conditional execution conversion on this block. */
417 if (! onlyjump_p (BB_END (test_bb)))
418 return FALSE;
420 /* Collect the bounds of where we're to search, skipping any labels, jumps
421 and notes at the beginning and end of the block. Then count the total
422 number of insns and see if it is small enough to convert. */
423 then_start = first_active_insn (then_bb);
424 then_end = last_active_insn (then_bb, TRUE);
425 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
426 n_insns = then_n_insns;
427 max = MAX_CONDITIONAL_EXECUTE;
429 if (else_bb)
431 int n_matching;
433 max *= 2;
434 else_start = first_active_insn (else_bb);
435 else_end = last_active_insn (else_bb, TRUE);
436 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
437 n_insns += else_n_insns;
439 /* Look for matching sequences at the head and tail of the two blocks,
440 and limit the range of insns to be converted if possible. */
441 n_matching = flow_find_cross_jump (then_bb, else_bb,
442 &then_first_tail, &else_first_tail);
443 if (then_first_tail == BB_HEAD (then_bb))
444 then_start = then_end = NULL_RTX;
445 if (else_first_tail == BB_HEAD (else_bb))
446 else_start = else_end = NULL_RTX;
448 if (n_matching > 0)
450 if (then_end)
451 then_end = prev_active_insn (then_first_tail);
452 if (else_end)
453 else_end = prev_active_insn (else_first_tail);
454 n_insns -= 2 * n_matching;
457 if (then_start && else_start)
459 int longest_match = MIN (then_n_insns - n_matching,
460 else_n_insns - n_matching);
461 n_matching
462 = flow_find_head_matching_sequence (then_bb, else_bb,
463 &then_last_head,
464 &else_last_head,
465 longest_match);
467 if (n_matching > 0)
469 rtx insn;
471 /* We won't pass the insns in the head sequence to
472 cond_exec_process_insns, so we need to test them here
473 to make sure that they don't clobber the condition. */
474 for (insn = BB_HEAD (then_bb);
475 insn != NEXT_INSN (then_last_head);
476 insn = NEXT_INSN (insn))
477 if (!LABEL_P (insn) && !NOTE_P (insn)
478 && !DEBUG_INSN_P (insn)
479 && modified_in_p (test_expr, insn))
480 return FALSE;
483 if (then_last_head == then_end)
484 then_start = then_end = NULL_RTX;
485 if (else_last_head == else_end)
486 else_start = else_end = NULL_RTX;
488 if (n_matching > 0)
490 if (then_start)
491 then_start = next_active_insn (then_last_head);
492 if (else_start)
493 else_start = next_active_insn (else_last_head);
494 n_insns -= 2 * n_matching;
499 if (n_insns > max)
500 return FALSE;
502 /* Map test_expr/test_jump into the appropriate MD tests to use on
503 the conditionally executed code. */
505 true_expr = test_expr;
507 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
508 if (false_code != UNKNOWN)
509 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
510 XEXP (true_expr, 0), XEXP (true_expr, 1));
511 else
512 false_expr = NULL_RTX;
514 #ifdef IFCVT_MODIFY_TESTS
515 /* If the machine description needs to modify the tests, such as setting a
516 conditional execution register from a comparison, it can do so here. */
517 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
519 /* See if the conversion failed. */
520 if (!true_expr || !false_expr)
521 goto fail;
522 #endif
524 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
525 if (true_prob_val)
527 true_prob_val = XEXP (true_prob_val, 0);
528 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
530 else
531 false_prob_val = NULL_RTX;
533 /* If we have && or || tests, do them here. These tests are in the adjacent
534 blocks after the first block containing the test. */
535 if (ce_info->num_multiple_test_blocks > 0)
537 basic_block bb = test_bb;
538 basic_block last_test_bb = ce_info->last_test_bb;
540 if (! false_expr)
541 goto fail;
545 rtx start, end;
546 rtx t, f;
547 enum rtx_code f_code;
549 bb = block_fallthru (bb);
550 start = first_active_insn (bb);
551 end = last_active_insn (bb, TRUE);
552 if (start
553 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
554 false_prob_val, FALSE))
555 goto fail;
557 /* If the conditional jump is more than just a conditional jump, then
558 we can not do conditional execution conversion on this block. */
559 if (! onlyjump_p (BB_END (bb)))
560 goto fail;
562 /* Find the conditional jump and isolate the test. */
563 t = cond_exec_get_condition (BB_END (bb));
564 if (! t)
565 goto fail;
567 f_code = reversed_comparison_code (t, BB_END (bb));
568 if (f_code == UNKNOWN)
569 goto fail;
571 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
572 if (ce_info->and_and_p)
574 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
575 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
577 else
579 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
580 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
583 /* If the machine description needs to modify the tests, such as
584 setting a conditional execution register from a comparison, it can
585 do so here. */
586 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
587 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
589 /* See if the conversion failed. */
590 if (!t || !f)
591 goto fail;
592 #endif
594 true_expr = t;
595 false_expr = f;
597 while (bb != last_test_bb);
600 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
601 on then THEN block. */
602 then_mod_ok = (else_bb == NULL_BLOCK);
604 /* Go through the THEN and ELSE blocks converting the insns if possible
605 to conditional execution. */
607 if (then_end
608 && (! false_expr
609 || ! cond_exec_process_insns (ce_info, then_start, then_end,
610 false_expr, false_prob_val,
611 then_mod_ok)))
612 goto fail;
614 if (else_bb && else_end
615 && ! cond_exec_process_insns (ce_info, else_start, else_end,
616 true_expr, true_prob_val, TRUE))
617 goto fail;
619 /* If we cannot apply the changes, fail. Do not go through the normal fail
620 processing, since apply_change_group will call cancel_changes. */
621 if (! apply_change_group ())
623 #ifdef IFCVT_MODIFY_CANCEL
624 /* Cancel any machine dependent changes. */
625 IFCVT_MODIFY_CANCEL (ce_info);
626 #endif
627 return FALSE;
630 #ifdef IFCVT_MODIFY_FINAL
631 /* Do any machine dependent final modifications. */
632 IFCVT_MODIFY_FINAL (ce_info);
633 #endif
635 /* Conversion succeeded. */
636 if (dump_file)
637 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
638 n_insns, (n_insns == 1) ? " was" : "s were");
640 /* Merge the blocks! If we had matching sequences, make sure to delete one
641 copy at the appropriate location first: delete the copy in the THEN branch
642 for a tail sequence so that the remaining one is executed last for both
643 branches, and delete the copy in the ELSE branch for a head sequence so
644 that the remaining one is executed first for both branches. */
645 if (then_first_tail)
647 rtx from = then_first_tail;
648 if (!INSN_P (from))
649 from = next_active_insn (from);
650 delete_insn_chain (from, BB_END (then_bb), false);
652 if (else_last_head)
653 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
655 merge_if_block (ce_info);
656 cond_exec_changed_p = TRUE;
657 return TRUE;
659 fail:
660 #ifdef IFCVT_MODIFY_CANCEL
661 /* Cancel any machine dependent changes. */
662 IFCVT_MODIFY_CANCEL (ce_info);
663 #endif
665 cancel_changes (0);
666 return FALSE;
669 /* Used by noce_process_if_block to communicate with its subroutines.
671 The subroutines know that A and B may be evaluated freely. They
672 know that X is a register. They should insert new instructions
673 before cond_earliest. */
675 struct noce_if_info
677 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
678 basic_block test_bb, then_bb, else_bb, join_bb;
680 /* The jump that ends TEST_BB. */
681 rtx jump;
683 /* The jump condition. */
684 rtx cond;
686 /* New insns should be inserted before this one. */
687 rtx cond_earliest;
689 /* Insns in the THEN and ELSE block. There is always just this
690 one insns in those blocks. The insns are single_set insns.
691 If there was no ELSE block, INSN_B is the last insn before
692 COND_EARLIEST, or NULL_RTX. In the former case, the insn
693 operands are still valid, as if INSN_B was moved down below
694 the jump. */
695 rtx insn_a, insn_b;
697 /* The SET_SRC of INSN_A and INSN_B. */
698 rtx a, b;
700 /* The SET_DEST of INSN_A. */
701 rtx x;
703 /* True if this if block is not canonical. In the canonical form of
704 if blocks, the THEN_BB is the block reached via the fallthru edge
705 from TEST_BB. For the noce transformations, we allow the symmetric
706 form as well. */
707 bool then_else_reversed;
709 /* Estimated cost of the particular branch instruction. */
710 int branch_cost;
713 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
714 static int noce_try_move (struct noce_if_info *);
715 static int noce_try_store_flag (struct noce_if_info *);
716 static int noce_try_addcc (struct noce_if_info *);
717 static int noce_try_store_flag_constants (struct noce_if_info *);
718 static int noce_try_store_flag_mask (struct noce_if_info *);
719 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
720 rtx, rtx, rtx);
721 static int noce_try_cmove (struct noce_if_info *);
722 static int noce_try_cmove_arith (struct noce_if_info *);
723 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
724 static int noce_try_minmax (struct noce_if_info *);
725 static int noce_try_abs (struct noce_if_info *);
726 static int noce_try_sign_mask (struct noce_if_info *);
728 /* Helper function for noce_try_store_flag*. */
730 static rtx
731 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
732 int normalize)
734 rtx cond = if_info->cond;
735 int cond_complex;
736 enum rtx_code code;
738 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
739 || ! general_operand (XEXP (cond, 1), VOIDmode));
741 /* If earliest == jump, or when the condition is complex, try to
742 build the store_flag insn directly. */
744 if (cond_complex)
746 rtx set = pc_set (if_info->jump);
747 cond = XEXP (SET_SRC (set), 0);
748 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
749 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
750 reversep = !reversep;
751 if (if_info->then_else_reversed)
752 reversep = !reversep;
755 if (reversep)
756 code = reversed_comparison_code (cond, if_info->jump);
757 else
758 code = GET_CODE (cond);
760 if ((if_info->cond_earliest == if_info->jump || cond_complex)
761 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
763 rtx tmp;
765 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
766 XEXP (cond, 1));
767 tmp = gen_rtx_SET (VOIDmode, x, tmp);
769 start_sequence ();
770 tmp = emit_insn (tmp);
772 if (recog_memoized (tmp) >= 0)
774 tmp = get_insns ();
775 end_sequence ();
776 emit_insn (tmp);
778 if_info->cond_earliest = if_info->jump;
780 return x;
783 end_sequence ();
786 /* Don't even try if the comparison operands or the mode of X are weird. */
787 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
788 return NULL_RTX;
790 return emit_store_flag (x, code, XEXP (cond, 0),
791 XEXP (cond, 1), VOIDmode,
792 (code == LTU || code == LEU
793 || code == GEU || code == GTU), normalize);
796 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
797 X is the destination/target and Y is the value to copy. */
799 static void
800 noce_emit_move_insn (rtx x, rtx y)
802 enum machine_mode outmode;
803 rtx outer, inner;
804 int bitpos;
806 if (GET_CODE (x) != STRICT_LOW_PART)
808 rtx seq, insn, target;
809 optab ot;
811 start_sequence ();
812 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
813 otherwise construct a suitable SET pattern ourselves. */
814 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
815 ? emit_move_insn (x, y)
816 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
817 seq = get_insns ();
818 end_sequence ();
820 if (recog_memoized (insn) <= 0)
822 if (GET_CODE (x) == ZERO_EXTRACT)
824 rtx op = XEXP (x, 0);
825 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
826 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
828 /* store_bit_field expects START to be relative to
829 BYTES_BIG_ENDIAN and adjusts this value for machines with
830 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
831 invoke store_bit_field again it is necessary to have the START
832 value from the first call. */
833 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
835 if (MEM_P (op))
836 start = BITS_PER_UNIT - start - size;
837 else
839 gcc_assert (REG_P (op));
840 start = BITS_PER_WORD - start - size;
844 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
845 store_bit_field (op, size, start, GET_MODE (x), y);
846 return;
849 switch (GET_RTX_CLASS (GET_CODE (y)))
851 case RTX_UNARY:
852 ot = code_to_optab[GET_CODE (y)];
853 if (ot)
855 start_sequence ();
856 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
857 if (target != NULL_RTX)
859 if (target != x)
860 emit_move_insn (x, target);
861 seq = get_insns ();
863 end_sequence ();
865 break;
867 case RTX_BIN_ARITH:
868 case RTX_COMM_ARITH:
869 ot = code_to_optab[GET_CODE (y)];
870 if (ot)
872 start_sequence ();
873 target = expand_binop (GET_MODE (y), ot,
874 XEXP (y, 0), XEXP (y, 1),
875 x, 0, OPTAB_DIRECT);
876 if (target != NULL_RTX)
878 if (target != x)
879 emit_move_insn (x, target);
880 seq = get_insns ();
882 end_sequence ();
884 break;
886 default:
887 break;
891 emit_insn (seq);
892 return;
895 outer = XEXP (x, 0);
896 inner = XEXP (outer, 0);
897 outmode = GET_MODE (outer);
898 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
899 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
902 /* Return sequence of instructions generated by if conversion. This
903 function calls end_sequence() to end the current stream, ensures
904 that are instructions are unshared, recognizable non-jump insns.
905 On failure, this function returns a NULL_RTX. */
907 static rtx
908 end_ifcvt_sequence (struct noce_if_info *if_info)
910 rtx insn;
911 rtx seq = get_insns ();
913 set_used_flags (if_info->x);
914 set_used_flags (if_info->cond);
915 unshare_all_rtl_in_chain (seq);
916 end_sequence ();
918 /* Make sure that all of the instructions emitted are recognizable,
919 and that we haven't introduced a new jump instruction.
920 As an exercise for the reader, build a general mechanism that
921 allows proper placement of required clobbers. */
922 for (insn = seq; insn; insn = NEXT_INSN (insn))
923 if (JUMP_P (insn)
924 || recog_memoized (insn) == -1)
925 return NULL_RTX;
927 return seq;
930 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
931 "if (a == b) x = a; else x = b" into "x = b". */
933 static int
934 noce_try_move (struct noce_if_info *if_info)
936 rtx cond = if_info->cond;
937 enum rtx_code code = GET_CODE (cond);
938 rtx y, seq;
940 if (code != NE && code != EQ)
941 return FALSE;
943 /* This optimization isn't valid if either A or B could be a NaN
944 or a signed zero. */
945 if (HONOR_NANS (GET_MODE (if_info->x))
946 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
947 return FALSE;
949 /* Check whether the operands of the comparison are A and in
950 either order. */
951 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
952 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
953 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
954 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
956 y = (code == EQ) ? if_info->a : if_info->b;
958 /* Avoid generating the move if the source is the destination. */
959 if (! rtx_equal_p (if_info->x, y))
961 start_sequence ();
962 noce_emit_move_insn (if_info->x, y);
963 seq = end_ifcvt_sequence (if_info);
964 if (!seq)
965 return FALSE;
967 emit_insn_before_setloc (seq, if_info->jump,
968 INSN_LOCATOR (if_info->insn_a));
970 return TRUE;
972 return FALSE;
975 /* Convert "if (test) x = 1; else x = 0".
977 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
978 tried in noce_try_store_flag_constants after noce_try_cmove has had
979 a go at the conversion. */
981 static int
982 noce_try_store_flag (struct noce_if_info *if_info)
984 int reversep;
985 rtx target, seq;
987 if (CONST_INT_P (if_info->b)
988 && INTVAL (if_info->b) == STORE_FLAG_VALUE
989 && if_info->a == const0_rtx)
990 reversep = 0;
991 else if (if_info->b == const0_rtx
992 && CONST_INT_P (if_info->a)
993 && INTVAL (if_info->a) == STORE_FLAG_VALUE
994 && (reversed_comparison_code (if_info->cond, if_info->jump)
995 != UNKNOWN))
996 reversep = 1;
997 else
998 return FALSE;
1000 start_sequence ();
1002 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1003 if (target)
1005 if (target != if_info->x)
1006 noce_emit_move_insn (if_info->x, target);
1008 seq = end_ifcvt_sequence (if_info);
1009 if (! seq)
1010 return FALSE;
1012 emit_insn_before_setloc (seq, if_info->jump,
1013 INSN_LOCATOR (if_info->insn_a));
1014 return TRUE;
1016 else
1018 end_sequence ();
1019 return FALSE;
1023 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1025 static int
1026 noce_try_store_flag_constants (struct noce_if_info *if_info)
1028 rtx target, seq;
1029 int reversep;
1030 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1031 int normalize, can_reverse;
1032 enum machine_mode mode;
1034 if (CONST_INT_P (if_info->a)
1035 && CONST_INT_P (if_info->b))
1037 mode = GET_MODE (if_info->x);
1038 ifalse = INTVAL (if_info->a);
1039 itrue = INTVAL (if_info->b);
1041 /* Make sure we can represent the difference between the two values. */
1042 if ((itrue - ifalse > 0)
1043 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1044 return FALSE;
1046 diff = trunc_int_for_mode (itrue - ifalse, mode);
1048 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1049 != UNKNOWN);
1051 reversep = 0;
1052 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1053 normalize = 0;
1054 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1055 && (STORE_FLAG_VALUE == 1
1056 || if_info->branch_cost >= 2))
1057 normalize = 1;
1058 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1059 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1060 normalize = 1, reversep = 1;
1061 else if (itrue == -1
1062 && (STORE_FLAG_VALUE == -1
1063 || if_info->branch_cost >= 2))
1064 normalize = -1;
1065 else if (ifalse == -1 && can_reverse
1066 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1067 normalize = -1, reversep = 1;
1068 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1069 || if_info->branch_cost >= 3)
1070 normalize = -1;
1071 else
1072 return FALSE;
1074 if (reversep)
1076 tmp = itrue; itrue = ifalse; ifalse = tmp;
1077 diff = trunc_int_for_mode (-diff, mode);
1080 start_sequence ();
1081 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1082 if (! target)
1084 end_sequence ();
1085 return FALSE;
1088 /* if (test) x = 3; else x = 4;
1089 => x = 3 + (test == 0); */
1090 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1092 target = expand_simple_binop (mode,
1093 (diff == STORE_FLAG_VALUE
1094 ? PLUS : MINUS),
1095 GEN_INT (ifalse), target, if_info->x, 0,
1096 OPTAB_WIDEN);
1099 /* if (test) x = 8; else x = 0;
1100 => x = (test != 0) << 3; */
1101 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1103 target = expand_simple_binop (mode, ASHIFT,
1104 target, GEN_INT (tmp), if_info->x, 0,
1105 OPTAB_WIDEN);
1108 /* if (test) x = -1; else x = b;
1109 => x = -(test != 0) | b; */
1110 else if (itrue == -1)
1112 target = expand_simple_binop (mode, IOR,
1113 target, GEN_INT (ifalse), if_info->x, 0,
1114 OPTAB_WIDEN);
1117 /* if (test) x = a; else x = b;
1118 => x = (-(test != 0) & (b - a)) + a; */
1119 else
1121 target = expand_simple_binop (mode, AND,
1122 target, GEN_INT (diff), if_info->x, 0,
1123 OPTAB_WIDEN);
1124 if (target)
1125 target = expand_simple_binop (mode, PLUS,
1126 target, GEN_INT (ifalse),
1127 if_info->x, 0, OPTAB_WIDEN);
1130 if (! target)
1132 end_sequence ();
1133 return FALSE;
1136 if (target != if_info->x)
1137 noce_emit_move_insn (if_info->x, target);
1139 seq = end_ifcvt_sequence (if_info);
1140 if (!seq)
1141 return FALSE;
1143 emit_insn_before_setloc (seq, if_info->jump,
1144 INSN_LOCATOR (if_info->insn_a));
1145 return TRUE;
1148 return FALSE;
1151 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1152 similarly for "foo--". */
1154 static int
1155 noce_try_addcc (struct noce_if_info *if_info)
1157 rtx target, seq;
1158 int subtract, normalize;
1160 if (GET_CODE (if_info->a) == PLUS
1161 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1162 && (reversed_comparison_code (if_info->cond, if_info->jump)
1163 != UNKNOWN))
1165 rtx cond = if_info->cond;
1166 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1168 /* First try to use addcc pattern. */
1169 if (general_operand (XEXP (cond, 0), VOIDmode)
1170 && general_operand (XEXP (cond, 1), VOIDmode))
1172 start_sequence ();
1173 target = emit_conditional_add (if_info->x, code,
1174 XEXP (cond, 0),
1175 XEXP (cond, 1),
1176 VOIDmode,
1177 if_info->b,
1178 XEXP (if_info->a, 1),
1179 GET_MODE (if_info->x),
1180 (code == LTU || code == GEU
1181 || code == LEU || code == GTU));
1182 if (target)
1184 if (target != if_info->x)
1185 noce_emit_move_insn (if_info->x, target);
1187 seq = end_ifcvt_sequence (if_info);
1188 if (!seq)
1189 return FALSE;
1191 emit_insn_before_setloc (seq, if_info->jump,
1192 INSN_LOCATOR (if_info->insn_a));
1193 return TRUE;
1195 end_sequence ();
1198 /* If that fails, construct conditional increment or decrement using
1199 setcc. */
1200 if (if_info->branch_cost >= 2
1201 && (XEXP (if_info->a, 1) == const1_rtx
1202 || XEXP (if_info->a, 1) == constm1_rtx))
1204 start_sequence ();
1205 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1206 subtract = 0, normalize = 0;
1207 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1208 subtract = 1, normalize = 0;
1209 else
1210 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1213 target = noce_emit_store_flag (if_info,
1214 gen_reg_rtx (GET_MODE (if_info->x)),
1215 1, normalize);
1217 if (target)
1218 target = expand_simple_binop (GET_MODE (if_info->x),
1219 subtract ? MINUS : PLUS,
1220 if_info->b, target, if_info->x,
1221 0, OPTAB_WIDEN);
1222 if (target)
1224 if (target != if_info->x)
1225 noce_emit_move_insn (if_info->x, target);
1227 seq = end_ifcvt_sequence (if_info);
1228 if (!seq)
1229 return FALSE;
1231 emit_insn_before_setloc (seq, if_info->jump,
1232 INSN_LOCATOR (if_info->insn_a));
1233 return TRUE;
1235 end_sequence ();
1239 return FALSE;
1242 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1244 static int
1245 noce_try_store_flag_mask (struct noce_if_info *if_info)
1247 rtx target, seq;
1248 int reversep;
1250 reversep = 0;
1251 if ((if_info->branch_cost >= 2
1252 || STORE_FLAG_VALUE == -1)
1253 && ((if_info->a == const0_rtx
1254 && rtx_equal_p (if_info->b, if_info->x))
1255 || ((reversep = (reversed_comparison_code (if_info->cond,
1256 if_info->jump)
1257 != UNKNOWN))
1258 && if_info->b == const0_rtx
1259 && rtx_equal_p (if_info->a, if_info->x))))
1261 start_sequence ();
1262 target = noce_emit_store_flag (if_info,
1263 gen_reg_rtx (GET_MODE (if_info->x)),
1264 reversep, -1);
1265 if (target)
1266 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1267 if_info->x,
1268 target, if_info->x, 0,
1269 OPTAB_WIDEN);
1271 if (target)
1273 if (target != if_info->x)
1274 noce_emit_move_insn (if_info->x, target);
1276 seq = end_ifcvt_sequence (if_info);
1277 if (!seq)
1278 return FALSE;
1280 emit_insn_before_setloc (seq, if_info->jump,
1281 INSN_LOCATOR (if_info->insn_a));
1282 return TRUE;
1285 end_sequence ();
1288 return FALSE;
1291 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1293 static rtx
1294 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1295 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1297 /* If earliest == jump, try to build the cmove insn directly.
1298 This is helpful when combine has created some complex condition
1299 (like for alpha's cmovlbs) that we can't hope to regenerate
1300 through the normal interface. */
1302 if (if_info->cond_earliest == if_info->jump)
1304 rtx tmp;
1306 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1307 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1308 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1310 start_sequence ();
1311 tmp = emit_insn (tmp);
1313 if (recog_memoized (tmp) >= 0)
1315 tmp = get_insns ();
1316 end_sequence ();
1317 emit_insn (tmp);
1319 return x;
1322 end_sequence ();
1325 /* Don't even try if the comparison operands are weird. */
1326 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1327 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1328 return NULL_RTX;
1330 #if HAVE_conditional_move
1331 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1332 vtrue, vfalse, GET_MODE (x),
1333 (code == LTU || code == GEU
1334 || code == LEU || code == GTU));
1335 #else
1336 /* We'll never get here, as noce_process_if_block doesn't call the
1337 functions involved. Ifdef code, however, should be discouraged
1338 because it leads to typos in the code not selected. However,
1339 emit_conditional_move won't exist either. */
1340 return NULL_RTX;
1341 #endif
1344 /* Try only simple constants and registers here. More complex cases
1345 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1346 has had a go at it. */
1348 static int
1349 noce_try_cmove (struct noce_if_info *if_info)
1351 enum rtx_code code;
1352 rtx target, seq;
1354 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1355 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1357 start_sequence ();
1359 code = GET_CODE (if_info->cond);
1360 target = noce_emit_cmove (if_info, if_info->x, code,
1361 XEXP (if_info->cond, 0),
1362 XEXP (if_info->cond, 1),
1363 if_info->a, if_info->b);
1365 if (target)
1367 if (target != if_info->x)
1368 noce_emit_move_insn (if_info->x, target);
1370 seq = end_ifcvt_sequence (if_info);
1371 if (!seq)
1372 return FALSE;
1374 emit_insn_before_setloc (seq, if_info->jump,
1375 INSN_LOCATOR (if_info->insn_a));
1376 return TRUE;
1378 else
1380 end_sequence ();
1381 return FALSE;
1385 return FALSE;
1388 /* Try more complex cases involving conditional_move. */
1390 static int
1391 noce_try_cmove_arith (struct noce_if_info *if_info)
1393 rtx a = if_info->a;
1394 rtx b = if_info->b;
1395 rtx x = if_info->x;
1396 rtx orig_a, orig_b;
1397 rtx insn_a, insn_b;
1398 rtx tmp, target;
1399 int is_mem = 0;
1400 int insn_cost;
1401 enum rtx_code code;
1403 /* A conditional move from two memory sources is equivalent to a
1404 conditional on their addresses followed by a load. Don't do this
1405 early because it'll screw alias analysis. Note that we've
1406 already checked for no side effects. */
1407 /* ??? FIXME: Magic number 5. */
1408 if (cse_not_expected
1409 && MEM_P (a) && MEM_P (b)
1410 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1411 && if_info->branch_cost >= 5)
1413 enum machine_mode address_mode
1414 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1416 a = XEXP (a, 0);
1417 b = XEXP (b, 0);
1418 x = gen_reg_rtx (address_mode);
1419 is_mem = 1;
1422 /* ??? We could handle this if we knew that a load from A or B could
1423 not fault. This is also true if we've already loaded
1424 from the address along the path from ENTRY. */
1425 else if (may_trap_p (a) || may_trap_p (b))
1426 return FALSE;
1428 /* if (test) x = a + b; else x = c - d;
1429 => y = a + b;
1430 x = c - d;
1431 if (test)
1432 x = y;
1435 code = GET_CODE (if_info->cond);
1436 insn_a = if_info->insn_a;
1437 insn_b = if_info->insn_b;
1439 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1440 if insn_rtx_cost can't be estimated. */
1441 if (insn_a)
1443 insn_cost = insn_rtx_cost (PATTERN (insn_a),
1444 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1445 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1446 return FALSE;
1448 else
1449 insn_cost = 0;
1451 if (insn_b)
1453 insn_cost += insn_rtx_cost (PATTERN (insn_b),
1454 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1455 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1456 return FALSE;
1459 /* Possibly rearrange operands to make things come out more natural. */
1460 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1462 int reversep = 0;
1463 if (rtx_equal_p (b, x))
1464 reversep = 1;
1465 else if (general_operand (b, GET_MODE (b)))
1466 reversep = 1;
1468 if (reversep)
1470 code = reversed_comparison_code (if_info->cond, if_info->jump);
1471 tmp = a, a = b, b = tmp;
1472 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1476 start_sequence ();
1478 orig_a = a;
1479 orig_b = b;
1481 /* If either operand is complex, load it into a register first.
1482 The best way to do this is to copy the original insn. In this
1483 way we preserve any clobbers etc that the insn may have had.
1484 This is of course not possible in the IS_MEM case. */
1485 if (! general_operand (a, GET_MODE (a)))
1487 rtx set;
1489 if (is_mem)
1491 tmp = gen_reg_rtx (GET_MODE (a));
1492 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1494 else if (! insn_a)
1495 goto end_seq_and_fail;
1496 else
1498 a = gen_reg_rtx (GET_MODE (a));
1499 tmp = copy_rtx (insn_a);
1500 set = single_set (tmp);
1501 SET_DEST (set) = a;
1502 tmp = emit_insn (PATTERN (tmp));
1504 if (recog_memoized (tmp) < 0)
1505 goto end_seq_and_fail;
1507 if (! general_operand (b, GET_MODE (b)))
1509 rtx set, last;
1511 if (is_mem)
1513 tmp = gen_reg_rtx (GET_MODE (b));
1514 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1516 else if (! insn_b)
1517 goto end_seq_and_fail;
1518 else
1520 b = gen_reg_rtx (GET_MODE (b));
1521 tmp = copy_rtx (insn_b);
1522 set = single_set (tmp);
1523 SET_DEST (set) = b;
1524 tmp = PATTERN (tmp);
1527 /* If insn to set up A clobbers any registers B depends on, try to
1528 swap insn that sets up A with the one that sets up B. If even
1529 that doesn't help, punt. */
1530 last = get_last_insn ();
1531 if (last && modified_in_p (orig_b, last))
1533 tmp = emit_insn_before (tmp, get_insns ());
1534 if (modified_in_p (orig_a, tmp))
1535 goto end_seq_and_fail;
1537 else
1538 tmp = emit_insn (tmp);
1540 if (recog_memoized (tmp) < 0)
1541 goto end_seq_and_fail;
1544 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1545 XEXP (if_info->cond, 1), a, b);
1547 if (! target)
1548 goto end_seq_and_fail;
1550 /* If we're handling a memory for above, emit the load now. */
1551 if (is_mem)
1553 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1555 /* Copy over flags as appropriate. */
1556 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1557 MEM_VOLATILE_P (tmp) = 1;
1558 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1559 MEM_IN_STRUCT_P (tmp) = 1;
1560 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1561 MEM_SCALAR_P (tmp) = 1;
1562 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1563 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1564 set_mem_align (tmp,
1565 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1567 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1568 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1570 noce_emit_move_insn (if_info->x, tmp);
1572 else if (target != x)
1573 noce_emit_move_insn (x, target);
1575 tmp = end_ifcvt_sequence (if_info);
1576 if (!tmp)
1577 return FALSE;
1579 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1580 return TRUE;
1582 end_seq_and_fail:
1583 end_sequence ();
1584 return FALSE;
1587 /* For most cases, the simplified condition we found is the best
1588 choice, but this is not the case for the min/max/abs transforms.
1589 For these we wish to know that it is A or B in the condition. */
1591 static rtx
1592 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1593 rtx *earliest)
1595 rtx cond, set, insn;
1596 int reverse;
1598 /* If target is already mentioned in the known condition, return it. */
1599 if (reg_mentioned_p (target, if_info->cond))
1601 *earliest = if_info->cond_earliest;
1602 return if_info->cond;
1605 set = pc_set (if_info->jump);
1606 cond = XEXP (SET_SRC (set), 0);
1607 reverse
1608 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1609 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1610 if (if_info->then_else_reversed)
1611 reverse = !reverse;
1613 /* If we're looking for a constant, try to make the conditional
1614 have that constant in it. There are two reasons why it may
1615 not have the constant we want:
1617 1. GCC may have needed to put the constant in a register, because
1618 the target can't compare directly against that constant. For
1619 this case, we look for a SET immediately before the comparison
1620 that puts a constant in that register.
1622 2. GCC may have canonicalized the conditional, for example
1623 replacing "if x < 4" with "if x <= 3". We can undo that (or
1624 make equivalent types of changes) to get the constants we need
1625 if they're off by one in the right direction. */
1627 if (CONST_INT_P (target))
1629 enum rtx_code code = GET_CODE (if_info->cond);
1630 rtx op_a = XEXP (if_info->cond, 0);
1631 rtx op_b = XEXP (if_info->cond, 1);
1632 rtx prev_insn;
1634 /* First, look to see if we put a constant in a register. */
1635 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1636 if (prev_insn
1637 && BLOCK_FOR_INSN (prev_insn)
1638 == BLOCK_FOR_INSN (if_info->cond_earliest)
1639 && INSN_P (prev_insn)
1640 && GET_CODE (PATTERN (prev_insn)) == SET)
1642 rtx src = find_reg_equal_equiv_note (prev_insn);
1643 if (!src)
1644 src = SET_SRC (PATTERN (prev_insn));
1645 if (CONST_INT_P (src))
1647 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1648 op_a = src;
1649 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1650 op_b = src;
1652 if (CONST_INT_P (op_a))
1654 rtx tmp = op_a;
1655 op_a = op_b;
1656 op_b = tmp;
1657 code = swap_condition (code);
1662 /* Now, look to see if we can get the right constant by
1663 adjusting the conditional. */
1664 if (CONST_INT_P (op_b))
1666 HOST_WIDE_INT desired_val = INTVAL (target);
1667 HOST_WIDE_INT actual_val = INTVAL (op_b);
1669 switch (code)
1671 case LT:
1672 if (actual_val == desired_val + 1)
1674 code = LE;
1675 op_b = GEN_INT (desired_val);
1677 break;
1678 case LE:
1679 if (actual_val == desired_val - 1)
1681 code = LT;
1682 op_b = GEN_INT (desired_val);
1684 break;
1685 case GT:
1686 if (actual_val == desired_val - 1)
1688 code = GE;
1689 op_b = GEN_INT (desired_val);
1691 break;
1692 case GE:
1693 if (actual_val == desired_val + 1)
1695 code = GT;
1696 op_b = GEN_INT (desired_val);
1698 break;
1699 default:
1700 break;
1704 /* If we made any changes, generate a new conditional that is
1705 equivalent to what we started with, but has the right
1706 constants in it. */
1707 if (code != GET_CODE (if_info->cond)
1708 || op_a != XEXP (if_info->cond, 0)
1709 || op_b != XEXP (if_info->cond, 1))
1711 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1712 *earliest = if_info->cond_earliest;
1713 return cond;
1717 cond = canonicalize_condition (if_info->jump, cond, reverse,
1718 earliest, target, false, true);
1719 if (! cond || ! reg_mentioned_p (target, cond))
1720 return NULL;
1722 /* We almost certainly searched back to a different place.
1723 Need to re-verify correct lifetimes. */
1725 /* X may not be mentioned in the range (cond_earliest, jump]. */
1726 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1727 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1728 return NULL;
1730 /* A and B may not be modified in the range [cond_earliest, jump). */
1731 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1732 if (INSN_P (insn)
1733 && (modified_in_p (if_info->a, insn)
1734 || modified_in_p (if_info->b, insn)))
1735 return NULL;
1737 return cond;
1740 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1742 static int
1743 noce_try_minmax (struct noce_if_info *if_info)
1745 rtx cond, earliest, target, seq;
1746 enum rtx_code code, op;
1747 int unsignedp;
1749 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1750 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1751 to get the target to tell us... */
1752 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1753 || HONOR_NANS (GET_MODE (if_info->x)))
1754 return FALSE;
1756 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1757 if (!cond)
1758 return FALSE;
1760 /* Verify the condition is of the form we expect, and canonicalize
1761 the comparison code. */
1762 code = GET_CODE (cond);
1763 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1765 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1766 return FALSE;
1768 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1770 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1771 return FALSE;
1772 code = swap_condition (code);
1774 else
1775 return FALSE;
1777 /* Determine what sort of operation this is. Note that the code is for
1778 a taken branch, so the code->operation mapping appears backwards. */
1779 switch (code)
1781 case LT:
1782 case LE:
1783 case UNLT:
1784 case UNLE:
1785 op = SMAX;
1786 unsignedp = 0;
1787 break;
1788 case GT:
1789 case GE:
1790 case UNGT:
1791 case UNGE:
1792 op = SMIN;
1793 unsignedp = 0;
1794 break;
1795 case LTU:
1796 case LEU:
1797 op = UMAX;
1798 unsignedp = 1;
1799 break;
1800 case GTU:
1801 case GEU:
1802 op = UMIN;
1803 unsignedp = 1;
1804 break;
1805 default:
1806 return FALSE;
1809 start_sequence ();
1811 target = expand_simple_binop (GET_MODE (if_info->x), op,
1812 if_info->a, if_info->b,
1813 if_info->x, unsignedp, OPTAB_WIDEN);
1814 if (! target)
1816 end_sequence ();
1817 return FALSE;
1819 if (target != if_info->x)
1820 noce_emit_move_insn (if_info->x, target);
1822 seq = end_ifcvt_sequence (if_info);
1823 if (!seq)
1824 return FALSE;
1826 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1827 if_info->cond = cond;
1828 if_info->cond_earliest = earliest;
1830 return TRUE;
1833 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1834 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1835 etc. */
1837 static int
1838 noce_try_abs (struct noce_if_info *if_info)
1840 rtx cond, earliest, target, seq, a, b, c;
1841 int negate;
1842 bool one_cmpl = false;
1844 /* Reject modes with signed zeros. */
1845 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1846 return FALSE;
1848 /* Recognize A and B as constituting an ABS or NABS. The canonical
1849 form is a branch around the negation, taken when the object is the
1850 first operand of a comparison against 0 that evaluates to true. */
1851 a = if_info->a;
1852 b = if_info->b;
1853 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1854 negate = 0;
1855 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1857 c = a; a = b; b = c;
1858 negate = 1;
1860 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1862 negate = 0;
1863 one_cmpl = true;
1865 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1867 c = a; a = b; b = c;
1868 negate = 1;
1869 one_cmpl = true;
1871 else
1872 return FALSE;
1874 cond = noce_get_alt_condition (if_info, b, &earliest);
1875 if (!cond)
1876 return FALSE;
1878 /* Verify the condition is of the form we expect. */
1879 if (rtx_equal_p (XEXP (cond, 0), b))
1880 c = XEXP (cond, 1);
1881 else if (rtx_equal_p (XEXP (cond, 1), b))
1883 c = XEXP (cond, 0);
1884 negate = !negate;
1886 else
1887 return FALSE;
1889 /* Verify that C is zero. Search one step backward for a
1890 REG_EQUAL note or a simple source if necessary. */
1891 if (REG_P (c))
1893 rtx set, insn = prev_nonnote_insn (earliest);
1894 if (insn
1895 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
1896 && (set = single_set (insn))
1897 && rtx_equal_p (SET_DEST (set), c))
1899 rtx note = find_reg_equal_equiv_note (insn);
1900 if (note)
1901 c = XEXP (note, 0);
1902 else
1903 c = SET_SRC (set);
1905 else
1906 return FALSE;
1908 if (MEM_P (c)
1909 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1910 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1911 c = get_pool_constant (XEXP (c, 0));
1913 /* Work around funny ideas get_condition has wrt canonicalization.
1914 Note that these rtx constants are known to be CONST_INT, and
1915 therefore imply integer comparisons. */
1916 if (c == constm1_rtx && GET_CODE (cond) == GT)
1918 else if (c == const1_rtx && GET_CODE (cond) == LT)
1920 else if (c != CONST0_RTX (GET_MODE (b)))
1921 return FALSE;
1923 /* Determine what sort of operation this is. */
1924 switch (GET_CODE (cond))
1926 case LT:
1927 case LE:
1928 case UNLT:
1929 case UNLE:
1930 negate = !negate;
1931 break;
1932 case GT:
1933 case GE:
1934 case UNGT:
1935 case UNGE:
1936 break;
1937 default:
1938 return FALSE;
1941 start_sequence ();
1942 if (one_cmpl)
1943 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
1944 if_info->x);
1945 else
1946 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1948 /* ??? It's a quandary whether cmove would be better here, especially
1949 for integers. Perhaps combine will clean things up. */
1950 if (target && negate)
1952 if (one_cmpl)
1953 target = expand_simple_unop (GET_MODE (target), NOT, target,
1954 if_info->x, 0);
1955 else
1956 target = expand_simple_unop (GET_MODE (target), NEG, target,
1957 if_info->x, 0);
1960 if (! target)
1962 end_sequence ();
1963 return FALSE;
1966 if (target != if_info->x)
1967 noce_emit_move_insn (if_info->x, target);
1969 seq = end_ifcvt_sequence (if_info);
1970 if (!seq)
1971 return FALSE;
1973 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1974 if_info->cond = cond;
1975 if_info->cond_earliest = earliest;
1977 return TRUE;
1980 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1982 static int
1983 noce_try_sign_mask (struct noce_if_info *if_info)
1985 rtx cond, t, m, c, seq;
1986 enum machine_mode mode;
1987 enum rtx_code code;
1988 bool t_unconditional;
1990 cond = if_info->cond;
1991 code = GET_CODE (cond);
1992 m = XEXP (cond, 0);
1993 c = XEXP (cond, 1);
1995 t = NULL_RTX;
1996 if (if_info->a == const0_rtx)
1998 if ((code == LT && c == const0_rtx)
1999 || (code == LE && c == constm1_rtx))
2000 t = if_info->b;
2002 else if (if_info->b == const0_rtx)
2004 if ((code == GE && c == const0_rtx)
2005 || (code == GT && c == constm1_rtx))
2006 t = if_info->a;
2009 if (! t || side_effects_p (t))
2010 return FALSE;
2012 /* We currently don't handle different modes. */
2013 mode = GET_MODE (t);
2014 if (GET_MODE (m) != mode)
2015 return FALSE;
2017 /* This is only profitable if T is unconditionally executed/evaluated in the
2018 original insn sequence or T is cheap. The former happens if B is the
2019 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2020 INSN_B which can happen for e.g. conditional stores to memory. For the
2021 cost computation use the block TEST_BB where the evaluation will end up
2022 after the transformation. */
2023 t_unconditional =
2024 (t == if_info->b
2025 && (if_info->insn_b == NULL_RTX
2026 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2027 if (!(t_unconditional
2028 || (rtx_cost (t, SET, optimize_bb_for_speed_p (if_info->test_bb))
2029 < COSTS_N_INSNS (2))))
2030 return FALSE;
2032 start_sequence ();
2033 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2034 "(signed) m >> 31" directly. This benefits targets with specialized
2035 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2036 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2037 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2038 : NULL_RTX;
2040 if (!t)
2042 end_sequence ();
2043 return FALSE;
2046 noce_emit_move_insn (if_info->x, t);
2048 seq = end_ifcvt_sequence (if_info);
2049 if (!seq)
2050 return FALSE;
2052 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2053 return TRUE;
2057 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2058 transformations. */
2060 static int
2061 noce_try_bitop (struct noce_if_info *if_info)
2063 rtx cond, x, a, result, seq;
2064 enum machine_mode mode;
2065 enum rtx_code code;
2066 int bitnum;
2068 x = if_info->x;
2069 cond = if_info->cond;
2070 code = GET_CODE (cond);
2072 /* Check for no else condition. */
2073 if (! rtx_equal_p (x, if_info->b))
2074 return FALSE;
2076 /* Check for a suitable condition. */
2077 if (code != NE && code != EQ)
2078 return FALSE;
2079 if (XEXP (cond, 1) != const0_rtx)
2080 return FALSE;
2081 cond = XEXP (cond, 0);
2083 /* ??? We could also handle AND here. */
2084 if (GET_CODE (cond) == ZERO_EXTRACT)
2086 if (XEXP (cond, 1) != const1_rtx
2087 || !CONST_INT_P (XEXP (cond, 2))
2088 || ! rtx_equal_p (x, XEXP (cond, 0)))
2089 return FALSE;
2090 bitnum = INTVAL (XEXP (cond, 2));
2091 mode = GET_MODE (x);
2092 if (BITS_BIG_ENDIAN)
2093 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2094 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2095 return FALSE;
2097 else
2098 return FALSE;
2100 a = if_info->a;
2101 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2103 /* Check for "if (X & C) x = x op C". */
2104 if (! rtx_equal_p (x, XEXP (a, 0))
2105 || !CONST_INT_P (XEXP (a, 1))
2106 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2107 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2108 return FALSE;
2110 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2111 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2112 if (GET_CODE (a) == IOR)
2113 result = (code == NE) ? a : NULL_RTX;
2114 else if (code == NE)
2116 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2117 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2118 result = simplify_gen_binary (IOR, mode, x, result);
2120 else
2122 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2123 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2124 result = simplify_gen_binary (AND, mode, x, result);
2127 else if (GET_CODE (a) == AND)
2129 /* Check for "if (X & C) x &= ~C". */
2130 if (! rtx_equal_p (x, XEXP (a, 0))
2131 || !CONST_INT_P (XEXP (a, 1))
2132 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2133 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2134 return FALSE;
2136 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2137 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2138 result = (code == EQ) ? a : NULL_RTX;
2140 else
2141 return FALSE;
2143 if (result)
2145 start_sequence ();
2146 noce_emit_move_insn (x, result);
2147 seq = end_ifcvt_sequence (if_info);
2148 if (!seq)
2149 return FALSE;
2151 emit_insn_before_setloc (seq, if_info->jump,
2152 INSN_LOCATOR (if_info->insn_a));
2154 return TRUE;
2158 /* Similar to get_condition, only the resulting condition must be
2159 valid at JUMP, instead of at EARLIEST.
2161 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2162 THEN block of the caller, and we have to reverse the condition. */
2164 static rtx
2165 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2167 rtx cond, set, tmp;
2168 bool reverse;
2170 if (! any_condjump_p (jump))
2171 return NULL_RTX;
2173 set = pc_set (jump);
2175 /* If this branches to JUMP_LABEL when the condition is false,
2176 reverse the condition. */
2177 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2178 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2180 /* We may have to reverse because the caller's if block is not canonical,
2181 i.e. the THEN block isn't the fallthrough block for the TEST block
2182 (see find_if_header). */
2183 if (then_else_reversed)
2184 reverse = !reverse;
2186 /* If the condition variable is a register and is MODE_INT, accept it. */
2188 cond = XEXP (SET_SRC (set), 0);
2189 tmp = XEXP (cond, 0);
2190 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2192 *earliest = jump;
2194 if (reverse)
2195 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2196 GET_MODE (cond), tmp, XEXP (cond, 1));
2197 return cond;
2200 /* Otherwise, fall back on canonicalize_condition to do the dirty
2201 work of manipulating MODE_CC values and COMPARE rtx codes. */
2202 return canonicalize_condition (jump, cond, reverse, earliest,
2203 NULL_RTX, false, true);
2206 /* Return true if OP is ok for if-then-else processing. */
2208 static int
2209 noce_operand_ok (const_rtx op)
2211 /* We special-case memories, so handle any of them with
2212 no address side effects. */
2213 if (MEM_P (op))
2214 return ! side_effects_p (XEXP (op, 0));
2216 if (side_effects_p (op))
2217 return FALSE;
2219 return ! may_trap_p (op);
2222 /* Return true if a write into MEM may trap or fault. */
2224 static bool
2225 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2227 rtx addr;
2229 if (MEM_READONLY_P (mem))
2230 return true;
2232 if (may_trap_or_fault_p (mem))
2233 return true;
2235 addr = XEXP (mem, 0);
2237 /* Call target hook to avoid the effects of -fpic etc.... */
2238 addr = targetm.delegitimize_address (addr);
2240 while (addr)
2241 switch (GET_CODE (addr))
2243 case CONST:
2244 case PRE_DEC:
2245 case PRE_INC:
2246 case POST_DEC:
2247 case POST_INC:
2248 case POST_MODIFY:
2249 addr = XEXP (addr, 0);
2250 break;
2251 case LO_SUM:
2252 case PRE_MODIFY:
2253 addr = XEXP (addr, 1);
2254 break;
2255 case PLUS:
2256 if (CONST_INT_P (XEXP (addr, 1)))
2257 addr = XEXP (addr, 0);
2258 else
2259 return false;
2260 break;
2261 case LABEL_REF:
2262 return true;
2263 case SYMBOL_REF:
2264 if (SYMBOL_REF_DECL (addr)
2265 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2266 return true;
2267 return false;
2268 default:
2269 return false;
2272 return false;
2275 /* Return whether we can use store speculation for MEM. TOP_BB is the
2276 basic block above the conditional block where we are considering
2277 doing the speculative store. We look for whether MEM is set
2278 unconditionally later in the function. */
2280 static bool
2281 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2283 basic_block dominator;
2285 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2286 dominator != NULL;
2287 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2289 rtx insn;
2291 FOR_BB_INSNS (dominator, insn)
2293 /* If we see something that might be a memory barrier, we
2294 have to stop looking. Even if the MEM is set later in
2295 the function, we still don't want to set it
2296 unconditionally before the barrier. */
2297 if (INSN_P (insn)
2298 && (volatile_insn_p (PATTERN (insn))
2299 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2300 return false;
2302 if (memory_modified_in_insn_p (mem, insn))
2303 return true;
2304 if (modified_in_p (XEXP (mem, 0), insn))
2305 return false;
2310 return false;
2313 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2314 it without using conditional execution. Return TRUE if we were successful
2315 at converting the block. */
2317 static int
2318 noce_process_if_block (struct noce_if_info *if_info)
2320 basic_block test_bb = if_info->test_bb; /* test block */
2321 basic_block then_bb = if_info->then_bb; /* THEN */
2322 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2323 basic_block join_bb = if_info->join_bb; /* JOIN */
2324 rtx jump = if_info->jump;
2325 rtx cond = if_info->cond;
2326 rtx insn_a, insn_b;
2327 rtx set_a, set_b;
2328 rtx orig_x, x, a, b;
2330 /* We're looking for patterns of the form
2332 (1) if (...) x = a; else x = b;
2333 (2) x = b; if (...) x = a;
2334 (3) if (...) x = a; // as if with an initial x = x.
2336 The later patterns require jumps to be more expensive.
2338 ??? For future expansion, look for multiple X in such patterns. */
2340 /* Look for one of the potential sets. */
2341 insn_a = first_active_insn (then_bb);
2342 if (! insn_a
2343 || insn_a != last_active_insn (then_bb, FALSE)
2344 || (set_a = single_set (insn_a)) == NULL_RTX)
2345 return FALSE;
2347 x = SET_DEST (set_a);
2348 a = SET_SRC (set_a);
2350 /* Look for the other potential set. Make sure we've got equivalent
2351 destinations. */
2352 /* ??? This is overconservative. Storing to two different mems is
2353 as easy as conditionally computing the address. Storing to a
2354 single mem merely requires a scratch memory to use as one of the
2355 destination addresses; often the memory immediately below the
2356 stack pointer is available for this. */
2357 set_b = NULL_RTX;
2358 if (else_bb)
2360 insn_b = first_active_insn (else_bb);
2361 if (! insn_b
2362 || insn_b != last_active_insn (else_bb, FALSE)
2363 || (set_b = single_set (insn_b)) == NULL_RTX
2364 || ! rtx_equal_p (x, SET_DEST (set_b)))
2365 return FALSE;
2367 else
2369 insn_b = prev_nonnote_insn (if_info->cond_earliest);
2370 while (insn_b && DEBUG_INSN_P (insn_b))
2371 insn_b = prev_nonnote_insn (insn_b);
2372 /* We're going to be moving the evaluation of B down from above
2373 COND_EARLIEST to JUMP. Make sure the relevant data is still
2374 intact. */
2375 if (! insn_b
2376 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2377 || !NONJUMP_INSN_P (insn_b)
2378 || (set_b = single_set (insn_b)) == NULL_RTX
2379 || ! rtx_equal_p (x, SET_DEST (set_b))
2380 || ! noce_operand_ok (SET_SRC (set_b))
2381 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2382 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2383 /* Likewise with X. In particular this can happen when
2384 noce_get_condition looks farther back in the instruction
2385 stream than one might expect. */
2386 || reg_overlap_mentioned_p (x, cond)
2387 || reg_overlap_mentioned_p (x, a)
2388 || modified_between_p (x, insn_b, jump))
2389 insn_b = set_b = NULL_RTX;
2392 /* If x has side effects then only the if-then-else form is safe to
2393 convert. But even in that case we would need to restore any notes
2394 (such as REG_INC) at then end. That can be tricky if
2395 noce_emit_move_insn expands to more than one insn, so disable the
2396 optimization entirely for now if there are side effects. */
2397 if (side_effects_p (x))
2398 return FALSE;
2400 b = (set_b ? SET_SRC (set_b) : x);
2402 /* Only operate on register destinations, and even then avoid extending
2403 the lifetime of hard registers on small register class machines. */
2404 orig_x = x;
2405 if (!REG_P (x)
2406 || (SMALL_REGISTER_CLASSES
2407 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2409 if (GET_MODE (x) == BLKmode)
2410 return FALSE;
2412 if (GET_CODE (x) == ZERO_EXTRACT
2413 && (!CONST_INT_P (XEXP (x, 1))
2414 || !CONST_INT_P (XEXP (x, 2))))
2415 return FALSE;
2417 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2418 ? XEXP (x, 0) : x));
2421 /* Don't operate on sources that may trap or are volatile. */
2422 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2423 return FALSE;
2425 retry:
2426 /* Set up the info block for our subroutines. */
2427 if_info->insn_a = insn_a;
2428 if_info->insn_b = insn_b;
2429 if_info->x = x;
2430 if_info->a = a;
2431 if_info->b = b;
2433 /* Try optimizations in some approximation of a useful order. */
2434 /* ??? Should first look to see if X is live incoming at all. If it
2435 isn't, we don't need anything but an unconditional set. */
2437 /* Look and see if A and B are really the same. Avoid creating silly
2438 cmove constructs that no one will fix up later. */
2439 if (rtx_equal_p (a, b))
2441 /* If we have an INSN_B, we don't have to create any new rtl. Just
2442 move the instruction that we already have. If we don't have an
2443 INSN_B, that means that A == X, and we've got a noop move. In
2444 that case don't do anything and let the code below delete INSN_A. */
2445 if (insn_b && else_bb)
2447 rtx note;
2449 if (else_bb && insn_b == BB_END (else_bb))
2450 BB_END (else_bb) = PREV_INSN (insn_b);
2451 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2453 /* If there was a REG_EQUAL note, delete it since it may have been
2454 true due to this insn being after a jump. */
2455 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2456 remove_note (insn_b, note);
2458 insn_b = NULL_RTX;
2460 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2461 x must be executed twice. */
2462 else if (insn_b && side_effects_p (orig_x))
2463 return FALSE;
2465 x = orig_x;
2466 goto success;
2469 if (!set_b && MEM_P (orig_x))
2471 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2472 for optimizations if writing to x may trap or fault,
2473 i.e. it's a memory other than a static var or a stack slot,
2474 is misaligned on strict aligned machines or is read-only. If
2475 x is a read-only memory, then the program is valid only if we
2476 avoid the store into it. If there are stores on both the
2477 THEN and ELSE arms, then we can go ahead with the conversion;
2478 either the program is broken, or the condition is always
2479 false such that the other memory is selected. */
2480 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2481 return FALSE;
2483 /* Avoid store speculation: given "if (...) x = a" where x is a
2484 MEM, we only want to do the store if x is always set
2485 somewhere in the function. This avoids cases like
2486 if (pthread_mutex_trylock(mutex))
2487 ++global_variable;
2488 where we only want global_variable to be changed if the mutex
2489 is held. FIXME: This should ideally be expressed directly in
2490 RTL somehow. */
2491 if (!noce_can_store_speculate_p (test_bb, orig_x))
2492 return FALSE;
2495 if (noce_try_move (if_info))
2496 goto success;
2497 if (noce_try_store_flag (if_info))
2498 goto success;
2499 if (noce_try_bitop (if_info))
2500 goto success;
2501 if (noce_try_minmax (if_info))
2502 goto success;
2503 if (noce_try_abs (if_info))
2504 goto success;
2505 if (HAVE_conditional_move
2506 && noce_try_cmove (if_info))
2507 goto success;
2508 if (! targetm.have_conditional_execution ())
2510 if (noce_try_store_flag_constants (if_info))
2511 goto success;
2512 if (noce_try_addcc (if_info))
2513 goto success;
2514 if (noce_try_store_flag_mask (if_info))
2515 goto success;
2516 if (HAVE_conditional_move
2517 && noce_try_cmove_arith (if_info))
2518 goto success;
2519 if (noce_try_sign_mask (if_info))
2520 goto success;
2523 if (!else_bb && set_b)
2525 insn_b = set_b = NULL_RTX;
2526 b = orig_x;
2527 goto retry;
2530 return FALSE;
2532 success:
2534 /* If we used a temporary, fix it up now. */
2535 if (orig_x != x)
2537 rtx seq;
2539 start_sequence ();
2540 noce_emit_move_insn (orig_x, x);
2541 seq = get_insns ();
2542 set_used_flags (orig_x);
2543 unshare_all_rtl_in_chain (seq);
2544 end_sequence ();
2546 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2549 /* The original THEN and ELSE blocks may now be removed. The test block
2550 must now jump to the join block. If the test block and the join block
2551 can be merged, do so. */
2552 if (else_bb)
2554 delete_basic_block (else_bb);
2555 num_true_changes++;
2557 else
2558 remove_edge (find_edge (test_bb, join_bb));
2560 remove_edge (find_edge (then_bb, join_bb));
2561 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2562 delete_basic_block (then_bb);
2563 num_true_changes++;
2565 if (can_merge_blocks_p (test_bb, join_bb))
2567 merge_blocks (test_bb, join_bb);
2568 num_true_changes++;
2571 num_updated_if_blocks++;
2572 return TRUE;
2575 /* Check whether a block is suitable for conditional move conversion.
2576 Every insn must be a simple set of a register to a constant or a
2577 register. For each assignment, store the value in the array VALS,
2578 indexed by register number, then store the register number in
2579 REGS. COND is the condition we will test. */
2581 static int
2582 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs, rtx cond)
2584 rtx insn;
2586 /* We can only handle simple jumps at the end of the basic block.
2587 It is almost impossible to update the CFG otherwise. */
2588 insn = BB_END (bb);
2589 if (JUMP_P (insn) && !onlyjump_p (insn))
2590 return FALSE;
2592 FOR_BB_INSNS (bb, insn)
2594 rtx set, dest, src;
2596 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2597 continue;
2598 set = single_set (insn);
2599 if (!set)
2600 return FALSE;
2602 dest = SET_DEST (set);
2603 src = SET_SRC (set);
2604 if (!REG_P (dest)
2605 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2606 return FALSE;
2608 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2609 return FALSE;
2611 if (side_effects_p (src) || side_effects_p (dest))
2612 return FALSE;
2614 if (may_trap_p (src) || may_trap_p (dest))
2615 return FALSE;
2617 /* Don't try to handle this if the source register was
2618 modified earlier in the block. */
2619 if ((REG_P (src)
2620 && vals[REGNO (src)] != NULL)
2621 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2622 && vals[REGNO (SUBREG_REG (src))] != NULL))
2623 return FALSE;
2625 /* Don't try to handle this if the destination register was
2626 modified earlier in the block. */
2627 if (vals[REGNO (dest)] != NULL)
2628 return FALSE;
2630 /* Don't try to handle this if the condition uses the
2631 destination register. */
2632 if (reg_overlap_mentioned_p (dest, cond))
2633 return FALSE;
2635 /* Don't try to handle this if the source register is modified
2636 later in the block. */
2637 if (!CONSTANT_P (src)
2638 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2639 return FALSE;
2641 vals[REGNO (dest)] = src;
2643 VEC_safe_push (int, heap, *regs, REGNO (dest));
2646 return TRUE;
2649 /* Given a basic block BB suitable for conditional move conversion,
2650 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2651 register values depending on COND, emit the insns in the block as
2652 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2653 processed. The caller has started a sequence for the conversion.
2654 Return true if successful, false if something goes wrong. */
2656 static bool
2657 cond_move_convert_if_block (struct noce_if_info *if_infop,
2658 basic_block bb, rtx cond,
2659 rtx *then_vals, rtx *else_vals,
2660 bool else_block_p)
2662 enum rtx_code code;
2663 rtx insn, cond_arg0, cond_arg1;
2665 code = GET_CODE (cond);
2666 cond_arg0 = XEXP (cond, 0);
2667 cond_arg1 = XEXP (cond, 1);
2669 FOR_BB_INSNS (bb, insn)
2671 rtx set, target, dest, t, e;
2672 unsigned int regno;
2674 /* ??? Maybe emit conditional debug insn? */
2675 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2676 continue;
2677 set = single_set (insn);
2678 gcc_assert (set && REG_P (SET_DEST (set)));
2680 dest = SET_DEST (set);
2681 regno = REGNO (dest);
2683 t = then_vals[regno];
2684 e = else_vals[regno];
2686 if (else_block_p)
2688 /* If this register was set in the then block, we already
2689 handled this case there. */
2690 if (t)
2691 continue;
2692 t = dest;
2693 gcc_assert (e);
2695 else
2697 gcc_assert (t);
2698 if (!e)
2699 e = dest;
2702 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2703 t, e);
2704 if (!target)
2705 return false;
2707 if (target != dest)
2708 noce_emit_move_insn (dest, target);
2711 return true;
2714 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2715 it using only conditional moves. Return TRUE if we were successful at
2716 converting the block. */
2718 static int
2719 cond_move_process_if_block (struct noce_if_info *if_info)
2721 basic_block test_bb = if_info->test_bb;
2722 basic_block then_bb = if_info->then_bb;
2723 basic_block else_bb = if_info->else_bb;
2724 basic_block join_bb = if_info->join_bb;
2725 rtx jump = if_info->jump;
2726 rtx cond = if_info->cond;
2727 rtx seq, loc_insn;
2728 int max_reg, size, c, reg;
2729 rtx *then_vals;
2730 rtx *else_vals;
2731 VEC (int, heap) *then_regs = NULL;
2732 VEC (int, heap) *else_regs = NULL;
2733 unsigned int i;
2735 /* Build a mapping for each block to the value used for each
2736 register. */
2737 max_reg = max_reg_num ();
2738 size = (max_reg + 1) * sizeof (rtx);
2739 then_vals = (rtx *) alloca (size);
2740 else_vals = (rtx *) alloca (size);
2741 memset (then_vals, 0, size);
2742 memset (else_vals, 0, size);
2744 /* Make sure the blocks are suitable. */
2745 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2746 || (else_bb && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2748 VEC_free (int, heap, then_regs);
2749 VEC_free (int, heap, else_regs);
2750 return FALSE;
2753 /* Make sure the blocks can be used together. If the same register
2754 is set in both blocks, and is not set to a constant in both
2755 cases, then both blocks must set it to the same register. We
2756 have already verified that if it is set to a register, that the
2757 source register does not change after the assignment. Also count
2758 the number of registers set in only one of the blocks. */
2759 c = 0;
2760 for (i = 0; VEC_iterate (int, then_regs, i, reg); i++)
2762 if (!then_vals[reg] && !else_vals[reg])
2763 continue;
2765 if (!else_vals[reg])
2766 ++c;
2767 else
2769 if (!CONSTANT_P (then_vals[reg])
2770 && !CONSTANT_P (else_vals[reg])
2771 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2773 VEC_free (int, heap, then_regs);
2774 VEC_free (int, heap, else_regs);
2775 return FALSE;
2780 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2781 for (i = 0; VEC_iterate (int, else_regs, i, reg); ++i)
2782 if (!then_vals[reg])
2783 ++c;
2785 /* Make sure it is reasonable to convert this block. What matters
2786 is the number of assignments currently made in only one of the
2787 branches, since if we convert we are going to always execute
2788 them. */
2789 if (c > MAX_CONDITIONAL_EXECUTE)
2791 VEC_free (int, heap, then_regs);
2792 VEC_free (int, heap, else_regs);
2793 return FALSE;
2796 /* Try to emit the conditional moves. First do the then block,
2797 then do anything left in the else blocks. */
2798 start_sequence ();
2799 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2800 then_vals, else_vals, false)
2801 || (else_bb
2802 && !cond_move_convert_if_block (if_info, else_bb, cond,
2803 then_vals, else_vals, true)))
2805 end_sequence ();
2806 VEC_free (int, heap, then_regs);
2807 VEC_free (int, heap, else_regs);
2808 return FALSE;
2810 seq = end_ifcvt_sequence (if_info);
2811 if (!seq)
2813 VEC_free (int, heap, then_regs);
2814 VEC_free (int, heap, else_regs);
2815 return FALSE;
2818 loc_insn = first_active_insn (then_bb);
2819 if (!loc_insn)
2821 loc_insn = first_active_insn (else_bb);
2822 gcc_assert (loc_insn);
2824 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2826 if (else_bb)
2828 delete_basic_block (else_bb);
2829 num_true_changes++;
2831 else
2832 remove_edge (find_edge (test_bb, join_bb));
2834 remove_edge (find_edge (then_bb, join_bb));
2835 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2836 delete_basic_block (then_bb);
2837 num_true_changes++;
2839 if (can_merge_blocks_p (test_bb, join_bb))
2841 merge_blocks (test_bb, join_bb);
2842 num_true_changes++;
2845 num_updated_if_blocks++;
2847 VEC_free (int, heap, then_regs);
2848 VEC_free (int, heap, else_regs);
2849 return TRUE;
2853 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2854 IF-THEN-ELSE-JOIN block.
2856 If so, we'll try to convert the insns to not require the branch,
2857 using only transformations that do not require conditional execution.
2859 Return TRUE if we were successful at converting the block. */
2861 static int
2862 noce_find_if_block (basic_block test_bb,
2863 edge then_edge, edge else_edge,
2864 int pass)
2866 basic_block then_bb, else_bb, join_bb;
2867 bool then_else_reversed = false;
2868 rtx jump, cond;
2869 rtx cond_earliest;
2870 struct noce_if_info if_info;
2872 /* We only ever should get here before reload. */
2873 gcc_assert (!reload_completed);
2875 /* Recognize an IF-THEN-ELSE-JOIN block. */
2876 if (single_pred_p (then_edge->dest)
2877 && single_succ_p (then_edge->dest)
2878 && single_pred_p (else_edge->dest)
2879 && single_succ_p (else_edge->dest)
2880 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2882 then_bb = then_edge->dest;
2883 else_bb = else_edge->dest;
2884 join_bb = single_succ (then_bb);
2886 /* Recognize an IF-THEN-JOIN block. */
2887 else if (single_pred_p (then_edge->dest)
2888 && single_succ_p (then_edge->dest)
2889 && single_succ (then_edge->dest) == else_edge->dest)
2891 then_bb = then_edge->dest;
2892 else_bb = NULL_BLOCK;
2893 join_bb = else_edge->dest;
2895 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2896 of basic blocks in cfglayout mode does not matter, so the fallthrough
2897 edge can go to any basic block (and not just to bb->next_bb, like in
2898 cfgrtl mode). */
2899 else if (single_pred_p (else_edge->dest)
2900 && single_succ_p (else_edge->dest)
2901 && single_succ (else_edge->dest) == then_edge->dest)
2903 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
2904 To make this work, we have to invert the THEN and ELSE blocks
2905 and reverse the jump condition. */
2906 then_bb = else_edge->dest;
2907 else_bb = NULL_BLOCK;
2908 join_bb = single_succ (then_bb);
2909 then_else_reversed = true;
2911 else
2912 /* Not a form we can handle. */
2913 return FALSE;
2915 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2916 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2917 return FALSE;
2918 if (else_bb
2919 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2920 return FALSE;
2922 num_possible_if_blocks++;
2924 if (dump_file)
2926 fprintf (dump_file,
2927 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
2928 (else_bb) ? "-ELSE" : "",
2929 pass, test_bb->index, then_bb->index);
2931 if (else_bb)
2932 fprintf (dump_file, ", else %d", else_bb->index);
2934 fprintf (dump_file, ", join %d\n", join_bb->index);
2937 /* If the conditional jump is more than just a conditional
2938 jump, then we can not do if-conversion on this block. */
2939 jump = BB_END (test_bb);
2940 if (! onlyjump_p (jump))
2941 return FALSE;
2943 /* If this is not a standard conditional jump, we can't parse it. */
2944 cond = noce_get_condition (jump,
2945 &cond_earliest,
2946 then_else_reversed);
2947 if (!cond)
2948 return FALSE;
2950 /* We must be comparing objects whose modes imply the size. */
2951 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2952 return FALSE;
2954 /* Initialize an IF_INFO struct to pass around. */
2955 memset (&if_info, 0, sizeof if_info);
2956 if_info.test_bb = test_bb;
2957 if_info.then_bb = then_bb;
2958 if_info.else_bb = else_bb;
2959 if_info.join_bb = join_bb;
2960 if_info.cond = cond;
2961 if_info.cond_earliest = cond_earliest;
2962 if_info.jump = jump;
2963 if_info.then_else_reversed = then_else_reversed;
2964 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
2965 predictable_edge_p (then_edge));
2967 /* Do the real work. */
2969 if (noce_process_if_block (&if_info))
2970 return TRUE;
2972 if (HAVE_conditional_move
2973 && cond_move_process_if_block (&if_info))
2974 return TRUE;
2976 return FALSE;
2980 /* Merge the blocks and mark for local life update. */
2982 static void
2983 merge_if_block (struct ce_if_block * ce_info)
2985 basic_block test_bb = ce_info->test_bb; /* last test block */
2986 basic_block then_bb = ce_info->then_bb; /* THEN */
2987 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2988 basic_block join_bb = ce_info->join_bb; /* join block */
2989 basic_block combo_bb;
2991 /* All block merging is done into the lower block numbers. */
2993 combo_bb = test_bb;
2994 df_set_bb_dirty (test_bb);
2996 /* Merge any basic blocks to handle && and || subtests. Each of
2997 the blocks are on the fallthru path from the predecessor block. */
2998 if (ce_info->num_multiple_test_blocks > 0)
3000 basic_block bb = test_bb;
3001 basic_block last_test_bb = ce_info->last_test_bb;
3002 basic_block fallthru = block_fallthru (bb);
3006 bb = fallthru;
3007 fallthru = block_fallthru (bb);
3008 merge_blocks (combo_bb, bb);
3009 num_true_changes++;
3011 while (bb != last_test_bb);
3014 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3015 label, but it might if there were || tests. That label's count should be
3016 zero, and it normally should be removed. */
3018 if (then_bb)
3020 merge_blocks (combo_bb, then_bb);
3021 num_true_changes++;
3024 /* The ELSE block, if it existed, had a label. That label count
3025 will almost always be zero, but odd things can happen when labels
3026 get their addresses taken. */
3027 if (else_bb)
3029 merge_blocks (combo_bb, else_bb);
3030 num_true_changes++;
3033 /* If there was no join block reported, that means it was not adjacent
3034 to the others, and so we cannot merge them. */
3036 if (! join_bb)
3038 rtx last = BB_END (combo_bb);
3040 /* The outgoing edge for the current COMBO block should already
3041 be correct. Verify this. */
3042 if (EDGE_COUNT (combo_bb->succs) == 0)
3043 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3044 || (NONJUMP_INSN_P (last)
3045 && GET_CODE (PATTERN (last)) == TRAP_IF
3046 && (TRAP_CONDITION (PATTERN (last))
3047 == const_true_rtx)));
3049 else
3050 /* There should still be something at the end of the THEN or ELSE
3051 blocks taking us to our final destination. */
3052 gcc_assert (JUMP_P (last)
3053 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3054 && CALL_P (last)
3055 && SIBLING_CALL_P (last))
3056 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3057 && can_throw_internal (last)));
3060 /* The JOIN block may have had quite a number of other predecessors too.
3061 Since we've already merged the TEST, THEN and ELSE blocks, we should
3062 have only one remaining edge from our if-then-else diamond. If there
3063 is more than one remaining edge, it must come from elsewhere. There
3064 may be zero incoming edges if the THEN block didn't actually join
3065 back up (as with a call to a non-return function). */
3066 else if (EDGE_COUNT (join_bb->preds) < 2
3067 && join_bb != EXIT_BLOCK_PTR)
3069 /* We can merge the JOIN cleanly and update the dataflow try
3070 again on this pass.*/
3071 merge_blocks (combo_bb, join_bb);
3072 num_true_changes++;
3074 else
3076 /* We cannot merge the JOIN. */
3078 /* The outgoing edge for the current COMBO block should already
3079 be correct. Verify this. */
3080 gcc_assert (single_succ_p (combo_bb)
3081 && single_succ (combo_bb) == join_bb);
3083 /* Remove the jump and cruft from the end of the COMBO block. */
3084 if (join_bb != EXIT_BLOCK_PTR)
3085 tidy_fallthru_edge (single_succ_edge (combo_bb));
3088 num_updated_if_blocks++;
3091 /* Find a block ending in a simple IF condition and try to transform it
3092 in some way. When converting a multi-block condition, put the new code
3093 in the first such block and delete the rest. Return a pointer to this
3094 first block if some transformation was done. Return NULL otherwise. */
3096 static basic_block
3097 find_if_header (basic_block test_bb, int pass)
3099 ce_if_block_t ce_info;
3100 edge then_edge;
3101 edge else_edge;
3103 /* The kind of block we're looking for has exactly two successors. */
3104 if (EDGE_COUNT (test_bb->succs) != 2)
3105 return NULL;
3107 then_edge = EDGE_SUCC (test_bb, 0);
3108 else_edge = EDGE_SUCC (test_bb, 1);
3110 if (df_get_bb_dirty (then_edge->dest))
3111 return NULL;
3112 if (df_get_bb_dirty (else_edge->dest))
3113 return NULL;
3115 /* Neither edge should be abnormal. */
3116 if ((then_edge->flags & EDGE_COMPLEX)
3117 || (else_edge->flags & EDGE_COMPLEX))
3118 return NULL;
3120 /* Nor exit the loop. */
3121 if ((then_edge->flags & EDGE_LOOP_EXIT)
3122 || (else_edge->flags & EDGE_LOOP_EXIT))
3123 return NULL;
3125 /* The THEN edge is canonically the one that falls through. */
3126 if (then_edge->flags & EDGE_FALLTHRU)
3128 else if (else_edge->flags & EDGE_FALLTHRU)
3130 edge e = else_edge;
3131 else_edge = then_edge;
3132 then_edge = e;
3134 else
3135 /* Otherwise this must be a multiway branch of some sort. */
3136 return NULL;
3138 memset (&ce_info, '\0', sizeof (ce_info));
3139 ce_info.test_bb = test_bb;
3140 ce_info.then_bb = then_edge->dest;
3141 ce_info.else_bb = else_edge->dest;
3142 ce_info.pass = pass;
3144 #ifdef IFCVT_INIT_EXTRA_FIELDS
3145 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3146 #endif
3148 if (! reload_completed
3149 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3150 goto success;
3152 if (targetm.have_conditional_execution () && reload_completed
3153 && cond_exec_find_if_block (&ce_info))
3154 goto success;
3156 if (HAVE_trap
3157 && optab_handler (ctrap_optab, word_mode)->insn_code != CODE_FOR_nothing
3158 && find_cond_trap (test_bb, then_edge, else_edge))
3159 goto success;
3161 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3162 && (! targetm.have_conditional_execution () || reload_completed))
3164 if (find_if_case_1 (test_bb, then_edge, else_edge))
3165 goto success;
3166 if (find_if_case_2 (test_bb, then_edge, else_edge))
3167 goto success;
3170 return NULL;
3172 success:
3173 if (dump_file)
3174 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3175 /* Set this so we continue looking. */
3176 cond_exec_changed_p = TRUE;
3177 return ce_info.test_bb;
3180 /* Return true if a block has two edges, one of which falls through to the next
3181 block, and the other jumps to a specific block, so that we can tell if the
3182 block is part of an && test or an || test. Returns either -1 or the number
3183 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3185 static int
3186 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3188 edge cur_edge;
3189 int fallthru_p = FALSE;
3190 int jump_p = FALSE;
3191 rtx insn;
3192 rtx end;
3193 int n_insns = 0;
3194 edge_iterator ei;
3196 if (!cur_bb || !target_bb)
3197 return -1;
3199 /* If no edges, obviously it doesn't jump or fallthru. */
3200 if (EDGE_COUNT (cur_bb->succs) == 0)
3201 return FALSE;
3203 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3205 if (cur_edge->flags & EDGE_COMPLEX)
3206 /* Anything complex isn't what we want. */
3207 return -1;
3209 else if (cur_edge->flags & EDGE_FALLTHRU)
3210 fallthru_p = TRUE;
3212 else if (cur_edge->dest == target_bb)
3213 jump_p = TRUE;
3215 else
3216 return -1;
3219 if ((jump_p & fallthru_p) == 0)
3220 return -1;
3222 /* Don't allow calls in the block, since this is used to group && and ||
3223 together for conditional execution support. ??? we should support
3224 conditional execution support across calls for IA-64 some day, but
3225 for now it makes the code simpler. */
3226 end = BB_END (cur_bb);
3227 insn = BB_HEAD (cur_bb);
3229 while (insn != NULL_RTX)
3231 if (CALL_P (insn))
3232 return -1;
3234 if (INSN_P (insn)
3235 && !JUMP_P (insn)
3236 && !DEBUG_INSN_P (insn)
3237 && GET_CODE (PATTERN (insn)) != USE
3238 && GET_CODE (PATTERN (insn)) != CLOBBER)
3239 n_insns++;
3241 if (insn == end)
3242 break;
3244 insn = NEXT_INSN (insn);
3247 return n_insns;
3250 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3251 block. If so, we'll try to convert the insns to not require the branch.
3252 Return TRUE if we were successful at converting the block. */
3254 static int
3255 cond_exec_find_if_block (struct ce_if_block * ce_info)
3257 basic_block test_bb = ce_info->test_bb;
3258 basic_block then_bb = ce_info->then_bb;
3259 basic_block else_bb = ce_info->else_bb;
3260 basic_block join_bb = NULL_BLOCK;
3261 edge cur_edge;
3262 basic_block next;
3263 edge_iterator ei;
3265 ce_info->last_test_bb = test_bb;
3267 /* We only ever should get here after reload,
3268 and only if we have conditional execution. */
3269 gcc_assert (targetm.have_conditional_execution () && reload_completed);
3271 /* Discover if any fall through predecessors of the current test basic block
3272 were && tests (which jump to the else block) or || tests (which jump to
3273 the then block). */
3274 if (single_pred_p (test_bb)
3275 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3277 basic_block bb = single_pred (test_bb);
3278 basic_block target_bb;
3279 int max_insns = MAX_CONDITIONAL_EXECUTE;
3280 int n_insns;
3282 /* Determine if the preceding block is an && or || block. */
3283 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3285 ce_info->and_and_p = TRUE;
3286 target_bb = else_bb;
3288 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3290 ce_info->and_and_p = FALSE;
3291 target_bb = then_bb;
3293 else
3294 target_bb = NULL_BLOCK;
3296 if (target_bb && n_insns <= max_insns)
3298 int total_insns = 0;
3299 int blocks = 0;
3301 ce_info->last_test_bb = test_bb;
3303 /* Found at least one && or || block, look for more. */
3306 ce_info->test_bb = test_bb = bb;
3307 total_insns += n_insns;
3308 blocks++;
3310 if (!single_pred_p (bb))
3311 break;
3313 bb = single_pred (bb);
3314 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3316 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3318 ce_info->num_multiple_test_blocks = blocks;
3319 ce_info->num_multiple_test_insns = total_insns;
3321 if (ce_info->and_and_p)
3322 ce_info->num_and_and_blocks = blocks;
3323 else
3324 ce_info->num_or_or_blocks = blocks;
3328 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3329 other than any || blocks which jump to the THEN block. */
3330 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3331 return FALSE;
3333 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3334 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3336 if (cur_edge->flags & EDGE_COMPLEX)
3337 return FALSE;
3340 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3342 if (cur_edge->flags & EDGE_COMPLEX)
3343 return FALSE;
3346 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3347 if (EDGE_COUNT (then_bb->succs) > 0
3348 && (!single_succ_p (then_bb)
3349 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3350 || (epilogue_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3351 return FALSE;
3353 /* If the THEN block has no successors, conditional execution can still
3354 make a conditional call. Don't do this unless the ELSE block has
3355 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3356 Check for the last insn of the THEN block being an indirect jump, which
3357 is listed as not having any successors, but confuses the rest of the CE
3358 code processing. ??? we should fix this in the future. */
3359 if (EDGE_COUNT (then_bb->succs) == 0)
3361 if (single_pred_p (else_bb))
3363 rtx last_insn = BB_END (then_bb);
3365 while (last_insn
3366 && NOTE_P (last_insn)
3367 && last_insn != BB_HEAD (then_bb))
3368 last_insn = PREV_INSN (last_insn);
3370 if (last_insn
3371 && JUMP_P (last_insn)
3372 && ! simplejump_p (last_insn))
3373 return FALSE;
3375 join_bb = else_bb;
3376 else_bb = NULL_BLOCK;
3378 else
3379 return FALSE;
3382 /* If the THEN block's successor is the other edge out of the TEST block,
3383 then we have an IF-THEN combo without an ELSE. */
3384 else if (single_succ (then_bb) == else_bb)
3386 join_bb = else_bb;
3387 else_bb = NULL_BLOCK;
3390 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3391 has exactly one predecessor and one successor, and the outgoing edge
3392 is not complex, then we have an IF-THEN-ELSE combo. */
3393 else if (single_succ_p (else_bb)
3394 && single_succ (then_bb) == single_succ (else_bb)
3395 && single_pred_p (else_bb)
3396 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3397 && ! (epilogue_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3398 join_bb = single_succ (else_bb);
3400 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3401 else
3402 return FALSE;
3404 num_possible_if_blocks++;
3406 if (dump_file)
3408 fprintf (dump_file,
3409 "\nIF-THEN%s block found, pass %d, start block %d "
3410 "[insn %d], then %d [%d]",
3411 (else_bb) ? "-ELSE" : "",
3412 ce_info->pass,
3413 test_bb->index,
3414 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3415 then_bb->index,
3416 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3418 if (else_bb)
3419 fprintf (dump_file, ", else %d [%d]",
3420 else_bb->index,
3421 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3423 fprintf (dump_file, ", join %d [%d]",
3424 join_bb->index,
3425 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3427 if (ce_info->num_multiple_test_blocks > 0)
3428 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3429 ce_info->num_multiple_test_blocks,
3430 (ce_info->and_and_p) ? "&&" : "||",
3431 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3432 ce_info->last_test_bb->index,
3433 ((BB_HEAD (ce_info->last_test_bb))
3434 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3435 : -1));
3437 fputc ('\n', dump_file);
3440 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3441 first condition for free, since we've already asserted that there's a
3442 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3443 we checked the FALLTHRU flag, those are already adjacent to the last IF
3444 block. */
3445 /* ??? As an enhancement, move the ELSE block. Have to deal with
3446 BLOCK notes, if by no other means than backing out the merge if they
3447 exist. Sticky enough I don't want to think about it now. */
3448 next = then_bb;
3449 if (else_bb && (next = next->next_bb) != else_bb)
3450 return FALSE;
3451 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3453 if (else_bb)
3454 join_bb = NULL;
3455 else
3456 return FALSE;
3459 /* Do the real work. */
3461 ce_info->else_bb = else_bb;
3462 ce_info->join_bb = join_bb;
3464 /* If we have && and || tests, try to first handle combining the && and ||
3465 tests into the conditional code, and if that fails, go back and handle
3466 it without the && and ||, which at present handles the && case if there
3467 was no ELSE block. */
3468 if (cond_exec_process_if_block (ce_info, TRUE))
3469 return TRUE;
3471 if (ce_info->num_multiple_test_blocks)
3473 cancel_changes (0);
3475 if (cond_exec_process_if_block (ce_info, FALSE))
3476 return TRUE;
3479 return FALSE;
3482 /* Convert a branch over a trap, or a branch
3483 to a trap, into a conditional trap. */
3485 static int
3486 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3488 basic_block then_bb = then_edge->dest;
3489 basic_block else_bb = else_edge->dest;
3490 basic_block other_bb, trap_bb;
3491 rtx trap, jump, cond, cond_earliest, seq;
3492 enum rtx_code code;
3494 /* Locate the block with the trap instruction. */
3495 /* ??? While we look for no successors, we really ought to allow
3496 EH successors. Need to fix merge_if_block for that to work. */
3497 if ((trap = block_has_only_trap (then_bb)) != NULL)
3498 trap_bb = then_bb, other_bb = else_bb;
3499 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3500 trap_bb = else_bb, other_bb = then_bb;
3501 else
3502 return FALSE;
3504 if (dump_file)
3506 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3507 test_bb->index, trap_bb->index);
3510 /* If this is not a standard conditional jump, we can't parse it. */
3511 jump = BB_END (test_bb);
3512 cond = noce_get_condition (jump, &cond_earliest, false);
3513 if (! cond)
3514 return FALSE;
3516 /* If the conditional jump is more than just a conditional jump, then
3517 we can not do if-conversion on this block. */
3518 if (! onlyjump_p (jump))
3519 return FALSE;
3521 /* We must be comparing objects whose modes imply the size. */
3522 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3523 return FALSE;
3525 /* Reverse the comparison code, if necessary. */
3526 code = GET_CODE (cond);
3527 if (then_bb == trap_bb)
3529 code = reversed_comparison_code (cond, jump);
3530 if (code == UNKNOWN)
3531 return FALSE;
3534 /* Attempt to generate the conditional trap. */
3535 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3536 copy_rtx (XEXP (cond, 1)),
3537 TRAP_CODE (PATTERN (trap)));
3538 if (seq == NULL)
3539 return FALSE;
3541 /* Emit the new insns before cond_earliest. */
3542 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3544 /* Delete the trap block if possible. */
3545 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3546 df_set_bb_dirty (test_bb);
3547 df_set_bb_dirty (then_bb);
3548 df_set_bb_dirty (else_bb);
3550 if (EDGE_COUNT (trap_bb->preds) == 0)
3552 delete_basic_block (trap_bb);
3553 num_true_changes++;
3556 /* Wire together the blocks again. */
3557 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3558 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3559 else
3561 rtx lab, newjump;
3563 lab = JUMP_LABEL (jump);
3564 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3565 LABEL_NUSES (lab) += 1;
3566 JUMP_LABEL (newjump) = lab;
3567 emit_barrier_after (newjump);
3569 delete_insn (jump);
3571 if (can_merge_blocks_p (test_bb, other_bb))
3573 merge_blocks (test_bb, other_bb);
3574 num_true_changes++;
3577 num_updated_if_blocks++;
3578 return TRUE;
3581 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3582 return it. */
3584 static rtx
3585 block_has_only_trap (basic_block bb)
3587 rtx trap;
3589 /* We're not the exit block. */
3590 if (bb == EXIT_BLOCK_PTR)
3591 return NULL_RTX;
3593 /* The block must have no successors. */
3594 if (EDGE_COUNT (bb->succs) > 0)
3595 return NULL_RTX;
3597 /* The only instruction in the THEN block must be the trap. */
3598 trap = first_active_insn (bb);
3599 if (! (trap == BB_END (bb)
3600 && GET_CODE (PATTERN (trap)) == TRAP_IF
3601 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3602 return NULL_RTX;
3604 return trap;
3607 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3608 transformable, but not necessarily the other. There need be no
3609 JOIN block.
3611 Return TRUE if we were successful at converting the block.
3613 Cases we'd like to look at:
3616 if (test) goto over; // x not live
3617 x = a;
3618 goto label;
3619 over:
3621 becomes
3623 x = a;
3624 if (! test) goto label;
3627 if (test) goto E; // x not live
3628 x = big();
3629 goto L;
3631 x = b;
3632 goto M;
3634 becomes
3636 x = b;
3637 if (test) goto M;
3638 x = big();
3639 goto L;
3641 (3) // This one's really only interesting for targets that can do
3642 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3643 // it results in multiple branches on a cache line, which often
3644 // does not sit well with predictors.
3646 if (test1) goto E; // predicted not taken
3647 x = a;
3648 if (test2) goto F;
3651 x = b;
3654 becomes
3656 x = a;
3657 if (test1) goto E;
3658 if (test2) goto F;
3660 Notes:
3662 (A) Don't do (2) if the branch is predicted against the block we're
3663 eliminating. Do it anyway if we can eliminate a branch; this requires
3664 that the sole successor of the eliminated block postdominate the other
3665 side of the if.
3667 (B) With CE, on (3) we can steal from both sides of the if, creating
3669 if (test1) x = a;
3670 if (!test1) x = b;
3671 if (test1) goto J;
3672 if (test2) goto F;
3676 Again, this is most useful if J postdominates.
3678 (C) CE substitutes for helpful life information.
3680 (D) These heuristics need a lot of work. */
3682 /* Tests for case 1 above. */
3684 static int
3685 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3687 basic_block then_bb = then_edge->dest;
3688 basic_block else_bb = else_edge->dest;
3689 basic_block new_bb;
3690 int then_bb_index;
3692 /* If we are partitioning hot/cold basic blocks, we don't want to
3693 mess up unconditional or indirect jumps that cross between hot
3694 and cold sections.
3696 Basic block partitioning may result in some jumps that appear to
3697 be optimizable (or blocks that appear to be mergeable), but which really
3698 must be left untouched (they are required to make it safely across
3699 partition boundaries). See the comments at the top of
3700 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3702 if ((BB_END (then_bb)
3703 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3704 || (BB_END (test_bb)
3705 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3706 || (BB_END (else_bb)
3707 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3708 NULL_RTX)))
3709 return FALSE;
3711 /* THEN has one successor. */
3712 if (!single_succ_p (then_bb))
3713 return FALSE;
3715 /* THEN does not fall through, but is not strange either. */
3716 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3717 return FALSE;
3719 /* THEN has one predecessor. */
3720 if (!single_pred_p (then_bb))
3721 return FALSE;
3723 /* THEN must do something. */
3724 if (forwarder_block_p (then_bb))
3725 return FALSE;
3727 num_possible_if_blocks++;
3728 if (dump_file)
3729 fprintf (dump_file,
3730 "\nIF-CASE-1 found, start %d, then %d\n",
3731 test_bb->index, then_bb->index);
3733 /* THEN is small. */
3734 if (! cheap_bb_rtx_cost_p (then_bb,
3735 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3736 predictable_edge_p (then_edge)))))
3737 return FALSE;
3739 /* Registers set are dead, or are predicable. */
3740 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3741 single_succ (then_bb), 1))
3742 return FALSE;
3744 /* Conversion went ok, including moving the insns and fixing up the
3745 jump. Adjust the CFG to match. */
3747 /* We can avoid creating a new basic block if then_bb is immediately
3748 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3749 thru to else_bb. */
3751 if (then_bb->next_bb == else_bb
3752 && then_bb->prev_bb == test_bb
3753 && else_bb != EXIT_BLOCK_PTR)
3755 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3756 new_bb = 0;
3758 else
3759 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3760 else_bb);
3762 df_set_bb_dirty (test_bb);
3763 df_set_bb_dirty (else_bb);
3765 then_bb_index = then_bb->index;
3766 delete_basic_block (then_bb);
3768 /* Make rest of code believe that the newly created block is the THEN_BB
3769 block we removed. */
3770 if (new_bb)
3772 df_bb_replace (then_bb_index, new_bb);
3773 /* Since the fallthru edge was redirected from test_bb to new_bb,
3774 we need to ensure that new_bb is in the same partition as
3775 test bb (you can not fall through across section boundaries). */
3776 BB_COPY_PARTITION (new_bb, test_bb);
3779 num_true_changes++;
3780 num_updated_if_blocks++;
3782 return TRUE;
3785 /* Test for case 2 above. */
3787 static int
3788 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3790 basic_block then_bb = then_edge->dest;
3791 basic_block else_bb = else_edge->dest;
3792 edge else_succ;
3793 rtx note;
3795 /* If we are partitioning hot/cold basic blocks, we don't want to
3796 mess up unconditional or indirect jumps that cross between hot
3797 and cold sections.
3799 Basic block partitioning may result in some jumps that appear to
3800 be optimizable (or blocks that appear to be mergeable), but which really
3801 must be left untouched (they are required to make it safely across
3802 partition boundaries). See the comments at the top of
3803 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3805 if ((BB_END (then_bb)
3806 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3807 || (BB_END (test_bb)
3808 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3809 || (BB_END (else_bb)
3810 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3811 NULL_RTX)))
3812 return FALSE;
3814 /* ELSE has one successor. */
3815 if (!single_succ_p (else_bb))
3816 return FALSE;
3817 else
3818 else_succ = single_succ_edge (else_bb);
3820 /* ELSE outgoing edge is not complex. */
3821 if (else_succ->flags & EDGE_COMPLEX)
3822 return FALSE;
3824 /* ELSE has one predecessor. */
3825 if (!single_pred_p (else_bb))
3826 return FALSE;
3828 /* THEN is not EXIT. */
3829 if (then_bb->index < NUM_FIXED_BLOCKS)
3830 return FALSE;
3832 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3833 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3834 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3836 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3837 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3838 else_succ->dest))
3840 else
3841 return FALSE;
3843 num_possible_if_blocks++;
3844 if (dump_file)
3845 fprintf (dump_file,
3846 "\nIF-CASE-2 found, start %d, else %d\n",
3847 test_bb->index, else_bb->index);
3849 /* ELSE is small. */
3850 if (! cheap_bb_rtx_cost_p (else_bb,
3851 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3852 predictable_edge_p (else_edge)))))
3853 return FALSE;
3855 /* Registers set are dead, or are predicable. */
3856 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3857 return FALSE;
3859 /* Conversion went ok, including moving the insns and fixing up the
3860 jump. Adjust the CFG to match. */
3862 df_set_bb_dirty (test_bb);
3863 df_set_bb_dirty (then_bb);
3864 delete_basic_block (else_bb);
3866 num_true_changes++;
3867 num_updated_if_blocks++;
3869 /* ??? We may now fallthru from one of THEN's successors into a join
3870 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3872 return TRUE;
3875 /* A subroutine of dead_or_predicable called through for_each_rtx.
3876 Return 1 if a memory is found. */
3878 static int
3879 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3881 return MEM_P (*px);
3884 /* Used by the code above to perform the actual rtl transformations.
3885 Return TRUE if successful.
3887 TEST_BB is the block containing the conditional branch. MERGE_BB
3888 is the block containing the code to manipulate. NEW_DEST is the
3889 label TEST_BB should be branching to after the conversion.
3890 REVERSEP is true if the sense of the branch should be reversed. */
3892 static int
3893 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3894 basic_block other_bb, basic_block new_dest, int reversep)
3896 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3897 /* Number of pending changes. */
3898 int n_validated_changes = 0;
3900 jump = BB_END (test_bb);
3902 /* Find the extent of the real code in the merge block. */
3903 head = BB_HEAD (merge_bb);
3904 end = BB_END (merge_bb);
3906 while (DEBUG_INSN_P (end) && end != head)
3907 end = PREV_INSN (end);
3909 /* If merge_bb ends with a tablejump, predicating/moving insn's
3910 into test_bb and then deleting merge_bb will result in the jumptable
3911 that follows merge_bb being removed along with merge_bb and then we
3912 get an unresolved reference to the jumptable. */
3913 if (tablejump_p (end, NULL, NULL))
3914 return FALSE;
3916 if (LABEL_P (head))
3917 head = NEXT_INSN (head);
3918 while (DEBUG_INSN_P (head) && head != end)
3919 head = NEXT_INSN (head);
3920 if (NOTE_P (head))
3922 if (head == end)
3924 head = end = NULL_RTX;
3925 goto no_body;
3927 head = NEXT_INSN (head);
3928 while (DEBUG_INSN_P (head) && head != end)
3929 head = NEXT_INSN (head);
3932 if (JUMP_P (end))
3934 if (head == end)
3936 head = end = NULL_RTX;
3937 goto no_body;
3939 end = PREV_INSN (end);
3940 while (DEBUG_INSN_P (end) && end != head)
3941 end = PREV_INSN (end);
3944 /* Disable handling dead code by conditional execution if the machine needs
3945 to do anything funny with the tests, etc. */
3946 #ifndef IFCVT_MODIFY_TESTS
3947 if (targetm.have_conditional_execution ())
3949 /* In the conditional execution case, we have things easy. We know
3950 the condition is reversible. We don't have to check life info
3951 because we're going to conditionally execute the code anyway.
3952 All that's left is making sure the insns involved can actually
3953 be predicated. */
3955 rtx cond, prob_val;
3957 cond = cond_exec_get_condition (jump);
3958 if (! cond)
3959 return FALSE;
3961 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3962 if (prob_val)
3963 prob_val = XEXP (prob_val, 0);
3965 if (reversep)
3967 enum rtx_code rev = reversed_comparison_code (cond, jump);
3968 if (rev == UNKNOWN)
3969 return FALSE;
3970 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3971 XEXP (cond, 1));
3972 if (prob_val)
3973 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3976 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
3977 && verify_changes (0))
3978 n_validated_changes = num_validated_changes ();
3979 else
3980 cancel_changes (0);
3982 earliest = jump;
3984 #endif
3985 /* Try the NCE path if the CE path did not result in any changes. */
3986 if (n_validated_changes == 0)
3988 /* In the non-conditional execution case, we have to verify that there
3989 are no trapping operations, no calls, no references to memory, and
3990 that any registers modified are dead at the branch site. */
3992 rtx insn, cond, prev;
3993 bitmap merge_set, test_live, test_set;
3994 unsigned i, fail = 0;
3995 bitmap_iterator bi;
3997 /* Check for no calls or trapping operations. */
3998 for (insn = head; ; insn = NEXT_INSN (insn))
4000 if (CALL_P (insn))
4001 return FALSE;
4002 if (NONDEBUG_INSN_P (insn))
4004 if (may_trap_p (PATTERN (insn)))
4005 return FALSE;
4007 /* ??? Even non-trapping memories such as stack frame
4008 references must be avoided. For stores, we collect
4009 no lifetime info; for reads, we'd have to assert
4010 true_dependence false against every store in the
4011 TEST range. */
4012 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
4013 return FALSE;
4015 if (insn == end)
4016 break;
4019 if (! any_condjump_p (jump))
4020 return FALSE;
4022 /* Find the extent of the conditional. */
4023 cond = noce_get_condition (jump, &earliest, false);
4024 if (! cond)
4025 return FALSE;
4027 /* Collect:
4028 MERGE_SET = set of registers set in MERGE_BB
4029 TEST_LIVE = set of registers live at EARLIEST
4030 TEST_SET = set of registers set between EARLIEST and the
4031 end of the block. */
4033 merge_set = BITMAP_ALLOC (&reg_obstack);
4034 test_live = BITMAP_ALLOC (&reg_obstack);
4035 test_set = BITMAP_ALLOC (&reg_obstack);
4037 /* ??? bb->local_set is only valid during calculate_global_regs_live,
4038 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
4039 since we've already asserted that MERGE_BB is small. */
4040 /* If we allocated new pseudos (e.g. in the conditional move
4041 expander called from noce_emit_cmove), we must resize the
4042 array first. */
4043 if (max_regno < max_reg_num ())
4044 max_regno = max_reg_num ();
4046 FOR_BB_INSNS (merge_bb, insn)
4048 if (NONDEBUG_INSN_P (insn))
4050 unsigned int uid = INSN_UID (insn);
4051 df_ref *def_rec;
4052 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4054 df_ref def = *def_rec;
4055 bitmap_set_bit (merge_set, DF_REF_REGNO (def));
4060 /* For small register class machines, don't lengthen lifetimes of
4061 hard registers before reload. */
4062 if (SMALL_REGISTER_CLASSES && ! reload_completed)
4064 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4066 if (i < FIRST_PSEUDO_REGISTER
4067 && ! fixed_regs[i]
4068 && ! global_regs[i])
4069 fail = 1;
4073 /* For TEST, we're interested in a range of insns, not a whole block.
4074 Moreover, we're interested in the insns live from OTHER_BB. */
4076 /* The loop below takes the set of live registers
4077 after JUMP, and calculates the live set before EARLIEST. */
4078 bitmap_copy (test_live, df_get_live_in (other_bb));
4079 df_simulate_initialize_backwards (test_bb, test_live);
4080 for (insn = jump; ; insn = prev)
4082 if (INSN_P (insn))
4084 df_simulate_find_defs (insn, test_set);
4085 df_simulate_one_insn_backwards (test_bb, insn, test_live);
4087 prev = PREV_INSN (insn);
4088 if (insn == earliest)
4089 break;
4092 /* We can perform the transformation if
4093 MERGE_SET & (TEST_SET | TEST_LIVE)
4095 TEST_SET & DF_LIVE_IN (merge_bb)
4096 are empty. */
4098 if (bitmap_intersect_p (test_set, merge_set)
4099 || bitmap_intersect_p (test_live, merge_set)
4100 || bitmap_intersect_p (test_set, df_get_live_in (merge_bb)))
4101 fail = 1;
4103 BITMAP_FREE (merge_set);
4104 BITMAP_FREE (test_live);
4105 BITMAP_FREE (test_set);
4107 if (fail)
4108 return FALSE;
4111 no_body:
4112 /* We don't want to use normal invert_jump or redirect_jump because
4113 we don't want to delete_insn called. Also, we want to do our own
4114 change group management. */
4116 old_dest = JUMP_LABEL (jump);
4117 if (other_bb != new_dest)
4119 new_label = block_label (new_dest);
4120 if (reversep
4121 ? ! invert_jump_1 (jump, new_label)
4122 : ! redirect_jump_1 (jump, new_label))
4123 goto cancel;
4126 if (verify_changes (n_validated_changes))
4127 confirm_change_group ();
4128 else
4129 goto cancel;
4131 if (other_bb != new_dest)
4133 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
4135 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4136 if (reversep)
4138 gcov_type count, probability;
4139 count = BRANCH_EDGE (test_bb)->count;
4140 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4141 FALLTHRU_EDGE (test_bb)->count = count;
4142 probability = BRANCH_EDGE (test_bb)->probability;
4143 BRANCH_EDGE (test_bb)->probability
4144 = FALLTHRU_EDGE (test_bb)->probability;
4145 FALLTHRU_EDGE (test_bb)->probability = probability;
4146 update_br_prob_note (test_bb);
4150 /* Move the insns out of MERGE_BB to before the branch. */
4151 if (head != NULL)
4153 rtx insn;
4155 if (end == BB_END (merge_bb))
4156 BB_END (merge_bb) = PREV_INSN (head);
4158 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
4159 notes might become invalid. */
4160 insn = head;
4163 rtx note, set;
4165 if (! INSN_P (insn))
4166 continue;
4167 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4168 if (! note)
4169 continue;
4170 set = single_set (insn);
4171 if (!set || !function_invariant_p (SET_SRC (set))
4172 || !function_invariant_p (XEXP (note, 0)))
4173 remove_note (insn, note);
4174 } while (insn != end && (insn = NEXT_INSN (insn)));
4176 reorder_insns (head, end, PREV_INSN (earliest));
4179 /* Remove the jump and edge if we can. */
4180 if (other_bb == new_dest)
4182 delete_insn (jump);
4183 remove_edge (BRANCH_EDGE (test_bb));
4184 /* ??? Can't merge blocks here, as then_bb is still in use.
4185 At minimum, the merge will get done just before bb-reorder. */
4188 return TRUE;
4190 cancel:
4191 cancel_changes (0);
4192 return FALSE;
4195 /* Main entry point for all if-conversion. */
4197 static void
4198 if_convert (void)
4200 basic_block bb;
4201 int pass;
4203 if (optimize == 1)
4205 df_live_add_problem ();
4206 df_live_set_all_dirty ();
4209 num_possible_if_blocks = 0;
4210 num_updated_if_blocks = 0;
4211 num_true_changes = 0;
4213 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4214 mark_loop_exit_edges ();
4215 loop_optimizer_finalize ();
4216 free_dominance_info (CDI_DOMINATORS);
4218 /* Compute postdominators. */
4219 calculate_dominance_info (CDI_POST_DOMINATORS);
4221 df_set_flags (DF_LR_RUN_DCE);
4223 /* Go through each of the basic blocks looking for things to convert. If we
4224 have conditional execution, we make multiple passes to allow us to handle
4225 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4226 pass = 0;
4229 df_analyze ();
4230 /* Only need to do dce on the first pass. */
4231 df_clear_flags (DF_LR_RUN_DCE);
4232 cond_exec_changed_p = FALSE;
4233 pass++;
4235 #ifdef IFCVT_MULTIPLE_DUMPS
4236 if (dump_file && pass > 1)
4237 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4238 #endif
4240 FOR_EACH_BB (bb)
4242 basic_block new_bb;
4243 while (!df_get_bb_dirty (bb)
4244 && (new_bb = find_if_header (bb, pass)) != NULL)
4245 bb = new_bb;
4248 #ifdef IFCVT_MULTIPLE_DUMPS
4249 if (dump_file && cond_exec_changed_p)
4251 if (dump_flags & TDF_SLIM)
4252 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4253 else
4254 print_rtl_with_bb (dump_file, get_insns ());
4256 #endif
4258 while (cond_exec_changed_p);
4260 #ifdef IFCVT_MULTIPLE_DUMPS
4261 if (dump_file)
4262 fprintf (dump_file, "\n\n========== no more changes\n");
4263 #endif
4265 free_dominance_info (CDI_POST_DOMINATORS);
4267 if (dump_file)
4268 fflush (dump_file);
4270 clear_aux_for_blocks ();
4272 /* If we allocated new pseudos, we must resize the array for sched1. */
4273 if (max_regno < max_reg_num ())
4274 max_regno = max_reg_num ();
4276 /* Write the final stats. */
4277 if (dump_file && num_possible_if_blocks > 0)
4279 fprintf (dump_file,
4280 "\n%d possible IF blocks searched.\n",
4281 num_possible_if_blocks);
4282 fprintf (dump_file,
4283 "%d IF blocks converted.\n",
4284 num_updated_if_blocks);
4285 fprintf (dump_file,
4286 "%d true changes made.\n\n\n",
4287 num_true_changes);
4290 if (optimize == 1)
4291 df_remove_problem (df_live);
4293 #ifdef ENABLE_CHECKING
4294 verify_flow_info ();
4295 #endif
4298 static bool
4299 gate_handle_if_conversion (void)
4301 return (optimize > 0)
4302 && dbg_cnt (if_conversion);
4305 /* If-conversion and CFG cleanup. */
4306 static unsigned int
4307 rest_of_handle_if_conversion (void)
4309 if (flag_if_conversion)
4311 if (dump_file)
4312 dump_flow_info (dump_file, dump_flags);
4313 cleanup_cfg (CLEANUP_EXPENSIVE);
4314 if_convert ();
4317 cleanup_cfg (0);
4318 return 0;
4321 struct rtl_opt_pass pass_rtl_ifcvt =
4324 RTL_PASS,
4325 "ce1", /* name */
4326 gate_handle_if_conversion, /* gate */
4327 rest_of_handle_if_conversion, /* execute */
4328 NULL, /* sub */
4329 NULL, /* next */
4330 0, /* static_pass_number */
4331 TV_IFCVT, /* tv_id */
4332 0, /* properties_required */
4333 0, /* properties_provided */
4334 0, /* properties_destroyed */
4335 0, /* todo_flags_start */
4336 TODO_df_finish | TODO_verify_rtl_sharing |
4337 TODO_dump_func /* todo_flags_finish */
4341 static bool
4342 gate_handle_if_after_combine (void)
4344 return optimize > 0 && flag_if_conversion
4345 && dbg_cnt (if_after_combine);
4349 /* Rerun if-conversion, as combine may have simplified things enough
4350 to now meet sequence length restrictions. */
4351 static unsigned int
4352 rest_of_handle_if_after_combine (void)
4354 if_convert ();
4355 return 0;
4358 struct rtl_opt_pass pass_if_after_combine =
4361 RTL_PASS,
4362 "ce2", /* name */
4363 gate_handle_if_after_combine, /* gate */
4364 rest_of_handle_if_after_combine, /* execute */
4365 NULL, /* sub */
4366 NULL, /* next */
4367 0, /* static_pass_number */
4368 TV_IFCVT, /* tv_id */
4369 0, /* properties_required */
4370 0, /* properties_provided */
4371 0, /* properties_destroyed */
4372 0, /* todo_flags_start */
4373 TODO_df_finish | TODO_verify_rtl_sharing |
4374 TODO_dump_func |
4375 TODO_ggc_collect /* todo_flags_finish */
4380 static bool
4381 gate_handle_if_after_reload (void)
4383 return optimize > 0 && flag_if_conversion2
4384 && dbg_cnt (if_after_reload);
4387 static unsigned int
4388 rest_of_handle_if_after_reload (void)
4390 if_convert ();
4391 return 0;
4395 struct rtl_opt_pass pass_if_after_reload =
4398 RTL_PASS,
4399 "ce3", /* name */
4400 gate_handle_if_after_reload, /* gate */
4401 rest_of_handle_if_after_reload, /* execute */
4402 NULL, /* sub */
4403 NULL, /* next */
4404 0, /* static_pass_number */
4405 TV_IFCVT2, /* tv_id */
4406 0, /* properties_required */
4407 0, /* properties_provided */
4408 0, /* properties_destroyed */
4409 0, /* todo_flags_start */
4410 TODO_df_finish | TODO_verify_rtl_sharing |
4411 TODO_dump_func |
4412 TODO_ggc_collect /* todo_flags_finish */