rephrase text
[official-gcc.git] / gcc / expmed.c
blob44de4a6512e30c68816c5d3014c3da33fc9d7e09
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
39 #include "df.h"
40 #include "target.h"
42 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
46 unsigned HOST_WIDE_INT, rtx);
47 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT, rtx, int);
51 static rtx mask_rtx (enum machine_mode, int, int, int);
52 static rtx lshift_value (enum machine_mode, rtx, int, int);
53 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT, int);
55 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
56 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
65 sequences. */
67 static bool sdiv_pow2_cheap[2][NUM_MACHINE_MODES];
68 static bool smod_pow2_cheap[2][NUM_MACHINE_MODES];
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
72 #endif
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
80 #endif
82 /* Reduce conditional compilation elsewhere. */
83 #ifndef HAVE_insv
84 #define HAVE_insv 0
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extv
89 #define HAVE_extv 0
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
92 #endif
93 #ifndef HAVE_extzv
94 #define HAVE_extzv 0
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
97 #endif
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost[2];
102 static int add_cost[2][NUM_MACHINE_MODES];
103 static int neg_cost[2][NUM_MACHINE_MODES];
104 static int shift_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftadd_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int shiftsub0_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
107 static int shiftsub1_cost[2][NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
108 static int mul_cost[2][NUM_MACHINE_MODES];
109 static int sdiv_cost[2][NUM_MACHINE_MODES];
110 static int udiv_cost[2][NUM_MACHINE_MODES];
111 static int mul_widen_cost[2][NUM_MACHINE_MODES];
112 static int mul_highpart_cost[2][NUM_MACHINE_MODES];
114 void
115 init_expmed (void)
117 struct
119 struct rtx_def reg; rtunion reg_fld[2];
120 struct rtx_def plus; rtunion plus_fld1;
121 struct rtx_def neg;
122 struct rtx_def mult; rtunion mult_fld1;
123 struct rtx_def sdiv; rtunion sdiv_fld1;
124 struct rtx_def udiv; rtunion udiv_fld1;
125 struct rtx_def zext;
126 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
127 struct rtx_def smod_32; rtunion smod_32_fld1;
128 struct rtx_def wide_mult; rtunion wide_mult_fld1;
129 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
130 struct rtx_def wide_trunc;
131 struct rtx_def shift; rtunion shift_fld1;
132 struct rtx_def shift_mult; rtunion shift_mult_fld1;
133 struct rtx_def shift_add; rtunion shift_add_fld1;
134 struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
135 struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
136 } all;
138 rtx pow2[MAX_BITS_PER_WORD];
139 rtx cint[MAX_BITS_PER_WORD];
140 int m, n;
141 enum machine_mode mode, wider_mode;
142 int speed;
145 for (m = 1; m < MAX_BITS_PER_WORD; m++)
147 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
148 cint[m] = GEN_INT (m);
150 memset (&all, 0, sizeof all);
152 PUT_CODE (&all.reg, REG);
153 /* Avoid using hard regs in ways which may be unsupported. */
154 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
156 PUT_CODE (&all.plus, PLUS);
157 XEXP (&all.plus, 0) = &all.reg;
158 XEXP (&all.plus, 1) = &all.reg;
160 PUT_CODE (&all.neg, NEG);
161 XEXP (&all.neg, 0) = &all.reg;
163 PUT_CODE (&all.mult, MULT);
164 XEXP (&all.mult, 0) = &all.reg;
165 XEXP (&all.mult, 1) = &all.reg;
167 PUT_CODE (&all.sdiv, DIV);
168 XEXP (&all.sdiv, 0) = &all.reg;
169 XEXP (&all.sdiv, 1) = &all.reg;
171 PUT_CODE (&all.udiv, UDIV);
172 XEXP (&all.udiv, 0) = &all.reg;
173 XEXP (&all.udiv, 1) = &all.reg;
175 PUT_CODE (&all.sdiv_32, DIV);
176 XEXP (&all.sdiv_32, 0) = &all.reg;
177 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
179 PUT_CODE (&all.smod_32, MOD);
180 XEXP (&all.smod_32, 0) = &all.reg;
181 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
183 PUT_CODE (&all.zext, ZERO_EXTEND);
184 XEXP (&all.zext, 0) = &all.reg;
186 PUT_CODE (&all.wide_mult, MULT);
187 XEXP (&all.wide_mult, 0) = &all.zext;
188 XEXP (&all.wide_mult, 1) = &all.zext;
190 PUT_CODE (&all.wide_lshr, LSHIFTRT);
191 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
193 PUT_CODE (&all.wide_trunc, TRUNCATE);
194 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
196 PUT_CODE (&all.shift, ASHIFT);
197 XEXP (&all.shift, 0) = &all.reg;
199 PUT_CODE (&all.shift_mult, MULT);
200 XEXP (&all.shift_mult, 0) = &all.reg;
202 PUT_CODE (&all.shift_add, PLUS);
203 XEXP (&all.shift_add, 0) = &all.shift_mult;
204 XEXP (&all.shift_add, 1) = &all.reg;
206 PUT_CODE (&all.shift_sub0, MINUS);
207 XEXP (&all.shift_sub0, 0) = &all.shift_mult;
208 XEXP (&all.shift_sub0, 1) = &all.reg;
210 PUT_CODE (&all.shift_sub1, MINUS);
211 XEXP (&all.shift_sub1, 0) = &all.reg;
212 XEXP (&all.shift_sub1, 1) = &all.shift_mult;
214 for (speed = 0; speed < 2; speed++)
216 crtl->maybe_hot_insn_p = speed;
217 zero_cost[speed] = rtx_cost (const0_rtx, SET, speed);
219 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
220 mode != VOIDmode;
221 mode = GET_MODE_WIDER_MODE (mode))
223 PUT_MODE (&all.reg, mode);
224 PUT_MODE (&all.plus, mode);
225 PUT_MODE (&all.neg, mode);
226 PUT_MODE (&all.mult, mode);
227 PUT_MODE (&all.sdiv, mode);
228 PUT_MODE (&all.udiv, mode);
229 PUT_MODE (&all.sdiv_32, mode);
230 PUT_MODE (&all.smod_32, mode);
231 PUT_MODE (&all.wide_trunc, mode);
232 PUT_MODE (&all.shift, mode);
233 PUT_MODE (&all.shift_mult, mode);
234 PUT_MODE (&all.shift_add, mode);
235 PUT_MODE (&all.shift_sub0, mode);
236 PUT_MODE (&all.shift_sub1, mode);
238 add_cost[speed][mode] = rtx_cost (&all.plus, SET, speed);
239 neg_cost[speed][mode] = rtx_cost (&all.neg, SET, speed);
240 mul_cost[speed][mode] = rtx_cost (&all.mult, SET, speed);
241 sdiv_cost[speed][mode] = rtx_cost (&all.sdiv, SET, speed);
242 udiv_cost[speed][mode] = rtx_cost (&all.udiv, SET, speed);
244 sdiv_pow2_cheap[speed][mode] = (rtx_cost (&all.sdiv_32, SET, speed)
245 <= 2 * add_cost[speed][mode]);
246 smod_pow2_cheap[speed][mode] = (rtx_cost (&all.smod_32, SET, speed)
247 <= 4 * add_cost[speed][mode]);
249 wider_mode = GET_MODE_WIDER_MODE (mode);
250 if (wider_mode != VOIDmode)
252 PUT_MODE (&all.zext, wider_mode);
253 PUT_MODE (&all.wide_mult, wider_mode);
254 PUT_MODE (&all.wide_lshr, wider_mode);
255 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
257 mul_widen_cost[speed][wider_mode]
258 = rtx_cost (&all.wide_mult, SET, speed);
259 mul_highpart_cost[speed][mode]
260 = rtx_cost (&all.wide_trunc, SET, speed);
263 shift_cost[speed][mode][0] = 0;
264 shiftadd_cost[speed][mode][0] = shiftsub0_cost[speed][mode][0]
265 = shiftsub1_cost[speed][mode][0] = add_cost[speed][mode];
267 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
268 for (m = 1; m < n; m++)
270 XEXP (&all.shift, 1) = cint[m];
271 XEXP (&all.shift_mult, 1) = pow2[m];
273 shift_cost[speed][mode][m] = rtx_cost (&all.shift, SET, speed);
274 shiftadd_cost[speed][mode][m] = rtx_cost (&all.shift_add, SET, speed);
275 shiftsub0_cost[speed][mode][m] = rtx_cost (&all.shift_sub0, SET, speed);
276 shiftsub1_cost[speed][mode][m] = rtx_cost (&all.shift_sub1, SET, speed);
280 default_rtl_profile ();
283 /* Return an rtx representing minus the value of X.
284 MODE is the intended mode of the result,
285 useful if X is a CONST_INT. */
288 negate_rtx (enum machine_mode mode, rtx x)
290 rtx result = simplify_unary_operation (NEG, mode, x, mode);
292 if (result == 0)
293 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
295 return result;
298 /* Report on the availability of insv/extv/extzv and the desired mode
299 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
300 is false; else the mode of the specified operand. If OPNO is -1,
301 all the caller cares about is whether the insn is available. */
302 enum machine_mode
303 mode_for_extraction (enum extraction_pattern pattern, int opno)
305 const struct insn_data *data;
307 switch (pattern)
309 case EP_insv:
310 if (HAVE_insv)
312 data = &insn_data[CODE_FOR_insv];
313 break;
315 return MAX_MACHINE_MODE;
317 case EP_extv:
318 if (HAVE_extv)
320 data = &insn_data[CODE_FOR_extv];
321 break;
323 return MAX_MACHINE_MODE;
325 case EP_extzv:
326 if (HAVE_extzv)
328 data = &insn_data[CODE_FOR_extzv];
329 break;
331 return MAX_MACHINE_MODE;
333 default:
334 gcc_unreachable ();
337 if (opno == -1)
338 return VOIDmode;
340 /* Everyone who uses this function used to follow it with
341 if (result == VOIDmode) result = word_mode; */
342 if (data->operand[opno].mode == VOIDmode)
343 return word_mode;
344 return data->operand[opno].mode;
347 /* Return true if X, of mode MODE, matches the predicate for operand
348 OPNO of instruction ICODE. Allow volatile memories, regardless of
349 the ambient volatile_ok setting. */
351 static bool
352 check_predicate_volatile_ok (enum insn_code icode, int opno,
353 rtx x, enum machine_mode mode)
355 bool save_volatile_ok, result;
357 save_volatile_ok = volatile_ok;
358 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
359 volatile_ok = save_volatile_ok;
360 return result;
363 /* A subroutine of store_bit_field, with the same arguments. Return true
364 if the operation could be implemented.
366 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
367 no other way of implementing the operation. If FALLBACK_P is false,
368 return false instead. */
370 static bool
371 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
372 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
373 rtx value, bool fallback_p)
375 unsigned int unit
376 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
377 unsigned HOST_WIDE_INT offset, bitpos;
378 rtx op0 = str_rtx;
379 int byte_offset;
380 rtx orig_value;
382 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
384 while (GET_CODE (op0) == SUBREG)
386 /* The following line once was done only if WORDS_BIG_ENDIAN,
387 but I think that is a mistake. WORDS_BIG_ENDIAN is
388 meaningful at a much higher level; when structures are copied
389 between memory and regs, the higher-numbered regs
390 always get higher addresses. */
391 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
392 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
394 byte_offset = 0;
396 /* Paradoxical subregs need special handling on big endian machines. */
397 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
399 int difference = inner_mode_size - outer_mode_size;
401 if (WORDS_BIG_ENDIAN)
402 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
403 if (BYTES_BIG_ENDIAN)
404 byte_offset += difference % UNITS_PER_WORD;
406 else
407 byte_offset = SUBREG_BYTE (op0);
409 bitnum += byte_offset * BITS_PER_UNIT;
410 op0 = SUBREG_REG (op0);
413 /* No action is needed if the target is a register and if the field
414 lies completely outside that register. This can occur if the source
415 code contains an out-of-bounds access to a small array. */
416 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
417 return true;
419 /* Use vec_set patterns for inserting parts of vectors whenever
420 available. */
421 if (VECTOR_MODE_P (GET_MODE (op0))
422 && !MEM_P (op0)
423 && (optab_handler (vec_set_optab, GET_MODE (op0))->insn_code
424 != CODE_FOR_nothing)
425 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
426 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
427 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
429 enum machine_mode outermode = GET_MODE (op0);
430 enum machine_mode innermode = GET_MODE_INNER (outermode);
431 int icode = (int) optab_handler (vec_set_optab, outermode)->insn_code;
432 int pos = bitnum / GET_MODE_BITSIZE (innermode);
433 rtx rtxpos = GEN_INT (pos);
434 rtx src = value;
435 rtx dest = op0;
436 rtx pat, seq;
437 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
438 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
439 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
441 start_sequence ();
443 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
444 src = copy_to_mode_reg (mode1, src);
446 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
447 rtxpos = copy_to_mode_reg (mode1, rtxpos);
449 /* We could handle this, but we should always be called with a pseudo
450 for our targets and all insns should take them as outputs. */
451 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
452 && (*insn_data[icode].operand[1].predicate) (src, mode1)
453 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
454 pat = GEN_FCN (icode) (dest, src, rtxpos);
455 seq = get_insns ();
456 end_sequence ();
457 if (pat)
459 emit_insn (seq);
460 emit_insn (pat);
461 return true;
465 /* If the target is a register, overwriting the entire object, or storing
466 a full-word or multi-word field can be done with just a SUBREG.
468 If the target is memory, storing any naturally aligned field can be
469 done with a simple store. For targets that support fast unaligned
470 memory, any naturally sized, unit aligned field can be done directly. */
472 offset = bitnum / unit;
473 bitpos = bitnum % unit;
474 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
475 + (offset * UNITS_PER_WORD);
477 if (bitpos == 0
478 && bitsize == GET_MODE_BITSIZE (fieldmode)
479 && (!MEM_P (op0)
480 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
481 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
482 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
483 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
484 || (offset * BITS_PER_UNIT % bitsize == 0
485 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
487 if (MEM_P (op0))
488 op0 = adjust_address (op0, fieldmode, offset);
489 else if (GET_MODE (op0) != fieldmode)
490 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
491 byte_offset);
492 emit_move_insn (op0, value);
493 return true;
496 /* Make sure we are playing with integral modes. Pun with subregs
497 if we aren't. This must come after the entire register case above,
498 since that case is valid for any mode. The following cases are only
499 valid for integral modes. */
501 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
502 if (imode != GET_MODE (op0))
504 if (MEM_P (op0))
505 op0 = adjust_address (op0, imode, 0);
506 else
508 gcc_assert (imode != BLKmode);
509 op0 = gen_lowpart (imode, op0);
514 /* We may be accessing data outside the field, which means
515 we can alias adjacent data. */
516 if (MEM_P (op0))
518 op0 = shallow_copy_rtx (op0);
519 set_mem_alias_set (op0, 0);
520 set_mem_expr (op0, 0);
523 /* If OP0 is a register, BITPOS must count within a word.
524 But as we have it, it counts within whatever size OP0 now has.
525 On a bigendian machine, these are not the same, so convert. */
526 if (BYTES_BIG_ENDIAN
527 && !MEM_P (op0)
528 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
529 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
531 /* Storing an lsb-aligned field in a register
532 can be done with a movestrict instruction. */
534 if (!MEM_P (op0)
535 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
536 && bitsize == GET_MODE_BITSIZE (fieldmode)
537 && (optab_handler (movstrict_optab, fieldmode)->insn_code
538 != CODE_FOR_nothing))
540 int icode = optab_handler (movstrict_optab, fieldmode)->insn_code;
541 rtx insn;
542 rtx start = get_last_insn ();
543 rtx arg0 = op0;
545 /* Get appropriate low part of the value being stored. */
546 if (CONST_INT_P (value) || REG_P (value))
547 value = gen_lowpart (fieldmode, value);
548 else if (!(GET_CODE (value) == SYMBOL_REF
549 || GET_CODE (value) == LABEL_REF
550 || GET_CODE (value) == CONST))
551 value = convert_to_mode (fieldmode, value, 0);
553 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
554 value = copy_to_mode_reg (fieldmode, value);
556 if (GET_CODE (op0) == SUBREG)
558 /* Else we've got some float mode source being extracted into
559 a different float mode destination -- this combination of
560 subregs results in Severe Tire Damage. */
561 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
562 || GET_MODE_CLASS (fieldmode) == MODE_INT
563 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
564 arg0 = SUBREG_REG (op0);
567 insn = (GEN_FCN (icode)
568 (gen_rtx_SUBREG (fieldmode, arg0,
569 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
570 + (offset * UNITS_PER_WORD)),
571 value));
572 if (insn)
574 emit_insn (insn);
575 return true;
577 delete_insns_since (start);
580 /* Handle fields bigger than a word. */
582 if (bitsize > BITS_PER_WORD)
584 /* Here we transfer the words of the field
585 in the order least significant first.
586 This is because the most significant word is the one which may
587 be less than full.
588 However, only do that if the value is not BLKmode. */
590 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
591 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
592 unsigned int i;
593 rtx last;
595 /* This is the mode we must force value to, so that there will be enough
596 subwords to extract. Note that fieldmode will often (always?) be
597 VOIDmode, because that is what store_field uses to indicate that this
598 is a bit field, but passing VOIDmode to operand_subword_force
599 is not allowed. */
600 fieldmode = GET_MODE (value);
601 if (fieldmode == VOIDmode)
602 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
604 last = get_last_insn ();
605 for (i = 0; i < nwords; i++)
607 /* If I is 0, use the low-order word in both field and target;
608 if I is 1, use the next to lowest word; and so on. */
609 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
610 unsigned int bit_offset = (backwards
611 ? MAX ((int) bitsize - ((int) i + 1)
612 * BITS_PER_WORD,
614 : (int) i * BITS_PER_WORD);
615 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
617 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
618 bitsize - i * BITS_PER_WORD),
619 bitnum + bit_offset, word_mode,
620 value_word, fallback_p))
622 delete_insns_since (last);
623 return false;
626 return true;
629 /* From here on we can assume that the field to be stored in is
630 a full-word (whatever type that is), since it is shorter than a word. */
632 /* OFFSET is the number of words or bytes (UNIT says which)
633 from STR_RTX to the first word or byte containing part of the field. */
635 if (!MEM_P (op0))
637 if (offset != 0
638 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
640 if (!REG_P (op0))
642 /* Since this is a destination (lvalue), we can't copy
643 it to a pseudo. We can remove a SUBREG that does not
644 change the size of the operand. Such a SUBREG may
645 have been added above. */
646 gcc_assert (GET_CODE (op0) == SUBREG
647 && (GET_MODE_SIZE (GET_MODE (op0))
648 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
649 op0 = SUBREG_REG (op0);
651 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
652 op0, (offset * UNITS_PER_WORD));
654 offset = 0;
657 /* If VALUE has a floating-point or complex mode, access it as an
658 integer of the corresponding size. This can occur on a machine
659 with 64 bit registers that uses SFmode for float. It can also
660 occur for unaligned float or complex fields. */
661 orig_value = value;
662 if (GET_MODE (value) != VOIDmode
663 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
664 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
666 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
667 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
670 /* Now OFFSET is nonzero only if OP0 is memory
671 and is therefore always measured in bytes. */
673 if (HAVE_insv
674 && GET_MODE (value) != BLKmode
675 && bitsize > 0
676 && GET_MODE_BITSIZE (op_mode) >= bitsize
677 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
678 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
679 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
680 VOIDmode)
681 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
683 int xbitpos = bitpos;
684 rtx value1;
685 rtx xop0 = op0;
686 rtx last = get_last_insn ();
687 rtx pat;
688 bool copy_back = false;
690 /* Add OFFSET into OP0's address. */
691 if (MEM_P (xop0))
692 xop0 = adjust_address (xop0, byte_mode, offset);
694 /* If xop0 is a register, we need it in OP_MODE
695 to make it acceptable to the format of insv. */
696 if (GET_CODE (xop0) == SUBREG)
697 /* We can't just change the mode, because this might clobber op0,
698 and we will need the original value of op0 if insv fails. */
699 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
700 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
701 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
703 /* If the destination is a paradoxical subreg such that we need a
704 truncate to the inner mode, perform the insertion on a temporary and
705 truncate the result to the original destination. Note that we can't
706 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
707 X) 0)) is (reg:N X). */
708 if (GET_CODE (xop0) == SUBREG
709 && REG_P (SUBREG_REG (xop0))
710 && (!TRULY_NOOP_TRUNCATION
711 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (xop0))),
712 GET_MODE_BITSIZE (op_mode))))
714 rtx tem = gen_reg_rtx (op_mode);
715 emit_move_insn (tem, xop0);
716 xop0 = tem;
717 copy_back = true;
720 /* On big-endian machines, we count bits from the most significant.
721 If the bit field insn does not, we must invert. */
723 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
724 xbitpos = unit - bitsize - xbitpos;
726 /* We have been counting XBITPOS within UNIT.
727 Count instead within the size of the register. */
728 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
729 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
731 unit = GET_MODE_BITSIZE (op_mode);
733 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
734 value1 = value;
735 if (GET_MODE (value) != op_mode)
737 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
739 /* Optimization: Don't bother really extending VALUE
740 if it has all the bits we will actually use. However,
741 if we must narrow it, be sure we do it correctly. */
743 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
745 rtx tmp;
747 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
748 if (! tmp)
749 tmp = simplify_gen_subreg (op_mode,
750 force_reg (GET_MODE (value),
751 value1),
752 GET_MODE (value), 0);
753 value1 = tmp;
755 else
756 value1 = gen_lowpart (op_mode, value1);
758 else if (CONST_INT_P (value))
759 value1 = gen_int_mode (INTVAL (value), op_mode);
760 else
761 /* Parse phase is supposed to make VALUE's data type
762 match that of the component reference, which is a type
763 at least as wide as the field; so VALUE should have
764 a mode that corresponds to that type. */
765 gcc_assert (CONSTANT_P (value));
768 /* If this machine's insv insists on a register,
769 get VALUE1 into a register. */
770 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
771 (value1, op_mode)))
772 value1 = force_reg (op_mode, value1);
774 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
775 if (pat)
777 emit_insn (pat);
779 if (copy_back)
780 convert_move (op0, xop0, true);
781 return true;
783 delete_insns_since (last);
786 /* If OP0 is a memory, try copying it to a register and seeing if a
787 cheap register alternative is available. */
788 if (HAVE_insv && MEM_P (op0))
790 enum machine_mode bestmode;
792 /* Get the mode to use for inserting into this field. If OP0 is
793 BLKmode, get the smallest mode consistent with the alignment. If
794 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
795 mode. Otherwise, use the smallest mode containing the field. */
797 if (GET_MODE (op0) == BLKmode
798 || (op_mode != MAX_MACHINE_MODE
799 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
800 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
801 (op_mode == MAX_MACHINE_MODE
802 ? VOIDmode : op_mode),
803 MEM_VOLATILE_P (op0));
804 else
805 bestmode = GET_MODE (op0);
807 if (bestmode != VOIDmode
808 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
809 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
810 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
812 rtx last, tempreg, xop0;
813 unsigned HOST_WIDE_INT xoffset, xbitpos;
815 last = get_last_insn ();
817 /* Adjust address to point to the containing unit of
818 that mode. Compute the offset as a multiple of this unit,
819 counting in bytes. */
820 unit = GET_MODE_BITSIZE (bestmode);
821 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
822 xbitpos = bitnum % unit;
823 xop0 = adjust_address (op0, bestmode, xoffset);
825 /* Fetch that unit, store the bitfield in it, then store
826 the unit. */
827 tempreg = copy_to_reg (xop0);
828 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
829 fieldmode, orig_value, false))
831 emit_move_insn (xop0, tempreg);
832 return true;
834 delete_insns_since (last);
838 if (!fallback_p)
839 return false;
841 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
842 return true;
845 /* Generate code to store value from rtx VALUE
846 into a bit-field within structure STR_RTX
847 containing BITSIZE bits starting at bit BITNUM.
848 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
850 void
851 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
852 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
853 rtx value)
855 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
856 gcc_unreachable ();
859 /* Use shifts and boolean operations to store VALUE
860 into a bit field of width BITSIZE
861 in a memory location specified by OP0 except offset by OFFSET bytes.
862 (OFFSET must be 0 if OP0 is a register.)
863 The field starts at position BITPOS within the byte.
864 (If OP0 is a register, it may be a full word or a narrower mode,
865 but BITPOS still counts within a full word,
866 which is significant on bigendian machines.) */
868 static void
869 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
870 unsigned HOST_WIDE_INT bitsize,
871 unsigned HOST_WIDE_INT bitpos, rtx value)
873 enum machine_mode mode;
874 unsigned int total_bits = BITS_PER_WORD;
875 rtx temp;
876 int all_zero = 0;
877 int all_one = 0;
879 /* There is a case not handled here:
880 a structure with a known alignment of just a halfword
881 and a field split across two aligned halfwords within the structure.
882 Or likewise a structure with a known alignment of just a byte
883 and a field split across two bytes.
884 Such cases are not supposed to be able to occur. */
886 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
888 gcc_assert (!offset);
889 /* Special treatment for a bit field split across two registers. */
890 if (bitsize + bitpos > BITS_PER_WORD)
892 store_split_bit_field (op0, bitsize, bitpos, value);
893 return;
896 else
898 /* Get the proper mode to use for this field. We want a mode that
899 includes the entire field. If such a mode would be larger than
900 a word, we won't be doing the extraction the normal way.
901 We don't want a mode bigger than the destination. */
903 mode = GET_MODE (op0);
904 if (GET_MODE_BITSIZE (mode) == 0
905 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
906 mode = word_mode;
907 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
908 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
910 if (mode == VOIDmode)
912 /* The only way this should occur is if the field spans word
913 boundaries. */
914 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
915 value);
916 return;
919 total_bits = GET_MODE_BITSIZE (mode);
921 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
922 be in the range 0 to total_bits-1, and put any excess bytes in
923 OFFSET. */
924 if (bitpos >= total_bits)
926 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
927 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
928 * BITS_PER_UNIT);
931 /* Get ref to an aligned byte, halfword, or word containing the field.
932 Adjust BITPOS to be position within a word,
933 and OFFSET to be the offset of that word.
934 Then alter OP0 to refer to that word. */
935 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
936 offset -= (offset % (total_bits / BITS_PER_UNIT));
937 op0 = adjust_address (op0, mode, offset);
940 mode = GET_MODE (op0);
942 /* Now MODE is either some integral mode for a MEM as OP0,
943 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
944 The bit field is contained entirely within OP0.
945 BITPOS is the starting bit number within OP0.
946 (OP0's mode may actually be narrower than MODE.) */
948 if (BYTES_BIG_ENDIAN)
949 /* BITPOS is the distance between our msb
950 and that of the containing datum.
951 Convert it to the distance from the lsb. */
952 bitpos = total_bits - bitsize - bitpos;
954 /* Now BITPOS is always the distance between our lsb
955 and that of OP0. */
957 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
958 we must first convert its mode to MODE. */
960 if (CONST_INT_P (value))
962 HOST_WIDE_INT v = INTVAL (value);
964 if (bitsize < HOST_BITS_PER_WIDE_INT)
965 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
967 if (v == 0)
968 all_zero = 1;
969 else if ((bitsize < HOST_BITS_PER_WIDE_INT
970 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
971 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
972 all_one = 1;
974 value = lshift_value (mode, value, bitpos, bitsize);
976 else
978 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
979 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
981 if (GET_MODE (value) != mode)
982 value = convert_to_mode (mode, value, 1);
984 if (must_and)
985 value = expand_binop (mode, and_optab, value,
986 mask_rtx (mode, 0, bitsize, 0),
987 NULL_RTX, 1, OPTAB_LIB_WIDEN);
988 if (bitpos > 0)
989 value = expand_shift (LSHIFT_EXPR, mode, value,
990 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
993 /* Now clear the chosen bits in OP0,
994 except that if VALUE is -1 we need not bother. */
995 /* We keep the intermediates in registers to allow CSE to combine
996 consecutive bitfield assignments. */
998 temp = force_reg (mode, op0);
1000 if (! all_one)
1002 temp = expand_binop (mode, and_optab, temp,
1003 mask_rtx (mode, bitpos, bitsize, 1),
1004 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1005 temp = force_reg (mode, temp);
1008 /* Now logical-or VALUE into OP0, unless it is zero. */
1010 if (! all_zero)
1012 temp = expand_binop (mode, ior_optab, temp, value,
1013 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1014 temp = force_reg (mode, temp);
1017 if (op0 != temp)
1019 op0 = copy_rtx (op0);
1020 emit_move_insn (op0, temp);
1024 /* Store a bit field that is split across multiple accessible memory objects.
1026 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1027 BITSIZE is the field width; BITPOS the position of its first bit
1028 (within the word).
1029 VALUE is the value to store.
1031 This does not yet handle fields wider than BITS_PER_WORD. */
1033 static void
1034 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1035 unsigned HOST_WIDE_INT bitpos, rtx value)
1037 unsigned int unit;
1038 unsigned int bitsdone = 0;
1040 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1041 much at a time. */
1042 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1043 unit = BITS_PER_WORD;
1044 else
1045 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1047 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1048 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1049 that VALUE might be a floating-point constant. */
1050 if (CONSTANT_P (value) && !CONST_INT_P (value))
1052 rtx word = gen_lowpart_common (word_mode, value);
1054 if (word && (value != word))
1055 value = word;
1056 else
1057 value = gen_lowpart_common (word_mode,
1058 force_reg (GET_MODE (value) != VOIDmode
1059 ? GET_MODE (value)
1060 : word_mode, value));
1063 while (bitsdone < bitsize)
1065 unsigned HOST_WIDE_INT thissize;
1066 rtx part, word;
1067 unsigned HOST_WIDE_INT thispos;
1068 unsigned HOST_WIDE_INT offset;
1070 offset = (bitpos + bitsdone) / unit;
1071 thispos = (bitpos + bitsdone) % unit;
1073 /* THISSIZE must not overrun a word boundary. Otherwise,
1074 store_fixed_bit_field will call us again, and we will mutually
1075 recurse forever. */
1076 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1077 thissize = MIN (thissize, unit - thispos);
1079 if (BYTES_BIG_ENDIAN)
1081 int total_bits;
1083 /* We must do an endian conversion exactly the same way as it is
1084 done in extract_bit_field, so that the two calls to
1085 extract_fixed_bit_field will have comparable arguments. */
1086 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1087 total_bits = BITS_PER_WORD;
1088 else
1089 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1091 /* Fetch successively less significant portions. */
1092 if (CONST_INT_P (value))
1093 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1094 >> (bitsize - bitsdone - thissize))
1095 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1096 else
1097 /* The args are chosen so that the last part includes the
1098 lsb. Give extract_bit_field the value it needs (with
1099 endianness compensation) to fetch the piece we want. */
1100 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1101 total_bits - bitsize + bitsdone,
1102 NULL_RTX, 1);
1104 else
1106 /* Fetch successively more significant portions. */
1107 if (CONST_INT_P (value))
1108 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1109 >> bitsdone)
1110 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1111 else
1112 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1113 bitsdone, NULL_RTX, 1);
1116 /* If OP0 is a register, then handle OFFSET here.
1118 When handling multiword bitfields, extract_bit_field may pass
1119 down a word_mode SUBREG of a larger REG for a bitfield that actually
1120 crosses a word boundary. Thus, for a SUBREG, we must find
1121 the current word starting from the base register. */
1122 if (GET_CODE (op0) == SUBREG)
1124 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1125 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1126 GET_MODE (SUBREG_REG (op0)));
1127 offset = 0;
1129 else if (REG_P (op0))
1131 word = operand_subword_force (op0, offset, GET_MODE (op0));
1132 offset = 0;
1134 else
1135 word = op0;
1137 /* OFFSET is in UNITs, and UNIT is in bits.
1138 store_fixed_bit_field wants offset in bytes. */
1139 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1140 thispos, part);
1141 bitsdone += thissize;
1145 /* A subroutine of extract_bit_field_1 that converts return value X
1146 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1147 to extract_bit_field. */
1149 static rtx
1150 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1151 enum machine_mode tmode, bool unsignedp)
1153 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1154 return x;
1156 /* If the x mode is not a scalar integral, first convert to the
1157 integer mode of that size and then access it as a floating-point
1158 value via a SUBREG. */
1159 if (!SCALAR_INT_MODE_P (tmode))
1161 enum machine_mode smode;
1163 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1164 x = convert_to_mode (smode, x, unsignedp);
1165 x = force_reg (smode, x);
1166 return gen_lowpart (tmode, x);
1169 return convert_to_mode (tmode, x, unsignedp);
1172 /* A subroutine of extract_bit_field, with the same arguments.
1173 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1174 if we can find no other means of implementing the operation.
1175 if FALLBACK_P is false, return NULL instead. */
1177 static rtx
1178 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1179 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1180 enum machine_mode mode, enum machine_mode tmode,
1181 bool fallback_p)
1183 unsigned int unit
1184 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1185 unsigned HOST_WIDE_INT offset, bitpos;
1186 rtx op0 = str_rtx;
1187 enum machine_mode int_mode;
1188 enum machine_mode ext_mode;
1189 enum machine_mode mode1;
1190 enum insn_code icode;
1191 int byte_offset;
1193 if (tmode == VOIDmode)
1194 tmode = mode;
1196 while (GET_CODE (op0) == SUBREG)
1198 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1199 op0 = SUBREG_REG (op0);
1202 /* If we have an out-of-bounds access to a register, just return an
1203 uninitialized register of the required mode. This can occur if the
1204 source code contains an out-of-bounds access to a small array. */
1205 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1206 return gen_reg_rtx (tmode);
1208 if (REG_P (op0)
1209 && mode == GET_MODE (op0)
1210 && bitnum == 0
1211 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1213 /* We're trying to extract a full register from itself. */
1214 return op0;
1217 /* See if we can get a better vector mode before extracting. */
1218 if (VECTOR_MODE_P (GET_MODE (op0))
1219 && !MEM_P (op0)
1220 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1222 enum machine_mode new_mode;
1223 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1225 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1226 new_mode = MIN_MODE_VECTOR_FLOAT;
1227 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1228 new_mode = MIN_MODE_VECTOR_FRACT;
1229 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1230 new_mode = MIN_MODE_VECTOR_UFRACT;
1231 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1232 new_mode = MIN_MODE_VECTOR_ACCUM;
1233 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1234 new_mode = MIN_MODE_VECTOR_UACCUM;
1235 else
1236 new_mode = MIN_MODE_VECTOR_INT;
1238 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1239 if (GET_MODE_NUNITS (new_mode) == nunits
1240 && GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1241 && targetm.vector_mode_supported_p (new_mode))
1242 break;
1243 if (new_mode != VOIDmode)
1244 op0 = gen_lowpart (new_mode, op0);
1247 /* Use vec_extract patterns for extracting parts of vectors whenever
1248 available. */
1249 if (VECTOR_MODE_P (GET_MODE (op0))
1250 && !MEM_P (op0)
1251 && (optab_handler (vec_extract_optab, GET_MODE (op0))->insn_code
1252 != CODE_FOR_nothing)
1253 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1254 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1256 enum machine_mode outermode = GET_MODE (op0);
1257 enum machine_mode innermode = GET_MODE_INNER (outermode);
1258 int icode = (int) optab_handler (vec_extract_optab, outermode)->insn_code;
1259 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1260 rtx rtxpos = GEN_INT (pos);
1261 rtx src = op0;
1262 rtx dest = NULL, pat, seq;
1263 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1264 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1265 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1267 if (innermode == tmode || innermode == mode)
1268 dest = target;
1270 if (!dest)
1271 dest = gen_reg_rtx (innermode);
1273 start_sequence ();
1275 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1276 dest = copy_to_mode_reg (mode0, dest);
1278 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1279 src = copy_to_mode_reg (mode1, src);
1281 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1282 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1284 /* We could handle this, but we should always be called with a pseudo
1285 for our targets and all insns should take them as outputs. */
1286 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1287 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1288 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1290 pat = GEN_FCN (icode) (dest, src, rtxpos);
1291 seq = get_insns ();
1292 end_sequence ();
1293 if (pat)
1295 emit_insn (seq);
1296 emit_insn (pat);
1297 if (mode0 != mode)
1298 return gen_lowpart (tmode, dest);
1299 return dest;
1303 /* Make sure we are playing with integral modes. Pun with subregs
1304 if we aren't. */
1306 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1307 if (imode != GET_MODE (op0))
1309 if (MEM_P (op0))
1310 op0 = adjust_address (op0, imode, 0);
1311 else if (imode != BLKmode)
1313 op0 = gen_lowpart (imode, op0);
1315 /* If we got a SUBREG, force it into a register since we
1316 aren't going to be able to do another SUBREG on it. */
1317 if (GET_CODE (op0) == SUBREG)
1318 op0 = force_reg (imode, op0);
1320 else if (REG_P (op0))
1322 rtx reg, subreg;
1323 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1324 MODE_INT);
1325 reg = gen_reg_rtx (imode);
1326 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1327 emit_move_insn (subreg, op0);
1328 op0 = reg;
1329 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1331 else
1333 rtx mem = assign_stack_temp (GET_MODE (op0),
1334 GET_MODE_SIZE (GET_MODE (op0)), 0);
1335 emit_move_insn (mem, op0);
1336 op0 = adjust_address (mem, BLKmode, 0);
1341 /* We may be accessing data outside the field, which means
1342 we can alias adjacent data. */
1343 if (MEM_P (op0))
1345 op0 = shallow_copy_rtx (op0);
1346 set_mem_alias_set (op0, 0);
1347 set_mem_expr (op0, 0);
1350 /* Extraction of a full-word or multi-word value from a structure
1351 in a register or aligned memory can be done with just a SUBREG.
1352 A subword value in the least significant part of a register
1353 can also be extracted with a SUBREG. For this, we need the
1354 byte offset of the value in op0. */
1356 bitpos = bitnum % unit;
1357 offset = bitnum / unit;
1358 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1360 /* If OP0 is a register, BITPOS must count within a word.
1361 But as we have it, it counts within whatever size OP0 now has.
1362 On a bigendian machine, these are not the same, so convert. */
1363 if (BYTES_BIG_ENDIAN
1364 && !MEM_P (op0)
1365 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1366 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1368 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1369 If that's wrong, the solution is to test for it and set TARGET to 0
1370 if needed. */
1372 /* Only scalar integer modes can be converted via subregs. There is an
1373 additional problem for FP modes here in that they can have a precision
1374 which is different from the size. mode_for_size uses precision, but
1375 we want a mode based on the size, so we must avoid calling it for FP
1376 modes. */
1377 mode1 = (SCALAR_INT_MODE_P (tmode)
1378 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1379 : mode);
1381 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1382 && bitpos % BITS_PER_WORD == 0)
1383 || (mode1 != BLKmode
1384 /* ??? The big endian test here is wrong. This is correct
1385 if the value is in a register, and if mode_for_size is not
1386 the same mode as op0. This causes us to get unnecessarily
1387 inefficient code from the Thumb port when -mbig-endian. */
1388 && (BYTES_BIG_ENDIAN
1389 ? bitpos + bitsize == BITS_PER_WORD
1390 : bitpos == 0)))
1391 && ((!MEM_P (op0)
1392 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode1),
1393 GET_MODE_BITSIZE (GET_MODE (op0)))
1394 && GET_MODE_SIZE (mode1) != 0
1395 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1396 || (MEM_P (op0)
1397 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1398 || (offset * BITS_PER_UNIT % bitsize == 0
1399 && MEM_ALIGN (op0) % bitsize == 0)))))
1401 if (MEM_P (op0))
1402 op0 = adjust_address (op0, mode1, offset);
1403 else if (mode1 != GET_MODE (op0))
1405 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1406 byte_offset);
1407 if (sub == NULL)
1408 goto no_subreg_mode_swap;
1409 op0 = sub;
1411 if (mode1 != mode)
1412 return convert_to_mode (tmode, op0, unsignedp);
1413 return op0;
1415 no_subreg_mode_swap:
1417 /* Handle fields bigger than a word. */
1419 if (bitsize > BITS_PER_WORD)
1421 /* Here we transfer the words of the field
1422 in the order least significant first.
1423 This is because the most significant word is the one which may
1424 be less than full. */
1426 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1427 unsigned int i;
1429 if (target == 0 || !REG_P (target))
1430 target = gen_reg_rtx (mode);
1432 /* Indicate for flow that the entire target reg is being set. */
1433 emit_clobber (target);
1435 for (i = 0; i < nwords; i++)
1437 /* If I is 0, use the low-order word in both field and target;
1438 if I is 1, use the next to lowest word; and so on. */
1439 /* Word number in TARGET to use. */
1440 unsigned int wordnum
1441 = (WORDS_BIG_ENDIAN
1442 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1443 : i);
1444 /* Offset from start of field in OP0. */
1445 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1446 ? MAX (0, ((int) bitsize - ((int) i + 1)
1447 * (int) BITS_PER_WORD))
1448 : (int) i * BITS_PER_WORD);
1449 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1450 rtx result_part
1451 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1452 bitsize - i * BITS_PER_WORD),
1453 bitnum + bit_offset, 1, target_part, mode,
1454 word_mode);
1456 gcc_assert (target_part);
1458 if (result_part != target_part)
1459 emit_move_insn (target_part, result_part);
1462 if (unsignedp)
1464 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1465 need to be zero'd out. */
1466 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1468 unsigned int i, total_words;
1470 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1471 for (i = nwords; i < total_words; i++)
1472 emit_move_insn
1473 (operand_subword (target,
1474 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1475 1, VOIDmode),
1476 const0_rtx);
1478 return target;
1481 /* Signed bit field: sign-extend with two arithmetic shifts. */
1482 target = expand_shift (LSHIFT_EXPR, mode, target,
1483 build_int_cst (NULL_TREE,
1484 GET_MODE_BITSIZE (mode) - bitsize),
1485 NULL_RTX, 0);
1486 return expand_shift (RSHIFT_EXPR, mode, target,
1487 build_int_cst (NULL_TREE,
1488 GET_MODE_BITSIZE (mode) - bitsize),
1489 NULL_RTX, 0);
1492 /* From here on we know the desired field is smaller than a word. */
1494 /* Check if there is a correspondingly-sized integer field, so we can
1495 safely extract it as one size of integer, if necessary; then
1496 truncate or extend to the size that is wanted; then use SUBREGs or
1497 convert_to_mode to get one of the modes we really wanted. */
1499 int_mode = int_mode_for_mode (tmode);
1500 if (int_mode == BLKmode)
1501 int_mode = int_mode_for_mode (mode);
1502 /* Should probably push op0 out to memory and then do a load. */
1503 gcc_assert (int_mode != BLKmode);
1505 /* OFFSET is the number of words or bytes (UNIT says which)
1506 from STR_RTX to the first word or byte containing part of the field. */
1507 if (!MEM_P (op0))
1509 if (offset != 0
1510 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1512 if (!REG_P (op0))
1513 op0 = copy_to_reg (op0);
1514 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1515 op0, (offset * UNITS_PER_WORD));
1517 offset = 0;
1520 /* Now OFFSET is nonzero only for memory operands. */
1521 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1522 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1523 if (ext_mode != MAX_MACHINE_MODE
1524 && bitsize > 0
1525 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1526 /* If op0 is a register, we need it in EXT_MODE to make it
1527 acceptable to the format of ext(z)v. */
1528 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1529 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1530 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1531 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1533 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1534 rtx bitsize_rtx, bitpos_rtx;
1535 rtx last = get_last_insn ();
1536 rtx xop0 = op0;
1537 rtx xtarget = target;
1538 rtx xspec_target = target;
1539 rtx xspec_target_subreg = 0;
1540 rtx pat;
1542 /* If op0 is a register, we need it in EXT_MODE to make it
1543 acceptable to the format of ext(z)v. */
1544 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1545 xop0 = gen_lowpart_SUBREG (ext_mode, xop0);
1546 if (MEM_P (xop0))
1547 /* Get ref to first byte containing part of the field. */
1548 xop0 = adjust_address (xop0, byte_mode, xoffset);
1550 /* On big-endian machines, we count bits from the most significant.
1551 If the bit field insn does not, we must invert. */
1552 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1553 xbitpos = unit - bitsize - xbitpos;
1555 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1556 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1557 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1559 unit = GET_MODE_BITSIZE (ext_mode);
1561 if (xtarget == 0)
1562 xtarget = xspec_target = gen_reg_rtx (tmode);
1564 if (GET_MODE (xtarget) != ext_mode)
1566 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1567 between the mode of the extraction (word_mode) and the target
1568 mode. Instead, create a temporary and use convert_move to set
1569 the target. */
1570 if (REG_P (xtarget)
1571 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (xtarget)),
1572 GET_MODE_BITSIZE (ext_mode)))
1574 xtarget = gen_lowpart (ext_mode, xtarget);
1575 if (GET_MODE_SIZE (ext_mode)
1576 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1577 xspec_target_subreg = xtarget;
1579 else
1580 xtarget = gen_reg_rtx (ext_mode);
1583 /* If this machine's ext(z)v insists on a register target,
1584 make sure we have one. */
1585 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1586 xtarget = gen_reg_rtx (ext_mode);
1588 bitsize_rtx = GEN_INT (bitsize);
1589 bitpos_rtx = GEN_INT (xbitpos);
1591 pat = (unsignedp
1592 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1593 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1594 if (pat)
1596 emit_insn (pat);
1597 if (xtarget == xspec_target)
1598 return xtarget;
1599 if (xtarget == xspec_target_subreg)
1600 return xspec_target;
1601 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1603 delete_insns_since (last);
1606 /* If OP0 is a memory, try copying it to a register and seeing if a
1607 cheap register alternative is available. */
1608 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1610 enum machine_mode bestmode;
1612 /* Get the mode to use for inserting into this field. If
1613 OP0 is BLKmode, get the smallest mode consistent with the
1614 alignment. If OP0 is a non-BLKmode object that is no
1615 wider than EXT_MODE, use its mode. Otherwise, use the
1616 smallest mode containing the field. */
1618 if (GET_MODE (op0) == BLKmode
1619 || (ext_mode != MAX_MACHINE_MODE
1620 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1621 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1622 (ext_mode == MAX_MACHINE_MODE
1623 ? VOIDmode : ext_mode),
1624 MEM_VOLATILE_P (op0));
1625 else
1626 bestmode = GET_MODE (op0);
1628 if (bestmode != VOIDmode
1629 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1630 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1632 unsigned HOST_WIDE_INT xoffset, xbitpos;
1634 /* Compute the offset as a multiple of this unit,
1635 counting in bytes. */
1636 unit = GET_MODE_BITSIZE (bestmode);
1637 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1638 xbitpos = bitnum % unit;
1640 /* Make sure the register is big enough for the whole field. */
1641 if (xoffset * BITS_PER_UNIT + unit
1642 >= offset * BITS_PER_UNIT + bitsize)
1644 rtx last, result, xop0;
1646 last = get_last_insn ();
1648 /* Fetch it to a register in that size. */
1649 xop0 = adjust_address (op0, bestmode, xoffset);
1650 xop0 = force_reg (bestmode, xop0);
1651 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1652 unsignedp, target,
1653 mode, tmode, false);
1654 if (result)
1655 return result;
1657 delete_insns_since (last);
1662 if (!fallback_p)
1663 return NULL;
1665 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1666 bitpos, target, unsignedp);
1667 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1670 /* Generate code to extract a byte-field from STR_RTX
1671 containing BITSIZE bits, starting at BITNUM,
1672 and put it in TARGET if possible (if TARGET is nonzero).
1673 Regardless of TARGET, we return the rtx for where the value is placed.
1675 STR_RTX is the structure containing the byte (a REG or MEM).
1676 UNSIGNEDP is nonzero if this is an unsigned bit field.
1677 MODE is the natural mode of the field value once extracted.
1678 TMODE is the mode the caller would like the value to have;
1679 but the value may be returned with type MODE instead.
1681 If a TARGET is specified and we can store in it at no extra cost,
1682 we do so, and return TARGET.
1683 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1684 if they are equally easy. */
1687 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1688 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1689 enum machine_mode mode, enum machine_mode tmode)
1691 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1692 target, mode, tmode, true);
1695 /* Extract a bit field using shifts and boolean operations
1696 Returns an rtx to represent the value.
1697 OP0 addresses a register (word) or memory (byte).
1698 BITPOS says which bit within the word or byte the bit field starts in.
1699 OFFSET says how many bytes farther the bit field starts;
1700 it is 0 if OP0 is a register.
1701 BITSIZE says how many bits long the bit field is.
1702 (If OP0 is a register, it may be narrower than a full word,
1703 but BITPOS still counts within a full word,
1704 which is significant on bigendian machines.)
1706 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1707 If TARGET is nonzero, attempts to store the value there
1708 and return TARGET, but this is not guaranteed.
1709 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1711 static rtx
1712 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1713 unsigned HOST_WIDE_INT offset,
1714 unsigned HOST_WIDE_INT bitsize,
1715 unsigned HOST_WIDE_INT bitpos, rtx target,
1716 int unsignedp)
1718 unsigned int total_bits = BITS_PER_WORD;
1719 enum machine_mode mode;
1721 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1723 /* Special treatment for a bit field split across two registers. */
1724 if (bitsize + bitpos > BITS_PER_WORD)
1725 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1727 else
1729 /* Get the proper mode to use for this field. We want a mode that
1730 includes the entire field. If such a mode would be larger than
1731 a word, we won't be doing the extraction the normal way. */
1733 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1734 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1736 if (mode == VOIDmode)
1737 /* The only way this should occur is if the field spans word
1738 boundaries. */
1739 return extract_split_bit_field (op0, bitsize,
1740 bitpos + offset * BITS_PER_UNIT,
1741 unsignedp);
1743 total_bits = GET_MODE_BITSIZE (mode);
1745 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1746 be in the range 0 to total_bits-1, and put any excess bytes in
1747 OFFSET. */
1748 if (bitpos >= total_bits)
1750 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1751 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1752 * BITS_PER_UNIT);
1755 /* Get ref to an aligned byte, halfword, or word containing the field.
1756 Adjust BITPOS to be position within a word,
1757 and OFFSET to be the offset of that word.
1758 Then alter OP0 to refer to that word. */
1759 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1760 offset -= (offset % (total_bits / BITS_PER_UNIT));
1761 op0 = adjust_address (op0, mode, offset);
1764 mode = GET_MODE (op0);
1766 if (BYTES_BIG_ENDIAN)
1767 /* BITPOS is the distance between our msb and that of OP0.
1768 Convert it to the distance from the lsb. */
1769 bitpos = total_bits - bitsize - bitpos;
1771 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1772 We have reduced the big-endian case to the little-endian case. */
1774 if (unsignedp)
1776 if (bitpos)
1778 /* If the field does not already start at the lsb,
1779 shift it so it does. */
1780 tree amount = build_int_cst (NULL_TREE, bitpos);
1781 /* Maybe propagate the target for the shift. */
1782 /* But not if we will return it--could confuse integrate.c. */
1783 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1784 if (tmode != mode) subtarget = 0;
1785 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1787 /* Convert the value to the desired mode. */
1788 if (mode != tmode)
1789 op0 = convert_to_mode (tmode, op0, 1);
1791 /* Unless the msb of the field used to be the msb when we shifted,
1792 mask out the upper bits. */
1794 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1795 return expand_binop (GET_MODE (op0), and_optab, op0,
1796 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1797 target, 1, OPTAB_LIB_WIDEN);
1798 return op0;
1801 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1802 then arithmetic-shift its lsb to the lsb of the word. */
1803 op0 = force_reg (mode, op0);
1804 if (mode != tmode)
1805 target = 0;
1807 /* Find the narrowest integer mode that contains the field. */
1809 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1810 mode = GET_MODE_WIDER_MODE (mode))
1811 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1813 op0 = convert_to_mode (mode, op0, 0);
1814 break;
1817 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1819 tree amount
1820 = build_int_cst (NULL_TREE,
1821 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1822 /* Maybe propagate the target for the shift. */
1823 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1824 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1827 return expand_shift (RSHIFT_EXPR, mode, op0,
1828 build_int_cst (NULL_TREE,
1829 GET_MODE_BITSIZE (mode) - bitsize),
1830 target, 0);
1833 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1834 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1835 complement of that if COMPLEMENT. The mask is truncated if
1836 necessary to the width of mode MODE. The mask is zero-extended if
1837 BITSIZE+BITPOS is too small for MODE. */
1839 static rtx
1840 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1842 double_int mask;
1844 mask = double_int_mask (bitsize);
1845 mask = double_int_lshift (mask, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1847 if (complement)
1848 mask = double_int_not (mask);
1850 return immed_double_const (mask.low, mask.high, mode);
1853 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1854 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1856 static rtx
1857 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1859 double_int val;
1861 val = double_int_zext (uhwi_to_double_int (INTVAL (value)), bitsize);
1862 val = double_int_lshift (val, bitpos, HOST_BITS_PER_DOUBLE_INT, false);
1864 return immed_double_const (val.low, val.high, mode);
1867 /* Extract a bit field that is split across two words
1868 and return an RTX for the result.
1870 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1871 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1872 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1874 static rtx
1875 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1876 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1878 unsigned int unit;
1879 unsigned int bitsdone = 0;
1880 rtx result = NULL_RTX;
1881 int first = 1;
1883 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1884 much at a time. */
1885 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1886 unit = BITS_PER_WORD;
1887 else
1888 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1890 while (bitsdone < bitsize)
1892 unsigned HOST_WIDE_INT thissize;
1893 rtx part, word;
1894 unsigned HOST_WIDE_INT thispos;
1895 unsigned HOST_WIDE_INT offset;
1897 offset = (bitpos + bitsdone) / unit;
1898 thispos = (bitpos + bitsdone) % unit;
1900 /* THISSIZE must not overrun a word boundary. Otherwise,
1901 extract_fixed_bit_field will call us again, and we will mutually
1902 recurse forever. */
1903 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1904 thissize = MIN (thissize, unit - thispos);
1906 /* If OP0 is a register, then handle OFFSET here.
1908 When handling multiword bitfields, extract_bit_field may pass
1909 down a word_mode SUBREG of a larger REG for a bitfield that actually
1910 crosses a word boundary. Thus, for a SUBREG, we must find
1911 the current word starting from the base register. */
1912 if (GET_CODE (op0) == SUBREG)
1914 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1915 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1916 GET_MODE (SUBREG_REG (op0)));
1917 offset = 0;
1919 else if (REG_P (op0))
1921 word = operand_subword_force (op0, offset, GET_MODE (op0));
1922 offset = 0;
1924 else
1925 word = op0;
1927 /* Extract the parts in bit-counting order,
1928 whose meaning is determined by BYTES_PER_UNIT.
1929 OFFSET is in UNITs, and UNIT is in bits.
1930 extract_fixed_bit_field wants offset in bytes. */
1931 part = extract_fixed_bit_field (word_mode, word,
1932 offset * unit / BITS_PER_UNIT,
1933 thissize, thispos, 0, 1);
1934 bitsdone += thissize;
1936 /* Shift this part into place for the result. */
1937 if (BYTES_BIG_ENDIAN)
1939 if (bitsize != bitsdone)
1940 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1941 build_int_cst (NULL_TREE, bitsize - bitsdone),
1942 0, 1);
1944 else
1946 if (bitsdone != thissize)
1947 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1948 build_int_cst (NULL_TREE,
1949 bitsdone - thissize), 0, 1);
1952 if (first)
1953 result = part;
1954 else
1955 /* Combine the parts with bitwise or. This works
1956 because we extracted each part as an unsigned bit field. */
1957 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1958 OPTAB_LIB_WIDEN);
1960 first = 0;
1963 /* Unsigned bit field: we are done. */
1964 if (unsignedp)
1965 return result;
1966 /* Signed bit field: sign-extend with two arithmetic shifts. */
1967 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1968 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1969 NULL_RTX, 0);
1970 return expand_shift (RSHIFT_EXPR, word_mode, result,
1971 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1972 NULL_RTX, 0);
1975 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1976 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1977 MODE, fill the upper bits with zeros. Fail if the layout of either
1978 mode is unknown (as for CC modes) or if the extraction would involve
1979 unprofitable mode punning. Return the value on success, otherwise
1980 return null.
1982 This is different from gen_lowpart* in these respects:
1984 - the returned value must always be considered an rvalue
1986 - when MODE is wider than SRC_MODE, the extraction involves
1987 a zero extension
1989 - when MODE is smaller than SRC_MODE, the extraction involves
1990 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1992 In other words, this routine performs a computation, whereas the
1993 gen_lowpart* routines are conceptually lvalue or rvalue subreg
1994 operations. */
1997 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
1999 enum machine_mode int_mode, src_int_mode;
2001 if (mode == src_mode)
2002 return src;
2004 if (CONSTANT_P (src))
2006 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2007 fails, it will happily create (subreg (symbol_ref)) or similar
2008 invalid SUBREGs. */
2009 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2010 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2011 if (ret)
2012 return ret;
2014 if (GET_MODE (src) == VOIDmode
2015 || !validate_subreg (mode, src_mode, src, byte))
2016 return NULL_RTX;
2018 src = force_reg (GET_MODE (src), src);
2019 return gen_rtx_SUBREG (mode, src, byte);
2022 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2023 return NULL_RTX;
2025 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2026 && MODES_TIEABLE_P (mode, src_mode))
2028 rtx x = gen_lowpart_common (mode, src);
2029 if (x)
2030 return x;
2033 src_int_mode = int_mode_for_mode (src_mode);
2034 int_mode = int_mode_for_mode (mode);
2035 if (src_int_mode == BLKmode || int_mode == BLKmode)
2036 return NULL_RTX;
2038 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2039 return NULL_RTX;
2040 if (!MODES_TIEABLE_P (int_mode, mode))
2041 return NULL_RTX;
2043 src = gen_lowpart (src_int_mode, src);
2044 src = convert_modes (int_mode, src_int_mode, src, true);
2045 src = gen_lowpart (mode, src);
2046 return src;
2049 /* Add INC into TARGET. */
2051 void
2052 expand_inc (rtx target, rtx inc)
2054 rtx value = expand_binop (GET_MODE (target), add_optab,
2055 target, inc,
2056 target, 0, OPTAB_LIB_WIDEN);
2057 if (value != target)
2058 emit_move_insn (target, value);
2061 /* Subtract DEC from TARGET. */
2063 void
2064 expand_dec (rtx target, rtx dec)
2066 rtx value = expand_binop (GET_MODE (target), sub_optab,
2067 target, dec,
2068 target, 0, OPTAB_LIB_WIDEN);
2069 if (value != target)
2070 emit_move_insn (target, value);
2073 /* Output a shift instruction for expression code CODE,
2074 with SHIFTED being the rtx for the value to shift,
2075 and AMOUNT the tree for the amount to shift by.
2076 Store the result in the rtx TARGET, if that is convenient.
2077 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2078 Return the rtx for where the value is. */
2081 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2082 tree amount, rtx target, int unsignedp)
2084 rtx op1, temp = 0;
2085 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2086 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2087 optab lshift_optab = ashl_optab;
2088 optab rshift_arith_optab = ashr_optab;
2089 optab rshift_uns_optab = lshr_optab;
2090 optab lrotate_optab = rotl_optab;
2091 optab rrotate_optab = rotr_optab;
2092 enum machine_mode op1_mode;
2093 int attempt;
2094 bool speed = optimize_insn_for_speed_p ();
2096 op1 = expand_normal (amount);
2097 op1_mode = GET_MODE (op1);
2099 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2100 shift amount is a vector, use the vector/vector shift patterns. */
2101 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2103 lshift_optab = vashl_optab;
2104 rshift_arith_optab = vashr_optab;
2105 rshift_uns_optab = vlshr_optab;
2106 lrotate_optab = vrotl_optab;
2107 rrotate_optab = vrotr_optab;
2110 /* Previously detected shift-counts computed by NEGATE_EXPR
2111 and shifted in the other direction; but that does not work
2112 on all machines. */
2114 if (SHIFT_COUNT_TRUNCATED)
2116 if (CONST_INT_P (op1)
2117 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2118 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2119 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2120 % GET_MODE_BITSIZE (mode));
2121 else if (GET_CODE (op1) == SUBREG
2122 && subreg_lowpart_p (op1)
2123 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1))))
2124 op1 = SUBREG_REG (op1);
2127 if (op1 == const0_rtx)
2128 return shifted;
2130 /* Check whether its cheaper to implement a left shift by a constant
2131 bit count by a sequence of additions. */
2132 if (code == LSHIFT_EXPR
2133 && CONST_INT_P (op1)
2134 && INTVAL (op1) > 0
2135 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2136 && INTVAL (op1) < MAX_BITS_PER_WORD
2137 && shift_cost[speed][mode][INTVAL (op1)] > INTVAL (op1) * add_cost[speed][mode]
2138 && shift_cost[speed][mode][INTVAL (op1)] != MAX_COST)
2140 int i;
2141 for (i = 0; i < INTVAL (op1); i++)
2143 temp = force_reg (mode, shifted);
2144 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2145 unsignedp, OPTAB_LIB_WIDEN);
2147 return shifted;
2150 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2152 enum optab_methods methods;
2154 if (attempt == 0)
2155 methods = OPTAB_DIRECT;
2156 else if (attempt == 1)
2157 methods = OPTAB_WIDEN;
2158 else
2159 methods = OPTAB_LIB_WIDEN;
2161 if (rotate)
2163 /* Widening does not work for rotation. */
2164 if (methods == OPTAB_WIDEN)
2165 continue;
2166 else if (methods == OPTAB_LIB_WIDEN)
2168 /* If we have been unable to open-code this by a rotation,
2169 do it as the IOR of two shifts. I.e., to rotate A
2170 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2171 where C is the bitsize of A.
2173 It is theoretically possible that the target machine might
2174 not be able to perform either shift and hence we would
2175 be making two libcalls rather than just the one for the
2176 shift (similarly if IOR could not be done). We will allow
2177 this extremely unlikely lossage to avoid complicating the
2178 code below. */
2180 rtx subtarget = target == shifted ? 0 : target;
2181 tree new_amount, other_amount;
2182 rtx temp1;
2183 tree type = TREE_TYPE (amount);
2184 if (GET_MODE (op1) != TYPE_MODE (type)
2185 && GET_MODE (op1) != VOIDmode)
2186 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2187 new_amount = make_tree (type, op1);
2188 other_amount
2189 = fold_build2 (MINUS_EXPR, type,
2190 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2191 new_amount);
2193 shifted = force_reg (mode, shifted);
2195 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2196 mode, shifted, new_amount, 0, 1);
2197 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2198 mode, shifted, other_amount, subtarget, 1);
2199 return expand_binop (mode, ior_optab, temp, temp1, target,
2200 unsignedp, methods);
2203 temp = expand_binop (mode,
2204 left ? lrotate_optab : rrotate_optab,
2205 shifted, op1, target, unsignedp, methods);
2207 else if (unsignedp)
2208 temp = expand_binop (mode,
2209 left ? lshift_optab : rshift_uns_optab,
2210 shifted, op1, target, unsignedp, methods);
2212 /* Do arithmetic shifts.
2213 Also, if we are going to widen the operand, we can just as well
2214 use an arithmetic right-shift instead of a logical one. */
2215 if (temp == 0 && ! rotate
2216 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2218 enum optab_methods methods1 = methods;
2220 /* If trying to widen a log shift to an arithmetic shift,
2221 don't accept an arithmetic shift of the same size. */
2222 if (unsignedp)
2223 methods1 = OPTAB_MUST_WIDEN;
2225 /* Arithmetic shift */
2227 temp = expand_binop (mode,
2228 left ? lshift_optab : rshift_arith_optab,
2229 shifted, op1, target, unsignedp, methods1);
2232 /* We used to try extzv here for logical right shifts, but that was
2233 only useful for one machine, the VAX, and caused poor code
2234 generation there for lshrdi3, so the code was deleted and a
2235 define_expand for lshrsi3 was added to vax.md. */
2238 gcc_assert (temp);
2239 return temp;
2242 enum alg_code {
2243 alg_unknown,
2244 alg_zero,
2245 alg_m, alg_shift,
2246 alg_add_t_m2,
2247 alg_sub_t_m2,
2248 alg_add_factor,
2249 alg_sub_factor,
2250 alg_add_t2_m,
2251 alg_sub_t2_m,
2252 alg_impossible
2255 /* This structure holds the "cost" of a multiply sequence. The
2256 "cost" field holds the total rtx_cost of every operator in the
2257 synthetic multiplication sequence, hence cost(a op b) is defined
2258 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2259 The "latency" field holds the minimum possible latency of the
2260 synthetic multiply, on a hypothetical infinitely parallel CPU.
2261 This is the critical path, or the maximum height, of the expression
2262 tree which is the sum of rtx_costs on the most expensive path from
2263 any leaf to the root. Hence latency(a op b) is defined as zero for
2264 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2266 struct mult_cost {
2267 short cost; /* Total rtx_cost of the multiplication sequence. */
2268 short latency; /* The latency of the multiplication sequence. */
2271 /* This macro is used to compare a pointer to a mult_cost against an
2272 single integer "rtx_cost" value. This is equivalent to the macro
2273 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2274 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2275 || ((X)->cost == (Y) && (X)->latency < (Y)))
2277 /* This macro is used to compare two pointers to mult_costs against
2278 each other. The macro returns true if X is cheaper than Y.
2279 Currently, the cheaper of two mult_costs is the one with the
2280 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2281 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2282 || ((X)->cost == (Y)->cost \
2283 && (X)->latency < (Y)->latency))
2285 /* This structure records a sequence of operations.
2286 `ops' is the number of operations recorded.
2287 `cost' is their total cost.
2288 The operations are stored in `op' and the corresponding
2289 logarithms of the integer coefficients in `log'.
2291 These are the operations:
2292 alg_zero total := 0;
2293 alg_m total := multiplicand;
2294 alg_shift total := total * coeff
2295 alg_add_t_m2 total := total + multiplicand * coeff;
2296 alg_sub_t_m2 total := total - multiplicand * coeff;
2297 alg_add_factor total := total * coeff + total;
2298 alg_sub_factor total := total * coeff - total;
2299 alg_add_t2_m total := total * coeff + multiplicand;
2300 alg_sub_t2_m total := total * coeff - multiplicand;
2302 The first operand must be either alg_zero or alg_m. */
2304 struct algorithm
2306 struct mult_cost cost;
2307 short ops;
2308 /* The size of the OP and LOG fields are not directly related to the
2309 word size, but the worst-case algorithms will be if we have few
2310 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2311 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2312 in total wordsize operations. */
2313 enum alg_code op[MAX_BITS_PER_WORD];
2314 char log[MAX_BITS_PER_WORD];
2317 /* The entry for our multiplication cache/hash table. */
2318 struct alg_hash_entry {
2319 /* The number we are multiplying by. */
2320 unsigned HOST_WIDE_INT t;
2322 /* The mode in which we are multiplying something by T. */
2323 enum machine_mode mode;
2325 /* The best multiplication algorithm for t. */
2326 enum alg_code alg;
2328 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2329 Otherwise, the cost within which multiplication by T is
2330 impossible. */
2331 struct mult_cost cost;
2333 /* OPtimized for speed? */
2334 bool speed;
2337 /* The number of cache/hash entries. */
2338 #if HOST_BITS_PER_WIDE_INT == 64
2339 #define NUM_ALG_HASH_ENTRIES 1031
2340 #else
2341 #define NUM_ALG_HASH_ENTRIES 307
2342 #endif
2344 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2345 actually a hash table. If we have a collision, that the older
2346 entry is kicked out. */
2347 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2349 /* Indicates the type of fixup needed after a constant multiplication.
2350 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2351 the result should be negated, and ADD_VARIANT means that the
2352 multiplicand should be added to the result. */
2353 enum mult_variant {basic_variant, negate_variant, add_variant};
2355 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2356 const struct mult_cost *, enum machine_mode mode);
2357 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2358 struct algorithm *, enum mult_variant *, int);
2359 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2360 const struct algorithm *, enum mult_variant);
2361 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2362 int, rtx *, int *, int *);
2363 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2364 static rtx extract_high_half (enum machine_mode, rtx);
2365 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2366 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2367 int, int);
2368 /* Compute and return the best algorithm for multiplying by T.
2369 The algorithm must cost less than cost_limit
2370 If retval.cost >= COST_LIMIT, no algorithm was found and all
2371 other field of the returned struct are undefined.
2372 MODE is the machine mode of the multiplication. */
2374 static void
2375 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2376 const struct mult_cost *cost_limit, enum machine_mode mode)
2378 int m;
2379 struct algorithm *alg_in, *best_alg;
2380 struct mult_cost best_cost;
2381 struct mult_cost new_limit;
2382 int op_cost, op_latency;
2383 unsigned HOST_WIDE_INT orig_t = t;
2384 unsigned HOST_WIDE_INT q;
2385 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2386 int hash_index;
2387 bool cache_hit = false;
2388 enum alg_code cache_alg = alg_zero;
2389 bool speed = optimize_insn_for_speed_p ();
2391 /* Indicate that no algorithm is yet found. If no algorithm
2392 is found, this value will be returned and indicate failure. */
2393 alg_out->cost.cost = cost_limit->cost + 1;
2394 alg_out->cost.latency = cost_limit->latency + 1;
2396 if (cost_limit->cost < 0
2397 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2398 return;
2400 /* Restrict the bits of "t" to the multiplication's mode. */
2401 t &= GET_MODE_MASK (mode);
2403 /* t == 1 can be done in zero cost. */
2404 if (t == 1)
2406 alg_out->ops = 1;
2407 alg_out->cost.cost = 0;
2408 alg_out->cost.latency = 0;
2409 alg_out->op[0] = alg_m;
2410 return;
2413 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2414 fail now. */
2415 if (t == 0)
2417 if (MULT_COST_LESS (cost_limit, zero_cost[speed]))
2418 return;
2419 else
2421 alg_out->ops = 1;
2422 alg_out->cost.cost = zero_cost[speed];
2423 alg_out->cost.latency = zero_cost[speed];
2424 alg_out->op[0] = alg_zero;
2425 return;
2429 /* We'll be needing a couple extra algorithm structures now. */
2431 alg_in = XALLOCA (struct algorithm);
2432 best_alg = XALLOCA (struct algorithm);
2433 best_cost = *cost_limit;
2435 /* Compute the hash index. */
2436 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2438 /* See if we already know what to do for T. */
2439 if (alg_hash[hash_index].t == t
2440 && alg_hash[hash_index].mode == mode
2441 && alg_hash[hash_index].mode == mode
2442 && alg_hash[hash_index].speed == speed
2443 && alg_hash[hash_index].alg != alg_unknown)
2445 cache_alg = alg_hash[hash_index].alg;
2447 if (cache_alg == alg_impossible)
2449 /* The cache tells us that it's impossible to synthesize
2450 multiplication by T within alg_hash[hash_index].cost. */
2451 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2452 /* COST_LIMIT is at least as restrictive as the one
2453 recorded in the hash table, in which case we have no
2454 hope of synthesizing a multiplication. Just
2455 return. */
2456 return;
2458 /* If we get here, COST_LIMIT is less restrictive than the
2459 one recorded in the hash table, so we may be able to
2460 synthesize a multiplication. Proceed as if we didn't
2461 have the cache entry. */
2463 else
2465 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2466 /* The cached algorithm shows that this multiplication
2467 requires more cost than COST_LIMIT. Just return. This
2468 way, we don't clobber this cache entry with
2469 alg_impossible but retain useful information. */
2470 return;
2472 cache_hit = true;
2474 switch (cache_alg)
2476 case alg_shift:
2477 goto do_alg_shift;
2479 case alg_add_t_m2:
2480 case alg_sub_t_m2:
2481 goto do_alg_addsub_t_m2;
2483 case alg_add_factor:
2484 case alg_sub_factor:
2485 goto do_alg_addsub_factor;
2487 case alg_add_t2_m:
2488 goto do_alg_add_t2_m;
2490 case alg_sub_t2_m:
2491 goto do_alg_sub_t2_m;
2493 default:
2494 gcc_unreachable ();
2499 /* If we have a group of zero bits at the low-order part of T, try
2500 multiplying by the remaining bits and then doing a shift. */
2502 if ((t & 1) == 0)
2504 do_alg_shift:
2505 m = floor_log2 (t & -t); /* m = number of low zero bits */
2506 if (m < maxm)
2508 q = t >> m;
2509 /* The function expand_shift will choose between a shift and
2510 a sequence of additions, so the observed cost is given as
2511 MIN (m * add_cost[speed][mode], shift_cost[speed][mode][m]). */
2512 op_cost = m * add_cost[speed][mode];
2513 if (shift_cost[speed][mode][m] < op_cost)
2514 op_cost = shift_cost[speed][mode][m];
2515 new_limit.cost = best_cost.cost - op_cost;
2516 new_limit.latency = best_cost.latency - op_cost;
2517 synth_mult (alg_in, q, &new_limit, mode);
2519 alg_in->cost.cost += op_cost;
2520 alg_in->cost.latency += op_cost;
2521 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2523 struct algorithm *x;
2524 best_cost = alg_in->cost;
2525 x = alg_in, alg_in = best_alg, best_alg = x;
2526 best_alg->log[best_alg->ops] = m;
2527 best_alg->op[best_alg->ops] = alg_shift;
2530 /* See if treating ORIG_T as a signed number yields a better
2531 sequence. Try this sequence only for a negative ORIG_T
2532 as it would be useless for a non-negative ORIG_T. */
2533 if ((HOST_WIDE_INT) orig_t < 0)
2535 /* Shift ORIG_T as follows because a right shift of a
2536 negative-valued signed type is implementation
2537 defined. */
2538 q = ~(~orig_t >> m);
2539 /* The function expand_shift will choose between a shift
2540 and a sequence of additions, so the observed cost is
2541 given as MIN (m * add_cost[speed][mode],
2542 shift_cost[speed][mode][m]). */
2543 op_cost = m * add_cost[speed][mode];
2544 if (shift_cost[speed][mode][m] < op_cost)
2545 op_cost = shift_cost[speed][mode][m];
2546 new_limit.cost = best_cost.cost - op_cost;
2547 new_limit.latency = best_cost.latency - op_cost;
2548 synth_mult (alg_in, q, &new_limit, mode);
2550 alg_in->cost.cost += op_cost;
2551 alg_in->cost.latency += op_cost;
2552 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2554 struct algorithm *x;
2555 best_cost = alg_in->cost;
2556 x = alg_in, alg_in = best_alg, best_alg = x;
2557 best_alg->log[best_alg->ops] = m;
2558 best_alg->op[best_alg->ops] = alg_shift;
2562 if (cache_hit)
2563 goto done;
2566 /* If we have an odd number, add or subtract one. */
2567 if ((t & 1) != 0)
2569 unsigned HOST_WIDE_INT w;
2571 do_alg_addsub_t_m2:
2572 for (w = 1; (w & t) != 0; w <<= 1)
2574 /* If T was -1, then W will be zero after the loop. This is another
2575 case where T ends with ...111. Handling this with (T + 1) and
2576 subtract 1 produces slightly better code and results in algorithm
2577 selection much faster than treating it like the ...0111 case
2578 below. */
2579 if (w == 0
2580 || (w > 2
2581 /* Reject the case where t is 3.
2582 Thus we prefer addition in that case. */
2583 && t != 3))
2585 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2587 op_cost = add_cost[speed][mode];
2588 new_limit.cost = best_cost.cost - op_cost;
2589 new_limit.latency = best_cost.latency - op_cost;
2590 synth_mult (alg_in, t + 1, &new_limit, mode);
2592 alg_in->cost.cost += op_cost;
2593 alg_in->cost.latency += op_cost;
2594 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2596 struct algorithm *x;
2597 best_cost = alg_in->cost;
2598 x = alg_in, alg_in = best_alg, best_alg = x;
2599 best_alg->log[best_alg->ops] = 0;
2600 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2603 else
2605 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2607 op_cost = add_cost[speed][mode];
2608 new_limit.cost = best_cost.cost - op_cost;
2609 new_limit.latency = best_cost.latency - op_cost;
2610 synth_mult (alg_in, t - 1, &new_limit, mode);
2612 alg_in->cost.cost += op_cost;
2613 alg_in->cost.latency += op_cost;
2614 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2616 struct algorithm *x;
2617 best_cost = alg_in->cost;
2618 x = alg_in, alg_in = best_alg, best_alg = x;
2619 best_alg->log[best_alg->ops] = 0;
2620 best_alg->op[best_alg->ops] = alg_add_t_m2;
2624 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2625 quickly with a - a * n for some appropriate constant n. */
2626 m = exact_log2 (-orig_t + 1);
2627 if (m >= 0 && m < maxm)
2629 op_cost = shiftsub1_cost[speed][mode][m];
2630 new_limit.cost = best_cost.cost - op_cost;
2631 new_limit.latency = best_cost.latency - op_cost;
2632 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, &new_limit, mode);
2634 alg_in->cost.cost += op_cost;
2635 alg_in->cost.latency += op_cost;
2636 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2638 struct algorithm *x;
2639 best_cost = alg_in->cost;
2640 x = alg_in, alg_in = best_alg, best_alg = x;
2641 best_alg->log[best_alg->ops] = m;
2642 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2646 if (cache_hit)
2647 goto done;
2650 /* Look for factors of t of the form
2651 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2652 If we find such a factor, we can multiply by t using an algorithm that
2653 multiplies by q, shift the result by m and add/subtract it to itself.
2655 We search for large factors first and loop down, even if large factors
2656 are less probable than small; if we find a large factor we will find a
2657 good sequence quickly, and therefore be able to prune (by decreasing
2658 COST_LIMIT) the search. */
2660 do_alg_addsub_factor:
2661 for (m = floor_log2 (t - 1); m >= 2; m--)
2663 unsigned HOST_WIDE_INT d;
2665 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2666 if (t % d == 0 && t > d && m < maxm
2667 && (!cache_hit || cache_alg == alg_add_factor))
2669 /* If the target has a cheap shift-and-add instruction use
2670 that in preference to a shift insn followed by an add insn.
2671 Assume that the shift-and-add is "atomic" with a latency
2672 equal to its cost, otherwise assume that on superscalar
2673 hardware the shift may be executed concurrently with the
2674 earlier steps in the algorithm. */
2675 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2676 if (shiftadd_cost[speed][mode][m] < op_cost)
2678 op_cost = shiftadd_cost[speed][mode][m];
2679 op_latency = op_cost;
2681 else
2682 op_latency = add_cost[speed][mode];
2684 new_limit.cost = best_cost.cost - op_cost;
2685 new_limit.latency = best_cost.latency - op_latency;
2686 synth_mult (alg_in, t / d, &new_limit, mode);
2688 alg_in->cost.cost += op_cost;
2689 alg_in->cost.latency += op_latency;
2690 if (alg_in->cost.latency < op_cost)
2691 alg_in->cost.latency = op_cost;
2692 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2694 struct algorithm *x;
2695 best_cost = alg_in->cost;
2696 x = alg_in, alg_in = best_alg, best_alg = x;
2697 best_alg->log[best_alg->ops] = m;
2698 best_alg->op[best_alg->ops] = alg_add_factor;
2700 /* Other factors will have been taken care of in the recursion. */
2701 break;
2704 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2705 if (t % d == 0 && t > d && m < maxm
2706 && (!cache_hit || cache_alg == alg_sub_factor))
2708 /* If the target has a cheap shift-and-subtract insn use
2709 that in preference to a shift insn followed by a sub insn.
2710 Assume that the shift-and-sub is "atomic" with a latency
2711 equal to it's cost, otherwise assume that on superscalar
2712 hardware the shift may be executed concurrently with the
2713 earlier steps in the algorithm. */
2714 op_cost = add_cost[speed][mode] + shift_cost[speed][mode][m];
2715 if (shiftsub0_cost[speed][mode][m] < op_cost)
2717 op_cost = shiftsub0_cost[speed][mode][m];
2718 op_latency = op_cost;
2720 else
2721 op_latency = add_cost[speed][mode];
2723 new_limit.cost = best_cost.cost - op_cost;
2724 new_limit.latency = best_cost.latency - op_latency;
2725 synth_mult (alg_in, t / d, &new_limit, mode);
2727 alg_in->cost.cost += op_cost;
2728 alg_in->cost.latency += op_latency;
2729 if (alg_in->cost.latency < op_cost)
2730 alg_in->cost.latency = op_cost;
2731 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2733 struct algorithm *x;
2734 best_cost = alg_in->cost;
2735 x = alg_in, alg_in = best_alg, best_alg = x;
2736 best_alg->log[best_alg->ops] = m;
2737 best_alg->op[best_alg->ops] = alg_sub_factor;
2739 break;
2742 if (cache_hit)
2743 goto done;
2745 /* Try shift-and-add (load effective address) instructions,
2746 i.e. do a*3, a*5, a*9. */
2747 if ((t & 1) != 0)
2749 do_alg_add_t2_m:
2750 q = t - 1;
2751 q = q & -q;
2752 m = exact_log2 (q);
2753 if (m >= 0 && m < maxm)
2755 op_cost = shiftadd_cost[speed][mode][m];
2756 new_limit.cost = best_cost.cost - op_cost;
2757 new_limit.latency = best_cost.latency - op_cost;
2758 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2760 alg_in->cost.cost += op_cost;
2761 alg_in->cost.latency += op_cost;
2762 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2764 struct algorithm *x;
2765 best_cost = alg_in->cost;
2766 x = alg_in, alg_in = best_alg, best_alg = x;
2767 best_alg->log[best_alg->ops] = m;
2768 best_alg->op[best_alg->ops] = alg_add_t2_m;
2771 if (cache_hit)
2772 goto done;
2774 do_alg_sub_t2_m:
2775 q = t + 1;
2776 q = q & -q;
2777 m = exact_log2 (q);
2778 if (m >= 0 && m < maxm)
2780 op_cost = shiftsub0_cost[speed][mode][m];
2781 new_limit.cost = best_cost.cost - op_cost;
2782 new_limit.latency = best_cost.latency - op_cost;
2783 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2785 alg_in->cost.cost += op_cost;
2786 alg_in->cost.latency += op_cost;
2787 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2789 struct algorithm *x;
2790 best_cost = alg_in->cost;
2791 x = alg_in, alg_in = best_alg, best_alg = x;
2792 best_alg->log[best_alg->ops] = m;
2793 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2796 if (cache_hit)
2797 goto done;
2800 done:
2801 /* If best_cost has not decreased, we have not found any algorithm. */
2802 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2804 /* We failed to find an algorithm. Record alg_impossible for
2805 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2806 we are asked to find an algorithm for T within the same or
2807 lower COST_LIMIT, we can immediately return to the
2808 caller. */
2809 alg_hash[hash_index].t = t;
2810 alg_hash[hash_index].mode = mode;
2811 alg_hash[hash_index].speed = speed;
2812 alg_hash[hash_index].alg = alg_impossible;
2813 alg_hash[hash_index].cost = *cost_limit;
2814 return;
2817 /* Cache the result. */
2818 if (!cache_hit)
2820 alg_hash[hash_index].t = t;
2821 alg_hash[hash_index].mode = mode;
2822 alg_hash[hash_index].speed = speed;
2823 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2824 alg_hash[hash_index].cost.cost = best_cost.cost;
2825 alg_hash[hash_index].cost.latency = best_cost.latency;
2828 /* If we are getting a too long sequence for `struct algorithm'
2829 to record, make this search fail. */
2830 if (best_alg->ops == MAX_BITS_PER_WORD)
2831 return;
2833 /* Copy the algorithm from temporary space to the space at alg_out.
2834 We avoid using structure assignment because the majority of
2835 best_alg is normally undefined, and this is a critical function. */
2836 alg_out->ops = best_alg->ops + 1;
2837 alg_out->cost = best_cost;
2838 memcpy (alg_out->op, best_alg->op,
2839 alg_out->ops * sizeof *alg_out->op);
2840 memcpy (alg_out->log, best_alg->log,
2841 alg_out->ops * sizeof *alg_out->log);
2844 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2845 Try three variations:
2847 - a shift/add sequence based on VAL itself
2848 - a shift/add sequence based on -VAL, followed by a negation
2849 - a shift/add sequence based on VAL - 1, followed by an addition.
2851 Return true if the cheapest of these cost less than MULT_COST,
2852 describing the algorithm in *ALG and final fixup in *VARIANT. */
2854 static bool
2855 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2856 struct algorithm *alg, enum mult_variant *variant,
2857 int mult_cost)
2859 struct algorithm alg2;
2860 struct mult_cost limit;
2861 int op_cost;
2862 bool speed = optimize_insn_for_speed_p ();
2864 /* Fail quickly for impossible bounds. */
2865 if (mult_cost < 0)
2866 return false;
2868 /* Ensure that mult_cost provides a reasonable upper bound.
2869 Any constant multiplication can be performed with less
2870 than 2 * bits additions. */
2871 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[speed][mode];
2872 if (mult_cost > op_cost)
2873 mult_cost = op_cost;
2875 *variant = basic_variant;
2876 limit.cost = mult_cost;
2877 limit.latency = mult_cost;
2878 synth_mult (alg, val, &limit, mode);
2880 /* This works only if the inverted value actually fits in an
2881 `unsigned int' */
2882 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2884 op_cost = neg_cost[speed][mode];
2885 if (MULT_COST_LESS (&alg->cost, mult_cost))
2887 limit.cost = alg->cost.cost - op_cost;
2888 limit.latency = alg->cost.latency - op_cost;
2890 else
2892 limit.cost = mult_cost - op_cost;
2893 limit.latency = mult_cost - op_cost;
2896 synth_mult (&alg2, -val, &limit, mode);
2897 alg2.cost.cost += op_cost;
2898 alg2.cost.latency += op_cost;
2899 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2900 *alg = alg2, *variant = negate_variant;
2903 /* This proves very useful for division-by-constant. */
2904 op_cost = add_cost[speed][mode];
2905 if (MULT_COST_LESS (&alg->cost, mult_cost))
2907 limit.cost = alg->cost.cost - op_cost;
2908 limit.latency = alg->cost.latency - op_cost;
2910 else
2912 limit.cost = mult_cost - op_cost;
2913 limit.latency = mult_cost - op_cost;
2916 synth_mult (&alg2, val - 1, &limit, mode);
2917 alg2.cost.cost += op_cost;
2918 alg2.cost.latency += op_cost;
2919 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2920 *alg = alg2, *variant = add_variant;
2922 return MULT_COST_LESS (&alg->cost, mult_cost);
2925 /* A subroutine of expand_mult, used for constant multiplications.
2926 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2927 convenient. Use the shift/add sequence described by ALG and apply
2928 the final fixup specified by VARIANT. */
2930 static rtx
2931 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2932 rtx target, const struct algorithm *alg,
2933 enum mult_variant variant)
2935 HOST_WIDE_INT val_so_far;
2936 rtx insn, accum, tem;
2937 int opno;
2938 enum machine_mode nmode;
2940 /* Avoid referencing memory over and over and invalid sharing
2941 on SUBREGs. */
2942 op0 = force_reg (mode, op0);
2944 /* ACCUM starts out either as OP0 or as a zero, depending on
2945 the first operation. */
2947 if (alg->op[0] == alg_zero)
2949 accum = copy_to_mode_reg (mode, const0_rtx);
2950 val_so_far = 0;
2952 else if (alg->op[0] == alg_m)
2954 accum = copy_to_mode_reg (mode, op0);
2955 val_so_far = 1;
2957 else
2958 gcc_unreachable ();
2960 for (opno = 1; opno < alg->ops; opno++)
2962 int log = alg->log[opno];
2963 rtx shift_subtarget = optimize ? 0 : accum;
2964 rtx add_target
2965 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2966 && !optimize)
2967 ? target : 0;
2968 rtx accum_target = optimize ? 0 : accum;
2970 switch (alg->op[opno])
2972 case alg_shift:
2973 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2974 build_int_cst (NULL_TREE, log),
2975 NULL_RTX, 0);
2976 val_so_far <<= log;
2977 break;
2979 case alg_add_t_m2:
2980 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2981 build_int_cst (NULL_TREE, log),
2982 NULL_RTX, 0);
2983 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2984 add_target ? add_target : accum_target);
2985 val_so_far += (HOST_WIDE_INT) 1 << log;
2986 break;
2988 case alg_sub_t_m2:
2989 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2990 build_int_cst (NULL_TREE, log),
2991 NULL_RTX, 0);
2992 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2993 add_target ? add_target : accum_target);
2994 val_so_far -= (HOST_WIDE_INT) 1 << log;
2995 break;
2997 case alg_add_t2_m:
2998 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2999 build_int_cst (NULL_TREE, log),
3000 shift_subtarget,
3002 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3003 add_target ? add_target : accum_target);
3004 val_so_far = (val_so_far << log) + 1;
3005 break;
3007 case alg_sub_t2_m:
3008 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3009 build_int_cst (NULL_TREE, log),
3010 shift_subtarget, 0);
3011 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3012 add_target ? add_target : accum_target);
3013 val_so_far = (val_so_far << log) - 1;
3014 break;
3016 case alg_add_factor:
3017 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3018 build_int_cst (NULL_TREE, log),
3019 NULL_RTX, 0);
3020 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3021 add_target ? add_target : accum_target);
3022 val_so_far += val_so_far << log;
3023 break;
3025 case alg_sub_factor:
3026 tem = expand_shift (LSHIFT_EXPR, mode, accum,
3027 build_int_cst (NULL_TREE, log),
3028 NULL_RTX, 0);
3029 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3030 (add_target
3031 ? add_target : (optimize ? 0 : tem)));
3032 val_so_far = (val_so_far << log) - val_so_far;
3033 break;
3035 default:
3036 gcc_unreachable ();
3039 /* Write a REG_EQUAL note on the last insn so that we can cse
3040 multiplication sequences. Note that if ACCUM is a SUBREG,
3041 we've set the inner register and must properly indicate
3042 that. */
3044 tem = op0, nmode = mode;
3045 if (GET_CODE (accum) == SUBREG)
3047 nmode = GET_MODE (SUBREG_REG (accum));
3048 tem = gen_lowpart (nmode, op0);
3051 insn = get_last_insn ();
3052 set_unique_reg_note (insn, REG_EQUAL,
3053 gen_rtx_MULT (nmode, tem,
3054 GEN_INT (val_so_far)));
3057 if (variant == negate_variant)
3059 val_so_far = -val_so_far;
3060 accum = expand_unop (mode, neg_optab, accum, target, 0);
3062 else if (variant == add_variant)
3064 val_so_far = val_so_far + 1;
3065 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3068 /* Compare only the bits of val and val_so_far that are significant
3069 in the result mode, to avoid sign-/zero-extension confusion. */
3070 val &= GET_MODE_MASK (mode);
3071 val_so_far &= GET_MODE_MASK (mode);
3072 gcc_assert (val == val_so_far);
3074 return accum;
3077 /* Perform a multiplication and return an rtx for the result.
3078 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3079 TARGET is a suggestion for where to store the result (an rtx).
3081 We check specially for a constant integer as OP1.
3082 If you want this check for OP0 as well, then before calling
3083 you should swap the two operands if OP0 would be constant. */
3086 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3087 int unsignedp)
3089 enum mult_variant variant;
3090 struct algorithm algorithm;
3091 int max_cost;
3092 bool speed = optimize_insn_for_speed_p ();
3094 /* Handling const0_rtx here allows us to use zero as a rogue value for
3095 coeff below. */
3096 if (op1 == const0_rtx)
3097 return const0_rtx;
3098 if (op1 == const1_rtx)
3099 return op0;
3100 if (op1 == constm1_rtx)
3101 return expand_unop (mode,
3102 GET_MODE_CLASS (mode) == MODE_INT
3103 && !unsignedp && flag_trapv
3104 ? negv_optab : neg_optab,
3105 op0, target, 0);
3107 /* These are the operations that are potentially turned into a sequence
3108 of shifts and additions. */
3109 if (SCALAR_INT_MODE_P (mode)
3110 && (unsignedp || !flag_trapv))
3112 HOST_WIDE_INT coeff = 0;
3113 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3115 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3116 less than or equal in size to `unsigned int' this doesn't matter.
3117 If the mode is larger than `unsigned int', then synth_mult works
3118 only if the constant value exactly fits in an `unsigned int' without
3119 any truncation. This means that multiplying by negative values does
3120 not work; results are off by 2^32 on a 32 bit machine. */
3122 if (CONST_INT_P (op1))
3124 /* Attempt to handle multiplication of DImode values by negative
3125 coefficients, by performing the multiplication by a positive
3126 multiplier and then inverting the result. */
3127 if (INTVAL (op1) < 0
3128 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3130 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3131 result is interpreted as an unsigned coefficient.
3132 Exclude cost of op0 from max_cost to match the cost
3133 calculation of the synth_mult. */
3134 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed)
3135 - neg_cost[speed][mode];
3136 if (max_cost > 0
3137 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3138 &variant, max_cost))
3140 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3141 NULL_RTX, &algorithm,
3142 variant);
3143 return expand_unop (mode, neg_optab, temp, target, 0);
3146 else coeff = INTVAL (op1);
3148 else if (GET_CODE (op1) == CONST_DOUBLE)
3150 /* If we are multiplying in DImode, it may still be a win
3151 to try to work with shifts and adds. */
3152 if (CONST_DOUBLE_HIGH (op1) == 0
3153 && CONST_DOUBLE_LOW (op1) > 0)
3154 coeff = CONST_DOUBLE_LOW (op1);
3155 else if (CONST_DOUBLE_LOW (op1) == 0
3156 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3158 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3159 + HOST_BITS_PER_WIDE_INT;
3160 return expand_shift (LSHIFT_EXPR, mode, op0,
3161 build_int_cst (NULL_TREE, shift),
3162 target, unsignedp);
3166 /* We used to test optimize here, on the grounds that it's better to
3167 produce a smaller program when -O is not used. But this causes
3168 such a terrible slowdown sometimes that it seems better to always
3169 use synth_mult. */
3170 if (coeff != 0)
3172 /* Special case powers of two. */
3173 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3174 return expand_shift (LSHIFT_EXPR, mode, op0,
3175 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3176 target, unsignedp);
3178 /* Exclude cost of op0 from max_cost to match the cost
3179 calculation of the synth_mult. */
3180 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET, speed);
3181 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3182 max_cost))
3183 return expand_mult_const (mode, op0, coeff, target,
3184 &algorithm, variant);
3188 if (GET_CODE (op0) == CONST_DOUBLE)
3190 rtx temp = op0;
3191 op0 = op1;
3192 op1 = temp;
3195 /* Expand x*2.0 as x+x. */
3196 if (GET_CODE (op1) == CONST_DOUBLE
3197 && SCALAR_FLOAT_MODE_P (mode))
3199 REAL_VALUE_TYPE d;
3200 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3202 if (REAL_VALUES_EQUAL (d, dconst2))
3204 op0 = force_reg (GET_MODE (op0), op0);
3205 return expand_binop (mode, add_optab, op0, op0,
3206 target, unsignedp, OPTAB_LIB_WIDEN);
3210 /* This used to use umul_optab if unsigned, but for non-widening multiply
3211 there is no difference between signed and unsigned. */
3212 op0 = expand_binop (mode,
3213 ! unsignedp
3214 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3215 ? smulv_optab : smul_optab,
3216 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3217 gcc_assert (op0);
3218 return op0;
3221 /* Return the smallest n such that 2**n >= X. */
3224 ceil_log2 (unsigned HOST_WIDE_INT x)
3226 return floor_log2 (x - 1) + 1;
3229 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3230 replace division by D, and put the least significant N bits of the result
3231 in *MULTIPLIER_PTR and return the most significant bit.
3233 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3234 needed precision is in PRECISION (should be <= N).
3236 PRECISION should be as small as possible so this function can choose
3237 multiplier more freely.
3239 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3240 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3242 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3243 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3245 static
3246 unsigned HOST_WIDE_INT
3247 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3248 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3250 HOST_WIDE_INT mhigh_hi, mlow_hi;
3251 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3252 int lgup, post_shift;
3253 int pow, pow2;
3254 unsigned HOST_WIDE_INT nl, dummy1;
3255 HOST_WIDE_INT nh, dummy2;
3257 /* lgup = ceil(log2(divisor)); */
3258 lgup = ceil_log2 (d);
3260 gcc_assert (lgup <= n);
3262 pow = n + lgup;
3263 pow2 = n + lgup - precision;
3265 /* We could handle this with some effort, but this case is much
3266 better handled directly with a scc insn, so rely on caller using
3267 that. */
3268 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3270 /* mlow = 2^(N + lgup)/d */
3271 if (pow >= HOST_BITS_PER_WIDE_INT)
3273 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3274 nl = 0;
3276 else
3278 nh = 0;
3279 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3281 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3282 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3284 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3285 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3286 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3287 else
3288 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3289 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3290 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3292 gcc_assert (!mhigh_hi || nh - d < d);
3293 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3294 /* Assert that mlow < mhigh. */
3295 gcc_assert (mlow_hi < mhigh_hi
3296 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3298 /* If precision == N, then mlow, mhigh exceed 2^N
3299 (but they do not exceed 2^(N+1)). */
3301 /* Reduce to lowest terms. */
3302 for (post_shift = lgup; post_shift > 0; post_shift--)
3304 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3305 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3306 if (ml_lo >= mh_lo)
3307 break;
3309 mlow_hi = 0;
3310 mlow_lo = ml_lo;
3311 mhigh_hi = 0;
3312 mhigh_lo = mh_lo;
3315 *post_shift_ptr = post_shift;
3316 *lgup_ptr = lgup;
3317 if (n < HOST_BITS_PER_WIDE_INT)
3319 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3320 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3321 return mhigh_lo >= mask;
3323 else
3325 *multiplier_ptr = GEN_INT (mhigh_lo);
3326 return mhigh_hi;
3330 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3331 congruent to 1 (mod 2**N). */
3333 static unsigned HOST_WIDE_INT
3334 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3336 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3338 /* The algorithm notes that the choice y = x satisfies
3339 x*y == 1 mod 2^3, since x is assumed odd.
3340 Each iteration doubles the number of bits of significance in y. */
3342 unsigned HOST_WIDE_INT mask;
3343 unsigned HOST_WIDE_INT y = x;
3344 int nbit = 3;
3346 mask = (n == HOST_BITS_PER_WIDE_INT
3347 ? ~(unsigned HOST_WIDE_INT) 0
3348 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3350 while (nbit < n)
3352 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3353 nbit *= 2;
3355 return y;
3358 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3359 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3360 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3361 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3362 become signed.
3364 The result is put in TARGET if that is convenient.
3366 MODE is the mode of operation. */
3369 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3370 rtx op1, rtx target, int unsignedp)
3372 rtx tem;
3373 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3375 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3376 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3377 NULL_RTX, 0);
3378 tem = expand_and (mode, tem, op1, NULL_RTX);
3379 adj_operand
3380 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3381 adj_operand);
3383 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3384 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3385 NULL_RTX, 0);
3386 tem = expand_and (mode, tem, op0, NULL_RTX);
3387 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3388 target);
3390 return target;
3393 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3395 static rtx
3396 extract_high_half (enum machine_mode mode, rtx op)
3398 enum machine_mode wider_mode;
3400 if (mode == word_mode)
3401 return gen_highpart (mode, op);
3403 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3405 wider_mode = GET_MODE_WIDER_MODE (mode);
3406 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3407 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3408 return convert_modes (mode, wider_mode, op, 0);
3411 /* Like expand_mult_highpart, but only consider using a multiplication
3412 optab. OP1 is an rtx for the constant operand. */
3414 static rtx
3415 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3416 rtx target, int unsignedp, int max_cost)
3418 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3419 enum machine_mode wider_mode;
3420 optab moptab;
3421 rtx tem;
3422 int size;
3423 bool speed = optimize_insn_for_speed_p ();
3425 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3427 wider_mode = GET_MODE_WIDER_MODE (mode);
3428 size = GET_MODE_BITSIZE (mode);
3430 /* Firstly, try using a multiplication insn that only generates the needed
3431 high part of the product, and in the sign flavor of unsignedp. */
3432 if (mul_highpart_cost[speed][mode] < max_cost)
3434 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3435 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3436 unsignedp, OPTAB_DIRECT);
3437 if (tem)
3438 return tem;
3441 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3442 Need to adjust the result after the multiplication. */
3443 if (size - 1 < BITS_PER_WORD
3444 && (mul_highpart_cost[speed][mode] + 2 * shift_cost[speed][mode][size-1]
3445 + 4 * add_cost[speed][mode] < max_cost))
3447 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3448 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3449 unsignedp, OPTAB_DIRECT);
3450 if (tem)
3451 /* We used the wrong signedness. Adjust the result. */
3452 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3453 tem, unsignedp);
3456 /* Try widening multiplication. */
3457 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3458 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3459 && mul_widen_cost[speed][wider_mode] < max_cost)
3461 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3462 unsignedp, OPTAB_WIDEN);
3463 if (tem)
3464 return extract_high_half (mode, tem);
3467 /* Try widening the mode and perform a non-widening multiplication. */
3468 if (optab_handler (smul_optab, wider_mode)->insn_code != CODE_FOR_nothing
3469 && size - 1 < BITS_PER_WORD
3470 && mul_cost[speed][wider_mode] + shift_cost[speed][mode][size-1] < max_cost)
3472 rtx insns, wop0, wop1;
3474 /* We need to widen the operands, for example to ensure the
3475 constant multiplier is correctly sign or zero extended.
3476 Use a sequence to clean-up any instructions emitted by
3477 the conversions if things don't work out. */
3478 start_sequence ();
3479 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3480 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3481 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3482 unsignedp, OPTAB_WIDEN);
3483 insns = get_insns ();
3484 end_sequence ();
3486 if (tem)
3488 emit_insn (insns);
3489 return extract_high_half (mode, tem);
3493 /* Try widening multiplication of opposite signedness, and adjust. */
3494 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3495 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3496 && size - 1 < BITS_PER_WORD
3497 && (mul_widen_cost[speed][wider_mode] + 2 * shift_cost[speed][mode][size-1]
3498 + 4 * add_cost[speed][mode] < max_cost))
3500 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3501 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3502 if (tem != 0)
3504 tem = extract_high_half (mode, tem);
3505 /* We used the wrong signedness. Adjust the result. */
3506 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3507 target, unsignedp);
3511 return 0;
3514 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3515 putting the high half of the result in TARGET if that is convenient,
3516 and return where the result is. If the operation can not be performed,
3517 0 is returned.
3519 MODE is the mode of operation and result.
3521 UNSIGNEDP nonzero means unsigned multiply.
3523 MAX_COST is the total allowed cost for the expanded RTL. */
3525 static rtx
3526 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3527 rtx target, int unsignedp, int max_cost)
3529 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3530 unsigned HOST_WIDE_INT cnst1;
3531 int extra_cost;
3532 bool sign_adjust = false;
3533 enum mult_variant variant;
3534 struct algorithm alg;
3535 rtx tem;
3536 bool speed = optimize_insn_for_speed_p ();
3538 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3539 /* We can't support modes wider than HOST_BITS_PER_INT. */
3540 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3542 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3544 /* We can't optimize modes wider than BITS_PER_WORD.
3545 ??? We might be able to perform double-word arithmetic if
3546 mode == word_mode, however all the cost calculations in
3547 synth_mult etc. assume single-word operations. */
3548 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3549 return expand_mult_highpart_optab (mode, op0, op1, target,
3550 unsignedp, max_cost);
3552 extra_cost = shift_cost[speed][mode][GET_MODE_BITSIZE (mode) - 1];
3554 /* Check whether we try to multiply by a negative constant. */
3555 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3557 sign_adjust = true;
3558 extra_cost += add_cost[speed][mode];
3561 /* See whether shift/add multiplication is cheap enough. */
3562 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3563 max_cost - extra_cost))
3565 /* See whether the specialized multiplication optabs are
3566 cheaper than the shift/add version. */
3567 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3568 alg.cost.cost + extra_cost);
3569 if (tem)
3570 return tem;
3572 tem = convert_to_mode (wider_mode, op0, unsignedp);
3573 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3574 tem = extract_high_half (mode, tem);
3576 /* Adjust result for signedness. */
3577 if (sign_adjust)
3578 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3580 return tem;
3582 return expand_mult_highpart_optab (mode, op0, op1, target,
3583 unsignedp, max_cost);
3587 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3589 static rtx
3590 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3592 unsigned HOST_WIDE_INT masklow, maskhigh;
3593 rtx result, temp, shift, label;
3594 int logd;
3596 logd = floor_log2 (d);
3597 result = gen_reg_rtx (mode);
3599 /* Avoid conditional branches when they're expensive. */
3600 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3601 && optimize_insn_for_speed_p ())
3603 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3604 mode, 0, -1);
3605 if (signmask)
3607 signmask = force_reg (mode, signmask);
3608 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3609 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3611 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3612 which instruction sequence to use. If logical right shifts
3613 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3614 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3616 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3617 if (optab_handler (lshr_optab, mode)->insn_code == CODE_FOR_nothing
3618 || rtx_cost (temp, SET, optimize_insn_for_speed_p ()) > COSTS_N_INSNS (2))
3620 temp = expand_binop (mode, xor_optab, op0, signmask,
3621 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3622 temp = expand_binop (mode, sub_optab, temp, signmask,
3623 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3624 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3625 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3626 temp = expand_binop (mode, xor_optab, temp, signmask,
3627 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3628 temp = expand_binop (mode, sub_optab, temp, signmask,
3629 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3631 else
3633 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3634 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3635 signmask = force_reg (mode, signmask);
3637 temp = expand_binop (mode, add_optab, op0, signmask,
3638 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3639 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3640 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3641 temp = expand_binop (mode, sub_optab, temp, signmask,
3642 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3644 return temp;
3648 /* Mask contains the mode's signbit and the significant bits of the
3649 modulus. By including the signbit in the operation, many targets
3650 can avoid an explicit compare operation in the following comparison
3651 against zero. */
3653 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3654 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3656 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3657 maskhigh = -1;
3659 else
3660 maskhigh = (HOST_WIDE_INT) -1
3661 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3663 temp = expand_binop (mode, and_optab, op0,
3664 immed_double_const (masklow, maskhigh, mode),
3665 result, 1, OPTAB_LIB_WIDEN);
3666 if (temp != result)
3667 emit_move_insn (result, temp);
3669 label = gen_label_rtx ();
3670 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3672 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3673 0, OPTAB_LIB_WIDEN);
3674 masklow = (HOST_WIDE_INT) -1 << logd;
3675 maskhigh = -1;
3676 temp = expand_binop (mode, ior_optab, temp,
3677 immed_double_const (masklow, maskhigh, mode),
3678 result, 1, OPTAB_LIB_WIDEN);
3679 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3680 0, OPTAB_LIB_WIDEN);
3681 if (temp != result)
3682 emit_move_insn (result, temp);
3683 emit_label (label);
3684 return result;
3687 /* Expand signed division of OP0 by a power of two D in mode MODE.
3688 This routine is only called for positive values of D. */
3690 static rtx
3691 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3693 rtx temp, label;
3694 tree shift;
3695 int logd;
3697 logd = floor_log2 (d);
3698 shift = build_int_cst (NULL_TREE, logd);
3700 if (d == 2
3701 && BRANCH_COST (optimize_insn_for_speed_p (),
3702 false) >= 1)
3704 temp = gen_reg_rtx (mode);
3705 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3706 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3707 0, OPTAB_LIB_WIDEN);
3708 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3711 #ifdef HAVE_conditional_move
3712 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3713 >= 2)
3715 rtx temp2;
3717 /* ??? emit_conditional_move forces a stack adjustment via
3718 compare_from_rtx so, if the sequence is discarded, it will
3719 be lost. Do it now instead. */
3720 do_pending_stack_adjust ();
3722 start_sequence ();
3723 temp2 = copy_to_mode_reg (mode, op0);
3724 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3725 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3726 temp = force_reg (mode, temp);
3728 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3729 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3730 mode, temp, temp2, mode, 0);
3731 if (temp2)
3733 rtx seq = get_insns ();
3734 end_sequence ();
3735 emit_insn (seq);
3736 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3738 end_sequence ();
3740 #endif
3742 if (BRANCH_COST (optimize_insn_for_speed_p (),
3743 false) >= 2)
3745 int ushift = GET_MODE_BITSIZE (mode) - logd;
3747 temp = gen_reg_rtx (mode);
3748 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3749 if (shift_cost[optimize_insn_for_speed_p ()][mode][ushift] > COSTS_N_INSNS (1))
3750 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3751 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3752 else
3753 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3754 build_int_cst (NULL_TREE, ushift),
3755 NULL_RTX, 1);
3756 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3757 0, OPTAB_LIB_WIDEN);
3758 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3761 label = gen_label_rtx ();
3762 temp = copy_to_mode_reg (mode, op0);
3763 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3764 expand_inc (temp, GEN_INT (d - 1));
3765 emit_label (label);
3766 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3769 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3770 if that is convenient, and returning where the result is.
3771 You may request either the quotient or the remainder as the result;
3772 specify REM_FLAG nonzero to get the remainder.
3774 CODE is the expression code for which kind of division this is;
3775 it controls how rounding is done. MODE is the machine mode to use.
3776 UNSIGNEDP nonzero means do unsigned division. */
3778 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3779 and then correct it by or'ing in missing high bits
3780 if result of ANDI is nonzero.
3781 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3782 This could optimize to a bfexts instruction.
3783 But C doesn't use these operations, so their optimizations are
3784 left for later. */
3785 /* ??? For modulo, we don't actually need the highpart of the first product,
3786 the low part will do nicely. And for small divisors, the second multiply
3787 can also be a low-part only multiply or even be completely left out.
3788 E.g. to calculate the remainder of a division by 3 with a 32 bit
3789 multiply, multiply with 0x55555556 and extract the upper two bits;
3790 the result is exact for inputs up to 0x1fffffff.
3791 The input range can be reduced by using cross-sum rules.
3792 For odd divisors >= 3, the following table gives right shift counts
3793 so that if a number is shifted by an integer multiple of the given
3794 amount, the remainder stays the same:
3795 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3796 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3797 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3798 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3799 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3801 Cross-sum rules for even numbers can be derived by leaving as many bits
3802 to the right alone as the divisor has zeros to the right.
3803 E.g. if x is an unsigned 32 bit number:
3804 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3808 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3809 rtx op0, rtx op1, rtx target, int unsignedp)
3811 enum machine_mode compute_mode;
3812 rtx tquotient;
3813 rtx quotient = 0, remainder = 0;
3814 rtx last;
3815 int size;
3816 rtx insn, set;
3817 optab optab1, optab2;
3818 int op1_is_constant, op1_is_pow2 = 0;
3819 int max_cost, extra_cost;
3820 static HOST_WIDE_INT last_div_const = 0;
3821 static HOST_WIDE_INT ext_op1;
3822 bool speed = optimize_insn_for_speed_p ();
3824 op1_is_constant = CONST_INT_P (op1);
3825 if (op1_is_constant)
3827 ext_op1 = INTVAL (op1);
3828 if (unsignedp)
3829 ext_op1 &= GET_MODE_MASK (mode);
3830 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3831 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3835 This is the structure of expand_divmod:
3837 First comes code to fix up the operands so we can perform the operations
3838 correctly and efficiently.
3840 Second comes a switch statement with code specific for each rounding mode.
3841 For some special operands this code emits all RTL for the desired
3842 operation, for other cases, it generates only a quotient and stores it in
3843 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3844 to indicate that it has not done anything.
3846 Last comes code that finishes the operation. If QUOTIENT is set and
3847 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3848 QUOTIENT is not set, it is computed using trunc rounding.
3850 We try to generate special code for division and remainder when OP1 is a
3851 constant. If |OP1| = 2**n we can use shifts and some other fast
3852 operations. For other values of OP1, we compute a carefully selected
3853 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3854 by m.
3856 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3857 half of the product. Different strategies for generating the product are
3858 implemented in expand_mult_highpart.
3860 If what we actually want is the remainder, we generate that by another
3861 by-constant multiplication and a subtraction. */
3863 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3864 code below will malfunction if we are, so check here and handle
3865 the special case if so. */
3866 if (op1 == const1_rtx)
3867 return rem_flag ? const0_rtx : op0;
3869 /* When dividing by -1, we could get an overflow.
3870 negv_optab can handle overflows. */
3871 if (! unsignedp && op1 == constm1_rtx)
3873 if (rem_flag)
3874 return const0_rtx;
3875 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3876 ? negv_optab : neg_optab, op0, target, 0);
3879 if (target
3880 /* Don't use the function value register as a target
3881 since we have to read it as well as write it,
3882 and function-inlining gets confused by this. */
3883 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3884 /* Don't clobber an operand while doing a multi-step calculation. */
3885 || ((rem_flag || op1_is_constant)
3886 && (reg_mentioned_p (target, op0)
3887 || (MEM_P (op0) && MEM_P (target))))
3888 || reg_mentioned_p (target, op1)
3889 || (MEM_P (op1) && MEM_P (target))))
3890 target = 0;
3892 /* Get the mode in which to perform this computation. Normally it will
3893 be MODE, but sometimes we can't do the desired operation in MODE.
3894 If so, pick a wider mode in which we can do the operation. Convert
3895 to that mode at the start to avoid repeated conversions.
3897 First see what operations we need. These depend on the expression
3898 we are evaluating. (We assume that divxx3 insns exist under the
3899 same conditions that modxx3 insns and that these insns don't normally
3900 fail. If these assumptions are not correct, we may generate less
3901 efficient code in some cases.)
3903 Then see if we find a mode in which we can open-code that operation
3904 (either a division, modulus, or shift). Finally, check for the smallest
3905 mode for which we can do the operation with a library call. */
3907 /* We might want to refine this now that we have division-by-constant
3908 optimization. Since expand_mult_highpart tries so many variants, it is
3909 not straightforward to generalize this. Maybe we should make an array
3910 of possible modes in init_expmed? Save this for GCC 2.7. */
3912 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3913 ? (unsignedp ? lshr_optab : ashr_optab)
3914 : (unsignedp ? udiv_optab : sdiv_optab));
3915 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3916 ? optab1
3917 : (unsignedp ? udivmod_optab : sdivmod_optab));
3919 for (compute_mode = mode; compute_mode != VOIDmode;
3920 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3921 if (optab_handler (optab1, compute_mode)->insn_code != CODE_FOR_nothing
3922 || optab_handler (optab2, compute_mode)->insn_code != CODE_FOR_nothing)
3923 break;
3925 if (compute_mode == VOIDmode)
3926 for (compute_mode = mode; compute_mode != VOIDmode;
3927 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3928 if (optab_libfunc (optab1, compute_mode)
3929 || optab_libfunc (optab2, compute_mode))
3930 break;
3932 /* If we still couldn't find a mode, use MODE, but expand_binop will
3933 probably die. */
3934 if (compute_mode == VOIDmode)
3935 compute_mode = mode;
3937 if (target && GET_MODE (target) == compute_mode)
3938 tquotient = target;
3939 else
3940 tquotient = gen_reg_rtx (compute_mode);
3942 size = GET_MODE_BITSIZE (compute_mode);
3943 #if 0
3944 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3945 (mode), and thereby get better code when OP1 is a constant. Do that
3946 later. It will require going over all usages of SIZE below. */
3947 size = GET_MODE_BITSIZE (mode);
3948 #endif
3950 /* Only deduct something for a REM if the last divide done was
3951 for a different constant. Then set the constant of the last
3952 divide. */
3953 max_cost = unsignedp ? udiv_cost[speed][compute_mode] : sdiv_cost[speed][compute_mode];
3954 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3955 && INTVAL (op1) == last_div_const))
3956 max_cost -= mul_cost[speed][compute_mode] + add_cost[speed][compute_mode];
3958 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3960 /* Now convert to the best mode to use. */
3961 if (compute_mode != mode)
3963 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3964 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3966 /* convert_modes may have placed op1 into a register, so we
3967 must recompute the following. */
3968 op1_is_constant = CONST_INT_P (op1);
3969 op1_is_pow2 = (op1_is_constant
3970 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3971 || (! unsignedp
3972 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3975 /* If one of the operands is a volatile MEM, copy it into a register. */
3977 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3978 op0 = force_reg (compute_mode, op0);
3979 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3980 op1 = force_reg (compute_mode, op1);
3982 /* If we need the remainder or if OP1 is constant, we need to
3983 put OP0 in a register in case it has any queued subexpressions. */
3984 if (rem_flag || op1_is_constant)
3985 op0 = force_reg (compute_mode, op0);
3987 last = get_last_insn ();
3989 /* Promote floor rounding to trunc rounding for unsigned operations. */
3990 if (unsignedp)
3992 if (code == FLOOR_DIV_EXPR)
3993 code = TRUNC_DIV_EXPR;
3994 if (code == FLOOR_MOD_EXPR)
3995 code = TRUNC_MOD_EXPR;
3996 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3997 code = TRUNC_DIV_EXPR;
4000 if (op1 != const0_rtx)
4001 switch (code)
4003 case TRUNC_MOD_EXPR:
4004 case TRUNC_DIV_EXPR:
4005 if (op1_is_constant)
4007 if (unsignedp)
4009 unsigned HOST_WIDE_INT mh;
4010 int pre_shift, post_shift;
4011 int dummy;
4012 rtx ml;
4013 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4014 & GET_MODE_MASK (compute_mode));
4016 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4018 pre_shift = floor_log2 (d);
4019 if (rem_flag)
4021 remainder
4022 = expand_binop (compute_mode, and_optab, op0,
4023 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4024 remainder, 1,
4025 OPTAB_LIB_WIDEN);
4026 if (remainder)
4027 return gen_lowpart (mode, remainder);
4029 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4030 build_int_cst (NULL_TREE,
4031 pre_shift),
4032 tquotient, 1);
4034 else if (size <= HOST_BITS_PER_WIDE_INT)
4036 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4038 /* Most significant bit of divisor is set; emit an scc
4039 insn. */
4040 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4041 compute_mode, 1, 1);
4043 else
4045 /* Find a suitable multiplier and right shift count
4046 instead of multiplying with D. */
4048 mh = choose_multiplier (d, size, size,
4049 &ml, &post_shift, &dummy);
4051 /* If the suggested multiplier is more than SIZE bits,
4052 we can do better for even divisors, using an
4053 initial right shift. */
4054 if (mh != 0 && (d & 1) == 0)
4056 pre_shift = floor_log2 (d & -d);
4057 mh = choose_multiplier (d >> pre_shift, size,
4058 size - pre_shift,
4059 &ml, &post_shift, &dummy);
4060 gcc_assert (!mh);
4062 else
4063 pre_shift = 0;
4065 if (mh != 0)
4067 rtx t1, t2, t3, t4;
4069 if (post_shift - 1 >= BITS_PER_WORD)
4070 goto fail1;
4072 extra_cost
4073 = (shift_cost[speed][compute_mode][post_shift - 1]
4074 + shift_cost[speed][compute_mode][1]
4075 + 2 * add_cost[speed][compute_mode]);
4076 t1 = expand_mult_highpart (compute_mode, op0, ml,
4077 NULL_RTX, 1,
4078 max_cost - extra_cost);
4079 if (t1 == 0)
4080 goto fail1;
4081 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4082 op0, t1),
4083 NULL_RTX);
4084 t3 = expand_shift
4085 (RSHIFT_EXPR, compute_mode, t2,
4086 build_int_cst (NULL_TREE, 1),
4087 NULL_RTX,1);
4088 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4089 t1, t3),
4090 NULL_RTX);
4091 quotient = expand_shift
4092 (RSHIFT_EXPR, compute_mode, t4,
4093 build_int_cst (NULL_TREE, post_shift - 1),
4094 tquotient, 1);
4096 else
4098 rtx t1, t2;
4100 if (pre_shift >= BITS_PER_WORD
4101 || post_shift >= BITS_PER_WORD)
4102 goto fail1;
4104 t1 = expand_shift
4105 (RSHIFT_EXPR, compute_mode, op0,
4106 build_int_cst (NULL_TREE, pre_shift),
4107 NULL_RTX, 1);
4108 extra_cost
4109 = (shift_cost[speed][compute_mode][pre_shift]
4110 + shift_cost[speed][compute_mode][post_shift]);
4111 t2 = expand_mult_highpart (compute_mode, t1, ml,
4112 NULL_RTX, 1,
4113 max_cost - extra_cost);
4114 if (t2 == 0)
4115 goto fail1;
4116 quotient = expand_shift
4117 (RSHIFT_EXPR, compute_mode, t2,
4118 build_int_cst (NULL_TREE, post_shift),
4119 tquotient, 1);
4123 else /* Too wide mode to use tricky code */
4124 break;
4126 insn = get_last_insn ();
4127 if (insn != last
4128 && (set = single_set (insn)) != 0
4129 && SET_DEST (set) == quotient)
4130 set_unique_reg_note (insn,
4131 REG_EQUAL,
4132 gen_rtx_UDIV (compute_mode, op0, op1));
4134 else /* TRUNC_DIV, signed */
4136 unsigned HOST_WIDE_INT ml;
4137 int lgup, post_shift;
4138 rtx mlr;
4139 HOST_WIDE_INT d = INTVAL (op1);
4140 unsigned HOST_WIDE_INT abs_d;
4142 /* Since d might be INT_MIN, we have to cast to
4143 unsigned HOST_WIDE_INT before negating to avoid
4144 undefined signed overflow. */
4145 abs_d = (d >= 0
4146 ? (unsigned HOST_WIDE_INT) d
4147 : - (unsigned HOST_WIDE_INT) d);
4149 /* n rem d = n rem -d */
4150 if (rem_flag && d < 0)
4152 d = abs_d;
4153 op1 = gen_int_mode (abs_d, compute_mode);
4156 if (d == 1)
4157 quotient = op0;
4158 else if (d == -1)
4159 quotient = expand_unop (compute_mode, neg_optab, op0,
4160 tquotient, 0);
4161 else if (HOST_BITS_PER_WIDE_INT >= size
4162 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4164 /* This case is not handled correctly below. */
4165 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4166 compute_mode, 1, 1);
4167 if (quotient == 0)
4168 goto fail1;
4170 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4171 && (rem_flag ? smod_pow2_cheap[speed][compute_mode]
4172 : sdiv_pow2_cheap[speed][compute_mode])
4173 /* We assume that cheap metric is true if the
4174 optab has an expander for this mode. */
4175 && ((optab_handler ((rem_flag ? smod_optab
4176 : sdiv_optab),
4177 compute_mode)->insn_code
4178 != CODE_FOR_nothing)
4179 || (optab_handler(sdivmod_optab,
4180 compute_mode)
4181 ->insn_code != CODE_FOR_nothing)))
4183 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4185 if (rem_flag)
4187 remainder = expand_smod_pow2 (compute_mode, op0, d);
4188 if (remainder)
4189 return gen_lowpart (mode, remainder);
4192 if (sdiv_pow2_cheap[speed][compute_mode]
4193 && ((optab_handler (sdiv_optab, compute_mode)->insn_code
4194 != CODE_FOR_nothing)
4195 || (optab_handler (sdivmod_optab, compute_mode)->insn_code
4196 != CODE_FOR_nothing)))
4197 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4198 compute_mode, op0,
4199 gen_int_mode (abs_d,
4200 compute_mode),
4201 NULL_RTX, 0);
4202 else
4203 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4205 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4206 negate the quotient. */
4207 if (d < 0)
4209 insn = get_last_insn ();
4210 if (insn != last
4211 && (set = single_set (insn)) != 0
4212 && SET_DEST (set) == quotient
4213 && abs_d < ((unsigned HOST_WIDE_INT) 1
4214 << (HOST_BITS_PER_WIDE_INT - 1)))
4215 set_unique_reg_note (insn,
4216 REG_EQUAL,
4217 gen_rtx_DIV (compute_mode,
4218 op0,
4219 GEN_INT
4220 (trunc_int_for_mode
4221 (abs_d,
4222 compute_mode))));
4224 quotient = expand_unop (compute_mode, neg_optab,
4225 quotient, quotient, 0);
4228 else if (size <= HOST_BITS_PER_WIDE_INT)
4230 choose_multiplier (abs_d, size, size - 1,
4231 &mlr, &post_shift, &lgup);
4232 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4233 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4235 rtx t1, t2, t3;
4237 if (post_shift >= BITS_PER_WORD
4238 || size - 1 >= BITS_PER_WORD)
4239 goto fail1;
4241 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4242 + shift_cost[speed][compute_mode][size - 1]
4243 + add_cost[speed][compute_mode]);
4244 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4245 NULL_RTX, 0,
4246 max_cost - extra_cost);
4247 if (t1 == 0)
4248 goto fail1;
4249 t2 = expand_shift
4250 (RSHIFT_EXPR, compute_mode, t1,
4251 build_int_cst (NULL_TREE, post_shift),
4252 NULL_RTX, 0);
4253 t3 = expand_shift
4254 (RSHIFT_EXPR, compute_mode, op0,
4255 build_int_cst (NULL_TREE, size - 1),
4256 NULL_RTX, 0);
4257 if (d < 0)
4258 quotient
4259 = force_operand (gen_rtx_MINUS (compute_mode,
4260 t3, t2),
4261 tquotient);
4262 else
4263 quotient
4264 = force_operand (gen_rtx_MINUS (compute_mode,
4265 t2, t3),
4266 tquotient);
4268 else
4270 rtx t1, t2, t3, t4;
4272 if (post_shift >= BITS_PER_WORD
4273 || size - 1 >= BITS_PER_WORD)
4274 goto fail1;
4276 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4277 mlr = gen_int_mode (ml, compute_mode);
4278 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4279 + shift_cost[speed][compute_mode][size - 1]
4280 + 2 * add_cost[speed][compute_mode]);
4281 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4282 NULL_RTX, 0,
4283 max_cost - extra_cost);
4284 if (t1 == 0)
4285 goto fail1;
4286 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4287 t1, op0),
4288 NULL_RTX);
4289 t3 = expand_shift
4290 (RSHIFT_EXPR, compute_mode, t2,
4291 build_int_cst (NULL_TREE, post_shift),
4292 NULL_RTX, 0);
4293 t4 = expand_shift
4294 (RSHIFT_EXPR, compute_mode, op0,
4295 build_int_cst (NULL_TREE, size - 1),
4296 NULL_RTX, 0);
4297 if (d < 0)
4298 quotient
4299 = force_operand (gen_rtx_MINUS (compute_mode,
4300 t4, t3),
4301 tquotient);
4302 else
4303 quotient
4304 = force_operand (gen_rtx_MINUS (compute_mode,
4305 t3, t4),
4306 tquotient);
4309 else /* Too wide mode to use tricky code */
4310 break;
4312 insn = get_last_insn ();
4313 if (insn != last
4314 && (set = single_set (insn)) != 0
4315 && SET_DEST (set) == quotient)
4316 set_unique_reg_note (insn,
4317 REG_EQUAL,
4318 gen_rtx_DIV (compute_mode, op0, op1));
4320 break;
4322 fail1:
4323 delete_insns_since (last);
4324 break;
4326 case FLOOR_DIV_EXPR:
4327 case FLOOR_MOD_EXPR:
4328 /* We will come here only for signed operations. */
4329 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4331 unsigned HOST_WIDE_INT mh;
4332 int pre_shift, lgup, post_shift;
4333 HOST_WIDE_INT d = INTVAL (op1);
4334 rtx ml;
4336 if (d > 0)
4338 /* We could just as easily deal with negative constants here,
4339 but it does not seem worth the trouble for GCC 2.6. */
4340 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4342 pre_shift = floor_log2 (d);
4343 if (rem_flag)
4345 remainder = expand_binop (compute_mode, and_optab, op0,
4346 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4347 remainder, 0, OPTAB_LIB_WIDEN);
4348 if (remainder)
4349 return gen_lowpart (mode, remainder);
4351 quotient = expand_shift
4352 (RSHIFT_EXPR, compute_mode, op0,
4353 build_int_cst (NULL_TREE, pre_shift),
4354 tquotient, 0);
4356 else
4358 rtx t1, t2, t3, t4;
4360 mh = choose_multiplier (d, size, size - 1,
4361 &ml, &post_shift, &lgup);
4362 gcc_assert (!mh);
4364 if (post_shift < BITS_PER_WORD
4365 && size - 1 < BITS_PER_WORD)
4367 t1 = expand_shift
4368 (RSHIFT_EXPR, compute_mode, op0,
4369 build_int_cst (NULL_TREE, size - 1),
4370 NULL_RTX, 0);
4371 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4372 NULL_RTX, 0, OPTAB_WIDEN);
4373 extra_cost = (shift_cost[speed][compute_mode][post_shift]
4374 + shift_cost[speed][compute_mode][size - 1]
4375 + 2 * add_cost[speed][compute_mode]);
4376 t3 = expand_mult_highpart (compute_mode, t2, ml,
4377 NULL_RTX, 1,
4378 max_cost - extra_cost);
4379 if (t3 != 0)
4381 t4 = expand_shift
4382 (RSHIFT_EXPR, compute_mode, t3,
4383 build_int_cst (NULL_TREE, post_shift),
4384 NULL_RTX, 1);
4385 quotient = expand_binop (compute_mode, xor_optab,
4386 t4, t1, tquotient, 0,
4387 OPTAB_WIDEN);
4392 else
4394 rtx nsign, t1, t2, t3, t4;
4395 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4396 op0, constm1_rtx), NULL_RTX);
4397 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4398 0, OPTAB_WIDEN);
4399 nsign = expand_shift
4400 (RSHIFT_EXPR, compute_mode, t2,
4401 build_int_cst (NULL_TREE, size - 1),
4402 NULL_RTX, 0);
4403 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4404 NULL_RTX);
4405 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4406 NULL_RTX, 0);
4407 if (t4)
4409 rtx t5;
4410 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4411 NULL_RTX, 0);
4412 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4413 t4, t5),
4414 tquotient);
4419 if (quotient != 0)
4420 break;
4421 delete_insns_since (last);
4423 /* Try using an instruction that produces both the quotient and
4424 remainder, using truncation. We can easily compensate the quotient
4425 or remainder to get floor rounding, once we have the remainder.
4426 Notice that we compute also the final remainder value here,
4427 and return the result right away. */
4428 if (target == 0 || GET_MODE (target) != compute_mode)
4429 target = gen_reg_rtx (compute_mode);
4431 if (rem_flag)
4433 remainder
4434 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4435 quotient = gen_reg_rtx (compute_mode);
4437 else
4439 quotient
4440 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4441 remainder = gen_reg_rtx (compute_mode);
4444 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4445 quotient, remainder, 0))
4447 /* This could be computed with a branch-less sequence.
4448 Save that for later. */
4449 rtx tem;
4450 rtx label = gen_label_rtx ();
4451 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4452 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4453 NULL_RTX, 0, OPTAB_WIDEN);
4454 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4455 expand_dec (quotient, const1_rtx);
4456 expand_inc (remainder, op1);
4457 emit_label (label);
4458 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4461 /* No luck with division elimination or divmod. Have to do it
4462 by conditionally adjusting op0 *and* the result. */
4464 rtx label1, label2, label3, label4, label5;
4465 rtx adjusted_op0;
4466 rtx tem;
4468 quotient = gen_reg_rtx (compute_mode);
4469 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4470 label1 = gen_label_rtx ();
4471 label2 = gen_label_rtx ();
4472 label3 = gen_label_rtx ();
4473 label4 = gen_label_rtx ();
4474 label5 = gen_label_rtx ();
4475 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4476 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4477 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4478 quotient, 0, OPTAB_LIB_WIDEN);
4479 if (tem != quotient)
4480 emit_move_insn (quotient, tem);
4481 emit_jump_insn (gen_jump (label5));
4482 emit_barrier ();
4483 emit_label (label1);
4484 expand_inc (adjusted_op0, const1_rtx);
4485 emit_jump_insn (gen_jump (label4));
4486 emit_barrier ();
4487 emit_label (label2);
4488 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4489 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4490 quotient, 0, OPTAB_LIB_WIDEN);
4491 if (tem != quotient)
4492 emit_move_insn (quotient, tem);
4493 emit_jump_insn (gen_jump (label5));
4494 emit_barrier ();
4495 emit_label (label3);
4496 expand_dec (adjusted_op0, const1_rtx);
4497 emit_label (label4);
4498 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4499 quotient, 0, OPTAB_LIB_WIDEN);
4500 if (tem != quotient)
4501 emit_move_insn (quotient, tem);
4502 expand_dec (quotient, const1_rtx);
4503 emit_label (label5);
4505 break;
4507 case CEIL_DIV_EXPR:
4508 case CEIL_MOD_EXPR:
4509 if (unsignedp)
4511 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4513 rtx t1, t2, t3;
4514 unsigned HOST_WIDE_INT d = INTVAL (op1);
4515 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4516 build_int_cst (NULL_TREE, floor_log2 (d)),
4517 tquotient, 1);
4518 t2 = expand_binop (compute_mode, and_optab, op0,
4519 GEN_INT (d - 1),
4520 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4521 t3 = gen_reg_rtx (compute_mode);
4522 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4523 compute_mode, 1, 1);
4524 if (t3 == 0)
4526 rtx lab;
4527 lab = gen_label_rtx ();
4528 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4529 expand_inc (t1, const1_rtx);
4530 emit_label (lab);
4531 quotient = t1;
4533 else
4534 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4535 t1, t3),
4536 tquotient);
4537 break;
4540 /* Try using an instruction that produces both the quotient and
4541 remainder, using truncation. We can easily compensate the
4542 quotient or remainder to get ceiling rounding, once we have the
4543 remainder. Notice that we compute also the final remainder
4544 value here, and return the result right away. */
4545 if (target == 0 || GET_MODE (target) != compute_mode)
4546 target = gen_reg_rtx (compute_mode);
4548 if (rem_flag)
4550 remainder = (REG_P (target)
4551 ? target : gen_reg_rtx (compute_mode));
4552 quotient = gen_reg_rtx (compute_mode);
4554 else
4556 quotient = (REG_P (target)
4557 ? target : gen_reg_rtx (compute_mode));
4558 remainder = gen_reg_rtx (compute_mode);
4561 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4562 remainder, 1))
4564 /* This could be computed with a branch-less sequence.
4565 Save that for later. */
4566 rtx label = gen_label_rtx ();
4567 do_cmp_and_jump (remainder, const0_rtx, EQ,
4568 compute_mode, label);
4569 expand_inc (quotient, const1_rtx);
4570 expand_dec (remainder, op1);
4571 emit_label (label);
4572 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4575 /* No luck with division elimination or divmod. Have to do it
4576 by conditionally adjusting op0 *and* the result. */
4578 rtx label1, label2;
4579 rtx adjusted_op0, tem;
4581 quotient = gen_reg_rtx (compute_mode);
4582 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4583 label1 = gen_label_rtx ();
4584 label2 = gen_label_rtx ();
4585 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4586 compute_mode, label1);
4587 emit_move_insn (quotient, const0_rtx);
4588 emit_jump_insn (gen_jump (label2));
4589 emit_barrier ();
4590 emit_label (label1);
4591 expand_dec (adjusted_op0, const1_rtx);
4592 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4593 quotient, 1, OPTAB_LIB_WIDEN);
4594 if (tem != quotient)
4595 emit_move_insn (quotient, tem);
4596 expand_inc (quotient, const1_rtx);
4597 emit_label (label2);
4600 else /* signed */
4602 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4603 && INTVAL (op1) >= 0)
4605 /* This is extremely similar to the code for the unsigned case
4606 above. For 2.7 we should merge these variants, but for
4607 2.6.1 I don't want to touch the code for unsigned since that
4608 get used in C. The signed case will only be used by other
4609 languages (Ada). */
4611 rtx t1, t2, t3;
4612 unsigned HOST_WIDE_INT d = INTVAL (op1);
4613 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4614 build_int_cst (NULL_TREE, floor_log2 (d)),
4615 tquotient, 0);
4616 t2 = expand_binop (compute_mode, and_optab, op0,
4617 GEN_INT (d - 1),
4618 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4619 t3 = gen_reg_rtx (compute_mode);
4620 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4621 compute_mode, 1, 1);
4622 if (t3 == 0)
4624 rtx lab;
4625 lab = gen_label_rtx ();
4626 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4627 expand_inc (t1, const1_rtx);
4628 emit_label (lab);
4629 quotient = t1;
4631 else
4632 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4633 t1, t3),
4634 tquotient);
4635 break;
4638 /* Try using an instruction that produces both the quotient and
4639 remainder, using truncation. We can easily compensate the
4640 quotient or remainder to get ceiling rounding, once we have the
4641 remainder. Notice that we compute also the final remainder
4642 value here, and return the result right away. */
4643 if (target == 0 || GET_MODE (target) != compute_mode)
4644 target = gen_reg_rtx (compute_mode);
4645 if (rem_flag)
4647 remainder= (REG_P (target)
4648 ? target : gen_reg_rtx (compute_mode));
4649 quotient = gen_reg_rtx (compute_mode);
4651 else
4653 quotient = (REG_P (target)
4654 ? target : gen_reg_rtx (compute_mode));
4655 remainder = gen_reg_rtx (compute_mode);
4658 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4659 remainder, 0))
4661 /* This could be computed with a branch-less sequence.
4662 Save that for later. */
4663 rtx tem;
4664 rtx label = gen_label_rtx ();
4665 do_cmp_and_jump (remainder, const0_rtx, EQ,
4666 compute_mode, label);
4667 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4668 NULL_RTX, 0, OPTAB_WIDEN);
4669 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4670 expand_inc (quotient, const1_rtx);
4671 expand_dec (remainder, op1);
4672 emit_label (label);
4673 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4676 /* No luck with division elimination or divmod. Have to do it
4677 by conditionally adjusting op0 *and* the result. */
4679 rtx label1, label2, label3, label4, label5;
4680 rtx adjusted_op0;
4681 rtx tem;
4683 quotient = gen_reg_rtx (compute_mode);
4684 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4685 label1 = gen_label_rtx ();
4686 label2 = gen_label_rtx ();
4687 label3 = gen_label_rtx ();
4688 label4 = gen_label_rtx ();
4689 label5 = gen_label_rtx ();
4690 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4691 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4692 compute_mode, label1);
4693 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4694 quotient, 0, OPTAB_LIB_WIDEN);
4695 if (tem != quotient)
4696 emit_move_insn (quotient, tem);
4697 emit_jump_insn (gen_jump (label5));
4698 emit_barrier ();
4699 emit_label (label1);
4700 expand_dec (adjusted_op0, const1_rtx);
4701 emit_jump_insn (gen_jump (label4));
4702 emit_barrier ();
4703 emit_label (label2);
4704 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4705 compute_mode, label3);
4706 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4707 quotient, 0, OPTAB_LIB_WIDEN);
4708 if (tem != quotient)
4709 emit_move_insn (quotient, tem);
4710 emit_jump_insn (gen_jump (label5));
4711 emit_barrier ();
4712 emit_label (label3);
4713 expand_inc (adjusted_op0, const1_rtx);
4714 emit_label (label4);
4715 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4716 quotient, 0, OPTAB_LIB_WIDEN);
4717 if (tem != quotient)
4718 emit_move_insn (quotient, tem);
4719 expand_inc (quotient, const1_rtx);
4720 emit_label (label5);
4723 break;
4725 case EXACT_DIV_EXPR:
4726 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4728 HOST_WIDE_INT d = INTVAL (op1);
4729 unsigned HOST_WIDE_INT ml;
4730 int pre_shift;
4731 rtx t1;
4733 pre_shift = floor_log2 (d & -d);
4734 ml = invert_mod2n (d >> pre_shift, size);
4735 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4736 build_int_cst (NULL_TREE, pre_shift),
4737 NULL_RTX, unsignedp);
4738 quotient = expand_mult (compute_mode, t1,
4739 gen_int_mode (ml, compute_mode),
4740 NULL_RTX, 1);
4742 insn = get_last_insn ();
4743 set_unique_reg_note (insn,
4744 REG_EQUAL,
4745 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4746 compute_mode,
4747 op0, op1));
4749 break;
4751 case ROUND_DIV_EXPR:
4752 case ROUND_MOD_EXPR:
4753 if (unsignedp)
4755 rtx tem;
4756 rtx label;
4757 label = gen_label_rtx ();
4758 quotient = gen_reg_rtx (compute_mode);
4759 remainder = gen_reg_rtx (compute_mode);
4760 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4762 rtx tem;
4763 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4764 quotient, 1, OPTAB_LIB_WIDEN);
4765 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4766 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4767 remainder, 1, OPTAB_LIB_WIDEN);
4769 tem = plus_constant (op1, -1);
4770 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4771 build_int_cst (NULL_TREE, 1),
4772 NULL_RTX, 1);
4773 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4774 expand_inc (quotient, const1_rtx);
4775 expand_dec (remainder, op1);
4776 emit_label (label);
4778 else
4780 rtx abs_rem, abs_op1, tem, mask;
4781 rtx label;
4782 label = gen_label_rtx ();
4783 quotient = gen_reg_rtx (compute_mode);
4784 remainder = gen_reg_rtx (compute_mode);
4785 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4787 rtx tem;
4788 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4789 quotient, 0, OPTAB_LIB_WIDEN);
4790 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4791 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4792 remainder, 0, OPTAB_LIB_WIDEN);
4794 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4795 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4796 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4797 build_int_cst (NULL_TREE, 1),
4798 NULL_RTX, 1);
4799 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4800 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4801 NULL_RTX, 0, OPTAB_WIDEN);
4802 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4803 build_int_cst (NULL_TREE, size - 1),
4804 NULL_RTX, 0);
4805 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4806 NULL_RTX, 0, OPTAB_WIDEN);
4807 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4808 NULL_RTX, 0, OPTAB_WIDEN);
4809 expand_inc (quotient, tem);
4810 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4811 NULL_RTX, 0, OPTAB_WIDEN);
4812 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4813 NULL_RTX, 0, OPTAB_WIDEN);
4814 expand_dec (remainder, tem);
4815 emit_label (label);
4817 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4819 default:
4820 gcc_unreachable ();
4823 if (quotient == 0)
4825 if (target && GET_MODE (target) != compute_mode)
4826 target = 0;
4828 if (rem_flag)
4830 /* Try to produce the remainder without producing the quotient.
4831 If we seem to have a divmod pattern that does not require widening,
4832 don't try widening here. We should really have a WIDEN argument
4833 to expand_twoval_binop, since what we'd really like to do here is
4834 1) try a mod insn in compute_mode
4835 2) try a divmod insn in compute_mode
4836 3) try a div insn in compute_mode and multiply-subtract to get
4837 remainder
4838 4) try the same things with widening allowed. */
4839 remainder
4840 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4841 op0, op1, target,
4842 unsignedp,
4843 ((optab_handler (optab2, compute_mode)->insn_code
4844 != CODE_FOR_nothing)
4845 ? OPTAB_DIRECT : OPTAB_WIDEN));
4846 if (remainder == 0)
4848 /* No luck there. Can we do remainder and divide at once
4849 without a library call? */
4850 remainder = gen_reg_rtx (compute_mode);
4851 if (! expand_twoval_binop ((unsignedp
4852 ? udivmod_optab
4853 : sdivmod_optab),
4854 op0, op1,
4855 NULL_RTX, remainder, unsignedp))
4856 remainder = 0;
4859 if (remainder)
4860 return gen_lowpart (mode, remainder);
4863 /* Produce the quotient. Try a quotient insn, but not a library call.
4864 If we have a divmod in this mode, use it in preference to widening
4865 the div (for this test we assume it will not fail). Note that optab2
4866 is set to the one of the two optabs that the call below will use. */
4867 quotient
4868 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4869 op0, op1, rem_flag ? NULL_RTX : target,
4870 unsignedp,
4871 ((optab_handler (optab2, compute_mode)->insn_code
4872 != CODE_FOR_nothing)
4873 ? OPTAB_DIRECT : OPTAB_WIDEN));
4875 if (quotient == 0)
4877 /* No luck there. Try a quotient-and-remainder insn,
4878 keeping the quotient alone. */
4879 quotient = gen_reg_rtx (compute_mode);
4880 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4881 op0, op1,
4882 quotient, NULL_RTX, unsignedp))
4884 quotient = 0;
4885 if (! rem_flag)
4886 /* Still no luck. If we are not computing the remainder,
4887 use a library call for the quotient. */
4888 quotient = sign_expand_binop (compute_mode,
4889 udiv_optab, sdiv_optab,
4890 op0, op1, target,
4891 unsignedp, OPTAB_LIB_WIDEN);
4896 if (rem_flag)
4898 if (target && GET_MODE (target) != compute_mode)
4899 target = 0;
4901 if (quotient == 0)
4903 /* No divide instruction either. Use library for remainder. */
4904 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4905 op0, op1, target,
4906 unsignedp, OPTAB_LIB_WIDEN);
4907 /* No remainder function. Try a quotient-and-remainder
4908 function, keeping the remainder. */
4909 if (!remainder)
4911 remainder = gen_reg_rtx (compute_mode);
4912 if (!expand_twoval_binop_libfunc
4913 (unsignedp ? udivmod_optab : sdivmod_optab,
4914 op0, op1,
4915 NULL_RTX, remainder,
4916 unsignedp ? UMOD : MOD))
4917 remainder = NULL_RTX;
4920 else
4922 /* We divided. Now finish doing X - Y * (X / Y). */
4923 remainder = expand_mult (compute_mode, quotient, op1,
4924 NULL_RTX, unsignedp);
4925 remainder = expand_binop (compute_mode, sub_optab, op0,
4926 remainder, target, unsignedp,
4927 OPTAB_LIB_WIDEN);
4931 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4934 /* Return a tree node with data type TYPE, describing the value of X.
4935 Usually this is an VAR_DECL, if there is no obvious better choice.
4936 X may be an expression, however we only support those expressions
4937 generated by loop.c. */
4939 tree
4940 make_tree (tree type, rtx x)
4942 tree t;
4944 switch (GET_CODE (x))
4946 case CONST_INT:
4948 HOST_WIDE_INT hi = 0;
4950 if (INTVAL (x) < 0
4951 && !(TYPE_UNSIGNED (type)
4952 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4953 < HOST_BITS_PER_WIDE_INT)))
4954 hi = -1;
4956 t = build_int_cst_wide (type, INTVAL (x), hi);
4958 return t;
4961 case CONST_DOUBLE:
4962 if (GET_MODE (x) == VOIDmode)
4963 t = build_int_cst_wide (type,
4964 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4965 else
4967 REAL_VALUE_TYPE d;
4969 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4970 t = build_real (type, d);
4973 return t;
4975 case CONST_VECTOR:
4977 int units = CONST_VECTOR_NUNITS (x);
4978 tree itype = TREE_TYPE (type);
4979 tree t = NULL_TREE;
4980 int i;
4983 /* Build a tree with vector elements. */
4984 for (i = units - 1; i >= 0; --i)
4986 rtx elt = CONST_VECTOR_ELT (x, i);
4987 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
4990 return build_vector (type, t);
4993 case PLUS:
4994 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4995 make_tree (type, XEXP (x, 1)));
4997 case MINUS:
4998 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4999 make_tree (type, XEXP (x, 1)));
5001 case NEG:
5002 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5004 case MULT:
5005 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5006 make_tree (type, XEXP (x, 1)));
5008 case ASHIFT:
5009 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5010 make_tree (type, XEXP (x, 1)));
5012 case LSHIFTRT:
5013 t = unsigned_type_for (type);
5014 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5015 make_tree (t, XEXP (x, 0)),
5016 make_tree (type, XEXP (x, 1))));
5018 case ASHIFTRT:
5019 t = signed_type_for (type);
5020 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5021 make_tree (t, XEXP (x, 0)),
5022 make_tree (type, XEXP (x, 1))));
5024 case DIV:
5025 if (TREE_CODE (type) != REAL_TYPE)
5026 t = signed_type_for (type);
5027 else
5028 t = type;
5030 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5031 make_tree (t, XEXP (x, 0)),
5032 make_tree (t, XEXP (x, 1))));
5033 case UDIV:
5034 t = unsigned_type_for (type);
5035 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5036 make_tree (t, XEXP (x, 0)),
5037 make_tree (t, XEXP (x, 1))));
5039 case SIGN_EXTEND:
5040 case ZERO_EXTEND:
5041 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5042 GET_CODE (x) == ZERO_EXTEND);
5043 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5045 case CONST:
5046 return make_tree (type, XEXP (x, 0));
5048 case SYMBOL_REF:
5049 t = SYMBOL_REF_DECL (x);
5050 if (t)
5051 return fold_convert (type, build_fold_addr_expr (t));
5052 /* else fall through. */
5054 default:
5055 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5057 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5058 address mode to pointer mode. */
5059 if (POINTER_TYPE_P (type))
5060 x = convert_memory_address_addr_space
5061 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5063 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5064 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5065 t->decl_with_rtl.rtl = x;
5067 return t;
5071 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5072 and returning TARGET.
5074 If TARGET is 0, a pseudo-register or constant is returned. */
5077 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5079 rtx tem = 0;
5081 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5082 tem = simplify_binary_operation (AND, mode, op0, op1);
5083 if (tem == 0)
5084 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5086 if (target == 0)
5087 target = tem;
5088 else if (tem != target)
5089 emit_move_insn (target, tem);
5090 return target;
5093 /* Helper function for emit_store_flag. */
5094 static rtx
5095 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5096 enum machine_mode mode, enum machine_mode compare_mode,
5097 int unsignedp, rtx x, rtx y, int normalizep,
5098 enum machine_mode target_mode)
5100 rtx op0, last, comparison, subtarget, pattern;
5101 enum machine_mode result_mode = insn_data[(int) icode].operand[0].mode;
5103 last = get_last_insn ();
5104 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5105 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5106 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5107 if (!x || !y
5108 || !insn_data[icode].operand[2].predicate
5109 (x, insn_data[icode].operand[2].mode)
5110 || !insn_data[icode].operand[3].predicate
5111 (y, insn_data[icode].operand[3].mode)
5112 || !insn_data[icode].operand[1].predicate (comparison, VOIDmode))
5114 delete_insns_since (last);
5115 return NULL_RTX;
5118 if (target_mode == VOIDmode)
5119 target_mode = result_mode;
5120 if (!target)
5121 target = gen_reg_rtx (target_mode);
5123 if (optimize
5124 || !(insn_data[(int) icode].operand[0].predicate (target, result_mode)))
5125 subtarget = gen_reg_rtx (result_mode);
5126 else
5127 subtarget = target;
5129 pattern = GEN_FCN (icode) (subtarget, comparison, x, y);
5130 if (!pattern)
5131 return NULL_RTX;
5132 emit_insn (pattern);
5134 /* If we are converting to a wider mode, first convert to
5135 TARGET_MODE, then normalize. This produces better combining
5136 opportunities on machines that have a SIGN_EXTRACT when we are
5137 testing a single bit. This mostly benefits the 68k.
5139 If STORE_FLAG_VALUE does not have the sign bit set when
5140 interpreted in MODE, we can do this conversion as unsigned, which
5141 is usually more efficient. */
5142 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5144 convert_move (target, subtarget,
5145 (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT)
5146 && 0 == (STORE_FLAG_VALUE
5147 & ((HOST_WIDE_INT) 1
5148 << (GET_MODE_BITSIZE (result_mode) -1))));
5149 op0 = target;
5150 result_mode = target_mode;
5152 else
5153 op0 = subtarget;
5155 /* If we want to keep subexpressions around, don't reuse our last
5156 target. */
5157 if (optimize)
5158 subtarget = 0;
5160 /* Now normalize to the proper value in MODE. Sometimes we don't
5161 have to do anything. */
5162 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5164 /* STORE_FLAG_VALUE might be the most negative number, so write
5165 the comparison this way to avoid a compiler-time warning. */
5166 else if (- normalizep == STORE_FLAG_VALUE)
5167 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5169 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5170 it hard to use a value of just the sign bit due to ANSI integer
5171 constant typing rules. */
5172 else if (GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
5173 && (STORE_FLAG_VALUE
5174 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (result_mode) - 1))))
5175 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5176 size_int (GET_MODE_BITSIZE (result_mode) - 1), subtarget,
5177 normalizep == 1);
5178 else
5180 gcc_assert (STORE_FLAG_VALUE & 1);
5182 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5183 if (normalizep == -1)
5184 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5187 /* If we were converting to a smaller mode, do the conversion now. */
5188 if (target_mode != result_mode)
5190 convert_move (target, op0, 0);
5191 return target;
5193 else
5194 return op0;
5198 /* A subroutine of emit_store_flag only including "tricks" that do not
5199 need a recursive call. These are kept separate to avoid infinite
5200 loops. */
5202 static rtx
5203 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5204 enum machine_mode mode, int unsignedp, int normalizep,
5205 enum machine_mode target_mode)
5207 rtx subtarget;
5208 enum insn_code icode;
5209 enum machine_mode compare_mode;
5210 enum mode_class mclass;
5211 enum rtx_code scode;
5212 rtx tem;
5214 if (unsignedp)
5215 code = unsigned_condition (code);
5216 scode = swap_condition (code);
5218 /* If one operand is constant, make it the second one. Only do this
5219 if the other operand is not constant as well. */
5221 if (swap_commutative_operands_p (op0, op1))
5223 tem = op0;
5224 op0 = op1;
5225 op1 = tem;
5226 code = swap_condition (code);
5229 if (mode == VOIDmode)
5230 mode = GET_MODE (op0);
5232 /* For some comparisons with 1 and -1, we can convert this to
5233 comparisons with zero. This will often produce more opportunities for
5234 store-flag insns. */
5236 switch (code)
5238 case LT:
5239 if (op1 == const1_rtx)
5240 op1 = const0_rtx, code = LE;
5241 break;
5242 case LE:
5243 if (op1 == constm1_rtx)
5244 op1 = const0_rtx, code = LT;
5245 break;
5246 case GE:
5247 if (op1 == const1_rtx)
5248 op1 = const0_rtx, code = GT;
5249 break;
5250 case GT:
5251 if (op1 == constm1_rtx)
5252 op1 = const0_rtx, code = GE;
5253 break;
5254 case GEU:
5255 if (op1 == const1_rtx)
5256 op1 = const0_rtx, code = NE;
5257 break;
5258 case LTU:
5259 if (op1 == const1_rtx)
5260 op1 = const0_rtx, code = EQ;
5261 break;
5262 default:
5263 break;
5266 /* If we are comparing a double-word integer with zero or -1, we can
5267 convert the comparison into one involving a single word. */
5268 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5269 && GET_MODE_CLASS (mode) == MODE_INT
5270 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5272 if ((code == EQ || code == NE)
5273 && (op1 == const0_rtx || op1 == constm1_rtx))
5275 rtx op00, op01;
5277 /* Do a logical OR or AND of the two words and compare the
5278 result. */
5279 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5280 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5281 tem = expand_binop (word_mode,
5282 op1 == const0_rtx ? ior_optab : and_optab,
5283 op00, op01, NULL_RTX, unsignedp,
5284 OPTAB_DIRECT);
5286 if (tem != 0)
5287 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5288 unsignedp, normalizep);
5290 else if ((code == LT || code == GE) && op1 == const0_rtx)
5292 rtx op0h;
5294 /* If testing the sign bit, can just test on high word. */
5295 op0h = simplify_gen_subreg (word_mode, op0, mode,
5296 subreg_highpart_offset (word_mode,
5297 mode));
5298 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5299 unsignedp, normalizep);
5301 else
5302 tem = NULL_RTX;
5304 if (tem)
5306 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5307 return tem;
5308 if (!target)
5309 target = gen_reg_rtx (target_mode);
5311 convert_move (target, tem,
5312 0 == ((normalizep ? normalizep : STORE_FLAG_VALUE)
5313 & ((HOST_WIDE_INT) 1
5314 << (GET_MODE_BITSIZE (word_mode) -1))));
5315 return target;
5319 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5320 complement of A (for GE) and shifting the sign bit to the low bit. */
5321 if (op1 == const0_rtx && (code == LT || code == GE)
5322 && GET_MODE_CLASS (mode) == MODE_INT
5323 && (normalizep || STORE_FLAG_VALUE == 1
5324 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5325 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5326 == ((unsigned HOST_WIDE_INT) 1
5327 << (GET_MODE_BITSIZE (mode) - 1))))))
5329 subtarget = target;
5331 if (!target)
5332 target_mode = mode;
5334 /* If the result is to be wider than OP0, it is best to convert it
5335 first. If it is to be narrower, it is *incorrect* to convert it
5336 first. */
5337 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5339 op0 = convert_modes (target_mode, mode, op0, 0);
5340 mode = target_mode;
5343 if (target_mode != mode)
5344 subtarget = 0;
5346 if (code == GE)
5347 op0 = expand_unop (mode, one_cmpl_optab, op0,
5348 ((STORE_FLAG_VALUE == 1 || normalizep)
5349 ? 0 : subtarget), 0);
5351 if (STORE_FLAG_VALUE == 1 || normalizep)
5352 /* If we are supposed to produce a 0/1 value, we want to do
5353 a logical shift from the sign bit to the low-order bit; for
5354 a -1/0 value, we do an arithmetic shift. */
5355 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5356 size_int (GET_MODE_BITSIZE (mode) - 1),
5357 subtarget, normalizep != -1);
5359 if (mode != target_mode)
5360 op0 = convert_modes (target_mode, mode, op0, 0);
5362 return op0;
5365 mclass = GET_MODE_CLASS (mode);
5366 for (compare_mode = mode; compare_mode != VOIDmode;
5367 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5369 enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5370 icode = optab_handler (cstore_optab, optab_mode)->insn_code;
5371 if (icode != CODE_FOR_nothing)
5373 do_pending_stack_adjust ();
5374 tem = emit_cstore (target, icode, code, mode, compare_mode,
5375 unsignedp, op0, op1, normalizep, target_mode);
5376 if (tem)
5377 return tem;
5379 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5381 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5382 unsignedp, op1, op0, normalizep, target_mode);
5383 if (tem)
5384 return tem;
5386 break;
5390 return 0;
5393 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5394 and storing in TARGET. Normally return TARGET.
5395 Return 0 if that cannot be done.
5397 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5398 it is VOIDmode, they cannot both be CONST_INT.
5400 UNSIGNEDP is for the case where we have to widen the operands
5401 to perform the operation. It says to use zero-extension.
5403 NORMALIZEP is 1 if we should convert the result to be either zero
5404 or one. Normalize is -1 if we should convert the result to be
5405 either zero or -1. If NORMALIZEP is zero, the result will be left
5406 "raw" out of the scc insn. */
5409 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5410 enum machine_mode mode, int unsignedp, int normalizep)
5412 enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5413 enum rtx_code rcode;
5414 rtx subtarget;
5415 rtx tem, last, trueval;
5417 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5418 target_mode);
5419 if (tem)
5420 return tem;
5422 /* If we reached here, we can't do this with a scc insn, however there
5423 are some comparisons that can be done in other ways. Don't do any
5424 of these cases if branches are very cheap. */
5425 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5426 return 0;
5428 /* See what we need to return. We can only return a 1, -1, or the
5429 sign bit. */
5431 if (normalizep == 0)
5433 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5434 normalizep = STORE_FLAG_VALUE;
5436 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5437 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5438 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5440 else
5441 return 0;
5444 last = get_last_insn ();
5446 /* If optimizing, use different pseudo registers for each insn, instead
5447 of reusing the same pseudo. This leads to better CSE, but slows
5448 down the compiler, since there are more pseudos */
5449 subtarget = (!optimize
5450 && (target_mode == mode)) ? target : NULL_RTX;
5451 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5453 /* For floating-point comparisons, try the reverse comparison or try
5454 changing the "orderedness" of the comparison. */
5455 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5457 enum rtx_code first_code;
5458 bool and_them;
5460 rcode = reverse_condition_maybe_unordered (code);
5461 if (can_compare_p (rcode, mode, ccp_store_flag)
5462 && (code == ORDERED || code == UNORDERED
5463 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5464 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5466 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5467 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5469 /* For the reverse comparison, use either an addition or a XOR. */
5470 if (want_add
5471 && rtx_cost (GEN_INT (normalizep), PLUS,
5472 optimize_insn_for_speed_p ()) == 0)
5474 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5475 STORE_FLAG_VALUE, target_mode);
5476 if (tem)
5477 return expand_binop (target_mode, add_optab, tem,
5478 GEN_INT (normalizep),
5479 target, 0, OPTAB_WIDEN);
5481 else if (!want_add
5482 && rtx_cost (trueval, XOR,
5483 optimize_insn_for_speed_p ()) == 0)
5485 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5486 normalizep, target_mode);
5487 if (tem)
5488 return expand_binop (target_mode, xor_optab, tem, trueval,
5489 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5493 delete_insns_since (last);
5495 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5496 if (code == ORDERED || code == UNORDERED)
5497 return 0;
5499 and_them = split_comparison (code, mode, &first_code, &code);
5501 /* If there are no NaNs, the first comparison should always fall through.
5502 Effectively change the comparison to the other one. */
5503 if (!HONOR_NANS (mode))
5505 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5506 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5507 target_mode);
5510 #ifdef HAVE_conditional_move
5511 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5512 conditional move. */
5513 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5514 normalizep, target_mode);
5515 if (tem == 0)
5516 return 0;
5518 if (and_them)
5519 tem = emit_conditional_move (target, code, op0, op1, mode,
5520 tem, const0_rtx, GET_MODE (tem), 0);
5521 else
5522 tem = emit_conditional_move (target, code, op0, op1, mode,
5523 trueval, tem, GET_MODE (tem), 0);
5525 if (tem == 0)
5526 delete_insns_since (last);
5527 return tem;
5528 #else
5529 return 0;
5530 #endif
5533 /* The remaining tricks only apply to integer comparisons. */
5535 if (GET_MODE_CLASS (mode) != MODE_INT)
5536 return 0;
5538 /* If this is an equality comparison of integers, we can try to exclusive-or
5539 (or subtract) the two operands and use a recursive call to try the
5540 comparison with zero. Don't do any of these cases if branches are
5541 very cheap. */
5543 if ((code == EQ || code == NE) && op1 != const0_rtx)
5545 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5546 OPTAB_WIDEN);
5548 if (tem == 0)
5549 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5550 OPTAB_WIDEN);
5551 if (tem != 0)
5552 tem = emit_store_flag (target, code, tem, const0_rtx,
5553 mode, unsignedp, normalizep);
5554 if (tem != 0)
5555 return tem;
5557 delete_insns_since (last);
5560 /* For integer comparisons, try the reverse comparison. However, for
5561 small X and if we'd have anyway to extend, implementing "X != 0"
5562 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5563 rcode = reverse_condition (code);
5564 if (can_compare_p (rcode, mode, ccp_store_flag)
5565 && ! (optab_handler (cstore_optab, mode)->insn_code == CODE_FOR_nothing
5566 && code == NE
5567 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5568 && op1 == const0_rtx))
5570 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5571 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5573 /* Again, for the reverse comparison, use either an addition or a XOR. */
5574 if (want_add
5575 && rtx_cost (GEN_INT (normalizep), PLUS,
5576 optimize_insn_for_speed_p ()) == 0)
5578 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5579 STORE_FLAG_VALUE, target_mode);
5580 if (tem != 0)
5581 tem = expand_binop (target_mode, add_optab, tem,
5582 GEN_INT (normalizep), target, 0, OPTAB_WIDEN);
5584 else if (!want_add
5585 && rtx_cost (trueval, XOR,
5586 optimize_insn_for_speed_p ()) == 0)
5588 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5589 normalizep, target_mode);
5590 if (tem != 0)
5591 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5592 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5595 if (tem != 0)
5596 return tem;
5597 delete_insns_since (last);
5600 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5601 the constant zero. Reject all other comparisons at this point. Only
5602 do LE and GT if branches are expensive since they are expensive on
5603 2-operand machines. */
5605 if (op1 != const0_rtx
5606 || (code != EQ && code != NE
5607 && (BRANCH_COST (optimize_insn_for_speed_p (),
5608 false) <= 1 || (code != LE && code != GT))))
5609 return 0;
5611 /* Try to put the result of the comparison in the sign bit. Assume we can't
5612 do the necessary operation below. */
5614 tem = 0;
5616 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5617 the sign bit set. */
5619 if (code == LE)
5621 /* This is destructive, so SUBTARGET can't be OP0. */
5622 if (rtx_equal_p (subtarget, op0))
5623 subtarget = 0;
5625 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5626 OPTAB_WIDEN);
5627 if (tem)
5628 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5629 OPTAB_WIDEN);
5632 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5633 number of bits in the mode of OP0, minus one. */
5635 if (code == GT)
5637 if (rtx_equal_p (subtarget, op0))
5638 subtarget = 0;
5640 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5641 size_int (GET_MODE_BITSIZE (mode) - 1),
5642 subtarget, 0);
5643 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5644 OPTAB_WIDEN);
5647 if (code == EQ || code == NE)
5649 /* For EQ or NE, one way to do the comparison is to apply an operation
5650 that converts the operand into a positive number if it is nonzero
5651 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5652 for NE we negate. This puts the result in the sign bit. Then we
5653 normalize with a shift, if needed.
5655 Two operations that can do the above actions are ABS and FFS, so try
5656 them. If that doesn't work, and MODE is smaller than a full word,
5657 we can use zero-extension to the wider mode (an unsigned conversion)
5658 as the operation. */
5660 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5661 that is compensated by the subsequent overflow when subtracting
5662 one / negating. */
5664 if (optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)
5665 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5666 else if (optab_handler (ffs_optab, mode)->insn_code != CODE_FOR_nothing)
5667 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5668 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5670 tem = convert_modes (word_mode, mode, op0, 1);
5671 mode = word_mode;
5674 if (tem != 0)
5676 if (code == EQ)
5677 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5678 0, OPTAB_WIDEN);
5679 else
5680 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5683 /* If we couldn't do it that way, for NE we can "or" the two's complement
5684 of the value with itself. For EQ, we take the one's complement of
5685 that "or", which is an extra insn, so we only handle EQ if branches
5686 are expensive. */
5688 if (tem == 0
5689 && (code == NE
5690 || BRANCH_COST (optimize_insn_for_speed_p (),
5691 false) > 1))
5693 if (rtx_equal_p (subtarget, op0))
5694 subtarget = 0;
5696 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5697 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5698 OPTAB_WIDEN);
5700 if (tem && code == EQ)
5701 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5705 if (tem && normalizep)
5706 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5707 size_int (GET_MODE_BITSIZE (mode) - 1),
5708 subtarget, normalizep == 1);
5710 if (tem)
5712 if (!target)
5714 else if (GET_MODE (tem) != target_mode)
5716 convert_move (target, tem, 0);
5717 tem = target;
5719 else if (!subtarget)
5721 emit_move_insn (target, tem);
5722 tem = target;
5725 else
5726 delete_insns_since (last);
5728 return tem;
5731 /* Like emit_store_flag, but always succeeds. */
5734 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5735 enum machine_mode mode, int unsignedp, int normalizep)
5737 rtx tem, label;
5738 rtx trueval, falseval;
5740 /* First see if emit_store_flag can do the job. */
5741 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5742 if (tem != 0)
5743 return tem;
5745 if (!target)
5746 target = gen_reg_rtx (word_mode);
5748 /* If this failed, we have to do this with set/compare/jump/set code.
5749 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5750 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5751 if (code == NE
5752 && GET_MODE_CLASS (mode) == MODE_INT
5753 && REG_P (target)
5754 && op0 == target
5755 && op1 == const0_rtx)
5757 label = gen_label_rtx ();
5758 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5759 mode, NULL_RTX, NULL_RTX, label, -1);
5760 emit_move_insn (target, trueval);
5761 emit_label (label);
5762 return target;
5765 if (!REG_P (target)
5766 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5767 target = gen_reg_rtx (GET_MODE (target));
5769 /* Jump in the right direction if the target cannot implement CODE
5770 but can jump on its reverse condition. */
5771 falseval = const0_rtx;
5772 if (! can_compare_p (code, mode, ccp_jump)
5773 && (! FLOAT_MODE_P (mode)
5774 || code == ORDERED || code == UNORDERED
5775 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5776 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5778 enum rtx_code rcode;
5779 if (FLOAT_MODE_P (mode))
5780 rcode = reverse_condition_maybe_unordered (code);
5781 else
5782 rcode = reverse_condition (code);
5784 /* Canonicalize to UNORDERED for the libcall. */
5785 if (can_compare_p (rcode, mode, ccp_jump)
5786 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5788 falseval = trueval;
5789 trueval = const0_rtx;
5790 code = rcode;
5794 emit_move_insn (target, trueval);
5795 label = gen_label_rtx ();
5796 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5797 NULL_RTX, label, -1);
5799 emit_move_insn (target, falseval);
5800 emit_label (label);
5802 return target;
5805 /* Perform possibly multi-word comparison and conditional jump to LABEL
5806 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5807 now a thin wrapper around do_compare_rtx_and_jump. */
5809 static void
5810 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5811 rtx label)
5813 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5814 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5815 NULL_RTX, NULL_RTX, label, -1);