rephrase text
[official-gcc.git] / gcc / cselib.c
blobf46c5ecb29b23295225c979ebabc275fd40512e0
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "tree-pass.h"
42 #include "cselib.h"
43 #include "params.h"
44 #include "alloc-pool.h"
45 #include "target.h"
47 static bool cselib_record_memory;
48 static bool cselib_preserve_constants;
49 static int entry_and_rtx_equal_p (const void *, const void *);
50 static hashval_t get_value_hash (const void *);
51 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
52 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
53 static void unchain_one_value (cselib_val *);
54 static void unchain_one_elt_list (struct elt_list **);
55 static void unchain_one_elt_loc_list (struct elt_loc_list **);
56 static int discard_useless_locs (void **, void *);
57 static int discard_useless_values (void **, void *);
58 static void remove_useless_values (void);
59 static unsigned int cselib_hash_rtx (rtx, int);
60 static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
61 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
62 static cselib_val *cselib_lookup_mem (rtx, int);
63 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
64 static void cselib_invalidate_mem (rtx);
65 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
66 static void cselib_record_sets (rtx);
68 struct expand_value_data
70 bitmap regs_active;
71 cselib_expand_callback callback;
72 void *callback_arg;
73 bool dummy;
76 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
78 /* There are three ways in which cselib can look up an rtx:
79 - for a REG, the reg_values table (which is indexed by regno) is used
80 - for a MEM, we recursively look up its address and then follow the
81 addr_list of that value
82 - for everything else, we compute a hash value and go through the hash
83 table. Since different rtx's can still have the same hash value,
84 this involves walking the table entries for a given value and comparing
85 the locations of the entries with the rtx we are looking up. */
87 /* A table that enables us to look up elts by their value. */
88 static htab_t cselib_hash_table;
90 /* This is a global so we don't have to pass this through every function.
91 It is used in new_elt_loc_list to set SETTING_INSN. */
92 static rtx cselib_current_insn;
94 /* The unique id that the next create value will take. */
95 static unsigned int next_uid;
97 /* The number of registers we had when the varrays were last resized. */
98 static unsigned int cselib_nregs;
100 /* Count values without known locations, or with only locations that
101 wouldn't have been known except for debug insns. Whenever this
102 grows too big, we remove these useless values from the table.
104 Counting values with only debug values is a bit tricky. We don't
105 want to increment n_useless_values when we create a value for a
106 debug insn, for this would get n_useless_values out of sync, but we
107 want increment it if all locs in the list that were ever referenced
108 in nondebug insns are removed from the list.
110 In the general case, once we do that, we'd have to stop accepting
111 nondebug expressions in the loc list, to avoid having two values
112 equivalent that, without debug insns, would have been made into
113 separate values. However, because debug insns never introduce
114 equivalences themselves (no assignments), the only means for
115 growing loc lists is through nondebug assignments. If the locs
116 also happen to be referenced in debug insns, it will work just fine.
118 A consequence of this is that there's at most one debug-only loc in
119 each loc list. If we keep it in the first entry, testing whether
120 we have a debug-only loc list takes O(1).
122 Furthermore, since any additional entry in a loc list containing a
123 debug loc would have to come from an assignment (nondebug) that
124 references both the initial debug loc and the newly-equivalent loc,
125 the initial debug loc would be promoted to a nondebug loc, and the
126 loc list would not contain debug locs any more.
128 So the only case we have to be careful with in order to keep
129 n_useless_values in sync between debug and nondebug compilations is
130 to avoid incrementing n_useless_values when removing the single loc
131 from a value that turns out to not appear outside debug values. We
132 increment n_useless_debug_values instead, and leave such values
133 alone until, for other reasons, we garbage-collect useless
134 values. */
135 static int n_useless_values;
136 static int n_useless_debug_values;
138 /* Count values whose locs have been taken exclusively from debug
139 insns for the entire life of the value. */
140 static int n_debug_values;
142 /* Number of useless values before we remove them from the hash table. */
143 #define MAX_USELESS_VALUES 32
145 /* This table maps from register number to values. It does not
146 contain pointers to cselib_val structures, but rather elt_lists.
147 The purpose is to be able to refer to the same register in
148 different modes. The first element of the list defines the mode in
149 which the register was set; if the mode is unknown or the value is
150 no longer valid in that mode, ELT will be NULL for the first
151 element. */
152 static struct elt_list **reg_values;
153 static unsigned int reg_values_size;
154 #define REG_VALUES(i) reg_values[i]
156 /* The largest number of hard regs used by any entry added to the
157 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
158 static unsigned int max_value_regs;
160 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
161 in cselib_clear_table() for fast emptying. */
162 static unsigned int *used_regs;
163 static unsigned int n_used_regs;
165 /* We pass this to cselib_invalidate_mem to invalidate all of
166 memory for a non-const call instruction. */
167 static GTY(()) rtx callmem;
169 /* Set by discard_useless_locs if it deleted the last location of any
170 value. */
171 static int values_became_useless;
173 /* Used as stop element of the containing_mem list so we can check
174 presence in the list by checking the next pointer. */
175 static cselib_val dummy_val;
177 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
178 that is constant through the whole function and should never be
179 eliminated. */
180 static cselib_val *cfa_base_preserved_val;
182 /* Used to list all values that contain memory reference.
183 May or may not contain the useless values - the list is compacted
184 each time memory is invalidated. */
185 static cselib_val *first_containing_mem = &dummy_val;
186 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
188 /* If nonnull, cselib will call this function before freeing useless
189 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
190 void (*cselib_discard_hook) (cselib_val *);
192 /* If nonnull, cselib will call this function before recording sets or
193 even clobbering outputs of INSN. All the recorded sets will be
194 represented in the array sets[n_sets]. new_val_min can be used to
195 tell whether values present in sets are introduced by this
196 instruction. */
197 void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
198 int n_sets);
200 #define PRESERVED_VALUE_P(RTX) \
201 (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
205 /* Allocate a struct elt_list and fill in its two elements with the
206 arguments. */
208 static inline struct elt_list *
209 new_elt_list (struct elt_list *next, cselib_val *elt)
211 struct elt_list *el;
212 el = (struct elt_list *) pool_alloc (elt_list_pool);
213 el->next = next;
214 el->elt = elt;
215 return el;
218 /* Allocate a struct elt_loc_list and fill in its two elements with the
219 arguments. */
221 static inline struct elt_loc_list *
222 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
224 struct elt_loc_list *el;
225 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
226 el->next = next;
227 el->loc = loc;
228 el->setting_insn = cselib_current_insn;
229 gcc_assert (!next || !next->setting_insn
230 || !DEBUG_INSN_P (next->setting_insn));
232 /* If we're creating the first loc in a debug insn context, we've
233 just created a debug value. Count it. */
234 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
235 n_debug_values++;
237 return el;
240 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
241 originating from a debug insn, maintaining the debug values
242 count. */
244 static inline void
245 promote_debug_loc (struct elt_loc_list *l)
247 if (l->setting_insn && DEBUG_INSN_P (l->setting_insn)
248 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
250 n_debug_values--;
251 l->setting_insn = cselib_current_insn;
252 gcc_assert (!l->next);
256 /* The elt_list at *PL is no longer needed. Unchain it and free its
257 storage. */
259 static inline void
260 unchain_one_elt_list (struct elt_list **pl)
262 struct elt_list *l = *pl;
264 *pl = l->next;
265 pool_free (elt_list_pool, l);
268 /* Likewise for elt_loc_lists. */
270 static void
271 unchain_one_elt_loc_list (struct elt_loc_list **pl)
273 struct elt_loc_list *l = *pl;
275 *pl = l->next;
276 pool_free (elt_loc_list_pool, l);
279 /* Likewise for cselib_vals. This also frees the addr_list associated with
280 V. */
282 static void
283 unchain_one_value (cselib_val *v)
285 while (v->addr_list)
286 unchain_one_elt_list (&v->addr_list);
288 pool_free (cselib_val_pool, v);
291 /* Remove all entries from the hash table. Also used during
292 initialization. */
294 void
295 cselib_clear_table (void)
297 cselib_reset_table (1);
300 /* Remove from hash table all VALUEs except constants. */
302 static int
303 preserve_only_constants (void **x, void *info ATTRIBUTE_UNUSED)
305 cselib_val *v = (cselib_val *)*x;
307 if (v->locs != NULL
308 && v->locs->next == NULL)
310 if (CONSTANT_P (v->locs->loc)
311 && (GET_CODE (v->locs->loc) != CONST
312 || !references_value_p (v->locs->loc, 0)))
313 return 1;
314 if (cfa_base_preserved_val)
316 if (v == cfa_base_preserved_val)
317 return 1;
318 if (GET_CODE (v->locs->loc) == PLUS
319 && CONST_INT_P (XEXP (v->locs->loc, 1))
320 && XEXP (v->locs->loc, 0) == cfa_base_preserved_val->val_rtx)
321 return 1;
325 htab_clear_slot (cselib_hash_table, x);
326 return 1;
329 /* Remove all entries from the hash table, arranging for the next
330 value to be numbered NUM. */
332 void
333 cselib_reset_table (unsigned int num)
335 unsigned int i;
337 max_value_regs = 0;
339 if (cfa_base_preserved_val)
341 unsigned int regno = REGNO (cfa_base_preserved_val->locs->loc);
342 unsigned int new_used_regs = 0;
343 for (i = 0; i < n_used_regs; i++)
344 if (used_regs[i] == regno)
346 new_used_regs = 1;
347 continue;
349 else
350 REG_VALUES (used_regs[i]) = 0;
351 gcc_assert (new_used_regs == 1);
352 n_used_regs = new_used_regs;
353 used_regs[0] = regno;
354 max_value_regs
355 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
357 else
359 for (i = 0; i < n_used_regs; i++)
360 REG_VALUES (used_regs[i]) = 0;
361 n_used_regs = 0;
364 if (cselib_preserve_constants)
365 htab_traverse (cselib_hash_table, preserve_only_constants, NULL);
366 else
367 htab_empty (cselib_hash_table);
369 n_useless_values = 0;
370 n_useless_debug_values = 0;
371 n_debug_values = 0;
373 next_uid = num;
375 first_containing_mem = &dummy_val;
378 /* Return the number of the next value that will be generated. */
380 unsigned int
381 cselib_get_next_uid (void)
383 return next_uid;
386 /* The equality test for our hash table. The first argument ENTRY is a table
387 element (i.e. a cselib_val), while the second arg X is an rtx. We know
388 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
389 CONST of an appropriate mode. */
391 static int
392 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
394 struct elt_loc_list *l;
395 const cselib_val *const v = (const cselib_val *) entry;
396 rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
397 enum machine_mode mode = GET_MODE (x);
399 gcc_assert (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
400 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
402 if (mode != GET_MODE (v->val_rtx))
403 return 0;
405 /* Unwrap X if necessary. */
406 if (GET_CODE (x) == CONST
407 && (CONST_INT_P (XEXP (x, 0))
408 || GET_CODE (XEXP (x, 0)) == CONST_FIXED
409 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
410 x = XEXP (x, 0);
412 /* We don't guarantee that distinct rtx's have different hash values,
413 so we need to do a comparison. */
414 for (l = v->locs; l; l = l->next)
415 if (rtx_equal_for_cselib_p (l->loc, x))
417 promote_debug_loc (l);
418 return 1;
421 return 0;
424 /* The hash function for our hash table. The value is always computed with
425 cselib_hash_rtx when adding an element; this function just extracts the
426 hash value from a cselib_val structure. */
428 static hashval_t
429 get_value_hash (const void *entry)
431 const cselib_val *const v = (const cselib_val *) entry;
432 return v->hash;
435 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
436 only return true for values which point to a cselib_val whose value
437 element has been set to zero, which implies the cselib_val will be
438 removed. */
441 references_value_p (const_rtx x, int only_useless)
443 const enum rtx_code code = GET_CODE (x);
444 const char *fmt = GET_RTX_FORMAT (code);
445 int i, j;
447 if (GET_CODE (x) == VALUE
448 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
449 return 1;
451 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
453 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
454 return 1;
455 else if (fmt[i] == 'E')
456 for (j = 0; j < XVECLEN (x, i); j++)
457 if (references_value_p (XVECEXP (x, i, j), only_useless))
458 return 1;
461 return 0;
464 /* For all locations found in X, delete locations that reference useless
465 values (i.e. values without any location). Called through
466 htab_traverse. */
468 static int
469 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
471 cselib_val *v = (cselib_val *)*x;
472 struct elt_loc_list **p = &v->locs;
473 bool had_locs = v->locs != NULL;
474 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
476 while (*p)
478 if (references_value_p ((*p)->loc, 1))
479 unchain_one_elt_loc_list (p);
480 else
481 p = &(*p)->next;
484 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
486 if (setting_insn && DEBUG_INSN_P (setting_insn))
487 n_useless_debug_values++;
488 else
489 n_useless_values++;
490 values_became_useless = 1;
492 return 1;
495 /* If X is a value with no locations, remove it from the hashtable. */
497 static int
498 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
500 cselib_val *v = (cselib_val *)*x;
502 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
504 if (cselib_discard_hook)
505 cselib_discard_hook (v);
507 CSELIB_VAL_PTR (v->val_rtx) = NULL;
508 htab_clear_slot (cselib_hash_table, x);
509 unchain_one_value (v);
510 n_useless_values--;
513 return 1;
516 /* Clean out useless values (i.e. those which no longer have locations
517 associated with them) from the hash table. */
519 static void
520 remove_useless_values (void)
522 cselib_val **p, *v;
524 /* First pass: eliminate locations that reference the value. That in
525 turn can make more values useless. */
528 values_became_useless = 0;
529 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
531 while (values_became_useless);
533 /* Second pass: actually remove the values. */
535 p = &first_containing_mem;
536 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
537 if (v->locs)
539 *p = v;
540 p = &(*p)->next_containing_mem;
542 *p = &dummy_val;
544 n_useless_values += n_useless_debug_values;
545 n_debug_values -= n_useless_debug_values;
546 n_useless_debug_values = 0;
548 htab_traverse (cselib_hash_table, discard_useless_values, 0);
550 gcc_assert (!n_useless_values);
553 /* Arrange for a value to not be removed from the hash table even if
554 it becomes useless. */
556 void
557 cselib_preserve_value (cselib_val *v)
559 PRESERVED_VALUE_P (v->val_rtx) = 1;
562 /* Test whether a value is preserved. */
564 bool
565 cselib_preserved_value_p (cselib_val *v)
567 return PRESERVED_VALUE_P (v->val_rtx);
570 /* Arrange for a REG value to be assumed constant through the whole function,
571 never invalidated and preserved across cselib_reset_table calls. */
573 void
574 cselib_preserve_cfa_base_value (cselib_val *v)
576 if (cselib_preserve_constants
577 && v->locs
578 && REG_P (v->locs->loc))
579 cfa_base_preserved_val = v;
582 /* Clean all non-constant expressions in the hash table, but retain
583 their values. */
585 void
586 cselib_preserve_only_values (void)
588 int i;
590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
591 cselib_invalidate_regno (i, reg_raw_mode[i]);
593 cselib_invalidate_mem (callmem);
595 remove_useless_values ();
597 gcc_assert (first_containing_mem == &dummy_val);
600 /* Return the mode in which a register was last set. If X is not a
601 register, return its mode. If the mode in which the register was
602 set is not known, or the value was already clobbered, return
603 VOIDmode. */
605 enum machine_mode
606 cselib_reg_set_mode (const_rtx x)
608 if (!REG_P (x))
609 return GET_MODE (x);
611 if (REG_VALUES (REGNO (x)) == NULL
612 || REG_VALUES (REGNO (x))->elt == NULL)
613 return VOIDmode;
615 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
618 /* Return nonzero if we can prove that X and Y contain the same value, taking
619 our gathered information into account. */
622 rtx_equal_for_cselib_p (rtx x, rtx y)
624 enum rtx_code code;
625 const char *fmt;
626 int i;
628 if (REG_P (x) || MEM_P (x))
630 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
632 if (e)
633 x = e->val_rtx;
636 if (REG_P (y) || MEM_P (y))
638 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
640 if (e)
641 y = e->val_rtx;
644 if (x == y)
645 return 1;
647 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
648 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
650 if (GET_CODE (x) == VALUE)
652 cselib_val *e = CSELIB_VAL_PTR (x);
653 struct elt_loc_list *l;
655 for (l = e->locs; l; l = l->next)
657 rtx t = l->loc;
659 /* Avoid infinite recursion. */
660 if (REG_P (t) || MEM_P (t))
661 continue;
662 else if (rtx_equal_for_cselib_p (t, y))
663 return 1;
666 return 0;
669 if (GET_CODE (y) == VALUE)
671 cselib_val *e = CSELIB_VAL_PTR (y);
672 struct elt_loc_list *l;
674 for (l = e->locs; l; l = l->next)
676 rtx t = l->loc;
678 if (REG_P (t) || MEM_P (t))
679 continue;
680 else if (rtx_equal_for_cselib_p (x, t))
681 return 1;
684 return 0;
687 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
688 return 0;
690 /* These won't be handled correctly by the code below. */
691 switch (GET_CODE (x))
693 case CONST_DOUBLE:
694 case CONST_FIXED:
695 case DEBUG_EXPR:
696 return 0;
698 case LABEL_REF:
699 return XEXP (x, 0) == XEXP (y, 0);
701 default:
702 break;
705 code = GET_CODE (x);
706 fmt = GET_RTX_FORMAT (code);
708 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
710 int j;
712 switch (fmt[i])
714 case 'w':
715 if (XWINT (x, i) != XWINT (y, i))
716 return 0;
717 break;
719 case 'n':
720 case 'i':
721 if (XINT (x, i) != XINT (y, i))
722 return 0;
723 break;
725 case 'V':
726 case 'E':
727 /* Two vectors must have the same length. */
728 if (XVECLEN (x, i) != XVECLEN (y, i))
729 return 0;
731 /* And the corresponding elements must match. */
732 for (j = 0; j < XVECLEN (x, i); j++)
733 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
734 XVECEXP (y, i, j)))
735 return 0;
736 break;
738 case 'e':
739 if (i == 1
740 && targetm.commutative_p (x, UNKNOWN)
741 && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
742 && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
743 return 1;
744 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
745 return 0;
746 break;
748 case 'S':
749 case 's':
750 if (strcmp (XSTR (x, i), XSTR (y, i)))
751 return 0;
752 break;
754 case 'u':
755 /* These are just backpointers, so they don't matter. */
756 break;
758 case '0':
759 case 't':
760 break;
762 /* It is believed that rtx's at this level will never
763 contain anything but integers and other rtx's,
764 except for within LABEL_REFs and SYMBOL_REFs. */
765 default:
766 gcc_unreachable ();
769 return 1;
772 /* We need to pass down the mode of constants through the hash table
773 functions. For that purpose, wrap them in a CONST of the appropriate
774 mode. */
775 static rtx
776 wrap_constant (enum machine_mode mode, rtx x)
778 if (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
779 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
780 return x;
781 gcc_assert (mode != VOIDmode);
782 return gen_rtx_CONST (mode, x);
785 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
786 For registers and memory locations, we look up their cselib_val structure
787 and return its VALUE element.
788 Possible reasons for return 0 are: the object is volatile, or we couldn't
789 find a register or memory location in the table and CREATE is zero. If
790 CREATE is nonzero, table elts are created for regs and mem.
791 N.B. this hash function returns the same hash value for RTXes that
792 differ only in the order of operands, thus it is suitable for comparisons
793 that take commutativity into account.
794 If we wanted to also support associative rules, we'd have to use a different
795 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
796 We used to have a MODE argument for hashing for CONST_INTs, but that
797 didn't make sense, since it caused spurious hash differences between
798 (set (reg:SI 1) (const_int))
799 (plus:SI (reg:SI 2) (reg:SI 1))
801 (plus:SI (reg:SI 2) (const_int))
802 If the mode is important in any context, it must be checked specifically
803 in a comparison anyway, since relying on hash differences is unsafe. */
805 static unsigned int
806 cselib_hash_rtx (rtx x, int create)
808 cselib_val *e;
809 int i, j;
810 enum rtx_code code;
811 const char *fmt;
812 unsigned int hash = 0;
814 code = GET_CODE (x);
815 hash += (unsigned) code + (unsigned) GET_MODE (x);
817 switch (code)
819 case MEM:
820 case REG:
821 e = cselib_lookup (x, GET_MODE (x), create);
822 if (! e)
823 return 0;
825 return e->hash;
827 case DEBUG_EXPR:
828 hash += ((unsigned) DEBUG_EXPR << 7)
829 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
830 return hash ? hash : (unsigned int) DEBUG_EXPR;
832 case CONST_INT:
833 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
834 return hash ? hash : (unsigned int) CONST_INT;
836 case CONST_DOUBLE:
837 /* This is like the general case, except that it only counts
838 the integers representing the constant. */
839 hash += (unsigned) code + (unsigned) GET_MODE (x);
840 if (GET_MODE (x) != VOIDmode)
841 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
842 else
843 hash += ((unsigned) CONST_DOUBLE_LOW (x)
844 + (unsigned) CONST_DOUBLE_HIGH (x));
845 return hash ? hash : (unsigned int) CONST_DOUBLE;
847 case CONST_FIXED:
848 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
849 hash += fixed_hash (CONST_FIXED_VALUE (x));
850 return hash ? hash : (unsigned int) CONST_FIXED;
852 case CONST_VECTOR:
854 int units;
855 rtx elt;
857 units = CONST_VECTOR_NUNITS (x);
859 for (i = 0; i < units; ++i)
861 elt = CONST_VECTOR_ELT (x, i);
862 hash += cselib_hash_rtx (elt, 0);
865 return hash;
868 /* Assume there is only one rtx object for any given label. */
869 case LABEL_REF:
870 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
871 differences and differences between each stage's debugging dumps. */
872 hash += (((unsigned int) LABEL_REF << 7)
873 + CODE_LABEL_NUMBER (XEXP (x, 0)));
874 return hash ? hash : (unsigned int) LABEL_REF;
876 case SYMBOL_REF:
878 /* Don't hash on the symbol's address to avoid bootstrap differences.
879 Different hash values may cause expressions to be recorded in
880 different orders and thus different registers to be used in the
881 final assembler. This also avoids differences in the dump files
882 between various stages. */
883 unsigned int h = 0;
884 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
886 while (*p)
887 h += (h << 7) + *p++; /* ??? revisit */
889 hash += ((unsigned int) SYMBOL_REF << 7) + h;
890 return hash ? hash : (unsigned int) SYMBOL_REF;
893 case PRE_DEC:
894 case PRE_INC:
895 case POST_DEC:
896 case POST_INC:
897 case POST_MODIFY:
898 case PRE_MODIFY:
899 case PC:
900 case CC0:
901 case CALL:
902 case UNSPEC_VOLATILE:
903 return 0;
905 case ASM_OPERANDS:
906 if (MEM_VOLATILE_P (x))
907 return 0;
909 break;
911 default:
912 break;
915 i = GET_RTX_LENGTH (code) - 1;
916 fmt = GET_RTX_FORMAT (code);
917 for (; i >= 0; i--)
919 switch (fmt[i])
921 case 'e':
923 rtx tem = XEXP (x, i);
924 unsigned int tem_hash = cselib_hash_rtx (tem, create);
926 if (tem_hash == 0)
927 return 0;
929 hash += tem_hash;
931 break;
932 case 'E':
933 for (j = 0; j < XVECLEN (x, i); j++)
935 unsigned int tem_hash
936 = cselib_hash_rtx (XVECEXP (x, i, j), create);
938 if (tem_hash == 0)
939 return 0;
941 hash += tem_hash;
943 break;
945 case 's':
947 const unsigned char *p = (const unsigned char *) XSTR (x, i);
949 if (p)
950 while (*p)
951 hash += *p++;
952 break;
955 case 'i':
956 hash += XINT (x, i);
957 break;
959 case '0':
960 case 't':
961 /* unused */
962 break;
964 default:
965 gcc_unreachable ();
969 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
972 /* Create a new value structure for VALUE and initialize it. The mode of the
973 value is MODE. */
975 static inline cselib_val *
976 new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
978 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
980 gcc_assert (hash);
981 gcc_assert (next_uid);
983 e->hash = hash;
984 e->uid = next_uid++;
985 /* We use an alloc pool to allocate this RTL construct because it
986 accounts for about 8% of the overall memory usage. We know
987 precisely when we can have VALUE RTXen (when cselib is active)
988 so we don't need to put them in garbage collected memory.
989 ??? Why should a VALUE be an RTX in the first place? */
990 e->val_rtx = (rtx) pool_alloc (value_pool);
991 memset (e->val_rtx, 0, RTX_HDR_SIZE);
992 PUT_CODE (e->val_rtx, VALUE);
993 PUT_MODE (e->val_rtx, mode);
994 CSELIB_VAL_PTR (e->val_rtx) = e;
995 e->addr_list = 0;
996 e->locs = 0;
997 e->next_containing_mem = 0;
999 if (dump_file && (dump_flags & TDF_DETAILS))
1001 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1002 if (flag_dump_noaddr || flag_dump_unnumbered)
1003 fputs ("# ", dump_file);
1004 else
1005 fprintf (dump_file, "%p ", (void*)e);
1006 print_rtl_single (dump_file, x);
1007 fputc ('\n', dump_file);
1010 return e;
1013 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1014 contains the data at this address. X is a MEM that represents the
1015 value. Update the two value structures to represent this situation. */
1017 static void
1018 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1020 struct elt_loc_list *l;
1022 /* Avoid duplicates. */
1023 for (l = mem_elt->locs; l; l = l->next)
1024 if (MEM_P (l->loc)
1025 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
1027 promote_debug_loc (l);
1028 return;
1031 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1032 mem_elt->locs
1033 = new_elt_loc_list (mem_elt->locs,
1034 replace_equiv_address_nv (x, addr_elt->val_rtx));
1035 if (mem_elt->next_containing_mem == NULL)
1037 mem_elt->next_containing_mem = first_containing_mem;
1038 first_containing_mem = mem_elt;
1042 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1043 If CREATE, make a new one if we haven't seen it before. */
1045 static cselib_val *
1046 cselib_lookup_mem (rtx x, int create)
1048 enum machine_mode mode = GET_MODE (x);
1049 void **slot;
1050 cselib_val *addr;
1051 cselib_val *mem_elt;
1052 struct elt_list *l;
1054 if (MEM_VOLATILE_P (x) || mode == BLKmode
1055 || !cselib_record_memory
1056 || (FLOAT_MODE_P (mode) && flag_float_store))
1057 return 0;
1059 /* Look up the value for the address. */
1060 addr = cselib_lookup (XEXP (x, 0), mode, create);
1061 if (! addr)
1062 return 0;
1064 /* Find a value that describes a value of our mode at that address. */
1065 for (l = addr->addr_list; l; l = l->next)
1066 if (GET_MODE (l->elt->val_rtx) == mode)
1068 promote_debug_loc (l->elt->locs);
1069 return l->elt;
1072 if (! create)
1073 return 0;
1075 mem_elt = new_cselib_val (next_uid, mode, x);
1076 add_mem_for_addr (addr, mem_elt, x);
1077 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
1078 mem_elt->hash, INSERT);
1079 *slot = mem_elt;
1080 return mem_elt;
1083 /* Search thru the possible substitutions in P. We prefer a non reg
1084 substitution because this allows us to expand the tree further. If
1085 we find, just a reg, take the lowest regno. There may be several
1086 non-reg results, we just take the first one because they will all
1087 expand to the same place. */
1089 static rtx
1090 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1091 int max_depth)
1093 rtx reg_result = NULL;
1094 unsigned int regno = UINT_MAX;
1095 struct elt_loc_list *p_in = p;
1097 for (; p; p = p -> next)
1099 /* Avoid infinite recursion trying to expand a reg into a
1100 the same reg. */
1101 if ((REG_P (p->loc))
1102 && (REGNO (p->loc) < regno)
1103 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1105 reg_result = p->loc;
1106 regno = REGNO (p->loc);
1108 /* Avoid infinite recursion and do not try to expand the
1109 value. */
1110 else if (GET_CODE (p->loc) == VALUE
1111 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1112 continue;
1113 else if (!REG_P (p->loc))
1115 rtx result, note;
1116 if (dump_file && (dump_flags & TDF_DETAILS))
1118 print_inline_rtx (dump_file, p->loc, 0);
1119 fprintf (dump_file, "\n");
1121 if (GET_CODE (p->loc) == LO_SUM
1122 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1123 && p->setting_insn
1124 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1125 && XEXP (note, 0) == XEXP (p->loc, 1))
1126 return XEXP (p->loc, 1);
1127 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1128 if (result)
1129 return result;
1134 if (regno != UINT_MAX)
1136 rtx result;
1137 if (dump_file && (dump_flags & TDF_DETAILS))
1138 fprintf (dump_file, "r%d\n", regno);
1140 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1141 if (result)
1142 return result;
1145 if (dump_file && (dump_flags & TDF_DETAILS))
1147 if (reg_result)
1149 print_inline_rtx (dump_file, reg_result, 0);
1150 fprintf (dump_file, "\n");
1152 else
1153 fprintf (dump_file, "NULL\n");
1155 return reg_result;
1159 /* Forward substitute and expand an expression out to its roots.
1160 This is the opposite of common subexpression. Because local value
1161 numbering is such a weak optimization, the expanded expression is
1162 pretty much unique (not from a pointer equals point of view but
1163 from a tree shape point of view.
1165 This function returns NULL if the expansion fails. The expansion
1166 will fail if there is no value number for one of the operands or if
1167 one of the operands has been overwritten between the current insn
1168 and the beginning of the basic block. For instance x has no
1169 expansion in:
1171 r1 <- r1 + 3
1172 x <- r1 + 8
1174 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1175 It is clear on return. */
1178 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1180 struct expand_value_data evd;
1182 evd.regs_active = regs_active;
1183 evd.callback = NULL;
1184 evd.callback_arg = NULL;
1185 evd.dummy = false;
1187 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1190 /* Same as cselib_expand_value_rtx, but using a callback to try to
1191 resolve some expressions. The CB function should return ORIG if it
1192 can't or does not want to deal with a certain RTX. Any other
1193 return value, including NULL, will be used as the expansion for
1194 VALUE, without any further changes. */
1197 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1198 cselib_expand_callback cb, void *data)
1200 struct expand_value_data evd;
1202 evd.regs_active = regs_active;
1203 evd.callback = cb;
1204 evd.callback_arg = data;
1205 evd.dummy = false;
1207 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1210 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1211 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1212 would return NULL or non-NULL, without allocating new rtx. */
1214 bool
1215 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1216 cselib_expand_callback cb, void *data)
1218 struct expand_value_data evd;
1220 evd.regs_active = regs_active;
1221 evd.callback = cb;
1222 evd.callback_arg = data;
1223 evd.dummy = true;
1225 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1228 /* Internal implementation of cselib_expand_value_rtx and
1229 cselib_expand_value_rtx_cb. */
1231 static rtx
1232 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1233 int max_depth)
1235 rtx copy, scopy;
1236 int i, j;
1237 RTX_CODE code;
1238 const char *format_ptr;
1239 enum machine_mode mode;
1241 code = GET_CODE (orig);
1243 /* For the context of dse, if we end up expand into a huge tree, we
1244 will not have a useful address, so we might as well just give up
1245 quickly. */
1246 if (max_depth <= 0)
1247 return NULL;
1249 switch (code)
1251 case REG:
1253 struct elt_list *l = REG_VALUES (REGNO (orig));
1255 if (l && l->elt == NULL)
1256 l = l->next;
1257 for (; l; l = l->next)
1258 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1260 rtx result;
1261 int regno = REGNO (orig);
1263 /* The only thing that we are not willing to do (this
1264 is requirement of dse and if others potential uses
1265 need this function we should add a parm to control
1266 it) is that we will not substitute the
1267 STACK_POINTER_REGNUM, FRAME_POINTER or the
1268 HARD_FRAME_POINTER.
1270 These expansions confuses the code that notices that
1271 stores into the frame go dead at the end of the
1272 function and that the frame is not effected by calls
1273 to subroutines. If you allow the
1274 STACK_POINTER_REGNUM substitution, then dse will
1275 think that parameter pushing also goes dead which is
1276 wrong. If you allow the FRAME_POINTER or the
1277 HARD_FRAME_POINTER then you lose the opportunity to
1278 make the frame assumptions. */
1279 if (regno == STACK_POINTER_REGNUM
1280 || regno == FRAME_POINTER_REGNUM
1281 || regno == HARD_FRAME_POINTER_REGNUM)
1282 return orig;
1284 bitmap_set_bit (evd->regs_active, regno);
1286 if (dump_file && (dump_flags & TDF_DETAILS))
1287 fprintf (dump_file, "expanding: r%d into: ", regno);
1289 result = expand_loc (l->elt->locs, evd, max_depth);
1290 bitmap_clear_bit (evd->regs_active, regno);
1292 if (result)
1293 return result;
1294 else
1295 return orig;
1299 case CONST_INT:
1300 case CONST_DOUBLE:
1301 case CONST_VECTOR:
1302 case SYMBOL_REF:
1303 case CODE_LABEL:
1304 case PC:
1305 case CC0:
1306 case SCRATCH:
1307 /* SCRATCH must be shared because they represent distinct values. */
1308 return orig;
1309 case CLOBBER:
1310 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1311 return orig;
1312 break;
1314 case CONST:
1315 if (shared_const_p (orig))
1316 return orig;
1317 break;
1319 case SUBREG:
1321 rtx subreg;
1323 if (evd->callback)
1325 subreg = evd->callback (orig, evd->regs_active, max_depth,
1326 evd->callback_arg);
1327 if (subreg != orig)
1328 return subreg;
1331 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1332 max_depth - 1);
1333 if (!subreg)
1334 return NULL;
1335 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1336 GET_MODE (SUBREG_REG (orig)),
1337 SUBREG_BYTE (orig));
1338 if (scopy == NULL
1339 || (GET_CODE (scopy) == SUBREG
1340 && !REG_P (SUBREG_REG (scopy))
1341 && !MEM_P (SUBREG_REG (scopy))))
1342 return NULL;
1344 return scopy;
1347 case VALUE:
1349 rtx result;
1351 if (dump_file && (dump_flags & TDF_DETAILS))
1353 fputs ("\nexpanding ", dump_file);
1354 print_rtl_single (dump_file, orig);
1355 fputs (" into...", dump_file);
1358 if (evd->callback)
1360 result = evd->callback (orig, evd->regs_active, max_depth,
1361 evd->callback_arg);
1363 if (result != orig)
1364 return result;
1367 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1368 return result;
1371 case DEBUG_EXPR:
1372 if (evd->callback)
1373 return evd->callback (orig, evd->regs_active, max_depth,
1374 evd->callback_arg);
1375 return orig;
1377 default:
1378 break;
1381 /* Copy the various flags, fields, and other information. We assume
1382 that all fields need copying, and then clear the fields that should
1383 not be copied. That is the sensible default behavior, and forces
1384 us to explicitly document why we are *not* copying a flag. */
1385 if (evd->dummy)
1386 copy = NULL;
1387 else
1388 copy = shallow_copy_rtx (orig);
1390 format_ptr = GET_RTX_FORMAT (code);
1392 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1393 switch (*format_ptr++)
1395 case 'e':
1396 if (XEXP (orig, i) != NULL)
1398 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1399 max_depth - 1);
1400 if (!result)
1401 return NULL;
1402 if (copy)
1403 XEXP (copy, i) = result;
1405 break;
1407 case 'E':
1408 case 'V':
1409 if (XVEC (orig, i) != NULL)
1411 if (copy)
1412 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1413 for (j = 0; j < XVECLEN (orig, i); j++)
1415 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1416 evd, max_depth - 1);
1417 if (!result)
1418 return NULL;
1419 if (copy)
1420 XVECEXP (copy, i, j) = result;
1423 break;
1425 case 't':
1426 case 'w':
1427 case 'i':
1428 case 's':
1429 case 'S':
1430 case 'T':
1431 case 'u':
1432 case 'B':
1433 case '0':
1434 /* These are left unchanged. */
1435 break;
1437 default:
1438 gcc_unreachable ();
1441 if (evd->dummy)
1442 return orig;
1444 mode = GET_MODE (copy);
1445 /* If an operand has been simplified into CONST_INT, which doesn't
1446 have a mode and the mode isn't derivable from whole rtx's mode,
1447 try simplify_*_operation first with mode from original's operand
1448 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1449 scopy = copy;
1450 switch (GET_RTX_CLASS (code))
1452 case RTX_UNARY:
1453 if (CONST_INT_P (XEXP (copy, 0))
1454 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1456 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1457 GET_MODE (XEXP (orig, 0)));
1458 if (scopy)
1459 return scopy;
1461 break;
1462 case RTX_COMM_ARITH:
1463 case RTX_BIN_ARITH:
1464 /* These expressions can derive operand modes from the whole rtx's mode. */
1465 break;
1466 case RTX_TERNARY:
1467 case RTX_BITFIELD_OPS:
1468 if (CONST_INT_P (XEXP (copy, 0))
1469 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1471 scopy = simplify_ternary_operation (code, mode,
1472 GET_MODE (XEXP (orig, 0)),
1473 XEXP (copy, 0), XEXP (copy, 1),
1474 XEXP (copy, 2));
1475 if (scopy)
1476 return scopy;
1478 break;
1479 case RTX_COMPARE:
1480 case RTX_COMM_COMPARE:
1481 if (CONST_INT_P (XEXP (copy, 0))
1482 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1483 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1484 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1486 scopy = simplify_relational_operation (code, mode,
1487 (GET_MODE (XEXP (orig, 0))
1488 != VOIDmode)
1489 ? GET_MODE (XEXP (orig, 0))
1490 : GET_MODE (XEXP (orig, 1)),
1491 XEXP (copy, 0),
1492 XEXP (copy, 1));
1493 if (scopy)
1494 return scopy;
1496 break;
1497 default:
1498 break;
1500 scopy = simplify_rtx (copy);
1501 if (scopy)
1502 return scopy;
1503 return copy;
1506 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1507 with VALUE expressions. This way, it becomes independent of changes
1508 to registers and memory.
1509 X isn't actually modified; if modifications are needed, new rtl is
1510 allocated. However, the return value can share rtl with X. */
1513 cselib_subst_to_values (rtx x)
1515 enum rtx_code code = GET_CODE (x);
1516 const char *fmt = GET_RTX_FORMAT (code);
1517 cselib_val *e;
1518 struct elt_list *l;
1519 rtx copy = x;
1520 int i;
1522 switch (code)
1524 case REG:
1525 l = REG_VALUES (REGNO (x));
1526 if (l && l->elt == NULL)
1527 l = l->next;
1528 for (; l; l = l->next)
1529 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1530 return l->elt->val_rtx;
1532 gcc_unreachable ();
1534 case MEM:
1535 e = cselib_lookup_mem (x, 0);
1536 if (! e)
1538 /* This happens for autoincrements. Assign a value that doesn't
1539 match any other. */
1540 e = new_cselib_val (next_uid, GET_MODE (x), x);
1542 return e->val_rtx;
1544 case CONST_DOUBLE:
1545 case CONST_VECTOR:
1546 case CONST_INT:
1547 case CONST_FIXED:
1548 return x;
1550 case POST_INC:
1551 case PRE_INC:
1552 case POST_DEC:
1553 case PRE_DEC:
1554 case POST_MODIFY:
1555 case PRE_MODIFY:
1556 e = new_cselib_val (next_uid, GET_MODE (x), x);
1557 return e->val_rtx;
1559 default:
1560 break;
1563 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1565 if (fmt[i] == 'e')
1567 rtx t = cselib_subst_to_values (XEXP (x, i));
1569 if (t != XEXP (x, i))
1571 if (x == copy)
1572 copy = shallow_copy_rtx (x);
1573 XEXP (copy, i) = t;
1576 else if (fmt[i] == 'E')
1578 int j;
1580 for (j = 0; j < XVECLEN (x, i); j++)
1582 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
1584 if (t != XVECEXP (x, i, j))
1586 if (XVEC (x, i) == XVEC (copy, i))
1588 if (x == copy)
1589 copy = shallow_copy_rtx (x);
1590 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1592 XVECEXP (copy, i, j) = t;
1598 return copy;
1601 /* Look up the rtl expression X in our tables and return the value it has.
1602 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
1603 we create a new one if possible, using mode MODE if X doesn't have a mode
1604 (i.e. because it's a constant). */
1606 static cselib_val *
1607 cselib_lookup_1 (rtx x, enum machine_mode mode, int create)
1609 void **slot;
1610 cselib_val *e;
1611 unsigned int hashval;
1613 if (GET_MODE (x) != VOIDmode)
1614 mode = GET_MODE (x);
1616 if (GET_CODE (x) == VALUE)
1617 return CSELIB_VAL_PTR (x);
1619 if (REG_P (x))
1621 struct elt_list *l;
1622 unsigned int i = REGNO (x);
1624 l = REG_VALUES (i);
1625 if (l && l->elt == NULL)
1626 l = l->next;
1627 for (; l; l = l->next)
1628 if (mode == GET_MODE (l->elt->val_rtx))
1630 promote_debug_loc (l->elt->locs);
1631 return l->elt;
1634 if (! create)
1635 return 0;
1637 if (i < FIRST_PSEUDO_REGISTER)
1639 unsigned int n = hard_regno_nregs[i][mode];
1641 if (n > max_value_regs)
1642 max_value_regs = n;
1645 e = new_cselib_val (next_uid, GET_MODE (x), x);
1646 e->locs = new_elt_loc_list (e->locs, x);
1647 if (REG_VALUES (i) == 0)
1649 /* Maintain the invariant that the first entry of
1650 REG_VALUES, if present, must be the value used to set the
1651 register, or NULL. */
1652 used_regs[n_used_regs++] = i;
1653 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
1655 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
1656 slot = htab_find_slot_with_hash (cselib_hash_table, x, e->hash, INSERT);
1657 *slot = e;
1658 return e;
1661 if (MEM_P (x))
1662 return cselib_lookup_mem (x, create);
1664 hashval = cselib_hash_rtx (x, create);
1665 /* Can't even create if hashing is not possible. */
1666 if (! hashval)
1667 return 0;
1669 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
1670 hashval, create ? INSERT : NO_INSERT);
1671 if (slot == 0)
1672 return 0;
1674 e = (cselib_val *) *slot;
1675 if (e)
1676 return e;
1678 e = new_cselib_val (hashval, mode, x);
1680 /* We have to fill the slot before calling cselib_subst_to_values:
1681 the hash table is inconsistent until we do so, and
1682 cselib_subst_to_values will need to do lookups. */
1683 *slot = (void *) e;
1684 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
1685 return e;
1688 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
1690 cselib_val *
1691 cselib_lookup_from_insn (rtx x, enum machine_mode mode,
1692 int create, rtx insn)
1694 cselib_val *ret;
1696 gcc_assert (!cselib_current_insn);
1697 cselib_current_insn = insn;
1699 ret = cselib_lookup (x, mode, create);
1701 cselib_current_insn = NULL;
1703 return ret;
1706 /* Wrapper for cselib_lookup_1, that logs the lookup result and
1707 maintains invariants related with debug insns. */
1709 cselib_val *
1710 cselib_lookup (rtx x, enum machine_mode mode, int create)
1712 cselib_val *ret = cselib_lookup_1 (x, mode, create);
1714 /* ??? Should we return NULL if we're not to create an entry, the
1715 found loc is a debug loc and cselib_current_insn is not DEBUG?
1716 If so, we should also avoid converting val to non-DEBUG; probably
1717 easiest setting cselib_current_insn to NULL before the call
1718 above. */
1720 if (dump_file && (dump_flags & TDF_DETAILS))
1722 fputs ("cselib lookup ", dump_file);
1723 print_inline_rtx (dump_file, x, 2);
1724 fprintf (dump_file, " => %u:%u\n",
1725 ret ? ret->uid : 0,
1726 ret ? ret->hash : 0);
1729 return ret;
1732 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1733 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1734 is used to determine how many hard registers are being changed. If MODE
1735 is VOIDmode, then only REGNO is being changed; this is used when
1736 invalidating call clobbered registers across a call. */
1738 static void
1739 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1741 unsigned int endregno;
1742 unsigned int i;
1744 /* If we see pseudos after reload, something is _wrong_. */
1745 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1746 || reg_renumber[regno] < 0);
1748 /* Determine the range of registers that must be invalidated. For
1749 pseudos, only REGNO is affected. For hard regs, we must take MODE
1750 into account, and we must also invalidate lower register numbers
1751 if they contain values that overlap REGNO. */
1752 if (regno < FIRST_PSEUDO_REGISTER)
1754 gcc_assert (mode != VOIDmode);
1756 if (regno < max_value_regs)
1757 i = 0;
1758 else
1759 i = regno - max_value_regs;
1761 endregno = end_hard_regno (mode, regno);
1763 else
1765 i = regno;
1766 endregno = regno + 1;
1769 for (; i < endregno; i++)
1771 struct elt_list **l = &REG_VALUES (i);
1773 /* Go through all known values for this reg; if it overlaps the range
1774 we're invalidating, remove the value. */
1775 while (*l)
1777 cselib_val *v = (*l)->elt;
1778 bool had_locs;
1779 rtx setting_insn;
1780 struct elt_loc_list **p;
1781 unsigned int this_last = i;
1783 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1784 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
1786 if (this_last < regno || v == NULL || v == cfa_base_preserved_val)
1788 l = &(*l)->next;
1789 continue;
1792 /* We have an overlap. */
1793 if (*l == REG_VALUES (i))
1795 /* Maintain the invariant that the first entry of
1796 REG_VALUES, if present, must be the value used to set
1797 the register, or NULL. This is also nice because
1798 then we won't push the same regno onto user_regs
1799 multiple times. */
1800 (*l)->elt = NULL;
1801 l = &(*l)->next;
1803 else
1804 unchain_one_elt_list (l);
1806 had_locs = v->locs != NULL;
1807 setting_insn = v->locs ? v->locs->setting_insn : NULL;
1809 /* Now, we clear the mapping from value to reg. It must exist, so
1810 this code will crash intentionally if it doesn't. */
1811 for (p = &v->locs; ; p = &(*p)->next)
1813 rtx x = (*p)->loc;
1815 if (REG_P (x) && REGNO (x) == i)
1817 unchain_one_elt_loc_list (p);
1818 break;
1822 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
1824 if (setting_insn && DEBUG_INSN_P (setting_insn))
1825 n_useless_debug_values++;
1826 else
1827 n_useless_values++;
1833 /* Return 1 if X has a value that can vary even between two
1834 executions of the program. 0 means X can be compared reliably
1835 against certain constants or near-constants. */
1837 static bool
1838 cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED, bool from_alias ATTRIBUTE_UNUSED)
1840 /* We actually don't need to verify very hard. This is because
1841 if X has actually changed, we invalidate the memory anyway,
1842 so assume that all common memory addresses are
1843 invariant. */
1844 return 0;
1847 /* Invalidate any locations in the table which are changed because of a
1848 store to MEM_RTX. If this is called because of a non-const call
1849 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1851 static void
1852 cselib_invalidate_mem (rtx mem_rtx)
1854 cselib_val **vp, *v, *next;
1855 int num_mems = 0;
1856 rtx mem_addr;
1858 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1859 mem_rtx = canon_rtx (mem_rtx);
1861 vp = &first_containing_mem;
1862 for (v = *vp; v != &dummy_val; v = next)
1864 bool has_mem = false;
1865 struct elt_loc_list **p = &v->locs;
1866 bool had_locs = v->locs != NULL;
1867 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
1869 while (*p)
1871 rtx x = (*p)->loc;
1872 cselib_val *addr;
1873 struct elt_list **mem_chain;
1875 /* MEMs may occur in locations only at the top level; below
1876 that every MEM or REG is substituted by its VALUE. */
1877 if (!MEM_P (x))
1879 p = &(*p)->next;
1880 continue;
1882 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1883 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1884 x, NULL_RTX, cselib_rtx_varies_p))
1886 has_mem = true;
1887 num_mems++;
1888 p = &(*p)->next;
1889 continue;
1892 /* This one overlaps. */
1893 /* We must have a mapping from this MEM's address to the
1894 value (E). Remove that, too. */
1895 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1896 mem_chain = &addr->addr_list;
1897 for (;;)
1899 if ((*mem_chain)->elt == v)
1901 unchain_one_elt_list (mem_chain);
1902 break;
1905 mem_chain = &(*mem_chain)->next;
1908 unchain_one_elt_loc_list (p);
1911 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
1913 if (setting_insn && DEBUG_INSN_P (setting_insn))
1914 n_useless_debug_values++;
1915 else
1916 n_useless_values++;
1919 next = v->next_containing_mem;
1920 if (has_mem)
1922 *vp = v;
1923 vp = &(*vp)->next_containing_mem;
1925 else
1926 v->next_containing_mem = NULL;
1928 *vp = &dummy_val;
1931 /* Invalidate DEST, which is being assigned to or clobbered. */
1933 void
1934 cselib_invalidate_rtx (rtx dest)
1936 while (GET_CODE (dest) == SUBREG
1937 || GET_CODE (dest) == ZERO_EXTRACT
1938 || GET_CODE (dest) == STRICT_LOW_PART)
1939 dest = XEXP (dest, 0);
1941 if (REG_P (dest))
1942 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1943 else if (MEM_P (dest))
1944 cselib_invalidate_mem (dest);
1946 /* Some machines don't define AUTO_INC_DEC, but they still use push
1947 instructions. We need to catch that case here in order to
1948 invalidate the stack pointer correctly. Note that invalidating
1949 the stack pointer is different from invalidating DEST. */
1950 if (push_operand (dest, GET_MODE (dest)))
1951 cselib_invalidate_rtx (stack_pointer_rtx);
1954 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1956 static void
1957 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
1958 void *data ATTRIBUTE_UNUSED)
1960 cselib_invalidate_rtx (dest);
1963 /* Record the result of a SET instruction. DEST is being set; the source
1964 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1965 describes its address. */
1967 static void
1968 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1970 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1972 if (src_elt == 0 || side_effects_p (dest))
1973 return;
1975 if (dreg >= 0)
1977 if (dreg < FIRST_PSEUDO_REGISTER)
1979 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1981 if (n > max_value_regs)
1982 max_value_regs = n;
1985 if (REG_VALUES (dreg) == 0)
1987 used_regs[n_used_regs++] = dreg;
1988 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1990 else
1992 /* The register should have been invalidated. */
1993 gcc_assert (REG_VALUES (dreg)->elt == 0);
1994 REG_VALUES (dreg)->elt = src_elt;
1997 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
1998 n_useless_values--;
1999 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
2001 else if (MEM_P (dest) && dest_addr_elt != 0
2002 && cselib_record_memory)
2004 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2005 n_useless_values--;
2006 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2010 /* There is no good way to determine how many elements there can be
2011 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2012 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2014 /* Record the effects of any sets in INSN. */
2015 static void
2016 cselib_record_sets (rtx insn)
2018 int n_sets = 0;
2019 int i;
2020 struct cselib_set sets[MAX_SETS];
2021 rtx body = PATTERN (insn);
2022 rtx cond = 0;
2024 body = PATTERN (insn);
2025 if (GET_CODE (body) == COND_EXEC)
2027 cond = COND_EXEC_TEST (body);
2028 body = COND_EXEC_CODE (body);
2031 /* Find all sets. */
2032 if (GET_CODE (body) == SET)
2034 sets[0].src = SET_SRC (body);
2035 sets[0].dest = SET_DEST (body);
2036 n_sets = 1;
2038 else if (GET_CODE (body) == PARALLEL)
2040 /* Look through the PARALLEL and record the values being
2041 set, if possible. Also handle any CLOBBERs. */
2042 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2044 rtx x = XVECEXP (body, 0, i);
2046 if (GET_CODE (x) == SET)
2048 sets[n_sets].src = SET_SRC (x);
2049 sets[n_sets].dest = SET_DEST (x);
2050 n_sets++;
2055 if (n_sets == 1
2056 && MEM_P (sets[0].src)
2057 && !cselib_record_memory
2058 && MEM_READONLY_P (sets[0].src))
2060 rtx note = find_reg_equal_equiv_note (insn);
2062 if (note && CONSTANT_P (XEXP (note, 0)))
2063 sets[0].src = XEXP (note, 0);
2066 /* Look up the values that are read. Do this before invalidating the
2067 locations that are written. */
2068 for (i = 0; i < n_sets; i++)
2070 rtx dest = sets[i].dest;
2072 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2073 the low part after invalidating any knowledge about larger modes. */
2074 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2075 sets[i].dest = dest = XEXP (dest, 0);
2077 /* We don't know how to record anything but REG or MEM. */
2078 if (REG_P (dest)
2079 || (MEM_P (dest) && cselib_record_memory))
2081 rtx src = sets[i].src;
2082 if (cond)
2083 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2084 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
2085 if (MEM_P (dest))
2087 enum machine_mode address_mode
2088 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2090 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2091 address_mode, 1);
2093 else
2094 sets[i].dest_addr_elt = 0;
2098 if (cselib_record_sets_hook)
2099 cselib_record_sets_hook (insn, sets, n_sets);
2101 /* Invalidate all locations written by this insn. Note that the elts we
2102 looked up in the previous loop aren't affected, just some of their
2103 locations may go away. */
2104 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2106 /* If this is an asm, look for duplicate sets. This can happen when the
2107 user uses the same value as an output multiple times. This is valid
2108 if the outputs are not actually used thereafter. Treat this case as
2109 if the value isn't actually set. We do this by smashing the destination
2110 to pc_rtx, so that we won't record the value later. */
2111 if (n_sets >= 2 && asm_noperands (body) >= 0)
2113 for (i = 0; i < n_sets; i++)
2115 rtx dest = sets[i].dest;
2116 if (REG_P (dest) || MEM_P (dest))
2118 int j;
2119 for (j = i + 1; j < n_sets; j++)
2120 if (rtx_equal_p (dest, sets[j].dest))
2122 sets[i].dest = pc_rtx;
2123 sets[j].dest = pc_rtx;
2129 /* Now enter the equivalences in our tables. */
2130 for (i = 0; i < n_sets; i++)
2132 rtx dest = sets[i].dest;
2133 if (REG_P (dest)
2134 || (MEM_P (dest) && cselib_record_memory))
2135 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2139 /* Record the effects of INSN. */
2141 void
2142 cselib_process_insn (rtx insn)
2144 int i;
2145 rtx x;
2147 cselib_current_insn = insn;
2149 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
2150 if (LABEL_P (insn)
2151 || (CALL_P (insn)
2152 && find_reg_note (insn, REG_SETJMP, NULL))
2153 || (NONJUMP_INSN_P (insn)
2154 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2155 && MEM_VOLATILE_P (PATTERN (insn))))
2157 cselib_reset_table (next_uid);
2158 cselib_current_insn = NULL_RTX;
2159 return;
2162 if (! INSN_P (insn))
2164 cselib_current_insn = NULL_RTX;
2165 return;
2168 /* If this is a call instruction, forget anything stored in a
2169 call clobbered register, or, if this is not a const call, in
2170 memory. */
2171 if (CALL_P (insn))
2173 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2174 if (call_used_regs[i]
2175 || (REG_VALUES (i) && REG_VALUES (i)->elt
2176 && HARD_REGNO_CALL_PART_CLOBBERED (i,
2177 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
2178 cselib_invalidate_regno (i, reg_raw_mode[i]);
2180 /* Since it is not clear how cselib is going to be used, be
2181 conservative here and treat looping pure or const functions
2182 as if they were regular functions. */
2183 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2184 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2185 cselib_invalidate_mem (callmem);
2188 cselib_record_sets (insn);
2190 #ifdef AUTO_INC_DEC
2191 /* Clobber any registers which appear in REG_INC notes. We
2192 could keep track of the changes to their values, but it is
2193 unlikely to help. */
2194 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
2195 if (REG_NOTE_KIND (x) == REG_INC)
2196 cselib_invalidate_rtx (XEXP (x, 0));
2197 #endif
2199 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2200 after we have processed the insn. */
2201 if (CALL_P (insn))
2202 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2203 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2204 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2206 cselib_current_insn = NULL_RTX;
2208 if (n_useless_values > MAX_USELESS_VALUES
2209 /* remove_useless_values is linear in the hash table size. Avoid
2210 quadratic behavior for very large hashtables with very few
2211 useless elements. */
2212 && ((unsigned int)n_useless_values
2213 > (cselib_hash_table->n_elements
2214 - cselib_hash_table->n_deleted
2215 - n_debug_values) / 4))
2216 remove_useless_values ();
2219 /* Initialize cselib for one pass. The caller must also call
2220 init_alias_analysis. */
2222 void
2223 cselib_init (int record_what)
2225 elt_list_pool = create_alloc_pool ("elt_list",
2226 sizeof (struct elt_list), 10);
2227 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
2228 sizeof (struct elt_loc_list), 10);
2229 cselib_val_pool = create_alloc_pool ("cselib_val_list",
2230 sizeof (cselib_val), 10);
2231 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
2232 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2233 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2235 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2236 see canon_true_dependence. This is only created once. */
2237 if (! callmem)
2238 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2240 cselib_nregs = max_reg_num ();
2242 /* We preserve reg_values to allow expensive clearing of the whole thing.
2243 Reallocate it however if it happens to be too large. */
2244 if (!reg_values || reg_values_size < cselib_nregs
2245 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2247 if (reg_values)
2248 free (reg_values);
2249 /* Some space for newly emit instructions so we don't end up
2250 reallocating in between passes. */
2251 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2252 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2254 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2255 n_used_regs = 0;
2256 cselib_hash_table = htab_create (31, get_value_hash,
2257 entry_and_rtx_equal_p, NULL);
2258 next_uid = 1;
2261 /* Called when the current user is done with cselib. */
2263 void
2264 cselib_finish (void)
2266 cselib_discard_hook = NULL;
2267 cselib_preserve_constants = false;
2268 cfa_base_preserved_val = NULL;
2269 free_alloc_pool (elt_list_pool);
2270 free_alloc_pool (elt_loc_list_pool);
2271 free_alloc_pool (cselib_val_pool);
2272 free_alloc_pool (value_pool);
2273 cselib_clear_table ();
2274 htab_delete (cselib_hash_table);
2275 free (used_regs);
2276 used_regs = 0;
2277 cselib_hash_table = 0;
2278 n_useless_values = 0;
2279 n_useless_debug_values = 0;
2280 n_debug_values = 0;
2281 next_uid = 0;
2284 /* Dump the cselib_val *X to FILE *info. */
2286 static int
2287 dump_cselib_val (void **x, void *info)
2289 cselib_val *v = (cselib_val *)*x;
2290 FILE *out = (FILE *)info;
2291 bool need_lf = true;
2293 print_inline_rtx (out, v->val_rtx, 0);
2295 if (v->locs)
2297 struct elt_loc_list *l = v->locs;
2298 if (need_lf)
2300 fputc ('\n', out);
2301 need_lf = false;
2303 fputs (" locs:", out);
2306 fprintf (out, "\n from insn %i ",
2307 INSN_UID (l->setting_insn));
2308 print_inline_rtx (out, l->loc, 4);
2310 while ((l = l->next));
2311 fputc ('\n', out);
2313 else
2315 fputs (" no locs", out);
2316 need_lf = true;
2319 if (v->addr_list)
2321 struct elt_list *e = v->addr_list;
2322 if (need_lf)
2324 fputc ('\n', out);
2325 need_lf = false;
2327 fputs (" addr list:", out);
2330 fputs ("\n ", out);
2331 print_inline_rtx (out, e->elt->val_rtx, 2);
2333 while ((e = e->next));
2334 fputc ('\n', out);
2336 else
2338 fputs (" no addrs", out);
2339 need_lf = true;
2342 if (v->next_containing_mem == &dummy_val)
2343 fputs (" last mem\n", out);
2344 else if (v->next_containing_mem)
2346 fputs (" next mem ", out);
2347 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2348 fputc ('\n', out);
2350 else if (need_lf)
2351 fputc ('\n', out);
2353 return 1;
2356 /* Dump to OUT everything in the CSELIB table. */
2358 void
2359 dump_cselib_table (FILE *out)
2361 fprintf (out, "cselib hash table:\n");
2362 htab_traverse (cselib_hash_table, dump_cselib_val, out);
2363 if (first_containing_mem != &dummy_val)
2365 fputs ("first mem ", out);
2366 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2367 fputc ('\n', out);
2369 fprintf (out, "next uid %i\n", next_uid);
2372 #include "gt-cselib.h"