* diagnostic.c (announce_function): Move to toplev.c.
[official-gcc.git] / gcc / combine.c
blob26cdf49dc78483ca1fc2498e2677f7b167f16883
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 #define nonzero_bits(X, M) \
141 cached_nonzero_bits (X, M, NULL_RTX, VOIDmode, 0)
143 #define num_sign_bit_copies(X, M) \
144 cached_num_sign_bit_copies (X, M, NULL_RTX, VOIDmode, 0)
146 /* Maximum register number, which is the size of the tables below. */
148 static unsigned int combine_max_regno;
150 /* Record last point of death of (hard or pseudo) register n. */
152 static rtx *reg_last_death;
154 /* Record last point of modification of (hard or pseudo) register n. */
156 static rtx *reg_last_set;
158 /* Record the cuid of the last insn that invalidated memory
159 (anything that writes memory, and subroutine calls, but not pushes). */
161 static int mem_last_set;
163 /* Record the cuid of the last CALL_INSN
164 so we can tell whether a potential combination crosses any calls. */
166 static int last_call_cuid;
168 /* When `subst' is called, this is the insn that is being modified
169 (by combining in a previous insn). The PATTERN of this insn
170 is still the old pattern partially modified and it should not be
171 looked at, but this may be used to examine the successors of the insn
172 to judge whether a simplification is valid. */
174 static rtx subst_insn;
176 /* This is the lowest CUID that `subst' is currently dealing with.
177 get_last_value will not return a value if the register was set at or
178 after this CUID. If not for this mechanism, we could get confused if
179 I2 or I1 in try_combine were an insn that used the old value of a register
180 to obtain a new value. In that case, we might erroneously get the
181 new value of the register when we wanted the old one. */
183 static int subst_low_cuid;
185 /* This contains any hard registers that are used in newpat; reg_dead_at_p
186 must consider all these registers to be always live. */
188 static HARD_REG_SET newpat_used_regs;
190 /* This is an insn to which a LOG_LINKS entry has been added. If this
191 insn is the earlier than I2 or I3, combine should rescan starting at
192 that location. */
194 static rtx added_links_insn;
196 /* Basic block in which we are performing combines. */
197 static basic_block this_basic_block;
199 /* A bitmap indicating which blocks had registers go dead at entry.
200 After combine, we'll need to re-do global life analysis with
201 those blocks as starting points. */
202 static sbitmap refresh_blocks;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if an
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to nonzero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is nonzero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set nonzero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set nonzero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; int i;} old_contents;
318 union {rtx *r; int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST (rtx *, rtx);
342 static void do_SUBST_INT (int *, int);
343 static void init_reg_last_arrays (void);
344 static void setup_incoming_promotions (void);
345 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
346 static int cant_combine_insn_p (rtx);
347 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
348 static int sets_function_arg_p (rtx);
349 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
350 static int contains_muldiv (rtx);
351 static rtx try_combine (rtx, rtx, rtx, int *);
352 static void undo_all (void);
353 static void undo_commit (void);
354 static rtx *find_split_point (rtx *, rtx);
355 static rtx subst (rtx, rtx, rtx, int, int);
356 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
357 static rtx simplify_if_then_else (rtx);
358 static rtx simplify_set (rtx);
359 static rtx simplify_logical (rtx, int);
360 static rtx expand_compound_operation (rtx);
361 static rtx expand_field_assignment (rtx);
362 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
363 rtx, unsigned HOST_WIDE_INT, int, int, int);
364 static rtx extract_left_shift (rtx, int);
365 static rtx make_compound_operation (rtx, enum rtx_code);
366 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
367 unsigned HOST_WIDE_INT *);
368 static rtx force_to_mode (rtx, enum machine_mode,
369 unsigned HOST_WIDE_INT, rtx, int);
370 static rtx if_then_else_cond (rtx, rtx *, rtx *);
371 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
372 static int rtx_equal_for_field_assignment_p (rtx, rtx);
373 static rtx make_field_assignment (rtx);
374 static rtx apply_distributive_law (rtx);
375 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
376 unsigned HOST_WIDE_INT);
377 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
378 rtx, enum machine_mode,
379 unsigned HOST_WIDE_INT);
380 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
381 enum machine_mode,
382 unsigned HOST_WIDE_INT);
383 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
384 enum machine_mode,
385 unsigned int);
386 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
387 enum machine_mode, unsigned int);
388 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
389 HOST_WIDE_INT, enum machine_mode, int *);
390 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
391 int);
392 static int recog_for_combine (rtx *, rtx, rtx *);
393 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
394 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
395 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
396 static void update_table_tick (rtx);
397 static void record_value_for_reg (rtx, rtx, rtx);
398 static void check_promoted_subreg (rtx, rtx);
399 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
400 static void record_dead_and_set_regs (rtx);
401 static int get_last_value_validate (rtx *, rtx, int, int);
402 static rtx get_last_value (rtx);
403 static int use_crosses_set_p (rtx, int);
404 static void reg_dead_at_p_1 (rtx, rtx, void *);
405 static int reg_dead_at_p (rtx, rtx);
406 static void move_deaths (rtx, rtx, int, rtx, rtx *);
407 static int reg_bitfield_target_p (rtx, rtx);
408 static void distribute_notes (rtx, rtx, rtx, rtx);
409 static void distribute_links (rtx);
410 static void mark_used_regs_combine (rtx);
411 static int insn_cuid (rtx);
412 static void record_promoted_value (rtx, rtx);
413 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
414 static enum rtx_code combine_reversed_comparison_code (rtx);
416 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
417 insn. The substitution can be undone by undo_all. If INTO is already
418 set to NEWVAL, do not record this change. Because computing NEWVAL might
419 also call SUBST, we have to compute it before we put anything into
420 the undo table. */
422 static void
423 do_SUBST (rtx *into, rtx newval)
425 struct undo *buf;
426 rtx oldval = *into;
428 if (oldval == newval)
429 return;
431 /* We'd like to catch as many invalid transformations here as
432 possible. Unfortunately, there are way too many mode changes
433 that are perfectly valid, so we'd waste too much effort for
434 little gain doing the checks here. Focus on catching invalid
435 transformations involving integer constants. */
436 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
437 && GET_CODE (newval) == CONST_INT)
439 /* Sanity check that we're replacing oldval with a CONST_INT
440 that is a valid sign-extension for the original mode. */
441 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
442 GET_MODE (oldval)))
443 abort ();
445 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
446 CONST_INT is not valid, because after the replacement, the
447 original mode would be gone. Unfortunately, we can't tell
448 when do_SUBST is called to replace the operand thereof, so we
449 perform this test on oldval instead, checking whether an
450 invalid replacement took place before we got here. */
451 if ((GET_CODE (oldval) == SUBREG
452 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
453 || (GET_CODE (oldval) == ZERO_EXTEND
454 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
455 abort ();
458 if (undobuf.frees)
459 buf = undobuf.frees, undobuf.frees = buf->next;
460 else
461 buf = xmalloc (sizeof (struct undo));
463 buf->is_int = 0;
464 buf->where.r = into;
465 buf->old_contents.r = oldval;
466 *into = newval;
468 buf->next = undobuf.undos, undobuf.undos = buf;
471 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
473 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
474 for the value of a HOST_WIDE_INT value (including CONST_INT) is
475 not safe. */
477 static void
478 do_SUBST_INT (int *into, int newval)
480 struct undo *buf;
481 int oldval = *into;
483 if (oldval == newval)
484 return;
486 if (undobuf.frees)
487 buf = undobuf.frees, undobuf.frees = buf->next;
488 else
489 buf = xmalloc (sizeof (struct undo));
491 buf->is_int = 1;
492 buf->where.i = into;
493 buf->old_contents.i = oldval;
494 *into = newval;
496 buf->next = undobuf.undos, undobuf.undos = buf;
499 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
501 /* Main entry point for combiner. F is the first insn of the function.
502 NREGS is the first unused pseudo-reg number.
504 Return nonzero if the combiner has turned an indirect jump
505 instruction into a direct jump. */
507 combine_instructions (rtx f, unsigned int nregs)
509 rtx insn, next;
510 #ifdef HAVE_cc0
511 rtx prev;
512 #endif
513 int i;
514 rtx links, nextlinks;
516 int new_direct_jump_p = 0;
518 combine_attempts = 0;
519 combine_merges = 0;
520 combine_extras = 0;
521 combine_successes = 0;
523 combine_max_regno = nregs;
525 reg_nonzero_bits = xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT));
526 reg_sign_bit_copies = xcalloc (nregs, sizeof (unsigned char));
528 reg_last_death = xmalloc (nregs * sizeof (rtx));
529 reg_last_set = xmalloc (nregs * sizeof (rtx));
530 reg_last_set_value = xmalloc (nregs * sizeof (rtx));
531 reg_last_set_table_tick = xmalloc (nregs * sizeof (int));
532 reg_last_set_label = xmalloc (nregs * sizeof (int));
533 reg_last_set_invalid = xmalloc (nregs * sizeof (char));
534 reg_last_set_mode = xmalloc (nregs * sizeof (enum machine_mode));
535 reg_last_set_nonzero_bits = xmalloc (nregs * sizeof (HOST_WIDE_INT));
536 reg_last_set_sign_bit_copies = xmalloc (nregs * sizeof (char));
538 init_reg_last_arrays ();
540 init_recog_no_volatile ();
542 /* Compute maximum uid value so uid_cuid can be allocated. */
544 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
545 if (INSN_UID (insn) > i)
546 i = INSN_UID (insn);
548 uid_cuid = xmalloc ((i + 1) * sizeof (int));
549 max_uid_cuid = i;
551 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
553 /* Don't use reg_nonzero_bits when computing it. This can cause problems
554 when, for example, we have j <<= 1 in a loop. */
556 nonzero_sign_valid = 0;
558 /* Compute the mapping from uids to cuids.
559 Cuids are numbers assigned to insns, like uids,
560 except that cuids increase monotonically through the code.
562 Scan all SETs and see if we can deduce anything about what
563 bits are known to be zero for some registers and how many copies
564 of the sign bit are known to exist for those registers.
566 Also set any known values so that we can use it while searching
567 for what bits are known to be set. */
569 label_tick = 1;
571 setup_incoming_promotions ();
573 refresh_blocks = sbitmap_alloc (last_basic_block);
574 sbitmap_zero (refresh_blocks);
576 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
578 uid_cuid[INSN_UID (insn)] = ++i;
579 subst_low_cuid = i;
580 subst_insn = insn;
582 if (INSN_P (insn))
584 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
585 NULL);
586 record_dead_and_set_regs (insn);
588 #ifdef AUTO_INC_DEC
589 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
590 if (REG_NOTE_KIND (links) == REG_INC)
591 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
592 NULL);
593 #endif
596 if (GET_CODE (insn) == CODE_LABEL)
597 label_tick++;
600 nonzero_sign_valid = 1;
602 /* Now scan all the insns in forward order. */
604 label_tick = 1;
605 last_call_cuid = 0;
606 mem_last_set = 0;
607 init_reg_last_arrays ();
608 setup_incoming_promotions ();
610 FOR_EACH_BB (this_basic_block)
612 for (insn = this_basic_block->head;
613 insn != NEXT_INSN (this_basic_block->end);
614 insn = next ? next : NEXT_INSN (insn))
616 next = 0;
618 if (GET_CODE (insn) == CODE_LABEL)
619 label_tick++;
621 else if (INSN_P (insn))
623 /* See if we know about function return values before this
624 insn based upon SUBREG flags. */
625 check_promoted_subreg (insn, PATTERN (insn));
627 /* Try this insn with each insn it links back to. */
629 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
630 if ((next = try_combine (insn, XEXP (links, 0),
631 NULL_RTX, &new_direct_jump_p)) != 0)
632 goto retry;
634 /* Try each sequence of three linked insns ending with this one. */
636 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
638 rtx link = XEXP (links, 0);
640 /* If the linked insn has been replaced by a note, then there
641 is no point in pursuing this chain any further. */
642 if (GET_CODE (link) == NOTE)
643 continue;
645 for (nextlinks = LOG_LINKS (link);
646 nextlinks;
647 nextlinks = XEXP (nextlinks, 1))
648 if ((next = try_combine (insn, link,
649 XEXP (nextlinks, 0),
650 &new_direct_jump_p)) != 0)
651 goto retry;
654 #ifdef HAVE_cc0
655 /* Try to combine a jump insn that uses CC0
656 with a preceding insn that sets CC0, and maybe with its
657 logical predecessor as well.
658 This is how we make decrement-and-branch insns.
659 We need this special code because data flow connections
660 via CC0 do not get entered in LOG_LINKS. */
662 if (GET_CODE (insn) == JUMP_INSN
663 && (prev = prev_nonnote_insn (insn)) != 0
664 && GET_CODE (prev) == INSN
665 && sets_cc0_p (PATTERN (prev)))
667 if ((next = try_combine (insn, prev,
668 NULL_RTX, &new_direct_jump_p)) != 0)
669 goto retry;
671 for (nextlinks = LOG_LINKS (prev); nextlinks;
672 nextlinks = XEXP (nextlinks, 1))
673 if ((next = try_combine (insn, prev,
674 XEXP (nextlinks, 0),
675 &new_direct_jump_p)) != 0)
676 goto retry;
679 /* Do the same for an insn that explicitly references CC0. */
680 if (GET_CODE (insn) == INSN
681 && (prev = prev_nonnote_insn (insn)) != 0
682 && GET_CODE (prev) == INSN
683 && sets_cc0_p (PATTERN (prev))
684 && GET_CODE (PATTERN (insn)) == SET
685 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
687 if ((next = try_combine (insn, prev,
688 NULL_RTX, &new_direct_jump_p)) != 0)
689 goto retry;
691 for (nextlinks = LOG_LINKS (prev); nextlinks;
692 nextlinks = XEXP (nextlinks, 1))
693 if ((next = try_combine (insn, prev,
694 XEXP (nextlinks, 0),
695 &new_direct_jump_p)) != 0)
696 goto retry;
699 /* Finally, see if any of the insns that this insn links to
700 explicitly references CC0. If so, try this insn, that insn,
701 and its predecessor if it sets CC0. */
702 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
703 if (GET_CODE (XEXP (links, 0)) == INSN
704 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
705 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
706 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
707 && GET_CODE (prev) == INSN
708 && sets_cc0_p (PATTERN (prev))
709 && (next = try_combine (insn, XEXP (links, 0),
710 prev, &new_direct_jump_p)) != 0)
711 goto retry;
712 #endif
714 /* Try combining an insn with two different insns whose results it
715 uses. */
716 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
717 for (nextlinks = XEXP (links, 1); nextlinks;
718 nextlinks = XEXP (nextlinks, 1))
719 if ((next = try_combine (insn, XEXP (links, 0),
720 XEXP (nextlinks, 0),
721 &new_direct_jump_p)) != 0)
722 goto retry;
724 if (GET_CODE (insn) != NOTE)
725 record_dead_and_set_regs (insn);
727 retry:
732 clear_bb_flags ();
734 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
735 BASIC_BLOCK (i)->flags |= BB_DIRTY);
736 new_direct_jump_p |= purge_all_dead_edges (0);
737 delete_noop_moves (f);
739 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
740 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
741 | PROP_KILL_DEAD_CODE);
743 /* Clean up. */
744 sbitmap_free (refresh_blocks);
745 free (reg_nonzero_bits);
746 free (reg_sign_bit_copies);
747 free (reg_last_death);
748 free (reg_last_set);
749 free (reg_last_set_value);
750 free (reg_last_set_table_tick);
751 free (reg_last_set_label);
752 free (reg_last_set_invalid);
753 free (reg_last_set_mode);
754 free (reg_last_set_nonzero_bits);
755 free (reg_last_set_sign_bit_copies);
756 free (uid_cuid);
759 struct undo *undo, *next;
760 for (undo = undobuf.frees; undo; undo = next)
762 next = undo->next;
763 free (undo);
765 undobuf.frees = 0;
768 total_attempts += combine_attempts;
769 total_merges += combine_merges;
770 total_extras += combine_extras;
771 total_successes += combine_successes;
773 nonzero_sign_valid = 0;
775 /* Make recognizer allow volatile MEMs again. */
776 init_recog ();
778 return new_direct_jump_p;
781 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
783 static void
784 init_reg_last_arrays (void)
786 unsigned int nregs = combine_max_regno;
788 memset (reg_last_death, 0, nregs * sizeof (rtx));
789 memset (reg_last_set, 0, nregs * sizeof (rtx));
790 memset (reg_last_set_value, 0, nregs * sizeof (rtx));
791 memset (reg_last_set_table_tick, 0, nregs * sizeof (int));
792 memset (reg_last_set_label, 0, nregs * sizeof (int));
793 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
794 memset (reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
795 memset (reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
796 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
799 /* Set up any promoted values for incoming argument registers. */
801 static void
802 setup_incoming_promotions (void)
804 unsigned int regno;
805 rtx reg;
806 enum machine_mode mode;
807 int unsignedp;
808 rtx first = get_insns ();
810 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
812 #ifndef OUTGOING_REGNO
813 #define OUTGOING_REGNO(N) N
814 #endif
815 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
816 /* Check whether this register can hold an incoming pointer
817 argument. FUNCTION_ARG_REGNO_P tests outgoing register
818 numbers, so translate if necessary due to register windows. */
819 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
820 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
822 record_value_for_reg
823 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
824 : SIGN_EXTEND),
825 GET_MODE (reg),
826 gen_rtx_CLOBBER (mode, const0_rtx)));
831 /* Called via note_stores. If X is a pseudo that is narrower than
832 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
834 If we are setting only a portion of X and we can't figure out what
835 portion, assume all bits will be used since we don't know what will
836 be happening.
838 Similarly, set how many bits of X are known to be copies of the sign bit
839 at all locations in the function. This is the smallest number implied
840 by any set of X. */
842 static void
843 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
844 void *data ATTRIBUTE_UNUSED)
846 unsigned int num;
848 if (GET_CODE (x) == REG
849 && REGNO (x) >= FIRST_PSEUDO_REGISTER
850 /* If this register is undefined at the start of the file, we can't
851 say what its contents were. */
852 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
853 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
855 if (set == 0 || GET_CODE (set) == CLOBBER)
857 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
858 reg_sign_bit_copies[REGNO (x)] = 1;
859 return;
862 /* If this is a complex assignment, see if we can convert it into a
863 simple assignment. */
864 set = expand_field_assignment (set);
866 /* If this is a simple assignment, or we have a paradoxical SUBREG,
867 set what we know about X. */
869 if (SET_DEST (set) == x
870 || (GET_CODE (SET_DEST (set)) == SUBREG
871 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
872 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
873 && SUBREG_REG (SET_DEST (set)) == x))
875 rtx src = SET_SRC (set);
877 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
878 /* If X is narrower than a word and SRC is a non-negative
879 constant that would appear negative in the mode of X,
880 sign-extend it for use in reg_nonzero_bits because some
881 machines (maybe most) will actually do the sign-extension
882 and this is the conservative approach.
884 ??? For 2.5, try to tighten up the MD files in this regard
885 instead of this kludge. */
887 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
888 && GET_CODE (src) == CONST_INT
889 && INTVAL (src) > 0
890 && 0 != (INTVAL (src)
891 & ((HOST_WIDE_INT) 1
892 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
893 src = GEN_INT (INTVAL (src)
894 | ((HOST_WIDE_INT) (-1)
895 << GET_MODE_BITSIZE (GET_MODE (x))));
896 #endif
898 /* Don't call nonzero_bits if it cannot change anything. */
899 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
900 reg_nonzero_bits[REGNO (x)]
901 |= nonzero_bits (src, nonzero_bits_mode);
902 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
903 if (reg_sign_bit_copies[REGNO (x)] == 0
904 || reg_sign_bit_copies[REGNO (x)] > num)
905 reg_sign_bit_copies[REGNO (x)] = num;
907 else
909 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
910 reg_sign_bit_copies[REGNO (x)] = 1;
915 /* See if INSN can be combined into I3. PRED and SUCC are optionally
916 insns that were previously combined into I3 or that will be combined
917 into the merger of INSN and I3.
919 Return 0 if the combination is not allowed for any reason.
921 If the combination is allowed, *PDEST will be set to the single
922 destination of INSN and *PSRC to the single source, and this function
923 will return 1. */
925 static int
926 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
927 rtx *pdest, rtx *psrc)
929 int i;
930 rtx set = 0, src, dest;
931 rtx p;
932 #ifdef AUTO_INC_DEC
933 rtx link;
934 #endif
935 int all_adjacent = (succ ? (next_active_insn (insn) == succ
936 && next_active_insn (succ) == i3)
937 : next_active_insn (insn) == i3);
939 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
940 or a PARALLEL consisting of such a SET and CLOBBERs.
942 If INSN has CLOBBER parallel parts, ignore them for our processing.
943 By definition, these happen during the execution of the insn. When it
944 is merged with another insn, all bets are off. If they are, in fact,
945 needed and aren't also supplied in I3, they may be added by
946 recog_for_combine. Otherwise, it won't match.
948 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
949 note.
951 Get the source and destination of INSN. If more than one, can't
952 combine. */
954 if (GET_CODE (PATTERN (insn)) == SET)
955 set = PATTERN (insn);
956 else if (GET_CODE (PATTERN (insn)) == PARALLEL
957 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
959 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
961 rtx elt = XVECEXP (PATTERN (insn), 0, i);
963 switch (GET_CODE (elt))
965 /* This is important to combine floating point insns
966 for the SH4 port. */
967 case USE:
968 /* Combining an isolated USE doesn't make sense.
969 We depend here on combinable_i3pat to reject them. */
970 /* The code below this loop only verifies that the inputs of
971 the SET in INSN do not change. We call reg_set_between_p
972 to verify that the REG in the USE does not change between
973 I3 and INSN.
974 If the USE in INSN was for a pseudo register, the matching
975 insn pattern will likely match any register; combining this
976 with any other USE would only be safe if we knew that the
977 used registers have identical values, or if there was
978 something to tell them apart, e.g. different modes. For
979 now, we forgo such complicated tests and simply disallow
980 combining of USES of pseudo registers with any other USE. */
981 if (GET_CODE (XEXP (elt, 0)) == REG
982 && GET_CODE (PATTERN (i3)) == PARALLEL)
984 rtx i3pat = PATTERN (i3);
985 int i = XVECLEN (i3pat, 0) - 1;
986 unsigned int regno = REGNO (XEXP (elt, 0));
990 rtx i3elt = XVECEXP (i3pat, 0, i);
992 if (GET_CODE (i3elt) == USE
993 && GET_CODE (XEXP (i3elt, 0)) == REG
994 && (REGNO (XEXP (i3elt, 0)) == regno
995 ? reg_set_between_p (XEXP (elt, 0),
996 PREV_INSN (insn), i3)
997 : regno >= FIRST_PSEUDO_REGISTER))
998 return 0;
1000 while (--i >= 0);
1002 break;
1004 /* We can ignore CLOBBERs. */
1005 case CLOBBER:
1006 break;
1008 case SET:
1009 /* Ignore SETs whose result isn't used but not those that
1010 have side-effects. */
1011 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1012 && ! side_effects_p (elt))
1013 break;
1015 /* If we have already found a SET, this is a second one and
1016 so we cannot combine with this insn. */
1017 if (set)
1018 return 0;
1020 set = elt;
1021 break;
1023 default:
1024 /* Anything else means we can't combine. */
1025 return 0;
1029 if (set == 0
1030 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1031 so don't do anything with it. */
1032 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1033 return 0;
1035 else
1036 return 0;
1038 if (set == 0)
1039 return 0;
1041 set = expand_field_assignment (set);
1042 src = SET_SRC (set), dest = SET_DEST (set);
1044 /* Don't eliminate a store in the stack pointer. */
1045 if (dest == stack_pointer_rtx
1046 /* Don't combine with an insn that sets a register to itself if it has
1047 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1048 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1049 /* Can't merge an ASM_OPERANDS. */
1050 || GET_CODE (src) == ASM_OPERANDS
1051 /* Can't merge a function call. */
1052 || GET_CODE (src) == CALL
1053 /* Don't eliminate a function call argument. */
1054 || (GET_CODE (i3) == CALL_INSN
1055 && (find_reg_fusage (i3, USE, dest)
1056 || (GET_CODE (dest) == REG
1057 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1058 && global_regs[REGNO (dest)])))
1059 /* Don't substitute into an incremented register. */
1060 || FIND_REG_INC_NOTE (i3, dest)
1061 || (succ && FIND_REG_INC_NOTE (succ, dest))
1062 #if 0
1063 /* Don't combine the end of a libcall into anything. */
1064 /* ??? This gives worse code, and appears to be unnecessary, since no
1065 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1066 use REG_RETVAL notes for noconflict blocks, but other code here
1067 makes sure that those insns don't disappear. */
1068 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1069 #endif
1070 /* Make sure that DEST is not used after SUCC but before I3. */
1071 || (succ && ! all_adjacent
1072 && reg_used_between_p (dest, succ, i3))
1073 /* Make sure that the value that is to be substituted for the register
1074 does not use any registers whose values alter in between. However,
1075 If the insns are adjacent, a use can't cross a set even though we
1076 think it might (this can happen for a sequence of insns each setting
1077 the same destination; reg_last_set of that register might point to
1078 a NOTE). If INSN has a REG_EQUIV note, the register is always
1079 equivalent to the memory so the substitution is valid even if there
1080 are intervening stores. Also, don't move a volatile asm or
1081 UNSPEC_VOLATILE across any other insns. */
1082 || (! all_adjacent
1083 && (((GET_CODE (src) != MEM
1084 || ! find_reg_note (insn, REG_EQUIV, src))
1085 && use_crosses_set_p (src, INSN_CUID (insn)))
1086 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1087 || GET_CODE (src) == UNSPEC_VOLATILE))
1088 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1089 better register allocation by not doing the combine. */
1090 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1091 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1092 /* Don't combine across a CALL_INSN, because that would possibly
1093 change whether the life span of some REGs crosses calls or not,
1094 and it is a pain to update that information.
1095 Exception: if source is a constant, moving it later can't hurt.
1096 Accept that special case, because it helps -fforce-addr a lot. */
1097 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1098 return 0;
1100 /* DEST must either be a REG or CC0. */
1101 if (GET_CODE (dest) == REG)
1103 /* If register alignment is being enforced for multi-word items in all
1104 cases except for parameters, it is possible to have a register copy
1105 insn referencing a hard register that is not allowed to contain the
1106 mode being copied and which would not be valid as an operand of most
1107 insns. Eliminate this problem by not combining with such an insn.
1109 Also, on some machines we don't want to extend the life of a hard
1110 register. */
1112 if (GET_CODE (src) == REG
1113 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1114 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1115 /* Don't extend the life of a hard register unless it is
1116 user variable (if we have few registers) or it can't
1117 fit into the desired register (meaning something special
1118 is going on).
1119 Also avoid substituting a return register into I3, because
1120 reload can't handle a conflict with constraints of other
1121 inputs. */
1122 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1123 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1124 return 0;
1126 else if (GET_CODE (dest) != CC0)
1127 return 0;
1129 /* Don't substitute for a register intended as a clobberable operand.
1130 Similarly, don't substitute an expression containing a register that
1131 will be clobbered in I3. */
1132 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1133 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1134 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1135 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1136 src)
1137 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1138 return 0;
1140 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1141 or not), reject, unless nothing volatile comes between it and I3 */
1143 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1145 /* Make sure succ doesn't contain a volatile reference. */
1146 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1147 return 0;
1149 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1150 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1151 return 0;
1154 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1155 to be an explicit register variable, and was chosen for a reason. */
1157 if (GET_CODE (src) == ASM_OPERANDS
1158 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1159 return 0;
1161 /* If there are any volatile insns between INSN and I3, reject, because
1162 they might affect machine state. */
1164 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1165 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1166 return 0;
1168 /* If INSN or I2 contains an autoincrement or autodecrement,
1169 make sure that register is not used between there and I3,
1170 and not already used in I3 either.
1171 Also insist that I3 not be a jump; if it were one
1172 and the incremented register were spilled, we would lose. */
1174 #ifdef AUTO_INC_DEC
1175 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1176 if (REG_NOTE_KIND (link) == REG_INC
1177 && (GET_CODE (i3) == JUMP_INSN
1178 || reg_used_between_p (XEXP (link, 0), insn, i3)
1179 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1180 return 0;
1181 #endif
1183 #ifdef HAVE_cc0
1184 /* Don't combine an insn that follows a CC0-setting insn.
1185 An insn that uses CC0 must not be separated from the one that sets it.
1186 We do, however, allow I2 to follow a CC0-setting insn if that insn
1187 is passed as I1; in that case it will be deleted also.
1188 We also allow combining in this case if all the insns are adjacent
1189 because that would leave the two CC0 insns adjacent as well.
1190 It would be more logical to test whether CC0 occurs inside I1 or I2,
1191 but that would be much slower, and this ought to be equivalent. */
1193 p = prev_nonnote_insn (insn);
1194 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1195 && ! all_adjacent)
1196 return 0;
1197 #endif
1199 /* If we get here, we have passed all the tests and the combination is
1200 to be allowed. */
1202 *pdest = dest;
1203 *psrc = src;
1205 return 1;
1208 /* Check if PAT is an insn - or a part of it - used to set up an
1209 argument for a function in a hard register. */
1211 static int
1212 sets_function_arg_p (rtx pat)
1214 int i;
1215 rtx inner_dest;
1217 switch (GET_CODE (pat))
1219 case INSN:
1220 return sets_function_arg_p (PATTERN (pat));
1222 case PARALLEL:
1223 for (i = XVECLEN (pat, 0); --i >= 0;)
1224 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1225 return 1;
1227 break;
1229 case SET:
1230 inner_dest = SET_DEST (pat);
1231 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1232 || GET_CODE (inner_dest) == SUBREG
1233 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1234 inner_dest = XEXP (inner_dest, 0);
1236 return (GET_CODE (inner_dest) == REG
1237 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1238 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1240 default:
1241 break;
1244 return 0;
1247 /* LOC is the location within I3 that contains its pattern or the component
1248 of a PARALLEL of the pattern. We validate that it is valid for combining.
1250 One problem is if I3 modifies its output, as opposed to replacing it
1251 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1252 so would produce an insn that is not equivalent to the original insns.
1254 Consider:
1256 (set (reg:DI 101) (reg:DI 100))
1257 (set (subreg:SI (reg:DI 101) 0) <foo>)
1259 This is NOT equivalent to:
1261 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1262 (set (reg:DI 101) (reg:DI 100))])
1264 Not only does this modify 100 (in which case it might still be valid
1265 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1267 We can also run into a problem if I2 sets a register that I1
1268 uses and I1 gets directly substituted into I3 (not via I2). In that
1269 case, we would be getting the wrong value of I2DEST into I3, so we
1270 must reject the combination. This case occurs when I2 and I1 both
1271 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1272 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1273 of a SET must prevent combination from occurring.
1275 Before doing the above check, we first try to expand a field assignment
1276 into a set of logical operations.
1278 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1279 we place a register that is both set and used within I3. If more than one
1280 such register is detected, we fail.
1282 Return 1 if the combination is valid, zero otherwise. */
1284 static int
1285 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1286 int i1_not_in_src, rtx *pi3dest_killed)
1288 rtx x = *loc;
1290 if (GET_CODE (x) == SET)
1292 rtx set = x ;
1293 rtx dest = SET_DEST (set);
1294 rtx src = SET_SRC (set);
1295 rtx inner_dest = dest;
1297 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1298 || GET_CODE (inner_dest) == SUBREG
1299 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1300 inner_dest = XEXP (inner_dest, 0);
1302 /* Check for the case where I3 modifies its output, as discussed
1303 above. We don't want to prevent pseudos from being combined
1304 into the address of a MEM, so only prevent the combination if
1305 i1 or i2 set the same MEM. */
1306 if ((inner_dest != dest &&
1307 (GET_CODE (inner_dest) != MEM
1308 || rtx_equal_p (i2dest, inner_dest)
1309 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1310 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1311 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1313 /* This is the same test done in can_combine_p except we can't test
1314 all_adjacent; we don't have to, since this instruction will stay
1315 in place, thus we are not considering increasing the lifetime of
1316 INNER_DEST.
1318 Also, if this insn sets a function argument, combining it with
1319 something that might need a spill could clobber a previous
1320 function argument; the all_adjacent test in can_combine_p also
1321 checks this; here, we do a more specific test for this case. */
1323 || (GET_CODE (inner_dest) == REG
1324 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1325 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1326 GET_MODE (inner_dest))))
1327 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1328 return 0;
1330 /* If DEST is used in I3, it is being killed in this insn,
1331 so record that for later.
1332 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1333 STACK_POINTER_REGNUM, since these are always considered to be
1334 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1335 if (pi3dest_killed && GET_CODE (dest) == REG
1336 && reg_referenced_p (dest, PATTERN (i3))
1337 && REGNO (dest) != FRAME_POINTER_REGNUM
1338 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1339 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1340 #endif
1341 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1342 && (REGNO (dest) != ARG_POINTER_REGNUM
1343 || ! fixed_regs [REGNO (dest)])
1344 #endif
1345 && REGNO (dest) != STACK_POINTER_REGNUM)
1347 if (*pi3dest_killed)
1348 return 0;
1350 *pi3dest_killed = dest;
1354 else if (GET_CODE (x) == PARALLEL)
1356 int i;
1358 for (i = 0; i < XVECLEN (x, 0); i++)
1359 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1360 i1_not_in_src, pi3dest_killed))
1361 return 0;
1364 return 1;
1367 /* Return 1 if X is an arithmetic expression that contains a multiplication
1368 and division. We don't count multiplications by powers of two here. */
1370 static int
1371 contains_muldiv (rtx x)
1373 switch (GET_CODE (x))
1375 case MOD: case DIV: case UMOD: case UDIV:
1376 return 1;
1378 case MULT:
1379 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1380 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1381 default:
1382 switch (GET_RTX_CLASS (GET_CODE (x)))
1384 case 'c': case '<': case '2':
1385 return contains_muldiv (XEXP (x, 0))
1386 || contains_muldiv (XEXP (x, 1));
1388 case '1':
1389 return contains_muldiv (XEXP (x, 0));
1391 default:
1392 return 0;
1397 /* Determine whether INSN can be used in a combination. Return nonzero if
1398 not. This is used in try_combine to detect early some cases where we
1399 can't perform combinations. */
1401 static int
1402 cant_combine_insn_p (rtx insn)
1404 rtx set;
1405 rtx src, dest;
1407 /* If this isn't really an insn, we can't do anything.
1408 This can occur when flow deletes an insn that it has merged into an
1409 auto-increment address. */
1410 if (! INSN_P (insn))
1411 return 1;
1413 /* Never combine loads and stores involving hard regs that are likely
1414 to be spilled. The register allocator can usually handle such
1415 reg-reg moves by tying. If we allow the combiner to make
1416 substitutions of likely-spilled regs, we may abort in reload.
1417 As an exception, we allow combinations involving fixed regs; these are
1418 not available to the register allocator so there's no risk involved. */
1420 set = single_set (insn);
1421 if (! set)
1422 return 0;
1423 src = SET_SRC (set);
1424 dest = SET_DEST (set);
1425 if (GET_CODE (src) == SUBREG)
1426 src = SUBREG_REG (src);
1427 if (GET_CODE (dest) == SUBREG)
1428 dest = SUBREG_REG (dest);
1429 if (REG_P (src) && REG_P (dest)
1430 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1431 && ! fixed_regs[REGNO (src)]
1432 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1433 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1434 && ! fixed_regs[REGNO (dest)]
1435 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1436 return 1;
1438 return 0;
1441 /* Try to combine the insns I1 and I2 into I3.
1442 Here I1 and I2 appear earlier than I3.
1443 I1 can be zero; then we combine just I2 into I3.
1445 If we are combining three insns and the resulting insn is not recognized,
1446 try splitting it into two insns. If that happens, I2 and I3 are retained
1447 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1448 are pseudo-deleted.
1450 Return 0 if the combination does not work. Then nothing is changed.
1451 If we did the combination, return the insn at which combine should
1452 resume scanning.
1454 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1455 new direct jump instruction. */
1457 static rtx
1458 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1460 /* New patterns for I3 and I2, respectively. */
1461 rtx newpat, newi2pat = 0;
1462 int substed_i2 = 0, substed_i1 = 0;
1463 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1464 int added_sets_1, added_sets_2;
1465 /* Total number of SETs to put into I3. */
1466 int total_sets;
1467 /* Nonzero is I2's body now appears in I3. */
1468 int i2_is_used;
1469 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1470 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1471 /* Contains I3 if the destination of I3 is used in its source, which means
1472 that the old life of I3 is being killed. If that usage is placed into
1473 I2 and not in I3, a REG_DEAD note must be made. */
1474 rtx i3dest_killed = 0;
1475 /* SET_DEST and SET_SRC of I2 and I1. */
1476 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1477 /* PATTERN (I2), or a copy of it in certain cases. */
1478 rtx i2pat;
1479 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1480 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1481 int i1_feeds_i3 = 0;
1482 /* Notes that must be added to REG_NOTES in I3 and I2. */
1483 rtx new_i3_notes, new_i2_notes;
1484 /* Notes that we substituted I3 into I2 instead of the normal case. */
1485 int i3_subst_into_i2 = 0;
1486 /* Notes that I1, I2 or I3 is a MULT operation. */
1487 int have_mult = 0;
1489 int maxreg;
1490 rtx temp;
1491 rtx link;
1492 int i;
1494 /* Exit early if one of the insns involved can't be used for
1495 combinations. */
1496 if (cant_combine_insn_p (i3)
1497 || cant_combine_insn_p (i2)
1498 || (i1 && cant_combine_insn_p (i1))
1499 /* We also can't do anything if I3 has a
1500 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1501 libcall. */
1502 #if 0
1503 /* ??? This gives worse code, and appears to be unnecessary, since no
1504 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1505 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1506 #endif
1508 return 0;
1510 combine_attempts++;
1511 undobuf.other_insn = 0;
1513 /* Reset the hard register usage information. */
1514 CLEAR_HARD_REG_SET (newpat_used_regs);
1516 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1517 code below, set I1 to be the earlier of the two insns. */
1518 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1519 temp = i1, i1 = i2, i2 = temp;
1521 added_links_insn = 0;
1523 /* First check for one important special-case that the code below will
1524 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1525 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1526 we may be able to replace that destination with the destination of I3.
1527 This occurs in the common code where we compute both a quotient and
1528 remainder into a structure, in which case we want to do the computation
1529 directly into the structure to avoid register-register copies.
1531 Note that this case handles both multiple sets in I2 and also
1532 cases where I2 has a number of CLOBBER or PARALLELs.
1534 We make very conservative checks below and only try to handle the
1535 most common cases of this. For example, we only handle the case
1536 where I2 and I3 are adjacent to avoid making difficult register
1537 usage tests. */
1539 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1540 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1541 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1542 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1543 && GET_CODE (PATTERN (i2)) == PARALLEL
1544 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1545 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1546 below would need to check what is inside (and reg_overlap_mentioned_p
1547 doesn't support those codes anyway). Don't allow those destinations;
1548 the resulting insn isn't likely to be recognized anyway. */
1549 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1550 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1551 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1552 SET_DEST (PATTERN (i3)))
1553 && next_real_insn (i2) == i3)
1555 rtx p2 = PATTERN (i2);
1557 /* Make sure that the destination of I3,
1558 which we are going to substitute into one output of I2,
1559 is not used within another output of I2. We must avoid making this:
1560 (parallel [(set (mem (reg 69)) ...)
1561 (set (reg 69) ...)])
1562 which is not well-defined as to order of actions.
1563 (Besides, reload can't handle output reloads for this.)
1565 The problem can also happen if the dest of I3 is a memory ref,
1566 if another dest in I2 is an indirect memory ref. */
1567 for (i = 0; i < XVECLEN (p2, 0); i++)
1568 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1569 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1570 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1571 SET_DEST (XVECEXP (p2, 0, i))))
1572 break;
1574 if (i == XVECLEN (p2, 0))
1575 for (i = 0; i < XVECLEN (p2, 0); i++)
1576 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1577 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1578 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1580 combine_merges++;
1582 subst_insn = i3;
1583 subst_low_cuid = INSN_CUID (i2);
1585 added_sets_2 = added_sets_1 = 0;
1586 i2dest = SET_SRC (PATTERN (i3));
1588 /* Replace the dest in I2 with our dest and make the resulting
1589 insn the new pattern for I3. Then skip to where we
1590 validate the pattern. Everything was set up above. */
1591 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1592 SET_DEST (PATTERN (i3)));
1594 newpat = p2;
1595 i3_subst_into_i2 = 1;
1596 goto validate_replacement;
1600 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1601 one of those words to another constant, merge them by making a new
1602 constant. */
1603 if (i1 == 0
1604 && (temp = single_set (i2)) != 0
1605 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1606 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1607 && GET_CODE (SET_DEST (temp)) == REG
1608 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1609 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1610 && GET_CODE (PATTERN (i3)) == SET
1611 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1612 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1613 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1614 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1615 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1617 HOST_WIDE_INT lo, hi;
1619 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1620 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1621 else
1623 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1624 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1627 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1629 /* We don't handle the case of the target word being wider
1630 than a host wide int. */
1631 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1632 abort ();
1634 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1635 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1636 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1638 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1639 hi = INTVAL (SET_SRC (PATTERN (i3)));
1640 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1642 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1643 >> (HOST_BITS_PER_WIDE_INT - 1));
1645 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1646 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1647 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1648 (INTVAL (SET_SRC (PATTERN (i3)))));
1649 if (hi == sign)
1650 hi = lo < 0 ? -1 : 0;
1652 else
1653 /* We don't handle the case of the higher word not fitting
1654 entirely in either hi or lo. */
1655 abort ();
1657 combine_merges++;
1658 subst_insn = i3;
1659 subst_low_cuid = INSN_CUID (i2);
1660 added_sets_2 = added_sets_1 = 0;
1661 i2dest = SET_DEST (temp);
1663 SUBST (SET_SRC (temp),
1664 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1666 newpat = PATTERN (i2);
1667 goto validate_replacement;
1670 #ifndef HAVE_cc0
1671 /* If we have no I1 and I2 looks like:
1672 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1673 (set Y OP)])
1674 make up a dummy I1 that is
1675 (set Y OP)
1676 and change I2 to be
1677 (set (reg:CC X) (compare:CC Y (const_int 0)))
1679 (We can ignore any trailing CLOBBERs.)
1681 This undoes a previous combination and allows us to match a branch-and-
1682 decrement insn. */
1684 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1685 && XVECLEN (PATTERN (i2), 0) >= 2
1686 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1687 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1688 == MODE_CC)
1689 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1690 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1691 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1692 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1693 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1694 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1696 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1697 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1698 break;
1700 if (i == 1)
1702 /* We make I1 with the same INSN_UID as I2. This gives it
1703 the same INSN_CUID for value tracking. Our fake I1 will
1704 never appear in the insn stream so giving it the same INSN_UID
1705 as I2 will not cause a problem. */
1707 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1708 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1709 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1710 NULL_RTX);
1712 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1713 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1714 SET_DEST (PATTERN (i1)));
1717 #endif
1719 /* Verify that I2 and I1 are valid for combining. */
1720 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1721 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1723 undo_all ();
1724 return 0;
1727 /* Record whether I2DEST is used in I2SRC and similarly for the other
1728 cases. Knowing this will help in register status updating below. */
1729 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1730 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1731 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1733 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1734 in I2SRC. */
1735 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1737 /* Ensure that I3's pattern can be the destination of combines. */
1738 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1739 i1 && i2dest_in_i1src && i1_feeds_i3,
1740 &i3dest_killed))
1742 undo_all ();
1743 return 0;
1746 /* See if any of the insns is a MULT operation. Unless one is, we will
1747 reject a combination that is, since it must be slower. Be conservative
1748 here. */
1749 if (GET_CODE (i2src) == MULT
1750 || (i1 != 0 && GET_CODE (i1src) == MULT)
1751 || (GET_CODE (PATTERN (i3)) == SET
1752 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1753 have_mult = 1;
1755 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1756 We used to do this EXCEPT in one case: I3 has a post-inc in an
1757 output operand. However, that exception can give rise to insns like
1758 mov r3,(r3)+
1759 which is a famous insn on the PDP-11 where the value of r3 used as the
1760 source was model-dependent. Avoid this sort of thing. */
1762 #if 0
1763 if (!(GET_CODE (PATTERN (i3)) == SET
1764 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1765 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1766 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1767 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1768 /* It's not the exception. */
1769 #endif
1770 #ifdef AUTO_INC_DEC
1771 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1772 if (REG_NOTE_KIND (link) == REG_INC
1773 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1774 || (i1 != 0
1775 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1777 undo_all ();
1778 return 0;
1780 #endif
1782 /* See if the SETs in I1 or I2 need to be kept around in the merged
1783 instruction: whenever the value set there is still needed past I3.
1784 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1786 For the SET in I1, we have two cases: If I1 and I2 independently
1787 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1788 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1789 in I1 needs to be kept around unless I1DEST dies or is set in either
1790 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1791 I1DEST. If so, we know I1 feeds into I2. */
1793 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1795 added_sets_1
1796 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1797 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1799 /* If the set in I2 needs to be kept around, we must make a copy of
1800 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1801 PATTERN (I2), we are only substituting for the original I1DEST, not into
1802 an already-substituted copy. This also prevents making self-referential
1803 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1804 I2DEST. */
1806 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1807 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1808 : PATTERN (i2));
1810 if (added_sets_2)
1811 i2pat = copy_rtx (i2pat);
1813 combine_merges++;
1815 /* Substitute in the latest insn for the regs set by the earlier ones. */
1817 maxreg = max_reg_num ();
1819 subst_insn = i3;
1821 /* It is possible that the source of I2 or I1 may be performing an
1822 unneeded operation, such as a ZERO_EXTEND of something that is known
1823 to have the high part zero. Handle that case by letting subst look at
1824 the innermost one of them.
1826 Another way to do this would be to have a function that tries to
1827 simplify a single insn instead of merging two or more insns. We don't
1828 do this because of the potential of infinite loops and because
1829 of the potential extra memory required. However, doing it the way
1830 we are is a bit of a kludge and doesn't catch all cases.
1832 But only do this if -fexpensive-optimizations since it slows things down
1833 and doesn't usually win. */
1835 if (flag_expensive_optimizations)
1837 /* Pass pc_rtx so no substitutions are done, just simplifications.
1838 The cases that we are interested in here do not involve the few
1839 cases were is_replaced is checked. */
1840 if (i1)
1842 subst_low_cuid = INSN_CUID (i1);
1843 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1845 else
1847 subst_low_cuid = INSN_CUID (i2);
1848 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1852 #ifndef HAVE_cc0
1853 /* Many machines that don't use CC0 have insns that can both perform an
1854 arithmetic operation and set the condition code. These operations will
1855 be represented as a PARALLEL with the first element of the vector
1856 being a COMPARE of an arithmetic operation with the constant zero.
1857 The second element of the vector will set some pseudo to the result
1858 of the same arithmetic operation. If we simplify the COMPARE, we won't
1859 match such a pattern and so will generate an extra insn. Here we test
1860 for this case, where both the comparison and the operation result are
1861 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1862 I2SRC. Later we will make the PARALLEL that contains I2. */
1864 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1865 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1866 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1867 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1869 #ifdef EXTRA_CC_MODES
1870 rtx *cc_use;
1871 enum machine_mode compare_mode;
1872 #endif
1874 newpat = PATTERN (i3);
1875 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1877 i2_is_used = 1;
1879 #ifdef EXTRA_CC_MODES
1880 /* See if a COMPARE with the operand we substituted in should be done
1881 with the mode that is currently being used. If not, do the same
1882 processing we do in `subst' for a SET; namely, if the destination
1883 is used only once, try to replace it with a register of the proper
1884 mode and also replace the COMPARE. */
1885 if (undobuf.other_insn == 0
1886 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1887 &undobuf.other_insn))
1888 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1889 i2src, const0_rtx))
1890 != GET_MODE (SET_DEST (newpat))))
1892 unsigned int regno = REGNO (SET_DEST (newpat));
1893 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1895 if (regno < FIRST_PSEUDO_REGISTER
1896 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1897 && ! REG_USERVAR_P (SET_DEST (newpat))))
1899 if (regno >= FIRST_PSEUDO_REGISTER)
1900 SUBST (regno_reg_rtx[regno], new_dest);
1902 SUBST (SET_DEST (newpat), new_dest);
1903 SUBST (XEXP (*cc_use, 0), new_dest);
1904 SUBST (SET_SRC (newpat),
1905 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1907 else
1908 undobuf.other_insn = 0;
1910 #endif
1912 else
1913 #endif
1915 n_occurrences = 0; /* `subst' counts here */
1917 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1918 need to make a unique copy of I2SRC each time we substitute it
1919 to avoid self-referential rtl. */
1921 subst_low_cuid = INSN_CUID (i2);
1922 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1923 ! i1_feeds_i3 && i1dest_in_i1src);
1924 substed_i2 = 1;
1926 /* Record whether i2's body now appears within i3's body. */
1927 i2_is_used = n_occurrences;
1930 /* If we already got a failure, don't try to do more. Otherwise,
1931 try to substitute in I1 if we have it. */
1933 if (i1 && GET_CODE (newpat) != CLOBBER)
1935 /* Before we can do this substitution, we must redo the test done
1936 above (see detailed comments there) that ensures that I1DEST
1937 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1939 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1940 0, (rtx*) 0))
1942 undo_all ();
1943 return 0;
1946 n_occurrences = 0;
1947 subst_low_cuid = INSN_CUID (i1);
1948 newpat = subst (newpat, i1dest, i1src, 0, 0);
1949 substed_i1 = 1;
1952 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1953 to count all the ways that I2SRC and I1SRC can be used. */
1954 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
1955 && i2_is_used + added_sets_2 > 1)
1956 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
1957 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
1958 > 1))
1959 /* Fail if we tried to make a new register (we used to abort, but there's
1960 really no reason to). */
1961 || max_reg_num () != maxreg
1962 /* Fail if we couldn't do something and have a CLOBBER. */
1963 || GET_CODE (newpat) == CLOBBER
1964 /* Fail if this new pattern is a MULT and we didn't have one before
1965 at the outer level. */
1966 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
1967 && ! have_mult))
1969 undo_all ();
1970 return 0;
1973 /* If the actions of the earlier insns must be kept
1974 in addition to substituting them into the latest one,
1975 we must make a new PARALLEL for the latest insn
1976 to hold additional the SETs. */
1978 if (added_sets_1 || added_sets_2)
1980 combine_extras++;
1982 if (GET_CODE (newpat) == PARALLEL)
1984 rtvec old = XVEC (newpat, 0);
1985 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
1986 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1987 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
1988 sizeof (old->elem[0]) * old->num_elem);
1990 else
1992 rtx old = newpat;
1993 total_sets = 1 + added_sets_1 + added_sets_2;
1994 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
1995 XVECEXP (newpat, 0, 0) = old;
1998 if (added_sets_1)
1999 XVECEXP (newpat, 0, --total_sets)
2000 = (GET_CODE (PATTERN (i1)) == PARALLEL
2001 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2003 if (added_sets_2)
2005 /* If there is no I1, use I2's body as is. We used to also not do
2006 the subst call below if I2 was substituted into I3,
2007 but that could lose a simplification. */
2008 if (i1 == 0)
2009 XVECEXP (newpat, 0, --total_sets) = i2pat;
2010 else
2011 /* See comment where i2pat is assigned. */
2012 XVECEXP (newpat, 0, --total_sets)
2013 = subst (i2pat, i1dest, i1src, 0, 0);
2017 /* We come here when we are replacing a destination in I2 with the
2018 destination of I3. */
2019 validate_replacement:
2021 /* Note which hard regs this insn has as inputs. */
2022 mark_used_regs_combine (newpat);
2024 /* Is the result of combination a valid instruction? */
2025 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2027 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2028 the second SET's destination is a register that is unused. In that case,
2029 we just need the first SET. This can occur when simplifying a divmod
2030 insn. We *must* test for this case here because the code below that
2031 splits two independent SETs doesn't handle this case correctly when it
2032 updates the register status. Also check the case where the first
2033 SET's destination is unused. That would not cause incorrect code, but
2034 does cause an unneeded insn to remain. */
2036 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2037 && XVECLEN (newpat, 0) == 2
2038 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2039 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2040 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2041 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2042 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2043 && asm_noperands (newpat) < 0)
2045 newpat = XVECEXP (newpat, 0, 0);
2046 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2049 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2050 && XVECLEN (newpat, 0) == 2
2051 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2052 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2053 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2054 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2055 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2056 && asm_noperands (newpat) < 0)
2058 newpat = XVECEXP (newpat, 0, 1);
2059 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2062 /* If we were combining three insns and the result is a simple SET
2063 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2064 insns. There are two ways to do this. It can be split using a
2065 machine-specific method (like when you have an addition of a large
2066 constant) or by combine in the function find_split_point. */
2068 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2069 && asm_noperands (newpat) < 0)
2071 rtx m_split, *split;
2072 rtx ni2dest = i2dest;
2074 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2075 use I2DEST as a scratch register will help. In the latter case,
2076 convert I2DEST to the mode of the source of NEWPAT if we can. */
2078 m_split = split_insns (newpat, i3);
2080 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2081 inputs of NEWPAT. */
2083 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2084 possible to try that as a scratch reg. This would require adding
2085 more code to make it work though. */
2087 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2089 /* If I2DEST is a hard register or the only use of a pseudo,
2090 we can change its mode. */
2091 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2092 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2093 && GET_CODE (i2dest) == REG
2094 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2095 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2096 && ! REG_USERVAR_P (i2dest))))
2097 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2098 REGNO (i2dest));
2100 m_split = split_insns (gen_rtx_PARALLEL
2101 (VOIDmode,
2102 gen_rtvec (2, newpat,
2103 gen_rtx_CLOBBER (VOIDmode,
2104 ni2dest))),
2105 i3);
2106 /* If the split with the mode-changed register didn't work, try
2107 the original register. */
2108 if (! m_split && ni2dest != i2dest)
2110 ni2dest = i2dest;
2111 m_split = split_insns (gen_rtx_PARALLEL
2112 (VOIDmode,
2113 gen_rtvec (2, newpat,
2114 gen_rtx_CLOBBER (VOIDmode,
2115 i2dest))),
2116 i3);
2120 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2122 m_split = PATTERN (m_split);
2123 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2124 if (insn_code_number >= 0)
2125 newpat = m_split;
2127 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2128 && (next_real_insn (i2) == i3
2129 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2131 rtx i2set, i3set;
2132 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2133 newi2pat = PATTERN (m_split);
2135 i3set = single_set (NEXT_INSN (m_split));
2136 i2set = single_set (m_split);
2138 /* In case we changed the mode of I2DEST, replace it in the
2139 pseudo-register table here. We can't do it above in case this
2140 code doesn't get executed and we do a split the other way. */
2142 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2143 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2145 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2147 /* If I2 or I3 has multiple SETs, we won't know how to track
2148 register status, so don't use these insns. If I2's destination
2149 is used between I2 and I3, we also can't use these insns. */
2151 if (i2_code_number >= 0 && i2set && i3set
2152 && (next_real_insn (i2) == i3
2153 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2154 insn_code_number = recog_for_combine (&newi3pat, i3,
2155 &new_i3_notes);
2156 if (insn_code_number >= 0)
2157 newpat = newi3pat;
2159 /* It is possible that both insns now set the destination of I3.
2160 If so, we must show an extra use of it. */
2162 if (insn_code_number >= 0)
2164 rtx new_i3_dest = SET_DEST (i3set);
2165 rtx new_i2_dest = SET_DEST (i2set);
2167 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2168 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2169 || GET_CODE (new_i3_dest) == SUBREG)
2170 new_i3_dest = XEXP (new_i3_dest, 0);
2172 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2173 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2174 || GET_CODE (new_i2_dest) == SUBREG)
2175 new_i2_dest = XEXP (new_i2_dest, 0);
2177 if (GET_CODE (new_i3_dest) == REG
2178 && GET_CODE (new_i2_dest) == REG
2179 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2180 REG_N_SETS (REGNO (new_i2_dest))++;
2184 /* If we can split it and use I2DEST, go ahead and see if that
2185 helps things be recognized. Verify that none of the registers
2186 are set between I2 and I3. */
2187 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2188 #ifdef HAVE_cc0
2189 && GET_CODE (i2dest) == REG
2190 #endif
2191 /* We need I2DEST in the proper mode. If it is a hard register
2192 or the only use of a pseudo, we can change its mode. */
2193 && (GET_MODE (*split) == GET_MODE (i2dest)
2194 || GET_MODE (*split) == VOIDmode
2195 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2196 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2197 && ! REG_USERVAR_P (i2dest)))
2198 && (next_real_insn (i2) == i3
2199 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2200 /* We can't overwrite I2DEST if its value is still used by
2201 NEWPAT. */
2202 && ! reg_referenced_p (i2dest, newpat))
2204 rtx newdest = i2dest;
2205 enum rtx_code split_code = GET_CODE (*split);
2206 enum machine_mode split_mode = GET_MODE (*split);
2208 /* Get NEWDEST as a register in the proper mode. We have already
2209 validated that we can do this. */
2210 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2212 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2214 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2215 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2218 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2219 an ASHIFT. This can occur if it was inside a PLUS and hence
2220 appeared to be a memory address. This is a kludge. */
2221 if (split_code == MULT
2222 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2223 && INTVAL (XEXP (*split, 1)) > 0
2224 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2226 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2227 XEXP (*split, 0), GEN_INT (i)));
2228 /* Update split_code because we may not have a multiply
2229 anymore. */
2230 split_code = GET_CODE (*split);
2233 #ifdef INSN_SCHEDULING
2234 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2235 be written as a ZERO_EXTEND. */
2236 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2238 #ifdef LOAD_EXTEND_OP
2239 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2240 what it really is. */
2241 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2242 == SIGN_EXTEND)
2243 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2244 SUBREG_REG (*split)));
2245 else
2246 #endif
2247 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2248 SUBREG_REG (*split)));
2250 #endif
2252 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2253 SUBST (*split, newdest);
2254 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2256 /* If the split point was a MULT and we didn't have one before,
2257 don't use one now. */
2258 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2259 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2263 /* Check for a case where we loaded from memory in a narrow mode and
2264 then sign extended it, but we need both registers. In that case,
2265 we have a PARALLEL with both loads from the same memory location.
2266 We can split this into a load from memory followed by a register-register
2267 copy. This saves at least one insn, more if register allocation can
2268 eliminate the copy.
2270 We cannot do this if the destination of the first assignment is a
2271 condition code register or cc0. We eliminate this case by making sure
2272 the SET_DEST and SET_SRC have the same mode.
2274 We cannot do this if the destination of the second assignment is
2275 a register that we have already assumed is zero-extended. Similarly
2276 for a SUBREG of such a register. */
2278 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2279 && GET_CODE (newpat) == PARALLEL
2280 && XVECLEN (newpat, 0) == 2
2281 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2282 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2283 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2284 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2285 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2286 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2287 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2288 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2289 INSN_CUID (i2))
2290 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2291 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2292 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2293 (GET_CODE (temp) == REG
2294 && reg_nonzero_bits[REGNO (temp)] != 0
2295 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2296 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2297 && (reg_nonzero_bits[REGNO (temp)]
2298 != GET_MODE_MASK (word_mode))))
2299 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2300 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2301 (GET_CODE (temp) == REG
2302 && reg_nonzero_bits[REGNO (temp)] != 0
2303 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2304 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2305 && (reg_nonzero_bits[REGNO (temp)]
2306 != GET_MODE_MASK (word_mode)))))
2307 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2308 SET_SRC (XVECEXP (newpat, 0, 1)))
2309 && ! find_reg_note (i3, REG_UNUSED,
2310 SET_DEST (XVECEXP (newpat, 0, 0))))
2312 rtx ni2dest;
2314 newi2pat = XVECEXP (newpat, 0, 0);
2315 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2316 newpat = XVECEXP (newpat, 0, 1);
2317 SUBST (SET_SRC (newpat),
2318 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2319 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2321 if (i2_code_number >= 0)
2322 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2324 if (insn_code_number >= 0)
2326 rtx insn;
2327 rtx link;
2329 /* If we will be able to accept this, we have made a change to the
2330 destination of I3. This can invalidate a LOG_LINKS pointing
2331 to I3. No other part of combine.c makes such a transformation.
2333 The new I3 will have a destination that was previously the
2334 destination of I1 or I2 and which was used in i2 or I3. Call
2335 distribute_links to make a LOG_LINK from the next use of
2336 that destination. */
2338 PATTERN (i3) = newpat;
2339 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2341 /* I3 now uses what used to be its destination and which is
2342 now I2's destination. That means we need a LOG_LINK from
2343 I3 to I2. But we used to have one, so we still will.
2345 However, some later insn might be using I2's dest and have
2346 a LOG_LINK pointing at I3. We must remove this link.
2347 The simplest way to remove the link is to point it at I1,
2348 which we know will be a NOTE. */
2350 for (insn = NEXT_INSN (i3);
2351 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2352 || insn != this_basic_block->next_bb->head);
2353 insn = NEXT_INSN (insn))
2355 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2357 for (link = LOG_LINKS (insn); link;
2358 link = XEXP (link, 1))
2359 if (XEXP (link, 0) == i3)
2360 XEXP (link, 0) = i1;
2362 break;
2368 /* Similarly, check for a case where we have a PARALLEL of two independent
2369 SETs but we started with three insns. In this case, we can do the sets
2370 as two separate insns. This case occurs when some SET allows two
2371 other insns to combine, but the destination of that SET is still live. */
2373 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2374 && GET_CODE (newpat) == PARALLEL
2375 && XVECLEN (newpat, 0) == 2
2376 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2377 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2378 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2379 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2380 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2381 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2382 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2383 INSN_CUID (i2))
2384 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2385 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2386 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2387 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2388 XVECEXP (newpat, 0, 0))
2389 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2390 XVECEXP (newpat, 0, 1))
2391 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2392 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2394 /* Normally, it doesn't matter which of the two is done first,
2395 but it does if one references cc0. In that case, it has to
2396 be first. */
2397 #ifdef HAVE_cc0
2398 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2400 newi2pat = XVECEXP (newpat, 0, 0);
2401 newpat = XVECEXP (newpat, 0, 1);
2403 else
2404 #endif
2406 newi2pat = XVECEXP (newpat, 0, 1);
2407 newpat = XVECEXP (newpat, 0, 0);
2410 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2412 if (i2_code_number >= 0)
2413 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2416 /* If it still isn't recognized, fail and change things back the way they
2417 were. */
2418 if ((insn_code_number < 0
2419 /* Is the result a reasonable ASM_OPERANDS? */
2420 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2422 undo_all ();
2423 return 0;
2426 /* If we had to change another insn, make sure it is valid also. */
2427 if (undobuf.other_insn)
2429 rtx other_pat = PATTERN (undobuf.other_insn);
2430 rtx new_other_notes;
2431 rtx note, next;
2433 CLEAR_HARD_REG_SET (newpat_used_regs);
2435 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2436 &new_other_notes);
2438 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2440 undo_all ();
2441 return 0;
2444 PATTERN (undobuf.other_insn) = other_pat;
2446 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2447 are still valid. Then add any non-duplicate notes added by
2448 recog_for_combine. */
2449 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2451 next = XEXP (note, 1);
2453 if (REG_NOTE_KIND (note) == REG_UNUSED
2454 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2456 if (GET_CODE (XEXP (note, 0)) == REG)
2457 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2459 remove_note (undobuf.other_insn, note);
2463 for (note = new_other_notes; note; note = XEXP (note, 1))
2464 if (GET_CODE (XEXP (note, 0)) == REG)
2465 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2467 distribute_notes (new_other_notes, undobuf.other_insn,
2468 undobuf.other_insn, NULL_RTX);
2470 #ifdef HAVE_cc0
2471 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2472 they are adjacent to each other or not. */
2474 rtx p = prev_nonnote_insn (i3);
2475 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2476 && sets_cc0_p (newi2pat))
2478 undo_all ();
2479 return 0;
2482 #endif
2484 /* We now know that we can do this combination. Merge the insns and
2485 update the status of registers and LOG_LINKS. */
2488 rtx i3notes, i2notes, i1notes = 0;
2489 rtx i3links, i2links, i1links = 0;
2490 rtx midnotes = 0;
2491 unsigned int regno;
2493 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2494 clear them. */
2495 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2496 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2497 if (i1)
2498 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2500 /* Ensure that we do not have something that should not be shared but
2501 occurs multiple times in the new insns. Check this by first
2502 resetting all the `used' flags and then copying anything is shared. */
2504 reset_used_flags (i3notes);
2505 reset_used_flags (i2notes);
2506 reset_used_flags (i1notes);
2507 reset_used_flags (newpat);
2508 reset_used_flags (newi2pat);
2509 if (undobuf.other_insn)
2510 reset_used_flags (PATTERN (undobuf.other_insn));
2512 i3notes = copy_rtx_if_shared (i3notes);
2513 i2notes = copy_rtx_if_shared (i2notes);
2514 i1notes = copy_rtx_if_shared (i1notes);
2515 newpat = copy_rtx_if_shared (newpat);
2516 newi2pat = copy_rtx_if_shared (newi2pat);
2517 if (undobuf.other_insn)
2518 reset_used_flags (PATTERN (undobuf.other_insn));
2520 INSN_CODE (i3) = insn_code_number;
2521 PATTERN (i3) = newpat;
2523 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2525 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2527 reset_used_flags (call_usage);
2528 call_usage = copy_rtx (call_usage);
2530 if (substed_i2)
2531 replace_rtx (call_usage, i2dest, i2src);
2533 if (substed_i1)
2534 replace_rtx (call_usage, i1dest, i1src);
2536 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2539 if (undobuf.other_insn)
2540 INSN_CODE (undobuf.other_insn) = other_code_number;
2542 /* We had one special case above where I2 had more than one set and
2543 we replaced a destination of one of those sets with the destination
2544 of I3. In that case, we have to update LOG_LINKS of insns later
2545 in this basic block. Note that this (expensive) case is rare.
2547 Also, in this case, we must pretend that all REG_NOTEs for I2
2548 actually came from I3, so that REG_UNUSED notes from I2 will be
2549 properly handled. */
2551 if (i3_subst_into_i2)
2553 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2554 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2555 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2556 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2557 && ! find_reg_note (i2, REG_UNUSED,
2558 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2559 for (temp = NEXT_INSN (i2);
2560 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2561 || this_basic_block->head != temp);
2562 temp = NEXT_INSN (temp))
2563 if (temp != i3 && INSN_P (temp))
2564 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2565 if (XEXP (link, 0) == i2)
2566 XEXP (link, 0) = i3;
2568 if (i3notes)
2570 rtx link = i3notes;
2571 while (XEXP (link, 1))
2572 link = XEXP (link, 1);
2573 XEXP (link, 1) = i2notes;
2575 else
2576 i3notes = i2notes;
2577 i2notes = 0;
2580 LOG_LINKS (i3) = 0;
2581 REG_NOTES (i3) = 0;
2582 LOG_LINKS (i2) = 0;
2583 REG_NOTES (i2) = 0;
2585 if (newi2pat)
2587 INSN_CODE (i2) = i2_code_number;
2588 PATTERN (i2) = newi2pat;
2590 else
2592 PUT_CODE (i2, NOTE);
2593 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2594 NOTE_SOURCE_FILE (i2) = 0;
2597 if (i1)
2599 LOG_LINKS (i1) = 0;
2600 REG_NOTES (i1) = 0;
2601 PUT_CODE (i1, NOTE);
2602 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2603 NOTE_SOURCE_FILE (i1) = 0;
2606 /* Get death notes for everything that is now used in either I3 or
2607 I2 and used to die in a previous insn. If we built two new
2608 patterns, move from I1 to I2 then I2 to I3 so that we get the
2609 proper movement on registers that I2 modifies. */
2611 if (newi2pat)
2613 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2614 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2616 else
2617 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2618 i3, &midnotes);
2620 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2621 if (i3notes)
2622 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2623 if (i2notes)
2624 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2625 if (i1notes)
2626 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2627 if (midnotes)
2628 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2630 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2631 know these are REG_UNUSED and want them to go to the desired insn,
2632 so we always pass it as i3. We have not counted the notes in
2633 reg_n_deaths yet, so we need to do so now. */
2635 if (newi2pat && new_i2_notes)
2637 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2638 if (GET_CODE (XEXP (temp, 0)) == REG)
2639 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2641 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2644 if (new_i3_notes)
2646 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2647 if (GET_CODE (XEXP (temp, 0)) == REG)
2648 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2650 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2653 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2654 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2655 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2656 in that case, it might delete I2. Similarly for I2 and I1.
2657 Show an additional death due to the REG_DEAD note we make here. If
2658 we discard it in distribute_notes, we will decrement it again. */
2660 if (i3dest_killed)
2662 if (GET_CODE (i3dest_killed) == REG)
2663 REG_N_DEATHS (REGNO (i3dest_killed))++;
2665 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2666 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2667 NULL_RTX),
2668 NULL_RTX, i2, NULL_RTX);
2669 else
2670 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2671 NULL_RTX),
2672 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2675 if (i2dest_in_i2src)
2677 if (GET_CODE (i2dest) == REG)
2678 REG_N_DEATHS (REGNO (i2dest))++;
2680 if (newi2pat && reg_set_p (i2dest, newi2pat))
2681 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2682 NULL_RTX, i2, NULL_RTX);
2683 else
2684 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2685 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2688 if (i1dest_in_i1src)
2690 if (GET_CODE (i1dest) == REG)
2691 REG_N_DEATHS (REGNO (i1dest))++;
2693 if (newi2pat && reg_set_p (i1dest, newi2pat))
2694 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2695 NULL_RTX, i2, NULL_RTX);
2696 else
2697 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2698 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2701 distribute_links (i3links);
2702 distribute_links (i2links);
2703 distribute_links (i1links);
2705 if (GET_CODE (i2dest) == REG)
2707 rtx link;
2708 rtx i2_insn = 0, i2_val = 0, set;
2710 /* The insn that used to set this register doesn't exist, and
2711 this life of the register may not exist either. See if one of
2712 I3's links points to an insn that sets I2DEST. If it does,
2713 that is now the last known value for I2DEST. If we don't update
2714 this and I2 set the register to a value that depended on its old
2715 contents, we will get confused. If this insn is used, thing
2716 will be set correctly in combine_instructions. */
2718 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2719 if ((set = single_set (XEXP (link, 0))) != 0
2720 && rtx_equal_p (i2dest, SET_DEST (set)))
2721 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2723 record_value_for_reg (i2dest, i2_insn, i2_val);
2725 /* If the reg formerly set in I2 died only once and that was in I3,
2726 zero its use count so it won't make `reload' do any work. */
2727 if (! added_sets_2
2728 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2729 && ! i2dest_in_i2src)
2731 regno = REGNO (i2dest);
2732 REG_N_SETS (regno)--;
2736 if (i1 && GET_CODE (i1dest) == REG)
2738 rtx link;
2739 rtx i1_insn = 0, i1_val = 0, set;
2741 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2742 if ((set = single_set (XEXP (link, 0))) != 0
2743 && rtx_equal_p (i1dest, SET_DEST (set)))
2744 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2746 record_value_for_reg (i1dest, i1_insn, i1_val);
2748 regno = REGNO (i1dest);
2749 if (! added_sets_1 && ! i1dest_in_i1src)
2750 REG_N_SETS (regno)--;
2753 /* Update reg_nonzero_bits et al for any changes that may have been made
2754 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2755 important. Because newi2pat can affect nonzero_bits of newpat */
2756 if (newi2pat)
2757 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2758 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2760 /* Set new_direct_jump_p if a new return or simple jump instruction
2761 has been created.
2763 If I3 is now an unconditional jump, ensure that it has a
2764 BARRIER following it since it may have initially been a
2765 conditional jump. It may also be the last nonnote insn. */
2767 if (returnjump_p (i3) || any_uncondjump_p (i3))
2769 *new_direct_jump_p = 1;
2770 mark_jump_label (PATTERN (i3), i3, 0);
2772 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2773 || GET_CODE (temp) != BARRIER)
2774 emit_barrier_after (i3);
2777 if (undobuf.other_insn != NULL_RTX
2778 && (returnjump_p (undobuf.other_insn)
2779 || any_uncondjump_p (undobuf.other_insn)))
2781 *new_direct_jump_p = 1;
2783 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2784 || GET_CODE (temp) != BARRIER)
2785 emit_barrier_after (undobuf.other_insn);
2788 /* An NOOP jump does not need barrier, but it does need cleaning up
2789 of CFG. */
2790 if (GET_CODE (newpat) == SET
2791 && SET_SRC (newpat) == pc_rtx
2792 && SET_DEST (newpat) == pc_rtx)
2793 *new_direct_jump_p = 1;
2796 combine_successes++;
2797 undo_commit ();
2799 if (added_links_insn
2800 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2801 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2802 return added_links_insn;
2803 else
2804 return newi2pat ? i2 : i3;
2807 /* Undo all the modifications recorded in undobuf. */
2809 static void
2810 undo_all (void)
2812 struct undo *undo, *next;
2814 for (undo = undobuf.undos; undo; undo = next)
2816 next = undo->next;
2817 if (undo->is_int)
2818 *undo->where.i = undo->old_contents.i;
2819 else
2820 *undo->where.r = undo->old_contents.r;
2822 undo->next = undobuf.frees;
2823 undobuf.frees = undo;
2826 undobuf.undos = 0;
2829 /* We've committed to accepting the changes we made. Move all
2830 of the undos to the free list. */
2832 static void
2833 undo_commit (void)
2835 struct undo *undo, *next;
2837 for (undo = undobuf.undos; undo; undo = next)
2839 next = undo->next;
2840 undo->next = undobuf.frees;
2841 undobuf.frees = undo;
2843 undobuf.undos = 0;
2847 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2848 where we have an arithmetic expression and return that point. LOC will
2849 be inside INSN.
2851 try_combine will call this function to see if an insn can be split into
2852 two insns. */
2854 static rtx *
2855 find_split_point (rtx *loc, rtx insn)
2857 rtx x = *loc;
2858 enum rtx_code code = GET_CODE (x);
2859 rtx *split;
2860 unsigned HOST_WIDE_INT len = 0;
2861 HOST_WIDE_INT pos = 0;
2862 int unsignedp = 0;
2863 rtx inner = NULL_RTX;
2865 /* First special-case some codes. */
2866 switch (code)
2868 case SUBREG:
2869 #ifdef INSN_SCHEDULING
2870 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2871 point. */
2872 if (GET_CODE (SUBREG_REG (x)) == MEM)
2873 return loc;
2874 #endif
2875 return find_split_point (&SUBREG_REG (x), insn);
2877 case MEM:
2878 #ifdef HAVE_lo_sum
2879 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2880 using LO_SUM and HIGH. */
2881 if (GET_CODE (XEXP (x, 0)) == CONST
2882 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2884 SUBST (XEXP (x, 0),
2885 gen_rtx_LO_SUM (Pmode,
2886 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2887 XEXP (x, 0)));
2888 return &XEXP (XEXP (x, 0), 0);
2890 #endif
2892 /* If we have a PLUS whose second operand is a constant and the
2893 address is not valid, perhaps will can split it up using
2894 the machine-specific way to split large constants. We use
2895 the first pseudo-reg (one of the virtual regs) as a placeholder;
2896 it will not remain in the result. */
2897 if (GET_CODE (XEXP (x, 0)) == PLUS
2898 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2899 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2901 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2902 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2903 subst_insn);
2905 /* This should have produced two insns, each of which sets our
2906 placeholder. If the source of the second is a valid address,
2907 we can make put both sources together and make a split point
2908 in the middle. */
2910 if (seq
2911 && NEXT_INSN (seq) != NULL_RTX
2912 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
2913 && GET_CODE (seq) == INSN
2914 && GET_CODE (PATTERN (seq)) == SET
2915 && SET_DEST (PATTERN (seq)) == reg
2916 && ! reg_mentioned_p (reg,
2917 SET_SRC (PATTERN (seq)))
2918 && GET_CODE (NEXT_INSN (seq)) == INSN
2919 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
2920 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
2921 && memory_address_p (GET_MODE (x),
2922 SET_SRC (PATTERN (NEXT_INSN (seq)))))
2924 rtx src1 = SET_SRC (PATTERN (seq));
2925 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
2927 /* Replace the placeholder in SRC2 with SRC1. If we can
2928 find where in SRC2 it was placed, that can become our
2929 split point and we can replace this address with SRC2.
2930 Just try two obvious places. */
2932 src2 = replace_rtx (src2, reg, src1);
2933 split = 0;
2934 if (XEXP (src2, 0) == src1)
2935 split = &XEXP (src2, 0);
2936 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2937 && XEXP (XEXP (src2, 0), 0) == src1)
2938 split = &XEXP (XEXP (src2, 0), 0);
2940 if (split)
2942 SUBST (XEXP (x, 0), src2);
2943 return split;
2947 /* If that didn't work, perhaps the first operand is complex and
2948 needs to be computed separately, so make a split point there.
2949 This will occur on machines that just support REG + CONST
2950 and have a constant moved through some previous computation. */
2952 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
2953 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
2954 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
2955 == 'o')))
2956 return &XEXP (XEXP (x, 0), 0);
2958 break;
2960 case SET:
2961 #ifdef HAVE_cc0
2962 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2963 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2964 we need to put the operand into a register. So split at that
2965 point. */
2967 if (SET_DEST (x) == cc0_rtx
2968 && GET_CODE (SET_SRC (x)) != COMPARE
2969 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
2970 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
2971 && ! (GET_CODE (SET_SRC (x)) == SUBREG
2972 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
2973 return &SET_SRC (x);
2974 #endif
2976 /* See if we can split SET_SRC as it stands. */
2977 split = find_split_point (&SET_SRC (x), insn);
2978 if (split && split != &SET_SRC (x))
2979 return split;
2981 /* See if we can split SET_DEST as it stands. */
2982 split = find_split_point (&SET_DEST (x), insn);
2983 if (split && split != &SET_DEST (x))
2984 return split;
2986 /* See if this is a bitfield assignment with everything constant. If
2987 so, this is an IOR of an AND, so split it into that. */
2988 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2989 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2990 <= HOST_BITS_PER_WIDE_INT)
2991 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
2992 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
2993 && GET_CODE (SET_SRC (x)) == CONST_INT
2994 && ((INTVAL (XEXP (SET_DEST (x), 1))
2995 + INTVAL (XEXP (SET_DEST (x), 2)))
2996 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
2997 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
2999 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3000 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3001 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3002 rtx dest = XEXP (SET_DEST (x), 0);
3003 enum machine_mode mode = GET_MODE (dest);
3004 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3006 if (BITS_BIG_ENDIAN)
3007 pos = GET_MODE_BITSIZE (mode) - len - pos;
3009 if (src == mask)
3010 SUBST (SET_SRC (x),
3011 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3012 else
3013 SUBST (SET_SRC (x),
3014 gen_binary (IOR, mode,
3015 gen_binary (AND, mode, dest,
3016 gen_int_mode (~(mask << pos),
3017 mode)),
3018 GEN_INT (src << pos)));
3020 SUBST (SET_DEST (x), dest);
3022 split = find_split_point (&SET_SRC (x), insn);
3023 if (split && split != &SET_SRC (x))
3024 return split;
3027 /* Otherwise, see if this is an operation that we can split into two.
3028 If so, try to split that. */
3029 code = GET_CODE (SET_SRC (x));
3031 switch (code)
3033 case AND:
3034 /* If we are AND'ing with a large constant that is only a single
3035 bit and the result is only being used in a context where we
3036 need to know if it is zero or nonzero, replace it with a bit
3037 extraction. This will avoid the large constant, which might
3038 have taken more than one insn to make. If the constant were
3039 not a valid argument to the AND but took only one insn to make,
3040 this is no worse, but if it took more than one insn, it will
3041 be better. */
3043 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3044 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3045 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3046 && GET_CODE (SET_DEST (x)) == REG
3047 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3048 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3049 && XEXP (*split, 0) == SET_DEST (x)
3050 && XEXP (*split, 1) == const0_rtx)
3052 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3053 XEXP (SET_SRC (x), 0),
3054 pos, NULL_RTX, 1, 1, 0, 0);
3055 if (extraction != 0)
3057 SUBST (SET_SRC (x), extraction);
3058 return find_split_point (loc, insn);
3061 break;
3063 case NE:
3064 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3065 is known to be on, this can be converted into a NEG of a shift. */
3066 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3067 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3068 && 1 <= (pos = exact_log2
3069 (nonzero_bits (XEXP (SET_SRC (x), 0),
3070 GET_MODE (XEXP (SET_SRC (x), 0))))))
3072 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3074 SUBST (SET_SRC (x),
3075 gen_rtx_NEG (mode,
3076 gen_rtx_LSHIFTRT (mode,
3077 XEXP (SET_SRC (x), 0),
3078 GEN_INT (pos))));
3080 split = find_split_point (&SET_SRC (x), insn);
3081 if (split && split != &SET_SRC (x))
3082 return split;
3084 break;
3086 case SIGN_EXTEND:
3087 inner = XEXP (SET_SRC (x), 0);
3089 /* We can't optimize if either mode is a partial integer
3090 mode as we don't know how many bits are significant
3091 in those modes. */
3092 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3093 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3094 break;
3096 pos = 0;
3097 len = GET_MODE_BITSIZE (GET_MODE (inner));
3098 unsignedp = 0;
3099 break;
3101 case SIGN_EXTRACT:
3102 case ZERO_EXTRACT:
3103 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3104 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3106 inner = XEXP (SET_SRC (x), 0);
3107 len = INTVAL (XEXP (SET_SRC (x), 1));
3108 pos = INTVAL (XEXP (SET_SRC (x), 2));
3110 if (BITS_BIG_ENDIAN)
3111 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3112 unsignedp = (code == ZERO_EXTRACT);
3114 break;
3116 default:
3117 break;
3120 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3122 enum machine_mode mode = GET_MODE (SET_SRC (x));
3124 /* For unsigned, we have a choice of a shift followed by an
3125 AND or two shifts. Use two shifts for field sizes where the
3126 constant might be too large. We assume here that we can
3127 always at least get 8-bit constants in an AND insn, which is
3128 true for every current RISC. */
3130 if (unsignedp && len <= 8)
3132 SUBST (SET_SRC (x),
3133 gen_rtx_AND (mode,
3134 gen_rtx_LSHIFTRT
3135 (mode, gen_lowpart_for_combine (mode, inner),
3136 GEN_INT (pos)),
3137 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3139 split = find_split_point (&SET_SRC (x), insn);
3140 if (split && split != &SET_SRC (x))
3141 return split;
3143 else
3145 SUBST (SET_SRC (x),
3146 gen_rtx_fmt_ee
3147 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3148 gen_rtx_ASHIFT (mode,
3149 gen_lowpart_for_combine (mode, inner),
3150 GEN_INT (GET_MODE_BITSIZE (mode)
3151 - len - pos)),
3152 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3154 split = find_split_point (&SET_SRC (x), insn);
3155 if (split && split != &SET_SRC (x))
3156 return split;
3160 /* See if this is a simple operation with a constant as the second
3161 operand. It might be that this constant is out of range and hence
3162 could be used as a split point. */
3163 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3164 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3165 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3166 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3167 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3168 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3169 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3170 == 'o'))))
3171 return &XEXP (SET_SRC (x), 1);
3173 /* Finally, see if this is a simple operation with its first operand
3174 not in a register. The operation might require this operand in a
3175 register, so return it as a split point. We can always do this
3176 because if the first operand were another operation, we would have
3177 already found it as a split point. */
3178 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3179 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3180 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3181 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3182 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3183 return &XEXP (SET_SRC (x), 0);
3185 return 0;
3187 case AND:
3188 case IOR:
3189 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3190 it is better to write this as (not (ior A B)) so we can split it.
3191 Similarly for IOR. */
3192 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3194 SUBST (*loc,
3195 gen_rtx_NOT (GET_MODE (x),
3196 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3197 GET_MODE (x),
3198 XEXP (XEXP (x, 0), 0),
3199 XEXP (XEXP (x, 1), 0))));
3200 return find_split_point (loc, insn);
3203 /* Many RISC machines have a large set of logical insns. If the
3204 second operand is a NOT, put it first so we will try to split the
3205 other operand first. */
3206 if (GET_CODE (XEXP (x, 1)) == NOT)
3208 rtx tem = XEXP (x, 0);
3209 SUBST (XEXP (x, 0), XEXP (x, 1));
3210 SUBST (XEXP (x, 1), tem);
3212 break;
3214 default:
3215 break;
3218 /* Otherwise, select our actions depending on our rtx class. */
3219 switch (GET_RTX_CLASS (code))
3221 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3222 case '3':
3223 split = find_split_point (&XEXP (x, 2), insn);
3224 if (split)
3225 return split;
3226 /* ... fall through ... */
3227 case '2':
3228 case 'c':
3229 case '<':
3230 split = find_split_point (&XEXP (x, 1), insn);
3231 if (split)
3232 return split;
3233 /* ... fall through ... */
3234 case '1':
3235 /* Some machines have (and (shift ...) ...) insns. If X is not
3236 an AND, but XEXP (X, 0) is, use it as our split point. */
3237 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3238 return &XEXP (x, 0);
3240 split = find_split_point (&XEXP (x, 0), insn);
3241 if (split)
3242 return split;
3243 return loc;
3246 /* Otherwise, we don't have a split point. */
3247 return 0;
3250 /* Throughout X, replace FROM with TO, and return the result.
3251 The result is TO if X is FROM;
3252 otherwise the result is X, but its contents may have been modified.
3253 If they were modified, a record was made in undobuf so that
3254 undo_all will (among other things) return X to its original state.
3256 If the number of changes necessary is too much to record to undo,
3257 the excess changes are not made, so the result is invalid.
3258 The changes already made can still be undone.
3259 undobuf.num_undo is incremented for such changes, so by testing that
3260 the caller can tell whether the result is valid.
3262 `n_occurrences' is incremented each time FROM is replaced.
3264 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3266 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3267 by copying if `n_occurrences' is nonzero. */
3269 static rtx
3270 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3272 enum rtx_code code = GET_CODE (x);
3273 enum machine_mode op0_mode = VOIDmode;
3274 const char *fmt;
3275 int len, i;
3276 rtx new;
3278 /* Two expressions are equal if they are identical copies of a shared
3279 RTX or if they are both registers with the same register number
3280 and mode. */
3282 #define COMBINE_RTX_EQUAL_P(X,Y) \
3283 ((X) == (Y) \
3284 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3285 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3287 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3289 n_occurrences++;
3290 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3293 /* If X and FROM are the same register but different modes, they will
3294 not have been seen as equal above. However, flow.c will make a
3295 LOG_LINKS entry for that case. If we do nothing, we will try to
3296 rerecognize our original insn and, when it succeeds, we will
3297 delete the feeding insn, which is incorrect.
3299 So force this insn not to match in this (rare) case. */
3300 if (! in_dest && code == REG && GET_CODE (from) == REG
3301 && REGNO (x) == REGNO (from))
3302 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3304 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3305 of which may contain things that can be combined. */
3306 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3307 return x;
3309 /* It is possible to have a subexpression appear twice in the insn.
3310 Suppose that FROM is a register that appears within TO.
3311 Then, after that subexpression has been scanned once by `subst',
3312 the second time it is scanned, TO may be found. If we were
3313 to scan TO here, we would find FROM within it and create a
3314 self-referent rtl structure which is completely wrong. */
3315 if (COMBINE_RTX_EQUAL_P (x, to))
3316 return to;
3318 /* Parallel asm_operands need special attention because all of the
3319 inputs are shared across the arms. Furthermore, unsharing the
3320 rtl results in recognition failures. Failure to handle this case
3321 specially can result in circular rtl.
3323 Solve this by doing a normal pass across the first entry of the
3324 parallel, and only processing the SET_DESTs of the subsequent
3325 entries. Ug. */
3327 if (code == PARALLEL
3328 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3329 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3331 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3333 /* If this substitution failed, this whole thing fails. */
3334 if (GET_CODE (new) == CLOBBER
3335 && XEXP (new, 0) == const0_rtx)
3336 return new;
3338 SUBST (XVECEXP (x, 0, 0), new);
3340 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3342 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3344 if (GET_CODE (dest) != REG
3345 && GET_CODE (dest) != CC0
3346 && GET_CODE (dest) != PC)
3348 new = subst (dest, from, to, 0, unique_copy);
3350 /* If this substitution failed, this whole thing fails. */
3351 if (GET_CODE (new) == CLOBBER
3352 && XEXP (new, 0) == const0_rtx)
3353 return new;
3355 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3359 else
3361 len = GET_RTX_LENGTH (code);
3362 fmt = GET_RTX_FORMAT (code);
3364 /* We don't need to process a SET_DEST that is a register, CC0,
3365 or PC, so set up to skip this common case. All other cases
3366 where we want to suppress replacing something inside a
3367 SET_SRC are handled via the IN_DEST operand. */
3368 if (code == SET
3369 && (GET_CODE (SET_DEST (x)) == REG
3370 || GET_CODE (SET_DEST (x)) == CC0
3371 || GET_CODE (SET_DEST (x)) == PC))
3372 fmt = "ie";
3374 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3375 constant. */
3376 if (fmt[0] == 'e')
3377 op0_mode = GET_MODE (XEXP (x, 0));
3379 for (i = 0; i < len; i++)
3381 if (fmt[i] == 'E')
3383 int j;
3384 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3386 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3388 new = (unique_copy && n_occurrences
3389 ? copy_rtx (to) : to);
3390 n_occurrences++;
3392 else
3394 new = subst (XVECEXP (x, i, j), from, to, 0,
3395 unique_copy);
3397 /* If this substitution failed, this whole thing
3398 fails. */
3399 if (GET_CODE (new) == CLOBBER
3400 && XEXP (new, 0) == const0_rtx)
3401 return new;
3404 SUBST (XVECEXP (x, i, j), new);
3407 else if (fmt[i] == 'e')
3409 /* If this is a register being set, ignore it. */
3410 new = XEXP (x, i);
3411 if (in_dest
3412 && (code == SUBREG || code == STRICT_LOW_PART
3413 || code == ZERO_EXTRACT)
3414 && i == 0
3415 && GET_CODE (new) == REG)
3418 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3420 /* In general, don't install a subreg involving two
3421 modes not tieable. It can worsen register
3422 allocation, and can even make invalid reload
3423 insns, since the reg inside may need to be copied
3424 from in the outside mode, and that may be invalid
3425 if it is an fp reg copied in integer mode.
3427 We allow two exceptions to this: It is valid if
3428 it is inside another SUBREG and the mode of that
3429 SUBREG and the mode of the inside of TO is
3430 tieable and it is valid if X is a SET that copies
3431 FROM to CC0. */
3433 if (GET_CODE (to) == SUBREG
3434 && ! MODES_TIEABLE_P (GET_MODE (to),
3435 GET_MODE (SUBREG_REG (to)))
3436 && ! (code == SUBREG
3437 && MODES_TIEABLE_P (GET_MODE (x),
3438 GET_MODE (SUBREG_REG (to))))
3439 #ifdef HAVE_cc0
3440 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3441 #endif
3443 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3445 #ifdef CANNOT_CHANGE_MODE_CLASS
3446 if (code == SUBREG
3447 && GET_CODE (to) == REG
3448 && REGNO (to) < FIRST_PSEUDO_REGISTER
3449 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3450 GET_MODE (to),
3451 GET_MODE (x)))
3452 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3453 #endif
3455 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3456 n_occurrences++;
3458 else
3459 /* If we are in a SET_DEST, suppress most cases unless we
3460 have gone inside a MEM, in which case we want to
3461 simplify the address. We assume here that things that
3462 are actually part of the destination have their inner
3463 parts in the first expression. This is true for SUBREG,
3464 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3465 things aside from REG and MEM that should appear in a
3466 SET_DEST. */
3467 new = subst (XEXP (x, i), from, to,
3468 (((in_dest
3469 && (code == SUBREG || code == STRICT_LOW_PART
3470 || code == ZERO_EXTRACT))
3471 || code == SET)
3472 && i == 0), unique_copy);
3474 /* If we found that we will have to reject this combination,
3475 indicate that by returning the CLOBBER ourselves, rather than
3476 an expression containing it. This will speed things up as
3477 well as prevent accidents where two CLOBBERs are considered
3478 to be equal, thus producing an incorrect simplification. */
3480 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3481 return new;
3483 if (GET_CODE (x) == SUBREG
3484 && (GET_CODE (new) == CONST_INT
3485 || GET_CODE (new) == CONST_DOUBLE))
3487 enum machine_mode mode = GET_MODE (x);
3489 x = simplify_subreg (GET_MODE (x), new,
3490 GET_MODE (SUBREG_REG (x)),
3491 SUBREG_BYTE (x));
3492 if (! x)
3493 x = gen_rtx_CLOBBER (mode, const0_rtx);
3495 else if (GET_CODE (new) == CONST_INT
3496 && GET_CODE (x) == ZERO_EXTEND)
3498 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3499 new, GET_MODE (XEXP (x, 0)));
3500 if (! x)
3501 abort ();
3503 else
3504 SUBST (XEXP (x, i), new);
3509 /* Try to simplify X. If the simplification changed the code, it is likely
3510 that further simplification will help, so loop, but limit the number
3511 of repetitions that will be performed. */
3513 for (i = 0; i < 4; i++)
3515 /* If X is sufficiently simple, don't bother trying to do anything
3516 with it. */
3517 if (code != CONST_INT && code != REG && code != CLOBBER)
3518 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3520 if (GET_CODE (x) == code)
3521 break;
3523 code = GET_CODE (x);
3525 /* We no longer know the original mode of operand 0 since we
3526 have changed the form of X) */
3527 op0_mode = VOIDmode;
3530 return x;
3533 /* Simplify X, a piece of RTL. We just operate on the expression at the
3534 outer level; call `subst' to simplify recursively. Return the new
3535 expression.
3537 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3538 will be the iteration even if an expression with a code different from
3539 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3541 static rtx
3542 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int last,
3543 int in_dest)
3545 enum rtx_code code = GET_CODE (x);
3546 enum machine_mode mode = GET_MODE (x);
3547 rtx temp;
3548 rtx reversed;
3549 int i;
3551 /* If this is a commutative operation, put a constant last and a complex
3552 expression first. We don't need to do this for comparisons here. */
3553 if (GET_RTX_CLASS (code) == 'c'
3554 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3556 temp = XEXP (x, 0);
3557 SUBST (XEXP (x, 0), XEXP (x, 1));
3558 SUBST (XEXP (x, 1), temp);
3561 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3562 sign extension of a PLUS with a constant, reverse the order of the sign
3563 extension and the addition. Note that this not the same as the original
3564 code, but overflow is undefined for signed values. Also note that the
3565 PLUS will have been partially moved "inside" the sign-extension, so that
3566 the first operand of X will really look like:
3567 (ashiftrt (plus (ashift A C4) C5) C4).
3568 We convert this to
3569 (plus (ashiftrt (ashift A C4) C2) C4)
3570 and replace the first operand of X with that expression. Later parts
3571 of this function may simplify the expression further.
3573 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3574 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3575 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3577 We do this to simplify address expressions. */
3579 if ((code == PLUS || code == MINUS || code == MULT)
3580 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3581 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3582 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3583 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3584 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3585 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3586 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3587 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3588 XEXP (XEXP (XEXP (x, 0), 0), 1),
3589 XEXP (XEXP (x, 0), 1))) != 0)
3591 rtx new
3592 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3593 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3594 INTVAL (XEXP (XEXP (x, 0), 1)));
3596 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3597 INTVAL (XEXP (XEXP (x, 0), 1)));
3599 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3602 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3603 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3604 things. Check for cases where both arms are testing the same
3605 condition.
3607 Don't do anything if all operands are very simple. */
3609 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3610 || GET_RTX_CLASS (code) == '<')
3611 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3612 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3613 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3614 == 'o')))
3615 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3616 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3617 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3618 == 'o')))))
3619 || (GET_RTX_CLASS (code) == '1'
3620 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3621 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3622 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3623 == 'o'))))))
3625 rtx cond, true_rtx, false_rtx;
3627 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3628 if (cond != 0
3629 /* If everything is a comparison, what we have is highly unlikely
3630 to be simpler, so don't use it. */
3631 && ! (GET_RTX_CLASS (code) == '<'
3632 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3633 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3635 rtx cop1 = const0_rtx;
3636 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3638 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3639 return x;
3641 /* Simplify the alternative arms; this may collapse the true and
3642 false arms to store-flag values. Be careful to use copy_rtx
3643 here since true_rtx or false_rtx might share RTL with x as a
3644 result of the if_then_else_cond call above. */
3645 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3646 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3648 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3649 is unlikely to be simpler. */
3650 if (general_operand (true_rtx, VOIDmode)
3651 && general_operand (false_rtx, VOIDmode))
3653 enum rtx_code reversed;
3655 /* Restarting if we generate a store-flag expression will cause
3656 us to loop. Just drop through in this case. */
3658 /* If the result values are STORE_FLAG_VALUE and zero, we can
3659 just make the comparison operation. */
3660 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3661 x = gen_binary (cond_code, mode, cond, cop1);
3662 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3663 && ((reversed = reversed_comparison_code_parts
3664 (cond_code, cond, cop1, NULL))
3665 != UNKNOWN))
3666 x = gen_binary (reversed, mode, cond, cop1);
3668 /* Likewise, we can make the negate of a comparison operation
3669 if the result values are - STORE_FLAG_VALUE and zero. */
3670 else if (GET_CODE (true_rtx) == CONST_INT
3671 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3672 && false_rtx == const0_rtx)
3673 x = simplify_gen_unary (NEG, mode,
3674 gen_binary (cond_code, mode, cond,
3675 cop1),
3676 mode);
3677 else if (GET_CODE (false_rtx) == CONST_INT
3678 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3679 && true_rtx == const0_rtx
3680 && ((reversed = reversed_comparison_code_parts
3681 (cond_code, cond, cop1, NULL))
3682 != UNKNOWN))
3683 x = simplify_gen_unary (NEG, mode,
3684 gen_binary (reversed, mode,
3685 cond, cop1),
3686 mode);
3687 else
3688 return gen_rtx_IF_THEN_ELSE (mode,
3689 gen_binary (cond_code, VOIDmode,
3690 cond, cop1),
3691 true_rtx, false_rtx);
3693 code = GET_CODE (x);
3694 op0_mode = VOIDmode;
3699 /* Try to fold this expression in case we have constants that weren't
3700 present before. */
3701 temp = 0;
3702 switch (GET_RTX_CLASS (code))
3704 case '1':
3705 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3706 break;
3707 case '<':
3709 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3710 if (cmp_mode == VOIDmode)
3712 cmp_mode = GET_MODE (XEXP (x, 1));
3713 if (cmp_mode == VOIDmode)
3714 cmp_mode = op0_mode;
3716 temp = simplify_relational_operation (code, cmp_mode,
3717 XEXP (x, 0), XEXP (x, 1));
3719 #ifdef FLOAT_STORE_FLAG_VALUE
3720 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3722 if (temp == const0_rtx)
3723 temp = CONST0_RTX (mode);
3724 else
3725 temp = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE (mode),
3726 mode);
3728 #endif
3729 break;
3730 case 'c':
3731 case '2':
3732 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3733 break;
3734 case 'b':
3735 case '3':
3736 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3737 XEXP (x, 1), XEXP (x, 2));
3738 break;
3741 if (temp)
3743 x = temp;
3744 code = GET_CODE (temp);
3745 op0_mode = VOIDmode;
3746 mode = GET_MODE (temp);
3749 /* First see if we can apply the inverse distributive law. */
3750 if (code == PLUS || code == MINUS
3751 || code == AND || code == IOR || code == XOR)
3753 x = apply_distributive_law (x);
3754 code = GET_CODE (x);
3755 op0_mode = VOIDmode;
3758 /* If CODE is an associative operation not otherwise handled, see if we
3759 can associate some operands. This can win if they are constants or
3760 if they are logically related (i.e. (a & b) & a). */
3761 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3762 || code == AND || code == IOR || code == XOR
3763 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3764 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3765 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3767 if (GET_CODE (XEXP (x, 0)) == code)
3769 rtx other = XEXP (XEXP (x, 0), 0);
3770 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3771 rtx inner_op1 = XEXP (x, 1);
3772 rtx inner;
3774 /* Make sure we pass the constant operand if any as the second
3775 one if this is a commutative operation. */
3776 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3778 rtx tem = inner_op0;
3779 inner_op0 = inner_op1;
3780 inner_op1 = tem;
3782 inner = simplify_binary_operation (code == MINUS ? PLUS
3783 : code == DIV ? MULT
3784 : code,
3785 mode, inner_op0, inner_op1);
3787 /* For commutative operations, try the other pair if that one
3788 didn't simplify. */
3789 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3791 other = XEXP (XEXP (x, 0), 1);
3792 inner = simplify_binary_operation (code, mode,
3793 XEXP (XEXP (x, 0), 0),
3794 XEXP (x, 1));
3797 if (inner)
3798 return gen_binary (code, mode, other, inner);
3802 /* A little bit of algebraic simplification here. */
3803 switch (code)
3805 case MEM:
3806 /* Ensure that our address has any ASHIFTs converted to MULT in case
3807 address-recognizing predicates are called later. */
3808 temp = make_compound_operation (XEXP (x, 0), MEM);
3809 SUBST (XEXP (x, 0), temp);
3810 break;
3812 case SUBREG:
3813 if (op0_mode == VOIDmode)
3814 op0_mode = GET_MODE (SUBREG_REG (x));
3816 /* simplify_subreg can't use gen_lowpart_for_combine. */
3817 if (CONSTANT_P (SUBREG_REG (x))
3818 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3819 /* Don't call gen_lowpart_for_combine if the inner mode
3820 is VOIDmode and we cannot simplify it, as SUBREG without
3821 inner mode is invalid. */
3822 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3823 || gen_lowpart_common (mode, SUBREG_REG (x))))
3824 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3826 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3827 break;
3829 rtx temp;
3830 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3831 SUBREG_BYTE (x));
3832 if (temp)
3833 return temp;
3836 /* Don't change the mode of the MEM if that would change the meaning
3837 of the address. */
3838 if (GET_CODE (SUBREG_REG (x)) == MEM
3839 && (MEM_VOLATILE_P (SUBREG_REG (x))
3840 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3841 return gen_rtx_CLOBBER (mode, const0_rtx);
3843 /* Note that we cannot do any narrowing for non-constants since
3844 we might have been counting on using the fact that some bits were
3845 zero. We now do this in the SET. */
3847 break;
3849 case NOT:
3850 /* (not (plus X -1)) can become (neg X). */
3851 if (GET_CODE (XEXP (x, 0)) == PLUS
3852 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3853 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3855 /* Similarly, (not (neg X)) is (plus X -1). */
3856 if (GET_CODE (XEXP (x, 0)) == NEG)
3857 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3859 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3860 if (GET_CODE (XEXP (x, 0)) == XOR
3861 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3862 && (temp = simplify_unary_operation (NOT, mode,
3863 XEXP (XEXP (x, 0), 1),
3864 mode)) != 0)
3865 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3867 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3868 other than 1, but that is not valid. We could do a similar
3869 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3870 but this doesn't seem common enough to bother with. */
3871 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3872 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3873 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3874 const1_rtx, mode),
3875 XEXP (XEXP (x, 0), 1));
3877 if (GET_CODE (XEXP (x, 0)) == SUBREG
3878 && subreg_lowpart_p (XEXP (x, 0))
3879 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3880 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3881 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3882 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3884 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3886 x = gen_rtx_ROTATE (inner_mode,
3887 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3888 inner_mode),
3889 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3890 return gen_lowpart_for_combine (mode, x);
3893 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3894 reversing the comparison code if valid. */
3895 if (STORE_FLAG_VALUE == -1
3896 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3897 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3898 XEXP (XEXP (x, 0), 1))))
3899 return reversed;
3901 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3902 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3903 perform the above simplification. */
3905 if (STORE_FLAG_VALUE == -1
3906 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3907 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3908 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3909 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3911 /* Apply De Morgan's laws to reduce number of patterns for machines
3912 with negating logical insns (and-not, nand, etc.). If result has
3913 only one NOT, put it first, since that is how the patterns are
3914 coded. */
3916 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3918 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3919 enum machine_mode op_mode;
3921 op_mode = GET_MODE (in1);
3922 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3924 op_mode = GET_MODE (in2);
3925 if (op_mode == VOIDmode)
3926 op_mode = mode;
3927 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3929 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3931 rtx tem = in2;
3932 in2 = in1; in1 = tem;
3935 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3936 mode, in1, in2);
3938 break;
3940 case NEG:
3941 /* (neg (plus X 1)) can become (not X). */
3942 if (GET_CODE (XEXP (x, 0)) == PLUS
3943 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3944 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3946 /* Similarly, (neg (not X)) is (plus X 1). */
3947 if (GET_CODE (XEXP (x, 0)) == NOT)
3948 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3950 /* (neg (minus X Y)) can become (minus Y X). This transformation
3951 isn't safe for modes with signed zeros, since if X and Y are
3952 both +0, (minus Y X) is the same as (minus X Y). If the rounding
3953 mode is towards +infinity (or -infinity) then the two expressions
3954 will be rounded differently. */
3955 if (GET_CODE (XEXP (x, 0)) == MINUS
3956 && !HONOR_SIGNED_ZEROS (mode)
3957 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
3958 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
3959 XEXP (XEXP (x, 0), 0));
3961 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
3962 if (GET_CODE (XEXP (x, 0)) == PLUS
3963 && !HONOR_SIGNED_ZEROS (mode)
3964 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
3966 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
3967 temp = combine_simplify_rtx (temp, mode, last, in_dest);
3968 return gen_binary (MINUS, mode, temp, XEXP (XEXP (x, 0), 1));
3971 /* (neg (mult A B)) becomes (mult (neg A) B).
3972 This works even for floating-point values. */
3973 if (GET_CODE (XEXP (x, 0)) == MULT)
3975 temp = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 0), 0), mode);
3976 return gen_binary (MULT, mode, temp, XEXP (XEXP (x, 0), 1));
3979 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3980 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
3981 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
3982 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3984 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3985 if we can then eliminate the NEG (e.g.,
3986 if the operand is a constant). */
3988 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
3990 temp = simplify_unary_operation (NEG, mode,
3991 XEXP (XEXP (x, 0), 0), mode);
3992 if (temp)
3993 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
3996 temp = expand_compound_operation (XEXP (x, 0));
3998 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3999 replaced by (lshiftrt X C). This will convert
4000 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4002 if (GET_CODE (temp) == ASHIFTRT
4003 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4004 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4005 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4006 INTVAL (XEXP (temp, 1)));
4008 /* If X has only a single bit that might be nonzero, say, bit I, convert
4009 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4010 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4011 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4012 or a SUBREG of one since we'd be making the expression more
4013 complex if it was just a register. */
4015 if (GET_CODE (temp) != REG
4016 && ! (GET_CODE (temp) == SUBREG
4017 && GET_CODE (SUBREG_REG (temp)) == REG)
4018 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4020 rtx temp1 = simplify_shift_const
4021 (NULL_RTX, ASHIFTRT, mode,
4022 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4023 GET_MODE_BITSIZE (mode) - 1 - i),
4024 GET_MODE_BITSIZE (mode) - 1 - i);
4026 /* If all we did was surround TEMP with the two shifts, we
4027 haven't improved anything, so don't use it. Otherwise,
4028 we are better off with TEMP1. */
4029 if (GET_CODE (temp1) != ASHIFTRT
4030 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4031 || XEXP (XEXP (temp1, 0), 0) != temp)
4032 return temp1;
4034 break;
4036 case TRUNCATE:
4037 /* We can't handle truncation to a partial integer mode here
4038 because we don't know the real bitsize of the partial
4039 integer mode. */
4040 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4041 break;
4043 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4044 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4045 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4046 SUBST (XEXP (x, 0),
4047 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4048 GET_MODE_MASK (mode), NULL_RTX, 0));
4050 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4051 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4052 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4053 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4054 return XEXP (XEXP (x, 0), 0);
4056 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4057 (OP:SI foo:SI) if OP is NEG or ABS. */
4058 if ((GET_CODE (XEXP (x, 0)) == ABS
4059 || GET_CODE (XEXP (x, 0)) == NEG)
4060 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4061 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4062 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4063 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4064 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4066 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4067 (truncate:SI x). */
4068 if (GET_CODE (XEXP (x, 0)) == SUBREG
4069 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4070 && subreg_lowpart_p (XEXP (x, 0)))
4071 return SUBREG_REG (XEXP (x, 0));
4073 /* If we know that the value is already truncated, we can
4074 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4075 is nonzero for the corresponding modes. But don't do this
4076 for an (LSHIFTRT (MULT ...)) since this will cause problems
4077 with the umulXi3_highpart patterns. */
4078 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4079 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4080 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4081 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4082 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4083 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4084 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4086 /* A truncate of a comparison can be replaced with a subreg if
4087 STORE_FLAG_VALUE permits. This is like the previous test,
4088 but it works even if the comparison is done in a mode larger
4089 than HOST_BITS_PER_WIDE_INT. */
4090 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4091 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4092 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4093 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4095 /* Similarly, a truncate of a register whose value is a
4096 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4097 permits. */
4098 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4099 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4100 && (temp = get_last_value (XEXP (x, 0)))
4101 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4102 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4104 break;
4106 case FLOAT_TRUNCATE:
4107 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4108 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4109 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4110 return XEXP (XEXP (x, 0), 0);
4112 /* (float_truncate:SF (float_truncate:DF foo:XF))
4113 = (float_truncate:SF foo:XF).
4114 This may eliminate double rounding, so it is unsafe.
4116 (float_truncate:SF (float_extend:XF foo:DF))
4117 = (float_truncate:SF foo:DF).
4119 (float_truncate:DF (float_extend:XF foo:SF))
4120 = (float_extend:SF foo:DF). */
4121 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4122 && flag_unsafe_math_optimizations)
4123 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4124 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4125 0)))
4126 > GET_MODE_SIZE (mode)
4127 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4128 mode,
4129 XEXP (XEXP (x, 0), 0), mode);
4131 /* (float_truncate (float x)) is (float x) */
4132 if (GET_CODE (XEXP (x, 0)) == FLOAT
4133 && (flag_unsafe_math_optimizations
4134 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4135 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4136 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4137 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4138 return simplify_gen_unary (FLOAT, mode,
4139 XEXP (XEXP (x, 0), 0),
4140 GET_MODE (XEXP (XEXP (x, 0), 0)));
4142 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4143 (OP:SF foo:SF) if OP is NEG or ABS. */
4144 if ((GET_CODE (XEXP (x, 0)) == ABS
4145 || GET_CODE (XEXP (x, 0)) == NEG)
4146 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4147 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4148 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4149 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4151 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4152 is (float_truncate:SF x). */
4153 if (GET_CODE (XEXP (x, 0)) == SUBREG
4154 && subreg_lowpart_p (XEXP (x, 0))
4155 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4156 return SUBREG_REG (XEXP (x, 0));
4157 break;
4158 case FLOAT_EXTEND:
4159 /* (float_extend (float_extend x)) is (float_extend x)
4161 (float_extend (float x)) is (float x) assuming that double
4162 rounding can't happen.
4164 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4165 || (GET_CODE (XEXP (x, 0)) == FLOAT
4166 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4167 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4168 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4169 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4170 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4171 XEXP (XEXP (x, 0), 0),
4172 GET_MODE (XEXP (XEXP (x, 0), 0)));
4174 break;
4175 #ifdef HAVE_cc0
4176 case COMPARE:
4177 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4178 using cc0, in which case we want to leave it as a COMPARE
4179 so we can distinguish it from a register-register-copy. */
4180 if (XEXP (x, 1) == const0_rtx)
4181 return XEXP (x, 0);
4183 /* x - 0 is the same as x unless x's mode has signed zeros and
4184 allows rounding towards -infinity. Under those conditions,
4185 0 - 0 is -0. */
4186 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4187 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4188 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4189 return XEXP (x, 0);
4190 break;
4191 #endif
4193 case CONST:
4194 /* (const (const X)) can become (const X). Do it this way rather than
4195 returning the inner CONST since CONST can be shared with a
4196 REG_EQUAL note. */
4197 if (GET_CODE (XEXP (x, 0)) == CONST)
4198 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4199 break;
4201 #ifdef HAVE_lo_sum
4202 case LO_SUM:
4203 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4204 can add in an offset. find_split_point will split this address up
4205 again if it doesn't match. */
4206 if (GET_CODE (XEXP (x, 0)) == HIGH
4207 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4208 return XEXP (x, 1);
4209 break;
4210 #endif
4212 case PLUS:
4213 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4215 if (GET_CODE (XEXP (x, 0)) == MULT
4216 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4218 rtx in1, in2;
4220 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4221 in2 = XEXP (XEXP (x, 0), 1);
4222 return gen_binary (MINUS, mode, XEXP (x, 1),
4223 gen_binary (MULT, mode, in1, in2));
4226 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4227 outermost. That's because that's the way indexed addresses are
4228 supposed to appear. This code used to check many more cases, but
4229 they are now checked elsewhere. */
4230 if (GET_CODE (XEXP (x, 0)) == PLUS
4231 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4232 return gen_binary (PLUS, mode,
4233 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4234 XEXP (x, 1)),
4235 XEXP (XEXP (x, 0), 1));
4237 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4238 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4239 bit-field and can be replaced by either a sign_extend or a
4240 sign_extract. The `and' may be a zero_extend and the two
4241 <c>, -<c> constants may be reversed. */
4242 if (GET_CODE (XEXP (x, 0)) == XOR
4243 && GET_CODE (XEXP (x, 1)) == CONST_INT
4244 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4245 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4246 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4247 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4248 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4249 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4250 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4251 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4252 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4253 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4254 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4255 == (unsigned int) i + 1))))
4256 return simplify_shift_const
4257 (NULL_RTX, ASHIFTRT, mode,
4258 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4259 XEXP (XEXP (XEXP (x, 0), 0), 0),
4260 GET_MODE_BITSIZE (mode) - (i + 1)),
4261 GET_MODE_BITSIZE (mode) - (i + 1));
4263 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4264 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4265 is 1. This produces better code than the alternative immediately
4266 below. */
4267 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4268 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4269 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4270 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4271 XEXP (XEXP (x, 0), 0),
4272 XEXP (XEXP (x, 0), 1))))
4273 return
4274 simplify_gen_unary (NEG, mode, reversed, mode);
4276 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4277 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4278 the bitsize of the mode - 1. This allows simplification of
4279 "a = (b & 8) == 0;" */
4280 if (XEXP (x, 1) == constm1_rtx
4281 && GET_CODE (XEXP (x, 0)) != REG
4282 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4283 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4284 && nonzero_bits (XEXP (x, 0), mode) == 1)
4285 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4286 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4287 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4288 GET_MODE_BITSIZE (mode) - 1),
4289 GET_MODE_BITSIZE (mode) - 1);
4291 /* If we are adding two things that have no bits in common, convert
4292 the addition into an IOR. This will often be further simplified,
4293 for example in cases like ((a & 1) + (a & 2)), which can
4294 become a & 3. */
4296 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4297 && (nonzero_bits (XEXP (x, 0), mode)
4298 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4300 /* Try to simplify the expression further. */
4301 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4302 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4304 /* If we could, great. If not, do not go ahead with the IOR
4305 replacement, since PLUS appears in many special purpose
4306 address arithmetic instructions. */
4307 if (GET_CODE (temp) != CLOBBER && temp != tor)
4308 return temp;
4310 break;
4312 case MINUS:
4313 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4314 by reversing the comparison code if valid. */
4315 if (STORE_FLAG_VALUE == 1
4316 && XEXP (x, 0) == const1_rtx
4317 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4318 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4319 XEXP (XEXP (x, 1), 0),
4320 XEXP (XEXP (x, 1), 1))))
4321 return reversed;
4323 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4324 (and <foo> (const_int pow2-1)) */
4325 if (GET_CODE (XEXP (x, 1)) == AND
4326 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4327 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4328 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4329 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4330 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4332 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4334 if (GET_CODE (XEXP (x, 1)) == MULT
4335 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4337 rtx in1, in2;
4339 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4340 in2 = XEXP (XEXP (x, 1), 1);
4341 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4342 XEXP (x, 0));
4345 /* Canonicalize (minus (neg A) (mult B C)) to
4346 (minus (mult (neg B) C) A). */
4347 if (GET_CODE (XEXP (x, 1)) == MULT
4348 && GET_CODE (XEXP (x, 0)) == NEG)
4350 rtx in1, in2;
4352 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4353 in2 = XEXP (XEXP (x, 1), 1);
4354 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4355 XEXP (XEXP (x, 0), 0));
4358 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4359 integers. */
4360 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4361 return gen_binary (MINUS, mode,
4362 gen_binary (MINUS, mode, XEXP (x, 0),
4363 XEXP (XEXP (x, 1), 0)),
4364 XEXP (XEXP (x, 1), 1));
4365 break;
4367 case MULT:
4368 /* If we have (mult (plus A B) C), apply the distributive law and then
4369 the inverse distributive law to see if things simplify. This
4370 occurs mostly in addresses, often when unrolling loops. */
4372 if (GET_CODE (XEXP (x, 0)) == PLUS)
4374 x = apply_distributive_law
4375 (gen_binary (PLUS, mode,
4376 gen_binary (MULT, mode,
4377 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4378 gen_binary (MULT, mode,
4379 XEXP (XEXP (x, 0), 1),
4380 copy_rtx (XEXP (x, 1)))));
4382 if (GET_CODE (x) != MULT)
4383 return x;
4385 /* Try simplify a*(b/c) as (a*b)/c. */
4386 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4387 && GET_CODE (XEXP (x, 0)) == DIV)
4389 rtx tem = simplify_binary_operation (MULT, mode,
4390 XEXP (XEXP (x, 0), 0),
4391 XEXP (x, 1));
4392 if (tem)
4393 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4395 break;
4397 case UDIV:
4398 /* If this is a divide by a power of two, treat it as a shift if
4399 its first operand is a shift. */
4400 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4401 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4402 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4403 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4404 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4405 || GET_CODE (XEXP (x, 0)) == ROTATE
4406 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4407 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4408 break;
4410 case EQ: case NE:
4411 case GT: case GTU: case GE: case GEU:
4412 case LT: case LTU: case LE: case LEU:
4413 case UNEQ: case LTGT:
4414 case UNGT: case UNGE:
4415 case UNLT: case UNLE:
4416 case UNORDERED: case ORDERED:
4417 /* If the first operand is a condition code, we can't do anything
4418 with it. */
4419 if (GET_CODE (XEXP (x, 0)) == COMPARE
4420 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4421 && ! CC0_P (XEXP (x, 0))))
4423 rtx op0 = XEXP (x, 0);
4424 rtx op1 = XEXP (x, 1);
4425 enum rtx_code new_code;
4427 if (GET_CODE (op0) == COMPARE)
4428 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4430 /* Simplify our comparison, if possible. */
4431 new_code = simplify_comparison (code, &op0, &op1);
4433 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4434 if only the low-order bit is possibly nonzero in X (such as when
4435 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4436 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4437 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4438 (plus X 1).
4440 Remove any ZERO_EXTRACT we made when thinking this was a
4441 comparison. It may now be simpler to use, e.g., an AND. If a
4442 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4443 the call to make_compound_operation in the SET case. */
4445 if (STORE_FLAG_VALUE == 1
4446 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4447 && op1 == const0_rtx
4448 && mode == GET_MODE (op0)
4449 && nonzero_bits (op0, mode) == 1)
4450 return gen_lowpart_for_combine (mode,
4451 expand_compound_operation (op0));
4453 else if (STORE_FLAG_VALUE == 1
4454 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4455 && op1 == const0_rtx
4456 && mode == GET_MODE (op0)
4457 && (num_sign_bit_copies (op0, mode)
4458 == GET_MODE_BITSIZE (mode)))
4460 op0 = expand_compound_operation (op0);
4461 return simplify_gen_unary (NEG, mode,
4462 gen_lowpart_for_combine (mode, op0),
4463 mode);
4466 else if (STORE_FLAG_VALUE == 1
4467 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4468 && op1 == const0_rtx
4469 && mode == GET_MODE (op0)
4470 && nonzero_bits (op0, mode) == 1)
4472 op0 = expand_compound_operation (op0);
4473 return gen_binary (XOR, mode,
4474 gen_lowpart_for_combine (mode, op0),
4475 const1_rtx);
4478 else if (STORE_FLAG_VALUE == 1
4479 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4480 && op1 == const0_rtx
4481 && mode == GET_MODE (op0)
4482 && (num_sign_bit_copies (op0, mode)
4483 == GET_MODE_BITSIZE (mode)))
4485 op0 = expand_compound_operation (op0);
4486 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4489 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4490 those above. */
4491 if (STORE_FLAG_VALUE == -1
4492 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4493 && op1 == const0_rtx
4494 && (num_sign_bit_copies (op0, mode)
4495 == GET_MODE_BITSIZE (mode)))
4496 return gen_lowpart_for_combine (mode,
4497 expand_compound_operation (op0));
4499 else if (STORE_FLAG_VALUE == -1
4500 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4501 && op1 == const0_rtx
4502 && mode == GET_MODE (op0)
4503 && nonzero_bits (op0, mode) == 1)
4505 op0 = expand_compound_operation (op0);
4506 return simplify_gen_unary (NEG, mode,
4507 gen_lowpart_for_combine (mode, op0),
4508 mode);
4511 else if (STORE_FLAG_VALUE == -1
4512 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4513 && op1 == const0_rtx
4514 && mode == GET_MODE (op0)
4515 && (num_sign_bit_copies (op0, mode)
4516 == GET_MODE_BITSIZE (mode)))
4518 op0 = expand_compound_operation (op0);
4519 return simplify_gen_unary (NOT, mode,
4520 gen_lowpart_for_combine (mode, op0),
4521 mode);
4524 /* If X is 0/1, (eq X 0) is X-1. */
4525 else if (STORE_FLAG_VALUE == -1
4526 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4527 && op1 == const0_rtx
4528 && mode == GET_MODE (op0)
4529 && nonzero_bits (op0, mode) == 1)
4531 op0 = expand_compound_operation (op0);
4532 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4535 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4536 one bit that might be nonzero, we can convert (ne x 0) to
4537 (ashift x c) where C puts the bit in the sign bit. Remove any
4538 AND with STORE_FLAG_VALUE when we are done, since we are only
4539 going to test the sign bit. */
4540 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4541 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4542 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4543 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4544 && op1 == const0_rtx
4545 && mode == GET_MODE (op0)
4546 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4548 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4549 expand_compound_operation (op0),
4550 GET_MODE_BITSIZE (mode) - 1 - i);
4551 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4552 return XEXP (x, 0);
4553 else
4554 return x;
4557 /* If the code changed, return a whole new comparison. */
4558 if (new_code != code)
4559 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4561 /* Otherwise, keep this operation, but maybe change its operands.
4562 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4563 SUBST (XEXP (x, 0), op0);
4564 SUBST (XEXP (x, 1), op1);
4566 break;
4568 case IF_THEN_ELSE:
4569 return simplify_if_then_else (x);
4571 case ZERO_EXTRACT:
4572 case SIGN_EXTRACT:
4573 case ZERO_EXTEND:
4574 case SIGN_EXTEND:
4575 /* If we are processing SET_DEST, we are done. */
4576 if (in_dest)
4577 return x;
4579 return expand_compound_operation (x);
4581 case SET:
4582 return simplify_set (x);
4584 case AND:
4585 case IOR:
4586 case XOR:
4587 return simplify_logical (x, last);
4589 case ABS:
4590 /* (abs (neg <foo>)) -> (abs <foo>) */
4591 if (GET_CODE (XEXP (x, 0)) == NEG)
4592 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4594 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4595 do nothing. */
4596 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4597 break;
4599 /* If operand is something known to be positive, ignore the ABS. */
4600 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4601 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4602 <= HOST_BITS_PER_WIDE_INT)
4603 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4604 & ((HOST_WIDE_INT) 1
4605 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4606 == 0)))
4607 return XEXP (x, 0);
4609 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4610 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4611 return gen_rtx_NEG (mode, XEXP (x, 0));
4613 break;
4615 case FFS:
4616 /* (ffs (*_extend <X>)) = (ffs <X>) */
4617 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4618 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4619 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4620 break;
4622 case POPCOUNT:
4623 case PARITY:
4624 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4625 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4626 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4627 break;
4629 case FLOAT:
4630 /* (float (sign_extend <X>)) = (float <X>). */
4631 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4632 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4633 break;
4635 case ASHIFT:
4636 case LSHIFTRT:
4637 case ASHIFTRT:
4638 case ROTATE:
4639 case ROTATERT:
4640 /* If this is a shift by a constant amount, simplify it. */
4641 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4642 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4643 INTVAL (XEXP (x, 1)));
4645 #ifdef SHIFT_COUNT_TRUNCATED
4646 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4647 SUBST (XEXP (x, 1),
4648 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4649 ((HOST_WIDE_INT) 1
4650 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4651 - 1,
4652 NULL_RTX, 0));
4653 #endif
4655 break;
4657 case VEC_SELECT:
4659 rtx op0 = XEXP (x, 0);
4660 rtx op1 = XEXP (x, 1);
4661 int len;
4663 if (GET_CODE (op1) != PARALLEL)
4664 abort ();
4665 len = XVECLEN (op1, 0);
4666 if (len == 1
4667 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4668 && GET_CODE (op0) == VEC_CONCAT)
4670 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4672 /* Try to find the element in the VEC_CONCAT. */
4673 for (;;)
4675 if (GET_MODE (op0) == GET_MODE (x))
4676 return op0;
4677 if (GET_CODE (op0) == VEC_CONCAT)
4679 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4680 if (op0_size < offset)
4681 op0 = XEXP (op0, 0);
4682 else
4684 offset -= op0_size;
4685 op0 = XEXP (op0, 1);
4688 else
4689 break;
4694 break;
4696 default:
4697 break;
4700 return x;
4703 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4705 static rtx
4706 simplify_if_then_else (rtx x)
4708 enum machine_mode mode = GET_MODE (x);
4709 rtx cond = XEXP (x, 0);
4710 rtx true_rtx = XEXP (x, 1);
4711 rtx false_rtx = XEXP (x, 2);
4712 enum rtx_code true_code = GET_CODE (cond);
4713 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4714 rtx temp;
4715 int i;
4716 enum rtx_code false_code;
4717 rtx reversed;
4719 /* Simplify storing of the truth value. */
4720 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4721 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4723 /* Also when the truth value has to be reversed. */
4724 if (comparison_p
4725 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4726 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4727 XEXP (cond, 1))))
4728 return reversed;
4730 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4731 in it is being compared against certain values. Get the true and false
4732 comparisons and see if that says anything about the value of each arm. */
4734 if (comparison_p
4735 && ((false_code = combine_reversed_comparison_code (cond))
4736 != UNKNOWN)
4737 && GET_CODE (XEXP (cond, 0)) == REG)
4739 HOST_WIDE_INT nzb;
4740 rtx from = XEXP (cond, 0);
4741 rtx true_val = XEXP (cond, 1);
4742 rtx false_val = true_val;
4743 int swapped = 0;
4745 /* If FALSE_CODE is EQ, swap the codes and arms. */
4747 if (false_code == EQ)
4749 swapped = 1, true_code = EQ, false_code = NE;
4750 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4753 /* If we are comparing against zero and the expression being tested has
4754 only a single bit that might be nonzero, that is its value when it is
4755 not equal to zero. Similarly if it is known to be -1 or 0. */
4757 if (true_code == EQ && true_val == const0_rtx
4758 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4759 false_code = EQ, false_val = GEN_INT (nzb);
4760 else if (true_code == EQ && true_val == const0_rtx
4761 && (num_sign_bit_copies (from, GET_MODE (from))
4762 == GET_MODE_BITSIZE (GET_MODE (from))))
4763 false_code = EQ, false_val = constm1_rtx;
4765 /* Now simplify an arm if we know the value of the register in the
4766 branch and it is used in the arm. Be careful due to the potential
4767 of locally-shared RTL. */
4769 if (reg_mentioned_p (from, true_rtx))
4770 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4771 from, true_val),
4772 pc_rtx, pc_rtx, 0, 0);
4773 if (reg_mentioned_p (from, false_rtx))
4774 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4775 from, false_val),
4776 pc_rtx, pc_rtx, 0, 0);
4778 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4779 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4781 true_rtx = XEXP (x, 1);
4782 false_rtx = XEXP (x, 2);
4783 true_code = GET_CODE (cond);
4786 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4787 reversed, do so to avoid needing two sets of patterns for
4788 subtract-and-branch insns. Similarly if we have a constant in the true
4789 arm, the false arm is the same as the first operand of the comparison, or
4790 the false arm is more complicated than the true arm. */
4792 if (comparison_p
4793 && combine_reversed_comparison_code (cond) != UNKNOWN
4794 && (true_rtx == pc_rtx
4795 || (CONSTANT_P (true_rtx)
4796 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4797 || true_rtx == const0_rtx
4798 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4799 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4800 || (GET_CODE (true_rtx) == SUBREG
4801 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4802 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4803 || reg_mentioned_p (true_rtx, false_rtx)
4804 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4806 true_code = reversed_comparison_code (cond, NULL);
4807 SUBST (XEXP (x, 0),
4808 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4809 XEXP (cond, 1)));
4811 SUBST (XEXP (x, 1), false_rtx);
4812 SUBST (XEXP (x, 2), true_rtx);
4814 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4815 cond = XEXP (x, 0);
4817 /* It is possible that the conditional has been simplified out. */
4818 true_code = GET_CODE (cond);
4819 comparison_p = GET_RTX_CLASS (true_code) == '<';
4822 /* If the two arms are identical, we don't need the comparison. */
4824 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4825 return true_rtx;
4827 /* Convert a == b ? b : a to "a". */
4828 if (true_code == EQ && ! side_effects_p (cond)
4829 && !HONOR_NANS (mode)
4830 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4831 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4832 return false_rtx;
4833 else if (true_code == NE && ! side_effects_p (cond)
4834 && !HONOR_NANS (mode)
4835 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4836 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4837 return true_rtx;
4839 /* Look for cases where we have (abs x) or (neg (abs X)). */
4841 if (GET_MODE_CLASS (mode) == MODE_INT
4842 && GET_CODE (false_rtx) == NEG
4843 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4844 && comparison_p
4845 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4846 && ! side_effects_p (true_rtx))
4847 switch (true_code)
4849 case GT:
4850 case GE:
4851 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4852 case LT:
4853 case LE:
4854 return
4855 simplify_gen_unary (NEG, mode,
4856 simplify_gen_unary (ABS, mode, true_rtx, mode),
4857 mode);
4858 default:
4859 break;
4862 /* Look for MIN or MAX. */
4864 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4865 && comparison_p
4866 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4867 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4868 && ! side_effects_p (cond))
4869 switch (true_code)
4871 case GE:
4872 case GT:
4873 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4874 case LE:
4875 case LT:
4876 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4877 case GEU:
4878 case GTU:
4879 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4880 case LEU:
4881 case LTU:
4882 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4883 default:
4884 break;
4887 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4888 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4889 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4890 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4891 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4892 neither 1 or -1, but it isn't worth checking for. */
4894 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4895 && comparison_p
4896 && GET_MODE_CLASS (mode) == MODE_INT
4897 && ! side_effects_p (x))
4899 rtx t = make_compound_operation (true_rtx, SET);
4900 rtx f = make_compound_operation (false_rtx, SET);
4901 rtx cond_op0 = XEXP (cond, 0);
4902 rtx cond_op1 = XEXP (cond, 1);
4903 enum rtx_code op = NIL, extend_op = NIL;
4904 enum machine_mode m = mode;
4905 rtx z = 0, c1 = NULL_RTX;
4907 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4908 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4909 || GET_CODE (t) == ASHIFT
4910 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4911 && rtx_equal_p (XEXP (t, 0), f))
4912 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4914 /* If an identity-zero op is commutative, check whether there
4915 would be a match if we swapped the operands. */
4916 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4917 || GET_CODE (t) == XOR)
4918 && rtx_equal_p (XEXP (t, 1), f))
4919 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4920 else if (GET_CODE (t) == SIGN_EXTEND
4921 && (GET_CODE (XEXP (t, 0)) == PLUS
4922 || GET_CODE (XEXP (t, 0)) == MINUS
4923 || GET_CODE (XEXP (t, 0)) == IOR
4924 || GET_CODE (XEXP (t, 0)) == XOR
4925 || GET_CODE (XEXP (t, 0)) == ASHIFT
4926 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4927 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4928 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4929 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4930 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4931 && (num_sign_bit_copies (f, GET_MODE (f))
4932 > (unsigned int)
4933 (GET_MODE_BITSIZE (mode)
4934 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4936 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4937 extend_op = SIGN_EXTEND;
4938 m = GET_MODE (XEXP (t, 0));
4940 else if (GET_CODE (t) == SIGN_EXTEND
4941 && (GET_CODE (XEXP (t, 0)) == PLUS
4942 || GET_CODE (XEXP (t, 0)) == IOR
4943 || GET_CODE (XEXP (t, 0)) == XOR)
4944 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4945 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4946 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4947 && (num_sign_bit_copies (f, GET_MODE (f))
4948 > (unsigned int)
4949 (GET_MODE_BITSIZE (mode)
4950 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4952 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4953 extend_op = SIGN_EXTEND;
4954 m = GET_MODE (XEXP (t, 0));
4956 else if (GET_CODE (t) == ZERO_EXTEND
4957 && (GET_CODE (XEXP (t, 0)) == PLUS
4958 || GET_CODE (XEXP (t, 0)) == MINUS
4959 || GET_CODE (XEXP (t, 0)) == IOR
4960 || GET_CODE (XEXP (t, 0)) == XOR
4961 || GET_CODE (XEXP (t, 0)) == ASHIFT
4962 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4963 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4964 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4965 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4966 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4967 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4968 && ((nonzero_bits (f, GET_MODE (f))
4969 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4970 == 0))
4972 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4973 extend_op = ZERO_EXTEND;
4974 m = GET_MODE (XEXP (t, 0));
4976 else if (GET_CODE (t) == ZERO_EXTEND
4977 && (GET_CODE (XEXP (t, 0)) == PLUS
4978 || GET_CODE (XEXP (t, 0)) == IOR
4979 || GET_CODE (XEXP (t, 0)) == XOR)
4980 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4981 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4982 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4983 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4984 && ((nonzero_bits (f, GET_MODE (f))
4985 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4986 == 0))
4988 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4989 extend_op = ZERO_EXTEND;
4990 m = GET_MODE (XEXP (t, 0));
4993 if (z)
4995 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4996 pc_rtx, pc_rtx, 0, 0);
4997 temp = gen_binary (MULT, m, temp,
4998 gen_binary (MULT, m, c1, const_true_rtx));
4999 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5000 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
5002 if (extend_op != NIL)
5003 temp = simplify_gen_unary (extend_op, mode, temp, m);
5005 return temp;
5009 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5010 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5011 negation of a single bit, we can convert this operation to a shift. We
5012 can actually do this more generally, but it doesn't seem worth it. */
5014 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5015 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5016 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5017 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5018 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5019 == GET_MODE_BITSIZE (mode))
5020 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5021 return
5022 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5023 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
5025 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5026 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5027 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5028 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5029 == nonzero_bits (XEXP (cond, 0), mode)
5030 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5031 return XEXP (cond, 0);
5033 return x;
5036 /* Simplify X, a SET expression. Return the new expression. */
5038 static rtx
5039 simplify_set (rtx x)
5041 rtx src = SET_SRC (x);
5042 rtx dest = SET_DEST (x);
5043 enum machine_mode mode
5044 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5045 rtx other_insn;
5046 rtx *cc_use;
5048 /* (set (pc) (return)) gets written as (return). */
5049 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5050 return src;
5052 /* Now that we know for sure which bits of SRC we are using, see if we can
5053 simplify the expression for the object knowing that we only need the
5054 low-order bits. */
5056 if (GET_MODE_CLASS (mode) == MODE_INT
5057 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5059 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5060 SUBST (SET_SRC (x), src);
5063 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5064 the comparison result and try to simplify it unless we already have used
5065 undobuf.other_insn. */
5066 if ((GET_MODE_CLASS (mode) == MODE_CC
5067 || GET_CODE (src) == COMPARE
5068 || CC0_P (dest))
5069 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5070 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5071 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5072 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5074 enum rtx_code old_code = GET_CODE (*cc_use);
5075 enum rtx_code new_code;
5076 rtx op0, op1, tmp;
5077 int other_changed = 0;
5078 enum machine_mode compare_mode = GET_MODE (dest);
5079 enum machine_mode tmp_mode;
5081 if (GET_CODE (src) == COMPARE)
5082 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5083 else
5084 op0 = src, op1 = const0_rtx;
5086 /* Check whether the comparison is known at compile time. */
5087 if (GET_MODE (op0) != VOIDmode)
5088 tmp_mode = GET_MODE (op0);
5089 else if (GET_MODE (op1) != VOIDmode)
5090 tmp_mode = GET_MODE (op1);
5091 else
5092 tmp_mode = compare_mode;
5093 tmp = simplify_relational_operation (old_code, tmp_mode, op0, op1);
5094 if (tmp != NULL_RTX)
5096 rtx pat = PATTERN (other_insn);
5097 undobuf.other_insn = other_insn;
5098 SUBST (*cc_use, tmp);
5100 /* Attempt to simplify CC user. */
5101 if (GET_CODE (pat) == SET)
5103 rtx new = simplify_rtx (SET_SRC (pat));
5104 if (new != NULL_RTX)
5105 SUBST (SET_SRC (pat), new);
5108 /* Convert X into a no-op move. */
5109 SUBST (SET_DEST (x), pc_rtx);
5110 SUBST (SET_SRC (x), pc_rtx);
5111 return x;
5114 /* Simplify our comparison, if possible. */
5115 new_code = simplify_comparison (old_code, &op0, &op1);
5117 #ifdef EXTRA_CC_MODES
5118 /* If this machine has CC modes other than CCmode, check to see if we
5119 need to use a different CC mode here. */
5120 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5121 #endif /* EXTRA_CC_MODES */
5123 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5124 /* If the mode changed, we have to change SET_DEST, the mode in the
5125 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5126 a hard register, just build new versions with the proper mode. If it
5127 is a pseudo, we lose unless it is only time we set the pseudo, in
5128 which case we can safely change its mode. */
5129 if (compare_mode != GET_MODE (dest))
5131 unsigned int regno = REGNO (dest);
5132 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5134 if (regno < FIRST_PSEUDO_REGISTER
5135 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5137 if (regno >= FIRST_PSEUDO_REGISTER)
5138 SUBST (regno_reg_rtx[regno], new_dest);
5140 SUBST (SET_DEST (x), new_dest);
5141 SUBST (XEXP (*cc_use, 0), new_dest);
5142 other_changed = 1;
5144 dest = new_dest;
5147 #endif
5149 /* If the code changed, we have to build a new comparison in
5150 undobuf.other_insn. */
5151 if (new_code != old_code)
5153 unsigned HOST_WIDE_INT mask;
5155 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5156 dest, const0_rtx));
5158 /* If the only change we made was to change an EQ into an NE or
5159 vice versa, OP0 has only one bit that might be nonzero, and OP1
5160 is zero, check if changing the user of the condition code will
5161 produce a valid insn. If it won't, we can keep the original code
5162 in that insn by surrounding our operation with an XOR. */
5164 if (((old_code == NE && new_code == EQ)
5165 || (old_code == EQ && new_code == NE))
5166 && ! other_changed && op1 == const0_rtx
5167 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5168 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5170 rtx pat = PATTERN (other_insn), note = 0;
5172 if ((recog_for_combine (&pat, other_insn, &note) < 0
5173 && ! check_asm_operands (pat)))
5175 PUT_CODE (*cc_use, old_code);
5176 other_insn = 0;
5178 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5182 other_changed = 1;
5185 if (other_changed)
5186 undobuf.other_insn = other_insn;
5188 #ifdef HAVE_cc0
5189 /* If we are now comparing against zero, change our source if
5190 needed. If we do not use cc0, we always have a COMPARE. */
5191 if (op1 == const0_rtx && dest == cc0_rtx)
5193 SUBST (SET_SRC (x), op0);
5194 src = op0;
5196 else
5197 #endif
5199 /* Otherwise, if we didn't previously have a COMPARE in the
5200 correct mode, we need one. */
5201 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5203 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5204 src = SET_SRC (x);
5206 else
5208 /* Otherwise, update the COMPARE if needed. */
5209 SUBST (XEXP (src, 0), op0);
5210 SUBST (XEXP (src, 1), op1);
5213 else
5215 /* Get SET_SRC in a form where we have placed back any
5216 compound expressions. Then do the checks below. */
5217 src = make_compound_operation (src, SET);
5218 SUBST (SET_SRC (x), src);
5221 #ifdef WORD_REGISTER_OPERATIONS
5222 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5223 and X being a REG or (subreg (reg)), we may be able to convert this to
5224 (set (subreg:m2 x) (op)).
5226 On a machine where WORD_REGISTER_OPERATIONS is defined, this
5227 transformation is safe as long as M1 and M2 have the same number
5228 of words.
5230 However, on a machine without WORD_REGISTER_OPERATIONS defined,
5231 we cannot apply this transformation because it would create a
5232 paradoxical subreg in SET_DEST. */
5234 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5235 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5236 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5237 / UNITS_PER_WORD)
5238 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5239 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5240 #ifdef CANNOT_CHANGE_MODE_CLASS
5241 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5242 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5243 GET_MODE (SUBREG_REG (src)),
5244 GET_MODE (src)))
5245 #endif
5246 && (GET_CODE (dest) == REG
5247 || (GET_CODE (dest) == SUBREG
5248 && GET_CODE (SUBREG_REG (dest)) == REG)))
5250 SUBST (SET_DEST (x),
5251 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5252 dest));
5253 SUBST (SET_SRC (x), SUBREG_REG (src));
5255 src = SET_SRC (x), dest = SET_DEST (x);
5257 #endif
5259 #ifdef HAVE_cc0
5260 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5261 in SRC. */
5262 if (dest == cc0_rtx
5263 && GET_CODE (src) == SUBREG
5264 && subreg_lowpart_p (src)
5265 && (GET_MODE_BITSIZE (GET_MODE (src))
5266 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5268 rtx inner = SUBREG_REG (src);
5269 enum machine_mode inner_mode = GET_MODE (inner);
5271 /* Here we make sure that we don't have a sign bit on. */
5272 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5273 && (nonzero_bits (inner, inner_mode)
5274 < ((unsigned HOST_WIDE_INT) 1
5275 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5277 SUBST (SET_SRC (x), inner);
5278 src = SET_SRC (x);
5281 #endif
5283 #ifdef LOAD_EXTEND_OP
5284 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5285 would require a paradoxical subreg. Replace the subreg with a
5286 zero_extend to avoid the reload that would otherwise be required. */
5288 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5289 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5290 && SUBREG_BYTE (src) == 0
5291 && (GET_MODE_SIZE (GET_MODE (src))
5292 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5293 && GET_CODE (SUBREG_REG (src)) == MEM)
5295 SUBST (SET_SRC (x),
5296 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5297 GET_MODE (src), SUBREG_REG (src)));
5299 src = SET_SRC (x);
5301 #endif
5303 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5304 are comparing an item known to be 0 or -1 against 0, use a logical
5305 operation instead. Check for one of the arms being an IOR of the other
5306 arm with some value. We compute three terms to be IOR'ed together. In
5307 practice, at most two will be nonzero. Then we do the IOR's. */
5309 if (GET_CODE (dest) != PC
5310 && GET_CODE (src) == IF_THEN_ELSE
5311 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5312 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5313 && XEXP (XEXP (src, 0), 1) == const0_rtx
5314 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5315 #ifdef HAVE_conditional_move
5316 && ! can_conditionally_move_p (GET_MODE (src))
5317 #endif
5318 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5319 GET_MODE (XEXP (XEXP (src, 0), 0)))
5320 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5321 && ! side_effects_p (src))
5323 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5324 ? XEXP (src, 1) : XEXP (src, 2));
5325 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5326 ? XEXP (src, 2) : XEXP (src, 1));
5327 rtx term1 = const0_rtx, term2, term3;
5329 if (GET_CODE (true_rtx) == IOR
5330 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5331 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5332 else if (GET_CODE (true_rtx) == IOR
5333 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5334 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5335 else if (GET_CODE (false_rtx) == IOR
5336 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5337 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5338 else if (GET_CODE (false_rtx) == IOR
5339 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5340 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5342 term2 = gen_binary (AND, GET_MODE (src),
5343 XEXP (XEXP (src, 0), 0), true_rtx);
5344 term3 = gen_binary (AND, GET_MODE (src),
5345 simplify_gen_unary (NOT, GET_MODE (src),
5346 XEXP (XEXP (src, 0), 0),
5347 GET_MODE (src)),
5348 false_rtx);
5350 SUBST (SET_SRC (x),
5351 gen_binary (IOR, GET_MODE (src),
5352 gen_binary (IOR, GET_MODE (src), term1, term2),
5353 term3));
5355 src = SET_SRC (x);
5358 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5359 whole thing fail. */
5360 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5361 return src;
5362 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5363 return dest;
5364 else
5365 /* Convert this into a field assignment operation, if possible. */
5366 return make_field_assignment (x);
5369 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5370 result. LAST is nonzero if this is the last retry. */
5372 static rtx
5373 simplify_logical (rtx x, int last)
5375 enum machine_mode mode = GET_MODE (x);
5376 rtx op0 = XEXP (x, 0);
5377 rtx op1 = XEXP (x, 1);
5378 rtx reversed;
5380 switch (GET_CODE (x))
5382 case AND:
5383 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5384 insn (and may simplify more). */
5385 if (GET_CODE (op0) == XOR
5386 && rtx_equal_p (XEXP (op0, 0), op1)
5387 && ! side_effects_p (op1))
5388 x = gen_binary (AND, mode,
5389 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5390 op1);
5392 if (GET_CODE (op0) == XOR
5393 && rtx_equal_p (XEXP (op0, 1), op1)
5394 && ! side_effects_p (op1))
5395 x = gen_binary (AND, mode,
5396 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5397 op1);
5399 /* Similarly for (~(A ^ B)) & A. */
5400 if (GET_CODE (op0) == NOT
5401 && GET_CODE (XEXP (op0, 0)) == XOR
5402 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5403 && ! side_effects_p (op1))
5404 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5406 if (GET_CODE (op0) == NOT
5407 && GET_CODE (XEXP (op0, 0)) == XOR
5408 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5409 && ! side_effects_p (op1))
5410 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5412 /* We can call simplify_and_const_int only if we don't lose
5413 any (sign) bits when converting INTVAL (op1) to
5414 "unsigned HOST_WIDE_INT". */
5415 if (GET_CODE (op1) == CONST_INT
5416 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5417 || INTVAL (op1) > 0))
5419 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5421 /* If we have (ior (and (X C1) C2)) and the next restart would be
5422 the last, simplify this by making C1 as small as possible
5423 and then exit. */
5424 if (last
5425 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5426 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5427 && GET_CODE (op1) == CONST_INT)
5428 return gen_binary (IOR, mode,
5429 gen_binary (AND, mode, XEXP (op0, 0),
5430 GEN_INT (INTVAL (XEXP (op0, 1))
5431 & ~INTVAL (op1))), op1);
5433 if (GET_CODE (x) != AND)
5434 return x;
5436 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5437 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5438 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5441 /* Convert (A | B) & A to A. */
5442 if (GET_CODE (op0) == IOR
5443 && (rtx_equal_p (XEXP (op0, 0), op1)
5444 || rtx_equal_p (XEXP (op0, 1), op1))
5445 && ! side_effects_p (XEXP (op0, 0))
5446 && ! side_effects_p (XEXP (op0, 1)))
5447 return op1;
5449 /* In the following group of tests (and those in case IOR below),
5450 we start with some combination of logical operations and apply
5451 the distributive law followed by the inverse distributive law.
5452 Most of the time, this results in no change. However, if some of
5453 the operands are the same or inverses of each other, simplifications
5454 will result.
5456 For example, (and (ior A B) (not B)) can occur as the result of
5457 expanding a bit field assignment. When we apply the distributive
5458 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5459 which then simplifies to (and (A (not B))).
5461 If we have (and (ior A B) C), apply the distributive law and then
5462 the inverse distributive law to see if things simplify. */
5464 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5466 x = apply_distributive_law
5467 (gen_binary (GET_CODE (op0), mode,
5468 gen_binary (AND, mode, XEXP (op0, 0), op1),
5469 gen_binary (AND, mode, XEXP (op0, 1),
5470 copy_rtx (op1))));
5471 if (GET_CODE (x) != AND)
5472 return x;
5475 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5476 return apply_distributive_law
5477 (gen_binary (GET_CODE (op1), mode,
5478 gen_binary (AND, mode, XEXP (op1, 0), op0),
5479 gen_binary (AND, mode, XEXP (op1, 1),
5480 copy_rtx (op0))));
5482 /* Similarly, taking advantage of the fact that
5483 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5485 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5486 return apply_distributive_law
5487 (gen_binary (XOR, mode,
5488 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5489 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5490 XEXP (op1, 1))));
5492 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5493 return apply_distributive_law
5494 (gen_binary (XOR, mode,
5495 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5496 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5497 break;
5499 case IOR:
5500 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5501 if (GET_CODE (op1) == CONST_INT
5502 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5503 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5504 return op1;
5506 /* Convert (A & B) | A to A. */
5507 if (GET_CODE (op0) == AND
5508 && (rtx_equal_p (XEXP (op0, 0), op1)
5509 || rtx_equal_p (XEXP (op0, 1), op1))
5510 && ! side_effects_p (XEXP (op0, 0))
5511 && ! side_effects_p (XEXP (op0, 1)))
5512 return op1;
5514 /* If we have (ior (and A B) C), apply the distributive law and then
5515 the inverse distributive law to see if things simplify. */
5517 if (GET_CODE (op0) == AND)
5519 x = apply_distributive_law
5520 (gen_binary (AND, mode,
5521 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5522 gen_binary (IOR, mode, XEXP (op0, 1),
5523 copy_rtx (op1))));
5525 if (GET_CODE (x) != IOR)
5526 return x;
5529 if (GET_CODE (op1) == AND)
5531 x = apply_distributive_law
5532 (gen_binary (AND, mode,
5533 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5534 gen_binary (IOR, mode, XEXP (op1, 1),
5535 copy_rtx (op0))));
5537 if (GET_CODE (x) != IOR)
5538 return x;
5541 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5542 mode size to (rotate A CX). */
5544 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5545 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5546 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5547 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5548 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5549 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5550 == GET_MODE_BITSIZE (mode)))
5551 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5552 (GET_CODE (op0) == ASHIFT
5553 ? XEXP (op0, 1) : XEXP (op1, 1)));
5555 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5556 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5557 does not affect any of the bits in OP1, it can really be done
5558 as a PLUS and we can associate. We do this by seeing if OP1
5559 can be safely shifted left C bits. */
5560 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5561 && GET_CODE (XEXP (op0, 0)) == PLUS
5562 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5563 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5564 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5566 int count = INTVAL (XEXP (op0, 1));
5567 HOST_WIDE_INT mask = INTVAL (op1) << count;
5569 if (mask >> count == INTVAL (op1)
5570 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5572 SUBST (XEXP (XEXP (op0, 0), 1),
5573 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5574 return op0;
5577 break;
5579 case XOR:
5580 /* If we are XORing two things that have no bits in common,
5581 convert them into an IOR. This helps to detect rotation encoded
5582 using those methods and possibly other simplifications. */
5584 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5585 && (nonzero_bits (op0, mode)
5586 & nonzero_bits (op1, mode)) == 0)
5587 return (gen_binary (IOR, mode, op0, op1));
5589 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5590 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5591 (NOT y). */
5593 int num_negated = 0;
5595 if (GET_CODE (op0) == NOT)
5596 num_negated++, op0 = XEXP (op0, 0);
5597 if (GET_CODE (op1) == NOT)
5598 num_negated++, op1 = XEXP (op1, 0);
5600 if (num_negated == 2)
5602 SUBST (XEXP (x, 0), op0);
5603 SUBST (XEXP (x, 1), op1);
5605 else if (num_negated == 1)
5606 return
5607 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5608 mode);
5611 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5612 correspond to a machine insn or result in further simplifications
5613 if B is a constant. */
5615 if (GET_CODE (op0) == AND
5616 && rtx_equal_p (XEXP (op0, 1), op1)
5617 && ! side_effects_p (op1))
5618 return gen_binary (AND, mode,
5619 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5620 op1);
5622 else if (GET_CODE (op0) == AND
5623 && rtx_equal_p (XEXP (op0, 0), op1)
5624 && ! side_effects_p (op1))
5625 return gen_binary (AND, mode,
5626 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5627 op1);
5629 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5630 comparison if STORE_FLAG_VALUE is 1. */
5631 if (STORE_FLAG_VALUE == 1
5632 && op1 == const1_rtx
5633 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5634 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5635 XEXP (op0, 1))))
5636 return reversed;
5638 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5639 is (lt foo (const_int 0)), so we can perform the above
5640 simplification if STORE_FLAG_VALUE is 1. */
5642 if (STORE_FLAG_VALUE == 1
5643 && op1 == const1_rtx
5644 && GET_CODE (op0) == LSHIFTRT
5645 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5646 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5647 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5649 /* (xor (comparison foo bar) (const_int sign-bit))
5650 when STORE_FLAG_VALUE is the sign bit. */
5651 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5652 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5653 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5654 && op1 == const_true_rtx
5655 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5656 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5657 XEXP (op0, 1))))
5658 return reversed;
5660 break;
5662 default:
5663 abort ();
5666 return x;
5669 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5670 operations" because they can be replaced with two more basic operations.
5671 ZERO_EXTEND is also considered "compound" because it can be replaced with
5672 an AND operation, which is simpler, though only one operation.
5674 The function expand_compound_operation is called with an rtx expression
5675 and will convert it to the appropriate shifts and AND operations,
5676 simplifying at each stage.
5678 The function make_compound_operation is called to convert an expression
5679 consisting of shifts and ANDs into the equivalent compound expression.
5680 It is the inverse of this function, loosely speaking. */
5682 static rtx
5683 expand_compound_operation (rtx x)
5685 unsigned HOST_WIDE_INT pos = 0, len;
5686 int unsignedp = 0;
5687 unsigned int modewidth;
5688 rtx tem;
5690 switch (GET_CODE (x))
5692 case ZERO_EXTEND:
5693 unsignedp = 1;
5694 case SIGN_EXTEND:
5695 /* We can't necessarily use a const_int for a multiword mode;
5696 it depends on implicitly extending the value.
5697 Since we don't know the right way to extend it,
5698 we can't tell whether the implicit way is right.
5700 Even for a mode that is no wider than a const_int,
5701 we can't win, because we need to sign extend one of its bits through
5702 the rest of it, and we don't know which bit. */
5703 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5704 return x;
5706 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5707 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5708 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5709 reloaded. If not for that, MEM's would very rarely be safe.
5711 Reject MODEs bigger than a word, because we might not be able
5712 to reference a two-register group starting with an arbitrary register
5713 (and currently gen_lowpart might crash for a SUBREG). */
5715 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5716 return x;
5718 /* Reject MODEs that aren't scalar integers because turning vector
5719 or complex modes into shifts causes problems. */
5721 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5722 return x;
5724 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5725 /* If the inner object has VOIDmode (the only way this can happen
5726 is if it is an ASM_OPERANDS), we can't do anything since we don't
5727 know how much masking to do. */
5728 if (len == 0)
5729 return x;
5731 break;
5733 case ZERO_EXTRACT:
5734 unsignedp = 1;
5735 case SIGN_EXTRACT:
5736 /* If the operand is a CLOBBER, just return it. */
5737 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5738 return XEXP (x, 0);
5740 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5741 || GET_CODE (XEXP (x, 2)) != CONST_INT
5742 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5743 return x;
5745 /* Reject MODEs that aren't scalar integers because turning vector
5746 or complex modes into shifts causes problems. */
5748 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5749 return x;
5751 len = INTVAL (XEXP (x, 1));
5752 pos = INTVAL (XEXP (x, 2));
5754 /* If this goes outside the object being extracted, replace the object
5755 with a (use (mem ...)) construct that only combine understands
5756 and is used only for this purpose. */
5757 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5758 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5760 if (BITS_BIG_ENDIAN)
5761 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5763 break;
5765 default:
5766 return x;
5768 /* Convert sign extension to zero extension, if we know that the high
5769 bit is not set, as this is easier to optimize. It will be converted
5770 back to cheaper alternative in make_extraction. */
5771 if (GET_CODE (x) == SIGN_EXTEND
5772 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5773 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5774 & ~(((unsigned HOST_WIDE_INT)
5775 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5776 >> 1))
5777 == 0)))
5779 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5780 rtx temp2 = expand_compound_operation (temp);
5782 /* Make sure this is a profitable operation. */
5783 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5784 return temp2;
5785 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5786 return temp;
5787 else
5788 return x;
5791 /* We can optimize some special cases of ZERO_EXTEND. */
5792 if (GET_CODE (x) == ZERO_EXTEND)
5794 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5795 know that the last value didn't have any inappropriate bits
5796 set. */
5797 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5798 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5799 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5800 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5801 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5802 return XEXP (XEXP (x, 0), 0);
5804 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5805 if (GET_CODE (XEXP (x, 0)) == SUBREG
5806 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5807 && subreg_lowpart_p (XEXP (x, 0))
5808 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5809 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5810 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5811 return SUBREG_REG (XEXP (x, 0));
5813 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5814 is a comparison and STORE_FLAG_VALUE permits. This is like
5815 the first case, but it works even when GET_MODE (x) is larger
5816 than HOST_WIDE_INT. */
5817 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5818 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5819 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5820 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5821 <= HOST_BITS_PER_WIDE_INT)
5822 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5823 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5824 return XEXP (XEXP (x, 0), 0);
5826 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5827 if (GET_CODE (XEXP (x, 0)) == SUBREG
5828 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5829 && subreg_lowpart_p (XEXP (x, 0))
5830 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5831 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5832 <= HOST_BITS_PER_WIDE_INT)
5833 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5834 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5835 return SUBREG_REG (XEXP (x, 0));
5839 /* If we reach here, we want to return a pair of shifts. The inner
5840 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5841 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5842 logical depending on the value of UNSIGNEDP.
5844 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5845 converted into an AND of a shift.
5847 We must check for the case where the left shift would have a negative
5848 count. This can happen in a case like (x >> 31) & 255 on machines
5849 that can't shift by a constant. On those machines, we would first
5850 combine the shift with the AND to produce a variable-position
5851 extraction. Then the constant of 31 would be substituted in to produce
5852 a such a position. */
5854 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5855 if (modewidth + len >= pos)
5856 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5857 GET_MODE (x),
5858 simplify_shift_const (NULL_RTX, ASHIFT,
5859 GET_MODE (x),
5860 XEXP (x, 0),
5861 modewidth - pos - len),
5862 modewidth - len);
5864 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5865 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5866 simplify_shift_const (NULL_RTX, LSHIFTRT,
5867 GET_MODE (x),
5868 XEXP (x, 0), pos),
5869 ((HOST_WIDE_INT) 1 << len) - 1);
5870 else
5871 /* Any other cases we can't handle. */
5872 return x;
5874 /* If we couldn't do this for some reason, return the original
5875 expression. */
5876 if (GET_CODE (tem) == CLOBBER)
5877 return x;
5879 return tem;
5882 /* X is a SET which contains an assignment of one object into
5883 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5884 or certain SUBREGS). If possible, convert it into a series of
5885 logical operations.
5887 We half-heartedly support variable positions, but do not at all
5888 support variable lengths. */
5890 static rtx
5891 expand_field_assignment (rtx x)
5893 rtx inner;
5894 rtx pos; /* Always counts from low bit. */
5895 int len;
5896 rtx mask;
5897 enum machine_mode compute_mode;
5899 /* Loop until we find something we can't simplify. */
5900 while (1)
5902 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5903 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5905 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5906 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5907 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5909 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5910 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5912 inner = XEXP (SET_DEST (x), 0);
5913 len = INTVAL (XEXP (SET_DEST (x), 1));
5914 pos = XEXP (SET_DEST (x), 2);
5916 /* If the position is constant and spans the width of INNER,
5917 surround INNER with a USE to indicate this. */
5918 if (GET_CODE (pos) == CONST_INT
5919 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5920 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5922 if (BITS_BIG_ENDIAN)
5924 if (GET_CODE (pos) == CONST_INT)
5925 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5926 - INTVAL (pos));
5927 else if (GET_CODE (pos) == MINUS
5928 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5929 && (INTVAL (XEXP (pos, 1))
5930 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5931 /* If position is ADJUST - X, new position is X. */
5932 pos = XEXP (pos, 0);
5933 else
5934 pos = gen_binary (MINUS, GET_MODE (pos),
5935 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5936 - len),
5937 pos);
5941 /* A SUBREG between two modes that occupy the same numbers of words
5942 can be done by moving the SUBREG to the source. */
5943 else if (GET_CODE (SET_DEST (x)) == SUBREG
5944 /* We need SUBREGs to compute nonzero_bits properly. */
5945 && nonzero_sign_valid
5946 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5947 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5948 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5949 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5951 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5952 gen_lowpart_for_combine
5953 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5954 SET_SRC (x)));
5955 continue;
5957 else
5958 break;
5960 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5961 inner = SUBREG_REG (inner);
5963 compute_mode = GET_MODE (inner);
5965 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
5966 if (! SCALAR_INT_MODE_P (compute_mode))
5968 enum machine_mode imode;
5970 /* Don't do anything for vector or complex integral types. */
5971 if (! FLOAT_MODE_P (compute_mode))
5972 break;
5974 /* Try to find an integral mode to pun with. */
5975 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5976 if (imode == BLKmode)
5977 break;
5979 compute_mode = imode;
5980 inner = gen_lowpart_for_combine (imode, inner);
5983 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5984 if (len < HOST_BITS_PER_WIDE_INT)
5985 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5986 else
5987 break;
5989 /* Now compute the equivalent expression. Make a copy of INNER
5990 for the SET_DEST in case it is a MEM into which we will substitute;
5991 we don't want shared RTL in that case. */
5992 x = gen_rtx_SET
5993 (VOIDmode, copy_rtx (inner),
5994 gen_binary (IOR, compute_mode,
5995 gen_binary (AND, compute_mode,
5996 simplify_gen_unary (NOT, compute_mode,
5997 gen_binary (ASHIFT,
5998 compute_mode,
5999 mask, pos),
6000 compute_mode),
6001 inner),
6002 gen_binary (ASHIFT, compute_mode,
6003 gen_binary (AND, compute_mode,
6004 gen_lowpart_for_combine
6005 (compute_mode, SET_SRC (x)),
6006 mask),
6007 pos)));
6010 return x;
6013 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6014 it is an RTX that represents a variable starting position; otherwise,
6015 POS is the (constant) starting bit position (counted from the LSB).
6017 INNER may be a USE. This will occur when we started with a bitfield
6018 that went outside the boundary of the object in memory, which is
6019 allowed on most machines. To isolate this case, we produce a USE
6020 whose mode is wide enough and surround the MEM with it. The only
6021 code that understands the USE is this routine. If it is not removed,
6022 it will cause the resulting insn not to match.
6024 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6025 signed reference.
6027 IN_DEST is nonzero if this is a reference in the destination of a
6028 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6029 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6030 be used.
6032 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6033 ZERO_EXTRACT should be built even for bits starting at bit 0.
6035 MODE is the desired mode of the result (if IN_DEST == 0).
6037 The result is an RTX for the extraction or NULL_RTX if the target
6038 can't handle it. */
6040 static rtx
6041 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6042 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6043 int in_dest, int in_compare)
6045 /* This mode describes the size of the storage area
6046 to fetch the overall value from. Within that, we
6047 ignore the POS lowest bits, etc. */
6048 enum machine_mode is_mode = GET_MODE (inner);
6049 enum machine_mode inner_mode;
6050 enum machine_mode wanted_inner_mode = byte_mode;
6051 enum machine_mode wanted_inner_reg_mode = word_mode;
6052 enum machine_mode pos_mode = word_mode;
6053 enum machine_mode extraction_mode = word_mode;
6054 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6055 int spans_byte = 0;
6056 rtx new = 0;
6057 rtx orig_pos_rtx = pos_rtx;
6058 HOST_WIDE_INT orig_pos;
6060 /* Get some information about INNER and get the innermost object. */
6061 if (GET_CODE (inner) == USE)
6062 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6063 /* We don't need to adjust the position because we set up the USE
6064 to pretend that it was a full-word object. */
6065 spans_byte = 1, inner = XEXP (inner, 0);
6066 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6068 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6069 consider just the QI as the memory to extract from.
6070 The subreg adds or removes high bits; its mode is
6071 irrelevant to the meaning of this extraction,
6072 since POS and LEN count from the lsb. */
6073 if (GET_CODE (SUBREG_REG (inner)) == MEM)
6074 is_mode = GET_MODE (SUBREG_REG (inner));
6075 inner = SUBREG_REG (inner);
6077 else if (GET_CODE (inner) == ASHIFT
6078 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6079 && pos_rtx == 0 && pos == 0
6080 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6082 /* We're extracting the least significant bits of an rtx
6083 (ashift X (const_int C)), where LEN > C. Extract the
6084 least significant (LEN - C) bits of X, giving an rtx
6085 whose mode is MODE, then shift it left C times. */
6086 new = make_extraction (mode, XEXP (inner, 0),
6087 0, 0, len - INTVAL (XEXP (inner, 1)),
6088 unsignedp, in_dest, in_compare);
6089 if (new != 0)
6090 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6093 inner_mode = GET_MODE (inner);
6095 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6096 pos = INTVAL (pos_rtx), pos_rtx = 0;
6098 /* See if this can be done without an extraction. We never can if the
6099 width of the field is not the same as that of some integer mode. For
6100 registers, we can only avoid the extraction if the position is at the
6101 low-order bit and this is either not in the destination or we have the
6102 appropriate STRICT_LOW_PART operation available.
6104 For MEM, we can avoid an extract if the field starts on an appropriate
6105 boundary and we can change the mode of the memory reference. However,
6106 we cannot directly access the MEM if we have a USE and the underlying
6107 MEM is not TMODE. This combination means that MEM was being used in a
6108 context where bits outside its mode were being referenced; that is only
6109 valid in bit-field insns. */
6111 if (tmode != BLKmode
6112 && ! (spans_byte && inner_mode != tmode)
6113 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6114 && GET_CODE (inner) != MEM
6115 && (! in_dest
6116 || (GET_CODE (inner) == REG
6117 && have_insn_for (STRICT_LOW_PART, tmode))))
6118 || (GET_CODE (inner) == MEM && pos_rtx == 0
6119 && (pos
6120 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6121 : BITS_PER_UNIT)) == 0
6122 /* We can't do this if we are widening INNER_MODE (it
6123 may not be aligned, for one thing). */
6124 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6125 && (inner_mode == tmode
6126 || (! mode_dependent_address_p (XEXP (inner, 0))
6127 && ! MEM_VOLATILE_P (inner))))))
6129 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6130 field. If the original and current mode are the same, we need not
6131 adjust the offset. Otherwise, we do if bytes big endian.
6133 If INNER is not a MEM, get a piece consisting of just the field
6134 of interest (in this case POS % BITS_PER_WORD must be 0). */
6136 if (GET_CODE (inner) == MEM)
6138 HOST_WIDE_INT offset;
6140 /* POS counts from lsb, but make OFFSET count in memory order. */
6141 if (BYTES_BIG_ENDIAN)
6142 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6143 else
6144 offset = pos / BITS_PER_UNIT;
6146 new = adjust_address_nv (inner, tmode, offset);
6148 else if (GET_CODE (inner) == REG)
6150 if (tmode != inner_mode)
6152 if (in_dest)
6154 /* We can't call gen_lowpart_for_combine here since we always want
6155 a SUBREG and it would sometimes return a new hard register. */
6156 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6158 if (WORDS_BIG_ENDIAN
6159 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6160 final_word = ((GET_MODE_SIZE (inner_mode)
6161 - GET_MODE_SIZE (tmode))
6162 / UNITS_PER_WORD) - final_word;
6164 final_word *= UNITS_PER_WORD;
6165 if (BYTES_BIG_ENDIAN &&
6166 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6167 final_word += (GET_MODE_SIZE (inner_mode)
6168 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6170 /* Avoid creating invalid subregs, for example when
6171 simplifying (x>>32)&255. */
6172 if (final_word >= GET_MODE_SIZE (inner_mode))
6173 return NULL_RTX;
6175 new = gen_rtx_SUBREG (tmode, inner, final_word);
6177 else
6178 new = gen_lowpart_for_combine (tmode, inner);
6180 else
6181 new = inner;
6183 else
6184 new = force_to_mode (inner, tmode,
6185 len >= HOST_BITS_PER_WIDE_INT
6186 ? ~(unsigned HOST_WIDE_INT) 0
6187 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6188 NULL_RTX, 0);
6190 /* If this extraction is going into the destination of a SET,
6191 make a STRICT_LOW_PART unless we made a MEM. */
6193 if (in_dest)
6194 return (GET_CODE (new) == MEM ? new
6195 : (GET_CODE (new) != SUBREG
6196 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6197 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6199 if (mode == tmode)
6200 return new;
6202 if (GET_CODE (new) == CONST_INT)
6203 return gen_int_mode (INTVAL (new), mode);
6205 /* If we know that no extraneous bits are set, and that the high
6206 bit is not set, convert the extraction to the cheaper of
6207 sign and zero extension, that are equivalent in these cases. */
6208 if (flag_expensive_optimizations
6209 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6210 && ((nonzero_bits (new, tmode)
6211 & ~(((unsigned HOST_WIDE_INT)
6212 GET_MODE_MASK (tmode))
6213 >> 1))
6214 == 0)))
6216 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6217 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6219 /* Prefer ZERO_EXTENSION, since it gives more information to
6220 backends. */
6221 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6222 return temp;
6223 return temp1;
6226 /* Otherwise, sign- or zero-extend unless we already are in the
6227 proper mode. */
6229 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6230 mode, new));
6233 /* Unless this is a COMPARE or we have a funny memory reference,
6234 don't do anything with zero-extending field extracts starting at
6235 the low-order bit since they are simple AND operations. */
6236 if (pos_rtx == 0 && pos == 0 && ! in_dest
6237 && ! in_compare && ! spans_byte && unsignedp)
6238 return 0;
6240 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6241 we would be spanning bytes or if the position is not a constant and the
6242 length is not 1. In all other cases, we would only be going outside
6243 our object in cases when an original shift would have been
6244 undefined. */
6245 if (! spans_byte && GET_CODE (inner) == MEM
6246 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6247 || (pos_rtx != 0 && len != 1)))
6248 return 0;
6250 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6251 and the mode for the result. */
6252 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6254 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6255 pos_mode = mode_for_extraction (EP_insv, 2);
6256 extraction_mode = mode_for_extraction (EP_insv, 3);
6259 if (! in_dest && unsignedp
6260 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6262 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6263 pos_mode = mode_for_extraction (EP_extzv, 3);
6264 extraction_mode = mode_for_extraction (EP_extzv, 0);
6267 if (! in_dest && ! unsignedp
6268 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6270 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6271 pos_mode = mode_for_extraction (EP_extv, 3);
6272 extraction_mode = mode_for_extraction (EP_extv, 0);
6275 /* Never narrow an object, since that might not be safe. */
6277 if (mode != VOIDmode
6278 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6279 extraction_mode = mode;
6281 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6282 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6283 pos_mode = GET_MODE (pos_rtx);
6285 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6286 if we have to change the mode of memory and cannot, the desired mode is
6287 EXTRACTION_MODE. */
6288 if (GET_CODE (inner) != MEM)
6289 wanted_inner_mode = wanted_inner_reg_mode;
6290 else if (inner_mode != wanted_inner_mode
6291 && (mode_dependent_address_p (XEXP (inner, 0))
6292 || MEM_VOLATILE_P (inner)))
6293 wanted_inner_mode = extraction_mode;
6295 orig_pos = pos;
6297 if (BITS_BIG_ENDIAN)
6299 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6300 BITS_BIG_ENDIAN style. If position is constant, compute new
6301 position. Otherwise, build subtraction.
6302 Note that POS is relative to the mode of the original argument.
6303 If it's a MEM we need to recompute POS relative to that.
6304 However, if we're extracting from (or inserting into) a register,
6305 we want to recompute POS relative to wanted_inner_mode. */
6306 int width = (GET_CODE (inner) == MEM
6307 ? GET_MODE_BITSIZE (is_mode)
6308 : GET_MODE_BITSIZE (wanted_inner_mode));
6310 if (pos_rtx == 0)
6311 pos = width - len - pos;
6312 else
6313 pos_rtx
6314 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6315 /* POS may be less than 0 now, but we check for that below.
6316 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6319 /* If INNER has a wider mode, make it smaller. If this is a constant
6320 extract, try to adjust the byte to point to the byte containing
6321 the value. */
6322 if (wanted_inner_mode != VOIDmode
6323 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6324 && ((GET_CODE (inner) == MEM
6325 && (inner_mode == wanted_inner_mode
6326 || (! mode_dependent_address_p (XEXP (inner, 0))
6327 && ! MEM_VOLATILE_P (inner))))))
6329 int offset = 0;
6331 /* The computations below will be correct if the machine is big
6332 endian in both bits and bytes or little endian in bits and bytes.
6333 If it is mixed, we must adjust. */
6335 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6336 adjust OFFSET to compensate. */
6337 if (BYTES_BIG_ENDIAN
6338 && ! spans_byte
6339 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6340 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6342 /* If this is a constant position, we can move to the desired byte. */
6343 if (pos_rtx == 0)
6345 offset += pos / BITS_PER_UNIT;
6346 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6349 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6350 && ! spans_byte
6351 && is_mode != wanted_inner_mode)
6352 offset = (GET_MODE_SIZE (is_mode)
6353 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6355 if (offset != 0 || inner_mode != wanted_inner_mode)
6356 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6359 /* If INNER is not memory, we can always get it into the proper mode. If we
6360 are changing its mode, POS must be a constant and smaller than the size
6361 of the new mode. */
6362 else if (GET_CODE (inner) != MEM)
6364 if (GET_MODE (inner) != wanted_inner_mode
6365 && (pos_rtx != 0
6366 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6367 return 0;
6369 inner = force_to_mode (inner, wanted_inner_mode,
6370 pos_rtx
6371 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6372 ? ~(unsigned HOST_WIDE_INT) 0
6373 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6374 << orig_pos),
6375 NULL_RTX, 0);
6378 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6379 have to zero extend. Otherwise, we can just use a SUBREG. */
6380 if (pos_rtx != 0
6381 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6383 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6385 /* If we know that no extraneous bits are set, and that the high
6386 bit is not set, convert extraction to cheaper one - either
6387 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6388 cases. */
6389 if (flag_expensive_optimizations
6390 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6391 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6392 & ~(((unsigned HOST_WIDE_INT)
6393 GET_MODE_MASK (GET_MODE (pos_rtx)))
6394 >> 1))
6395 == 0)))
6397 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6399 /* Prefer ZERO_EXTENSION, since it gives more information to
6400 backends. */
6401 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6402 temp = temp1;
6404 pos_rtx = temp;
6406 else if (pos_rtx != 0
6407 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6408 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6410 /* Make POS_RTX unless we already have it and it is correct. If we don't
6411 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6412 be a CONST_INT. */
6413 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6414 pos_rtx = orig_pos_rtx;
6416 else if (pos_rtx == 0)
6417 pos_rtx = GEN_INT (pos);
6419 /* Make the required operation. See if we can use existing rtx. */
6420 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6421 extraction_mode, inner, GEN_INT (len), pos_rtx);
6422 if (! in_dest)
6423 new = gen_lowpart_for_combine (mode, new);
6425 return new;
6428 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6429 with any other operations in X. Return X without that shift if so. */
6431 static rtx
6432 extract_left_shift (rtx x, int count)
6434 enum rtx_code code = GET_CODE (x);
6435 enum machine_mode mode = GET_MODE (x);
6436 rtx tem;
6438 switch (code)
6440 case ASHIFT:
6441 /* This is the shift itself. If it is wide enough, we will return
6442 either the value being shifted if the shift count is equal to
6443 COUNT or a shift for the difference. */
6444 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6445 && INTVAL (XEXP (x, 1)) >= count)
6446 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6447 INTVAL (XEXP (x, 1)) - count);
6448 break;
6450 case NEG: case NOT:
6451 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6452 return simplify_gen_unary (code, mode, tem, mode);
6454 break;
6456 case PLUS: case IOR: case XOR: case AND:
6457 /* If we can safely shift this constant and we find the inner shift,
6458 make a new operation. */
6459 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6460 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6461 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6462 return gen_binary (code, mode, tem,
6463 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6465 break;
6467 default:
6468 break;
6471 return 0;
6474 /* Look at the expression rooted at X. Look for expressions
6475 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6476 Form these expressions.
6478 Return the new rtx, usually just X.
6480 Also, for machines like the VAX that don't have logical shift insns,
6481 try to convert logical to arithmetic shift operations in cases where
6482 they are equivalent. This undoes the canonicalizations to logical
6483 shifts done elsewhere.
6485 We try, as much as possible, to re-use rtl expressions to save memory.
6487 IN_CODE says what kind of expression we are processing. Normally, it is
6488 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6489 being kludges), it is MEM. When processing the arguments of a comparison
6490 or a COMPARE against zero, it is COMPARE. */
6492 static rtx
6493 make_compound_operation (rtx x, enum rtx_code in_code)
6495 enum rtx_code code = GET_CODE (x);
6496 enum machine_mode mode = GET_MODE (x);
6497 int mode_width = GET_MODE_BITSIZE (mode);
6498 rtx rhs, lhs;
6499 enum rtx_code next_code;
6500 int i;
6501 rtx new = 0;
6502 rtx tem;
6503 const char *fmt;
6505 /* Select the code to be used in recursive calls. Once we are inside an
6506 address, we stay there. If we have a comparison, set to COMPARE,
6507 but once inside, go back to our default of SET. */
6509 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6510 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6511 && XEXP (x, 1) == const0_rtx) ? COMPARE
6512 : in_code == COMPARE ? SET : in_code);
6514 /* Process depending on the code of this operation. If NEW is set
6515 nonzero, it will be returned. */
6517 switch (code)
6519 case ASHIFT:
6520 /* Convert shifts by constants into multiplications if inside
6521 an address. */
6522 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6523 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6524 && INTVAL (XEXP (x, 1)) >= 0)
6526 new = make_compound_operation (XEXP (x, 0), next_code);
6527 new = gen_rtx_MULT (mode, new,
6528 GEN_INT ((HOST_WIDE_INT) 1
6529 << INTVAL (XEXP (x, 1))));
6531 break;
6533 case AND:
6534 /* If the second operand is not a constant, we can't do anything
6535 with it. */
6536 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6537 break;
6539 /* If the constant is a power of two minus one and the first operand
6540 is a logical right shift, make an extraction. */
6541 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6542 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6544 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6545 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6546 0, in_code == COMPARE);
6549 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6550 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6551 && subreg_lowpart_p (XEXP (x, 0))
6552 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6553 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6555 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6556 next_code);
6557 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6558 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6559 0, in_code == COMPARE);
6561 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6562 else if ((GET_CODE (XEXP (x, 0)) == XOR
6563 || GET_CODE (XEXP (x, 0)) == IOR)
6564 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6565 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6566 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6568 /* Apply the distributive law, and then try to make extractions. */
6569 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6570 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6571 XEXP (x, 1)),
6572 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6573 XEXP (x, 1)));
6574 new = make_compound_operation (new, in_code);
6577 /* If we are have (and (rotate X C) M) and C is larger than the number
6578 of bits in M, this is an extraction. */
6580 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6581 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6582 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6583 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6585 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6586 new = make_extraction (mode, new,
6587 (GET_MODE_BITSIZE (mode)
6588 - INTVAL (XEXP (XEXP (x, 0), 1))),
6589 NULL_RTX, i, 1, 0, in_code == COMPARE);
6592 /* On machines without logical shifts, if the operand of the AND is
6593 a logical shift and our mask turns off all the propagated sign
6594 bits, we can replace the logical shift with an arithmetic shift. */
6595 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6596 && !have_insn_for (LSHIFTRT, mode)
6597 && have_insn_for (ASHIFTRT, mode)
6598 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6599 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6600 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6601 && mode_width <= HOST_BITS_PER_WIDE_INT)
6603 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6605 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6606 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6607 SUBST (XEXP (x, 0),
6608 gen_rtx_ASHIFTRT (mode,
6609 make_compound_operation
6610 (XEXP (XEXP (x, 0), 0), next_code),
6611 XEXP (XEXP (x, 0), 1)));
6614 /* If the constant is one less than a power of two, this might be
6615 representable by an extraction even if no shift is present.
6616 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6617 we are in a COMPARE. */
6618 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6619 new = make_extraction (mode,
6620 make_compound_operation (XEXP (x, 0),
6621 next_code),
6622 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6624 /* If we are in a comparison and this is an AND with a power of two,
6625 convert this into the appropriate bit extract. */
6626 else if (in_code == COMPARE
6627 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6628 new = make_extraction (mode,
6629 make_compound_operation (XEXP (x, 0),
6630 next_code),
6631 i, NULL_RTX, 1, 1, 0, 1);
6633 break;
6635 case LSHIFTRT:
6636 /* If the sign bit is known to be zero, replace this with an
6637 arithmetic shift. */
6638 if (have_insn_for (ASHIFTRT, mode)
6639 && ! have_insn_for (LSHIFTRT, mode)
6640 && mode_width <= HOST_BITS_PER_WIDE_INT
6641 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6643 new = gen_rtx_ASHIFTRT (mode,
6644 make_compound_operation (XEXP (x, 0),
6645 next_code),
6646 XEXP (x, 1));
6647 break;
6650 /* ... fall through ... */
6652 case ASHIFTRT:
6653 lhs = XEXP (x, 0);
6654 rhs = XEXP (x, 1);
6656 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6657 this is a SIGN_EXTRACT. */
6658 if (GET_CODE (rhs) == CONST_INT
6659 && GET_CODE (lhs) == ASHIFT
6660 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6661 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6663 new = make_compound_operation (XEXP (lhs, 0), next_code);
6664 new = make_extraction (mode, new,
6665 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6666 NULL_RTX, mode_width - INTVAL (rhs),
6667 code == LSHIFTRT, 0, in_code == COMPARE);
6668 break;
6671 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6672 If so, try to merge the shifts into a SIGN_EXTEND. We could
6673 also do this for some cases of SIGN_EXTRACT, but it doesn't
6674 seem worth the effort; the case checked for occurs on Alpha. */
6676 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6677 && ! (GET_CODE (lhs) == SUBREG
6678 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6679 && GET_CODE (rhs) == CONST_INT
6680 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6681 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6682 new = make_extraction (mode, make_compound_operation (new, next_code),
6683 0, NULL_RTX, mode_width - INTVAL (rhs),
6684 code == LSHIFTRT, 0, in_code == COMPARE);
6686 break;
6688 case SUBREG:
6689 /* Call ourselves recursively on the inner expression. If we are
6690 narrowing the object and it has a different RTL code from
6691 what it originally did, do this SUBREG as a force_to_mode. */
6693 tem = make_compound_operation (SUBREG_REG (x), in_code);
6694 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6695 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6696 && subreg_lowpart_p (x))
6698 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6699 NULL_RTX, 0);
6701 /* If we have something other than a SUBREG, we might have
6702 done an expansion, so rerun ourselves. */
6703 if (GET_CODE (newer) != SUBREG)
6704 newer = make_compound_operation (newer, in_code);
6706 return newer;
6709 /* If this is a paradoxical subreg, and the new code is a sign or
6710 zero extension, omit the subreg and widen the extension. If it
6711 is a regular subreg, we can still get rid of the subreg by not
6712 widening so much, or in fact removing the extension entirely. */
6713 if ((GET_CODE (tem) == SIGN_EXTEND
6714 || GET_CODE (tem) == ZERO_EXTEND)
6715 && subreg_lowpart_p (x))
6717 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6718 || (GET_MODE_SIZE (mode) >
6719 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6721 if (! SCALAR_INT_MODE_P (mode))
6722 break;
6723 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6725 else
6726 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6727 return tem;
6729 break;
6731 default:
6732 break;
6735 if (new)
6737 x = gen_lowpart_for_combine (mode, new);
6738 code = GET_CODE (x);
6741 /* Now recursively process each operand of this operation. */
6742 fmt = GET_RTX_FORMAT (code);
6743 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6744 if (fmt[i] == 'e')
6746 new = make_compound_operation (XEXP (x, i), next_code);
6747 SUBST (XEXP (x, i), new);
6750 return x;
6753 /* Given M see if it is a value that would select a field of bits
6754 within an item, but not the entire word. Return -1 if not.
6755 Otherwise, return the starting position of the field, where 0 is the
6756 low-order bit.
6758 *PLEN is set to the length of the field. */
6760 static int
6761 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6763 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6764 int pos = exact_log2 (m & -m);
6765 int len;
6767 if (pos < 0)
6768 return -1;
6770 /* Now shift off the low-order zero bits and see if we have a power of
6771 two minus 1. */
6772 len = exact_log2 ((m >> pos) + 1);
6774 if (len <= 0)
6775 return -1;
6777 *plen = len;
6778 return pos;
6781 /* See if X can be simplified knowing that we will only refer to it in
6782 MODE and will only refer to those bits that are nonzero in MASK.
6783 If other bits are being computed or if masking operations are done
6784 that select a superset of the bits in MASK, they can sometimes be
6785 ignored.
6787 Return a possibly simplified expression, but always convert X to
6788 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6790 Also, if REG is nonzero and X is a register equal in value to REG,
6791 replace X with REG.
6793 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6794 are all off in X. This is used when X will be complemented, by either
6795 NOT, NEG, or XOR. */
6797 static rtx
6798 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6799 rtx reg, int just_select)
6801 enum rtx_code code = GET_CODE (x);
6802 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6803 enum machine_mode op_mode;
6804 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6805 rtx op0, op1, temp;
6807 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6808 code below will do the wrong thing since the mode of such an
6809 expression is VOIDmode.
6811 Also do nothing if X is a CLOBBER; this can happen if X was
6812 the return value from a call to gen_lowpart_for_combine. */
6813 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6814 return x;
6816 /* We want to perform the operation is its present mode unless we know
6817 that the operation is valid in MODE, in which case we do the operation
6818 in MODE. */
6819 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6820 && have_insn_for (code, mode))
6821 ? mode : GET_MODE (x));
6823 /* It is not valid to do a right-shift in a narrower mode
6824 than the one it came in with. */
6825 if ((code == LSHIFTRT || code == ASHIFTRT)
6826 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6827 op_mode = GET_MODE (x);
6829 /* Truncate MASK to fit OP_MODE. */
6830 if (op_mode)
6831 mask &= GET_MODE_MASK (op_mode);
6833 /* When we have an arithmetic operation, or a shift whose count we
6834 do not know, we need to assume that all bit the up to the highest-order
6835 bit in MASK will be needed. This is how we form such a mask. */
6836 if (op_mode)
6837 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6838 ? GET_MODE_MASK (op_mode)
6839 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6840 - 1));
6841 else
6842 fuller_mask = ~(HOST_WIDE_INT) 0;
6844 /* Determine what bits of X are guaranteed to be (non)zero. */
6845 nonzero = nonzero_bits (x, mode);
6847 /* If none of the bits in X are needed, return a zero. */
6848 if (! just_select && (nonzero & mask) == 0)
6849 x = const0_rtx;
6851 /* If X is a CONST_INT, return a new one. Do this here since the
6852 test below will fail. */
6853 if (GET_CODE (x) == CONST_INT)
6855 if (SCALAR_INT_MODE_P (mode))
6856 return gen_int_mode (INTVAL (x) & mask, mode);
6857 else
6859 x = GEN_INT (INTVAL (x) & mask);
6860 return gen_lowpart_common (mode, x);
6864 /* If X is narrower than MODE and we want all the bits in X's mode, just
6865 get X in the proper mode. */
6866 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6867 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6868 return gen_lowpart_for_combine (mode, x);
6870 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6871 MASK are already known to be zero in X, we need not do anything. */
6872 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6873 return x;
6875 switch (code)
6877 case CLOBBER:
6878 /* If X is a (clobber (const_int)), return it since we know we are
6879 generating something that won't match. */
6880 return x;
6882 case USE:
6883 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6884 spanned the boundary of the MEM. If we are now masking so it is
6885 within that boundary, we don't need the USE any more. */
6886 if (! BITS_BIG_ENDIAN
6887 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6888 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6889 break;
6891 case SIGN_EXTEND:
6892 case ZERO_EXTEND:
6893 case ZERO_EXTRACT:
6894 case SIGN_EXTRACT:
6895 x = expand_compound_operation (x);
6896 if (GET_CODE (x) != code)
6897 return force_to_mode (x, mode, mask, reg, next_select);
6898 break;
6900 case REG:
6901 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6902 || rtx_equal_p (reg, get_last_value (x))))
6903 x = reg;
6904 break;
6906 case SUBREG:
6907 if (subreg_lowpart_p (x)
6908 /* We can ignore the effect of this SUBREG if it narrows the mode or
6909 if the constant masks to zero all the bits the mode doesn't
6910 have. */
6911 && ((GET_MODE_SIZE (GET_MODE (x))
6912 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6913 || (0 == (mask
6914 & GET_MODE_MASK (GET_MODE (x))
6915 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6916 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6917 break;
6919 case AND:
6920 /* If this is an AND with a constant, convert it into an AND
6921 whose constant is the AND of that constant with MASK. If it
6922 remains an AND of MASK, delete it since it is redundant. */
6924 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6926 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6927 mask & INTVAL (XEXP (x, 1)));
6929 /* If X is still an AND, see if it is an AND with a mask that
6930 is just some low-order bits. If so, and it is MASK, we don't
6931 need it. */
6933 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6934 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6935 == mask))
6936 x = XEXP (x, 0);
6938 /* If it remains an AND, try making another AND with the bits
6939 in the mode mask that aren't in MASK turned on. If the
6940 constant in the AND is wide enough, this might make a
6941 cheaper constant. */
6943 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6944 && GET_MODE_MASK (GET_MODE (x)) != mask
6945 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6947 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6948 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6949 int width = GET_MODE_BITSIZE (GET_MODE (x));
6950 rtx y;
6952 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6953 number, sign extend it. */
6954 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6955 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6956 cval |= (HOST_WIDE_INT) -1 << width;
6958 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6959 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6960 x = y;
6963 break;
6966 goto binop;
6968 case PLUS:
6969 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6970 low-order bits (as in an alignment operation) and FOO is already
6971 aligned to that boundary, mask C1 to that boundary as well.
6972 This may eliminate that PLUS and, later, the AND. */
6975 unsigned int width = GET_MODE_BITSIZE (mode);
6976 unsigned HOST_WIDE_INT smask = mask;
6978 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6979 number, sign extend it. */
6981 if (width < HOST_BITS_PER_WIDE_INT
6982 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6983 smask |= (HOST_WIDE_INT) -1 << width;
6985 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6986 && exact_log2 (- smask) >= 0
6987 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6988 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6989 return force_to_mode (plus_constant (XEXP (x, 0),
6990 (INTVAL (XEXP (x, 1)) & smask)),
6991 mode, smask, reg, next_select);
6994 /* ... fall through ... */
6996 case MULT:
6997 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6998 most significant bit in MASK since carries from those bits will
6999 affect the bits we are interested in. */
7000 mask = fuller_mask;
7001 goto binop;
7003 case MINUS:
7004 /* If X is (minus C Y) where C's least set bit is larger than any bit
7005 in the mask, then we may replace with (neg Y). */
7006 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7007 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7008 & -INTVAL (XEXP (x, 0))))
7009 > mask))
7011 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7012 GET_MODE (x));
7013 return force_to_mode (x, mode, mask, reg, next_select);
7016 /* Similarly, if C contains every bit in the fuller_mask, then we may
7017 replace with (not Y). */
7018 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7019 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7020 == INTVAL (XEXP (x, 0))))
7022 x = simplify_gen_unary (NOT, GET_MODE (x),
7023 XEXP (x, 1), GET_MODE (x));
7024 return force_to_mode (x, mode, mask, reg, next_select);
7027 mask = fuller_mask;
7028 goto binop;
7030 case IOR:
7031 case XOR:
7032 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7033 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7034 operation which may be a bitfield extraction. Ensure that the
7035 constant we form is not wider than the mode of X. */
7037 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7038 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7039 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7040 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7041 && GET_CODE (XEXP (x, 1)) == CONST_INT
7042 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7043 + floor_log2 (INTVAL (XEXP (x, 1))))
7044 < GET_MODE_BITSIZE (GET_MODE (x)))
7045 && (INTVAL (XEXP (x, 1))
7046 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7048 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7049 << INTVAL (XEXP (XEXP (x, 0), 1)));
7050 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7051 XEXP (XEXP (x, 0), 0), temp);
7052 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7053 XEXP (XEXP (x, 0), 1));
7054 return force_to_mode (x, mode, mask, reg, next_select);
7057 binop:
7058 /* For most binary operations, just propagate into the operation and
7059 change the mode if we have an operation of that mode. */
7061 op0 = gen_lowpart_for_combine (op_mode,
7062 force_to_mode (XEXP (x, 0), mode, mask,
7063 reg, next_select));
7064 op1 = gen_lowpart_for_combine (op_mode,
7065 force_to_mode (XEXP (x, 1), mode, mask,
7066 reg, next_select));
7068 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7069 x = gen_binary (code, op_mode, op0, op1);
7070 break;
7072 case ASHIFT:
7073 /* For left shifts, do the same, but just for the first operand.
7074 However, we cannot do anything with shifts where we cannot
7075 guarantee that the counts are smaller than the size of the mode
7076 because such a count will have a different meaning in a
7077 wider mode. */
7079 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7080 && INTVAL (XEXP (x, 1)) >= 0
7081 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7082 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7083 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7084 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7085 break;
7087 /* If the shift count is a constant and we can do arithmetic in
7088 the mode of the shift, refine which bits we need. Otherwise, use the
7089 conservative form of the mask. */
7090 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7091 && INTVAL (XEXP (x, 1)) >= 0
7092 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7093 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7094 mask >>= INTVAL (XEXP (x, 1));
7095 else
7096 mask = fuller_mask;
7098 op0 = gen_lowpart_for_combine (op_mode,
7099 force_to_mode (XEXP (x, 0), op_mode,
7100 mask, reg, next_select));
7102 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7103 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7104 break;
7106 case LSHIFTRT:
7107 /* Here we can only do something if the shift count is a constant,
7108 this shift constant is valid for the host, and we can do arithmetic
7109 in OP_MODE. */
7111 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7112 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7113 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7115 rtx inner = XEXP (x, 0);
7116 unsigned HOST_WIDE_INT inner_mask;
7118 /* Select the mask of the bits we need for the shift operand. */
7119 inner_mask = mask << INTVAL (XEXP (x, 1));
7121 /* We can only change the mode of the shift if we can do arithmetic
7122 in the mode of the shift and INNER_MASK is no wider than the
7123 width of OP_MODE. */
7124 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
7125 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
7126 op_mode = GET_MODE (x);
7128 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7130 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7131 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7134 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7135 shift and AND produces only copies of the sign bit (C2 is one less
7136 than a power of two), we can do this with just a shift. */
7138 if (GET_CODE (x) == LSHIFTRT
7139 && GET_CODE (XEXP (x, 1)) == CONST_INT
7140 /* The shift puts one of the sign bit copies in the least significant
7141 bit. */
7142 && ((INTVAL (XEXP (x, 1))
7143 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7144 >= GET_MODE_BITSIZE (GET_MODE (x)))
7145 && exact_log2 (mask + 1) >= 0
7146 /* Number of bits left after the shift must be more than the mask
7147 needs. */
7148 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7149 <= GET_MODE_BITSIZE (GET_MODE (x)))
7150 /* Must be more sign bit copies than the mask needs. */
7151 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7152 >= exact_log2 (mask + 1)))
7153 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7154 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7155 - exact_log2 (mask + 1)));
7157 goto shiftrt;
7159 case ASHIFTRT:
7160 /* If we are just looking for the sign bit, we don't need this shift at
7161 all, even if it has a variable count. */
7162 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7163 && (mask == ((unsigned HOST_WIDE_INT) 1
7164 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7165 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7167 /* If this is a shift by a constant, get a mask that contains those bits
7168 that are not copies of the sign bit. We then have two cases: If
7169 MASK only includes those bits, this can be a logical shift, which may
7170 allow simplifications. If MASK is a single-bit field not within
7171 those bits, we are requesting a copy of the sign bit and hence can
7172 shift the sign bit to the appropriate location. */
7174 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7175 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7177 int i = -1;
7179 /* If the considered data is wider than HOST_WIDE_INT, we can't
7180 represent a mask for all its bits in a single scalar.
7181 But we only care about the lower bits, so calculate these. */
7183 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7185 nonzero = ~(HOST_WIDE_INT) 0;
7187 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7188 is the number of bits a full-width mask would have set.
7189 We need only shift if these are fewer than nonzero can
7190 hold. If not, we must keep all bits set in nonzero. */
7192 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7193 < HOST_BITS_PER_WIDE_INT)
7194 nonzero >>= INTVAL (XEXP (x, 1))
7195 + HOST_BITS_PER_WIDE_INT
7196 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7198 else
7200 nonzero = GET_MODE_MASK (GET_MODE (x));
7201 nonzero >>= INTVAL (XEXP (x, 1));
7204 if ((mask & ~nonzero) == 0
7205 || (i = exact_log2 (mask)) >= 0)
7207 x = simplify_shift_const
7208 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7209 i < 0 ? INTVAL (XEXP (x, 1))
7210 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7212 if (GET_CODE (x) != ASHIFTRT)
7213 return force_to_mode (x, mode, mask, reg, next_select);
7217 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7218 even if the shift count isn't a constant. */
7219 if (mask == 1)
7220 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7222 shiftrt:
7224 /* If this is a zero- or sign-extension operation that just affects bits
7225 we don't care about, remove it. Be sure the call above returned
7226 something that is still a shift. */
7228 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7229 && GET_CODE (XEXP (x, 1)) == CONST_INT
7230 && INTVAL (XEXP (x, 1)) >= 0
7231 && (INTVAL (XEXP (x, 1))
7232 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7233 && GET_CODE (XEXP (x, 0)) == ASHIFT
7234 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7235 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7236 reg, next_select);
7238 break;
7240 case ROTATE:
7241 case ROTATERT:
7242 /* If the shift count is constant and we can do computations
7243 in the mode of X, compute where the bits we care about are.
7244 Otherwise, we can't do anything. Don't change the mode of
7245 the shift or propagate MODE into the shift, though. */
7246 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7247 && INTVAL (XEXP (x, 1)) >= 0)
7249 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7250 GET_MODE (x), GEN_INT (mask),
7251 XEXP (x, 1));
7252 if (temp && GET_CODE (temp) == CONST_INT)
7253 SUBST (XEXP (x, 0),
7254 force_to_mode (XEXP (x, 0), GET_MODE (x),
7255 INTVAL (temp), reg, next_select));
7257 break;
7259 case NEG:
7260 /* If we just want the low-order bit, the NEG isn't needed since it
7261 won't change the low-order bit. */
7262 if (mask == 1)
7263 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7265 /* We need any bits less significant than the most significant bit in
7266 MASK since carries from those bits will affect the bits we are
7267 interested in. */
7268 mask = fuller_mask;
7269 goto unop;
7271 case NOT:
7272 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7273 same as the XOR case above. Ensure that the constant we form is not
7274 wider than the mode of X. */
7276 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7277 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7278 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7279 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7280 < GET_MODE_BITSIZE (GET_MODE (x)))
7281 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7283 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7284 GET_MODE (x));
7285 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7286 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7288 return force_to_mode (x, mode, mask, reg, next_select);
7291 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7292 use the full mask inside the NOT. */
7293 mask = fuller_mask;
7295 unop:
7296 op0 = gen_lowpart_for_combine (op_mode,
7297 force_to_mode (XEXP (x, 0), mode, mask,
7298 reg, next_select));
7299 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7300 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7301 break;
7303 case NE:
7304 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7305 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7306 which is equal to STORE_FLAG_VALUE. */
7307 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7308 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7309 && (nonzero_bits (XEXP (x, 0), mode)
7310 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7311 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7313 break;
7315 case IF_THEN_ELSE:
7316 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7317 written in a narrower mode. We play it safe and do not do so. */
7319 SUBST (XEXP (x, 1),
7320 gen_lowpart_for_combine (GET_MODE (x),
7321 force_to_mode (XEXP (x, 1), mode,
7322 mask, reg, next_select)));
7323 SUBST (XEXP (x, 2),
7324 gen_lowpart_for_combine (GET_MODE (x),
7325 force_to_mode (XEXP (x, 2), mode,
7326 mask, reg, next_select)));
7327 break;
7329 default:
7330 break;
7333 /* Ensure we return a value of the proper mode. */
7334 return gen_lowpart_for_combine (mode, x);
7337 /* Return nonzero if X is an expression that has one of two values depending on
7338 whether some other value is zero or nonzero. In that case, we return the
7339 value that is being tested, *PTRUE is set to the value if the rtx being
7340 returned has a nonzero value, and *PFALSE is set to the other alternative.
7342 If we return zero, we set *PTRUE and *PFALSE to X. */
7344 static rtx
7345 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7347 enum machine_mode mode = GET_MODE (x);
7348 enum rtx_code code = GET_CODE (x);
7349 rtx cond0, cond1, true0, true1, false0, false1;
7350 unsigned HOST_WIDE_INT nz;
7352 /* If we are comparing a value against zero, we are done. */
7353 if ((code == NE || code == EQ)
7354 && XEXP (x, 1) == const0_rtx)
7356 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7357 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7358 return XEXP (x, 0);
7361 /* If this is a unary operation whose operand has one of two values, apply
7362 our opcode to compute those values. */
7363 else if (GET_RTX_CLASS (code) == '1'
7364 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7366 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7367 *pfalse = simplify_gen_unary (code, mode, false0,
7368 GET_MODE (XEXP (x, 0)));
7369 return cond0;
7372 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7373 make can't possibly match and would suppress other optimizations. */
7374 else if (code == COMPARE)
7377 /* If this is a binary operation, see if either side has only one of two
7378 values. If either one does or if both do and they are conditional on
7379 the same value, compute the new true and false values. */
7380 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7381 || GET_RTX_CLASS (code) == '<')
7383 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7384 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7386 if ((cond0 != 0 || cond1 != 0)
7387 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7389 /* If if_then_else_cond returned zero, then true/false are the
7390 same rtl. We must copy one of them to prevent invalid rtl
7391 sharing. */
7392 if (cond0 == 0)
7393 true0 = copy_rtx (true0);
7394 else if (cond1 == 0)
7395 true1 = copy_rtx (true1);
7397 *ptrue = gen_binary (code, mode, true0, true1);
7398 *pfalse = gen_binary (code, mode, false0, false1);
7399 return cond0 ? cond0 : cond1;
7402 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7403 operands is zero when the other is nonzero, and vice-versa,
7404 and STORE_FLAG_VALUE is 1 or -1. */
7406 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7407 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7408 || code == UMAX)
7409 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7411 rtx op0 = XEXP (XEXP (x, 0), 1);
7412 rtx op1 = XEXP (XEXP (x, 1), 1);
7414 cond0 = XEXP (XEXP (x, 0), 0);
7415 cond1 = XEXP (XEXP (x, 1), 0);
7417 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7418 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7419 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7420 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7421 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7422 || ((swap_condition (GET_CODE (cond0))
7423 == combine_reversed_comparison_code (cond1))
7424 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7425 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7426 && ! side_effects_p (x))
7428 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7429 *pfalse = gen_binary (MULT, mode,
7430 (code == MINUS
7431 ? simplify_gen_unary (NEG, mode, op1,
7432 mode)
7433 : op1),
7434 const_true_rtx);
7435 return cond0;
7439 /* Similarly for MULT, AND and UMIN, except that for these the result
7440 is always zero. */
7441 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7442 && (code == MULT || code == AND || code == UMIN)
7443 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7445 cond0 = XEXP (XEXP (x, 0), 0);
7446 cond1 = XEXP (XEXP (x, 1), 0);
7448 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7449 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7450 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7451 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7452 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7453 || ((swap_condition (GET_CODE (cond0))
7454 == combine_reversed_comparison_code (cond1))
7455 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7456 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7457 && ! side_effects_p (x))
7459 *ptrue = *pfalse = const0_rtx;
7460 return cond0;
7465 else if (code == IF_THEN_ELSE)
7467 /* If we have IF_THEN_ELSE already, extract the condition and
7468 canonicalize it if it is NE or EQ. */
7469 cond0 = XEXP (x, 0);
7470 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7471 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7472 return XEXP (cond0, 0);
7473 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7475 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7476 return XEXP (cond0, 0);
7478 else
7479 return cond0;
7482 /* If X is a SUBREG, we can narrow both the true and false values
7483 if the inner expression, if there is a condition. */
7484 else if (code == SUBREG
7485 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7486 &true0, &false0)))
7488 *ptrue = simplify_gen_subreg (mode, true0,
7489 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7490 *pfalse = simplify_gen_subreg (mode, false0,
7491 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7493 return cond0;
7496 /* If X is a constant, this isn't special and will cause confusions
7497 if we treat it as such. Likewise if it is equivalent to a constant. */
7498 else if (CONSTANT_P (x)
7499 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7502 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7503 will be least confusing to the rest of the compiler. */
7504 else if (mode == BImode)
7506 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7507 return x;
7510 /* If X is known to be either 0 or -1, those are the true and
7511 false values when testing X. */
7512 else if (x == constm1_rtx || x == const0_rtx
7513 || (mode != VOIDmode
7514 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7516 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7517 return x;
7520 /* Likewise for 0 or a single bit. */
7521 else if (mode != VOIDmode
7522 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7523 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7525 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7526 return x;
7529 /* Otherwise fail; show no condition with true and false values the same. */
7530 *ptrue = *pfalse = x;
7531 return 0;
7534 /* Return the value of expression X given the fact that condition COND
7535 is known to be true when applied to REG as its first operand and VAL
7536 as its second. X is known to not be shared and so can be modified in
7537 place.
7539 We only handle the simplest cases, and specifically those cases that
7540 arise with IF_THEN_ELSE expressions. */
7542 static rtx
7543 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7545 enum rtx_code code = GET_CODE (x);
7546 rtx temp;
7547 const char *fmt;
7548 int i, j;
7550 if (side_effects_p (x))
7551 return x;
7553 /* If either operand of the condition is a floating point value,
7554 then we have to avoid collapsing an EQ comparison. */
7555 if (cond == EQ
7556 && rtx_equal_p (x, reg)
7557 && ! FLOAT_MODE_P (GET_MODE (x))
7558 && ! FLOAT_MODE_P (GET_MODE (val)))
7559 return val;
7561 if (cond == UNEQ && rtx_equal_p (x, reg))
7562 return val;
7564 /* If X is (abs REG) and we know something about REG's relationship
7565 with zero, we may be able to simplify this. */
7567 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7568 switch (cond)
7570 case GE: case GT: case EQ:
7571 return XEXP (x, 0);
7572 case LT: case LE:
7573 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7574 XEXP (x, 0),
7575 GET_MODE (XEXP (x, 0)));
7576 default:
7577 break;
7580 /* The only other cases we handle are MIN, MAX, and comparisons if the
7581 operands are the same as REG and VAL. */
7583 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7585 if (rtx_equal_p (XEXP (x, 0), val))
7586 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7588 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7590 if (GET_RTX_CLASS (code) == '<')
7592 if (comparison_dominates_p (cond, code))
7593 return const_true_rtx;
7595 code = combine_reversed_comparison_code (x);
7596 if (code != UNKNOWN
7597 && comparison_dominates_p (cond, code))
7598 return const0_rtx;
7599 else
7600 return x;
7602 else if (code == SMAX || code == SMIN
7603 || code == UMIN || code == UMAX)
7605 int unsignedp = (code == UMIN || code == UMAX);
7607 /* Do not reverse the condition when it is NE or EQ.
7608 This is because we cannot conclude anything about
7609 the value of 'SMAX (x, y)' when x is not equal to y,
7610 but we can when x equals y. */
7611 if ((code == SMAX || code == UMAX)
7612 && ! (cond == EQ || cond == NE))
7613 cond = reverse_condition (cond);
7615 switch (cond)
7617 case GE: case GT:
7618 return unsignedp ? x : XEXP (x, 1);
7619 case LE: case LT:
7620 return unsignedp ? x : XEXP (x, 0);
7621 case GEU: case GTU:
7622 return unsignedp ? XEXP (x, 1) : x;
7623 case LEU: case LTU:
7624 return unsignedp ? XEXP (x, 0) : x;
7625 default:
7626 break;
7631 else if (code == SUBREG)
7633 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7634 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7636 if (SUBREG_REG (x) != r)
7638 /* We must simplify subreg here, before we lose track of the
7639 original inner_mode. */
7640 new = simplify_subreg (GET_MODE (x), r,
7641 inner_mode, SUBREG_BYTE (x));
7642 if (new)
7643 return new;
7644 else
7645 SUBST (SUBREG_REG (x), r);
7648 return x;
7650 /* We don't have to handle SIGN_EXTEND here, because even in the
7651 case of replacing something with a modeless CONST_INT, a
7652 CONST_INT is already (supposed to be) a valid sign extension for
7653 its narrower mode, which implies it's already properly
7654 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7655 story is different. */
7656 else if (code == ZERO_EXTEND)
7658 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7659 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7661 if (XEXP (x, 0) != r)
7663 /* We must simplify the zero_extend here, before we lose
7664 track of the original inner_mode. */
7665 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7666 r, inner_mode);
7667 if (new)
7668 return new;
7669 else
7670 SUBST (XEXP (x, 0), r);
7673 return x;
7676 fmt = GET_RTX_FORMAT (code);
7677 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7679 if (fmt[i] == 'e')
7680 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7681 else if (fmt[i] == 'E')
7682 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7683 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7684 cond, reg, val));
7687 return x;
7690 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7691 assignment as a field assignment. */
7693 static int
7694 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7696 if (x == y || rtx_equal_p (x, y))
7697 return 1;
7699 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7700 return 0;
7702 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7703 Note that all SUBREGs of MEM are paradoxical; otherwise they
7704 would have been rewritten. */
7705 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7706 && GET_CODE (SUBREG_REG (y)) == MEM
7707 && rtx_equal_p (SUBREG_REG (y),
7708 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7709 return 1;
7711 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7712 && GET_CODE (SUBREG_REG (x)) == MEM
7713 && rtx_equal_p (SUBREG_REG (x),
7714 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7715 return 1;
7717 /* We used to see if get_last_value of X and Y were the same but that's
7718 not correct. In one direction, we'll cause the assignment to have
7719 the wrong destination and in the case, we'll import a register into this
7720 insn that might have already have been dead. So fail if none of the
7721 above cases are true. */
7722 return 0;
7725 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7726 Return that assignment if so.
7728 We only handle the most common cases. */
7730 static rtx
7731 make_field_assignment (rtx x)
7733 rtx dest = SET_DEST (x);
7734 rtx src = SET_SRC (x);
7735 rtx assign;
7736 rtx rhs, lhs;
7737 HOST_WIDE_INT c1;
7738 HOST_WIDE_INT pos;
7739 unsigned HOST_WIDE_INT len;
7740 rtx other;
7741 enum machine_mode mode;
7743 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7744 a clear of a one-bit field. We will have changed it to
7745 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7746 for a SUBREG. */
7748 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7749 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7750 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7751 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7753 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7754 1, 1, 1, 0);
7755 if (assign != 0)
7756 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7757 return x;
7760 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7761 && subreg_lowpart_p (XEXP (src, 0))
7762 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7763 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7764 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7765 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7766 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7768 assign = make_extraction (VOIDmode, dest, 0,
7769 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7770 1, 1, 1, 0);
7771 if (assign != 0)
7772 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7773 return x;
7776 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7777 one-bit field. */
7778 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7779 && XEXP (XEXP (src, 0), 0) == const1_rtx
7780 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7782 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7783 1, 1, 1, 0);
7784 if (assign != 0)
7785 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7786 return x;
7789 /* The other case we handle is assignments into a constant-position
7790 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7791 a mask that has all one bits except for a group of zero bits and
7792 OTHER is known to have zeros where C1 has ones, this is such an
7793 assignment. Compute the position and length from C1. Shift OTHER
7794 to the appropriate position, force it to the required mode, and
7795 make the extraction. Check for the AND in both operands. */
7797 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7798 return x;
7800 rhs = expand_compound_operation (XEXP (src, 0));
7801 lhs = expand_compound_operation (XEXP (src, 1));
7803 if (GET_CODE (rhs) == AND
7804 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7805 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7806 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7807 else if (GET_CODE (lhs) == AND
7808 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7809 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7810 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7811 else
7812 return x;
7814 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7815 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7816 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7817 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7818 return x;
7820 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7821 if (assign == 0)
7822 return x;
7824 /* The mode to use for the source is the mode of the assignment, or of
7825 what is inside a possible STRICT_LOW_PART. */
7826 mode = (GET_CODE (assign) == STRICT_LOW_PART
7827 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7829 /* Shift OTHER right POS places and make it the source, restricting it
7830 to the proper length and mode. */
7832 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7833 GET_MODE (src), other, pos),
7834 mode,
7835 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7836 ? ~(unsigned HOST_WIDE_INT) 0
7837 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7838 dest, 0);
7840 /* If SRC is masked by an AND that does not make a difference in
7841 the value being stored, strip it. */
7842 if (GET_CODE (assign) == ZERO_EXTRACT
7843 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7844 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7845 && GET_CODE (src) == AND
7846 && GET_CODE (XEXP (src, 1)) == CONST_INT
7847 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7848 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7849 src = XEXP (src, 0);
7851 return gen_rtx_SET (VOIDmode, assign, src);
7854 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7855 if so. */
7857 static rtx
7858 apply_distributive_law (rtx x)
7860 enum rtx_code code = GET_CODE (x);
7861 rtx lhs, rhs, other;
7862 rtx tem;
7863 enum rtx_code inner_code;
7865 /* Distributivity is not true for floating point.
7866 It can change the value. So don't do it.
7867 -- rms and moshier@world.std.com. */
7868 if (FLOAT_MODE_P (GET_MODE (x)))
7869 return x;
7871 /* The outer operation can only be one of the following: */
7872 if (code != IOR && code != AND && code != XOR
7873 && code != PLUS && code != MINUS)
7874 return x;
7876 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7878 /* If either operand is a primitive we can't do anything, so get out
7879 fast. */
7880 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7881 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7882 return x;
7884 lhs = expand_compound_operation (lhs);
7885 rhs = expand_compound_operation (rhs);
7886 inner_code = GET_CODE (lhs);
7887 if (inner_code != GET_CODE (rhs))
7888 return x;
7890 /* See if the inner and outer operations distribute. */
7891 switch (inner_code)
7893 case LSHIFTRT:
7894 case ASHIFTRT:
7895 case AND:
7896 case IOR:
7897 /* These all distribute except over PLUS. */
7898 if (code == PLUS || code == MINUS)
7899 return x;
7900 break;
7902 case MULT:
7903 if (code != PLUS && code != MINUS)
7904 return x;
7905 break;
7907 case ASHIFT:
7908 /* This is also a multiply, so it distributes over everything. */
7909 break;
7911 case SUBREG:
7912 /* Non-paradoxical SUBREGs distributes over all operations, provided
7913 the inner modes and byte offsets are the same, this is an extraction
7914 of a low-order part, we don't convert an fp operation to int or
7915 vice versa, and we would not be converting a single-word
7916 operation into a multi-word operation. The latter test is not
7917 required, but it prevents generating unneeded multi-word operations.
7918 Some of the previous tests are redundant given the latter test, but
7919 are retained because they are required for correctness.
7921 We produce the result slightly differently in this case. */
7923 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7924 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7925 || ! subreg_lowpart_p (lhs)
7926 || (GET_MODE_CLASS (GET_MODE (lhs))
7927 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7928 || (GET_MODE_SIZE (GET_MODE (lhs))
7929 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7930 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7931 return x;
7933 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7934 SUBREG_REG (lhs), SUBREG_REG (rhs));
7935 return gen_lowpart_for_combine (GET_MODE (x), tem);
7937 default:
7938 return x;
7941 /* Set LHS and RHS to the inner operands (A and B in the example
7942 above) and set OTHER to the common operand (C in the example).
7943 These is only one way to do this unless the inner operation is
7944 commutative. */
7945 if (GET_RTX_CLASS (inner_code) == 'c'
7946 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7947 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7948 else if (GET_RTX_CLASS (inner_code) == 'c'
7949 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7950 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7951 else if (GET_RTX_CLASS (inner_code) == 'c'
7952 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7953 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7954 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7955 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7956 else
7957 return x;
7959 /* Form the new inner operation, seeing if it simplifies first. */
7960 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7962 /* There is one exception to the general way of distributing:
7963 (a | c) ^ (b | c) -> (a ^ b) & ~c */
7964 if (code == XOR && inner_code == IOR)
7966 inner_code = AND;
7967 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7970 /* We may be able to continuing distributing the result, so call
7971 ourselves recursively on the inner operation before forming the
7972 outer operation, which we return. */
7973 return gen_binary (inner_code, GET_MODE (x),
7974 apply_distributive_law (tem), other);
7977 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7978 in MODE.
7980 Return an equivalent form, if different from X. Otherwise, return X. If
7981 X is zero, we are to always construct the equivalent form. */
7983 static rtx
7984 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
7985 unsigned HOST_WIDE_INT constop)
7987 unsigned HOST_WIDE_INT nonzero;
7988 int i;
7990 /* Simplify VAROP knowing that we will be only looking at some of the
7991 bits in it.
7993 Note by passing in CONSTOP, we guarantee that the bits not set in
7994 CONSTOP are not significant and will never be examined. We must
7995 ensure that is the case by explicitly masking out those bits
7996 before returning. */
7997 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7999 /* If VAROP is a CLOBBER, we will fail so return it. */
8000 if (GET_CODE (varop) == CLOBBER)
8001 return varop;
8003 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8004 to VAROP and return the new constant. */
8005 if (GET_CODE (varop) == CONST_INT)
8006 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8008 /* See what bits may be nonzero in VAROP. Unlike the general case of
8009 a call to nonzero_bits, here we don't care about bits outside
8010 MODE. */
8012 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8014 /* Turn off all bits in the constant that are known to already be zero.
8015 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8016 which is tested below. */
8018 constop &= nonzero;
8020 /* If we don't have any bits left, return zero. */
8021 if (constop == 0)
8022 return const0_rtx;
8024 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8025 a power of two, we can replace this with an ASHIFT. */
8026 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8027 && (i = exact_log2 (constop)) >= 0)
8028 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8030 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8031 or XOR, then try to apply the distributive law. This may eliminate
8032 operations if either branch can be simplified because of the AND.
8033 It may also make some cases more complex, but those cases probably
8034 won't match a pattern either with or without this. */
8036 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8037 return
8038 gen_lowpart_for_combine
8039 (mode,
8040 apply_distributive_law
8041 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8042 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8043 XEXP (varop, 0), constop),
8044 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8045 XEXP (varop, 1), constop))));
8047 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8048 the AND and see if one of the operands simplifies to zero. If so, we
8049 may eliminate it. */
8051 if (GET_CODE (varop) == PLUS
8052 && exact_log2 (constop + 1) >= 0)
8054 rtx o0, o1;
8056 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8057 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8058 if (o0 == const0_rtx)
8059 return o1;
8060 if (o1 == const0_rtx)
8061 return o0;
8064 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8065 if we already had one (just check for the simplest cases). */
8066 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8067 && GET_MODE (XEXP (x, 0)) == mode
8068 && SUBREG_REG (XEXP (x, 0)) == varop)
8069 varop = XEXP (x, 0);
8070 else
8071 varop = gen_lowpart_for_combine (mode, varop);
8073 /* If we can't make the SUBREG, try to return what we were given. */
8074 if (GET_CODE (varop) == CLOBBER)
8075 return x ? x : varop;
8077 /* If we are only masking insignificant bits, return VAROP. */
8078 if (constop == nonzero)
8079 x = varop;
8080 else
8082 /* Otherwise, return an AND. */
8083 constop = trunc_int_for_mode (constop, mode);
8084 /* See how much, if any, of X we can use. */
8085 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8086 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8088 else
8090 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8091 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8092 SUBST (XEXP (x, 1), GEN_INT (constop));
8094 SUBST (XEXP (x, 0), varop);
8098 return x;
8101 #define nonzero_bits_with_known(X, MODE) \
8102 cached_nonzero_bits (X, MODE, known_x, known_mode, known_ret)
8104 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
8105 It avoids exponential behavior in nonzero_bits1 when X has
8106 identical subexpressions on the first or the second level. */
8108 static unsigned HOST_WIDE_INT
8109 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
8110 enum machine_mode known_mode,
8111 unsigned HOST_WIDE_INT known_ret)
8113 if (x == known_x && mode == known_mode)
8114 return known_ret;
8116 /* Try to find identical subexpressions. If found call
8117 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
8118 precomputed value for the subexpression as KNOWN_RET. */
8120 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8121 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8123 rtx x0 = XEXP (x, 0);
8124 rtx x1 = XEXP (x, 1);
8126 /* Check the first level. */
8127 if (x0 == x1)
8128 return nonzero_bits1 (x, mode, x0, mode,
8129 nonzero_bits_with_known (x0, mode));
8131 /* Check the second level. */
8132 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8133 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8134 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8135 return nonzero_bits1 (x, mode, x1, mode,
8136 nonzero_bits_with_known (x1, mode));
8138 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8139 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8140 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8141 return nonzero_bits1 (x, mode, x0, mode,
8142 nonzero_bits_with_known (x0, mode));
8145 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
8148 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
8149 We don't let nonzero_bits recur into num_sign_bit_copies, because that
8150 is less useful. We can't allow both, because that results in exponential
8151 run time recursion. There is a nullstone testcase that triggered
8152 this. This macro avoids accidental uses of num_sign_bit_copies. */
8153 #define cached_num_sign_bit_copies()
8155 /* Given an expression, X, compute which bits in X can be nonzero.
8156 We don't care about bits outside of those defined in MODE.
8158 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8159 a shift, AND, or zero_extract, we can do better. */
8161 static unsigned HOST_WIDE_INT
8162 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
8163 enum machine_mode known_mode,
8164 unsigned HOST_WIDE_INT known_ret)
8166 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
8167 unsigned HOST_WIDE_INT inner_nz;
8168 enum rtx_code code;
8169 unsigned int mode_width = GET_MODE_BITSIZE (mode);
8170 rtx tem;
8172 /* For floating-point values, assume all bits are needed. */
8173 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
8174 return nonzero;
8176 /* If X is wider than MODE, use its mode instead. */
8177 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
8179 mode = GET_MODE (x);
8180 nonzero = GET_MODE_MASK (mode);
8181 mode_width = GET_MODE_BITSIZE (mode);
8184 if (mode_width > HOST_BITS_PER_WIDE_INT)
8185 /* Our only callers in this case look for single bit values. So
8186 just return the mode mask. Those tests will then be false. */
8187 return nonzero;
8189 #ifndef WORD_REGISTER_OPERATIONS
8190 /* If MODE is wider than X, but both are a single word for both the host
8191 and target machines, we can compute this from which bits of the
8192 object might be nonzero in its own mode, taking into account the fact
8193 that on many CISC machines, accessing an object in a wider mode
8194 causes the high-order bits to become undefined. So they are
8195 not known to be zero. */
8197 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8198 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8199 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8200 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8202 nonzero &= nonzero_bits_with_known (x, GET_MODE (x));
8203 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8204 return nonzero;
8206 #endif
8208 code = GET_CODE (x);
8209 switch (code)
8211 case REG:
8212 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8213 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8214 all the bits above ptr_mode are known to be zero. */
8215 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8216 && REG_POINTER (x))
8217 nonzero &= GET_MODE_MASK (ptr_mode);
8218 #endif
8220 /* Include declared information about alignment of pointers. */
8221 /* ??? We don't properly preserve REG_POINTER changes across
8222 pointer-to-integer casts, so we can't trust it except for
8223 things that we know must be pointers. See execute/960116-1.c. */
8224 if ((x == stack_pointer_rtx
8225 || x == frame_pointer_rtx
8226 || x == arg_pointer_rtx)
8227 && REGNO_POINTER_ALIGN (REGNO (x)))
8229 unsigned HOST_WIDE_INT alignment
8230 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8232 #ifdef PUSH_ROUNDING
8233 /* If PUSH_ROUNDING is defined, it is possible for the
8234 stack to be momentarily aligned only to that amount,
8235 so we pick the least alignment. */
8236 if (x == stack_pointer_rtx && PUSH_ARGS)
8237 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
8238 alignment);
8239 #endif
8241 nonzero &= ~(alignment - 1);
8244 /* If X is a register whose nonzero bits value is current, use it.
8245 Otherwise, if X is a register whose value we can find, use that
8246 value. Otherwise, use the previously-computed global nonzero bits
8247 for this register. */
8249 if (reg_last_set_value[REGNO (x)] != 0
8250 && (reg_last_set_mode[REGNO (x)] == mode
8251 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8252 && GET_MODE_CLASS (mode) == MODE_INT))
8253 && (reg_last_set_label[REGNO (x)] == label_tick
8254 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8255 && REG_N_SETS (REGNO (x)) == 1
8256 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8257 REGNO (x))))
8258 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8259 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8261 tem = get_last_value (x);
8263 if (tem)
8265 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8266 /* If X is narrower than MODE and TEM is a non-negative
8267 constant that would appear negative in the mode of X,
8268 sign-extend it for use in reg_nonzero_bits because some
8269 machines (maybe most) will actually do the sign-extension
8270 and this is the conservative approach.
8272 ??? For 2.5, try to tighten up the MD files in this regard
8273 instead of this kludge. */
8275 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8276 && GET_CODE (tem) == CONST_INT
8277 && INTVAL (tem) > 0
8278 && 0 != (INTVAL (tem)
8279 & ((HOST_WIDE_INT) 1
8280 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8281 tem = GEN_INT (INTVAL (tem)
8282 | ((HOST_WIDE_INT) (-1)
8283 << GET_MODE_BITSIZE (GET_MODE (x))));
8284 #endif
8285 return nonzero_bits_with_known (tem, mode) & nonzero;
8287 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8289 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8291 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8292 /* We don't know anything about the upper bits. */
8293 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8294 return nonzero & mask;
8296 else
8297 return nonzero;
8299 case CONST_INT:
8300 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8301 /* If X is negative in MODE, sign-extend the value. */
8302 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8303 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8304 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8305 #endif
8307 return INTVAL (x);
8309 case MEM:
8310 #ifdef LOAD_EXTEND_OP
8311 /* In many, if not most, RISC machines, reading a byte from memory
8312 zeros the rest of the register. Noticing that fact saves a lot
8313 of extra zero-extends. */
8314 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8315 nonzero &= GET_MODE_MASK (GET_MODE (x));
8316 #endif
8317 break;
8319 case EQ: case NE:
8320 case UNEQ: case LTGT:
8321 case GT: case GTU: case UNGT:
8322 case LT: case LTU: case UNLT:
8323 case GE: case GEU: case UNGE:
8324 case LE: case LEU: case UNLE:
8325 case UNORDERED: case ORDERED:
8327 /* If this produces an integer result, we know which bits are set.
8328 Code here used to clear bits outside the mode of X, but that is
8329 now done above. */
8331 if (GET_MODE_CLASS (mode) == MODE_INT
8332 && mode_width <= HOST_BITS_PER_WIDE_INT)
8333 nonzero = STORE_FLAG_VALUE;
8334 break;
8336 case NEG:
8337 #if 0
8338 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8339 and num_sign_bit_copies. */
8340 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8341 == GET_MODE_BITSIZE (GET_MODE (x)))
8342 nonzero = 1;
8343 #endif
8345 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8346 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8347 break;
8349 case ABS:
8350 #if 0
8351 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8352 and num_sign_bit_copies. */
8353 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8354 == GET_MODE_BITSIZE (GET_MODE (x)))
8355 nonzero = 1;
8356 #endif
8357 break;
8359 case TRUNCATE:
8360 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8361 & GET_MODE_MASK (mode));
8362 break;
8364 case ZERO_EXTEND:
8365 nonzero &= nonzero_bits_with_known (XEXP (x, 0), mode);
8366 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8367 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8368 break;
8370 case SIGN_EXTEND:
8371 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8372 Otherwise, show all the bits in the outer mode but not the inner
8373 may be nonzero. */
8374 inner_nz = nonzero_bits_with_known (XEXP (x, 0), mode);
8375 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8377 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8378 if (inner_nz
8379 & (((HOST_WIDE_INT) 1
8380 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8381 inner_nz |= (GET_MODE_MASK (mode)
8382 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8385 nonzero &= inner_nz;
8386 break;
8388 case AND:
8389 nonzero &= (nonzero_bits_with_known (XEXP (x, 0), mode)
8390 & nonzero_bits_with_known (XEXP (x, 1), mode));
8391 break;
8393 case XOR: case IOR:
8394 case UMIN: case UMAX: case SMIN: case SMAX:
8396 unsigned HOST_WIDE_INT nonzero0 =
8397 nonzero_bits_with_known (XEXP (x, 0), mode);
8399 /* Don't call nonzero_bits for the second time if it cannot change
8400 anything. */
8401 if ((nonzero & nonzero0) != nonzero)
8402 nonzero &= (nonzero0
8403 | nonzero_bits_with_known (XEXP (x, 1), mode));
8405 break;
8407 case PLUS: case MINUS:
8408 case MULT:
8409 case DIV: case UDIV:
8410 case MOD: case UMOD:
8411 /* We can apply the rules of arithmetic to compute the number of
8412 high- and low-order zero bits of these operations. We start by
8413 computing the width (position of the highest-order nonzero bit)
8414 and the number of low-order zero bits for each value. */
8416 unsigned HOST_WIDE_INT nz0 =
8417 nonzero_bits_with_known (XEXP (x, 0), mode);
8418 unsigned HOST_WIDE_INT nz1 =
8419 nonzero_bits_with_known (XEXP (x, 1), mode);
8420 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
8421 int width0 = floor_log2 (nz0) + 1;
8422 int width1 = floor_log2 (nz1) + 1;
8423 int low0 = floor_log2 (nz0 & -nz0);
8424 int low1 = floor_log2 (nz1 & -nz1);
8425 HOST_WIDE_INT op0_maybe_minusp
8426 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
8427 HOST_WIDE_INT op1_maybe_minusp
8428 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
8429 unsigned int result_width = mode_width;
8430 int result_low = 0;
8432 switch (code)
8434 case PLUS:
8435 result_width = MAX (width0, width1) + 1;
8436 result_low = MIN (low0, low1);
8437 break;
8438 case MINUS:
8439 result_low = MIN (low0, low1);
8440 break;
8441 case MULT:
8442 result_width = width0 + width1;
8443 result_low = low0 + low1;
8444 break;
8445 case DIV:
8446 if (width1 == 0)
8447 break;
8448 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8449 result_width = width0;
8450 break;
8451 case UDIV:
8452 if (width1 == 0)
8453 break;
8454 result_width = width0;
8455 break;
8456 case MOD:
8457 if (width1 == 0)
8458 break;
8459 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8460 result_width = MIN (width0, width1);
8461 result_low = MIN (low0, low1);
8462 break;
8463 case UMOD:
8464 if (width1 == 0)
8465 break;
8466 result_width = MIN (width0, width1);
8467 result_low = MIN (low0, low1);
8468 break;
8469 default:
8470 abort ();
8473 if (result_width < mode_width)
8474 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8476 if (result_low > 0)
8477 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8479 #ifdef POINTERS_EXTEND_UNSIGNED
8480 /* If pointers extend unsigned and this is an addition or subtraction
8481 to a pointer in Pmode, all the bits above ptr_mode are known to be
8482 zero. */
8483 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8484 && (code == PLUS || code == MINUS)
8485 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8486 nonzero &= GET_MODE_MASK (ptr_mode);
8487 #endif
8489 break;
8491 case ZERO_EXTRACT:
8492 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8493 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8494 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8495 break;
8497 case SUBREG:
8498 /* If this is a SUBREG formed for a promoted variable that has
8499 been zero-extended, we know that at least the high-order bits
8500 are zero, though others might be too. */
8502 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8503 nonzero = (GET_MODE_MASK (GET_MODE (x))
8504 & nonzero_bits_with_known (SUBREG_REG (x), GET_MODE (x)));
8506 /* If the inner mode is a single word for both the host and target
8507 machines, we can compute this from which bits of the inner
8508 object might be nonzero. */
8509 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8510 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8511 <= HOST_BITS_PER_WIDE_INT))
8513 nonzero &= nonzero_bits_with_known (SUBREG_REG (x), mode);
8515 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8516 /* If this is a typical RISC machine, we only have to worry
8517 about the way loads are extended. */
8518 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8519 ? (((nonzero
8520 & (((unsigned HOST_WIDE_INT) 1
8521 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8522 != 0))
8523 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8524 || GET_CODE (SUBREG_REG (x)) != MEM)
8525 #endif
8527 /* On many CISC machines, accessing an object in a wider mode
8528 causes the high-order bits to become undefined. So they are
8529 not known to be zero. */
8530 if (GET_MODE_SIZE (GET_MODE (x))
8531 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8532 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8533 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8536 break;
8538 case ASHIFTRT:
8539 case LSHIFTRT:
8540 case ASHIFT:
8541 case ROTATE:
8542 /* The nonzero bits are in two classes: any bits within MODE
8543 that aren't in GET_MODE (x) are always significant. The rest of the
8544 nonzero bits are those that are significant in the operand of
8545 the shift when shifted the appropriate number of bits. This
8546 shows that high-order bits are cleared by the right shift and
8547 low-order bits by left shifts. */
8548 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8549 && INTVAL (XEXP (x, 1)) >= 0
8550 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8552 enum machine_mode inner_mode = GET_MODE (x);
8553 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8554 int count = INTVAL (XEXP (x, 1));
8555 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8556 unsigned HOST_WIDE_INT op_nonzero =
8557 nonzero_bits_with_known (XEXP (x, 0), mode);
8558 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8559 unsigned HOST_WIDE_INT outer = 0;
8561 if (mode_width > width)
8562 outer = (op_nonzero & nonzero & ~mode_mask);
8564 if (code == LSHIFTRT)
8565 inner >>= count;
8566 else if (code == ASHIFTRT)
8568 inner >>= count;
8570 /* If the sign bit may have been nonzero before the shift, we
8571 need to mark all the places it could have been copied to
8572 by the shift as possibly nonzero. */
8573 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8574 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8576 else if (code == ASHIFT)
8577 inner <<= count;
8578 else
8579 inner = ((inner << (count % width)
8580 | (inner >> (width - (count % width)))) & mode_mask);
8582 nonzero &= (outer | inner);
8584 break;
8586 case FFS:
8587 case POPCOUNT:
8588 /* This is at most the number of bits in the mode. */
8589 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
8590 break;
8592 case CLZ:
8593 /* If CLZ has a known value at zero, then the nonzero bits are
8594 that value, plus the number of bits in the mode minus one. */
8595 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8596 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8597 else
8598 nonzero = -1;
8599 break;
8601 case CTZ:
8602 /* If CTZ has a known value at zero, then the nonzero bits are
8603 that value, plus the number of bits in the mode minus one. */
8604 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
8605 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
8606 else
8607 nonzero = -1;
8608 break;
8610 case PARITY:
8611 nonzero = 1;
8612 break;
8614 case IF_THEN_ELSE:
8615 nonzero &= (nonzero_bits_with_known (XEXP (x, 1), mode)
8616 | nonzero_bits_with_known (XEXP (x, 2), mode));
8617 break;
8619 default:
8620 break;
8623 return nonzero;
8626 /* See the macro definition above. */
8627 #undef cached_num_sign_bit_copies
8629 #define num_sign_bit_copies_with_known(X, M) \
8630 cached_num_sign_bit_copies (X, M, known_x, known_mode, known_ret)
8632 /* The function cached_num_sign_bit_copies is a wrapper around
8633 num_sign_bit_copies1. It avoids exponential behavior in
8634 num_sign_bit_copies1 when X has identical subexpressions on the
8635 first or the second level. */
8637 static unsigned int
8638 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
8639 enum machine_mode known_mode,
8640 unsigned int known_ret)
8642 if (x == known_x && mode == known_mode)
8643 return known_ret;
8645 /* Try to find identical subexpressions. If found call
8646 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
8647 the precomputed value for the subexpression as KNOWN_RET. */
8649 if (GET_RTX_CLASS (GET_CODE (x)) == '2'
8650 || GET_RTX_CLASS (GET_CODE (x)) == 'c')
8652 rtx x0 = XEXP (x, 0);
8653 rtx x1 = XEXP (x, 1);
8655 /* Check the first level. */
8656 if (x0 == x1)
8657 return
8658 num_sign_bit_copies1 (x, mode, x0, mode,
8659 num_sign_bit_copies_with_known (x0, mode));
8661 /* Check the second level. */
8662 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
8663 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
8664 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
8665 return
8666 num_sign_bit_copies1 (x, mode, x1, mode,
8667 num_sign_bit_copies_with_known (x1, mode));
8669 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
8670 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
8671 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
8672 return
8673 num_sign_bit_copies1 (x, mode, x0, mode,
8674 num_sign_bit_copies_with_known (x0, mode));
8677 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
8680 /* Return the number of bits at the high-order end of X that are known to
8681 be equal to the sign bit. X will be used in mode MODE; if MODE is
8682 VOIDmode, X will be used in its own mode. The returned value will always
8683 be between 1 and the number of bits in MODE. */
8685 static unsigned int
8686 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
8687 enum machine_mode known_mode,
8688 unsigned int known_ret)
8690 enum rtx_code code = GET_CODE (x);
8691 unsigned int bitwidth;
8692 int num0, num1, result;
8693 unsigned HOST_WIDE_INT nonzero;
8694 rtx tem;
8696 /* If we weren't given a mode, use the mode of X. If the mode is still
8697 VOIDmode, we don't know anything. Likewise if one of the modes is
8698 floating-point. */
8700 if (mode == VOIDmode)
8701 mode = GET_MODE (x);
8703 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8704 return 1;
8706 bitwidth = GET_MODE_BITSIZE (mode);
8708 /* For a smaller object, just ignore the high bits. */
8709 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8711 num0 = num_sign_bit_copies_with_known (x, GET_MODE (x));
8712 return MAX (1,
8713 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8716 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8718 #ifndef WORD_REGISTER_OPERATIONS
8719 /* If this machine does not do all register operations on the entire
8720 register and MODE is wider than the mode of X, we can say nothing
8721 at all about the high-order bits. */
8722 return 1;
8723 #else
8724 /* Likewise on machines that do, if the mode of the object is smaller
8725 than a word and loads of that size don't sign extend, we can say
8726 nothing about the high order bits. */
8727 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8728 #ifdef LOAD_EXTEND_OP
8729 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8730 #endif
8732 return 1;
8733 #endif
8736 switch (code)
8738 case REG:
8740 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8741 /* If pointers extend signed and this is a pointer in Pmode, say that
8742 all the bits above ptr_mode are known to be sign bit copies. */
8743 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8744 && REG_POINTER (x))
8745 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8746 #endif
8748 if (reg_last_set_value[REGNO (x)] != 0
8749 && reg_last_set_mode[REGNO (x)] == mode
8750 && (reg_last_set_label[REGNO (x)] == label_tick
8751 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8752 && REG_N_SETS (REGNO (x)) == 1
8753 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8754 REGNO (x))))
8755 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8756 return reg_last_set_sign_bit_copies[REGNO (x)];
8758 tem = get_last_value (x);
8759 if (tem != 0)
8760 return num_sign_bit_copies_with_known (tem, mode);
8762 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8763 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8764 return reg_sign_bit_copies[REGNO (x)];
8765 break;
8767 case MEM:
8768 #ifdef LOAD_EXTEND_OP
8769 /* Some RISC machines sign-extend all loads of smaller than a word. */
8770 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8771 return MAX (1, ((int) bitwidth
8772 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8773 #endif
8774 break;
8776 case CONST_INT:
8777 /* If the constant is negative, take its 1's complement and remask.
8778 Then see how many zero bits we have. */
8779 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8780 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8781 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8782 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8784 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8786 case SUBREG:
8787 /* If this is a SUBREG for a promoted object that is sign-extended
8788 and we are looking at it in a wider mode, we know that at least the
8789 high-order bits are known to be sign bit copies. */
8791 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8793 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8794 return MAX ((int) bitwidth
8795 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8796 num0);
8799 /* For a smaller object, just ignore the high bits. */
8800 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8802 num0 = num_sign_bit_copies_with_known (SUBREG_REG (x), VOIDmode);
8803 return MAX (1, (num0
8804 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8805 - bitwidth)));
8808 #ifdef WORD_REGISTER_OPERATIONS
8809 #ifdef LOAD_EXTEND_OP
8810 /* For paradoxical SUBREGs on machines where all register operations
8811 affect the entire register, just look inside. Note that we are
8812 passing MODE to the recursive call, so the number of sign bit copies
8813 will remain relative to that mode, not the inner mode. */
8815 /* This works only if loads sign extend. Otherwise, if we get a
8816 reload for the inner part, it may be loaded from the stack, and
8817 then we lose all sign bit copies that existed before the store
8818 to the stack. */
8820 if ((GET_MODE_SIZE (GET_MODE (x))
8821 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8822 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8823 && GET_CODE (SUBREG_REG (x)) == MEM)
8824 return num_sign_bit_copies_with_known (SUBREG_REG (x), mode);
8825 #endif
8826 #endif
8827 break;
8829 case SIGN_EXTRACT:
8830 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8831 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8832 break;
8834 case SIGN_EXTEND:
8835 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8836 + num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode));
8838 case TRUNCATE:
8839 /* For a smaller object, just ignore the high bits. */
8840 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), VOIDmode);
8841 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8842 - bitwidth)));
8844 case NOT:
8845 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8847 case ROTATE: case ROTATERT:
8848 /* If we are rotating left by a number of bits less than the number
8849 of sign bit copies, we can just subtract that amount from the
8850 number. */
8851 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8852 && INTVAL (XEXP (x, 1)) >= 0
8853 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8855 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8856 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8857 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8859 break;
8861 case NEG:
8862 /* In general, this subtracts one sign bit copy. But if the value
8863 is known to be positive, the number of sign bit copies is the
8864 same as that of the input. Finally, if the input has just one bit
8865 that might be nonzero, all the bits are copies of the sign bit. */
8866 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8867 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8868 return num0 > 1 ? num0 - 1 : 1;
8870 nonzero = nonzero_bits (XEXP (x, 0), mode);
8871 if (nonzero == 1)
8872 return bitwidth;
8874 if (num0 > 1
8875 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8876 num0--;
8878 return num0;
8880 case IOR: case AND: case XOR:
8881 case SMIN: case SMAX: case UMIN: case UMAX:
8882 /* Logical operations will preserve the number of sign-bit copies.
8883 MIN and MAX operations always return one of the operands. */
8884 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8885 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8886 return MIN (num0, num1);
8888 case PLUS: case MINUS:
8889 /* For addition and subtraction, we can have a 1-bit carry. However,
8890 if we are subtracting 1 from a positive number, there will not
8891 be such a carry. Furthermore, if the positive number is known to
8892 be 0 or 1, we know the result is either -1 or 0. */
8894 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8895 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8897 nonzero = nonzero_bits (XEXP (x, 0), mode);
8898 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8899 return (nonzero == 1 || nonzero == 0 ? bitwidth
8900 : bitwidth - floor_log2 (nonzero) - 1);
8903 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8904 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8905 result = MAX (1, MIN (num0, num1) - 1);
8907 #ifdef POINTERS_EXTEND_UNSIGNED
8908 /* If pointers extend signed and this is an addition or subtraction
8909 to a pointer in Pmode, all the bits above ptr_mode are known to be
8910 sign bit copies. */
8911 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8912 && (code == PLUS || code == MINUS)
8913 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8914 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8915 - GET_MODE_BITSIZE (ptr_mode) + 1),
8916 result);
8917 #endif
8918 return result;
8920 case MULT:
8921 /* The number of bits of the product is the sum of the number of
8922 bits of both terms. However, unless one of the terms if known
8923 to be positive, we must allow for an additional bit since negating
8924 a negative number can remove one sign bit copy. */
8926 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8927 num1 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8929 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8930 if (result > 0
8931 && (bitwidth > HOST_BITS_PER_WIDE_INT
8932 || (((nonzero_bits (XEXP (x, 0), mode)
8933 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8934 && ((nonzero_bits (XEXP (x, 1), mode)
8935 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8936 result--;
8938 return MAX (1, result);
8940 case UDIV:
8941 /* The result must be <= the first operand. If the first operand
8942 has the high bit set, we know nothing about the number of sign
8943 bit copies. */
8944 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8945 return 1;
8946 else if ((nonzero_bits (XEXP (x, 0), mode)
8947 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8948 return 1;
8949 else
8950 return num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8952 case UMOD:
8953 /* The result must be <= the second operand. */
8954 return num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8956 case DIV:
8957 /* Similar to unsigned division, except that we have to worry about
8958 the case where the divisor is negative, in which case we have
8959 to add 1. */
8960 result = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8961 if (result > 1
8962 && (bitwidth > HOST_BITS_PER_WIDE_INT
8963 || (nonzero_bits (XEXP (x, 1), mode)
8964 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8965 result--;
8967 return result;
8969 case MOD:
8970 result = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
8971 if (result > 1
8972 && (bitwidth > HOST_BITS_PER_WIDE_INT
8973 || (nonzero_bits (XEXP (x, 1), mode)
8974 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8975 result--;
8977 return result;
8979 case ASHIFTRT:
8980 /* Shifts by a constant add to the number of bits equal to the
8981 sign bit. */
8982 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8983 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8984 && INTVAL (XEXP (x, 1)) > 0)
8985 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8987 return num0;
8989 case ASHIFT:
8990 /* Left shifts destroy copies. */
8991 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8992 || INTVAL (XEXP (x, 1)) < 0
8993 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8994 return 1;
8996 num0 = num_sign_bit_copies_with_known (XEXP (x, 0), mode);
8997 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8999 case IF_THEN_ELSE:
9000 num0 = num_sign_bit_copies_with_known (XEXP (x, 1), mode);
9001 num1 = num_sign_bit_copies_with_known (XEXP (x, 2), mode);
9002 return MIN (num0, num1);
9004 case EQ: case NE: case GE: case GT: case LE: case LT:
9005 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
9006 case GEU: case GTU: case LEU: case LTU:
9007 case UNORDERED: case ORDERED:
9008 /* If the constant is negative, take its 1's complement and remask.
9009 Then see how many zero bits we have. */
9010 nonzero = STORE_FLAG_VALUE;
9011 if (bitwidth <= HOST_BITS_PER_WIDE_INT
9012 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
9013 nonzero = (~nonzero) & GET_MODE_MASK (mode);
9015 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
9016 break;
9018 default:
9019 break;
9022 /* If we haven't been able to figure it out by one of the above rules,
9023 see if some of the high-order bits are known to be zero. If so,
9024 count those bits and return one less than that amount. If we can't
9025 safely compute the mask for this mode, always return BITWIDTH. */
9027 if (bitwidth > HOST_BITS_PER_WIDE_INT)
9028 return 1;
9030 nonzero = nonzero_bits (x, mode);
9031 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
9032 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
9035 /* Return the number of "extended" bits there are in X, when interpreted
9036 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9037 unsigned quantities, this is the number of high-order zero bits.
9038 For signed quantities, this is the number of copies of the sign bit
9039 minus 1. In both case, this function returns the number of "spare"
9040 bits. For example, if two quantities for which this function returns
9041 at least 1 are added, the addition is known not to overflow.
9043 This function will always return 0 unless called during combine, which
9044 implies that it must be called from a define_split. */
9046 unsigned int
9047 extended_count (rtx x, enum machine_mode mode, int unsignedp)
9049 if (nonzero_sign_valid == 0)
9050 return 0;
9052 return (unsignedp
9053 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9054 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
9055 - floor_log2 (nonzero_bits (x, mode)))
9056 : 0)
9057 : num_sign_bit_copies (x, mode) - 1);
9060 /* This function is called from `simplify_shift_const' to merge two
9061 outer operations. Specifically, we have already found that we need
9062 to perform operation *POP0 with constant *PCONST0 at the outermost
9063 position. We would now like to also perform OP1 with constant CONST1
9064 (with *POP0 being done last).
9066 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9067 the resulting operation. *PCOMP_P is set to 1 if we would need to
9068 complement the innermost operand, otherwise it is unchanged.
9070 MODE is the mode in which the operation will be done. No bits outside
9071 the width of this mode matter. It is assumed that the width of this mode
9072 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9074 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
9075 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9076 result is simply *PCONST0.
9078 If the resulting operation cannot be expressed as one operation, we
9079 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9081 static int
9082 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9084 enum rtx_code op0 = *pop0;
9085 HOST_WIDE_INT const0 = *pconst0;
9087 const0 &= GET_MODE_MASK (mode);
9088 const1 &= GET_MODE_MASK (mode);
9090 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9091 if (op0 == AND)
9092 const1 &= const0;
9094 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
9095 if OP0 is SET. */
9097 if (op1 == NIL || op0 == SET)
9098 return 1;
9100 else if (op0 == NIL)
9101 op0 = op1, const0 = const1;
9103 else if (op0 == op1)
9105 switch (op0)
9107 case AND:
9108 const0 &= const1;
9109 break;
9110 case IOR:
9111 const0 |= const1;
9112 break;
9113 case XOR:
9114 const0 ^= const1;
9115 break;
9116 case PLUS:
9117 const0 += const1;
9118 break;
9119 case NEG:
9120 op0 = NIL;
9121 break;
9122 default:
9123 break;
9127 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9128 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9129 return 0;
9131 /* If the two constants aren't the same, we can't do anything. The
9132 remaining six cases can all be done. */
9133 else if (const0 != const1)
9134 return 0;
9136 else
9137 switch (op0)
9139 case IOR:
9140 if (op1 == AND)
9141 /* (a & b) | b == b */
9142 op0 = SET;
9143 else /* op1 == XOR */
9144 /* (a ^ b) | b == a | b */
9146 break;
9148 case XOR:
9149 if (op1 == AND)
9150 /* (a & b) ^ b == (~a) & b */
9151 op0 = AND, *pcomp_p = 1;
9152 else /* op1 == IOR */
9153 /* (a | b) ^ b == a & ~b */
9154 op0 = AND, const0 = ~const0;
9155 break;
9157 case AND:
9158 if (op1 == IOR)
9159 /* (a | b) & b == b */
9160 op0 = SET;
9161 else /* op1 == XOR */
9162 /* (a ^ b) & b) == (~a) & b */
9163 *pcomp_p = 1;
9164 break;
9165 default:
9166 break;
9169 /* Check for NO-OP cases. */
9170 const0 &= GET_MODE_MASK (mode);
9171 if (const0 == 0
9172 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9173 op0 = NIL;
9174 else if (const0 == 0 && op0 == AND)
9175 op0 = SET;
9176 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9177 && op0 == AND)
9178 op0 = NIL;
9180 /* ??? Slightly redundant with the above mask, but not entirely.
9181 Moving this above means we'd have to sign-extend the mode mask
9182 for the final test. */
9183 const0 = trunc_int_for_mode (const0, mode);
9185 *pop0 = op0;
9186 *pconst0 = const0;
9188 return 1;
9191 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9192 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
9193 that we started with.
9195 The shift is normally computed in the widest mode we find in VAROP, as
9196 long as it isn't a different number of words than RESULT_MODE. Exceptions
9197 are ASHIFTRT and ROTATE, which are always done in their original mode, */
9199 static rtx
9200 simplify_shift_const (rtx x, enum rtx_code code,
9201 enum machine_mode result_mode, rtx varop,
9202 int orig_count)
9204 enum rtx_code orig_code = code;
9205 unsigned int count;
9206 int signed_count;
9207 enum machine_mode mode = result_mode;
9208 enum machine_mode shift_mode, tmode;
9209 unsigned int mode_words
9210 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9211 /* We form (outer_op (code varop count) (outer_const)). */
9212 enum rtx_code outer_op = NIL;
9213 HOST_WIDE_INT outer_const = 0;
9214 rtx const_rtx;
9215 int complement_p = 0;
9216 rtx new;
9218 /* Make sure and truncate the "natural" shift on the way in. We don't
9219 want to do this inside the loop as it makes it more difficult to
9220 combine shifts. */
9221 #ifdef SHIFT_COUNT_TRUNCATED
9222 if (SHIFT_COUNT_TRUNCATED)
9223 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9224 #endif
9226 /* If we were given an invalid count, don't do anything except exactly
9227 what was requested. */
9229 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9231 if (x)
9232 return x;
9234 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
9237 count = orig_count;
9239 /* Unless one of the branches of the `if' in this loop does a `continue',
9240 we will `break' the loop after the `if'. */
9242 while (count != 0)
9244 /* If we have an operand of (clobber (const_int 0)), just return that
9245 value. */
9246 if (GET_CODE (varop) == CLOBBER)
9247 return varop;
9249 /* If we discovered we had to complement VAROP, leave. Making a NOT
9250 here would cause an infinite loop. */
9251 if (complement_p)
9252 break;
9254 /* Convert ROTATERT to ROTATE. */
9255 if (code == ROTATERT)
9257 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9258 code = ROTATE;
9259 if (VECTOR_MODE_P (result_mode))
9260 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9261 else
9262 count = bitsize - count;
9265 /* We need to determine what mode we will do the shift in. If the
9266 shift is a right shift or a ROTATE, we must always do it in the mode
9267 it was originally done in. Otherwise, we can do it in MODE, the
9268 widest mode encountered. */
9269 shift_mode
9270 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9271 ? result_mode : mode);
9273 /* Handle cases where the count is greater than the size of the mode
9274 minus 1. For ASHIFT, use the size minus one as the count (this can
9275 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9276 take the count modulo the size. For other shifts, the result is
9277 zero.
9279 Since these shifts are being produced by the compiler by combining
9280 multiple operations, each of which are defined, we know what the
9281 result is supposed to be. */
9283 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
9285 if (code == ASHIFTRT)
9286 count = GET_MODE_BITSIZE (shift_mode) - 1;
9287 else if (code == ROTATE || code == ROTATERT)
9288 count %= GET_MODE_BITSIZE (shift_mode);
9289 else
9291 /* We can't simply return zero because there may be an
9292 outer op. */
9293 varop = const0_rtx;
9294 count = 0;
9295 break;
9299 /* An arithmetic right shift of a quantity known to be -1 or 0
9300 is a no-op. */
9301 if (code == ASHIFTRT
9302 && (num_sign_bit_copies (varop, shift_mode)
9303 == GET_MODE_BITSIZE (shift_mode)))
9305 count = 0;
9306 break;
9309 /* If we are doing an arithmetic right shift and discarding all but
9310 the sign bit copies, this is equivalent to doing a shift by the
9311 bitsize minus one. Convert it into that shift because it will often
9312 allow other simplifications. */
9314 if (code == ASHIFTRT
9315 && (count + num_sign_bit_copies (varop, shift_mode)
9316 >= GET_MODE_BITSIZE (shift_mode)))
9317 count = GET_MODE_BITSIZE (shift_mode) - 1;
9319 /* We simplify the tests below and elsewhere by converting
9320 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9321 `make_compound_operation' will convert it to an ASHIFTRT for
9322 those machines (such as VAX) that don't have an LSHIFTRT. */
9323 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9324 && code == ASHIFTRT
9325 && ((nonzero_bits (varop, shift_mode)
9326 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9327 == 0))
9328 code = LSHIFTRT;
9330 if (code == LSHIFTRT
9331 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9332 && !(nonzero_bits (varop, shift_mode) >> count))
9333 varop = const0_rtx;
9334 if (code == ASHIFT
9335 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9336 && !((nonzero_bits (varop, shift_mode) << count)
9337 & GET_MODE_MASK (shift_mode)))
9338 varop = const0_rtx;
9340 switch (GET_CODE (varop))
9342 case SIGN_EXTEND:
9343 case ZERO_EXTEND:
9344 case SIGN_EXTRACT:
9345 case ZERO_EXTRACT:
9346 new = expand_compound_operation (varop);
9347 if (new != varop)
9349 varop = new;
9350 continue;
9352 break;
9354 case MEM:
9355 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9356 minus the width of a smaller mode, we can do this with a
9357 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9358 if ((code == ASHIFTRT || code == LSHIFTRT)
9359 && ! mode_dependent_address_p (XEXP (varop, 0))
9360 && ! MEM_VOLATILE_P (varop)
9361 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9362 MODE_INT, 1)) != BLKmode)
9364 new = adjust_address_nv (varop, tmode,
9365 BYTES_BIG_ENDIAN ? 0
9366 : count / BITS_PER_UNIT);
9368 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9369 : ZERO_EXTEND, mode, new);
9370 count = 0;
9371 continue;
9373 break;
9375 case USE:
9376 /* Similar to the case above, except that we can only do this if
9377 the resulting mode is the same as that of the underlying
9378 MEM and adjust the address depending on the *bits* endianness
9379 because of the way that bit-field extract insns are defined. */
9380 if ((code == ASHIFTRT || code == LSHIFTRT)
9381 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9382 MODE_INT, 1)) != BLKmode
9383 && tmode == GET_MODE (XEXP (varop, 0)))
9385 if (BITS_BIG_ENDIAN)
9386 new = XEXP (varop, 0);
9387 else
9389 new = copy_rtx (XEXP (varop, 0));
9390 SUBST (XEXP (new, 0),
9391 plus_constant (XEXP (new, 0),
9392 count / BITS_PER_UNIT));
9395 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9396 : ZERO_EXTEND, mode, new);
9397 count = 0;
9398 continue;
9400 break;
9402 case SUBREG:
9403 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9404 the same number of words as what we've seen so far. Then store
9405 the widest mode in MODE. */
9406 if (subreg_lowpart_p (varop)
9407 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9408 > GET_MODE_SIZE (GET_MODE (varop)))
9409 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9410 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9411 == mode_words)
9413 varop = SUBREG_REG (varop);
9414 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9415 mode = GET_MODE (varop);
9416 continue;
9418 break;
9420 case MULT:
9421 /* Some machines use MULT instead of ASHIFT because MULT
9422 is cheaper. But it is still better on those machines to
9423 merge two shifts into one. */
9424 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9425 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9427 varop
9428 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9429 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9430 continue;
9432 break;
9434 case UDIV:
9435 /* Similar, for when divides are cheaper. */
9436 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9437 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9439 varop
9440 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9441 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9442 continue;
9444 break;
9446 case ASHIFTRT:
9447 /* If we are extracting just the sign bit of an arithmetic
9448 right shift, that shift is not needed. However, the sign
9449 bit of a wider mode may be different from what would be
9450 interpreted as the sign bit in a narrower mode, so, if
9451 the result is narrower, don't discard the shift. */
9452 if (code == LSHIFTRT
9453 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9454 && (GET_MODE_BITSIZE (result_mode)
9455 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9457 varop = XEXP (varop, 0);
9458 continue;
9461 /* ... fall through ... */
9463 case LSHIFTRT:
9464 case ASHIFT:
9465 case ROTATE:
9466 /* Here we have two nested shifts. The result is usually the
9467 AND of a new shift with a mask. We compute the result below. */
9468 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9469 && INTVAL (XEXP (varop, 1)) >= 0
9470 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9471 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9472 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9474 enum rtx_code first_code = GET_CODE (varop);
9475 unsigned int first_count = INTVAL (XEXP (varop, 1));
9476 unsigned HOST_WIDE_INT mask;
9477 rtx mask_rtx;
9479 /* We have one common special case. We can't do any merging if
9480 the inner code is an ASHIFTRT of a smaller mode. However, if
9481 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9482 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9483 we can convert it to
9484 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9485 This simplifies certain SIGN_EXTEND operations. */
9486 if (code == ASHIFT && first_code == ASHIFTRT
9487 && count == (unsigned int)
9488 (GET_MODE_BITSIZE (result_mode)
9489 - GET_MODE_BITSIZE (GET_MODE (varop))))
9491 /* C3 has the low-order C1 bits zero. */
9493 mask = (GET_MODE_MASK (mode)
9494 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9496 varop = simplify_and_const_int (NULL_RTX, result_mode,
9497 XEXP (varop, 0), mask);
9498 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9499 varop, count);
9500 count = first_count;
9501 code = ASHIFTRT;
9502 continue;
9505 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9506 than C1 high-order bits equal to the sign bit, we can convert
9507 this to either an ASHIFT or an ASHIFTRT depending on the
9508 two counts.
9510 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9512 if (code == ASHIFTRT && first_code == ASHIFT
9513 && GET_MODE (varop) == shift_mode
9514 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9515 > first_count))
9517 varop = XEXP (varop, 0);
9519 signed_count = count - first_count;
9520 if (signed_count < 0)
9521 count = -signed_count, code = ASHIFT;
9522 else
9523 count = signed_count;
9525 continue;
9528 /* There are some cases we can't do. If CODE is ASHIFTRT,
9529 we can only do this if FIRST_CODE is also ASHIFTRT.
9531 We can't do the case when CODE is ROTATE and FIRST_CODE is
9532 ASHIFTRT.
9534 If the mode of this shift is not the mode of the outer shift,
9535 we can't do this if either shift is a right shift or ROTATE.
9537 Finally, we can't do any of these if the mode is too wide
9538 unless the codes are the same.
9540 Handle the case where the shift codes are the same
9541 first. */
9543 if (code == first_code)
9545 if (GET_MODE (varop) != result_mode
9546 && (code == ASHIFTRT || code == LSHIFTRT
9547 || code == ROTATE))
9548 break;
9550 count += first_count;
9551 varop = XEXP (varop, 0);
9552 continue;
9555 if (code == ASHIFTRT
9556 || (code == ROTATE && first_code == ASHIFTRT)
9557 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9558 || (GET_MODE (varop) != result_mode
9559 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9560 || first_code == ROTATE
9561 || code == ROTATE)))
9562 break;
9564 /* To compute the mask to apply after the shift, shift the
9565 nonzero bits of the inner shift the same way the
9566 outer shift will. */
9568 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9570 mask_rtx
9571 = simplify_binary_operation (code, result_mode, mask_rtx,
9572 GEN_INT (count));
9574 /* Give up if we can't compute an outer operation to use. */
9575 if (mask_rtx == 0
9576 || GET_CODE (mask_rtx) != CONST_INT
9577 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9578 INTVAL (mask_rtx),
9579 result_mode, &complement_p))
9580 break;
9582 /* If the shifts are in the same direction, we add the
9583 counts. Otherwise, we subtract them. */
9584 signed_count = count;
9585 if ((code == ASHIFTRT || code == LSHIFTRT)
9586 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9587 signed_count += first_count;
9588 else
9589 signed_count -= first_count;
9591 /* If COUNT is positive, the new shift is usually CODE,
9592 except for the two exceptions below, in which case it is
9593 FIRST_CODE. If the count is negative, FIRST_CODE should
9594 always be used */
9595 if (signed_count > 0
9596 && ((first_code == ROTATE && code == ASHIFT)
9597 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9598 code = first_code, count = signed_count;
9599 else if (signed_count < 0)
9600 code = first_code, count = -signed_count;
9601 else
9602 count = signed_count;
9604 varop = XEXP (varop, 0);
9605 continue;
9608 /* If we have (A << B << C) for any shift, we can convert this to
9609 (A << C << B). This wins if A is a constant. Only try this if
9610 B is not a constant. */
9612 else if (GET_CODE (varop) == code
9613 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9614 && 0 != (new
9615 = simplify_binary_operation (code, mode,
9616 XEXP (varop, 0),
9617 GEN_INT (count))))
9619 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9620 count = 0;
9621 continue;
9623 break;
9625 case NOT:
9626 /* Make this fit the case below. */
9627 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9628 GEN_INT (GET_MODE_MASK (mode)));
9629 continue;
9631 case IOR:
9632 case AND:
9633 case XOR:
9634 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9635 with C the size of VAROP - 1 and the shift is logical if
9636 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9637 we have an (le X 0) operation. If we have an arithmetic shift
9638 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9639 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9641 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9642 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9643 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9644 && (code == LSHIFTRT || code == ASHIFTRT)
9645 && count == (unsigned int)
9646 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9647 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9649 count = 0;
9650 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9651 const0_rtx);
9653 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9654 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9656 continue;
9659 /* If we have (shift (logical)), move the logical to the outside
9660 to allow it to possibly combine with another logical and the
9661 shift to combine with another shift. This also canonicalizes to
9662 what a ZERO_EXTRACT looks like. Also, some machines have
9663 (and (shift)) insns. */
9665 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9666 && (new = simplify_binary_operation (code, result_mode,
9667 XEXP (varop, 1),
9668 GEN_INT (count))) != 0
9669 && GET_CODE (new) == CONST_INT
9670 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9671 INTVAL (new), result_mode, &complement_p))
9673 varop = XEXP (varop, 0);
9674 continue;
9677 /* If we can't do that, try to simplify the shift in each arm of the
9678 logical expression, make a new logical expression, and apply
9679 the inverse distributive law. */
9681 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9682 XEXP (varop, 0), count);
9683 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9684 XEXP (varop, 1), count);
9686 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9687 varop = apply_distributive_law (varop);
9689 count = 0;
9691 break;
9693 case EQ:
9694 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9695 says that the sign bit can be tested, FOO has mode MODE, C is
9696 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9697 that may be nonzero. */
9698 if (code == LSHIFTRT
9699 && XEXP (varop, 1) == const0_rtx
9700 && GET_MODE (XEXP (varop, 0)) == result_mode
9701 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9702 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9703 && ((STORE_FLAG_VALUE
9704 & ((HOST_WIDE_INT) 1
9705 < (GET_MODE_BITSIZE (result_mode) - 1))))
9706 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9707 && merge_outer_ops (&outer_op, &outer_const, XOR,
9708 (HOST_WIDE_INT) 1, result_mode,
9709 &complement_p))
9711 varop = XEXP (varop, 0);
9712 count = 0;
9713 continue;
9715 break;
9717 case NEG:
9718 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9719 than the number of bits in the mode is equivalent to A. */
9720 if (code == LSHIFTRT
9721 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9722 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9724 varop = XEXP (varop, 0);
9725 count = 0;
9726 continue;
9729 /* NEG commutes with ASHIFT since it is multiplication. Move the
9730 NEG outside to allow shifts to combine. */
9731 if (code == ASHIFT
9732 && merge_outer_ops (&outer_op, &outer_const, NEG,
9733 (HOST_WIDE_INT) 0, result_mode,
9734 &complement_p))
9736 varop = XEXP (varop, 0);
9737 continue;
9739 break;
9741 case PLUS:
9742 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9743 is one less than the number of bits in the mode is
9744 equivalent to (xor A 1). */
9745 if (code == LSHIFTRT
9746 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9747 && XEXP (varop, 1) == constm1_rtx
9748 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9749 && merge_outer_ops (&outer_op, &outer_const, XOR,
9750 (HOST_WIDE_INT) 1, result_mode,
9751 &complement_p))
9753 count = 0;
9754 varop = XEXP (varop, 0);
9755 continue;
9758 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9759 that might be nonzero in BAR are those being shifted out and those
9760 bits are known zero in FOO, we can replace the PLUS with FOO.
9761 Similarly in the other operand order. This code occurs when
9762 we are computing the size of a variable-size array. */
9764 if ((code == ASHIFTRT || code == LSHIFTRT)
9765 && count < HOST_BITS_PER_WIDE_INT
9766 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9767 && (nonzero_bits (XEXP (varop, 1), result_mode)
9768 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9770 varop = XEXP (varop, 0);
9771 continue;
9773 else if ((code == ASHIFTRT || code == LSHIFTRT)
9774 && count < HOST_BITS_PER_WIDE_INT
9775 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9776 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9777 >> count)
9778 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9779 & nonzero_bits (XEXP (varop, 1),
9780 result_mode)))
9782 varop = XEXP (varop, 1);
9783 continue;
9786 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9787 if (code == ASHIFT
9788 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9789 && (new = simplify_binary_operation (ASHIFT, result_mode,
9790 XEXP (varop, 1),
9791 GEN_INT (count))) != 0
9792 && GET_CODE (new) == CONST_INT
9793 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9794 INTVAL (new), result_mode, &complement_p))
9796 varop = XEXP (varop, 0);
9797 continue;
9799 break;
9801 case MINUS:
9802 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9803 with C the size of VAROP - 1 and the shift is logical if
9804 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9805 we have a (gt X 0) operation. If the shift is arithmetic with
9806 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9807 we have a (neg (gt X 0)) operation. */
9809 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9810 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9811 && count == (unsigned int)
9812 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9813 && (code == LSHIFTRT || code == ASHIFTRT)
9814 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9815 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9816 == count
9817 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9819 count = 0;
9820 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9821 const0_rtx);
9823 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9824 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9826 continue;
9828 break;
9830 case TRUNCATE:
9831 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9832 if the truncate does not affect the value. */
9833 if (code == LSHIFTRT
9834 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9835 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9836 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9837 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9838 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9840 rtx varop_inner = XEXP (varop, 0);
9842 varop_inner
9843 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9844 XEXP (varop_inner, 0),
9845 GEN_INT
9846 (count + INTVAL (XEXP (varop_inner, 1))));
9847 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9848 count = 0;
9849 continue;
9851 break;
9853 default:
9854 break;
9857 break;
9860 /* We need to determine what mode to do the shift in. If the shift is
9861 a right shift or ROTATE, we must always do it in the mode it was
9862 originally done in. Otherwise, we can do it in MODE, the widest mode
9863 encountered. The code we care about is that of the shift that will
9864 actually be done, not the shift that was originally requested. */
9865 shift_mode
9866 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9867 ? result_mode : mode);
9869 /* We have now finished analyzing the shift. The result should be
9870 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9871 OUTER_OP is non-NIL, it is an operation that needs to be applied
9872 to the result of the shift. OUTER_CONST is the relevant constant,
9873 but we must turn off all bits turned off in the shift.
9875 If we were passed a value for X, see if we can use any pieces of
9876 it. If not, make new rtx. */
9878 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9879 && GET_CODE (XEXP (x, 1)) == CONST_INT
9880 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9881 const_rtx = XEXP (x, 1);
9882 else
9883 const_rtx = GEN_INT (count);
9885 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9886 && GET_MODE (XEXP (x, 0)) == shift_mode
9887 && SUBREG_REG (XEXP (x, 0)) == varop)
9888 varop = XEXP (x, 0);
9889 else if (GET_MODE (varop) != shift_mode)
9890 varop = gen_lowpart_for_combine (shift_mode, varop);
9892 /* If we can't make the SUBREG, try to return what we were given. */
9893 if (GET_CODE (varop) == CLOBBER)
9894 return x ? x : varop;
9896 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9897 if (new != 0)
9898 x = new;
9899 else
9900 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9902 /* If we have an outer operation and we just made a shift, it is
9903 possible that we could have simplified the shift were it not
9904 for the outer operation. So try to do the simplification
9905 recursively. */
9907 if (outer_op != NIL && GET_CODE (x) == code
9908 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9909 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9910 INTVAL (XEXP (x, 1)));
9912 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9913 turn off all the bits that the shift would have turned off. */
9914 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9915 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9916 GET_MODE_MASK (result_mode) >> orig_count);
9918 /* Do the remainder of the processing in RESULT_MODE. */
9919 x = gen_lowpart_for_combine (result_mode, x);
9921 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9922 operation. */
9923 if (complement_p)
9924 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9926 if (outer_op != NIL)
9928 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9929 outer_const = trunc_int_for_mode (outer_const, result_mode);
9931 if (outer_op == AND)
9932 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9933 else if (outer_op == SET)
9934 /* This means that we have determined that the result is
9935 equivalent to a constant. This should be rare. */
9936 x = GEN_INT (outer_const);
9937 else if (GET_RTX_CLASS (outer_op) == '1')
9938 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9939 else
9940 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9943 return x;
9946 /* Like recog, but we receive the address of a pointer to a new pattern.
9947 We try to match the rtx that the pointer points to.
9948 If that fails, we may try to modify or replace the pattern,
9949 storing the replacement into the same pointer object.
9951 Modifications include deletion or addition of CLOBBERs.
9953 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9954 the CLOBBERs are placed.
9956 The value is the final insn code from the pattern ultimately matched,
9957 or -1. */
9959 static int
9960 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9962 rtx pat = *pnewpat;
9963 int insn_code_number;
9964 int num_clobbers_to_add = 0;
9965 int i;
9966 rtx notes = 0;
9967 rtx dummy_insn;
9969 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9970 we use to indicate that something didn't match. If we find such a
9971 thing, force rejection. */
9972 if (GET_CODE (pat) == PARALLEL)
9973 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9974 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9975 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9976 return -1;
9978 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9979 instruction for pattern recognition. */
9980 dummy_insn = shallow_copy_rtx (insn);
9981 PATTERN (dummy_insn) = pat;
9982 REG_NOTES (dummy_insn) = 0;
9984 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9986 /* If it isn't, there is the possibility that we previously had an insn
9987 that clobbered some register as a side effect, but the combined
9988 insn doesn't need to do that. So try once more without the clobbers
9989 unless this represents an ASM insn. */
9991 if (insn_code_number < 0 && ! check_asm_operands (pat)
9992 && GET_CODE (pat) == PARALLEL)
9994 int pos;
9996 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9997 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9999 if (i != pos)
10000 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10001 pos++;
10004 SUBST_INT (XVECLEN (pat, 0), pos);
10006 if (pos == 1)
10007 pat = XVECEXP (pat, 0, 0);
10009 PATTERN (dummy_insn) = pat;
10010 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
10013 /* Recognize all noop sets, these will be killed by followup pass. */
10014 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10015 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10017 /* If we had any clobbers to add, make a new pattern than contains
10018 them. Then check to make sure that all of them are dead. */
10019 if (num_clobbers_to_add)
10021 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10022 rtvec_alloc (GET_CODE (pat) == PARALLEL
10023 ? (XVECLEN (pat, 0)
10024 + num_clobbers_to_add)
10025 : num_clobbers_to_add + 1));
10027 if (GET_CODE (pat) == PARALLEL)
10028 for (i = 0; i < XVECLEN (pat, 0); i++)
10029 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10030 else
10031 XVECEXP (newpat, 0, 0) = pat;
10033 add_clobbers (newpat, insn_code_number);
10035 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10036 i < XVECLEN (newpat, 0); i++)
10038 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
10039 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10040 return -1;
10041 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
10042 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10044 pat = newpat;
10047 *pnewpat = pat;
10048 *pnotes = notes;
10050 return insn_code_number;
10053 /* Like gen_lowpart but for use by combine. In combine it is not possible
10054 to create any new pseudoregs. However, it is safe to create
10055 invalid memory addresses, because combine will try to recognize
10056 them and all they will do is make the combine attempt fail.
10058 If for some reason this cannot do its job, an rtx
10059 (clobber (const_int 0)) is returned.
10060 An insn containing that will not be recognized. */
10062 #undef gen_lowpart
10064 static rtx
10065 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
10067 rtx result;
10069 if (GET_MODE (x) == mode)
10070 return x;
10072 /* Return identity if this is a CONST or symbolic
10073 reference. */
10074 if (mode == Pmode
10075 && (GET_CODE (x) == CONST
10076 || GET_CODE (x) == SYMBOL_REF
10077 || GET_CODE (x) == LABEL_REF))
10078 return x;
10080 /* We can only support MODE being wider than a word if X is a
10081 constant integer or has a mode the same size. */
10083 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
10084 && ! ((GET_MODE (x) == VOIDmode
10085 && (GET_CODE (x) == CONST_INT
10086 || GET_CODE (x) == CONST_DOUBLE))
10087 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
10088 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10090 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10091 won't know what to do. So we will strip off the SUBREG here and
10092 process normally. */
10093 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
10095 x = SUBREG_REG (x);
10096 if (GET_MODE (x) == mode)
10097 return x;
10100 result = gen_lowpart_common (mode, x);
10101 #ifdef CANNOT_CHANGE_MODE_CLASS
10102 if (result != 0
10103 && GET_CODE (result) == SUBREG
10104 && GET_CODE (SUBREG_REG (result)) == REG
10105 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
10106 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
10107 * MAX_MACHINE_MODE
10108 + GET_MODE (result));
10109 #endif
10111 if (result)
10112 return result;
10114 if (GET_CODE (x) == MEM)
10116 int offset = 0;
10118 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10119 address. */
10120 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
10121 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10123 /* If we want to refer to something bigger than the original memref,
10124 generate a perverse subreg instead. That will force a reload
10125 of the original memref X. */
10126 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
10127 return gen_rtx_SUBREG (mode, x, 0);
10129 if (WORDS_BIG_ENDIAN)
10130 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
10131 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
10133 if (BYTES_BIG_ENDIAN)
10135 /* Adjust the address so that the address-after-the-data is
10136 unchanged. */
10137 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
10138 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
10141 return adjust_address_nv (x, mode, offset);
10144 /* If X is a comparison operator, rewrite it in a new mode. This
10145 probably won't match, but may allow further simplifications. */
10146 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
10147 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
10149 /* If we couldn't simplify X any other way, just enclose it in a
10150 SUBREG. Normally, this SUBREG won't match, but some patterns may
10151 include an explicit SUBREG or we may simplify it further in combine. */
10152 else
10154 int offset = 0;
10155 rtx res;
10156 enum machine_mode sub_mode = GET_MODE (x);
10158 offset = subreg_lowpart_offset (mode, sub_mode);
10159 if (sub_mode == VOIDmode)
10161 sub_mode = int_mode_for_mode (mode);
10162 x = gen_lowpart_common (sub_mode, x);
10163 if (x == 0)
10164 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
10166 res = simplify_gen_subreg (mode, x, sub_mode, offset);
10167 if (res)
10168 return res;
10169 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
10173 /* These routines make binary and unary operations by first seeing if they
10174 fold; if not, a new expression is allocated. */
10176 static rtx
10177 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
10179 rtx result;
10180 rtx tem;
10182 if (GET_CODE (op0) == CLOBBER)
10183 return op0;
10184 else if (GET_CODE (op1) == CLOBBER)
10185 return op1;
10187 if (GET_RTX_CLASS (code) == 'c'
10188 && swap_commutative_operands_p (op0, op1))
10189 tem = op0, op0 = op1, op1 = tem;
10191 if (GET_RTX_CLASS (code) == '<')
10193 enum machine_mode op_mode = GET_MODE (op0);
10195 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
10196 just (REL_OP X Y). */
10197 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
10199 op1 = XEXP (op0, 1);
10200 op0 = XEXP (op0, 0);
10201 op_mode = GET_MODE (op0);
10204 if (op_mode == VOIDmode)
10205 op_mode = GET_MODE (op1);
10206 result = simplify_relational_operation (code, op_mode, op0, op1);
10208 else
10209 result = simplify_binary_operation (code, mode, op0, op1);
10211 if (result)
10212 return result;
10214 /* Put complex operands first and constants second. */
10215 if (GET_RTX_CLASS (code) == 'c'
10216 && swap_commutative_operands_p (op0, op1))
10217 return gen_rtx_fmt_ee (code, mode, op1, op0);
10219 /* If we are turning off bits already known off in OP0, we need not do
10220 an AND. */
10221 else if (code == AND && GET_CODE (op1) == CONST_INT
10222 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10223 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
10224 return op0;
10226 return gen_rtx_fmt_ee (code, mode, op0, op1);
10229 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10230 comparison code that will be tested.
10232 The result is a possibly different comparison code to use. *POP0 and
10233 *POP1 may be updated.
10235 It is possible that we might detect that a comparison is either always
10236 true or always false. However, we do not perform general constant
10237 folding in combine, so this knowledge isn't useful. Such tautologies
10238 should have been detected earlier. Hence we ignore all such cases. */
10240 static enum rtx_code
10241 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10243 rtx op0 = *pop0;
10244 rtx op1 = *pop1;
10245 rtx tem, tem1;
10246 int i;
10247 enum machine_mode mode, tmode;
10249 /* Try a few ways of applying the same transformation to both operands. */
10250 while (1)
10252 #ifndef WORD_REGISTER_OPERATIONS
10253 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10254 so check specially. */
10255 if (code != GTU && code != GEU && code != LTU && code != LEU
10256 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10257 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10258 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10259 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10260 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10261 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10262 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10263 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10264 && XEXP (op0, 1) == XEXP (op1, 1)
10265 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10266 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10267 && (INTVAL (XEXP (op0, 1))
10268 == (GET_MODE_BITSIZE (GET_MODE (op0))
10269 - (GET_MODE_BITSIZE
10270 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10272 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10273 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10275 #endif
10277 /* If both operands are the same constant shift, see if we can ignore the
10278 shift. We can if the shift is a rotate or if the bits shifted out of
10279 this shift are known to be zero for both inputs and if the type of
10280 comparison is compatible with the shift. */
10281 if (GET_CODE (op0) == GET_CODE (op1)
10282 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10283 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10284 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10285 && (code != GT && code != LT && code != GE && code != LE))
10286 || (GET_CODE (op0) == ASHIFTRT
10287 && (code != GTU && code != LTU
10288 && code != GEU && code != LEU)))
10289 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10290 && INTVAL (XEXP (op0, 1)) >= 0
10291 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10292 && XEXP (op0, 1) == XEXP (op1, 1))
10294 enum machine_mode mode = GET_MODE (op0);
10295 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10296 int shift_count = INTVAL (XEXP (op0, 1));
10298 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10299 mask &= (mask >> shift_count) << shift_count;
10300 else if (GET_CODE (op0) == ASHIFT)
10301 mask = (mask & (mask << shift_count)) >> shift_count;
10303 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10304 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10305 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10306 else
10307 break;
10310 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10311 SUBREGs are of the same mode, and, in both cases, the AND would
10312 be redundant if the comparison was done in the narrower mode,
10313 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10314 and the operand's possibly nonzero bits are 0xffffff01; in that case
10315 if we only care about QImode, we don't need the AND). This case
10316 occurs if the output mode of an scc insn is not SImode and
10317 STORE_FLAG_VALUE == 1 (e.g., the 386).
10319 Similarly, check for a case where the AND's are ZERO_EXTEND
10320 operations from some narrower mode even though a SUBREG is not
10321 present. */
10323 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10324 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10325 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10327 rtx inner_op0 = XEXP (op0, 0);
10328 rtx inner_op1 = XEXP (op1, 0);
10329 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10330 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10331 int changed = 0;
10333 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10334 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10335 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10336 && (GET_MODE (SUBREG_REG (inner_op0))
10337 == GET_MODE (SUBREG_REG (inner_op1)))
10338 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10339 <= HOST_BITS_PER_WIDE_INT)
10340 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10341 GET_MODE (SUBREG_REG (inner_op0)))))
10342 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10343 GET_MODE (SUBREG_REG (inner_op1))))))
10345 op0 = SUBREG_REG (inner_op0);
10346 op1 = SUBREG_REG (inner_op1);
10348 /* The resulting comparison is always unsigned since we masked
10349 off the original sign bit. */
10350 code = unsigned_condition (code);
10352 changed = 1;
10355 else if (c0 == c1)
10356 for (tmode = GET_CLASS_NARROWEST_MODE
10357 (GET_MODE_CLASS (GET_MODE (op0)));
10358 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10359 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10361 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10362 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10363 code = unsigned_condition (code);
10364 changed = 1;
10365 break;
10368 if (! changed)
10369 break;
10372 /* If both operands are NOT, we can strip off the outer operation
10373 and adjust the comparison code for swapped operands; similarly for
10374 NEG, except that this must be an equality comparison. */
10375 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10376 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10377 && (code == EQ || code == NE)))
10378 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10380 else
10381 break;
10384 /* If the first operand is a constant, swap the operands and adjust the
10385 comparison code appropriately, but don't do this if the second operand
10386 is already a constant integer. */
10387 if (swap_commutative_operands_p (op0, op1))
10389 tem = op0, op0 = op1, op1 = tem;
10390 code = swap_condition (code);
10393 /* We now enter a loop during which we will try to simplify the comparison.
10394 For the most part, we only are concerned with comparisons with zero,
10395 but some things may really be comparisons with zero but not start
10396 out looking that way. */
10398 while (GET_CODE (op1) == CONST_INT)
10400 enum machine_mode mode = GET_MODE (op0);
10401 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10402 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10403 int equality_comparison_p;
10404 int sign_bit_comparison_p;
10405 int unsigned_comparison_p;
10406 HOST_WIDE_INT const_op;
10408 /* We only want to handle integral modes. This catches VOIDmode,
10409 CCmode, and the floating-point modes. An exception is that we
10410 can handle VOIDmode if OP0 is a COMPARE or a comparison
10411 operation. */
10413 if (GET_MODE_CLASS (mode) != MODE_INT
10414 && ! (mode == VOIDmode
10415 && (GET_CODE (op0) == COMPARE
10416 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10417 break;
10419 /* Get the constant we are comparing against and turn off all bits
10420 not on in our mode. */
10421 const_op = INTVAL (op1);
10422 if (mode != VOIDmode)
10423 const_op = trunc_int_for_mode (const_op, mode);
10424 op1 = GEN_INT (const_op);
10426 /* If we are comparing against a constant power of two and the value
10427 being compared can only have that single bit nonzero (e.g., it was
10428 `and'ed with that bit), we can replace this with a comparison
10429 with zero. */
10430 if (const_op
10431 && (code == EQ || code == NE || code == GE || code == GEU
10432 || code == LT || code == LTU)
10433 && mode_width <= HOST_BITS_PER_WIDE_INT
10434 && exact_log2 (const_op) >= 0
10435 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10437 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10438 op1 = const0_rtx, const_op = 0;
10441 /* Similarly, if we are comparing a value known to be either -1 or
10442 0 with -1, change it to the opposite comparison against zero. */
10444 if (const_op == -1
10445 && (code == EQ || code == NE || code == GT || code == LE
10446 || code == GEU || code == LTU)
10447 && num_sign_bit_copies (op0, mode) == mode_width)
10449 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10450 op1 = const0_rtx, const_op = 0;
10453 /* Do some canonicalizations based on the comparison code. We prefer
10454 comparisons against zero and then prefer equality comparisons.
10455 If we can reduce the size of a constant, we will do that too. */
10457 switch (code)
10459 case LT:
10460 /* < C is equivalent to <= (C - 1) */
10461 if (const_op > 0)
10463 const_op -= 1;
10464 op1 = GEN_INT (const_op);
10465 code = LE;
10466 /* ... fall through to LE case below. */
10468 else
10469 break;
10471 case LE:
10472 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10473 if (const_op < 0)
10475 const_op += 1;
10476 op1 = GEN_INT (const_op);
10477 code = LT;
10480 /* If we are doing a <= 0 comparison on a value known to have
10481 a zero sign bit, we can replace this with == 0. */
10482 else if (const_op == 0
10483 && mode_width <= HOST_BITS_PER_WIDE_INT
10484 && (nonzero_bits (op0, mode)
10485 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10486 code = EQ;
10487 break;
10489 case GE:
10490 /* >= C is equivalent to > (C - 1). */
10491 if (const_op > 0)
10493 const_op -= 1;
10494 op1 = GEN_INT (const_op);
10495 code = GT;
10496 /* ... fall through to GT below. */
10498 else
10499 break;
10501 case GT:
10502 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10503 if (const_op < 0)
10505 const_op += 1;
10506 op1 = GEN_INT (const_op);
10507 code = GE;
10510 /* If we are doing a > 0 comparison on a value known to have
10511 a zero sign bit, we can replace this with != 0. */
10512 else if (const_op == 0
10513 && mode_width <= HOST_BITS_PER_WIDE_INT
10514 && (nonzero_bits (op0, mode)
10515 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10516 code = NE;
10517 break;
10519 case LTU:
10520 /* < C is equivalent to <= (C - 1). */
10521 if (const_op > 0)
10523 const_op -= 1;
10524 op1 = GEN_INT (const_op);
10525 code = LEU;
10526 /* ... fall through ... */
10529 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10530 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10531 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10533 const_op = 0, op1 = const0_rtx;
10534 code = GE;
10535 break;
10537 else
10538 break;
10540 case LEU:
10541 /* unsigned <= 0 is equivalent to == 0 */
10542 if (const_op == 0)
10543 code = EQ;
10545 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10546 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10547 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10549 const_op = 0, op1 = const0_rtx;
10550 code = GE;
10552 break;
10554 case GEU:
10555 /* >= C is equivalent to < (C - 1). */
10556 if (const_op > 1)
10558 const_op -= 1;
10559 op1 = GEN_INT (const_op);
10560 code = GTU;
10561 /* ... fall through ... */
10564 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10565 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10566 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10568 const_op = 0, op1 = const0_rtx;
10569 code = LT;
10570 break;
10572 else
10573 break;
10575 case GTU:
10576 /* unsigned > 0 is equivalent to != 0 */
10577 if (const_op == 0)
10578 code = NE;
10580 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10581 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10582 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10584 const_op = 0, op1 = const0_rtx;
10585 code = LT;
10587 break;
10589 default:
10590 break;
10593 /* Compute some predicates to simplify code below. */
10595 equality_comparison_p = (code == EQ || code == NE);
10596 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10597 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10598 || code == GEU);
10600 /* If this is a sign bit comparison and we can do arithmetic in
10601 MODE, say that we will only be needing the sign bit of OP0. */
10602 if (sign_bit_comparison_p
10603 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10604 op0 = force_to_mode (op0, mode,
10605 ((HOST_WIDE_INT) 1
10606 << (GET_MODE_BITSIZE (mode) - 1)),
10607 NULL_RTX, 0);
10609 /* Now try cases based on the opcode of OP0. If none of the cases
10610 does a "continue", we exit this loop immediately after the
10611 switch. */
10613 switch (GET_CODE (op0))
10615 case ZERO_EXTRACT:
10616 /* If we are extracting a single bit from a variable position in
10617 a constant that has only a single bit set and are comparing it
10618 with zero, we can convert this into an equality comparison
10619 between the position and the location of the single bit. */
10621 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10622 && XEXP (op0, 1) == const1_rtx
10623 && equality_comparison_p && const_op == 0
10624 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10626 if (BITS_BIG_ENDIAN)
10628 enum machine_mode new_mode
10629 = mode_for_extraction (EP_extzv, 1);
10630 if (new_mode == MAX_MACHINE_MODE)
10631 i = BITS_PER_WORD - 1 - i;
10632 else
10634 mode = new_mode;
10635 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10639 op0 = XEXP (op0, 2);
10640 op1 = GEN_INT (i);
10641 const_op = i;
10643 /* Result is nonzero iff shift count is equal to I. */
10644 code = reverse_condition (code);
10645 continue;
10648 /* ... fall through ... */
10650 case SIGN_EXTRACT:
10651 tem = expand_compound_operation (op0);
10652 if (tem != op0)
10654 op0 = tem;
10655 continue;
10657 break;
10659 case NOT:
10660 /* If testing for equality, we can take the NOT of the constant. */
10661 if (equality_comparison_p
10662 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10664 op0 = XEXP (op0, 0);
10665 op1 = tem;
10666 continue;
10669 /* If just looking at the sign bit, reverse the sense of the
10670 comparison. */
10671 if (sign_bit_comparison_p)
10673 op0 = XEXP (op0, 0);
10674 code = (code == GE ? LT : GE);
10675 continue;
10677 break;
10679 case NEG:
10680 /* If testing for equality, we can take the NEG of the constant. */
10681 if (equality_comparison_p
10682 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10684 op0 = XEXP (op0, 0);
10685 op1 = tem;
10686 continue;
10689 /* The remaining cases only apply to comparisons with zero. */
10690 if (const_op != 0)
10691 break;
10693 /* When X is ABS or is known positive,
10694 (neg X) is < 0 if and only if X != 0. */
10696 if (sign_bit_comparison_p
10697 && (GET_CODE (XEXP (op0, 0)) == ABS
10698 || (mode_width <= HOST_BITS_PER_WIDE_INT
10699 && (nonzero_bits (XEXP (op0, 0), mode)
10700 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10702 op0 = XEXP (op0, 0);
10703 code = (code == LT ? NE : EQ);
10704 continue;
10707 /* If we have NEG of something whose two high-order bits are the
10708 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10709 if (num_sign_bit_copies (op0, mode) >= 2)
10711 op0 = XEXP (op0, 0);
10712 code = swap_condition (code);
10713 continue;
10715 break;
10717 case ROTATE:
10718 /* If we are testing equality and our count is a constant, we
10719 can perform the inverse operation on our RHS. */
10720 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10721 && (tem = simplify_binary_operation (ROTATERT, mode,
10722 op1, XEXP (op0, 1))) != 0)
10724 op0 = XEXP (op0, 0);
10725 op1 = tem;
10726 continue;
10729 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10730 a particular bit. Convert it to an AND of a constant of that
10731 bit. This will be converted into a ZERO_EXTRACT. */
10732 if (const_op == 0 && sign_bit_comparison_p
10733 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10734 && mode_width <= HOST_BITS_PER_WIDE_INT)
10736 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10737 ((HOST_WIDE_INT) 1
10738 << (mode_width - 1
10739 - INTVAL (XEXP (op0, 1)))));
10740 code = (code == LT ? NE : EQ);
10741 continue;
10744 /* Fall through. */
10746 case ABS:
10747 /* ABS is ignorable inside an equality comparison with zero. */
10748 if (const_op == 0 && equality_comparison_p)
10750 op0 = XEXP (op0, 0);
10751 continue;
10753 break;
10755 case SIGN_EXTEND:
10756 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10757 to (compare FOO CONST) if CONST fits in FOO's mode and we
10758 are either testing inequality or have an unsigned comparison
10759 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10760 if (! unsigned_comparison_p
10761 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10762 <= HOST_BITS_PER_WIDE_INT)
10763 && ((unsigned HOST_WIDE_INT) const_op
10764 < (((unsigned HOST_WIDE_INT) 1
10765 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10767 op0 = XEXP (op0, 0);
10768 continue;
10770 break;
10772 case SUBREG:
10773 /* Check for the case where we are comparing A - C1 with C2,
10774 both constants are smaller than 1/2 the maximum positive
10775 value in MODE, and the comparison is equality or unsigned.
10776 In that case, if A is either zero-extended to MODE or has
10777 sufficient sign bits so that the high-order bit in MODE
10778 is a copy of the sign in the inner mode, we can prove that it is
10779 safe to do the operation in the wider mode. This simplifies
10780 many range checks. */
10782 if (mode_width <= HOST_BITS_PER_WIDE_INT
10783 && subreg_lowpart_p (op0)
10784 && GET_CODE (SUBREG_REG (op0)) == PLUS
10785 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10786 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10787 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10788 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10789 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10790 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10791 GET_MODE (SUBREG_REG (op0)))
10792 & ~GET_MODE_MASK (mode))
10793 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10794 GET_MODE (SUBREG_REG (op0)))
10795 > (unsigned int)
10796 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10797 - GET_MODE_BITSIZE (mode)))))
10799 op0 = SUBREG_REG (op0);
10800 continue;
10803 /* If the inner mode is narrower and we are extracting the low part,
10804 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10805 if (subreg_lowpart_p (op0)
10806 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10807 /* Fall through */ ;
10808 else
10809 break;
10811 /* ... fall through ... */
10813 case ZERO_EXTEND:
10814 if ((unsigned_comparison_p || equality_comparison_p)
10815 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10816 <= HOST_BITS_PER_WIDE_INT)
10817 && ((unsigned HOST_WIDE_INT) const_op
10818 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10820 op0 = XEXP (op0, 0);
10821 continue;
10823 break;
10825 case PLUS:
10826 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10827 this for equality comparisons due to pathological cases involving
10828 overflows. */
10829 if (equality_comparison_p
10830 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10831 op1, XEXP (op0, 1))))
10833 op0 = XEXP (op0, 0);
10834 op1 = tem;
10835 continue;
10838 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10839 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10840 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10842 op0 = XEXP (XEXP (op0, 0), 0);
10843 code = (code == LT ? EQ : NE);
10844 continue;
10846 break;
10848 case MINUS:
10849 /* We used to optimize signed comparisons against zero, but that
10850 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10851 arrive here as equality comparisons, or (GEU, LTU) are
10852 optimized away. No need to special-case them. */
10854 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10855 (eq B (minus A C)), whichever simplifies. We can only do
10856 this for equality comparisons due to pathological cases involving
10857 overflows. */
10858 if (equality_comparison_p
10859 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10860 XEXP (op0, 1), op1)))
10862 op0 = XEXP (op0, 0);
10863 op1 = tem;
10864 continue;
10867 if (equality_comparison_p
10868 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10869 XEXP (op0, 0), op1)))
10871 op0 = XEXP (op0, 1);
10872 op1 = tem;
10873 continue;
10876 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10877 of bits in X minus 1, is one iff X > 0. */
10878 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10879 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10880 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10881 == mode_width - 1
10882 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10884 op0 = XEXP (op0, 1);
10885 code = (code == GE ? LE : GT);
10886 continue;
10888 break;
10890 case XOR:
10891 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10892 if C is zero or B is a constant. */
10893 if (equality_comparison_p
10894 && 0 != (tem = simplify_binary_operation (XOR, mode,
10895 XEXP (op0, 1), op1)))
10897 op0 = XEXP (op0, 0);
10898 op1 = tem;
10899 continue;
10901 break;
10903 case EQ: case NE:
10904 case UNEQ: case LTGT:
10905 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10906 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10907 case UNORDERED: case ORDERED:
10908 /* We can't do anything if OP0 is a condition code value, rather
10909 than an actual data value. */
10910 if (const_op != 0
10911 || CC0_P (XEXP (op0, 0))
10912 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10913 break;
10915 /* Get the two operands being compared. */
10916 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10917 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10918 else
10919 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10921 /* Check for the cases where we simply want the result of the
10922 earlier test or the opposite of that result. */
10923 if (code == NE || code == EQ
10924 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10925 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10926 && (STORE_FLAG_VALUE
10927 & (((HOST_WIDE_INT) 1
10928 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10929 && (code == LT || code == GE)))
10931 enum rtx_code new_code;
10932 if (code == LT || code == NE)
10933 new_code = GET_CODE (op0);
10934 else
10935 new_code = combine_reversed_comparison_code (op0);
10937 if (new_code != UNKNOWN)
10939 code = new_code;
10940 op0 = tem;
10941 op1 = tem1;
10942 continue;
10945 break;
10947 case IOR:
10948 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10949 iff X <= 0. */
10950 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10951 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10952 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10954 op0 = XEXP (op0, 1);
10955 code = (code == GE ? GT : LE);
10956 continue;
10958 break;
10960 case AND:
10961 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10962 will be converted to a ZERO_EXTRACT later. */
10963 if (const_op == 0 && equality_comparison_p
10964 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10965 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10967 op0 = simplify_and_const_int
10968 (op0, mode, gen_rtx_LSHIFTRT (mode,
10969 XEXP (op0, 1),
10970 XEXP (XEXP (op0, 0), 1)),
10971 (HOST_WIDE_INT) 1);
10972 continue;
10975 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10976 zero and X is a comparison and C1 and C2 describe only bits set
10977 in STORE_FLAG_VALUE, we can compare with X. */
10978 if (const_op == 0 && equality_comparison_p
10979 && mode_width <= HOST_BITS_PER_WIDE_INT
10980 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10981 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10982 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10983 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10984 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10986 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10987 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10988 if ((~STORE_FLAG_VALUE & mask) == 0
10989 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10990 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10991 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10993 op0 = XEXP (XEXP (op0, 0), 0);
10994 continue;
10998 /* If we are doing an equality comparison of an AND of a bit equal
10999 to the sign bit, replace this with a LT or GE comparison of
11000 the underlying value. */
11001 if (equality_comparison_p
11002 && const_op == 0
11003 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11004 && mode_width <= HOST_BITS_PER_WIDE_INT
11005 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11006 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11008 op0 = XEXP (op0, 0);
11009 code = (code == EQ ? GE : LT);
11010 continue;
11013 /* If this AND operation is really a ZERO_EXTEND from a narrower
11014 mode, the constant fits within that mode, and this is either an
11015 equality or unsigned comparison, try to do this comparison in
11016 the narrower mode. */
11017 if ((equality_comparison_p || unsigned_comparison_p)
11018 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11019 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
11020 & GET_MODE_MASK (mode))
11021 + 1)) >= 0
11022 && const_op >> i == 0
11023 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
11025 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
11026 continue;
11029 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11030 fits in both M1 and M2 and the SUBREG is either paradoxical
11031 or represents the low part, permute the SUBREG and the AND
11032 and try again. */
11033 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11035 unsigned HOST_WIDE_INT c1;
11036 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11037 /* Require an integral mode, to avoid creating something like
11038 (AND:SF ...). */
11039 if (SCALAR_INT_MODE_P (tmode)
11040 /* It is unsafe to commute the AND into the SUBREG if the
11041 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11042 not defined. As originally written the upper bits
11043 have a defined value due to the AND operation.
11044 However, if we commute the AND inside the SUBREG then
11045 they no longer have defined values and the meaning of
11046 the code has been changed. */
11047 && (0
11048 #ifdef WORD_REGISTER_OPERATIONS
11049 || (mode_width > GET_MODE_BITSIZE (tmode)
11050 && mode_width <= BITS_PER_WORD)
11051 #endif
11052 || (mode_width <= GET_MODE_BITSIZE (tmode)
11053 && subreg_lowpart_p (XEXP (op0, 0))))
11054 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11055 && mode_width <= HOST_BITS_PER_WIDE_INT
11056 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
11057 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11058 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11059 && c1 != mask
11060 && c1 != GET_MODE_MASK (tmode))
11062 op0 = gen_binary (AND, tmode,
11063 SUBREG_REG (XEXP (op0, 0)),
11064 gen_int_mode (c1, tmode));
11065 op0 = gen_lowpart_for_combine (mode, op0);
11066 continue;
11070 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11071 if (const_op == 0 && equality_comparison_p
11072 && XEXP (op0, 1) == const1_rtx
11073 && GET_CODE (XEXP (op0, 0)) == NOT)
11075 op0 = simplify_and_const_int
11076 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
11077 code = (code == NE ? EQ : NE);
11078 continue;
11081 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11082 (eq (and (lshiftrt X) 1) 0). */
11083 if (const_op == 0 && equality_comparison_p
11084 && XEXP (op0, 1) == const1_rtx
11085 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11086 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
11088 op0 = simplify_and_const_int
11089 (op0, mode,
11090 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
11091 XEXP (XEXP (op0, 0), 1)),
11092 (HOST_WIDE_INT) 1);
11093 code = (code == NE ? EQ : NE);
11094 continue;
11096 break;
11098 case ASHIFT:
11099 /* If we have (compare (ashift FOO N) (const_int C)) and
11100 the high order N bits of FOO (N+1 if an inequality comparison)
11101 are known to be zero, we can do this by comparing FOO with C
11102 shifted right N bits so long as the low-order N bits of C are
11103 zero. */
11104 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11105 && INTVAL (XEXP (op0, 1)) >= 0
11106 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11107 < HOST_BITS_PER_WIDE_INT)
11108 && ((const_op
11109 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
11110 && mode_width <= HOST_BITS_PER_WIDE_INT
11111 && (nonzero_bits (XEXP (op0, 0), mode)
11112 & ~(mask >> (INTVAL (XEXP (op0, 1))
11113 + ! equality_comparison_p))) == 0)
11115 /* We must perform a logical shift, not an arithmetic one,
11116 as we want the top N bits of C to be zero. */
11117 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11119 temp >>= INTVAL (XEXP (op0, 1));
11120 op1 = gen_int_mode (temp, mode);
11121 op0 = XEXP (op0, 0);
11122 continue;
11125 /* If we are doing a sign bit comparison, it means we are testing
11126 a particular bit. Convert it to the appropriate AND. */
11127 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
11128 && mode_width <= HOST_BITS_PER_WIDE_INT)
11130 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11131 ((HOST_WIDE_INT) 1
11132 << (mode_width - 1
11133 - INTVAL (XEXP (op0, 1)))));
11134 code = (code == LT ? NE : EQ);
11135 continue;
11138 /* If this an equality comparison with zero and we are shifting
11139 the low bit to the sign bit, we can convert this to an AND of the
11140 low-order bit. */
11141 if (const_op == 0 && equality_comparison_p
11142 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11143 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11144 == mode_width - 1)
11146 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11147 (HOST_WIDE_INT) 1);
11148 continue;
11150 break;
11152 case ASHIFTRT:
11153 /* If this is an equality comparison with zero, we can do this
11154 as a logical shift, which might be much simpler. */
11155 if (equality_comparison_p && const_op == 0
11156 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
11158 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11159 XEXP (op0, 0),
11160 INTVAL (XEXP (op0, 1)));
11161 continue;
11164 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11165 do the comparison in a narrower mode. */
11166 if (! unsigned_comparison_p
11167 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11168 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11169 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11170 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11171 MODE_INT, 1)) != BLKmode
11172 && (((unsigned HOST_WIDE_INT) const_op
11173 + (GET_MODE_MASK (tmode) >> 1) + 1)
11174 <= GET_MODE_MASK (tmode)))
11176 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
11177 continue;
11180 /* Likewise if OP0 is a PLUS of a sign extension with a
11181 constant, which is usually represented with the PLUS
11182 between the shifts. */
11183 if (! unsigned_comparison_p
11184 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11185 && GET_CODE (XEXP (op0, 0)) == PLUS
11186 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
11187 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11188 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11189 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11190 MODE_INT, 1)) != BLKmode
11191 && (((unsigned HOST_WIDE_INT) const_op
11192 + (GET_MODE_MASK (tmode) >> 1) + 1)
11193 <= GET_MODE_MASK (tmode)))
11195 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11196 rtx add_const = XEXP (XEXP (op0, 0), 1);
11197 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
11198 XEXP (op0, 1));
11200 op0 = gen_binary (PLUS, tmode,
11201 gen_lowpart_for_combine (tmode, inner),
11202 new_const);
11203 continue;
11206 /* ... fall through ... */
11207 case LSHIFTRT:
11208 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11209 the low order N bits of FOO are known to be zero, we can do this
11210 by comparing FOO with C shifted left N bits so long as no
11211 overflow occurs. */
11212 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11213 && INTVAL (XEXP (op0, 1)) >= 0
11214 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11215 && mode_width <= HOST_BITS_PER_WIDE_INT
11216 && (nonzero_bits (XEXP (op0, 0), mode)
11217 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11218 && (((unsigned HOST_WIDE_INT) const_op
11219 + (GET_CODE (op0) != LSHIFTRT
11220 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11221 + 1)
11222 : 0))
11223 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11225 /* If the shift was logical, then we must make the condition
11226 unsigned. */
11227 if (GET_CODE (op0) == LSHIFTRT)
11228 code = unsigned_condition (code);
11230 const_op <<= INTVAL (XEXP (op0, 1));
11231 op1 = GEN_INT (const_op);
11232 op0 = XEXP (op0, 0);
11233 continue;
11236 /* If we are using this shift to extract just the sign bit, we
11237 can replace this with an LT or GE comparison. */
11238 if (const_op == 0
11239 && (equality_comparison_p || sign_bit_comparison_p)
11240 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11241 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11242 == mode_width - 1)
11244 op0 = XEXP (op0, 0);
11245 code = (code == NE || code == GT ? LT : GE);
11246 continue;
11248 break;
11250 default:
11251 break;
11254 break;
11257 /* Now make any compound operations involved in this comparison. Then,
11258 check for an outmost SUBREG on OP0 that is not doing anything or is
11259 paradoxical. The latter transformation must only be performed when
11260 it is known that the "extra" bits will be the same in op0 and op1 or
11261 that they don't matter. There are three cases to consider:
11263 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11264 care bits and we can assume they have any convenient value. So
11265 making the transformation is safe.
11267 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11268 In this case the upper bits of op0 are undefined. We should not make
11269 the simplification in that case as we do not know the contents of
11270 those bits.
11272 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11273 NIL. In that case we know those bits are zeros or ones. We must
11274 also be sure that they are the same as the upper bits of op1.
11276 We can never remove a SUBREG for a non-equality comparison because
11277 the sign bit is in a different place in the underlying object. */
11279 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11280 op1 = make_compound_operation (op1, SET);
11282 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11283 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11284 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11285 && (code == NE || code == EQ))
11287 if (GET_MODE_SIZE (GET_MODE (op0))
11288 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11290 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11291 implemented. */
11292 if (GET_CODE (SUBREG_REG (op0)) == REG)
11294 op0 = SUBREG_REG (op0);
11295 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11298 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11299 <= HOST_BITS_PER_WIDE_INT)
11300 && (nonzero_bits (SUBREG_REG (op0),
11301 GET_MODE (SUBREG_REG (op0)))
11302 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11304 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11306 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11307 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11308 op0 = SUBREG_REG (op0), op1 = tem;
11312 /* We now do the opposite procedure: Some machines don't have compare
11313 insns in all modes. If OP0's mode is an integer mode smaller than a
11314 word and we can't do a compare in that mode, see if there is a larger
11315 mode for which we can do the compare. There are a number of cases in
11316 which we can use the wider mode. */
11318 mode = GET_MODE (op0);
11319 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11320 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11321 && ! have_insn_for (COMPARE, mode))
11322 for (tmode = GET_MODE_WIDER_MODE (mode);
11323 (tmode != VOIDmode
11324 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11325 tmode = GET_MODE_WIDER_MODE (tmode))
11326 if (have_insn_for (COMPARE, tmode))
11328 int zero_extended;
11330 /* If the only nonzero bits in OP0 and OP1 are those in the
11331 narrower mode and this is an equality or unsigned comparison,
11332 we can use the wider mode. Similarly for sign-extended
11333 values, in which case it is true for all comparisons. */
11334 zero_extended = ((code == EQ || code == NE
11335 || code == GEU || code == GTU
11336 || code == LEU || code == LTU)
11337 && (nonzero_bits (op0, tmode)
11338 & ~GET_MODE_MASK (mode)) == 0
11339 && ((GET_CODE (op1) == CONST_INT
11340 || (nonzero_bits (op1, tmode)
11341 & ~GET_MODE_MASK (mode)) == 0)));
11343 if (zero_extended
11344 || ((num_sign_bit_copies (op0, tmode)
11345 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11346 - GET_MODE_BITSIZE (mode)))
11347 && (num_sign_bit_copies (op1, tmode)
11348 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11349 - GET_MODE_BITSIZE (mode)))))
11351 /* If OP0 is an AND and we don't have an AND in MODE either,
11352 make a new AND in the proper mode. */
11353 if (GET_CODE (op0) == AND
11354 && !have_insn_for (AND, mode))
11355 op0 = gen_binary (AND, tmode,
11356 gen_lowpart_for_combine (tmode,
11357 XEXP (op0, 0)),
11358 gen_lowpart_for_combine (tmode,
11359 XEXP (op0, 1)));
11361 op0 = gen_lowpart_for_combine (tmode, op0);
11362 if (zero_extended && GET_CODE (op1) == CONST_INT)
11363 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11364 op1 = gen_lowpart_for_combine (tmode, op1);
11365 break;
11368 /* If this is a test for negative, we can make an explicit
11369 test of the sign bit. */
11371 if (op1 == const0_rtx && (code == LT || code == GE)
11372 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11374 op0 = gen_binary (AND, tmode,
11375 gen_lowpart_for_combine (tmode, op0),
11376 GEN_INT ((HOST_WIDE_INT) 1
11377 << (GET_MODE_BITSIZE (mode) - 1)));
11378 code = (code == LT) ? NE : EQ;
11379 break;
11383 #ifdef CANONICALIZE_COMPARISON
11384 /* If this machine only supports a subset of valid comparisons, see if we
11385 can convert an unsupported one into a supported one. */
11386 CANONICALIZE_COMPARISON (code, op0, op1);
11387 #endif
11389 *pop0 = op0;
11390 *pop1 = op1;
11392 return code;
11395 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11396 searching backward. */
11397 static enum rtx_code
11398 combine_reversed_comparison_code (rtx exp)
11400 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11401 rtx x;
11403 if (code1 != UNKNOWN
11404 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11405 return code1;
11406 /* Otherwise try and find where the condition codes were last set and
11407 use that. */
11408 x = get_last_value (XEXP (exp, 0));
11409 if (!x || GET_CODE (x) != COMPARE)
11410 return UNKNOWN;
11411 return reversed_comparison_code_parts (GET_CODE (exp),
11412 XEXP (x, 0), XEXP (x, 1), NULL);
11415 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11416 Return NULL_RTX in case we fail to do the reversal. */
11417 static rtx
11418 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
11420 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11421 if (reversed_code == UNKNOWN)
11422 return NULL_RTX;
11423 else
11424 return gen_binary (reversed_code, mode, op0, op1);
11427 /* Utility function for following routine. Called when X is part of a value
11428 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11429 for each register mentioned. Similar to mention_regs in cse.c */
11431 static void
11432 update_table_tick (rtx x)
11434 enum rtx_code code = GET_CODE (x);
11435 const char *fmt = GET_RTX_FORMAT (code);
11436 int i;
11438 if (code == REG)
11440 unsigned int regno = REGNO (x);
11441 unsigned int endregno
11442 = regno + (regno < FIRST_PSEUDO_REGISTER
11443 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11444 unsigned int r;
11446 for (r = regno; r < endregno; r++)
11447 reg_last_set_table_tick[r] = label_tick;
11449 return;
11452 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11453 /* Note that we can't have an "E" in values stored; see
11454 get_last_value_validate. */
11455 if (fmt[i] == 'e')
11457 /* Check for identical subexpressions. If x contains
11458 identical subexpression we only have to traverse one of
11459 them. */
11460 if (i == 0
11461 && (GET_RTX_CLASS (code) == '2'
11462 || GET_RTX_CLASS (code) == 'c'))
11464 /* Note that at this point x1 has already been
11465 processed. */
11466 rtx x0 = XEXP (x, 0);
11467 rtx x1 = XEXP (x, 1);
11469 /* If x0 and x1 are identical then there is no need to
11470 process x0. */
11471 if (x0 == x1)
11472 break;
11474 /* If x0 is identical to a subexpression of x1 then while
11475 processing x1, x0 has already been processed. Thus we
11476 are done with x. */
11477 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11478 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11479 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11480 break;
11482 /* If x1 is identical to a subexpression of x0 then we
11483 still have to process the rest of x0. */
11484 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11485 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11486 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11488 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11489 break;
11493 update_table_tick (XEXP (x, i));
11497 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11498 are saying that the register is clobbered and we no longer know its
11499 value. If INSN is zero, don't update reg_last_set; this is only permitted
11500 with VALUE also zero and is used to invalidate the register. */
11502 static void
11503 record_value_for_reg (rtx reg, rtx insn, rtx value)
11505 unsigned int regno = REGNO (reg);
11506 unsigned int endregno
11507 = regno + (regno < FIRST_PSEUDO_REGISTER
11508 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11509 unsigned int i;
11511 /* If VALUE contains REG and we have a previous value for REG, substitute
11512 the previous value. */
11513 if (value && insn && reg_overlap_mentioned_p (reg, value))
11515 rtx tem;
11517 /* Set things up so get_last_value is allowed to see anything set up to
11518 our insn. */
11519 subst_low_cuid = INSN_CUID (insn);
11520 tem = get_last_value (reg);
11522 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11523 it isn't going to be useful and will take a lot of time to process,
11524 so just use the CLOBBER. */
11526 if (tem)
11528 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11529 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11530 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11531 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11532 tem = XEXP (tem, 0);
11534 value = replace_rtx (copy_rtx (value), reg, tem);
11538 /* For each register modified, show we don't know its value, that
11539 we don't know about its bitwise content, that its value has been
11540 updated, and that we don't know the location of the death of the
11541 register. */
11542 for (i = regno; i < endregno; i++)
11544 if (insn)
11545 reg_last_set[i] = insn;
11547 reg_last_set_value[i] = 0;
11548 reg_last_set_mode[i] = 0;
11549 reg_last_set_nonzero_bits[i] = 0;
11550 reg_last_set_sign_bit_copies[i] = 0;
11551 reg_last_death[i] = 0;
11554 /* Mark registers that are being referenced in this value. */
11555 if (value)
11556 update_table_tick (value);
11558 /* Now update the status of each register being set.
11559 If someone is using this register in this block, set this register
11560 to invalid since we will get confused between the two lives in this
11561 basic block. This makes using this register always invalid. In cse, we
11562 scan the table to invalidate all entries using this register, but this
11563 is too much work for us. */
11565 for (i = regno; i < endregno; i++)
11567 reg_last_set_label[i] = label_tick;
11568 if (value && reg_last_set_table_tick[i] == label_tick)
11569 reg_last_set_invalid[i] = 1;
11570 else
11571 reg_last_set_invalid[i] = 0;
11574 /* The value being assigned might refer to X (like in "x++;"). In that
11575 case, we must replace it with (clobber (const_int 0)) to prevent
11576 infinite loops. */
11577 if (value && ! get_last_value_validate (&value, insn,
11578 reg_last_set_label[regno], 0))
11580 value = copy_rtx (value);
11581 if (! get_last_value_validate (&value, insn,
11582 reg_last_set_label[regno], 1))
11583 value = 0;
11586 /* For the main register being modified, update the value, the mode, the
11587 nonzero bits, and the number of sign bit copies. */
11589 reg_last_set_value[regno] = value;
11591 if (value)
11593 enum machine_mode mode = GET_MODE (reg);
11594 subst_low_cuid = INSN_CUID (insn);
11595 reg_last_set_mode[regno] = mode;
11596 if (GET_MODE_CLASS (mode) == MODE_INT
11597 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11598 mode = nonzero_bits_mode;
11599 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11600 reg_last_set_sign_bit_copies[regno]
11601 = num_sign_bit_copies (value, GET_MODE (reg));
11605 /* Called via note_stores from record_dead_and_set_regs to handle one
11606 SET or CLOBBER in an insn. DATA is the instruction in which the
11607 set is occurring. */
11609 static void
11610 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11612 rtx record_dead_insn = (rtx) data;
11614 if (GET_CODE (dest) == SUBREG)
11615 dest = SUBREG_REG (dest);
11617 if (GET_CODE (dest) == REG)
11619 /* If we are setting the whole register, we know its value. Otherwise
11620 show that we don't know the value. We can handle SUBREG in
11621 some cases. */
11622 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11623 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11624 else if (GET_CODE (setter) == SET
11625 && GET_CODE (SET_DEST (setter)) == SUBREG
11626 && SUBREG_REG (SET_DEST (setter)) == dest
11627 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11628 && subreg_lowpart_p (SET_DEST (setter)))
11629 record_value_for_reg (dest, record_dead_insn,
11630 gen_lowpart_for_combine (GET_MODE (dest),
11631 SET_SRC (setter)));
11632 else
11633 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11635 else if (GET_CODE (dest) == MEM
11636 /* Ignore pushes, they clobber nothing. */
11637 && ! push_operand (dest, GET_MODE (dest)))
11638 mem_last_set = INSN_CUID (record_dead_insn);
11641 /* Update the records of when each REG was most recently set or killed
11642 for the things done by INSN. This is the last thing done in processing
11643 INSN in the combiner loop.
11645 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11646 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11647 and also the similar information mem_last_set (which insn most recently
11648 modified memory) and last_call_cuid (which insn was the most recent
11649 subroutine call). */
11651 static void
11652 record_dead_and_set_regs (rtx insn)
11654 rtx link;
11655 unsigned int i;
11657 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11659 if (REG_NOTE_KIND (link) == REG_DEAD
11660 && GET_CODE (XEXP (link, 0)) == REG)
11662 unsigned int regno = REGNO (XEXP (link, 0));
11663 unsigned int endregno
11664 = regno + (regno < FIRST_PSEUDO_REGISTER
11665 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11666 : 1);
11668 for (i = regno; i < endregno; i++)
11669 reg_last_death[i] = insn;
11671 else if (REG_NOTE_KIND (link) == REG_INC)
11672 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11675 if (GET_CODE (insn) == CALL_INSN)
11677 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11678 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11680 reg_last_set_value[i] = 0;
11681 reg_last_set_mode[i] = 0;
11682 reg_last_set_nonzero_bits[i] = 0;
11683 reg_last_set_sign_bit_copies[i] = 0;
11684 reg_last_death[i] = 0;
11687 last_call_cuid = mem_last_set = INSN_CUID (insn);
11689 /* Don't bother recording what this insn does. It might set the
11690 return value register, but we can't combine into a call
11691 pattern anyway, so there's no point trying (and it may cause
11692 a crash, if e.g. we wind up asking for last_set_value of a
11693 SUBREG of the return value register). */
11694 return;
11697 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11700 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11701 register present in the SUBREG, so for each such SUBREG go back and
11702 adjust nonzero and sign bit information of the registers that are
11703 known to have some zero/sign bits set.
11705 This is needed because when combine blows the SUBREGs away, the
11706 information on zero/sign bits is lost and further combines can be
11707 missed because of that. */
11709 static void
11710 record_promoted_value (rtx insn, rtx subreg)
11712 rtx links, set;
11713 unsigned int regno = REGNO (SUBREG_REG (subreg));
11714 enum machine_mode mode = GET_MODE (subreg);
11716 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11717 return;
11719 for (links = LOG_LINKS (insn); links;)
11721 insn = XEXP (links, 0);
11722 set = single_set (insn);
11724 if (! set || GET_CODE (SET_DEST (set)) != REG
11725 || REGNO (SET_DEST (set)) != regno
11726 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11728 links = XEXP (links, 1);
11729 continue;
11732 if (reg_last_set[regno] == insn)
11734 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11735 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11738 if (GET_CODE (SET_SRC (set)) == REG)
11740 regno = REGNO (SET_SRC (set));
11741 links = LOG_LINKS (insn);
11743 else
11744 break;
11748 /* Scan X for promoted SUBREGs. For each one found,
11749 note what it implies to the registers used in it. */
11751 static void
11752 check_promoted_subreg (rtx insn, rtx x)
11754 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11755 && GET_CODE (SUBREG_REG (x)) == REG)
11756 record_promoted_value (insn, x);
11757 else
11759 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11760 int i, j;
11762 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11763 switch (format[i])
11765 case 'e':
11766 check_promoted_subreg (insn, XEXP (x, i));
11767 break;
11768 case 'V':
11769 case 'E':
11770 if (XVEC (x, i) != 0)
11771 for (j = 0; j < XVECLEN (x, i); j++)
11772 check_promoted_subreg (insn, XVECEXP (x, i, j));
11773 break;
11778 /* Utility routine for the following function. Verify that all the registers
11779 mentioned in *LOC are valid when *LOC was part of a value set when
11780 label_tick == TICK. Return 0 if some are not.
11782 If REPLACE is nonzero, replace the invalid reference with
11783 (clobber (const_int 0)) and return 1. This replacement is useful because
11784 we often can get useful information about the form of a value (e.g., if
11785 it was produced by a shift that always produces -1 or 0) even though
11786 we don't know exactly what registers it was produced from. */
11788 static int
11789 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11791 rtx x = *loc;
11792 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11793 int len = GET_RTX_LENGTH (GET_CODE (x));
11794 int i;
11796 if (GET_CODE (x) == REG)
11798 unsigned int regno = REGNO (x);
11799 unsigned int endregno
11800 = regno + (regno < FIRST_PSEUDO_REGISTER
11801 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11802 unsigned int j;
11804 for (j = regno; j < endregno; j++)
11805 if (reg_last_set_invalid[j]
11806 /* If this is a pseudo-register that was only set once and not
11807 live at the beginning of the function, it is always valid. */
11808 || (! (regno >= FIRST_PSEUDO_REGISTER
11809 && REG_N_SETS (regno) == 1
11810 && (! REGNO_REG_SET_P
11811 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11812 && reg_last_set_label[j] > tick))
11814 if (replace)
11815 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11816 return replace;
11819 return 1;
11821 /* If this is a memory reference, make sure that there were
11822 no stores after it that might have clobbered the value. We don't
11823 have alias info, so we assume any store invalidates it. */
11824 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11825 && INSN_CUID (insn) <= mem_last_set)
11827 if (replace)
11828 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11829 return replace;
11832 for (i = 0; i < len; i++)
11834 if (fmt[i] == 'e')
11836 /* Check for identical subexpressions. If x contains
11837 identical subexpression we only have to traverse one of
11838 them. */
11839 if (i == 1
11840 && (GET_RTX_CLASS (GET_CODE (x)) == '2'
11841 || GET_RTX_CLASS (GET_CODE (x)) == 'c'))
11843 /* Note that at this point x0 has already been checked
11844 and found valid. */
11845 rtx x0 = XEXP (x, 0);
11846 rtx x1 = XEXP (x, 1);
11848 /* If x0 and x1 are identical then x is also valid. */
11849 if (x0 == x1)
11850 return 1;
11852 /* If x1 is identical to a subexpression of x0 then
11853 while checking x0, x1 has already been checked. Thus
11854 it is valid and so as x. */
11855 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11856 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11857 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11858 return 1;
11860 /* If x0 is identical to a subexpression of x1 then x is
11861 valid iff the rest of x1 is valid. */
11862 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11863 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11864 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11865 return
11866 get_last_value_validate (&XEXP (x1,
11867 x0 == XEXP (x1, 0) ? 1 : 0),
11868 insn, tick, replace);
11871 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11872 replace) == 0)
11873 return 0;
11875 /* Don't bother with these. They shouldn't occur anyway. */
11876 else if (fmt[i] == 'E')
11877 return 0;
11880 /* If we haven't found a reason for it to be invalid, it is valid. */
11881 return 1;
11884 /* Get the last value assigned to X, if known. Some registers
11885 in the value may be replaced with (clobber (const_int 0)) if their value
11886 is known longer known reliably. */
11888 static rtx
11889 get_last_value (rtx x)
11891 unsigned int regno;
11892 rtx value;
11894 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11895 then convert it to the desired mode. If this is a paradoxical SUBREG,
11896 we cannot predict what values the "extra" bits might have. */
11897 if (GET_CODE (x) == SUBREG
11898 && subreg_lowpart_p (x)
11899 && (GET_MODE_SIZE (GET_MODE (x))
11900 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11901 && (value = get_last_value (SUBREG_REG (x))) != 0)
11902 return gen_lowpart_for_combine (GET_MODE (x), value);
11904 if (GET_CODE (x) != REG)
11905 return 0;
11907 regno = REGNO (x);
11908 value = reg_last_set_value[regno];
11910 /* If we don't have a value, or if it isn't for this basic block and
11911 it's either a hard register, set more than once, or it's a live
11912 at the beginning of the function, return 0.
11914 Because if it's not live at the beginning of the function then the reg
11915 is always set before being used (is never used without being set).
11916 And, if it's set only once, and it's always set before use, then all
11917 uses must have the same last value, even if it's not from this basic
11918 block. */
11920 if (value == 0
11921 || (reg_last_set_label[regno] != label_tick
11922 && (regno < FIRST_PSEUDO_REGISTER
11923 || REG_N_SETS (regno) != 1
11924 || (REGNO_REG_SET_P
11925 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11926 return 0;
11928 /* If the value was set in a later insn than the ones we are processing,
11929 we can't use it even if the register was only set once. */
11930 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11931 return 0;
11933 /* If the value has all its registers valid, return it. */
11934 if (get_last_value_validate (&value, reg_last_set[regno],
11935 reg_last_set_label[regno], 0))
11936 return value;
11938 /* Otherwise, make a copy and replace any invalid register with
11939 (clobber (const_int 0)). If that fails for some reason, return 0. */
11941 value = copy_rtx (value);
11942 if (get_last_value_validate (&value, reg_last_set[regno],
11943 reg_last_set_label[regno], 1))
11944 return value;
11946 return 0;
11949 /* Return nonzero if expression X refers to a REG or to memory
11950 that is set in an instruction more recent than FROM_CUID. */
11952 static int
11953 use_crosses_set_p (rtx x, int from_cuid)
11955 const char *fmt;
11956 int i;
11957 enum rtx_code code = GET_CODE (x);
11959 if (code == REG)
11961 unsigned int regno = REGNO (x);
11962 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11963 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11965 #ifdef PUSH_ROUNDING
11966 /* Don't allow uses of the stack pointer to be moved,
11967 because we don't know whether the move crosses a push insn. */
11968 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11969 return 1;
11970 #endif
11971 for (; regno < endreg; regno++)
11972 if (reg_last_set[regno]
11973 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11974 return 1;
11975 return 0;
11978 if (code == MEM && mem_last_set > from_cuid)
11979 return 1;
11981 fmt = GET_RTX_FORMAT (code);
11983 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11985 if (fmt[i] == 'E')
11987 int j;
11988 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11989 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11990 return 1;
11992 else if (fmt[i] == 'e'
11993 && use_crosses_set_p (XEXP (x, i), from_cuid))
11994 return 1;
11996 return 0;
11999 /* Define three variables used for communication between the following
12000 routines. */
12002 static unsigned int reg_dead_regno, reg_dead_endregno;
12003 static int reg_dead_flag;
12005 /* Function called via note_stores from reg_dead_at_p.
12007 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12008 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12010 static void
12011 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
12013 unsigned int regno, endregno;
12015 if (GET_CODE (dest) != REG)
12016 return;
12018 regno = REGNO (dest);
12019 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
12020 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
12022 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12023 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12026 /* Return nonzero if REG is known to be dead at INSN.
12028 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12029 referencing REG, it is dead. If we hit a SET referencing REG, it is
12030 live. Otherwise, see if it is live or dead at the start of the basic
12031 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12032 must be assumed to be always live. */
12034 static int
12035 reg_dead_at_p (rtx reg, rtx insn)
12037 basic_block block;
12038 unsigned int i;
12040 /* Set variables for reg_dead_at_p_1. */
12041 reg_dead_regno = REGNO (reg);
12042 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
12043 ? HARD_REGNO_NREGS (reg_dead_regno,
12044 GET_MODE (reg))
12045 : 1);
12047 reg_dead_flag = 0;
12049 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
12050 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12052 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12053 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
12054 return 0;
12057 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
12058 beginning of function. */
12059 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
12060 insn = prev_nonnote_insn (insn))
12062 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12063 if (reg_dead_flag)
12064 return reg_dead_flag == 1 ? 1 : 0;
12066 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12067 return 1;
12070 /* Get the basic block that we were in. */
12071 if (insn == 0)
12072 block = ENTRY_BLOCK_PTR->next_bb;
12073 else
12075 FOR_EACH_BB (block)
12076 if (insn == block->head)
12077 break;
12079 if (block == EXIT_BLOCK_PTR)
12080 return 0;
12083 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12084 if (REGNO_REG_SET_P (block->global_live_at_start, i))
12085 return 0;
12087 return 1;
12090 /* Note hard registers in X that are used. This code is similar to
12091 that in flow.c, but much simpler since we don't care about pseudos. */
12093 static void
12094 mark_used_regs_combine (rtx x)
12096 RTX_CODE code = GET_CODE (x);
12097 unsigned int regno;
12098 int i;
12100 switch (code)
12102 case LABEL_REF:
12103 case SYMBOL_REF:
12104 case CONST_INT:
12105 case CONST:
12106 case CONST_DOUBLE:
12107 case CONST_VECTOR:
12108 case PC:
12109 case ADDR_VEC:
12110 case ADDR_DIFF_VEC:
12111 case ASM_INPUT:
12112 #ifdef HAVE_cc0
12113 /* CC0 must die in the insn after it is set, so we don't need to take
12114 special note of it here. */
12115 case CC0:
12116 #endif
12117 return;
12119 case CLOBBER:
12120 /* If we are clobbering a MEM, mark any hard registers inside the
12121 address as used. */
12122 if (GET_CODE (XEXP (x, 0)) == MEM)
12123 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12124 return;
12126 case REG:
12127 regno = REGNO (x);
12128 /* A hard reg in a wide mode may really be multiple registers.
12129 If so, mark all of them just like the first. */
12130 if (regno < FIRST_PSEUDO_REGISTER)
12132 unsigned int endregno, r;
12134 /* None of this applies to the stack, frame or arg pointers. */
12135 if (regno == STACK_POINTER_REGNUM
12136 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12137 || regno == HARD_FRAME_POINTER_REGNUM
12138 #endif
12139 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12140 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12141 #endif
12142 || regno == FRAME_POINTER_REGNUM)
12143 return;
12145 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12146 for (r = regno; r < endregno; r++)
12147 SET_HARD_REG_BIT (newpat_used_regs, r);
12149 return;
12151 case SET:
12153 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12154 the address. */
12155 rtx testreg = SET_DEST (x);
12157 while (GET_CODE (testreg) == SUBREG
12158 || GET_CODE (testreg) == ZERO_EXTRACT
12159 || GET_CODE (testreg) == SIGN_EXTRACT
12160 || GET_CODE (testreg) == STRICT_LOW_PART)
12161 testreg = XEXP (testreg, 0);
12163 if (GET_CODE (testreg) == MEM)
12164 mark_used_regs_combine (XEXP (testreg, 0));
12166 mark_used_regs_combine (SET_SRC (x));
12168 return;
12170 default:
12171 break;
12174 /* Recursively scan the operands of this expression. */
12177 const char *fmt = GET_RTX_FORMAT (code);
12179 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12181 if (fmt[i] == 'e')
12182 mark_used_regs_combine (XEXP (x, i));
12183 else if (fmt[i] == 'E')
12185 int j;
12187 for (j = 0; j < XVECLEN (x, i); j++)
12188 mark_used_regs_combine (XVECEXP (x, i, j));
12194 /* Remove register number REGNO from the dead registers list of INSN.
12196 Return the note used to record the death, if there was one. */
12199 remove_death (unsigned int regno, rtx insn)
12201 rtx note = find_regno_note (insn, REG_DEAD, regno);
12203 if (note)
12205 REG_N_DEATHS (regno)--;
12206 remove_note (insn, note);
12209 return note;
12212 /* For each register (hardware or pseudo) used within expression X, if its
12213 death is in an instruction with cuid between FROM_CUID (inclusive) and
12214 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12215 list headed by PNOTES.
12217 That said, don't move registers killed by maybe_kill_insn.
12219 This is done when X is being merged by combination into TO_INSN. These
12220 notes will then be distributed as needed. */
12222 static void
12223 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
12224 rtx *pnotes)
12226 const char *fmt;
12227 int len, i;
12228 enum rtx_code code = GET_CODE (x);
12230 if (code == REG)
12232 unsigned int regno = REGNO (x);
12233 rtx where_dead = reg_last_death[regno];
12234 rtx before_dead, after_dead;
12236 /* Don't move the register if it gets killed in between from and to. */
12237 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12238 && ! reg_referenced_p (x, maybe_kill_insn))
12239 return;
12241 /* WHERE_DEAD could be a USE insn made by combine, so first we
12242 make sure that we have insns with valid INSN_CUID values. */
12243 before_dead = where_dead;
12244 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
12245 before_dead = PREV_INSN (before_dead);
12247 after_dead = where_dead;
12248 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
12249 after_dead = NEXT_INSN (after_dead);
12251 if (before_dead && after_dead
12252 && INSN_CUID (before_dead) >= from_cuid
12253 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
12254 || (where_dead != after_dead
12255 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
12257 rtx note = remove_death (regno, where_dead);
12259 /* It is possible for the call above to return 0. This can occur
12260 when reg_last_death points to I2 or I1 that we combined with.
12261 In that case make a new note.
12263 We must also check for the case where X is a hard register
12264 and NOTE is a death note for a range of hard registers
12265 including X. In that case, we must put REG_DEAD notes for
12266 the remaining registers in place of NOTE. */
12268 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12269 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12270 > GET_MODE_SIZE (GET_MODE (x))))
12272 unsigned int deadregno = REGNO (XEXP (note, 0));
12273 unsigned int deadend
12274 = (deadregno + HARD_REGNO_NREGS (deadregno,
12275 GET_MODE (XEXP (note, 0))));
12276 unsigned int ourend
12277 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12278 unsigned int i;
12280 for (i = deadregno; i < deadend; i++)
12281 if (i < regno || i >= ourend)
12282 REG_NOTES (where_dead)
12283 = gen_rtx_EXPR_LIST (REG_DEAD,
12284 regno_reg_rtx[i],
12285 REG_NOTES (where_dead));
12288 /* If we didn't find any note, or if we found a REG_DEAD note that
12289 covers only part of the given reg, and we have a multi-reg hard
12290 register, then to be safe we must check for REG_DEAD notes
12291 for each register other than the first. They could have
12292 their own REG_DEAD notes lying around. */
12293 else if ((note == 0
12294 || (note != 0
12295 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12296 < GET_MODE_SIZE (GET_MODE (x)))))
12297 && regno < FIRST_PSEUDO_REGISTER
12298 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
12300 unsigned int ourend
12301 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12302 unsigned int i, offset;
12303 rtx oldnotes = 0;
12305 if (note)
12306 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
12307 else
12308 offset = 1;
12310 for (i = regno + offset; i < ourend; i++)
12311 move_deaths (regno_reg_rtx[i],
12312 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
12315 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12317 XEXP (note, 1) = *pnotes;
12318 *pnotes = note;
12320 else
12321 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12323 REG_N_DEATHS (regno)++;
12326 return;
12329 else if (GET_CODE (x) == SET)
12331 rtx dest = SET_DEST (x);
12333 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
12335 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12336 that accesses one word of a multi-word item, some
12337 piece of everything register in the expression is used by
12338 this insn, so remove any old death. */
12339 /* ??? So why do we test for equality of the sizes? */
12341 if (GET_CODE (dest) == ZERO_EXTRACT
12342 || GET_CODE (dest) == STRICT_LOW_PART
12343 || (GET_CODE (dest) == SUBREG
12344 && (((GET_MODE_SIZE (GET_MODE (dest))
12345 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12346 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12347 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12349 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12350 return;
12353 /* If this is some other SUBREG, we know it replaces the entire
12354 value, so use that as the destination. */
12355 if (GET_CODE (dest) == SUBREG)
12356 dest = SUBREG_REG (dest);
12358 /* If this is a MEM, adjust deaths of anything used in the address.
12359 For a REG (the only other possibility), the entire value is
12360 being replaced so the old value is not used in this insn. */
12362 if (GET_CODE (dest) == MEM)
12363 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12364 to_insn, pnotes);
12365 return;
12368 else if (GET_CODE (x) == CLOBBER)
12369 return;
12371 len = GET_RTX_LENGTH (code);
12372 fmt = GET_RTX_FORMAT (code);
12374 for (i = 0; i < len; i++)
12376 if (fmt[i] == 'E')
12378 int j;
12379 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12380 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12381 to_insn, pnotes);
12383 else if (fmt[i] == 'e')
12384 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12388 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12389 pattern of an insn. X must be a REG. */
12391 static int
12392 reg_bitfield_target_p (rtx x, rtx body)
12394 int i;
12396 if (GET_CODE (body) == SET)
12398 rtx dest = SET_DEST (body);
12399 rtx target;
12400 unsigned int regno, tregno, endregno, endtregno;
12402 if (GET_CODE (dest) == ZERO_EXTRACT)
12403 target = XEXP (dest, 0);
12404 else if (GET_CODE (dest) == STRICT_LOW_PART)
12405 target = SUBREG_REG (XEXP (dest, 0));
12406 else
12407 return 0;
12409 if (GET_CODE (target) == SUBREG)
12410 target = SUBREG_REG (target);
12412 if (GET_CODE (target) != REG)
12413 return 0;
12415 tregno = REGNO (target), regno = REGNO (x);
12416 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12417 return target == x;
12419 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12420 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12422 return endregno > tregno && regno < endtregno;
12425 else if (GET_CODE (body) == PARALLEL)
12426 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12427 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12428 return 1;
12430 return 0;
12433 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12434 as appropriate. I3 and I2 are the insns resulting from the combination
12435 insns including FROM (I2 may be zero).
12437 Each note in the list is either ignored or placed on some insns, depending
12438 on the type of note. */
12440 static void
12441 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
12443 rtx note, next_note;
12444 rtx tem;
12446 for (note = notes; note; note = next_note)
12448 rtx place = 0, place2 = 0;
12450 /* If this NOTE references a pseudo register, ensure it references
12451 the latest copy of that register. */
12452 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12453 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12454 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12456 next_note = XEXP (note, 1);
12457 switch (REG_NOTE_KIND (note))
12459 case REG_BR_PROB:
12460 case REG_BR_PRED:
12461 /* Doesn't matter much where we put this, as long as it's somewhere.
12462 It is preferable to keep these notes on branches, which is most
12463 likely to be i3. */
12464 place = i3;
12465 break;
12467 case REG_VALUE_PROFILE:
12468 /* Just get rid of this note, as it is unused later anyway. */
12469 break;
12471 case REG_VTABLE_REF:
12472 /* ??? Should remain with *a particular* memory load. Given the
12473 nature of vtable data, the last insn seems relatively safe. */
12474 place = i3;
12475 break;
12477 case REG_NON_LOCAL_GOTO:
12478 if (GET_CODE (i3) == JUMP_INSN)
12479 place = i3;
12480 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12481 place = i2;
12482 else
12483 abort ();
12484 break;
12486 case REG_EH_REGION:
12487 /* These notes must remain with the call or trapping instruction. */
12488 if (GET_CODE (i3) == CALL_INSN)
12489 place = i3;
12490 else if (i2 && GET_CODE (i2) == CALL_INSN)
12491 place = i2;
12492 else if (flag_non_call_exceptions)
12494 if (may_trap_p (i3))
12495 place = i3;
12496 else if (i2 && may_trap_p (i2))
12497 place = i2;
12498 /* ??? Otherwise assume we've combined things such that we
12499 can now prove that the instructions can't trap. Drop the
12500 note in this case. */
12502 else
12503 abort ();
12504 break;
12506 case REG_ALWAYS_RETURN:
12507 case REG_NORETURN:
12508 case REG_SETJMP:
12509 /* These notes must remain with the call. It should not be
12510 possible for both I2 and I3 to be a call. */
12511 if (GET_CODE (i3) == CALL_INSN)
12512 place = i3;
12513 else if (i2 && GET_CODE (i2) == CALL_INSN)
12514 place = i2;
12515 else
12516 abort ();
12517 break;
12519 case REG_UNUSED:
12520 /* Any clobbers for i3 may still exist, and so we must process
12521 REG_UNUSED notes from that insn.
12523 Any clobbers from i2 or i1 can only exist if they were added by
12524 recog_for_combine. In that case, recog_for_combine created the
12525 necessary REG_UNUSED notes. Trying to keep any original
12526 REG_UNUSED notes from these insns can cause incorrect output
12527 if it is for the same register as the original i3 dest.
12528 In that case, we will notice that the register is set in i3,
12529 and then add a REG_UNUSED note for the destination of i3, which
12530 is wrong. However, it is possible to have REG_UNUSED notes from
12531 i2 or i1 for register which were both used and clobbered, so
12532 we keep notes from i2 or i1 if they will turn into REG_DEAD
12533 notes. */
12535 /* If this register is set or clobbered in I3, put the note there
12536 unless there is one already. */
12537 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12539 if (from_insn != i3)
12540 break;
12542 if (! (GET_CODE (XEXP (note, 0)) == REG
12543 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12544 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12545 place = i3;
12547 /* Otherwise, if this register is used by I3, then this register
12548 now dies here, so we must put a REG_DEAD note here unless there
12549 is one already. */
12550 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12551 && ! (GET_CODE (XEXP (note, 0)) == REG
12552 ? find_regno_note (i3, REG_DEAD,
12553 REGNO (XEXP (note, 0)))
12554 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12556 PUT_REG_NOTE_KIND (note, REG_DEAD);
12557 place = i3;
12559 break;
12561 case REG_EQUAL:
12562 case REG_EQUIV:
12563 case REG_NOALIAS:
12564 /* These notes say something about results of an insn. We can
12565 only support them if they used to be on I3 in which case they
12566 remain on I3. Otherwise they are ignored.
12568 If the note refers to an expression that is not a constant, we
12569 must also ignore the note since we cannot tell whether the
12570 equivalence is still true. It might be possible to do
12571 slightly better than this (we only have a problem if I2DEST
12572 or I1DEST is present in the expression), but it doesn't
12573 seem worth the trouble. */
12575 if (from_insn == i3
12576 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12577 place = i3;
12578 break;
12580 case REG_INC:
12581 case REG_NO_CONFLICT:
12582 /* These notes say something about how a register is used. They must
12583 be present on any use of the register in I2 or I3. */
12584 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12585 place = i3;
12587 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12589 if (place)
12590 place2 = i2;
12591 else
12592 place = i2;
12594 break;
12596 case REG_LABEL:
12597 /* This can show up in several ways -- either directly in the
12598 pattern, or hidden off in the constant pool with (or without?)
12599 a REG_EQUAL note. */
12600 /* ??? Ignore the without-reg_equal-note problem for now. */
12601 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12602 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12603 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12604 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12605 place = i3;
12607 if (i2
12608 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12609 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12610 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12611 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12613 if (place)
12614 place2 = i2;
12615 else
12616 place = i2;
12619 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12620 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12621 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12623 if (JUMP_LABEL (place) != XEXP (note, 0))
12624 abort ();
12625 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12626 LABEL_NUSES (JUMP_LABEL (place))--;
12627 place = 0;
12629 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12631 if (JUMP_LABEL (place2) != XEXP (note, 0))
12632 abort ();
12633 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12634 LABEL_NUSES (JUMP_LABEL (place2))--;
12635 place2 = 0;
12637 break;
12639 case REG_NONNEG:
12640 /* This note says something about the value of a register prior
12641 to the execution of an insn. It is too much trouble to see
12642 if the note is still correct in all situations. It is better
12643 to simply delete it. */
12644 break;
12646 case REG_RETVAL:
12647 /* If the insn previously containing this note still exists,
12648 put it back where it was. Otherwise move it to the previous
12649 insn. Adjust the corresponding REG_LIBCALL note. */
12650 if (GET_CODE (from_insn) != NOTE)
12651 place = from_insn;
12652 else
12654 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12655 place = prev_real_insn (from_insn);
12656 if (tem && place)
12657 XEXP (tem, 0) = place;
12658 /* If we're deleting the last remaining instruction of a
12659 libcall sequence, don't add the notes. */
12660 else if (XEXP (note, 0) == from_insn)
12661 tem = place = 0;
12663 break;
12665 case REG_LIBCALL:
12666 /* This is handled similarly to REG_RETVAL. */
12667 if (GET_CODE (from_insn) != NOTE)
12668 place = from_insn;
12669 else
12671 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12672 place = next_real_insn (from_insn);
12673 if (tem && place)
12674 XEXP (tem, 0) = place;
12675 /* If we're deleting the last remaining instruction of a
12676 libcall sequence, don't add the notes. */
12677 else if (XEXP (note, 0) == from_insn)
12678 tem = place = 0;
12680 break;
12682 case REG_DEAD:
12683 /* If the register is used as an input in I3, it dies there.
12684 Similarly for I2, if it is nonzero and adjacent to I3.
12686 If the register is not used as an input in either I3 or I2
12687 and it is not one of the registers we were supposed to eliminate,
12688 there are two possibilities. We might have a non-adjacent I2
12689 or we might have somehow eliminated an additional register
12690 from a computation. For example, we might have had A & B where
12691 we discover that B will always be zero. In this case we will
12692 eliminate the reference to A.
12694 In both cases, we must search to see if we can find a previous
12695 use of A and put the death note there. */
12697 if (from_insn
12698 && GET_CODE (from_insn) == CALL_INSN
12699 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12700 place = from_insn;
12701 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12702 place = i3;
12703 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12704 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12705 place = i2;
12707 if (place == 0)
12709 basic_block bb = this_basic_block;
12711 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12713 if (! INSN_P (tem))
12715 if (tem == bb->head)
12716 break;
12717 continue;
12720 /* If the register is being set at TEM, see if that is all
12721 TEM is doing. If so, delete TEM. Otherwise, make this
12722 into a REG_UNUSED note instead. */
12723 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12725 rtx set = single_set (tem);
12726 rtx inner_dest = 0;
12727 #ifdef HAVE_cc0
12728 rtx cc0_setter = NULL_RTX;
12729 #endif
12731 if (set != 0)
12732 for (inner_dest = SET_DEST (set);
12733 (GET_CODE (inner_dest) == STRICT_LOW_PART
12734 || GET_CODE (inner_dest) == SUBREG
12735 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12736 inner_dest = XEXP (inner_dest, 0))
12739 /* Verify that it was the set, and not a clobber that
12740 modified the register.
12742 CC0 targets must be careful to maintain setter/user
12743 pairs. If we cannot delete the setter due to side
12744 effects, mark the user with an UNUSED note instead
12745 of deleting it. */
12747 if (set != 0 && ! side_effects_p (SET_SRC (set))
12748 && rtx_equal_p (XEXP (note, 0), inner_dest)
12749 #ifdef HAVE_cc0
12750 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12751 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12752 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12753 #endif
12756 /* Move the notes and links of TEM elsewhere.
12757 This might delete other dead insns recursively.
12758 First set the pattern to something that won't use
12759 any register. */
12761 PATTERN (tem) = pc_rtx;
12763 distribute_notes (REG_NOTES (tem), tem, tem,
12764 NULL_RTX);
12765 distribute_links (LOG_LINKS (tem));
12767 PUT_CODE (tem, NOTE);
12768 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12769 NOTE_SOURCE_FILE (tem) = 0;
12771 #ifdef HAVE_cc0
12772 /* Delete the setter too. */
12773 if (cc0_setter)
12775 PATTERN (cc0_setter) = pc_rtx;
12777 distribute_notes (REG_NOTES (cc0_setter),
12778 cc0_setter, cc0_setter,
12779 NULL_RTX);
12780 distribute_links (LOG_LINKS (cc0_setter));
12782 PUT_CODE (cc0_setter, NOTE);
12783 NOTE_LINE_NUMBER (cc0_setter)
12784 = NOTE_INSN_DELETED;
12785 NOTE_SOURCE_FILE (cc0_setter) = 0;
12787 #endif
12789 /* If the register is both set and used here, put the
12790 REG_DEAD note here, but place a REG_UNUSED note
12791 here too unless there already is one. */
12792 else if (reg_referenced_p (XEXP (note, 0),
12793 PATTERN (tem)))
12795 place = tem;
12797 if (! find_regno_note (tem, REG_UNUSED,
12798 REGNO (XEXP (note, 0))))
12799 REG_NOTES (tem)
12800 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12801 REG_NOTES (tem));
12803 else
12805 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12807 /* If there isn't already a REG_UNUSED note, put one
12808 here. */
12809 if (! find_regno_note (tem, REG_UNUSED,
12810 REGNO (XEXP (note, 0))))
12811 place = tem;
12812 break;
12815 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12816 || (GET_CODE (tem) == CALL_INSN
12817 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12819 place = tem;
12821 /* If we are doing a 3->2 combination, and we have a
12822 register which formerly died in i3 and was not used
12823 by i2, which now no longer dies in i3 and is used in
12824 i2 but does not die in i2, and place is between i2
12825 and i3, then we may need to move a link from place to
12826 i2. */
12827 if (i2 && INSN_UID (place) <= max_uid_cuid
12828 && INSN_CUID (place) > INSN_CUID (i2)
12829 && from_insn
12830 && INSN_CUID (from_insn) > INSN_CUID (i2)
12831 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12833 rtx links = LOG_LINKS (place);
12834 LOG_LINKS (place) = 0;
12835 distribute_links (links);
12837 break;
12840 if (tem == bb->head)
12841 break;
12844 /* We haven't found an insn for the death note and it
12845 is still a REG_DEAD note, but we have hit the beginning
12846 of the block. If the existing life info says the reg
12847 was dead, there's nothing left to do. Otherwise, we'll
12848 need to do a global life update after combine. */
12849 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12850 && REGNO_REG_SET_P (bb->global_live_at_start,
12851 REGNO (XEXP (note, 0))))
12852 SET_BIT (refresh_blocks, this_basic_block->index);
12855 /* If the register is set or already dead at PLACE, we needn't do
12856 anything with this note if it is still a REG_DEAD note.
12857 We can here if it is set at all, not if is it totally replace,
12858 which is what `dead_or_set_p' checks, so also check for it being
12859 set partially. */
12861 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12863 unsigned int regno = REGNO (XEXP (note, 0));
12865 /* Similarly, if the instruction on which we want to place
12866 the note is a noop, we'll need do a global live update
12867 after we remove them in delete_noop_moves. */
12868 if (noop_move_p (place))
12869 SET_BIT (refresh_blocks, this_basic_block->index);
12871 if (dead_or_set_p (place, XEXP (note, 0))
12872 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12874 /* Unless the register previously died in PLACE, clear
12875 reg_last_death. [I no longer understand why this is
12876 being done.] */
12877 if (reg_last_death[regno] != place)
12878 reg_last_death[regno] = 0;
12879 place = 0;
12881 else
12882 reg_last_death[regno] = place;
12884 /* If this is a death note for a hard reg that is occupying
12885 multiple registers, ensure that we are still using all
12886 parts of the object. If we find a piece of the object
12887 that is unused, we must arrange for an appropriate REG_DEAD
12888 note to be added for it. However, we can't just emit a USE
12889 and tag the note to it, since the register might actually
12890 be dead; so we recourse, and the recursive call then finds
12891 the previous insn that used this register. */
12893 if (place && regno < FIRST_PSEUDO_REGISTER
12894 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12896 unsigned int endregno
12897 = regno + HARD_REGNO_NREGS (regno,
12898 GET_MODE (XEXP (note, 0)));
12899 int all_used = 1;
12900 unsigned int i;
12902 for (i = regno; i < endregno; i++)
12903 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12904 && ! find_regno_fusage (place, USE, i))
12905 || dead_or_set_regno_p (place, i))
12906 all_used = 0;
12908 if (! all_used)
12910 /* Put only REG_DEAD notes for pieces that are
12911 not already dead or set. */
12913 for (i = regno; i < endregno;
12914 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12916 rtx piece = regno_reg_rtx[i];
12917 basic_block bb = this_basic_block;
12919 if (! dead_or_set_p (place, piece)
12920 && ! reg_bitfield_target_p (piece,
12921 PATTERN (place)))
12923 rtx new_note
12924 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12926 distribute_notes (new_note, place, place,
12927 NULL_RTX);
12929 else if (! refers_to_regno_p (i, i + 1,
12930 PATTERN (place), 0)
12931 && ! find_regno_fusage (place, USE, i))
12932 for (tem = PREV_INSN (place); ;
12933 tem = PREV_INSN (tem))
12935 if (! INSN_P (tem))
12937 if (tem == bb->head)
12939 SET_BIT (refresh_blocks,
12940 this_basic_block->index);
12941 break;
12943 continue;
12945 if (dead_or_set_p (tem, piece)
12946 || reg_bitfield_target_p (piece,
12947 PATTERN (tem)))
12949 REG_NOTES (tem)
12950 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12951 REG_NOTES (tem));
12952 break;
12958 place = 0;
12962 break;
12964 default:
12965 /* Any other notes should not be present at this point in the
12966 compilation. */
12967 abort ();
12970 if (place)
12972 XEXP (note, 1) = REG_NOTES (place);
12973 REG_NOTES (place) = note;
12975 else if ((REG_NOTE_KIND (note) == REG_DEAD
12976 || REG_NOTE_KIND (note) == REG_UNUSED)
12977 && GET_CODE (XEXP (note, 0)) == REG)
12978 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12980 if (place2)
12982 if ((REG_NOTE_KIND (note) == REG_DEAD
12983 || REG_NOTE_KIND (note) == REG_UNUSED)
12984 && GET_CODE (XEXP (note, 0)) == REG)
12985 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12987 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12988 REG_NOTE_KIND (note),
12989 XEXP (note, 0),
12990 REG_NOTES (place2));
12995 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12996 I3, I2, and I1 to new locations. This is also called in one case to
12997 add a link pointing at I3 when I3's destination is changed. */
12999 static void
13000 distribute_links (rtx links)
13002 rtx link, next_link;
13004 for (link = links; link; link = next_link)
13006 rtx place = 0;
13007 rtx insn;
13008 rtx set, reg;
13010 next_link = XEXP (link, 1);
13012 /* If the insn that this link points to is a NOTE or isn't a single
13013 set, ignore it. In the latter case, it isn't clear what we
13014 can do other than ignore the link, since we can't tell which
13015 register it was for. Such links wouldn't be used by combine
13016 anyway.
13018 It is not possible for the destination of the target of the link to
13019 have been changed by combine. The only potential of this is if we
13020 replace I3, I2, and I1 by I3 and I2. But in that case the
13021 destination of I2 also remains unchanged. */
13023 if (GET_CODE (XEXP (link, 0)) == NOTE
13024 || (set = single_set (XEXP (link, 0))) == 0)
13025 continue;
13027 reg = SET_DEST (set);
13028 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13029 || GET_CODE (reg) == SIGN_EXTRACT
13030 || GET_CODE (reg) == STRICT_LOW_PART)
13031 reg = XEXP (reg, 0);
13033 /* A LOG_LINK is defined as being placed on the first insn that uses
13034 a register and points to the insn that sets the register. Start
13035 searching at the next insn after the target of the link and stop
13036 when we reach a set of the register or the end of the basic block.
13038 Note that this correctly handles the link that used to point from
13039 I3 to I2. Also note that not much searching is typically done here
13040 since most links don't point very far away. */
13042 for (insn = NEXT_INSN (XEXP (link, 0));
13043 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13044 || this_basic_block->next_bb->head != insn));
13045 insn = NEXT_INSN (insn))
13046 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13048 if (reg_referenced_p (reg, PATTERN (insn)))
13049 place = insn;
13050 break;
13052 else if (GET_CODE (insn) == CALL_INSN
13053 && find_reg_fusage (insn, USE, reg))
13055 place = insn;
13056 break;
13059 /* If we found a place to put the link, place it there unless there
13060 is already a link to the same insn as LINK at that point. */
13062 if (place)
13064 rtx link2;
13066 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
13067 if (XEXP (link2, 0) == XEXP (link, 0))
13068 break;
13070 if (link2 == 0)
13072 XEXP (link, 1) = LOG_LINKS (place);
13073 LOG_LINKS (place) = link;
13075 /* Set added_links_insn to the earliest insn we added a
13076 link to. */
13077 if (added_links_insn == 0
13078 || INSN_CUID (added_links_insn) > INSN_CUID (place))
13079 added_links_insn = place;
13085 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
13087 static int
13088 insn_cuid (rtx insn)
13090 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
13091 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
13092 insn = NEXT_INSN (insn);
13094 if (INSN_UID (insn) > max_uid_cuid)
13095 abort ();
13097 return INSN_CUID (insn);
13100 void
13101 dump_combine_stats (FILE *file)
13103 fnotice
13104 (file,
13105 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13106 combine_attempts, combine_merges, combine_extras, combine_successes);
13109 void
13110 dump_combine_total_stats (FILE *file)
13112 fnotice
13113 (file,
13114 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13115 total_attempts, total_merges, total_extras, total_successes);