2011-08-19 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / libgfortran / generated / sum_i4.c
blob4c86b524034d1cfa010b916dfe9aaddb256a6a50
1 /* Implementation of the SUM intrinsic
2 Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
31 #if defined (HAVE_GFC_INTEGER_4) && defined (HAVE_GFC_INTEGER_4)
34 extern void sum_i4 (gfc_array_i4 * const restrict,
35 gfc_array_i4 * const restrict, const index_type * const restrict);
36 export_proto(sum_i4);
38 void
39 sum_i4 (gfc_array_i4 * const restrict retarray,
40 gfc_array_i4 * const restrict array,
41 const index_type * const restrict pdim)
43 index_type count[GFC_MAX_DIMENSIONS];
44 index_type extent[GFC_MAX_DIMENSIONS];
45 index_type sstride[GFC_MAX_DIMENSIONS];
46 index_type dstride[GFC_MAX_DIMENSIONS];
47 const GFC_INTEGER_4 * restrict base;
48 GFC_INTEGER_4 * restrict dest;
49 index_type rank;
50 index_type n;
51 index_type len;
52 index_type delta;
53 index_type dim;
54 int continue_loop;
56 /* Make dim zero based to avoid confusion. */
57 dim = (*pdim) - 1;
58 rank = GFC_DESCRIPTOR_RANK (array) - 1;
60 len = GFC_DESCRIPTOR_EXTENT(array,dim);
61 if (len < 0)
62 len = 0;
63 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
65 for (n = 0; n < dim; n++)
67 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
68 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
70 if (extent[n] < 0)
71 extent[n] = 0;
73 for (n = dim; n < rank; n++)
75 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
76 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
78 if (extent[n] < 0)
79 extent[n] = 0;
82 if (retarray->data == NULL)
84 size_t alloc_size, str;
86 for (n = 0; n < rank; n++)
88 if (n == 0)
89 str = 1;
90 else
91 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
93 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
97 retarray->offset = 0;
98 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
100 alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
101 * extent[rank-1];
103 if (alloc_size == 0)
105 /* Make sure we have a zero-sized array. */
106 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
107 return;
110 else
111 retarray->data = internal_malloc_size (alloc_size);
113 else
115 if (rank != GFC_DESCRIPTOR_RANK (retarray))
116 runtime_error ("rank of return array incorrect in"
117 " SUM intrinsic: is %ld, should be %ld",
118 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
119 (long int) rank);
121 if (unlikely (compile_options.bounds_check))
122 bounds_ifunction_return ((array_t *) retarray, extent,
123 "return value", "SUM");
126 for (n = 0; n < rank; n++)
128 count[n] = 0;
129 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
130 if (extent[n] <= 0)
131 return;
134 base = array->data;
135 dest = retarray->data;
137 continue_loop = 1;
138 while (continue_loop)
140 const GFC_INTEGER_4 * restrict src;
141 GFC_INTEGER_4 result;
142 src = base;
145 result = 0;
146 if (len <= 0)
147 *dest = 0;
148 else
150 for (n = 0; n < len; n++, src += delta)
153 result += *src;
156 *dest = result;
159 /* Advance to the next element. */
160 count[0]++;
161 base += sstride[0];
162 dest += dstride[0];
163 n = 0;
164 while (count[n] == extent[n])
166 /* When we get to the end of a dimension, reset it and increment
167 the next dimension. */
168 count[n] = 0;
169 /* We could precalculate these products, but this is a less
170 frequently used path so probably not worth it. */
171 base -= sstride[n] * extent[n];
172 dest -= dstride[n] * extent[n];
173 n++;
174 if (n == rank)
176 /* Break out of the look. */
177 continue_loop = 0;
178 break;
180 else
182 count[n]++;
183 base += sstride[n];
184 dest += dstride[n];
191 extern void msum_i4 (gfc_array_i4 * const restrict,
192 gfc_array_i4 * const restrict, const index_type * const restrict,
193 gfc_array_l1 * const restrict);
194 export_proto(msum_i4);
196 void
197 msum_i4 (gfc_array_i4 * const restrict retarray,
198 gfc_array_i4 * const restrict array,
199 const index_type * const restrict pdim,
200 gfc_array_l1 * const restrict mask)
202 index_type count[GFC_MAX_DIMENSIONS];
203 index_type extent[GFC_MAX_DIMENSIONS];
204 index_type sstride[GFC_MAX_DIMENSIONS];
205 index_type dstride[GFC_MAX_DIMENSIONS];
206 index_type mstride[GFC_MAX_DIMENSIONS];
207 GFC_INTEGER_4 * restrict dest;
208 const GFC_INTEGER_4 * restrict base;
209 const GFC_LOGICAL_1 * restrict mbase;
210 int rank;
211 int dim;
212 index_type n;
213 index_type len;
214 index_type delta;
215 index_type mdelta;
216 int mask_kind;
218 dim = (*pdim) - 1;
219 rank = GFC_DESCRIPTOR_RANK (array) - 1;
221 len = GFC_DESCRIPTOR_EXTENT(array,dim);
222 if (len <= 0)
223 return;
225 mbase = mask->data;
227 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
229 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
230 #ifdef HAVE_GFC_LOGICAL_16
231 || mask_kind == 16
232 #endif
234 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
235 else
236 runtime_error ("Funny sized logical array");
238 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
239 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
241 for (n = 0; n < dim; n++)
243 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
244 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
245 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
247 if (extent[n] < 0)
248 extent[n] = 0;
251 for (n = dim; n < rank; n++)
253 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
254 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
255 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
257 if (extent[n] < 0)
258 extent[n] = 0;
261 if (retarray->data == NULL)
263 size_t alloc_size, str;
265 for (n = 0; n < rank; n++)
267 if (n == 0)
268 str = 1;
269 else
270 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
272 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
276 alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
277 * extent[rank-1];
279 retarray->offset = 0;
280 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
282 if (alloc_size == 0)
284 /* Make sure we have a zero-sized array. */
285 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
286 return;
288 else
289 retarray->data = internal_malloc_size (alloc_size);
292 else
294 if (rank != GFC_DESCRIPTOR_RANK (retarray))
295 runtime_error ("rank of return array incorrect in SUM intrinsic");
297 if (unlikely (compile_options.bounds_check))
299 bounds_ifunction_return ((array_t *) retarray, extent,
300 "return value", "SUM");
301 bounds_equal_extents ((array_t *) mask, (array_t *) array,
302 "MASK argument", "SUM");
306 for (n = 0; n < rank; n++)
308 count[n] = 0;
309 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
310 if (extent[n] <= 0)
311 return;
314 dest = retarray->data;
315 base = array->data;
317 while (base)
319 const GFC_INTEGER_4 * restrict src;
320 const GFC_LOGICAL_1 * restrict msrc;
321 GFC_INTEGER_4 result;
322 src = base;
323 msrc = mbase;
326 result = 0;
327 if (len <= 0)
328 *dest = 0;
329 else
331 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
334 if (*msrc)
335 result += *src;
337 *dest = result;
340 /* Advance to the next element. */
341 count[0]++;
342 base += sstride[0];
343 mbase += mstride[0];
344 dest += dstride[0];
345 n = 0;
346 while (count[n] == extent[n])
348 /* When we get to the end of a dimension, reset it and increment
349 the next dimension. */
350 count[n] = 0;
351 /* We could precalculate these products, but this is a less
352 frequently used path so probably not worth it. */
353 base -= sstride[n] * extent[n];
354 mbase -= mstride[n] * extent[n];
355 dest -= dstride[n] * extent[n];
356 n++;
357 if (n == rank)
359 /* Break out of the look. */
360 base = NULL;
361 break;
363 else
365 count[n]++;
366 base += sstride[n];
367 mbase += mstride[n];
368 dest += dstride[n];
375 extern void ssum_i4 (gfc_array_i4 * const restrict,
376 gfc_array_i4 * const restrict, const index_type * const restrict,
377 GFC_LOGICAL_4 *);
378 export_proto(ssum_i4);
380 void
381 ssum_i4 (gfc_array_i4 * const restrict retarray,
382 gfc_array_i4 * const restrict array,
383 const index_type * const restrict pdim,
384 GFC_LOGICAL_4 * mask)
386 index_type count[GFC_MAX_DIMENSIONS];
387 index_type extent[GFC_MAX_DIMENSIONS];
388 index_type dstride[GFC_MAX_DIMENSIONS];
389 GFC_INTEGER_4 * restrict dest;
390 index_type rank;
391 index_type n;
392 index_type dim;
395 if (*mask)
397 sum_i4 (retarray, array, pdim);
398 return;
400 /* Make dim zero based to avoid confusion. */
401 dim = (*pdim) - 1;
402 rank = GFC_DESCRIPTOR_RANK (array) - 1;
404 for (n = 0; n < dim; n++)
406 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
408 if (extent[n] <= 0)
409 extent[n] = 0;
412 for (n = dim; n < rank; n++)
414 extent[n] =
415 GFC_DESCRIPTOR_EXTENT(array,n + 1);
417 if (extent[n] <= 0)
418 extent[n] = 0;
421 if (retarray->data == NULL)
423 size_t alloc_size, str;
425 for (n = 0; n < rank; n++)
427 if (n == 0)
428 str = 1;
429 else
430 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
432 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
436 retarray->offset = 0;
437 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
439 alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
440 * extent[rank-1];
442 if (alloc_size == 0)
444 /* Make sure we have a zero-sized array. */
445 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
446 return;
448 else
449 retarray->data = internal_malloc_size (alloc_size);
451 else
453 if (rank != GFC_DESCRIPTOR_RANK (retarray))
454 runtime_error ("rank of return array incorrect in"
455 " SUM intrinsic: is %ld, should be %ld",
456 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
457 (long int) rank);
459 if (unlikely (compile_options.bounds_check))
461 for (n=0; n < rank; n++)
463 index_type ret_extent;
465 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
466 if (extent[n] != ret_extent)
467 runtime_error ("Incorrect extent in return value of"
468 " SUM intrinsic in dimension %ld:"
469 " is %ld, should be %ld", (long int) n + 1,
470 (long int) ret_extent, (long int) extent[n]);
475 for (n = 0; n < rank; n++)
477 count[n] = 0;
478 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
481 dest = retarray->data;
483 while(1)
485 *dest = 0;
486 count[0]++;
487 dest += dstride[0];
488 n = 0;
489 while (count[n] == extent[n])
491 /* When we get to the end of a dimension, reset it and increment
492 the next dimension. */
493 count[n] = 0;
494 /* We could precalculate these products, but this is a less
495 frequently used path so probably not worth it. */
496 dest -= dstride[n] * extent[n];
497 n++;
498 if (n == rank)
499 return;
500 else
502 count[n]++;
503 dest += dstride[n];
509 #endif