1 /* Specific implementation of the PACK intrinsic
2 Copyright (C) 2002, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Ligbfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
32 #if defined (HAVE_GFC_INTEGER_4)
34 /* PACK is specified as follows:
36 13.14.80 PACK (ARRAY, MASK, [VECTOR])
38 Description: Pack an array into an array of rank one under the
41 Class: Transformational function.
44 ARRAY may be of any type. It shall not be scalar.
45 MASK shall be of type LOGICAL. It shall be conformable with ARRAY.
46 VECTOR (optional) shall be of the same type and type parameters
47 as ARRAY. VECTOR shall have at least as many elements as
48 there are true elements in MASK. If MASK is a scalar
49 with the value true, VECTOR shall have at least as many
50 elements as there are in ARRAY.
52 Result Characteristics: The result is an array of rank one with the
53 same type and type parameters as ARRAY. If VECTOR is present, the
54 result size is that of VECTOR; otherwise, the result size is the
55 number /t/ of true elements in MASK unless MASK is scalar with the
56 value true, in which case the result size is the size of ARRAY.
58 Result Value: Element /i/ of the result is the element of ARRAY
59 that corresponds to the /i/th true element of MASK, taking elements
60 in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is
61 present and has size /n/ > /t/, element /i/ of the result has the
62 value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/.
64 Examples: The nonzero elements of an array M with the value
66 | 9 0 0 | may be "gathered" by the function PACK. The result of
68 PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0,
69 VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12].
71 There are two variants of the PACK intrinsic: one, where MASK is
72 array valued, and the other one where MASK is scalar. */
75 pack_i4 (gfc_array_i4
*ret
, const gfc_array_i4
*array
,
76 const gfc_array_l1
*mask
, const gfc_array_i4
*vector
)
78 /* r.* indicates the return array. */
80 GFC_INTEGER_4
* restrict rptr
;
81 /* s.* indicates the source array. */
82 index_type sstride
[GFC_MAX_DIMENSIONS
];
84 const GFC_INTEGER_4
*sptr
;
85 /* m.* indicates the mask array. */
86 index_type mstride
[GFC_MAX_DIMENSIONS
];
88 const GFC_LOGICAL_1
*mptr
;
90 index_type count
[GFC_MAX_DIMENSIONS
];
91 index_type extent
[GFC_MAX_DIMENSIONS
];
99 dim
= GFC_DESCRIPTOR_RANK (array
);
103 /* Use the same loop for all logical types, by using GFC_LOGICAL_1
104 and using shifting to address size and endian issues. */
106 mask_kind
= GFC_DESCRIPTOR_SIZE (mask
);
108 if (mask_kind
== 1 || mask_kind
== 2 || mask_kind
== 4 || mask_kind
== 8
109 #ifdef HAVE_GFC_LOGICAL_16
114 /* Do not convert a NULL pointer as we use test for NULL below. */
116 mptr
= GFOR_POINTER_TO_L1 (mptr
, mask_kind
);
119 runtime_error ("Funny sized logical array");
122 for (n
= 0; n
< dim
; n
++)
125 extent
[n
] = GFC_DESCRIPTOR_EXTENT(array
,n
);
128 sstride
[n
] = GFC_DESCRIPTOR_STRIDE(array
,n
);
129 mstride
[n
] = GFC_DESCRIPTOR_STRIDE_BYTES(mask
,n
);
134 mstride
[0] = mask_kind
;
141 if (ret
->data
== NULL
|| unlikely (compile_options
.bounds_check
))
143 /* Count the elements, either for allocating memory or
144 for bounds checking. */
148 /* The return array will have as many
149 elements as there are in VECTOR. */
150 total
= GFC_DESCRIPTOR_EXTENT(vector
,0);
159 /* We have to count the true elements in MASK. */
160 total
= count_0 (mask
);
163 if (ret
->data
== NULL
)
165 /* Setup the array descriptor. */
166 GFC_DIMENSION_SET(ret
->dim
[0], 0, total
-1, 1);
170 /* internal_malloc_size allocates a single byte for zero size. */
171 ret
->data
= internal_malloc_size (sizeof (GFC_INTEGER_4
) * total
);
178 /* We come here because of range checking. */
179 index_type ret_extent
;
181 ret_extent
= GFC_DESCRIPTOR_EXTENT(ret
,0);
182 if (total
!= ret_extent
)
183 runtime_error ("Incorrect extent in return value of PACK intrinsic;"
184 " is %ld, should be %ld", (long int) total
,
185 (long int) ret_extent
);
189 rstride0
= GFC_DESCRIPTOR_STRIDE(ret
,0);
192 sstride0
= sstride
[0];
193 mstride0
= mstride
[0];
198 /* Test this element. */
205 /* Advance to the next element. */
210 while (count
[n
] == extent
[n
])
212 /* When we get to the end of a dimension, reset it and increment
213 the next dimension. */
215 /* We could precalculate these products, but this is a less
216 frequently used path so probably not worth it. */
217 sptr
-= sstride
[n
] * extent
[n
];
218 mptr
-= mstride
[n
] * extent
[n
];
222 /* Break out of the loop. */
235 /* Add any remaining elements from VECTOR. */
238 n
= GFC_DESCRIPTOR_EXTENT(vector
,0);
239 nelem
= ((rptr
- ret
->data
) / rstride0
);
242 sstride0
= GFC_DESCRIPTOR_STRIDE(vector
,0);
246 sptr
= vector
->data
+ sstride0
* nelem
;