2011-08-19 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / libgfortran / generated / minloc1_4_r8.c
blob372e592daabb41e3af5aa924ee7f05004c8df427
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002, 2007, 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
29 #include <limits.h>
32 #if defined (HAVE_GFC_REAL_8) && defined (HAVE_GFC_INTEGER_4)
35 extern void minloc1_4_r8 (gfc_array_i4 * const restrict,
36 gfc_array_r8 * const restrict, const index_type * const restrict);
37 export_proto(minloc1_4_r8);
39 void
40 minloc1_4_r8 (gfc_array_i4 * const restrict retarray,
41 gfc_array_r8 * const restrict array,
42 const index_type * const restrict pdim)
44 index_type count[GFC_MAX_DIMENSIONS];
45 index_type extent[GFC_MAX_DIMENSIONS];
46 index_type sstride[GFC_MAX_DIMENSIONS];
47 index_type dstride[GFC_MAX_DIMENSIONS];
48 const GFC_REAL_8 * restrict base;
49 GFC_INTEGER_4 * restrict dest;
50 index_type rank;
51 index_type n;
52 index_type len;
53 index_type delta;
54 index_type dim;
55 int continue_loop;
57 /* Make dim zero based to avoid confusion. */
58 dim = (*pdim) - 1;
59 rank = GFC_DESCRIPTOR_RANK (array) - 1;
61 len = GFC_DESCRIPTOR_EXTENT(array,dim);
62 if (len < 0)
63 len = 0;
64 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
66 for (n = 0; n < dim; n++)
68 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
69 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
71 if (extent[n] < 0)
72 extent[n] = 0;
74 for (n = dim; n < rank; n++)
76 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
77 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
79 if (extent[n] < 0)
80 extent[n] = 0;
83 if (retarray->data == NULL)
85 size_t alloc_size, str;
87 for (n = 0; n < rank; n++)
89 if (n == 0)
90 str = 1;
91 else
92 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
94 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
98 retarray->offset = 0;
99 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
101 alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
102 * extent[rank-1];
104 if (alloc_size == 0)
106 /* Make sure we have a zero-sized array. */
107 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
108 return;
111 else
112 retarray->data = internal_malloc_size (alloc_size);
114 else
116 if (rank != GFC_DESCRIPTOR_RANK (retarray))
117 runtime_error ("rank of return array incorrect in"
118 " MINLOC intrinsic: is %ld, should be %ld",
119 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
120 (long int) rank);
122 if (unlikely (compile_options.bounds_check))
123 bounds_ifunction_return ((array_t *) retarray, extent,
124 "return value", "MINLOC");
127 for (n = 0; n < rank; n++)
129 count[n] = 0;
130 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
131 if (extent[n] <= 0)
132 return;
135 base = array->data;
136 dest = retarray->data;
138 continue_loop = 1;
139 while (continue_loop)
141 const GFC_REAL_8 * restrict src;
142 GFC_INTEGER_4 result;
143 src = base;
146 GFC_REAL_8 minval;
147 #if defined (GFC_REAL_8_INFINITY)
148 minval = GFC_REAL_8_INFINITY;
149 #else
150 minval = GFC_REAL_8_HUGE;
151 #endif
152 result = 1;
153 if (len <= 0)
154 *dest = 0;
155 else
157 for (n = 0; n < len; n++, src += delta)
160 #if defined (GFC_REAL_8_QUIET_NAN)
161 if (*src <= minval)
163 minval = *src;
164 result = (GFC_INTEGER_4)n + 1;
165 break;
168 for (; n < len; n++, src += delta)
170 #endif
171 if (*src < minval)
173 minval = *src;
174 result = (GFC_INTEGER_4)n + 1;
178 *dest = result;
181 /* Advance to the next element. */
182 count[0]++;
183 base += sstride[0];
184 dest += dstride[0];
185 n = 0;
186 while (count[n] == extent[n])
188 /* When we get to the end of a dimension, reset it and increment
189 the next dimension. */
190 count[n] = 0;
191 /* We could precalculate these products, but this is a less
192 frequently used path so probably not worth it. */
193 base -= sstride[n] * extent[n];
194 dest -= dstride[n] * extent[n];
195 n++;
196 if (n == rank)
198 /* Break out of the look. */
199 continue_loop = 0;
200 break;
202 else
204 count[n]++;
205 base += sstride[n];
206 dest += dstride[n];
213 extern void mminloc1_4_r8 (gfc_array_i4 * const restrict,
214 gfc_array_r8 * const restrict, const index_type * const restrict,
215 gfc_array_l1 * const restrict);
216 export_proto(mminloc1_4_r8);
218 void
219 mminloc1_4_r8 (gfc_array_i4 * const restrict retarray,
220 gfc_array_r8 * const restrict array,
221 const index_type * const restrict pdim,
222 gfc_array_l1 * const restrict mask)
224 index_type count[GFC_MAX_DIMENSIONS];
225 index_type extent[GFC_MAX_DIMENSIONS];
226 index_type sstride[GFC_MAX_DIMENSIONS];
227 index_type dstride[GFC_MAX_DIMENSIONS];
228 index_type mstride[GFC_MAX_DIMENSIONS];
229 GFC_INTEGER_4 * restrict dest;
230 const GFC_REAL_8 * restrict base;
231 const GFC_LOGICAL_1 * restrict mbase;
232 int rank;
233 int dim;
234 index_type n;
235 index_type len;
236 index_type delta;
237 index_type mdelta;
238 int mask_kind;
240 dim = (*pdim) - 1;
241 rank = GFC_DESCRIPTOR_RANK (array) - 1;
243 len = GFC_DESCRIPTOR_EXTENT(array,dim);
244 if (len <= 0)
245 return;
247 mbase = mask->data;
249 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
251 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
252 #ifdef HAVE_GFC_LOGICAL_16
253 || mask_kind == 16
254 #endif
256 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
257 else
258 runtime_error ("Funny sized logical array");
260 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
261 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
263 for (n = 0; n < dim; n++)
265 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
266 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
267 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
269 if (extent[n] < 0)
270 extent[n] = 0;
273 for (n = dim; n < rank; n++)
275 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
276 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
277 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
279 if (extent[n] < 0)
280 extent[n] = 0;
283 if (retarray->data == NULL)
285 size_t alloc_size, str;
287 for (n = 0; n < rank; n++)
289 if (n == 0)
290 str = 1;
291 else
292 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
294 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
298 alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
299 * extent[rank-1];
301 retarray->offset = 0;
302 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
304 if (alloc_size == 0)
306 /* Make sure we have a zero-sized array. */
307 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
308 return;
310 else
311 retarray->data = internal_malloc_size (alloc_size);
314 else
316 if (rank != GFC_DESCRIPTOR_RANK (retarray))
317 runtime_error ("rank of return array incorrect in MINLOC intrinsic");
319 if (unlikely (compile_options.bounds_check))
321 bounds_ifunction_return ((array_t *) retarray, extent,
322 "return value", "MINLOC");
323 bounds_equal_extents ((array_t *) mask, (array_t *) array,
324 "MASK argument", "MINLOC");
328 for (n = 0; n < rank; n++)
330 count[n] = 0;
331 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
332 if (extent[n] <= 0)
333 return;
336 dest = retarray->data;
337 base = array->data;
339 while (base)
341 const GFC_REAL_8 * restrict src;
342 const GFC_LOGICAL_1 * restrict msrc;
343 GFC_INTEGER_4 result;
344 src = base;
345 msrc = mbase;
348 GFC_REAL_8 minval;
349 #if defined (GFC_REAL_8_INFINITY)
350 minval = GFC_REAL_8_INFINITY;
351 #else
352 minval = GFC_REAL_8_HUGE;
353 #endif
354 #if defined (GFC_REAL_8_QUIET_NAN)
355 GFC_INTEGER_4 result2 = 0;
356 #endif
357 result = 0;
358 if (len <= 0)
359 *dest = 0;
360 else
362 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
365 if (*msrc)
367 #if defined (GFC_REAL_8_QUIET_NAN)
368 if (!result2)
369 result2 = (GFC_INTEGER_4)n + 1;
370 if (*src <= minval)
371 #endif
373 minval = *src;
374 result = (GFC_INTEGER_4)n + 1;
375 break;
379 #if defined (GFC_REAL_8_QUIET_NAN)
380 if (unlikely (n >= len))
381 result = result2;
382 else
383 #endif
384 for (; n < len; n++, src += delta, msrc += mdelta)
386 if (*msrc && *src < minval)
388 minval = *src;
389 result = (GFC_INTEGER_4)n + 1;
392 *dest = result;
395 /* Advance to the next element. */
396 count[0]++;
397 base += sstride[0];
398 mbase += mstride[0];
399 dest += dstride[0];
400 n = 0;
401 while (count[n] == extent[n])
403 /* When we get to the end of a dimension, reset it and increment
404 the next dimension. */
405 count[n] = 0;
406 /* We could precalculate these products, but this is a less
407 frequently used path so probably not worth it. */
408 base -= sstride[n] * extent[n];
409 mbase -= mstride[n] * extent[n];
410 dest -= dstride[n] * extent[n];
411 n++;
412 if (n == rank)
414 /* Break out of the look. */
415 base = NULL;
416 break;
418 else
420 count[n]++;
421 base += sstride[n];
422 mbase += mstride[n];
423 dest += dstride[n];
430 extern void sminloc1_4_r8 (gfc_array_i4 * const restrict,
431 gfc_array_r8 * const restrict, const index_type * const restrict,
432 GFC_LOGICAL_4 *);
433 export_proto(sminloc1_4_r8);
435 void
436 sminloc1_4_r8 (gfc_array_i4 * const restrict retarray,
437 gfc_array_r8 * const restrict array,
438 const index_type * const restrict pdim,
439 GFC_LOGICAL_4 * mask)
441 index_type count[GFC_MAX_DIMENSIONS];
442 index_type extent[GFC_MAX_DIMENSIONS];
443 index_type dstride[GFC_MAX_DIMENSIONS];
444 GFC_INTEGER_4 * restrict dest;
445 index_type rank;
446 index_type n;
447 index_type dim;
450 if (*mask)
452 minloc1_4_r8 (retarray, array, pdim);
453 return;
455 /* Make dim zero based to avoid confusion. */
456 dim = (*pdim) - 1;
457 rank = GFC_DESCRIPTOR_RANK (array) - 1;
459 for (n = 0; n < dim; n++)
461 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
463 if (extent[n] <= 0)
464 extent[n] = 0;
467 for (n = dim; n < rank; n++)
469 extent[n] =
470 GFC_DESCRIPTOR_EXTENT(array,n + 1);
472 if (extent[n] <= 0)
473 extent[n] = 0;
476 if (retarray->data == NULL)
478 size_t alloc_size, str;
480 for (n = 0; n < rank; n++)
482 if (n == 0)
483 str = 1;
484 else
485 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
487 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
491 retarray->offset = 0;
492 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
494 alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
495 * extent[rank-1];
497 if (alloc_size == 0)
499 /* Make sure we have a zero-sized array. */
500 GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
501 return;
503 else
504 retarray->data = internal_malloc_size (alloc_size);
506 else
508 if (rank != GFC_DESCRIPTOR_RANK (retarray))
509 runtime_error ("rank of return array incorrect in"
510 " MINLOC intrinsic: is %ld, should be %ld",
511 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
512 (long int) rank);
514 if (unlikely (compile_options.bounds_check))
516 for (n=0; n < rank; n++)
518 index_type ret_extent;
520 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
521 if (extent[n] != ret_extent)
522 runtime_error ("Incorrect extent in return value of"
523 " MINLOC intrinsic in dimension %ld:"
524 " is %ld, should be %ld", (long int) n + 1,
525 (long int) ret_extent, (long int) extent[n]);
530 for (n = 0; n < rank; n++)
532 count[n] = 0;
533 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
536 dest = retarray->data;
538 while(1)
540 *dest = 0;
541 count[0]++;
542 dest += dstride[0];
543 n = 0;
544 while (count[n] == extent[n])
546 /* When we get to the end of a dimension, reset it and increment
547 the next dimension. */
548 count[n] = 0;
549 /* We could precalculate these products, but this is a less
550 frequently used path so probably not worth it. */
551 dest -= dstride[n] * extent[n];
552 n++;
553 if (n == rank)
554 return;
555 else
557 count[n]++;
558 dest += dstride[n];
564 #endif