2011-08-19 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / tree-ssa-structalias.c
blobd69f14c3fd5093450a5d6f90473d5f03c39aaab4
1 /* Tree based points-to analysis
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "obstack.h"
28 #include "bitmap.h"
29 #include "flags.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "tree.h"
33 #include "tree-flow.h"
34 #include "tree-inline.h"
35 #include "diagnostic-core.h"
36 #include "gimple.h"
37 #include "hashtab.h"
38 #include "function.h"
39 #include "cgraph.h"
40 #include "tree-pass.h"
41 #include "timevar.h"
42 #include "alloc-pool.h"
43 #include "splay-tree.h"
44 #include "params.h"
45 #include "cgraph.h"
46 #include "alias.h"
47 #include "pointer-set.h"
49 /* The idea behind this analyzer is to generate set constraints from the
50 program, then solve the resulting constraints in order to generate the
51 points-to sets.
53 Set constraints are a way of modeling program analysis problems that
54 involve sets. They consist of an inclusion constraint language,
55 describing the variables (each variable is a set) and operations that
56 are involved on the variables, and a set of rules that derive facts
57 from these operations. To solve a system of set constraints, you derive
58 all possible facts under the rules, which gives you the correct sets
59 as a consequence.
61 See "Efficient Field-sensitive pointer analysis for C" by "David
62 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
63 http://citeseer.ist.psu.edu/pearce04efficient.html
65 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
66 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
67 http://citeseer.ist.psu.edu/heintze01ultrafast.html
69 There are three types of real constraint expressions, DEREF,
70 ADDRESSOF, and SCALAR. Each constraint expression consists
71 of a constraint type, a variable, and an offset.
73 SCALAR is a constraint expression type used to represent x, whether
74 it appears on the LHS or the RHS of a statement.
75 DEREF is a constraint expression type used to represent *x, whether
76 it appears on the LHS or the RHS of a statement.
77 ADDRESSOF is a constraint expression used to represent &x, whether
78 it appears on the LHS or the RHS of a statement.
80 Each pointer variable in the program is assigned an integer id, and
81 each field of a structure variable is assigned an integer id as well.
83 Structure variables are linked to their list of fields through a "next
84 field" in each variable that points to the next field in offset
85 order.
86 Each variable for a structure field has
88 1. "size", that tells the size in bits of that field.
89 2. "fullsize, that tells the size in bits of the entire structure.
90 3. "offset", that tells the offset in bits from the beginning of the
91 structure to this field.
93 Thus,
94 struct f
96 int a;
97 int b;
98 } foo;
99 int *bar;
101 looks like
103 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
104 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
105 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
108 In order to solve the system of set constraints, the following is
109 done:
111 1. Each constraint variable x has a solution set associated with it,
112 Sol(x).
114 2. Constraints are separated into direct, copy, and complex.
115 Direct constraints are ADDRESSOF constraints that require no extra
116 processing, such as P = &Q
117 Copy constraints are those of the form P = Q.
118 Complex constraints are all the constraints involving dereferences
119 and offsets (including offsetted copies).
121 3. All direct constraints of the form P = &Q are processed, such
122 that Q is added to Sol(P)
124 4. All complex constraints for a given constraint variable are stored in a
125 linked list attached to that variable's node.
127 5. A directed graph is built out of the copy constraints. Each
128 constraint variable is a node in the graph, and an edge from
129 Q to P is added for each copy constraint of the form P = Q
131 6. The graph is then walked, and solution sets are
132 propagated along the copy edges, such that an edge from Q to P
133 causes Sol(P) <- Sol(P) union Sol(Q).
135 7. As we visit each node, all complex constraints associated with
136 that node are processed by adding appropriate copy edges to the graph, or the
137 appropriate variables to the solution set.
139 8. The process of walking the graph is iterated until no solution
140 sets change.
142 Prior to walking the graph in steps 6 and 7, We perform static
143 cycle elimination on the constraint graph, as well
144 as off-line variable substitution.
146 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
147 on and turned into anything), but isn't. You can just see what offset
148 inside the pointed-to struct it's going to access.
150 TODO: Constant bounded arrays can be handled as if they were structs of the
151 same number of elements.
153 TODO: Modeling heap and incoming pointers becomes much better if we
154 add fields to them as we discover them, which we could do.
156 TODO: We could handle unions, but to be honest, it's probably not
157 worth the pain or slowdown. */
159 /* IPA-PTA optimizations possible.
161 When the indirect function called is ANYTHING we can add disambiguation
162 based on the function signatures (or simply the parameter count which
163 is the varinfo size). We also do not need to consider functions that
164 do not have their address taken.
166 The is_global_var bit which marks escape points is overly conservative
167 in IPA mode. Split it to is_escape_point and is_global_var - only
168 externally visible globals are escape points in IPA mode. This is
169 also needed to fix the pt_solution_includes_global predicate
170 (and thus ptr_deref_may_alias_global_p).
172 The way we introduce DECL_PT_UID to avoid fixing up all points-to
173 sets in the translation unit when we copy a DECL during inlining
174 pessimizes precision. The advantage is that the DECL_PT_UID keeps
175 compile-time and memory usage overhead low - the points-to sets
176 do not grow or get unshared as they would during a fixup phase.
177 An alternative solution is to delay IPA PTA until after all
178 inlining transformations have been applied.
180 The way we propagate clobber/use information isn't optimized.
181 It should use a new complex constraint that properly filters
182 out local variables of the callee (though that would make
183 the sets invalid after inlining). OTOH we might as well
184 admit defeat to WHOPR and simply do all the clobber/use analysis
185 and propagation after PTA finished but before we threw away
186 points-to information for memory variables. WHOPR and PTA
187 do not play along well anyway - the whole constraint solving
188 would need to be done in WPA phase and it will be very interesting
189 to apply the results to local SSA names during LTRANS phase.
191 We probably should compute a per-function unit-ESCAPE solution
192 propagating it simply like the clobber / uses solutions. The
193 solution can go alongside the non-IPA espaced solution and be
194 used to query which vars escape the unit through a function.
196 We never put function decls in points-to sets so we do not
197 keep the set of called functions for indirect calls.
199 And probably more. */
201 static bool use_field_sensitive = true;
202 static int in_ipa_mode = 0;
204 /* Used for predecessor bitmaps. */
205 static bitmap_obstack predbitmap_obstack;
207 /* Used for points-to sets. */
208 static bitmap_obstack pta_obstack;
210 /* Used for oldsolution members of variables. */
211 static bitmap_obstack oldpta_obstack;
213 /* Used for per-solver-iteration bitmaps. */
214 static bitmap_obstack iteration_obstack;
216 static unsigned int create_variable_info_for (tree, const char *);
217 typedef struct constraint_graph *constraint_graph_t;
218 static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
220 struct constraint;
221 typedef struct constraint *constraint_t;
223 DEF_VEC_P(constraint_t);
224 DEF_VEC_ALLOC_P(constraint_t,heap);
226 #define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
227 if (a) \
228 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
230 static struct constraint_stats
232 unsigned int total_vars;
233 unsigned int nonpointer_vars;
234 unsigned int unified_vars_static;
235 unsigned int unified_vars_dynamic;
236 unsigned int iterations;
237 unsigned int num_edges;
238 unsigned int num_implicit_edges;
239 unsigned int points_to_sets_created;
240 } stats;
242 struct variable_info
244 /* ID of this variable */
245 unsigned int id;
247 /* True if this is a variable created by the constraint analysis, such as
248 heap variables and constraints we had to break up. */
249 unsigned int is_artificial_var : 1;
251 /* True if this is a special variable whose solution set should not be
252 changed. */
253 unsigned int is_special_var : 1;
255 /* True for variables whose size is not known or variable. */
256 unsigned int is_unknown_size_var : 1;
258 /* True for (sub-)fields that represent a whole variable. */
259 unsigned int is_full_var : 1;
261 /* True if this is a heap variable. */
262 unsigned int is_heap_var : 1;
264 /* True if this is a variable tracking a restrict pointer source. */
265 unsigned int is_restrict_var : 1;
267 /* True if this field may contain pointers. */
268 unsigned int may_have_pointers : 1;
270 /* True if this field has only restrict qualified pointers. */
271 unsigned int only_restrict_pointers : 1;
273 /* True if this represents a global variable. */
274 unsigned int is_global_var : 1;
276 /* True if this represents a IPA function info. */
277 unsigned int is_fn_info : 1;
279 /* A link to the variable for the next field in this structure. */
280 struct variable_info *next;
282 /* Offset of this variable, in bits, from the base variable */
283 unsigned HOST_WIDE_INT offset;
285 /* Size of the variable, in bits. */
286 unsigned HOST_WIDE_INT size;
288 /* Full size of the base variable, in bits. */
289 unsigned HOST_WIDE_INT fullsize;
291 /* Name of this variable */
292 const char *name;
294 /* Tree that this variable is associated with. */
295 tree decl;
297 /* Points-to set for this variable. */
298 bitmap solution;
300 /* Old points-to set for this variable. */
301 bitmap oldsolution;
303 typedef struct variable_info *varinfo_t;
305 static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
306 static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
307 unsigned HOST_WIDE_INT);
308 static varinfo_t lookup_vi_for_tree (tree);
310 /* Pool of variable info structures. */
311 static alloc_pool variable_info_pool;
313 DEF_VEC_P(varinfo_t);
315 DEF_VEC_ALLOC_P(varinfo_t, heap);
317 /* Table of variable info structures for constraint variables.
318 Indexed directly by variable info id. */
319 static VEC(varinfo_t,heap) *varmap;
321 /* Return the varmap element N */
323 static inline varinfo_t
324 get_varinfo (unsigned int n)
326 return VEC_index (varinfo_t, varmap, n);
329 /* Static IDs for the special variables. */
330 enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
331 escaped_id = 3, nonlocal_id = 4,
332 storedanything_id = 5, integer_id = 6 };
334 /* Return a new variable info structure consisting for a variable
335 named NAME, and using constraint graph node NODE. Append it
336 to the vector of variable info structures. */
338 static varinfo_t
339 new_var_info (tree t, const char *name)
341 unsigned index = VEC_length (varinfo_t, varmap);
342 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
344 ret->id = index;
345 ret->name = name;
346 ret->decl = t;
347 /* Vars without decl are artificial and do not have sub-variables. */
348 ret->is_artificial_var = (t == NULL_TREE);
349 ret->is_special_var = false;
350 ret->is_unknown_size_var = false;
351 ret->is_full_var = (t == NULL_TREE);
352 ret->is_heap_var = false;
353 ret->is_restrict_var = false;
354 ret->may_have_pointers = true;
355 ret->only_restrict_pointers = false;
356 ret->is_global_var = (t == NULL_TREE);
357 ret->is_fn_info = false;
358 if (t && DECL_P (t))
359 ret->is_global_var = (is_global_var (t)
360 /* We have to treat even local register variables
361 as escape points. */
362 || (TREE_CODE (t) == VAR_DECL
363 && DECL_HARD_REGISTER (t)));
364 ret->solution = BITMAP_ALLOC (&pta_obstack);
365 ret->oldsolution = NULL;
366 ret->next = NULL;
368 stats.total_vars++;
370 VEC_safe_push (varinfo_t, heap, varmap, ret);
372 return ret;
376 /* A map mapping call statements to per-stmt variables for uses
377 and clobbers specific to the call. */
378 struct pointer_map_t *call_stmt_vars;
380 /* Lookup or create the variable for the call statement CALL. */
382 static varinfo_t
383 get_call_vi (gimple call)
385 void **slot_p;
386 varinfo_t vi, vi2;
388 slot_p = pointer_map_insert (call_stmt_vars, call);
389 if (*slot_p)
390 return (varinfo_t) *slot_p;
392 vi = new_var_info (NULL_TREE, "CALLUSED");
393 vi->offset = 0;
394 vi->size = 1;
395 vi->fullsize = 2;
396 vi->is_full_var = true;
398 vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
399 vi2->offset = 1;
400 vi2->size = 1;
401 vi2->fullsize = 2;
402 vi2->is_full_var = true;
404 *slot_p = (void *) vi;
405 return vi;
408 /* Lookup the variable for the call statement CALL representing
409 the uses. Returns NULL if there is nothing special about this call. */
411 static varinfo_t
412 lookup_call_use_vi (gimple call)
414 void **slot_p;
416 slot_p = pointer_map_contains (call_stmt_vars, call);
417 if (slot_p)
418 return (varinfo_t) *slot_p;
420 return NULL;
423 /* Lookup the variable for the call statement CALL representing
424 the clobbers. Returns NULL if there is nothing special about this call. */
426 static varinfo_t
427 lookup_call_clobber_vi (gimple call)
429 varinfo_t uses = lookup_call_use_vi (call);
430 if (!uses)
431 return NULL;
433 return uses->next;
436 /* Lookup or create the variable for the call statement CALL representing
437 the uses. */
439 static varinfo_t
440 get_call_use_vi (gimple call)
442 return get_call_vi (call);
445 /* Lookup or create the variable for the call statement CALL representing
446 the clobbers. */
448 static varinfo_t ATTRIBUTE_UNUSED
449 get_call_clobber_vi (gimple call)
451 return get_call_vi (call)->next;
455 typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
457 /* An expression that appears in a constraint. */
459 struct constraint_expr
461 /* Constraint type. */
462 constraint_expr_type type;
464 /* Variable we are referring to in the constraint. */
465 unsigned int var;
467 /* Offset, in bits, of this constraint from the beginning of
468 variables it ends up referring to.
470 IOW, in a deref constraint, we would deref, get the result set,
471 then add OFFSET to each member. */
472 HOST_WIDE_INT offset;
475 /* Use 0x8000... as special unknown offset. */
476 #define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
478 typedef struct constraint_expr ce_s;
479 DEF_VEC_O(ce_s);
480 DEF_VEC_ALLOC_O(ce_s, heap);
481 static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool, bool);
482 static void get_constraint_for (tree, VEC(ce_s, heap) **);
483 static void get_constraint_for_rhs (tree, VEC(ce_s, heap) **);
484 static void do_deref (VEC (ce_s, heap) **);
486 /* Our set constraints are made up of two constraint expressions, one
487 LHS, and one RHS.
489 As described in the introduction, our set constraints each represent an
490 operation between set valued variables.
492 struct constraint
494 struct constraint_expr lhs;
495 struct constraint_expr rhs;
498 /* List of constraints that we use to build the constraint graph from. */
500 static VEC(constraint_t,heap) *constraints;
501 static alloc_pool constraint_pool;
503 /* The constraint graph is represented as an array of bitmaps
504 containing successor nodes. */
506 struct constraint_graph
508 /* Size of this graph, which may be different than the number of
509 nodes in the variable map. */
510 unsigned int size;
512 /* Explicit successors of each node. */
513 bitmap *succs;
515 /* Implicit predecessors of each node (Used for variable
516 substitution). */
517 bitmap *implicit_preds;
519 /* Explicit predecessors of each node (Used for variable substitution). */
520 bitmap *preds;
522 /* Indirect cycle representatives, or -1 if the node has no indirect
523 cycles. */
524 int *indirect_cycles;
526 /* Representative node for a node. rep[a] == a unless the node has
527 been unified. */
528 unsigned int *rep;
530 /* Equivalence class representative for a label. This is used for
531 variable substitution. */
532 int *eq_rep;
534 /* Pointer equivalence label for a node. All nodes with the same
535 pointer equivalence label can be unified together at some point
536 (either during constraint optimization or after the constraint
537 graph is built). */
538 unsigned int *pe;
540 /* Pointer equivalence representative for a label. This is used to
541 handle nodes that are pointer equivalent but not location
542 equivalent. We can unite these once the addressof constraints
543 are transformed into initial points-to sets. */
544 int *pe_rep;
546 /* Pointer equivalence label for each node, used during variable
547 substitution. */
548 unsigned int *pointer_label;
550 /* Location equivalence label for each node, used during location
551 equivalence finding. */
552 unsigned int *loc_label;
554 /* Pointed-by set for each node, used during location equivalence
555 finding. This is pointed-by rather than pointed-to, because it
556 is constructed using the predecessor graph. */
557 bitmap *pointed_by;
559 /* Points to sets for pointer equivalence. This is *not* the actual
560 points-to sets for nodes. */
561 bitmap *points_to;
563 /* Bitmap of nodes where the bit is set if the node is a direct
564 node. Used for variable substitution. */
565 sbitmap direct_nodes;
567 /* Bitmap of nodes where the bit is set if the node is address
568 taken. Used for variable substitution. */
569 bitmap address_taken;
571 /* Vector of complex constraints for each graph node. Complex
572 constraints are those involving dereferences or offsets that are
573 not 0. */
574 VEC(constraint_t,heap) **complex;
577 static constraint_graph_t graph;
579 /* During variable substitution and the offline version of indirect
580 cycle finding, we create nodes to represent dereferences and
581 address taken constraints. These represent where these start and
582 end. */
583 #define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
584 #define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
586 /* Return the representative node for NODE, if NODE has been unioned
587 with another NODE.
588 This function performs path compression along the way to finding
589 the representative. */
591 static unsigned int
592 find (unsigned int node)
594 gcc_assert (node < graph->size);
595 if (graph->rep[node] != node)
596 return graph->rep[node] = find (graph->rep[node]);
597 return node;
600 /* Union the TO and FROM nodes to the TO nodes.
601 Note that at some point in the future, we may want to do
602 union-by-rank, in which case we are going to have to return the
603 node we unified to. */
605 static bool
606 unite (unsigned int to, unsigned int from)
608 gcc_assert (to < graph->size && from < graph->size);
609 if (to != from && graph->rep[from] != to)
611 graph->rep[from] = to;
612 return true;
614 return false;
617 /* Create a new constraint consisting of LHS and RHS expressions. */
619 static constraint_t
620 new_constraint (const struct constraint_expr lhs,
621 const struct constraint_expr rhs)
623 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
624 ret->lhs = lhs;
625 ret->rhs = rhs;
626 return ret;
629 /* Print out constraint C to FILE. */
631 static void
632 dump_constraint (FILE *file, constraint_t c)
634 if (c->lhs.type == ADDRESSOF)
635 fprintf (file, "&");
636 else if (c->lhs.type == DEREF)
637 fprintf (file, "*");
638 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
639 if (c->lhs.offset == UNKNOWN_OFFSET)
640 fprintf (file, " + UNKNOWN");
641 else if (c->lhs.offset != 0)
642 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
643 fprintf (file, " = ");
644 if (c->rhs.type == ADDRESSOF)
645 fprintf (file, "&");
646 else if (c->rhs.type == DEREF)
647 fprintf (file, "*");
648 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
649 if (c->rhs.offset == UNKNOWN_OFFSET)
650 fprintf (file, " + UNKNOWN");
651 else if (c->rhs.offset != 0)
652 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
656 void debug_constraint (constraint_t);
657 void debug_constraints (void);
658 void debug_constraint_graph (void);
659 void debug_solution_for_var (unsigned int);
660 void debug_sa_points_to_info (void);
662 /* Print out constraint C to stderr. */
664 DEBUG_FUNCTION void
665 debug_constraint (constraint_t c)
667 dump_constraint (stderr, c);
668 fprintf (stderr, "\n");
671 /* Print out all constraints to FILE */
673 static void
674 dump_constraints (FILE *file, int from)
676 int i;
677 constraint_t c;
678 for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
679 if (c)
681 dump_constraint (file, c);
682 fprintf (file, "\n");
686 /* Print out all constraints to stderr. */
688 DEBUG_FUNCTION void
689 debug_constraints (void)
691 dump_constraints (stderr, 0);
694 /* Print the constraint graph in dot format. */
696 static void
697 dump_constraint_graph (FILE *file)
699 unsigned int i;
701 /* Only print the graph if it has already been initialized: */
702 if (!graph)
703 return;
705 /* Prints the header of the dot file: */
706 fprintf (file, "strict digraph {\n");
707 fprintf (file, " node [\n shape = box\n ]\n");
708 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
709 fprintf (file, "\n // List of nodes and complex constraints in "
710 "the constraint graph:\n");
712 /* The next lines print the nodes in the graph together with the
713 complex constraints attached to them. */
714 for (i = 0; i < graph->size; i++)
716 if (find (i) != i)
717 continue;
718 if (i < FIRST_REF_NODE)
719 fprintf (file, "\"%s\"", get_varinfo (i)->name);
720 else
721 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
722 if (graph->complex[i])
724 unsigned j;
725 constraint_t c;
726 fprintf (file, " [label=\"\\N\\n");
727 for (j = 0; VEC_iterate (constraint_t, graph->complex[i], j, c); ++j)
729 dump_constraint (file, c);
730 fprintf (file, "\\l");
732 fprintf (file, "\"]");
734 fprintf (file, ";\n");
737 /* Go over the edges. */
738 fprintf (file, "\n // Edges in the constraint graph:\n");
739 for (i = 0; i < graph->size; i++)
741 unsigned j;
742 bitmap_iterator bi;
743 if (find (i) != i)
744 continue;
745 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i], 0, j, bi)
747 unsigned to = find (j);
748 if (i == to)
749 continue;
750 if (i < FIRST_REF_NODE)
751 fprintf (file, "\"%s\"", get_varinfo (i)->name);
752 else
753 fprintf (file, "\"*%s\"", get_varinfo (i - FIRST_REF_NODE)->name);
754 fprintf (file, " -> ");
755 if (to < FIRST_REF_NODE)
756 fprintf (file, "\"%s\"", get_varinfo (to)->name);
757 else
758 fprintf (file, "\"*%s\"", get_varinfo (to - FIRST_REF_NODE)->name);
759 fprintf (file, ";\n");
763 /* Prints the tail of the dot file. */
764 fprintf (file, "}\n");
767 /* Print out the constraint graph to stderr. */
769 DEBUG_FUNCTION void
770 debug_constraint_graph (void)
772 dump_constraint_graph (stderr);
775 /* SOLVER FUNCTIONS
777 The solver is a simple worklist solver, that works on the following
778 algorithm:
780 sbitmap changed_nodes = all zeroes;
781 changed_count = 0;
782 For each node that is not already collapsed:
783 changed_count++;
784 set bit in changed nodes
786 while (changed_count > 0)
788 compute topological ordering for constraint graph
790 find and collapse cycles in the constraint graph (updating
791 changed if necessary)
793 for each node (n) in the graph in topological order:
794 changed_count--;
796 Process each complex constraint associated with the node,
797 updating changed if necessary.
799 For each outgoing edge from n, propagate the solution from n to
800 the destination of the edge, updating changed as necessary.
802 } */
804 /* Return true if two constraint expressions A and B are equal. */
806 static bool
807 constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
809 return a.type == b.type && a.var == b.var && a.offset == b.offset;
812 /* Return true if constraint expression A is less than constraint expression
813 B. This is just arbitrary, but consistent, in order to give them an
814 ordering. */
816 static bool
817 constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
819 if (a.type == b.type)
821 if (a.var == b.var)
822 return a.offset < b.offset;
823 else
824 return a.var < b.var;
826 else
827 return a.type < b.type;
830 /* Return true if constraint A is less than constraint B. This is just
831 arbitrary, but consistent, in order to give them an ordering. */
833 static bool
834 constraint_less (const constraint_t a, const constraint_t b)
836 if (constraint_expr_less (a->lhs, b->lhs))
837 return true;
838 else if (constraint_expr_less (b->lhs, a->lhs))
839 return false;
840 else
841 return constraint_expr_less (a->rhs, b->rhs);
844 /* Return true if two constraints A and B are equal. */
846 static bool
847 constraint_equal (struct constraint a, struct constraint b)
849 return constraint_expr_equal (a.lhs, b.lhs)
850 && constraint_expr_equal (a.rhs, b.rhs);
854 /* Find a constraint LOOKFOR in the sorted constraint vector VEC */
856 static constraint_t
857 constraint_vec_find (VEC(constraint_t,heap) *vec,
858 struct constraint lookfor)
860 unsigned int place;
861 constraint_t found;
863 if (vec == NULL)
864 return NULL;
866 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
867 if (place >= VEC_length (constraint_t, vec))
868 return NULL;
869 found = VEC_index (constraint_t, vec, place);
870 if (!constraint_equal (*found, lookfor))
871 return NULL;
872 return found;
875 /* Union two constraint vectors, TO and FROM. Put the result in TO. */
877 static void
878 constraint_set_union (VEC(constraint_t,heap) **to,
879 VEC(constraint_t,heap) **from)
881 int i;
882 constraint_t c;
884 FOR_EACH_VEC_ELT (constraint_t, *from, i, c)
886 if (constraint_vec_find (*to, *c) == NULL)
888 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
889 constraint_less);
890 VEC_safe_insert (constraint_t, heap, *to, place, c);
895 /* Expands the solution in SET to all sub-fields of variables included.
896 Union the expanded result into RESULT. */
898 static void
899 solution_set_expand (bitmap result, bitmap set)
901 bitmap_iterator bi;
902 bitmap vars = NULL;
903 unsigned j;
905 /* In a first pass record all variables we need to add all
906 sub-fields off. This avoids quadratic behavior. */
907 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
909 varinfo_t v = get_varinfo (j);
910 if (v->is_artificial_var
911 || v->is_full_var)
912 continue;
913 v = lookup_vi_for_tree (v->decl);
914 if (vars == NULL)
915 vars = BITMAP_ALLOC (NULL);
916 bitmap_set_bit (vars, v->id);
919 /* In the second pass now do the addition to the solution and
920 to speed up solving add it to the delta as well. */
921 if (vars != NULL)
923 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
925 varinfo_t v = get_varinfo (j);
926 for (; v != NULL; v = v->next)
927 bitmap_set_bit (result, v->id);
929 BITMAP_FREE (vars);
933 /* Take a solution set SET, add OFFSET to each member of the set, and
934 overwrite SET with the result when done. */
936 static void
937 solution_set_add (bitmap set, HOST_WIDE_INT offset)
939 bitmap result = BITMAP_ALLOC (&iteration_obstack);
940 unsigned int i;
941 bitmap_iterator bi;
943 /* If the offset is unknown we have to expand the solution to
944 all subfields. */
945 if (offset == UNKNOWN_OFFSET)
947 solution_set_expand (set, set);
948 return;
951 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
953 varinfo_t vi = get_varinfo (i);
955 /* If this is a variable with just one field just set its bit
956 in the result. */
957 if (vi->is_artificial_var
958 || vi->is_unknown_size_var
959 || vi->is_full_var)
960 bitmap_set_bit (result, i);
961 else
963 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
965 /* If the offset makes the pointer point to before the
966 variable use offset zero for the field lookup. */
967 if (offset < 0
968 && fieldoffset > vi->offset)
969 fieldoffset = 0;
971 if (offset != 0)
972 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
974 bitmap_set_bit (result, vi->id);
975 /* If the result is not exactly at fieldoffset include the next
976 field as well. See get_constraint_for_ptr_offset for more
977 rationale. */
978 if (vi->offset != fieldoffset
979 && vi->next != NULL)
980 bitmap_set_bit (result, vi->next->id);
984 bitmap_copy (set, result);
985 BITMAP_FREE (result);
988 /* Union solution sets TO and FROM, and add INC to each member of FROM in the
989 process. */
991 static bool
992 set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
994 if (inc == 0)
995 return bitmap_ior_into (to, from);
996 else
998 bitmap tmp;
999 bool res;
1001 tmp = BITMAP_ALLOC (&iteration_obstack);
1002 bitmap_copy (tmp, from);
1003 solution_set_add (tmp, inc);
1004 res = bitmap_ior_into (to, tmp);
1005 BITMAP_FREE (tmp);
1006 return res;
1010 /* Insert constraint C into the list of complex constraints for graph
1011 node VAR. */
1013 static void
1014 insert_into_complex (constraint_graph_t graph,
1015 unsigned int var, constraint_t c)
1017 VEC (constraint_t, heap) *complex = graph->complex[var];
1018 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
1019 constraint_less);
1021 /* Only insert constraints that do not already exist. */
1022 if (place >= VEC_length (constraint_t, complex)
1023 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
1024 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
1028 /* Condense two variable nodes into a single variable node, by moving
1029 all associated info from SRC to TO. */
1031 static void
1032 merge_node_constraints (constraint_graph_t graph, unsigned int to,
1033 unsigned int from)
1035 unsigned int i;
1036 constraint_t c;
1038 gcc_assert (find (from) == to);
1040 /* Move all complex constraints from src node into to node */
1041 FOR_EACH_VEC_ELT (constraint_t, graph->complex[from], i, c)
1043 /* In complex constraints for node src, we may have either
1044 a = *src, and *src = a, or an offseted constraint which are
1045 always added to the rhs node's constraints. */
1047 if (c->rhs.type == DEREF)
1048 c->rhs.var = to;
1049 else if (c->lhs.type == DEREF)
1050 c->lhs.var = to;
1051 else
1052 c->rhs.var = to;
1054 constraint_set_union (&graph->complex[to], &graph->complex[from]);
1055 VEC_free (constraint_t, heap, graph->complex[from]);
1056 graph->complex[from] = NULL;
1060 /* Remove edges involving NODE from GRAPH. */
1062 static void
1063 clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1065 if (graph->succs[node])
1066 BITMAP_FREE (graph->succs[node]);
1069 /* Merge GRAPH nodes FROM and TO into node TO. */
1071 static void
1072 merge_graph_nodes (constraint_graph_t graph, unsigned int to,
1073 unsigned int from)
1075 if (graph->indirect_cycles[from] != -1)
1077 /* If we have indirect cycles with the from node, and we have
1078 none on the to node, the to node has indirect cycles from the
1079 from node now that they are unified.
1080 If indirect cycles exist on both, unify the nodes that they
1081 are in a cycle with, since we know they are in a cycle with
1082 each other. */
1083 if (graph->indirect_cycles[to] == -1)
1084 graph->indirect_cycles[to] = graph->indirect_cycles[from];
1087 /* Merge all the successor edges. */
1088 if (graph->succs[from])
1090 if (!graph->succs[to])
1091 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
1092 bitmap_ior_into (graph->succs[to],
1093 graph->succs[from]);
1096 clear_edges_for_node (graph, from);
1100 /* Add an indirect graph edge to GRAPH, going from TO to FROM if
1101 it doesn't exist in the graph already. */
1103 static void
1104 add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1105 unsigned int from)
1107 if (to == from)
1108 return;
1110 if (!graph->implicit_preds[to])
1111 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1113 if (bitmap_set_bit (graph->implicit_preds[to], from))
1114 stats.num_implicit_edges++;
1117 /* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1118 it doesn't exist in the graph already.
1119 Return false if the edge already existed, true otherwise. */
1121 static void
1122 add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1123 unsigned int from)
1125 if (!graph->preds[to])
1126 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1127 bitmap_set_bit (graph->preds[to], from);
1130 /* Add a graph edge to GRAPH, going from FROM to TO if
1131 it doesn't exist in the graph already.
1132 Return false if the edge already existed, true otherwise. */
1134 static bool
1135 add_graph_edge (constraint_graph_t graph, unsigned int to,
1136 unsigned int from)
1138 if (to == from)
1140 return false;
1142 else
1144 bool r = false;
1146 if (!graph->succs[from])
1147 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
1148 if (bitmap_set_bit (graph->succs[from], to))
1150 r = true;
1151 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1152 stats.num_edges++;
1154 return r;
1159 /* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
1161 static bool
1162 valid_graph_edge (constraint_graph_t graph, unsigned int src,
1163 unsigned int dest)
1165 return (graph->succs[dest]
1166 && bitmap_bit_p (graph->succs[dest], src));
1169 /* Initialize the constraint graph structure to contain SIZE nodes. */
1171 static void
1172 init_graph (unsigned int size)
1174 unsigned int j;
1176 graph = XCNEW (struct constraint_graph);
1177 graph->size = size;
1178 graph->succs = XCNEWVEC (bitmap, graph->size);
1179 graph->indirect_cycles = XNEWVEC (int, graph->size);
1180 graph->rep = XNEWVEC (unsigned int, graph->size);
1181 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
1182 graph->pe = XCNEWVEC (unsigned int, graph->size);
1183 graph->pe_rep = XNEWVEC (int, graph->size);
1185 for (j = 0; j < graph->size; j++)
1187 graph->rep[j] = j;
1188 graph->pe_rep[j] = -1;
1189 graph->indirect_cycles[j] = -1;
1193 /* Build the constraint graph, adding only predecessor edges right now. */
1195 static void
1196 build_pred_graph (void)
1198 int i;
1199 constraint_t c;
1200 unsigned int j;
1202 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1203 graph->preds = XCNEWVEC (bitmap, graph->size);
1204 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1205 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1206 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1207 graph->points_to = XCNEWVEC (bitmap, graph->size);
1208 graph->eq_rep = XNEWVEC (int, graph->size);
1209 graph->direct_nodes = sbitmap_alloc (graph->size);
1210 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
1211 sbitmap_zero (graph->direct_nodes);
1213 for (j = 0; j < FIRST_REF_NODE; j++)
1215 if (!get_varinfo (j)->is_special_var)
1216 SET_BIT (graph->direct_nodes, j);
1219 for (j = 0; j < graph->size; j++)
1220 graph->eq_rep[j] = -1;
1222 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1223 graph->indirect_cycles[j] = -1;
1225 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1227 struct constraint_expr lhs = c->lhs;
1228 struct constraint_expr rhs = c->rhs;
1229 unsigned int lhsvar = lhs.var;
1230 unsigned int rhsvar = rhs.var;
1232 if (lhs.type == DEREF)
1234 /* *x = y. */
1235 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1236 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1238 else if (rhs.type == DEREF)
1240 /* x = *y */
1241 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1242 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1243 else
1244 RESET_BIT (graph->direct_nodes, lhsvar);
1246 else if (rhs.type == ADDRESSOF)
1248 varinfo_t v;
1250 /* x = &y */
1251 if (graph->points_to[lhsvar] == NULL)
1252 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1253 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1255 if (graph->pointed_by[rhsvar] == NULL)
1256 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1257 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1259 /* Implicitly, *x = y */
1260 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1262 /* All related variables are no longer direct nodes. */
1263 RESET_BIT (graph->direct_nodes, rhsvar);
1264 v = get_varinfo (rhsvar);
1265 if (!v->is_full_var)
1267 v = lookup_vi_for_tree (v->decl);
1270 RESET_BIT (graph->direct_nodes, v->id);
1271 v = v->next;
1273 while (v != NULL);
1275 bitmap_set_bit (graph->address_taken, rhsvar);
1277 else if (lhsvar > anything_id
1278 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1280 /* x = y */
1281 add_pred_graph_edge (graph, lhsvar, rhsvar);
1282 /* Implicitly, *x = *y */
1283 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1284 FIRST_REF_NODE + rhsvar);
1286 else if (lhs.offset != 0 || rhs.offset != 0)
1288 if (rhs.offset != 0)
1289 RESET_BIT (graph->direct_nodes, lhs.var);
1290 else if (lhs.offset != 0)
1291 RESET_BIT (graph->direct_nodes, rhs.var);
1296 /* Build the constraint graph, adding successor edges. */
1298 static void
1299 build_succ_graph (void)
1301 unsigned i, t;
1302 constraint_t c;
1304 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
1306 struct constraint_expr lhs;
1307 struct constraint_expr rhs;
1308 unsigned int lhsvar;
1309 unsigned int rhsvar;
1311 if (!c)
1312 continue;
1314 lhs = c->lhs;
1315 rhs = c->rhs;
1316 lhsvar = find (lhs.var);
1317 rhsvar = find (rhs.var);
1319 if (lhs.type == DEREF)
1321 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1322 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1324 else if (rhs.type == DEREF)
1326 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1327 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1329 else if (rhs.type == ADDRESSOF)
1331 /* x = &y */
1332 gcc_assert (find (rhs.var) == rhs.var);
1333 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1335 else if (lhsvar > anything_id
1336 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1338 add_graph_edge (graph, lhsvar, rhsvar);
1342 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1343 receive pointers. */
1344 t = find (storedanything_id);
1345 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1347 if (!TEST_BIT (graph->direct_nodes, i)
1348 && get_varinfo (i)->may_have_pointers)
1349 add_graph_edge (graph, find (i), t);
1352 /* Everything stored to ANYTHING also potentially escapes. */
1353 add_graph_edge (graph, find (escaped_id), t);
1357 /* Changed variables on the last iteration. */
1358 static bitmap changed;
1360 /* Strongly Connected Component visitation info. */
1362 struct scc_info
1364 sbitmap visited;
1365 sbitmap deleted;
1366 unsigned int *dfs;
1367 unsigned int *node_mapping;
1368 int current_index;
1369 VEC(unsigned,heap) *scc_stack;
1373 /* Recursive routine to find strongly connected components in GRAPH.
1374 SI is the SCC info to store the information in, and N is the id of current
1375 graph node we are processing.
1377 This is Tarjan's strongly connected component finding algorithm, as
1378 modified by Nuutila to keep only non-root nodes on the stack.
1379 The algorithm can be found in "On finding the strongly connected
1380 connected components in a directed graph" by Esko Nuutila and Eljas
1381 Soisalon-Soininen, in Information Processing Letters volume 49,
1382 number 1, pages 9-14. */
1384 static void
1385 scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1387 unsigned int i;
1388 bitmap_iterator bi;
1389 unsigned int my_dfs;
1391 SET_BIT (si->visited, n);
1392 si->dfs[n] = si->current_index ++;
1393 my_dfs = si->dfs[n];
1395 /* Visit all the successors. */
1396 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
1398 unsigned int w;
1400 if (i > LAST_REF_NODE)
1401 break;
1403 w = find (i);
1404 if (TEST_BIT (si->deleted, w))
1405 continue;
1407 if (!TEST_BIT (si->visited, w))
1408 scc_visit (graph, si, w);
1410 unsigned int t = find (w);
1411 unsigned int nnode = find (n);
1412 gcc_assert (nnode == n);
1414 if (si->dfs[t] < si->dfs[nnode])
1415 si->dfs[n] = si->dfs[t];
1419 /* See if any components have been identified. */
1420 if (si->dfs[n] == my_dfs)
1422 if (VEC_length (unsigned, si->scc_stack) > 0
1423 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1425 bitmap scc = BITMAP_ALLOC (NULL);
1426 unsigned int lowest_node;
1427 bitmap_iterator bi;
1429 bitmap_set_bit (scc, n);
1431 while (VEC_length (unsigned, si->scc_stack) != 0
1432 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1434 unsigned int w = VEC_pop (unsigned, si->scc_stack);
1436 bitmap_set_bit (scc, w);
1439 lowest_node = bitmap_first_set_bit (scc);
1440 gcc_assert (lowest_node < FIRST_REF_NODE);
1442 /* Collapse the SCC nodes into a single node, and mark the
1443 indirect cycles. */
1444 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1446 if (i < FIRST_REF_NODE)
1448 if (unite (lowest_node, i))
1449 unify_nodes (graph, lowest_node, i, false);
1451 else
1453 unite (lowest_node, i);
1454 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1458 SET_BIT (si->deleted, n);
1460 else
1461 VEC_safe_push (unsigned, heap, si->scc_stack, n);
1464 /* Unify node FROM into node TO, updating the changed count if
1465 necessary when UPDATE_CHANGED is true. */
1467 static void
1468 unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1469 bool update_changed)
1472 gcc_assert (to != from && find (to) == to);
1473 if (dump_file && (dump_flags & TDF_DETAILS))
1474 fprintf (dump_file, "Unifying %s to %s\n",
1475 get_varinfo (from)->name,
1476 get_varinfo (to)->name);
1478 if (update_changed)
1479 stats.unified_vars_dynamic++;
1480 else
1481 stats.unified_vars_static++;
1483 merge_graph_nodes (graph, to, from);
1484 merge_node_constraints (graph, to, from);
1486 /* Mark TO as changed if FROM was changed. If TO was already marked
1487 as changed, decrease the changed count. */
1489 if (update_changed
1490 && bitmap_bit_p (changed, from))
1492 bitmap_clear_bit (changed, from);
1493 bitmap_set_bit (changed, to);
1495 if (get_varinfo (from)->solution)
1497 /* If the solution changes because of the merging, we need to mark
1498 the variable as changed. */
1499 if (bitmap_ior_into (get_varinfo (to)->solution,
1500 get_varinfo (from)->solution))
1502 if (update_changed)
1503 bitmap_set_bit (changed, to);
1506 BITMAP_FREE (get_varinfo (from)->solution);
1507 if (get_varinfo (from)->oldsolution)
1508 BITMAP_FREE (get_varinfo (from)->oldsolution);
1510 if (stats.iterations > 0
1511 && get_varinfo (to)->oldsolution)
1512 BITMAP_FREE (get_varinfo (to)->oldsolution);
1514 if (valid_graph_edge (graph, to, to))
1516 if (graph->succs[to])
1517 bitmap_clear_bit (graph->succs[to], to);
1521 /* Information needed to compute the topological ordering of a graph. */
1523 struct topo_info
1525 /* sbitmap of visited nodes. */
1526 sbitmap visited;
1527 /* Array that stores the topological order of the graph, *in
1528 reverse*. */
1529 VEC(unsigned,heap) *topo_order;
1533 /* Initialize and return a topological info structure. */
1535 static struct topo_info *
1536 init_topo_info (void)
1538 size_t size = graph->size;
1539 struct topo_info *ti = XNEW (struct topo_info);
1540 ti->visited = sbitmap_alloc (size);
1541 sbitmap_zero (ti->visited);
1542 ti->topo_order = VEC_alloc (unsigned, heap, 1);
1543 return ti;
1547 /* Free the topological sort info pointed to by TI. */
1549 static void
1550 free_topo_info (struct topo_info *ti)
1552 sbitmap_free (ti->visited);
1553 VEC_free (unsigned, heap, ti->topo_order);
1554 free (ti);
1557 /* Visit the graph in topological order, and store the order in the
1558 topo_info structure. */
1560 static void
1561 topo_visit (constraint_graph_t graph, struct topo_info *ti,
1562 unsigned int n)
1564 bitmap_iterator bi;
1565 unsigned int j;
1567 SET_BIT (ti->visited, n);
1569 if (graph->succs[n])
1570 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
1572 if (!TEST_BIT (ti->visited, j))
1573 topo_visit (graph, ti, j);
1576 VEC_safe_push (unsigned, heap, ti->topo_order, n);
1579 /* Process a constraint C that represents x = *(y + off), using DELTA as the
1580 starting solution for y. */
1582 static void
1583 do_sd_constraint (constraint_graph_t graph, constraint_t c,
1584 bitmap delta)
1586 unsigned int lhs = c->lhs.var;
1587 bool flag = false;
1588 bitmap sol = get_varinfo (lhs)->solution;
1589 unsigned int j;
1590 bitmap_iterator bi;
1591 HOST_WIDE_INT roffset = c->rhs.offset;
1593 /* Our IL does not allow this. */
1594 gcc_assert (c->lhs.offset == 0);
1596 /* If the solution of Y contains anything it is good enough to transfer
1597 this to the LHS. */
1598 if (bitmap_bit_p (delta, anything_id))
1600 flag |= bitmap_set_bit (sol, anything_id);
1601 goto done;
1604 /* If we do not know at with offset the rhs is dereferenced compute
1605 the reachability set of DELTA, conservatively assuming it is
1606 dereferenced at all valid offsets. */
1607 if (roffset == UNKNOWN_OFFSET)
1609 solution_set_expand (delta, delta);
1610 /* No further offset processing is necessary. */
1611 roffset = 0;
1614 /* For each variable j in delta (Sol(y)), add
1615 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1616 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1618 varinfo_t v = get_varinfo (j);
1619 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1620 unsigned int t;
1622 if (v->is_full_var)
1623 fieldoffset = v->offset;
1624 else if (roffset != 0)
1625 v = first_vi_for_offset (v, fieldoffset);
1626 /* If the access is outside of the variable we can ignore it. */
1627 if (!v)
1628 continue;
1632 t = find (v->id);
1634 /* Adding edges from the special vars is pointless.
1635 They don't have sets that can change. */
1636 if (get_varinfo (t)->is_special_var)
1637 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1638 /* Merging the solution from ESCAPED needlessly increases
1639 the set. Use ESCAPED as representative instead. */
1640 else if (v->id == escaped_id)
1641 flag |= bitmap_set_bit (sol, escaped_id);
1642 else if (v->may_have_pointers
1643 && add_graph_edge (graph, lhs, t))
1644 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
1646 /* If the variable is not exactly at the requested offset
1647 we have to include the next one. */
1648 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1649 || v->next == NULL)
1650 break;
1652 v = v->next;
1653 fieldoffset = v->offset;
1655 while (1);
1658 done:
1659 /* If the LHS solution changed, mark the var as changed. */
1660 if (flag)
1662 get_varinfo (lhs)->solution = sol;
1663 bitmap_set_bit (changed, lhs);
1667 /* Process a constraint C that represents *(x + off) = y using DELTA
1668 as the starting solution for x. */
1670 static void
1671 do_ds_constraint (constraint_t c, bitmap delta)
1673 unsigned int rhs = c->rhs.var;
1674 bitmap sol = get_varinfo (rhs)->solution;
1675 unsigned int j;
1676 bitmap_iterator bi;
1677 HOST_WIDE_INT loff = c->lhs.offset;
1678 bool escaped_p = false;
1680 /* Our IL does not allow this. */
1681 gcc_assert (c->rhs.offset == 0);
1683 /* If the solution of y contains ANYTHING simply use the ANYTHING
1684 solution. This avoids needlessly increasing the points-to sets. */
1685 if (bitmap_bit_p (sol, anything_id))
1686 sol = get_varinfo (find (anything_id))->solution;
1688 /* If the solution for x contains ANYTHING we have to merge the
1689 solution of y into all pointer variables which we do via
1690 STOREDANYTHING. */
1691 if (bitmap_bit_p (delta, anything_id))
1693 unsigned t = find (storedanything_id);
1694 if (add_graph_edge (graph, t, rhs))
1696 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1697 bitmap_set_bit (changed, t);
1699 return;
1702 /* If we do not know at with offset the rhs is dereferenced compute
1703 the reachability set of DELTA, conservatively assuming it is
1704 dereferenced at all valid offsets. */
1705 if (loff == UNKNOWN_OFFSET)
1707 solution_set_expand (delta, delta);
1708 loff = 0;
1711 /* For each member j of delta (Sol(x)), add an edge from y to j and
1712 union Sol(y) into Sol(j) */
1713 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1715 varinfo_t v = get_varinfo (j);
1716 unsigned int t;
1717 HOST_WIDE_INT fieldoffset = v->offset + loff;
1719 if (v->is_full_var)
1720 fieldoffset = v->offset;
1721 else if (loff != 0)
1722 v = first_vi_for_offset (v, fieldoffset);
1723 /* If the access is outside of the variable we can ignore it. */
1724 if (!v)
1725 continue;
1729 if (v->may_have_pointers)
1731 /* If v is a global variable then this is an escape point. */
1732 if (v->is_global_var
1733 && !escaped_p)
1735 t = find (escaped_id);
1736 if (add_graph_edge (graph, t, rhs)
1737 && bitmap_ior_into (get_varinfo (t)->solution, sol))
1738 bitmap_set_bit (changed, t);
1739 /* Enough to let rhs escape once. */
1740 escaped_p = true;
1743 if (v->is_special_var)
1744 break;
1746 t = find (v->id);
1747 if (add_graph_edge (graph, t, rhs)
1748 && bitmap_ior_into (get_varinfo (t)->solution, sol))
1749 bitmap_set_bit (changed, t);
1752 /* If the variable is not exactly at the requested offset
1753 we have to include the next one. */
1754 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1755 || v->next == NULL)
1756 break;
1758 v = v->next;
1759 fieldoffset = v->offset;
1761 while (1);
1765 /* Handle a non-simple (simple meaning requires no iteration),
1766 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
1768 static void
1769 do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1771 if (c->lhs.type == DEREF)
1773 if (c->rhs.type == ADDRESSOF)
1775 gcc_unreachable();
1777 else
1779 /* *x = y */
1780 do_ds_constraint (c, delta);
1783 else if (c->rhs.type == DEREF)
1785 /* x = *y */
1786 if (!(get_varinfo (c->lhs.var)->is_special_var))
1787 do_sd_constraint (graph, c, delta);
1789 else
1791 bitmap tmp;
1792 bitmap solution;
1793 bool flag = false;
1795 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
1796 solution = get_varinfo (c->rhs.var)->solution;
1797 tmp = get_varinfo (c->lhs.var)->solution;
1799 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
1801 if (flag)
1803 get_varinfo (c->lhs.var)->solution = tmp;
1804 bitmap_set_bit (changed, c->lhs.var);
1809 /* Initialize and return a new SCC info structure. */
1811 static struct scc_info *
1812 init_scc_info (size_t size)
1814 struct scc_info *si = XNEW (struct scc_info);
1815 size_t i;
1817 si->current_index = 0;
1818 si->visited = sbitmap_alloc (size);
1819 sbitmap_zero (si->visited);
1820 si->deleted = sbitmap_alloc (size);
1821 sbitmap_zero (si->deleted);
1822 si->node_mapping = XNEWVEC (unsigned int, size);
1823 si->dfs = XCNEWVEC (unsigned int, size);
1825 for (i = 0; i < size; i++)
1826 si->node_mapping[i] = i;
1828 si->scc_stack = VEC_alloc (unsigned, heap, 1);
1829 return si;
1832 /* Free an SCC info structure pointed to by SI */
1834 static void
1835 free_scc_info (struct scc_info *si)
1837 sbitmap_free (si->visited);
1838 sbitmap_free (si->deleted);
1839 free (si->node_mapping);
1840 free (si->dfs);
1841 VEC_free (unsigned, heap, si->scc_stack);
1842 free (si);
1846 /* Find indirect cycles in GRAPH that occur, using strongly connected
1847 components, and note them in the indirect cycles map.
1849 This technique comes from Ben Hardekopf and Calvin Lin,
1850 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1851 Lines of Code", submitted to PLDI 2007. */
1853 static void
1854 find_indirect_cycles (constraint_graph_t graph)
1856 unsigned int i;
1857 unsigned int size = graph->size;
1858 struct scc_info *si = init_scc_info (size);
1860 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1861 if (!TEST_BIT (si->visited, i) && find (i) == i)
1862 scc_visit (graph, si, i);
1864 free_scc_info (si);
1867 /* Compute a topological ordering for GRAPH, and store the result in the
1868 topo_info structure TI. */
1870 static void
1871 compute_topo_order (constraint_graph_t graph,
1872 struct topo_info *ti)
1874 unsigned int i;
1875 unsigned int size = graph->size;
1877 for (i = 0; i != size; ++i)
1878 if (!TEST_BIT (ti->visited, i) && find (i) == i)
1879 topo_visit (graph, ti, i);
1882 /* Structure used to for hash value numbering of pointer equivalence
1883 classes. */
1885 typedef struct equiv_class_label
1887 hashval_t hashcode;
1888 unsigned int equivalence_class;
1889 bitmap labels;
1890 } *equiv_class_label_t;
1891 typedef const struct equiv_class_label *const_equiv_class_label_t;
1893 /* A hashtable for mapping a bitmap of labels->pointer equivalence
1894 classes. */
1895 static htab_t pointer_equiv_class_table;
1897 /* A hashtable for mapping a bitmap of labels->location equivalence
1898 classes. */
1899 static htab_t location_equiv_class_table;
1901 /* Hash function for a equiv_class_label_t */
1903 static hashval_t
1904 equiv_class_label_hash (const void *p)
1906 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
1907 return ecl->hashcode;
1910 /* Equality function for two equiv_class_label_t's. */
1912 static int
1913 equiv_class_label_eq (const void *p1, const void *p2)
1915 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
1916 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
1917 return (eql1->hashcode == eql2->hashcode
1918 && bitmap_equal_p (eql1->labels, eql2->labels));
1921 /* Lookup a equivalence class in TABLE by the bitmap of LABELS it
1922 contains. */
1924 static unsigned int
1925 equiv_class_lookup (htab_t table, bitmap labels)
1927 void **slot;
1928 struct equiv_class_label ecl;
1930 ecl.labels = labels;
1931 ecl.hashcode = bitmap_hash (labels);
1933 slot = htab_find_slot_with_hash (table, &ecl,
1934 ecl.hashcode, NO_INSERT);
1935 if (!slot)
1936 return 0;
1937 else
1938 return ((equiv_class_label_t) *slot)->equivalence_class;
1942 /* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
1943 to TABLE. */
1945 static void
1946 equiv_class_add (htab_t table, unsigned int equivalence_class,
1947 bitmap labels)
1949 void **slot;
1950 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
1952 ecl->labels = labels;
1953 ecl->equivalence_class = equivalence_class;
1954 ecl->hashcode = bitmap_hash (labels);
1956 slot = htab_find_slot_with_hash (table, ecl,
1957 ecl->hashcode, INSERT);
1958 gcc_assert (!*slot);
1959 *slot = (void *) ecl;
1962 /* Perform offline variable substitution.
1964 This is a worst case quadratic time way of identifying variables
1965 that must have equivalent points-to sets, including those caused by
1966 static cycles, and single entry subgraphs, in the constraint graph.
1968 The technique is described in "Exploiting Pointer and Location
1969 Equivalence to Optimize Pointer Analysis. In the 14th International
1970 Static Analysis Symposium (SAS), August 2007." It is known as the
1971 "HU" algorithm, and is equivalent to value numbering the collapsed
1972 constraint graph including evaluating unions.
1974 The general method of finding equivalence classes is as follows:
1975 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
1976 Initialize all non-REF nodes to be direct nodes.
1977 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
1978 variable}
1979 For each constraint containing the dereference, we also do the same
1980 thing.
1982 We then compute SCC's in the graph and unify nodes in the same SCC,
1983 including pts sets.
1985 For each non-collapsed node x:
1986 Visit all unvisited explicit incoming edges.
1987 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
1988 where y->x.
1989 Lookup the equivalence class for pts(x).
1990 If we found one, equivalence_class(x) = found class.
1991 Otherwise, equivalence_class(x) = new class, and new_class is
1992 added to the lookup table.
1994 All direct nodes with the same equivalence class can be replaced
1995 with a single representative node.
1996 All unlabeled nodes (label == 0) are not pointers and all edges
1997 involving them can be eliminated.
1998 We perform these optimizations during rewrite_constraints
2000 In addition to pointer equivalence class finding, we also perform
2001 location equivalence class finding. This is the set of variables
2002 that always appear together in points-to sets. We use this to
2003 compress the size of the points-to sets. */
2005 /* Current maximum pointer equivalence class id. */
2006 static int pointer_equiv_class;
2008 /* Current maximum location equivalence class id. */
2009 static int location_equiv_class;
2011 /* Recursive routine to find strongly connected components in GRAPH,
2012 and label it's nodes with DFS numbers. */
2014 static void
2015 condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2017 unsigned int i;
2018 bitmap_iterator bi;
2019 unsigned int my_dfs;
2021 gcc_assert (si->node_mapping[n] == n);
2022 SET_BIT (si->visited, n);
2023 si->dfs[n] = si->current_index ++;
2024 my_dfs = si->dfs[n];
2026 /* Visit all the successors. */
2027 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2029 unsigned int w = si->node_mapping[i];
2031 if (TEST_BIT (si->deleted, w))
2032 continue;
2034 if (!TEST_BIT (si->visited, w))
2035 condense_visit (graph, si, w);
2037 unsigned int t = si->node_mapping[w];
2038 unsigned int nnode = si->node_mapping[n];
2039 gcc_assert (nnode == n);
2041 if (si->dfs[t] < si->dfs[nnode])
2042 si->dfs[n] = si->dfs[t];
2046 /* Visit all the implicit predecessors. */
2047 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2049 unsigned int w = si->node_mapping[i];
2051 if (TEST_BIT (si->deleted, w))
2052 continue;
2054 if (!TEST_BIT (si->visited, w))
2055 condense_visit (graph, si, w);
2057 unsigned int t = si->node_mapping[w];
2058 unsigned int nnode = si->node_mapping[n];
2059 gcc_assert (nnode == n);
2061 if (si->dfs[t] < si->dfs[nnode])
2062 si->dfs[n] = si->dfs[t];
2066 /* See if any components have been identified. */
2067 if (si->dfs[n] == my_dfs)
2069 while (VEC_length (unsigned, si->scc_stack) != 0
2070 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
2072 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2073 si->node_mapping[w] = n;
2075 if (!TEST_BIT (graph->direct_nodes, w))
2076 RESET_BIT (graph->direct_nodes, n);
2078 /* Unify our nodes. */
2079 if (graph->preds[w])
2081 if (!graph->preds[n])
2082 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2083 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2085 if (graph->implicit_preds[w])
2087 if (!graph->implicit_preds[n])
2088 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2089 bitmap_ior_into (graph->implicit_preds[n],
2090 graph->implicit_preds[w]);
2092 if (graph->points_to[w])
2094 if (!graph->points_to[n])
2095 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2096 bitmap_ior_into (graph->points_to[n],
2097 graph->points_to[w]);
2100 SET_BIT (si->deleted, n);
2102 else
2103 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2106 /* Label pointer equivalences. */
2108 static void
2109 label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2111 unsigned int i;
2112 bitmap_iterator bi;
2113 SET_BIT (si->visited, n);
2115 if (!graph->points_to[n])
2116 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2118 /* Label and union our incoming edges's points to sets. */
2119 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2121 unsigned int w = si->node_mapping[i];
2122 if (!TEST_BIT (si->visited, w))
2123 label_visit (graph, si, w);
2125 /* Skip unused edges */
2126 if (w == n || graph->pointer_label[w] == 0)
2127 continue;
2129 if (graph->points_to[w])
2130 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
2132 /* Indirect nodes get fresh variables. */
2133 if (!TEST_BIT (graph->direct_nodes, n))
2134 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2136 if (!bitmap_empty_p (graph->points_to[n]))
2138 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2139 graph->points_to[n]);
2140 if (!label)
2142 label = pointer_equiv_class++;
2143 equiv_class_add (pointer_equiv_class_table,
2144 label, graph->points_to[n]);
2146 graph->pointer_label[n] = label;
2150 /* Perform offline variable substitution, discovering equivalence
2151 classes, and eliminating non-pointer variables. */
2153 static struct scc_info *
2154 perform_var_substitution (constraint_graph_t graph)
2156 unsigned int i;
2157 unsigned int size = graph->size;
2158 struct scc_info *si = init_scc_info (size);
2160 bitmap_obstack_initialize (&iteration_obstack);
2161 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2162 equiv_class_label_eq, free);
2163 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2164 equiv_class_label_eq, free);
2165 pointer_equiv_class = 1;
2166 location_equiv_class = 1;
2168 /* Condense the nodes, which means to find SCC's, count incoming
2169 predecessors, and unite nodes in SCC's. */
2170 for (i = 0; i < FIRST_REF_NODE; i++)
2171 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2172 condense_visit (graph, si, si->node_mapping[i]);
2174 sbitmap_zero (si->visited);
2175 /* Actually the label the nodes for pointer equivalences */
2176 for (i = 0; i < FIRST_REF_NODE; i++)
2177 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2178 label_visit (graph, si, si->node_mapping[i]);
2180 /* Calculate location equivalence labels. */
2181 for (i = 0; i < FIRST_REF_NODE; i++)
2183 bitmap pointed_by;
2184 bitmap_iterator bi;
2185 unsigned int j;
2186 unsigned int label;
2188 if (!graph->pointed_by[i])
2189 continue;
2190 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2192 /* Translate the pointed-by mapping for pointer equivalence
2193 labels. */
2194 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2196 bitmap_set_bit (pointed_by,
2197 graph->pointer_label[si->node_mapping[j]]);
2199 /* The original pointed_by is now dead. */
2200 BITMAP_FREE (graph->pointed_by[i]);
2202 /* Look up the location equivalence label if one exists, or make
2203 one otherwise. */
2204 label = equiv_class_lookup (location_equiv_class_table,
2205 pointed_by);
2206 if (label == 0)
2208 label = location_equiv_class++;
2209 equiv_class_add (location_equiv_class_table,
2210 label, pointed_by);
2212 else
2214 if (dump_file && (dump_flags & TDF_DETAILS))
2215 fprintf (dump_file, "Found location equivalence for node %s\n",
2216 get_varinfo (i)->name);
2217 BITMAP_FREE (pointed_by);
2219 graph->loc_label[i] = label;
2223 if (dump_file && (dump_flags & TDF_DETAILS))
2224 for (i = 0; i < FIRST_REF_NODE; i++)
2226 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2227 fprintf (dump_file,
2228 "Equivalence classes for %s node id %d:%s are pointer: %d"
2229 ", location:%d\n",
2230 direct_node ? "Direct node" : "Indirect node", i,
2231 get_varinfo (i)->name,
2232 graph->pointer_label[si->node_mapping[i]],
2233 graph->loc_label[si->node_mapping[i]]);
2236 /* Quickly eliminate our non-pointer variables. */
2238 for (i = 0; i < FIRST_REF_NODE; i++)
2240 unsigned int node = si->node_mapping[i];
2242 if (graph->pointer_label[node] == 0)
2244 if (dump_file && (dump_flags & TDF_DETAILS))
2245 fprintf (dump_file,
2246 "%s is a non-pointer variable, eliminating edges.\n",
2247 get_varinfo (node)->name);
2248 stats.nonpointer_vars++;
2249 clear_edges_for_node (graph, node);
2253 return si;
2256 /* Free information that was only necessary for variable
2257 substitution. */
2259 static void
2260 free_var_substitution_info (struct scc_info *si)
2262 free_scc_info (si);
2263 free (graph->pointer_label);
2264 free (graph->loc_label);
2265 free (graph->pointed_by);
2266 free (graph->points_to);
2267 free (graph->eq_rep);
2268 sbitmap_free (graph->direct_nodes);
2269 htab_delete (pointer_equiv_class_table);
2270 htab_delete (location_equiv_class_table);
2271 bitmap_obstack_release (&iteration_obstack);
2274 /* Return an existing node that is equivalent to NODE, which has
2275 equivalence class LABEL, if one exists. Return NODE otherwise. */
2277 static unsigned int
2278 find_equivalent_node (constraint_graph_t graph,
2279 unsigned int node, unsigned int label)
2281 /* If the address version of this variable is unused, we can
2282 substitute it for anything else with the same label.
2283 Otherwise, we know the pointers are equivalent, but not the
2284 locations, and we can unite them later. */
2286 if (!bitmap_bit_p (graph->address_taken, node))
2288 gcc_assert (label < graph->size);
2290 if (graph->eq_rep[label] != -1)
2292 /* Unify the two variables since we know they are equivalent. */
2293 if (unite (graph->eq_rep[label], node))
2294 unify_nodes (graph, graph->eq_rep[label], node, false);
2295 return graph->eq_rep[label];
2297 else
2299 graph->eq_rep[label] = node;
2300 graph->pe_rep[label] = node;
2303 else
2305 gcc_assert (label < graph->size);
2306 graph->pe[node] = label;
2307 if (graph->pe_rep[label] == -1)
2308 graph->pe_rep[label] = node;
2311 return node;
2314 /* Unite pointer equivalent but not location equivalent nodes in
2315 GRAPH. This may only be performed once variable substitution is
2316 finished. */
2318 static void
2319 unite_pointer_equivalences (constraint_graph_t graph)
2321 unsigned int i;
2323 /* Go through the pointer equivalences and unite them to their
2324 representative, if they aren't already. */
2325 for (i = 0; i < FIRST_REF_NODE; i++)
2327 unsigned int label = graph->pe[i];
2328 if (label)
2330 int label_rep = graph->pe_rep[label];
2332 if (label_rep == -1)
2333 continue;
2335 label_rep = find (label_rep);
2336 if (label_rep >= 0 && unite (label_rep, find (i)))
2337 unify_nodes (graph, label_rep, i, false);
2342 /* Move complex constraints to the GRAPH nodes they belong to. */
2344 static void
2345 move_complex_constraints (constraint_graph_t graph)
2347 int i;
2348 constraint_t c;
2350 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2352 if (c)
2354 struct constraint_expr lhs = c->lhs;
2355 struct constraint_expr rhs = c->rhs;
2357 if (lhs.type == DEREF)
2359 insert_into_complex (graph, lhs.var, c);
2361 else if (rhs.type == DEREF)
2363 if (!(get_varinfo (lhs.var)->is_special_var))
2364 insert_into_complex (graph, rhs.var, c);
2366 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2367 && (lhs.offset != 0 || rhs.offset != 0))
2369 insert_into_complex (graph, rhs.var, c);
2376 /* Optimize and rewrite complex constraints while performing
2377 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2378 result of perform_variable_substitution. */
2380 static void
2381 rewrite_constraints (constraint_graph_t graph,
2382 struct scc_info *si)
2384 int i;
2385 unsigned int j;
2386 constraint_t c;
2388 for (j = 0; j < graph->size; j++)
2389 gcc_assert (find (j) == j);
2391 FOR_EACH_VEC_ELT (constraint_t, constraints, i, c)
2393 struct constraint_expr lhs = c->lhs;
2394 struct constraint_expr rhs = c->rhs;
2395 unsigned int lhsvar = find (lhs.var);
2396 unsigned int rhsvar = find (rhs.var);
2397 unsigned int lhsnode, rhsnode;
2398 unsigned int lhslabel, rhslabel;
2400 lhsnode = si->node_mapping[lhsvar];
2401 rhsnode = si->node_mapping[rhsvar];
2402 lhslabel = graph->pointer_label[lhsnode];
2403 rhslabel = graph->pointer_label[rhsnode];
2405 /* See if it is really a non-pointer variable, and if so, ignore
2406 the constraint. */
2407 if (lhslabel == 0)
2409 if (dump_file && (dump_flags & TDF_DETAILS))
2412 fprintf (dump_file, "%s is a non-pointer variable,"
2413 "ignoring constraint:",
2414 get_varinfo (lhs.var)->name);
2415 dump_constraint (dump_file, c);
2416 fprintf (dump_file, "\n");
2418 VEC_replace (constraint_t, constraints, i, NULL);
2419 continue;
2422 if (rhslabel == 0)
2424 if (dump_file && (dump_flags & TDF_DETAILS))
2427 fprintf (dump_file, "%s is a non-pointer variable,"
2428 "ignoring constraint:",
2429 get_varinfo (rhs.var)->name);
2430 dump_constraint (dump_file, c);
2431 fprintf (dump_file, "\n");
2433 VEC_replace (constraint_t, constraints, i, NULL);
2434 continue;
2437 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2438 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2439 c->lhs.var = lhsvar;
2440 c->rhs.var = rhsvar;
2445 /* Eliminate indirect cycles involving NODE. Return true if NODE was
2446 part of an SCC, false otherwise. */
2448 static bool
2449 eliminate_indirect_cycles (unsigned int node)
2451 if (graph->indirect_cycles[node] != -1
2452 && !bitmap_empty_p (get_varinfo (node)->solution))
2454 unsigned int i;
2455 VEC(unsigned,heap) *queue = NULL;
2456 int queuepos;
2457 unsigned int to = find (graph->indirect_cycles[node]);
2458 bitmap_iterator bi;
2460 /* We can't touch the solution set and call unify_nodes
2461 at the same time, because unify_nodes is going to do
2462 bitmap unions into it. */
2464 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2466 if (find (i) == i && i != to)
2468 if (unite (to, i))
2469 VEC_safe_push (unsigned, heap, queue, i);
2473 for (queuepos = 0;
2474 VEC_iterate (unsigned, queue, queuepos, i);
2475 queuepos++)
2477 unify_nodes (graph, to, i, true);
2479 VEC_free (unsigned, heap, queue);
2480 return true;
2482 return false;
2485 /* Solve the constraint graph GRAPH using our worklist solver.
2486 This is based on the PW* family of solvers from the "Efficient Field
2487 Sensitive Pointer Analysis for C" paper.
2488 It works by iterating over all the graph nodes, processing the complex
2489 constraints and propagating the copy constraints, until everything stops
2490 changed. This corresponds to steps 6-8 in the solving list given above. */
2492 static void
2493 solve_graph (constraint_graph_t graph)
2495 unsigned int size = graph->size;
2496 unsigned int i;
2497 bitmap pts;
2499 changed = BITMAP_ALLOC (NULL);
2501 /* Mark all initial non-collapsed nodes as changed. */
2502 for (i = 0; i < size; i++)
2504 varinfo_t ivi = get_varinfo (i);
2505 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2506 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2507 || VEC_length (constraint_t, graph->complex[i]) > 0))
2508 bitmap_set_bit (changed, i);
2511 /* Allocate a bitmap to be used to store the changed bits. */
2512 pts = BITMAP_ALLOC (&pta_obstack);
2514 while (!bitmap_empty_p (changed))
2516 unsigned int i;
2517 struct topo_info *ti = init_topo_info ();
2518 stats.iterations++;
2520 bitmap_obstack_initialize (&iteration_obstack);
2522 compute_topo_order (graph, ti);
2524 while (VEC_length (unsigned, ti->topo_order) != 0)
2527 i = VEC_pop (unsigned, ti->topo_order);
2529 /* If this variable is not a representative, skip it. */
2530 if (find (i) != i)
2531 continue;
2533 /* In certain indirect cycle cases, we may merge this
2534 variable to another. */
2535 if (eliminate_indirect_cycles (i) && find (i) != i)
2536 continue;
2538 /* If the node has changed, we need to process the
2539 complex constraints and outgoing edges again. */
2540 if (bitmap_clear_bit (changed, i))
2542 unsigned int j;
2543 constraint_t c;
2544 bitmap solution;
2545 VEC(constraint_t,heap) *complex = graph->complex[i];
2546 varinfo_t vi = get_varinfo (i);
2547 bool solution_empty;
2549 /* Compute the changed set of solution bits. */
2550 if (vi->oldsolution)
2551 bitmap_and_compl (pts, vi->solution, vi->oldsolution);
2552 else
2553 bitmap_copy (pts, vi->solution);
2555 if (bitmap_empty_p (pts))
2556 continue;
2558 if (vi->oldsolution)
2559 bitmap_ior_into (vi->oldsolution, pts);
2560 else
2562 vi->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
2563 bitmap_copy (vi->oldsolution, pts);
2566 solution = vi->solution;
2567 solution_empty = bitmap_empty_p (solution);
2569 /* Process the complex constraints */
2570 FOR_EACH_VEC_ELT (constraint_t, complex, j, c)
2572 /* XXX: This is going to unsort the constraints in
2573 some cases, which will occasionally add duplicate
2574 constraints during unification. This does not
2575 affect correctness. */
2576 c->lhs.var = find (c->lhs.var);
2577 c->rhs.var = find (c->rhs.var);
2579 /* The only complex constraint that can change our
2580 solution to non-empty, given an empty solution,
2581 is a constraint where the lhs side is receiving
2582 some set from elsewhere. */
2583 if (!solution_empty || c->lhs.type != DEREF)
2584 do_complex_constraint (graph, c, pts);
2587 solution_empty = bitmap_empty_p (solution);
2589 if (!solution_empty)
2591 bitmap_iterator bi;
2592 unsigned eff_escaped_id = find (escaped_id);
2594 /* Propagate solution to all successors. */
2595 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
2596 0, j, bi)
2598 bitmap tmp;
2599 bool flag;
2601 unsigned int to = find (j);
2602 tmp = get_varinfo (to)->solution;
2603 flag = false;
2605 /* Don't try to propagate to ourselves. */
2606 if (to == i)
2607 continue;
2609 /* If we propagate from ESCAPED use ESCAPED as
2610 placeholder. */
2611 if (i == eff_escaped_id)
2612 flag = bitmap_set_bit (tmp, escaped_id);
2613 else
2614 flag = set_union_with_increment (tmp, pts, 0);
2616 if (flag)
2618 get_varinfo (to)->solution = tmp;
2619 bitmap_set_bit (changed, to);
2625 free_topo_info (ti);
2626 bitmap_obstack_release (&iteration_obstack);
2629 BITMAP_FREE (pts);
2630 BITMAP_FREE (changed);
2631 bitmap_obstack_release (&oldpta_obstack);
2634 /* Map from trees to variable infos. */
2635 static struct pointer_map_t *vi_for_tree;
2638 /* Insert ID as the variable id for tree T in the vi_for_tree map. */
2640 static void
2641 insert_vi_for_tree (tree t, varinfo_t vi)
2643 void **slot = pointer_map_insert (vi_for_tree, t);
2644 gcc_assert (vi);
2645 gcc_assert (*slot == NULL);
2646 *slot = vi;
2649 /* Find the variable info for tree T in VI_FOR_TREE. If T does not
2650 exist in the map, return NULL, otherwise, return the varinfo we found. */
2652 static varinfo_t
2653 lookup_vi_for_tree (tree t)
2655 void **slot = pointer_map_contains (vi_for_tree, t);
2656 if (slot == NULL)
2657 return NULL;
2659 return (varinfo_t) *slot;
2662 /* Return a printable name for DECL */
2664 static const char *
2665 alias_get_name (tree decl)
2667 const char *res;
2668 char *temp;
2669 int num_printed = 0;
2671 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2672 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2673 else
2674 res= get_name (decl);
2675 if (res != NULL)
2676 return res;
2678 res = "NULL";
2679 if (!dump_file)
2680 return res;
2682 if (TREE_CODE (decl) == SSA_NAME)
2684 num_printed = asprintf (&temp, "%s_%u",
2685 alias_get_name (SSA_NAME_VAR (decl)),
2686 SSA_NAME_VERSION (decl));
2688 else if (DECL_P (decl))
2690 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2692 if (num_printed > 0)
2694 res = ggc_strdup (temp);
2695 free (temp);
2697 return res;
2700 /* Find the variable id for tree T in the map.
2701 If T doesn't exist in the map, create an entry for it and return it. */
2703 static varinfo_t
2704 get_vi_for_tree (tree t)
2706 void **slot = pointer_map_contains (vi_for_tree, t);
2707 if (slot == NULL)
2708 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
2710 return (varinfo_t) *slot;
2713 /* Get a scalar constraint expression for a new temporary variable. */
2715 static struct constraint_expr
2716 new_scalar_tmp_constraint_exp (const char *name)
2718 struct constraint_expr tmp;
2719 varinfo_t vi;
2721 vi = new_var_info (NULL_TREE, name);
2722 vi->offset = 0;
2723 vi->size = -1;
2724 vi->fullsize = -1;
2725 vi->is_full_var = 1;
2727 tmp.var = vi->id;
2728 tmp.type = SCALAR;
2729 tmp.offset = 0;
2731 return tmp;
2734 /* Get a constraint expression vector from an SSA_VAR_P node.
2735 If address_p is true, the result will be taken its address of. */
2737 static void
2738 get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2740 struct constraint_expr cexpr;
2741 varinfo_t vi;
2743 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
2744 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2746 /* For parameters, get at the points-to set for the actual parm
2747 decl. */
2748 if (TREE_CODE (t) == SSA_NAME
2749 && (TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
2750 || TREE_CODE (SSA_NAME_VAR (t)) == RESULT_DECL)
2751 && SSA_NAME_IS_DEFAULT_DEF (t))
2753 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2754 return;
2757 /* For global variables resort to the alias target. */
2758 if (TREE_CODE (t) == VAR_DECL
2759 && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
2761 struct varpool_node *node = varpool_get_node (t);
2762 if (node && node->alias)
2764 node = varpool_variable_node (node, NULL);
2765 t = node->decl;
2769 vi = get_vi_for_tree (t);
2770 cexpr.var = vi->id;
2771 cexpr.type = SCALAR;
2772 cexpr.offset = 0;
2773 /* If we determine the result is "anything", and we know this is readonly,
2774 say it points to readonly memory instead. */
2775 if (cexpr.var == anything_id && TREE_READONLY (t))
2777 gcc_unreachable ();
2778 cexpr.type = ADDRESSOF;
2779 cexpr.var = readonly_id;
2782 /* If we are not taking the address of the constraint expr, add all
2783 sub-fiels of the variable as well. */
2784 if (!address_p
2785 && !vi->is_full_var)
2787 for (; vi; vi = vi->next)
2789 cexpr.var = vi->id;
2790 VEC_safe_push (ce_s, heap, *results, &cexpr);
2792 return;
2795 VEC_safe_push (ce_s, heap, *results, &cexpr);
2798 /* Process constraint T, performing various simplifications and then
2799 adding it to our list of overall constraints. */
2801 static void
2802 process_constraint (constraint_t t)
2804 struct constraint_expr rhs = t->rhs;
2805 struct constraint_expr lhs = t->lhs;
2807 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2808 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2810 /* If we didn't get any useful constraint from the lhs we get
2811 &ANYTHING as fallback from get_constraint_for. Deal with
2812 it here by turning it into *ANYTHING. */
2813 if (lhs.type == ADDRESSOF
2814 && lhs.var == anything_id)
2815 lhs.type = DEREF;
2817 /* ADDRESSOF on the lhs is invalid. */
2818 gcc_assert (lhs.type != ADDRESSOF);
2820 /* We shouldn't add constraints from things that cannot have pointers.
2821 It's not completely trivial to avoid in the callers, so do it here. */
2822 if (rhs.type != ADDRESSOF
2823 && !get_varinfo (rhs.var)->may_have_pointers)
2824 return;
2826 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2827 if (!get_varinfo (lhs.var)->may_have_pointers)
2828 return;
2830 /* This can happen in our IR with things like n->a = *p */
2831 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
2833 /* Split into tmp = *rhs, *lhs = tmp */
2834 struct constraint_expr tmplhs;
2835 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
2836 process_constraint (new_constraint (tmplhs, rhs));
2837 process_constraint (new_constraint (lhs, tmplhs));
2839 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2841 /* Split into tmp = &rhs, *lhs = tmp */
2842 struct constraint_expr tmplhs;
2843 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
2844 process_constraint (new_constraint (tmplhs, rhs));
2845 process_constraint (new_constraint (lhs, tmplhs));
2847 else
2849 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
2850 VEC_safe_push (constraint_t, heap, constraints, t);
2855 /* Return the position, in bits, of FIELD_DECL from the beginning of its
2856 structure. */
2858 static HOST_WIDE_INT
2859 bitpos_of_field (const tree fdecl)
2861 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2862 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
2863 return -1;
2865 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * BITS_PER_UNIT
2866 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
2870 /* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2871 resulting constraint expressions in *RESULTS. */
2873 static void
2874 get_constraint_for_ptr_offset (tree ptr, tree offset,
2875 VEC (ce_s, heap) **results)
2877 struct constraint_expr c;
2878 unsigned int j, n;
2879 HOST_WIDE_INT rhsoffset;
2881 /* If we do not do field-sensitive PTA adding offsets to pointers
2882 does not change the points-to solution. */
2883 if (!use_field_sensitive)
2885 get_constraint_for_rhs (ptr, results);
2886 return;
2889 /* If the offset is not a non-negative integer constant that fits
2890 in a HOST_WIDE_INT, we have to fall back to a conservative
2891 solution which includes all sub-fields of all pointed-to
2892 variables of ptr. */
2893 if (offset == NULL_TREE
2894 || TREE_CODE (offset) != INTEGER_CST)
2895 rhsoffset = UNKNOWN_OFFSET;
2896 else
2898 /* Sign-extend the offset. */
2899 double_int soffset
2900 = double_int_sext (tree_to_double_int (offset),
2901 TYPE_PRECISION (TREE_TYPE (offset)));
2902 if (!double_int_fits_in_shwi_p (soffset))
2903 rhsoffset = UNKNOWN_OFFSET;
2904 else
2906 /* Make sure the bit-offset also fits. */
2907 HOST_WIDE_INT rhsunitoffset = soffset.low;
2908 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
2909 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
2910 rhsoffset = UNKNOWN_OFFSET;
2914 get_constraint_for_rhs (ptr, results);
2915 if (rhsoffset == 0)
2916 return;
2918 /* As we are eventually appending to the solution do not use
2919 VEC_iterate here. */
2920 n = VEC_length (ce_s, *results);
2921 for (j = 0; j < n; j++)
2923 varinfo_t curr;
2924 c = *VEC_index (ce_s, *results, j);
2925 curr = get_varinfo (c.var);
2927 if (c.type == ADDRESSOF
2928 /* If this varinfo represents a full variable just use it. */
2929 && curr->is_full_var)
2930 c.offset = 0;
2931 else if (c.type == ADDRESSOF
2932 /* If we do not know the offset add all subfields. */
2933 && rhsoffset == UNKNOWN_OFFSET)
2935 varinfo_t temp = lookup_vi_for_tree (curr->decl);
2938 struct constraint_expr c2;
2939 c2.var = temp->id;
2940 c2.type = ADDRESSOF;
2941 c2.offset = 0;
2942 if (c2.var != c.var)
2943 VEC_safe_push (ce_s, heap, *results, &c2);
2944 temp = temp->next;
2946 while (temp);
2948 else if (c.type == ADDRESSOF)
2950 varinfo_t temp;
2951 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
2953 /* Search the sub-field which overlaps with the
2954 pointed-to offset. If the result is outside of the variable
2955 we have to provide a conservative result, as the variable is
2956 still reachable from the resulting pointer (even though it
2957 technically cannot point to anything). The last and first
2958 sub-fields are such conservative results.
2959 ??? If we always had a sub-field for &object + 1 then
2960 we could represent this in a more precise way. */
2961 if (rhsoffset < 0
2962 && curr->offset < offset)
2963 offset = 0;
2964 temp = first_or_preceding_vi_for_offset (curr, offset);
2966 /* If the found variable is not exactly at the pointed to
2967 result, we have to include the next variable in the
2968 solution as well. Otherwise two increments by offset / 2
2969 do not result in the same or a conservative superset
2970 solution. */
2971 if (temp->offset != offset
2972 && temp->next != NULL)
2974 struct constraint_expr c2;
2975 c2.var = temp->next->id;
2976 c2.type = ADDRESSOF;
2977 c2.offset = 0;
2978 VEC_safe_push (ce_s, heap, *results, &c2);
2980 c.var = temp->id;
2981 c.offset = 0;
2983 else
2984 c.offset = rhsoffset;
2986 VEC_replace (ce_s, *results, j, &c);
2991 /* Given a COMPONENT_REF T, return the constraint_expr vector for it.
2992 If address_p is true the result will be taken its address of.
2993 If lhs_p is true then the constraint expression is assumed to be used
2994 as the lhs. */
2996 static void
2997 get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
2998 bool address_p, bool lhs_p)
3000 tree orig_t = t;
3001 HOST_WIDE_INT bitsize = -1;
3002 HOST_WIDE_INT bitmaxsize = -1;
3003 HOST_WIDE_INT bitpos;
3004 tree forzero;
3005 struct constraint_expr *result;
3007 /* Some people like to do cute things like take the address of
3008 &0->a.b */
3009 forzero = t;
3010 while (handled_component_p (forzero)
3011 || INDIRECT_REF_P (forzero)
3012 || TREE_CODE (forzero) == MEM_REF)
3013 forzero = TREE_OPERAND (forzero, 0);
3015 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
3017 struct constraint_expr temp;
3019 temp.offset = 0;
3020 temp.var = integer_id;
3021 temp.type = SCALAR;
3022 VEC_safe_push (ce_s, heap, *results, &temp);
3023 return;
3026 /* Handle type-punning through unions. If we are extracting a pointer
3027 from a union via a possibly type-punning access that pointer
3028 points to anything, similar to a conversion of an integer to
3029 a pointer. */
3030 if (!lhs_p)
3032 tree u;
3033 for (u = t;
3034 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
3035 u = TREE_OPERAND (u, 0))
3036 if (TREE_CODE (u) == COMPONENT_REF
3037 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
3039 struct constraint_expr temp;
3041 temp.offset = 0;
3042 temp.var = anything_id;
3043 temp.type = ADDRESSOF;
3044 VEC_safe_push (ce_s, heap, *results, &temp);
3045 return;
3049 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
3051 /* Pretend to take the address of the base, we'll take care of
3052 adding the required subset of sub-fields below. */
3053 get_constraint_for_1 (t, results, true, lhs_p);
3054 gcc_assert (VEC_length (ce_s, *results) == 1);
3055 result = VEC_last (ce_s, *results);
3057 if (result->type == SCALAR
3058 && get_varinfo (result->var)->is_full_var)
3059 /* For single-field vars do not bother about the offset. */
3060 result->offset = 0;
3061 else if (result->type == SCALAR)
3063 /* In languages like C, you can access one past the end of an
3064 array. You aren't allowed to dereference it, so we can
3065 ignore this constraint. When we handle pointer subtraction,
3066 we may have to do something cute here. */
3068 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
3069 && bitmaxsize != 0)
3071 /* It's also not true that the constraint will actually start at the
3072 right offset, it may start in some padding. We only care about
3073 setting the constraint to the first actual field it touches, so
3074 walk to find it. */
3075 struct constraint_expr cexpr = *result;
3076 varinfo_t curr;
3077 VEC_pop (ce_s, *results);
3078 cexpr.offset = 0;
3079 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
3081 if (ranges_overlap_p (curr->offset, curr->size,
3082 bitpos, bitmaxsize))
3084 cexpr.var = curr->id;
3085 VEC_safe_push (ce_s, heap, *results, &cexpr);
3086 if (address_p)
3087 break;
3090 /* If we are going to take the address of this field then
3091 to be able to compute reachability correctly add at least
3092 the last field of the variable. */
3093 if (address_p
3094 && VEC_length (ce_s, *results) == 0)
3096 curr = get_varinfo (cexpr.var);
3097 while (curr->next != NULL)
3098 curr = curr->next;
3099 cexpr.var = curr->id;
3100 VEC_safe_push (ce_s, heap, *results, &cexpr);
3102 else if (VEC_length (ce_s, *results) == 0)
3103 /* Assert that we found *some* field there. The user couldn't be
3104 accessing *only* padding. */
3105 /* Still the user could access one past the end of an array
3106 embedded in a struct resulting in accessing *only* padding. */
3107 /* Or accessing only padding via type-punning to a type
3108 that has a filed just in padding space. */
3110 cexpr.type = SCALAR;
3111 cexpr.var = anything_id;
3112 cexpr.offset = 0;
3113 VEC_safe_push (ce_s, heap, *results, &cexpr);
3116 else if (bitmaxsize == 0)
3118 if (dump_file && (dump_flags & TDF_DETAILS))
3119 fprintf (dump_file, "Access to zero-sized part of variable,"
3120 "ignoring\n");
3122 else
3123 if (dump_file && (dump_flags & TDF_DETAILS))
3124 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
3126 else if (result->type == DEREF)
3128 /* If we do not know exactly where the access goes say so. Note
3129 that only for non-structure accesses we know that we access
3130 at most one subfiled of any variable. */
3131 if (bitpos == -1
3132 || bitsize != bitmaxsize
3133 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t))
3134 || result->offset == UNKNOWN_OFFSET)
3135 result->offset = UNKNOWN_OFFSET;
3136 else
3137 result->offset += bitpos;
3139 else if (result->type == ADDRESSOF)
3141 /* We can end up here for component references on a
3142 VIEW_CONVERT_EXPR <>(&foobar). */
3143 result->type = SCALAR;
3144 result->var = anything_id;
3145 result->offset = 0;
3147 else
3148 gcc_unreachable ();
3152 /* Dereference the constraint expression CONS, and return the result.
3153 DEREF (ADDRESSOF) = SCALAR
3154 DEREF (SCALAR) = DEREF
3155 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3156 This is needed so that we can handle dereferencing DEREF constraints. */
3158 static void
3159 do_deref (VEC (ce_s, heap) **constraints)
3161 struct constraint_expr *c;
3162 unsigned int i = 0;
3164 FOR_EACH_VEC_ELT (ce_s, *constraints, i, c)
3166 if (c->type == SCALAR)
3167 c->type = DEREF;
3168 else if (c->type == ADDRESSOF)
3169 c->type = SCALAR;
3170 else if (c->type == DEREF)
3172 struct constraint_expr tmplhs;
3173 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
3174 process_constraint (new_constraint (tmplhs, *c));
3175 c->var = tmplhs.var;
3177 else
3178 gcc_unreachable ();
3182 /* Given a tree T, return the constraint expression for taking the
3183 address of it. */
3185 static void
3186 get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3188 struct constraint_expr *c;
3189 unsigned int i;
3191 get_constraint_for_1 (t, results, true, true);
3193 FOR_EACH_VEC_ELT (ce_s, *results, i, c)
3195 if (c->type == DEREF)
3196 c->type = SCALAR;
3197 else
3198 c->type = ADDRESSOF;
3202 /* Given a tree T, return the constraint expression for it. */
3204 static void
3205 get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p,
3206 bool lhs_p)
3208 struct constraint_expr temp;
3210 /* x = integer is all glommed to a single variable, which doesn't
3211 point to anything by itself. That is, of course, unless it is an
3212 integer constant being treated as a pointer, in which case, we
3213 will return that this is really the addressof anything. This
3214 happens below, since it will fall into the default case. The only
3215 case we know something about an integer treated like a pointer is
3216 when it is the NULL pointer, and then we just say it points to
3217 NULL.
3219 Do not do that if -fno-delete-null-pointer-checks though, because
3220 in that case *NULL does not fail, so it _should_ alias *anything.
3221 It is not worth adding a new option or renaming the existing one,
3222 since this case is relatively obscure. */
3223 if ((TREE_CODE (t) == INTEGER_CST
3224 && integer_zerop (t))
3225 /* The only valid CONSTRUCTORs in gimple with pointer typed
3226 elements are zero-initializer. But in IPA mode we also
3227 process global initializers, so verify at least. */
3228 || (TREE_CODE (t) == CONSTRUCTOR
3229 && CONSTRUCTOR_NELTS (t) == 0))
3231 if (flag_delete_null_pointer_checks)
3232 temp.var = nothing_id;
3233 else
3234 temp.var = nonlocal_id;
3235 temp.type = ADDRESSOF;
3236 temp.offset = 0;
3237 VEC_safe_push (ce_s, heap, *results, &temp);
3238 return;
3241 /* String constants are read-only. */
3242 if (TREE_CODE (t) == STRING_CST)
3244 temp.var = readonly_id;
3245 temp.type = SCALAR;
3246 temp.offset = 0;
3247 VEC_safe_push (ce_s, heap, *results, &temp);
3248 return;
3251 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3253 case tcc_expression:
3255 switch (TREE_CODE (t))
3257 case ADDR_EXPR:
3258 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3259 return;
3260 default:;
3262 break;
3264 case tcc_reference:
3266 switch (TREE_CODE (t))
3268 case MEM_REF:
3270 struct constraint_expr cs;
3271 varinfo_t vi, curr;
3272 get_constraint_for_ptr_offset (TREE_OPERAND (t, 0),
3273 TREE_OPERAND (t, 1), results);
3274 do_deref (results);
3276 /* If we are not taking the address then make sure to process
3277 all subvariables we might access. */
3278 if (address_p)
3279 return;
3281 cs = *VEC_last (ce_s, *results);
3282 if (cs.type == DEREF)
3284 /* For dereferences this means we have to defer it
3285 to solving time. */
3286 VEC_last (ce_s, *results)->offset = UNKNOWN_OFFSET;
3287 return;
3289 if (cs.type != SCALAR)
3290 return;
3292 vi = get_varinfo (cs.var);
3293 curr = vi->next;
3294 if (!vi->is_full_var
3295 && curr)
3297 unsigned HOST_WIDE_INT size;
3298 if (host_integerp (TYPE_SIZE (TREE_TYPE (t)), 1))
3299 size = TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (t)));
3300 else
3301 size = -1;
3302 for (; curr; curr = curr->next)
3304 if (curr->offset - vi->offset < size)
3306 cs.var = curr->id;
3307 VEC_safe_push (ce_s, heap, *results, &cs);
3309 else
3310 break;
3313 return;
3315 case ARRAY_REF:
3316 case ARRAY_RANGE_REF:
3317 case COMPONENT_REF:
3318 get_constraint_for_component_ref (t, results, address_p, lhs_p);
3319 return;
3320 case VIEW_CONVERT_EXPR:
3321 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p,
3322 lhs_p);
3323 return;
3324 /* We are missing handling for TARGET_MEM_REF here. */
3325 default:;
3327 break;
3329 case tcc_exceptional:
3331 switch (TREE_CODE (t))
3333 case SSA_NAME:
3335 get_constraint_for_ssa_var (t, results, address_p);
3336 return;
3338 case CONSTRUCTOR:
3340 unsigned int i;
3341 tree val;
3342 VEC (ce_s, heap) *tmp = NULL;
3343 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3345 struct constraint_expr *rhsp;
3346 unsigned j;
3347 get_constraint_for_1 (val, &tmp, address_p, lhs_p);
3348 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
3349 VEC_safe_push (ce_s, heap, *results, rhsp);
3350 VEC_truncate (ce_s, tmp, 0);
3352 VEC_free (ce_s, heap, tmp);
3353 /* We do not know whether the constructor was complete,
3354 so technically we have to add &NOTHING or &ANYTHING
3355 like we do for an empty constructor as well. */
3356 return;
3358 default:;
3360 break;
3362 case tcc_declaration:
3364 get_constraint_for_ssa_var (t, results, address_p);
3365 return;
3367 case tcc_constant:
3369 /* We cannot refer to automatic variables through constants. */
3370 temp.type = ADDRESSOF;
3371 temp.var = nonlocal_id;
3372 temp.offset = 0;
3373 VEC_safe_push (ce_s, heap, *results, &temp);
3374 return;
3376 default:;
3379 /* The default fallback is a constraint from anything. */
3380 temp.type = ADDRESSOF;
3381 temp.var = anything_id;
3382 temp.offset = 0;
3383 VEC_safe_push (ce_s, heap, *results, &temp);
3386 /* Given a gimple tree T, return the constraint expression vector for it. */
3388 static void
3389 get_constraint_for (tree t, VEC (ce_s, heap) **results)
3391 gcc_assert (VEC_length (ce_s, *results) == 0);
3393 get_constraint_for_1 (t, results, false, true);
3396 /* Given a gimple tree T, return the constraint expression vector for it
3397 to be used as the rhs of a constraint. */
3399 static void
3400 get_constraint_for_rhs (tree t, VEC (ce_s, heap) **results)
3402 gcc_assert (VEC_length (ce_s, *results) == 0);
3404 get_constraint_for_1 (t, results, false, false);
3408 /* Efficiently generates constraints from all entries in *RHSC to all
3409 entries in *LHSC. */
3411 static void
3412 process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3414 struct constraint_expr *lhsp, *rhsp;
3415 unsigned i, j;
3417 if (VEC_length (ce_s, lhsc) <= 1
3418 || VEC_length (ce_s, rhsc) <= 1)
3420 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3421 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
3422 process_constraint (new_constraint (*lhsp, *rhsp));
3424 else
3426 struct constraint_expr tmp;
3427 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
3428 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
3429 process_constraint (new_constraint (tmp, *rhsp));
3430 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
3431 process_constraint (new_constraint (*lhsp, tmp));
3435 /* Handle aggregate copies by expanding into copies of the respective
3436 fields of the structures. */
3438 static void
3439 do_structure_copy (tree lhsop, tree rhsop)
3441 struct constraint_expr *lhsp, *rhsp;
3442 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
3443 unsigned j;
3445 get_constraint_for (lhsop, &lhsc);
3446 get_constraint_for_rhs (rhsop, &rhsc);
3447 lhsp = VEC_index (ce_s, lhsc, 0);
3448 rhsp = VEC_index (ce_s, rhsc, 0);
3449 if (lhsp->type == DEREF
3450 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3451 || rhsp->type == DEREF)
3453 if (lhsp->type == DEREF)
3455 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3456 lhsp->offset = UNKNOWN_OFFSET;
3458 if (rhsp->type == DEREF)
3460 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3461 rhsp->offset = UNKNOWN_OFFSET;
3463 process_all_all_constraints (lhsc, rhsc);
3465 else if (lhsp->type == SCALAR
3466 && (rhsp->type == SCALAR
3467 || rhsp->type == ADDRESSOF))
3469 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3470 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3471 unsigned k = 0;
3472 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3473 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
3474 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
3476 varinfo_t lhsv, rhsv;
3477 rhsp = VEC_index (ce_s, rhsc, k);
3478 lhsv = get_varinfo (lhsp->var);
3479 rhsv = get_varinfo (rhsp->var);
3480 if (lhsv->may_have_pointers
3481 && (lhsv->is_full_var
3482 || rhsv->is_full_var
3483 || ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3484 rhsv->offset + lhsoffset, rhsv->size)))
3485 process_constraint (new_constraint (*lhsp, *rhsp));
3486 if (!rhsv->is_full_var
3487 && (lhsv->is_full_var
3488 || (lhsv->offset + rhsoffset + lhsv->size
3489 > rhsv->offset + lhsoffset + rhsv->size)))
3491 ++k;
3492 if (k >= VEC_length (ce_s, rhsc))
3493 break;
3495 else
3496 ++j;
3499 else
3500 gcc_unreachable ();
3502 VEC_free (ce_s, heap, lhsc);
3503 VEC_free (ce_s, heap, rhsc);
3506 /* Create constraints ID = { rhsc }. */
3508 static void
3509 make_constraints_to (unsigned id, VEC(ce_s, heap) *rhsc)
3511 struct constraint_expr *c;
3512 struct constraint_expr includes;
3513 unsigned int j;
3515 includes.var = id;
3516 includes.offset = 0;
3517 includes.type = SCALAR;
3519 FOR_EACH_VEC_ELT (ce_s, rhsc, j, c)
3520 process_constraint (new_constraint (includes, *c));
3523 /* Create a constraint ID = OP. */
3525 static void
3526 make_constraint_to (unsigned id, tree op)
3528 VEC(ce_s, heap) *rhsc = NULL;
3529 get_constraint_for_rhs (op, &rhsc);
3530 make_constraints_to (id, rhsc);
3531 VEC_free (ce_s, heap, rhsc);
3534 /* Create a constraint ID = &FROM. */
3536 static void
3537 make_constraint_from (varinfo_t vi, int from)
3539 struct constraint_expr lhs, rhs;
3541 lhs.var = vi->id;
3542 lhs.offset = 0;
3543 lhs.type = SCALAR;
3545 rhs.var = from;
3546 rhs.offset = 0;
3547 rhs.type = ADDRESSOF;
3548 process_constraint (new_constraint (lhs, rhs));
3551 /* Create a constraint ID = FROM. */
3553 static void
3554 make_copy_constraint (varinfo_t vi, int from)
3556 struct constraint_expr lhs, rhs;
3558 lhs.var = vi->id;
3559 lhs.offset = 0;
3560 lhs.type = SCALAR;
3562 rhs.var = from;
3563 rhs.offset = 0;
3564 rhs.type = SCALAR;
3565 process_constraint (new_constraint (lhs, rhs));
3568 /* Make constraints necessary to make OP escape. */
3570 static void
3571 make_escape_constraint (tree op)
3573 make_constraint_to (escaped_id, op);
3576 /* Add constraints to that the solution of VI is transitively closed. */
3578 static void
3579 make_transitive_closure_constraints (varinfo_t vi)
3581 struct constraint_expr lhs, rhs;
3583 /* VAR = *VAR; */
3584 lhs.type = SCALAR;
3585 lhs.var = vi->id;
3586 lhs.offset = 0;
3587 rhs.type = DEREF;
3588 rhs.var = vi->id;
3589 rhs.offset = 0;
3590 process_constraint (new_constraint (lhs, rhs));
3592 /* VAR = VAR + UNKNOWN; */
3593 lhs.type = SCALAR;
3594 lhs.var = vi->id;
3595 lhs.offset = 0;
3596 rhs.type = SCALAR;
3597 rhs.var = vi->id;
3598 rhs.offset = UNKNOWN_OFFSET;
3599 process_constraint (new_constraint (lhs, rhs));
3602 /* Temporary storage for fake var decls. */
3603 struct obstack fake_var_decl_obstack;
3605 /* Build a fake VAR_DECL acting as referrer to a DECL_UID. */
3607 static tree
3608 build_fake_var_decl (tree type)
3610 tree decl = (tree) XOBNEW (&fake_var_decl_obstack, struct tree_var_decl);
3611 memset (decl, 0, sizeof (struct tree_var_decl));
3612 TREE_SET_CODE (decl, VAR_DECL);
3613 TREE_TYPE (decl) = type;
3614 DECL_UID (decl) = allocate_decl_uid ();
3615 SET_DECL_PT_UID (decl, -1);
3616 layout_decl (decl, 0);
3617 return decl;
3620 /* Create a new artificial heap variable with NAME.
3621 Return the created variable. */
3623 static varinfo_t
3624 make_heapvar (const char *name)
3626 varinfo_t vi;
3627 tree heapvar;
3629 heapvar = build_fake_var_decl (ptr_type_node);
3630 DECL_EXTERNAL (heapvar) = 1;
3632 vi = new_var_info (heapvar, name);
3633 vi->is_artificial_var = true;
3634 vi->is_heap_var = true;
3635 vi->is_unknown_size_var = true;
3636 vi->offset = 0;
3637 vi->fullsize = ~0;
3638 vi->size = ~0;
3639 vi->is_full_var = true;
3640 insert_vi_for_tree (heapvar, vi);
3642 return vi;
3645 /* Create a new artificial heap variable with NAME and make a
3646 constraint from it to LHS. Return the created variable. */
3648 static varinfo_t
3649 make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3651 varinfo_t vi = make_heapvar (name);
3652 make_constraint_from (lhs, vi->id);
3654 return vi;
3657 /* Create a new artificial heap variable with NAME and make a
3658 constraint from it to LHS. Set flags according to a tag used
3659 for tracking restrict pointers. */
3661 static void
3662 make_constraint_from_restrict (varinfo_t lhs, const char *name)
3664 varinfo_t vi;
3665 vi = make_constraint_from_heapvar (lhs, name);
3666 vi->is_restrict_var = 1;
3667 vi->is_global_var = 0;
3668 vi->is_special_var = 1;
3669 vi->may_have_pointers = 0;
3672 /* In IPA mode there are varinfos for different aspects of reach
3673 function designator. One for the points-to set of the return
3674 value, one for the variables that are clobbered by the function,
3675 one for its uses and one for each parameter (including a single
3676 glob for remaining variadic arguments). */
3678 enum { fi_clobbers = 1, fi_uses = 2,
3679 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3681 /* Get a constraint for the requested part of a function designator FI
3682 when operating in IPA mode. */
3684 static struct constraint_expr
3685 get_function_part_constraint (varinfo_t fi, unsigned part)
3687 struct constraint_expr c;
3689 gcc_assert (in_ipa_mode);
3691 if (fi->id == anything_id)
3693 /* ??? We probably should have a ANYFN special variable. */
3694 c.var = anything_id;
3695 c.offset = 0;
3696 c.type = SCALAR;
3698 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3700 varinfo_t ai = first_vi_for_offset (fi, part);
3701 if (ai)
3702 c.var = ai->id;
3703 else
3704 c.var = anything_id;
3705 c.offset = 0;
3706 c.type = SCALAR;
3708 else
3710 c.var = fi->id;
3711 c.offset = part;
3712 c.type = DEREF;
3715 return c;
3718 /* For non-IPA mode, generate constraints necessary for a call on the
3719 RHS. */
3721 static void
3722 handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
3724 struct constraint_expr rhsc;
3725 unsigned i;
3726 bool returns_uses = false;
3728 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3730 tree arg = gimple_call_arg (stmt, i);
3731 int flags = gimple_call_arg_flags (stmt, i);
3733 /* If the argument is not used we can ignore it. */
3734 if (flags & EAF_UNUSED)
3735 continue;
3737 /* As we compute ESCAPED context-insensitive we do not gain
3738 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3739 set. The argument would still get clobbered through the
3740 escape solution.
3741 ??? We might get away with less (and more precise) constraints
3742 if using a temporary for transitively closing things. */
3743 if ((flags & EAF_NOCLOBBER)
3744 && (flags & EAF_NOESCAPE))
3746 varinfo_t uses = get_call_use_vi (stmt);
3747 if (!(flags & EAF_DIRECT))
3748 make_transitive_closure_constraints (uses);
3749 make_constraint_to (uses->id, arg);
3750 returns_uses = true;
3752 else if (flags & EAF_NOESCAPE)
3754 varinfo_t uses = get_call_use_vi (stmt);
3755 varinfo_t clobbers = get_call_clobber_vi (stmt);
3756 if (!(flags & EAF_DIRECT))
3758 make_transitive_closure_constraints (uses);
3759 make_transitive_closure_constraints (clobbers);
3761 make_constraint_to (uses->id, arg);
3762 make_constraint_to (clobbers->id, arg);
3763 returns_uses = true;
3765 else
3766 make_escape_constraint (arg);
3769 /* If we added to the calls uses solution make sure we account for
3770 pointers to it to be returned. */
3771 if (returns_uses)
3773 rhsc.var = get_call_use_vi (stmt)->id;
3774 rhsc.offset = 0;
3775 rhsc.type = SCALAR;
3776 VEC_safe_push (ce_s, heap, *results, &rhsc);
3779 /* The static chain escapes as well. */
3780 if (gimple_call_chain (stmt))
3781 make_escape_constraint (gimple_call_chain (stmt));
3783 /* And if we applied NRV the address of the return slot escapes as well. */
3784 if (gimple_call_return_slot_opt_p (stmt)
3785 && gimple_call_lhs (stmt) != NULL_TREE
3786 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
3788 VEC(ce_s, heap) *tmpc = NULL;
3789 struct constraint_expr lhsc, *c;
3790 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3791 lhsc.var = escaped_id;
3792 lhsc.offset = 0;
3793 lhsc.type = SCALAR;
3794 FOR_EACH_VEC_ELT (ce_s, tmpc, i, c)
3795 process_constraint (new_constraint (lhsc, *c));
3796 VEC_free(ce_s, heap, tmpc);
3799 /* Regular functions return nonlocal memory. */
3800 rhsc.var = nonlocal_id;
3801 rhsc.offset = 0;
3802 rhsc.type = SCALAR;
3803 VEC_safe_push (ce_s, heap, *results, &rhsc);
3806 /* For non-IPA mode, generate constraints necessary for a call
3807 that returns a pointer and assigns it to LHS. This simply makes
3808 the LHS point to global and escaped variables. */
3810 static void
3811 handle_lhs_call (gimple stmt, tree lhs, int flags, VEC(ce_s, heap) *rhsc,
3812 tree fndecl)
3814 VEC(ce_s, heap) *lhsc = NULL;
3816 get_constraint_for (lhs, &lhsc);
3817 /* If the store is to a global decl make sure to
3818 add proper escape constraints. */
3819 lhs = get_base_address (lhs);
3820 if (lhs
3821 && DECL_P (lhs)
3822 && is_global_var (lhs))
3824 struct constraint_expr tmpc;
3825 tmpc.var = escaped_id;
3826 tmpc.offset = 0;
3827 tmpc.type = SCALAR;
3828 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3831 /* If the call returns an argument unmodified override the rhs
3832 constraints. */
3833 flags = gimple_call_return_flags (stmt);
3834 if (flags & ERF_RETURNS_ARG
3835 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3837 tree arg;
3838 rhsc = NULL;
3839 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3840 get_constraint_for (arg, &rhsc);
3841 process_all_all_constraints (lhsc, rhsc);
3842 VEC_free (ce_s, heap, rhsc);
3844 else if (flags & ERF_NOALIAS)
3846 varinfo_t vi;
3847 struct constraint_expr tmpc;
3848 rhsc = NULL;
3849 vi = make_heapvar ("HEAP");
3850 /* We delay marking allocated storage global until we know if
3851 it escapes. */
3852 DECL_EXTERNAL (vi->decl) = 0;
3853 vi->is_global_var = 0;
3854 /* If this is not a real malloc call assume the memory was
3855 initialized and thus may point to global memory. All
3856 builtin functions with the malloc attribute behave in a sane way. */
3857 if (!fndecl
3858 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3859 make_constraint_from (vi, nonlocal_id);
3860 tmpc.var = vi->id;
3861 tmpc.offset = 0;
3862 tmpc.type = ADDRESSOF;
3863 VEC_safe_push (ce_s, heap, rhsc, &tmpc);
3866 process_all_all_constraints (lhsc, rhsc);
3868 VEC_free (ce_s, heap, lhsc);
3871 /* For non-IPA mode, generate constraints necessary for a call of a
3872 const function that returns a pointer in the statement STMT. */
3874 static void
3875 handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
3877 struct constraint_expr rhsc;
3878 unsigned int k;
3880 /* Treat nested const functions the same as pure functions as far
3881 as the static chain is concerned. */
3882 if (gimple_call_chain (stmt))
3884 varinfo_t uses = get_call_use_vi (stmt);
3885 make_transitive_closure_constraints (uses);
3886 make_constraint_to (uses->id, gimple_call_chain (stmt));
3887 rhsc.var = uses->id;
3888 rhsc.offset = 0;
3889 rhsc.type = SCALAR;
3890 VEC_safe_push (ce_s, heap, *results, &rhsc);
3893 /* May return arguments. */
3894 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3896 tree arg = gimple_call_arg (stmt, k);
3897 VEC(ce_s, heap) *argc = NULL;
3898 unsigned i;
3899 struct constraint_expr *argp;
3900 get_constraint_for_rhs (arg, &argc);
3901 FOR_EACH_VEC_ELT (ce_s, argc, i, argp)
3902 VEC_safe_push (ce_s, heap, *results, argp);
3903 VEC_free(ce_s, heap, argc);
3906 /* May return addresses of globals. */
3907 rhsc.var = nonlocal_id;
3908 rhsc.offset = 0;
3909 rhsc.type = ADDRESSOF;
3910 VEC_safe_push (ce_s, heap, *results, &rhsc);
3913 /* For non-IPA mode, generate constraints necessary for a call to a
3914 pure function in statement STMT. */
3916 static void
3917 handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
3919 struct constraint_expr rhsc;
3920 unsigned i;
3921 varinfo_t uses = NULL;
3923 /* Memory reached from pointer arguments is call-used. */
3924 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3926 tree arg = gimple_call_arg (stmt, i);
3927 if (!uses)
3929 uses = get_call_use_vi (stmt);
3930 make_transitive_closure_constraints (uses);
3932 make_constraint_to (uses->id, arg);
3935 /* The static chain is used as well. */
3936 if (gimple_call_chain (stmt))
3938 if (!uses)
3940 uses = get_call_use_vi (stmt);
3941 make_transitive_closure_constraints (uses);
3943 make_constraint_to (uses->id, gimple_call_chain (stmt));
3946 /* Pure functions may return call-used and nonlocal memory. */
3947 if (uses)
3949 rhsc.var = uses->id;
3950 rhsc.offset = 0;
3951 rhsc.type = SCALAR;
3952 VEC_safe_push (ce_s, heap, *results, &rhsc);
3954 rhsc.var = nonlocal_id;
3955 rhsc.offset = 0;
3956 rhsc.type = SCALAR;
3957 VEC_safe_push (ce_s, heap, *results, &rhsc);
3961 /* Return the varinfo for the callee of CALL. */
3963 static varinfo_t
3964 get_fi_for_callee (gimple call)
3966 tree decl, fn = gimple_call_fn (call);
3968 if (fn && TREE_CODE (fn) == OBJ_TYPE_REF)
3969 fn = OBJ_TYPE_REF_EXPR (fn);
3971 /* If we can directly resolve the function being called, do so.
3972 Otherwise, it must be some sort of indirect expression that
3973 we should still be able to handle. */
3974 decl = gimple_call_addr_fndecl (fn);
3975 if (decl)
3976 return get_vi_for_tree (decl);
3978 /* If the function is anything other than a SSA name pointer we have no
3979 clue and should be getting ANYFN (well, ANYTHING for now). */
3980 if (!fn || TREE_CODE (fn) != SSA_NAME)
3981 return get_varinfo (anything_id);
3983 if ((TREE_CODE (SSA_NAME_VAR (fn)) == PARM_DECL
3984 || TREE_CODE (SSA_NAME_VAR (fn)) == RESULT_DECL)
3985 && SSA_NAME_IS_DEFAULT_DEF (fn))
3986 fn = SSA_NAME_VAR (fn);
3988 return get_vi_for_tree (fn);
3991 /* Create constraints for the builtin call T. Return true if the call
3992 was handled, otherwise false. */
3994 static bool
3995 find_func_aliases_for_builtin_call (gimple t)
3997 tree fndecl = gimple_call_fndecl (t);
3998 VEC(ce_s, heap) *lhsc = NULL;
3999 VEC(ce_s, heap) *rhsc = NULL;
4000 varinfo_t fi;
4002 if (fndecl != NULL_TREE
4003 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
4004 /* ??? All builtins that are handled here need to be handled
4005 in the alias-oracle query functions explicitly! */
4006 switch (DECL_FUNCTION_CODE (fndecl))
4008 /* All the following functions return a pointer to the same object
4009 as their first argument points to. The functions do not add
4010 to the ESCAPED solution. The functions make the first argument
4011 pointed to memory point to what the second argument pointed to
4012 memory points to. */
4013 case BUILT_IN_STRCPY:
4014 case BUILT_IN_STRNCPY:
4015 case BUILT_IN_BCOPY:
4016 case BUILT_IN_MEMCPY:
4017 case BUILT_IN_MEMMOVE:
4018 case BUILT_IN_MEMPCPY:
4019 case BUILT_IN_STPCPY:
4020 case BUILT_IN_STPNCPY:
4021 case BUILT_IN_STRCAT:
4022 case BUILT_IN_STRNCAT:
4023 case BUILT_IN_STRCPY_CHK:
4024 case BUILT_IN_STRNCPY_CHK:
4025 case BUILT_IN_MEMCPY_CHK:
4026 case BUILT_IN_MEMMOVE_CHK:
4027 case BUILT_IN_MEMPCPY_CHK:
4028 case BUILT_IN_STPCPY_CHK:
4029 case BUILT_IN_STRCAT_CHK:
4030 case BUILT_IN_STRNCAT_CHK:
4032 tree res = gimple_call_lhs (t);
4033 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4034 == BUILT_IN_BCOPY ? 1 : 0));
4035 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4036 == BUILT_IN_BCOPY ? 0 : 1));
4037 if (res != NULL_TREE)
4039 get_constraint_for (res, &lhsc);
4040 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4041 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4042 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY
4043 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY_CHK
4044 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY_CHK)
4045 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4046 else
4047 get_constraint_for (dest, &rhsc);
4048 process_all_all_constraints (lhsc, rhsc);
4049 VEC_free (ce_s, heap, lhsc);
4050 VEC_free (ce_s, heap, rhsc);
4052 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4053 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4054 do_deref (&lhsc);
4055 do_deref (&rhsc);
4056 process_all_all_constraints (lhsc, rhsc);
4057 VEC_free (ce_s, heap, lhsc);
4058 VEC_free (ce_s, heap, rhsc);
4059 return true;
4061 case BUILT_IN_MEMSET:
4062 case BUILT_IN_MEMSET_CHK:
4064 tree res = gimple_call_lhs (t);
4065 tree dest = gimple_call_arg (t, 0);
4066 unsigned i;
4067 ce_s *lhsp;
4068 struct constraint_expr ac;
4069 if (res != NULL_TREE)
4071 get_constraint_for (res, &lhsc);
4072 get_constraint_for (dest, &rhsc);
4073 process_all_all_constraints (lhsc, rhsc);
4074 VEC_free (ce_s, heap, lhsc);
4075 VEC_free (ce_s, heap, rhsc);
4077 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4078 do_deref (&lhsc);
4079 if (flag_delete_null_pointer_checks
4080 && integer_zerop (gimple_call_arg (t, 1)))
4082 ac.type = ADDRESSOF;
4083 ac.var = nothing_id;
4085 else
4087 ac.type = SCALAR;
4088 ac.var = integer_id;
4090 ac.offset = 0;
4091 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4092 process_constraint (new_constraint (*lhsp, ac));
4093 VEC_free (ce_s, heap, lhsc);
4094 return true;
4096 case BUILT_IN_ASSUME_ALIGNED:
4098 tree res = gimple_call_lhs (t);
4099 tree dest = gimple_call_arg (t, 0);
4100 if (res != NULL_TREE)
4102 get_constraint_for (res, &lhsc);
4103 get_constraint_for (dest, &rhsc);
4104 process_all_all_constraints (lhsc, rhsc);
4105 VEC_free (ce_s, heap, lhsc);
4106 VEC_free (ce_s, heap, rhsc);
4108 return true;
4110 /* All the following functions do not return pointers, do not
4111 modify the points-to sets of memory reachable from their
4112 arguments and do not add to the ESCAPED solution. */
4113 case BUILT_IN_SINCOS:
4114 case BUILT_IN_SINCOSF:
4115 case BUILT_IN_SINCOSL:
4116 case BUILT_IN_FREXP:
4117 case BUILT_IN_FREXPF:
4118 case BUILT_IN_FREXPL:
4119 case BUILT_IN_GAMMA_R:
4120 case BUILT_IN_GAMMAF_R:
4121 case BUILT_IN_GAMMAL_R:
4122 case BUILT_IN_LGAMMA_R:
4123 case BUILT_IN_LGAMMAF_R:
4124 case BUILT_IN_LGAMMAL_R:
4125 case BUILT_IN_MODF:
4126 case BUILT_IN_MODFF:
4127 case BUILT_IN_MODFL:
4128 case BUILT_IN_REMQUO:
4129 case BUILT_IN_REMQUOF:
4130 case BUILT_IN_REMQUOL:
4131 case BUILT_IN_FREE:
4132 return true;
4133 /* Trampolines are special - they set up passing the static
4134 frame. */
4135 case BUILT_IN_INIT_TRAMPOLINE:
4137 tree tramp = gimple_call_arg (t, 0);
4138 tree nfunc = gimple_call_arg (t, 1);
4139 tree frame = gimple_call_arg (t, 2);
4140 unsigned i;
4141 struct constraint_expr lhs, *rhsp;
4142 if (in_ipa_mode)
4144 varinfo_t nfi = NULL;
4145 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4146 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4147 if (nfi)
4149 lhs = get_function_part_constraint (nfi, fi_static_chain);
4150 get_constraint_for (frame, &rhsc);
4151 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4152 process_constraint (new_constraint (lhs, *rhsp));
4153 VEC_free (ce_s, heap, rhsc);
4155 /* Make the frame point to the function for
4156 the trampoline adjustment call. */
4157 get_constraint_for (tramp, &lhsc);
4158 do_deref (&lhsc);
4159 get_constraint_for (nfunc, &rhsc);
4160 process_all_all_constraints (lhsc, rhsc);
4161 VEC_free (ce_s, heap, rhsc);
4162 VEC_free (ce_s, heap, lhsc);
4164 return true;
4167 /* Else fallthru to generic handling which will let
4168 the frame escape. */
4169 break;
4171 case BUILT_IN_ADJUST_TRAMPOLINE:
4173 tree tramp = gimple_call_arg (t, 0);
4174 tree res = gimple_call_lhs (t);
4175 if (in_ipa_mode && res)
4177 get_constraint_for (res, &lhsc);
4178 get_constraint_for (tramp, &rhsc);
4179 do_deref (&rhsc);
4180 process_all_all_constraints (lhsc, rhsc);
4181 VEC_free (ce_s, heap, rhsc);
4182 VEC_free (ce_s, heap, lhsc);
4184 return true;
4186 /* Variadic argument handling needs to be handled in IPA
4187 mode as well. */
4188 case BUILT_IN_VA_START:
4190 if (in_ipa_mode)
4192 tree valist = gimple_call_arg (t, 0);
4193 struct constraint_expr rhs, *lhsp;
4194 unsigned i;
4195 /* The va_list gets access to pointers in variadic
4196 arguments. */
4197 fi = lookup_vi_for_tree (cfun->decl);
4198 gcc_assert (fi != NULL);
4199 get_constraint_for (valist, &lhsc);
4200 do_deref (&lhsc);
4201 rhs = get_function_part_constraint (fi, ~0);
4202 rhs.type = ADDRESSOF;
4203 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4204 process_constraint (new_constraint (*lhsp, rhs));
4205 VEC_free (ce_s, heap, lhsc);
4206 /* va_list is clobbered. */
4207 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4208 return true;
4210 break;
4212 /* va_end doesn't have any effect that matters. */
4213 case BUILT_IN_VA_END:
4214 return true;
4215 /* Alternate return. Simply give up for now. */
4216 case BUILT_IN_RETURN:
4218 fi = NULL;
4219 if (!in_ipa_mode
4220 || !(fi = get_vi_for_tree (cfun->decl)))
4221 make_constraint_from (get_varinfo (escaped_id), anything_id);
4222 else if (in_ipa_mode
4223 && fi != NULL)
4225 struct constraint_expr lhs, rhs;
4226 lhs = get_function_part_constraint (fi, fi_result);
4227 rhs.var = anything_id;
4228 rhs.offset = 0;
4229 rhs.type = SCALAR;
4230 process_constraint (new_constraint (lhs, rhs));
4232 return true;
4234 /* printf-style functions may have hooks to set pointers to
4235 point to somewhere into the generated string. Leave them
4236 for a later excercise... */
4237 default:
4238 /* Fallthru to general call handling. */;
4241 return false;
4244 /* Create constraints for the call T. */
4246 static void
4247 find_func_aliases_for_call (gimple t)
4249 tree fndecl = gimple_call_fndecl (t);
4250 VEC(ce_s, heap) *lhsc = NULL;
4251 VEC(ce_s, heap) *rhsc = NULL;
4252 varinfo_t fi;
4254 if (fndecl != NULL_TREE
4255 && DECL_BUILT_IN (fndecl)
4256 && find_func_aliases_for_builtin_call (t))
4257 return;
4259 fi = get_fi_for_callee (t);
4260 if (!in_ipa_mode
4261 || (fndecl && !fi->is_fn_info))
4263 VEC(ce_s, heap) *rhsc = NULL;
4264 int flags = gimple_call_flags (t);
4266 /* Const functions can return their arguments and addresses
4267 of global memory but not of escaped memory. */
4268 if (flags & (ECF_CONST|ECF_NOVOPS))
4270 if (gimple_call_lhs (t))
4271 handle_const_call (t, &rhsc);
4273 /* Pure functions can return addresses in and of memory
4274 reachable from their arguments, but they are not an escape
4275 point for reachable memory of their arguments. */
4276 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4277 handle_pure_call (t, &rhsc);
4278 else
4279 handle_rhs_call (t, &rhsc);
4280 if (gimple_call_lhs (t))
4281 handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
4282 VEC_free (ce_s, heap, rhsc);
4284 else
4286 tree lhsop;
4287 unsigned j;
4289 /* Assign all the passed arguments to the appropriate incoming
4290 parameters of the function. */
4291 for (j = 0; j < gimple_call_num_args (t); j++)
4293 struct constraint_expr lhs ;
4294 struct constraint_expr *rhsp;
4295 tree arg = gimple_call_arg (t, j);
4297 get_constraint_for_rhs (arg, &rhsc);
4298 lhs = get_function_part_constraint (fi, fi_parm_base + j);
4299 while (VEC_length (ce_s, rhsc) != 0)
4301 rhsp = VEC_last (ce_s, rhsc);
4302 process_constraint (new_constraint (lhs, *rhsp));
4303 VEC_pop (ce_s, rhsc);
4307 /* If we are returning a value, assign it to the result. */
4308 lhsop = gimple_call_lhs (t);
4309 if (lhsop)
4311 struct constraint_expr rhs;
4312 struct constraint_expr *lhsp;
4314 get_constraint_for (lhsop, &lhsc);
4315 rhs = get_function_part_constraint (fi, fi_result);
4316 if (fndecl
4317 && DECL_RESULT (fndecl)
4318 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4320 VEC(ce_s, heap) *tem = NULL;
4321 VEC_safe_push (ce_s, heap, tem, &rhs);
4322 do_deref (&tem);
4323 rhs = *VEC_index (ce_s, tem, 0);
4324 VEC_free(ce_s, heap, tem);
4326 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4327 process_constraint (new_constraint (*lhsp, rhs));
4330 /* If we pass the result decl by reference, honor that. */
4331 if (lhsop
4332 && fndecl
4333 && DECL_RESULT (fndecl)
4334 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4336 struct constraint_expr lhs;
4337 struct constraint_expr *rhsp;
4339 get_constraint_for_address_of (lhsop, &rhsc);
4340 lhs = get_function_part_constraint (fi, fi_result);
4341 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4342 process_constraint (new_constraint (lhs, *rhsp));
4343 VEC_free (ce_s, heap, rhsc);
4346 /* If we use a static chain, pass it along. */
4347 if (gimple_call_chain (t))
4349 struct constraint_expr lhs;
4350 struct constraint_expr *rhsp;
4352 get_constraint_for (gimple_call_chain (t), &rhsc);
4353 lhs = get_function_part_constraint (fi, fi_static_chain);
4354 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4355 process_constraint (new_constraint (lhs, *rhsp));
4360 /* Walk statement T setting up aliasing constraints according to the
4361 references found in T. This function is the main part of the
4362 constraint builder. AI points to auxiliary alias information used
4363 when building alias sets and computing alias grouping heuristics. */
4365 static void
4366 find_func_aliases (gimple origt)
4368 gimple t = origt;
4369 VEC(ce_s, heap) *lhsc = NULL;
4370 VEC(ce_s, heap) *rhsc = NULL;
4371 struct constraint_expr *c;
4372 varinfo_t fi;
4374 /* Now build constraints expressions. */
4375 if (gimple_code (t) == GIMPLE_PHI)
4377 size_t i;
4378 unsigned int j;
4380 /* For a phi node, assign all the arguments to
4381 the result. */
4382 get_constraint_for (gimple_phi_result (t), &lhsc);
4383 for (i = 0; i < gimple_phi_num_args (t); i++)
4385 tree strippedrhs = PHI_ARG_DEF (t, i);
4387 STRIP_NOPS (strippedrhs);
4388 get_constraint_for_rhs (gimple_phi_arg_def (t, i), &rhsc);
4390 FOR_EACH_VEC_ELT (ce_s, lhsc, j, c)
4392 struct constraint_expr *c2;
4393 while (VEC_length (ce_s, rhsc) > 0)
4395 c2 = VEC_last (ce_s, rhsc);
4396 process_constraint (new_constraint (*c, *c2));
4397 VEC_pop (ce_s, rhsc);
4402 /* In IPA mode, we need to generate constraints to pass call
4403 arguments through their calls. There are two cases,
4404 either a GIMPLE_CALL returning a value, or just a plain
4405 GIMPLE_CALL when we are not.
4407 In non-ipa mode, we need to generate constraints for each
4408 pointer passed by address. */
4409 else if (is_gimple_call (t))
4410 find_func_aliases_for_call (t);
4412 /* Otherwise, just a regular assignment statement. Only care about
4413 operations with pointer result, others are dealt with as escape
4414 points if they have pointer operands. */
4415 else if (is_gimple_assign (t))
4417 /* Otherwise, just a regular assignment statement. */
4418 tree lhsop = gimple_assign_lhs (t);
4419 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
4421 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
4422 do_structure_copy (lhsop, rhsop);
4423 else
4425 enum tree_code code = gimple_assign_rhs_code (t);
4427 get_constraint_for (lhsop, &lhsc);
4429 if (code == POINTER_PLUS_EXPR)
4430 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4431 gimple_assign_rhs2 (t), &rhsc);
4432 else if (code == BIT_AND_EXPR
4433 && TREE_CODE (gimple_assign_rhs2 (t)) == INTEGER_CST)
4435 /* Aligning a pointer via a BIT_AND_EXPR is offsetting
4436 the pointer. Handle it by offsetting it by UNKNOWN. */
4437 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4438 NULL_TREE, &rhsc);
4440 else if ((CONVERT_EXPR_CODE_P (code)
4441 && !(POINTER_TYPE_P (gimple_expr_type (t))
4442 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4443 || gimple_assign_single_p (t))
4444 get_constraint_for_rhs (rhsop, &rhsc);
4445 else if (truth_value_p (code))
4446 /* Truth value results are not pointer (parts). Or at least
4447 very very unreasonable obfuscation of a part. */
4449 else
4451 /* All other operations are merges. */
4452 VEC (ce_s, heap) *tmp = NULL;
4453 struct constraint_expr *rhsp;
4454 unsigned i, j;
4455 get_constraint_for_rhs (gimple_assign_rhs1 (t), &rhsc);
4456 for (i = 2; i < gimple_num_ops (t); ++i)
4458 get_constraint_for_rhs (gimple_op (t, i), &tmp);
4459 FOR_EACH_VEC_ELT (ce_s, tmp, j, rhsp)
4460 VEC_safe_push (ce_s, heap, rhsc, rhsp);
4461 VEC_truncate (ce_s, tmp, 0);
4463 VEC_free (ce_s, heap, tmp);
4465 process_all_all_constraints (lhsc, rhsc);
4467 /* If there is a store to a global variable the rhs escapes. */
4468 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4469 && DECL_P (lhsop)
4470 && is_global_var (lhsop)
4471 && (!in_ipa_mode
4472 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
4473 make_escape_constraint (rhsop);
4474 /* If this is a conversion of a non-restrict pointer to a
4475 restrict pointer track it with a new heapvar. */
4476 else if (gimple_assign_cast_p (t)
4477 && POINTER_TYPE_P (TREE_TYPE (rhsop))
4478 && POINTER_TYPE_P (TREE_TYPE (lhsop))
4479 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
4480 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
4481 make_constraint_from_restrict (get_vi_for_tree (lhsop),
4482 "CAST_RESTRICT");
4484 /* Handle escapes through return. */
4485 else if (gimple_code (t) == GIMPLE_RETURN
4486 && gimple_return_retval (t) != NULL_TREE)
4488 fi = NULL;
4489 if (!in_ipa_mode
4490 || !(fi = get_vi_for_tree (cfun->decl)))
4491 make_escape_constraint (gimple_return_retval (t));
4492 else if (in_ipa_mode
4493 && fi != NULL)
4495 struct constraint_expr lhs ;
4496 struct constraint_expr *rhsp;
4497 unsigned i;
4499 lhs = get_function_part_constraint (fi, fi_result);
4500 get_constraint_for_rhs (gimple_return_retval (t), &rhsc);
4501 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4502 process_constraint (new_constraint (lhs, *rhsp));
4505 /* Handle asms conservatively by adding escape constraints to everything. */
4506 else if (gimple_code (t) == GIMPLE_ASM)
4508 unsigned i, noutputs;
4509 const char **oconstraints;
4510 const char *constraint;
4511 bool allows_mem, allows_reg, is_inout;
4513 noutputs = gimple_asm_noutputs (t);
4514 oconstraints = XALLOCAVEC (const char *, noutputs);
4516 for (i = 0; i < noutputs; ++i)
4518 tree link = gimple_asm_output_op (t, i);
4519 tree op = TREE_VALUE (link);
4521 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4522 oconstraints[i] = constraint;
4523 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4524 &allows_reg, &is_inout);
4526 /* A memory constraint makes the address of the operand escape. */
4527 if (!allows_reg && allows_mem)
4528 make_escape_constraint (build_fold_addr_expr (op));
4530 /* The asm may read global memory, so outputs may point to
4531 any global memory. */
4532 if (op)
4534 VEC(ce_s, heap) *lhsc = NULL;
4535 struct constraint_expr rhsc, *lhsp;
4536 unsigned j;
4537 get_constraint_for (op, &lhsc);
4538 rhsc.var = nonlocal_id;
4539 rhsc.offset = 0;
4540 rhsc.type = SCALAR;
4541 FOR_EACH_VEC_ELT (ce_s, lhsc, j, lhsp)
4542 process_constraint (new_constraint (*lhsp, rhsc));
4543 VEC_free (ce_s, heap, lhsc);
4546 for (i = 0; i < gimple_asm_ninputs (t); ++i)
4548 tree link = gimple_asm_input_op (t, i);
4549 tree op = TREE_VALUE (link);
4551 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4553 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4554 &allows_mem, &allows_reg);
4556 /* A memory constraint makes the address of the operand escape. */
4557 if (!allows_reg && allows_mem)
4558 make_escape_constraint (build_fold_addr_expr (op));
4559 /* Strictly we'd only need the constraint to ESCAPED if
4560 the asm clobbers memory, otherwise using something
4561 along the lines of per-call clobbers/uses would be enough. */
4562 else if (op)
4563 make_escape_constraint (op);
4567 VEC_free (ce_s, heap, rhsc);
4568 VEC_free (ce_s, heap, lhsc);
4572 /* Create a constraint adding to the clobber set of FI the memory
4573 pointed to by PTR. */
4575 static void
4576 process_ipa_clobber (varinfo_t fi, tree ptr)
4578 VEC(ce_s, heap) *ptrc = NULL;
4579 struct constraint_expr *c, lhs;
4580 unsigned i;
4581 get_constraint_for_rhs (ptr, &ptrc);
4582 lhs = get_function_part_constraint (fi, fi_clobbers);
4583 FOR_EACH_VEC_ELT (ce_s, ptrc, i, c)
4584 process_constraint (new_constraint (lhs, *c));
4585 VEC_free (ce_s, heap, ptrc);
4588 /* Walk statement T setting up clobber and use constraints according to the
4589 references found in T. This function is a main part of the
4590 IPA constraint builder. */
4592 static void
4593 find_func_clobbers (gimple origt)
4595 gimple t = origt;
4596 VEC(ce_s, heap) *lhsc = NULL;
4597 VEC(ce_s, heap) *rhsc = NULL;
4598 varinfo_t fi;
4600 /* Add constraints for clobbered/used in IPA mode.
4601 We are not interested in what automatic variables are clobbered
4602 or used as we only use the information in the caller to which
4603 they do not escape. */
4604 gcc_assert (in_ipa_mode);
4606 /* If the stmt refers to memory in any way it better had a VUSE. */
4607 if (gimple_vuse (t) == NULL_TREE)
4608 return;
4610 /* We'd better have function information for the current function. */
4611 fi = lookup_vi_for_tree (cfun->decl);
4612 gcc_assert (fi != NULL);
4614 /* Account for stores in assignments and calls. */
4615 if (gimple_vdef (t) != NULL_TREE
4616 && gimple_has_lhs (t))
4618 tree lhs = gimple_get_lhs (t);
4619 tree tem = lhs;
4620 while (handled_component_p (tem))
4621 tem = TREE_OPERAND (tem, 0);
4622 if ((DECL_P (tem)
4623 && !auto_var_in_fn_p (tem, cfun->decl))
4624 || INDIRECT_REF_P (tem)
4625 || (TREE_CODE (tem) == MEM_REF
4626 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4627 && auto_var_in_fn_p
4628 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4630 struct constraint_expr lhsc, *rhsp;
4631 unsigned i;
4632 lhsc = get_function_part_constraint (fi, fi_clobbers);
4633 get_constraint_for_address_of (lhs, &rhsc);
4634 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4635 process_constraint (new_constraint (lhsc, *rhsp));
4636 VEC_free (ce_s, heap, rhsc);
4640 /* Account for uses in assigments and returns. */
4641 if (gimple_assign_single_p (t)
4642 || (gimple_code (t) == GIMPLE_RETURN
4643 && gimple_return_retval (t) != NULL_TREE))
4645 tree rhs = (gimple_assign_single_p (t)
4646 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4647 tree tem = rhs;
4648 while (handled_component_p (tem))
4649 tem = TREE_OPERAND (tem, 0);
4650 if ((DECL_P (tem)
4651 && !auto_var_in_fn_p (tem, cfun->decl))
4652 || INDIRECT_REF_P (tem)
4653 || (TREE_CODE (tem) == MEM_REF
4654 && !(TREE_CODE (TREE_OPERAND (tem, 0)) == ADDR_EXPR
4655 && auto_var_in_fn_p
4656 (TREE_OPERAND (TREE_OPERAND (tem, 0), 0), cfun->decl))))
4658 struct constraint_expr lhs, *rhsp;
4659 unsigned i;
4660 lhs = get_function_part_constraint (fi, fi_uses);
4661 get_constraint_for_address_of (rhs, &rhsc);
4662 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4663 process_constraint (new_constraint (lhs, *rhsp));
4664 VEC_free (ce_s, heap, rhsc);
4668 if (is_gimple_call (t))
4670 varinfo_t cfi = NULL;
4671 tree decl = gimple_call_fndecl (t);
4672 struct constraint_expr lhs, rhs;
4673 unsigned i, j;
4675 /* For builtins we do not have separate function info. For those
4676 we do not generate escapes for we have to generate clobbers/uses. */
4677 if (decl
4678 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
4679 switch (DECL_FUNCTION_CODE (decl))
4681 /* The following functions use and clobber memory pointed to
4682 by their arguments. */
4683 case BUILT_IN_STRCPY:
4684 case BUILT_IN_STRNCPY:
4685 case BUILT_IN_BCOPY:
4686 case BUILT_IN_MEMCPY:
4687 case BUILT_IN_MEMMOVE:
4688 case BUILT_IN_MEMPCPY:
4689 case BUILT_IN_STPCPY:
4690 case BUILT_IN_STPNCPY:
4691 case BUILT_IN_STRCAT:
4692 case BUILT_IN_STRNCAT:
4693 case BUILT_IN_STRCPY_CHK:
4694 case BUILT_IN_STRNCPY_CHK:
4695 case BUILT_IN_MEMCPY_CHK:
4696 case BUILT_IN_MEMMOVE_CHK:
4697 case BUILT_IN_MEMPCPY_CHK:
4698 case BUILT_IN_STPCPY_CHK:
4699 case BUILT_IN_STRCAT_CHK:
4700 case BUILT_IN_STRNCAT_CHK:
4702 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4703 == BUILT_IN_BCOPY ? 1 : 0));
4704 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4705 == BUILT_IN_BCOPY ? 0 : 1));
4706 unsigned i;
4707 struct constraint_expr *rhsp, *lhsp;
4708 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4709 lhs = get_function_part_constraint (fi, fi_clobbers);
4710 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4711 process_constraint (new_constraint (lhs, *lhsp));
4712 VEC_free (ce_s, heap, lhsc);
4713 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4714 lhs = get_function_part_constraint (fi, fi_uses);
4715 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
4716 process_constraint (new_constraint (lhs, *rhsp));
4717 VEC_free (ce_s, heap, rhsc);
4718 return;
4720 /* The following function clobbers memory pointed to by
4721 its argument. */
4722 case BUILT_IN_MEMSET:
4723 case BUILT_IN_MEMSET_CHK:
4725 tree dest = gimple_call_arg (t, 0);
4726 unsigned i;
4727 ce_s *lhsp;
4728 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4729 lhs = get_function_part_constraint (fi, fi_clobbers);
4730 FOR_EACH_VEC_ELT (ce_s, lhsc, i, lhsp)
4731 process_constraint (new_constraint (lhs, *lhsp));
4732 VEC_free (ce_s, heap, lhsc);
4733 return;
4735 /* The following functions clobber their second and third
4736 arguments. */
4737 case BUILT_IN_SINCOS:
4738 case BUILT_IN_SINCOSF:
4739 case BUILT_IN_SINCOSL:
4741 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4742 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4743 return;
4745 /* The following functions clobber their second argument. */
4746 case BUILT_IN_FREXP:
4747 case BUILT_IN_FREXPF:
4748 case BUILT_IN_FREXPL:
4749 case BUILT_IN_LGAMMA_R:
4750 case BUILT_IN_LGAMMAF_R:
4751 case BUILT_IN_LGAMMAL_R:
4752 case BUILT_IN_GAMMA_R:
4753 case BUILT_IN_GAMMAF_R:
4754 case BUILT_IN_GAMMAL_R:
4755 case BUILT_IN_MODF:
4756 case BUILT_IN_MODFF:
4757 case BUILT_IN_MODFL:
4759 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4760 return;
4762 /* The following functions clobber their third argument. */
4763 case BUILT_IN_REMQUO:
4764 case BUILT_IN_REMQUOF:
4765 case BUILT_IN_REMQUOL:
4767 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4768 return;
4770 /* The following functions neither read nor clobber memory. */
4771 case BUILT_IN_ASSUME_ALIGNED:
4772 case BUILT_IN_FREE:
4773 return;
4774 /* Trampolines are of no interest to us. */
4775 case BUILT_IN_INIT_TRAMPOLINE:
4776 case BUILT_IN_ADJUST_TRAMPOLINE:
4777 return;
4778 case BUILT_IN_VA_START:
4779 case BUILT_IN_VA_END:
4780 return;
4781 /* printf-style functions may have hooks to set pointers to
4782 point to somewhere into the generated string. Leave them
4783 for a later excercise... */
4784 default:
4785 /* Fallthru to general call handling. */;
4788 /* Parameters passed by value are used. */
4789 lhs = get_function_part_constraint (fi, fi_uses);
4790 for (i = 0; i < gimple_call_num_args (t); i++)
4792 struct constraint_expr *rhsp;
4793 tree arg = gimple_call_arg (t, i);
4795 if (TREE_CODE (arg) == SSA_NAME
4796 || is_gimple_min_invariant (arg))
4797 continue;
4799 get_constraint_for_address_of (arg, &rhsc);
4800 FOR_EACH_VEC_ELT (ce_s, rhsc, j, rhsp)
4801 process_constraint (new_constraint (lhs, *rhsp));
4802 VEC_free (ce_s, heap, rhsc);
4805 /* Build constraints for propagating clobbers/uses along the
4806 callgraph edges. */
4807 cfi = get_fi_for_callee (t);
4808 if (cfi->id == anything_id)
4810 if (gimple_vdef (t))
4811 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4812 anything_id);
4813 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4814 anything_id);
4815 return;
4818 /* For callees without function info (that's external functions),
4819 ESCAPED is clobbered and used. */
4820 if (gimple_call_fndecl (t)
4821 && !cfi->is_fn_info)
4823 varinfo_t vi;
4825 if (gimple_vdef (t))
4826 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4827 escaped_id);
4828 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
4830 /* Also honor the call statement use/clobber info. */
4831 if ((vi = lookup_call_clobber_vi (t)) != NULL)
4832 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4833 vi->id);
4834 if ((vi = lookup_call_use_vi (t)) != NULL)
4835 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
4836 vi->id);
4837 return;
4840 /* Otherwise the caller clobbers and uses what the callee does.
4841 ??? This should use a new complex constraint that filters
4842 local variables of the callee. */
4843 if (gimple_vdef (t))
4845 lhs = get_function_part_constraint (fi, fi_clobbers);
4846 rhs = get_function_part_constraint (cfi, fi_clobbers);
4847 process_constraint (new_constraint (lhs, rhs));
4849 lhs = get_function_part_constraint (fi, fi_uses);
4850 rhs = get_function_part_constraint (cfi, fi_uses);
4851 process_constraint (new_constraint (lhs, rhs));
4853 else if (gimple_code (t) == GIMPLE_ASM)
4855 /* ??? Ick. We can do better. */
4856 if (gimple_vdef (t))
4857 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4858 anything_id);
4859 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4860 anything_id);
4863 VEC_free (ce_s, heap, rhsc);
4867 /* Find the first varinfo in the same variable as START that overlaps with
4868 OFFSET. Return NULL if we can't find one. */
4870 static varinfo_t
4871 first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4873 /* If the offset is outside of the variable, bail out. */
4874 if (offset >= start->fullsize)
4875 return NULL;
4877 /* If we cannot reach offset from start, lookup the first field
4878 and start from there. */
4879 if (start->offset > offset)
4880 start = lookup_vi_for_tree (start->decl);
4882 while (start)
4884 /* We may not find a variable in the field list with the actual
4885 offset when when we have glommed a structure to a variable.
4886 In that case, however, offset should still be within the size
4887 of the variable. */
4888 if (offset >= start->offset
4889 && (offset - start->offset) < start->size)
4890 return start;
4892 start= start->next;
4895 return NULL;
4898 /* Find the first varinfo in the same variable as START that overlaps with
4899 OFFSET. If there is no such varinfo the varinfo directly preceding
4900 OFFSET is returned. */
4902 static varinfo_t
4903 first_or_preceding_vi_for_offset (varinfo_t start,
4904 unsigned HOST_WIDE_INT offset)
4906 /* If we cannot reach offset from start, lookup the first field
4907 and start from there. */
4908 if (start->offset > offset)
4909 start = lookup_vi_for_tree (start->decl);
4911 /* We may not find a variable in the field list with the actual
4912 offset when when we have glommed a structure to a variable.
4913 In that case, however, offset should still be within the size
4914 of the variable.
4915 If we got beyond the offset we look for return the field
4916 directly preceding offset which may be the last field. */
4917 while (start->next
4918 && offset >= start->offset
4919 && !((offset - start->offset) < start->size))
4920 start = start->next;
4922 return start;
4926 /* This structure is used during pushing fields onto the fieldstack
4927 to track the offset of the field, since bitpos_of_field gives it
4928 relative to its immediate containing type, and we want it relative
4929 to the ultimate containing object. */
4931 struct fieldoff
4933 /* Offset from the base of the base containing object to this field. */
4934 HOST_WIDE_INT offset;
4936 /* Size, in bits, of the field. */
4937 unsigned HOST_WIDE_INT size;
4939 unsigned has_unknown_size : 1;
4941 unsigned must_have_pointers : 1;
4943 unsigned may_have_pointers : 1;
4945 unsigned only_restrict_pointers : 1;
4947 typedef struct fieldoff fieldoff_s;
4949 DEF_VEC_O(fieldoff_s);
4950 DEF_VEC_ALLOC_O(fieldoff_s,heap);
4952 /* qsort comparison function for two fieldoff's PA and PB */
4954 static int
4955 fieldoff_compare (const void *pa, const void *pb)
4957 const fieldoff_s *foa = (const fieldoff_s *)pa;
4958 const fieldoff_s *fob = (const fieldoff_s *)pb;
4959 unsigned HOST_WIDE_INT foasize, fobsize;
4961 if (foa->offset < fob->offset)
4962 return -1;
4963 else if (foa->offset > fob->offset)
4964 return 1;
4966 foasize = foa->size;
4967 fobsize = fob->size;
4968 if (foasize < fobsize)
4969 return -1;
4970 else if (foasize > fobsize)
4971 return 1;
4972 return 0;
4975 /* Sort a fieldstack according to the field offset and sizes. */
4976 static void
4977 sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
4979 VEC_qsort (fieldoff_s, fieldstack, fieldoff_compare);
4982 /* Return true if V is a tree that we can have subvars for.
4983 Normally, this is any aggregate type. Also complex
4984 types which are not gimple registers can have subvars. */
4986 static inline bool
4987 var_can_have_subvars (const_tree v)
4989 /* Volatile variables should never have subvars. */
4990 if (TREE_THIS_VOLATILE (v))
4991 return false;
4993 /* Non decls or memory tags can never have subvars. */
4994 if (!DECL_P (v))
4995 return false;
4997 /* Aggregates without overlapping fields can have subvars. */
4998 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
4999 return true;
5001 return false;
5004 /* Return true if T is a type that does contain pointers. */
5006 static bool
5007 type_must_have_pointers (tree type)
5009 if (POINTER_TYPE_P (type))
5010 return true;
5012 if (TREE_CODE (type) == ARRAY_TYPE)
5013 return type_must_have_pointers (TREE_TYPE (type));
5015 /* A function or method can have pointers as arguments, so track
5016 those separately. */
5017 if (TREE_CODE (type) == FUNCTION_TYPE
5018 || TREE_CODE (type) == METHOD_TYPE)
5019 return true;
5021 return false;
5024 static bool
5025 field_must_have_pointers (tree t)
5027 return type_must_have_pointers (TREE_TYPE (t));
5030 /* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
5031 the fields of TYPE onto fieldstack, recording their offsets along
5032 the way.
5034 OFFSET is used to keep track of the offset in this entire
5035 structure, rather than just the immediately containing structure.
5036 Returns false if the caller is supposed to handle the field we
5037 recursed for. */
5039 static bool
5040 push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
5041 HOST_WIDE_INT offset)
5043 tree field;
5044 bool empty_p = true;
5046 if (TREE_CODE (type) != RECORD_TYPE)
5047 return false;
5049 /* If the vector of fields is growing too big, bail out early.
5050 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
5051 sure this fails. */
5052 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5053 return false;
5055 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5056 if (TREE_CODE (field) == FIELD_DECL)
5058 bool push = false;
5059 HOST_WIDE_INT foff = bitpos_of_field (field);
5061 if (!var_can_have_subvars (field)
5062 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
5063 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
5064 push = true;
5065 else if (!push_fields_onto_fieldstack
5066 (TREE_TYPE (field), fieldstack, offset + foff)
5067 && (DECL_SIZE (field)
5068 && !integer_zerop (DECL_SIZE (field))))
5069 /* Empty structures may have actual size, like in C++. So
5070 see if we didn't push any subfields and the size is
5071 nonzero, push the field onto the stack. */
5072 push = true;
5074 if (push)
5076 fieldoff_s *pair = NULL;
5077 bool has_unknown_size = false;
5078 bool must_have_pointers_p;
5080 if (!VEC_empty (fieldoff_s, *fieldstack))
5081 pair = VEC_last (fieldoff_s, *fieldstack);
5083 /* If there isn't anything at offset zero, create sth. */
5084 if (!pair
5085 && offset + foff != 0)
5087 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5088 pair->offset = 0;
5089 pair->size = offset + foff;
5090 pair->has_unknown_size = false;
5091 pair->must_have_pointers = false;
5092 pair->may_have_pointers = false;
5093 pair->only_restrict_pointers = false;
5096 if (!DECL_SIZE (field)
5097 || !host_integerp (DECL_SIZE (field), 1))
5098 has_unknown_size = true;
5100 /* If adjacent fields do not contain pointers merge them. */
5101 must_have_pointers_p = field_must_have_pointers (field);
5102 if (pair
5103 && !has_unknown_size
5104 && !must_have_pointers_p
5105 && !pair->must_have_pointers
5106 && !pair->has_unknown_size
5107 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff)
5109 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
5111 else
5113 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
5114 pair->offset = offset + foff;
5115 pair->has_unknown_size = has_unknown_size;
5116 if (!has_unknown_size)
5117 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
5118 else
5119 pair->size = -1;
5120 pair->must_have_pointers = must_have_pointers_p;
5121 pair->may_have_pointers = true;
5122 pair->only_restrict_pointers
5123 = (!has_unknown_size
5124 && POINTER_TYPE_P (TREE_TYPE (field))
5125 && TYPE_RESTRICT (TREE_TYPE (field)));
5129 empty_p = false;
5132 return !empty_p;
5135 /* Count the number of arguments DECL has, and set IS_VARARGS to true
5136 if it is a varargs function. */
5138 static unsigned int
5139 count_num_arguments (tree decl, bool *is_varargs)
5141 unsigned int num = 0;
5142 tree t;
5144 /* Capture named arguments for K&R functions. They do not
5145 have a prototype and thus no TYPE_ARG_TYPES. */
5146 for (t = DECL_ARGUMENTS (decl); t; t = DECL_CHAIN (t))
5147 ++num;
5149 /* Check if the function has variadic arguments. */
5150 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5151 if (TREE_VALUE (t) == void_type_node)
5152 break;
5153 if (!t)
5154 *is_varargs = true;
5156 return num;
5159 /* Creation function node for DECL, using NAME, and return the index
5160 of the variable we've created for the function. */
5162 static varinfo_t
5163 create_function_info_for (tree decl, const char *name)
5165 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5166 varinfo_t vi, prev_vi;
5167 tree arg;
5168 unsigned int i;
5169 bool is_varargs = false;
5170 unsigned int num_args = count_num_arguments (decl, &is_varargs);
5172 /* Create the variable info. */
5174 vi = new_var_info (decl, name);
5175 vi->offset = 0;
5176 vi->size = 1;
5177 vi->fullsize = fi_parm_base + num_args;
5178 vi->is_fn_info = 1;
5179 vi->may_have_pointers = false;
5180 if (is_varargs)
5181 vi->fullsize = ~0;
5182 insert_vi_for_tree (vi->decl, vi);
5184 prev_vi = vi;
5186 /* Create a variable for things the function clobbers and one for
5187 things the function uses. */
5189 varinfo_t clobbervi, usevi;
5190 const char *newname;
5191 char *tempname;
5193 asprintf (&tempname, "%s.clobber", name);
5194 newname = ggc_strdup (tempname);
5195 free (tempname);
5197 clobbervi = new_var_info (NULL, newname);
5198 clobbervi->offset = fi_clobbers;
5199 clobbervi->size = 1;
5200 clobbervi->fullsize = vi->fullsize;
5201 clobbervi->is_full_var = true;
5202 clobbervi->is_global_var = false;
5203 gcc_assert (prev_vi->offset < clobbervi->offset);
5204 prev_vi->next = clobbervi;
5205 prev_vi = clobbervi;
5207 asprintf (&tempname, "%s.use", name);
5208 newname = ggc_strdup (tempname);
5209 free (tempname);
5211 usevi = new_var_info (NULL, newname);
5212 usevi->offset = fi_uses;
5213 usevi->size = 1;
5214 usevi->fullsize = vi->fullsize;
5215 usevi->is_full_var = true;
5216 usevi->is_global_var = false;
5217 gcc_assert (prev_vi->offset < usevi->offset);
5218 prev_vi->next = usevi;
5219 prev_vi = usevi;
5222 /* And one for the static chain. */
5223 if (fn->static_chain_decl != NULL_TREE)
5225 varinfo_t chainvi;
5226 const char *newname;
5227 char *tempname;
5229 asprintf (&tempname, "%s.chain", name);
5230 newname = ggc_strdup (tempname);
5231 free (tempname);
5233 chainvi = new_var_info (fn->static_chain_decl, newname);
5234 chainvi->offset = fi_static_chain;
5235 chainvi->size = 1;
5236 chainvi->fullsize = vi->fullsize;
5237 chainvi->is_full_var = true;
5238 chainvi->is_global_var = false;
5239 gcc_assert (prev_vi->offset < chainvi->offset);
5240 prev_vi->next = chainvi;
5241 prev_vi = chainvi;
5242 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5245 /* Create a variable for the return var. */
5246 if (DECL_RESULT (decl) != NULL
5247 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5249 varinfo_t resultvi;
5250 const char *newname;
5251 char *tempname;
5252 tree resultdecl = decl;
5254 if (DECL_RESULT (decl))
5255 resultdecl = DECL_RESULT (decl);
5257 asprintf (&tempname, "%s.result", name);
5258 newname = ggc_strdup (tempname);
5259 free (tempname);
5261 resultvi = new_var_info (resultdecl, newname);
5262 resultvi->offset = fi_result;
5263 resultvi->size = 1;
5264 resultvi->fullsize = vi->fullsize;
5265 resultvi->is_full_var = true;
5266 if (DECL_RESULT (decl))
5267 resultvi->may_have_pointers = true;
5268 gcc_assert (prev_vi->offset < resultvi->offset);
5269 prev_vi->next = resultvi;
5270 prev_vi = resultvi;
5271 if (DECL_RESULT (decl))
5272 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5275 /* Set up variables for each argument. */
5276 arg = DECL_ARGUMENTS (decl);
5277 for (i = 0; i < num_args; i++)
5279 varinfo_t argvi;
5280 const char *newname;
5281 char *tempname;
5282 tree argdecl = decl;
5284 if (arg)
5285 argdecl = arg;
5287 asprintf (&tempname, "%s.arg%d", name, i);
5288 newname = ggc_strdup (tempname);
5289 free (tempname);
5291 argvi = new_var_info (argdecl, newname);
5292 argvi->offset = fi_parm_base + i;
5293 argvi->size = 1;
5294 argvi->is_full_var = true;
5295 argvi->fullsize = vi->fullsize;
5296 if (arg)
5297 argvi->may_have_pointers = true;
5298 gcc_assert (prev_vi->offset < argvi->offset);
5299 prev_vi->next = argvi;
5300 prev_vi = argvi;
5301 if (arg)
5303 insert_vi_for_tree (arg, argvi);
5304 arg = DECL_CHAIN (arg);
5308 /* Add one representative for all further args. */
5309 if (is_varargs)
5311 varinfo_t argvi;
5312 const char *newname;
5313 char *tempname;
5314 tree decl;
5316 asprintf (&tempname, "%s.varargs", name);
5317 newname = ggc_strdup (tempname);
5318 free (tempname);
5320 /* We need sth that can be pointed to for va_start. */
5321 decl = build_fake_var_decl (ptr_type_node);
5323 argvi = new_var_info (decl, newname);
5324 argvi->offset = fi_parm_base + num_args;
5325 argvi->size = ~0;
5326 argvi->is_full_var = true;
5327 argvi->is_heap_var = true;
5328 argvi->fullsize = vi->fullsize;
5329 gcc_assert (prev_vi->offset < argvi->offset);
5330 prev_vi->next = argvi;
5331 prev_vi = argvi;
5334 return vi;
5338 /* Return true if FIELDSTACK contains fields that overlap.
5339 FIELDSTACK is assumed to be sorted by offset. */
5341 static bool
5342 check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
5344 fieldoff_s *fo = NULL;
5345 unsigned int i;
5346 HOST_WIDE_INT lastoffset = -1;
5348 FOR_EACH_VEC_ELT (fieldoff_s, fieldstack, i, fo)
5350 if (fo->offset == lastoffset)
5351 return true;
5352 lastoffset = fo->offset;
5354 return false;
5357 /* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5358 This will also create any varinfo structures necessary for fields
5359 of DECL. */
5361 static varinfo_t
5362 create_variable_info_for_1 (tree decl, const char *name)
5364 varinfo_t vi, newvi;
5365 tree decl_type = TREE_TYPE (decl);
5366 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
5367 VEC (fieldoff_s,heap) *fieldstack = NULL;
5368 fieldoff_s *fo;
5369 unsigned int i;
5371 if (!declsize
5372 || !host_integerp (declsize, 1))
5374 vi = new_var_info (decl, name);
5375 vi->offset = 0;
5376 vi->size = ~0;
5377 vi->fullsize = ~0;
5378 vi->is_unknown_size_var = true;
5379 vi->is_full_var = true;
5380 vi->may_have_pointers = true;
5381 return vi;
5384 /* Collect field information. */
5385 if (use_field_sensitive
5386 && var_can_have_subvars (decl)
5387 /* ??? Force us to not use subfields for global initializers
5388 in IPA mode. Else we'd have to parse arbitrary initializers. */
5389 && !(in_ipa_mode
5390 && is_global_var (decl)
5391 && DECL_INITIAL (decl)))
5393 fieldoff_s *fo = NULL;
5394 bool notokay = false;
5395 unsigned int i;
5397 push_fields_onto_fieldstack (decl_type, &fieldstack, 0);
5399 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5400 if (fo->has_unknown_size
5401 || fo->offset < 0)
5403 notokay = true;
5404 break;
5407 /* We can't sort them if we have a field with a variable sized type,
5408 which will make notokay = true. In that case, we are going to return
5409 without creating varinfos for the fields anyway, so sorting them is a
5410 waste to boot. */
5411 if (!notokay)
5413 sort_fieldstack (fieldstack);
5414 /* Due to some C++ FE issues, like PR 22488, we might end up
5415 what appear to be overlapping fields even though they,
5416 in reality, do not overlap. Until the C++ FE is fixed,
5417 we will simply disable field-sensitivity for these cases. */
5418 notokay = check_for_overlaps (fieldstack);
5421 if (notokay)
5422 VEC_free (fieldoff_s, heap, fieldstack);
5425 /* If we didn't end up collecting sub-variables create a full
5426 variable for the decl. */
5427 if (VEC_length (fieldoff_s, fieldstack) <= 1
5428 || VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5430 vi = new_var_info (decl, name);
5431 vi->offset = 0;
5432 vi->may_have_pointers = true;
5433 vi->fullsize = TREE_INT_CST_LOW (declsize);
5434 vi->size = vi->fullsize;
5435 vi->is_full_var = true;
5436 VEC_free (fieldoff_s, heap, fieldstack);
5437 return vi;
5440 vi = new_var_info (decl, name);
5441 vi->fullsize = TREE_INT_CST_LOW (declsize);
5442 for (i = 0, newvi = vi;
5443 VEC_iterate (fieldoff_s, fieldstack, i, fo);
5444 ++i, newvi = newvi->next)
5446 const char *newname = "NULL";
5447 char *tempname;
5449 if (dump_file)
5451 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5452 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5453 newname = ggc_strdup (tempname);
5454 free (tempname);
5456 newvi->name = newname;
5457 newvi->offset = fo->offset;
5458 newvi->size = fo->size;
5459 newvi->fullsize = vi->fullsize;
5460 newvi->may_have_pointers = fo->may_have_pointers;
5461 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5462 if (i + 1 < VEC_length (fieldoff_s, fieldstack))
5463 newvi->next = new_var_info (decl, name);
5466 VEC_free (fieldoff_s, heap, fieldstack);
5468 return vi;
5471 static unsigned int
5472 create_variable_info_for (tree decl, const char *name)
5474 varinfo_t vi = create_variable_info_for_1 (decl, name);
5475 unsigned int id = vi->id;
5477 insert_vi_for_tree (decl, vi);
5479 if (TREE_CODE (decl) != VAR_DECL)
5480 return id;
5482 /* Create initial constraints for globals. */
5483 for (; vi; vi = vi->next)
5485 if (!vi->may_have_pointers
5486 || !vi->is_global_var)
5487 continue;
5489 /* Mark global restrict qualified pointers. */
5490 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5491 && TYPE_RESTRICT (TREE_TYPE (decl)))
5492 || vi->only_restrict_pointers)
5493 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
5495 /* In non-IPA mode the initializer from nonlocal is all we need. */
5496 if (!in_ipa_mode
5497 || DECL_HARD_REGISTER (decl))
5498 make_copy_constraint (vi, nonlocal_id);
5500 else
5502 struct varpool_node *vnode = varpool_get_node (decl);
5504 /* For escaped variables initialize them from nonlocal. */
5505 if (!varpool_all_refs_explicit_p (vnode))
5506 make_copy_constraint (vi, nonlocal_id);
5508 /* If this is a global variable with an initializer and we are in
5509 IPA mode generate constraints for it. */
5510 if (DECL_INITIAL (decl))
5512 VEC (ce_s, heap) *rhsc = NULL;
5513 struct constraint_expr lhs, *rhsp;
5514 unsigned i;
5515 get_constraint_for_rhs (DECL_INITIAL (decl), &rhsc);
5516 lhs.var = vi->id;
5517 lhs.offset = 0;
5518 lhs.type = SCALAR;
5519 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5520 process_constraint (new_constraint (lhs, *rhsp));
5521 /* If this is a variable that escapes from the unit
5522 the initializer escapes as well. */
5523 if (!varpool_all_refs_explicit_p (vnode))
5525 lhs.var = escaped_id;
5526 lhs.offset = 0;
5527 lhs.type = SCALAR;
5528 FOR_EACH_VEC_ELT (ce_s, rhsc, i, rhsp)
5529 process_constraint (new_constraint (lhs, *rhsp));
5531 VEC_free (ce_s, heap, rhsc);
5536 return id;
5539 /* Print out the points-to solution for VAR to FILE. */
5541 static void
5542 dump_solution_for_var (FILE *file, unsigned int var)
5544 varinfo_t vi = get_varinfo (var);
5545 unsigned int i;
5546 bitmap_iterator bi;
5548 /* Dump the solution for unified vars anyway, this avoids difficulties
5549 in scanning dumps in the testsuite. */
5550 fprintf (file, "%s = { ", vi->name);
5551 vi = get_varinfo (find (var));
5552 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5553 fprintf (file, "%s ", get_varinfo (i)->name);
5554 fprintf (file, "}");
5556 /* But note when the variable was unified. */
5557 if (vi->id != var)
5558 fprintf (file, " same as %s", vi->name);
5560 fprintf (file, "\n");
5563 /* Print the points-to solution for VAR to stdout. */
5565 DEBUG_FUNCTION void
5566 debug_solution_for_var (unsigned int var)
5568 dump_solution_for_var (stdout, var);
5571 /* Create varinfo structures for all of the variables in the
5572 function for intraprocedural mode. */
5574 static void
5575 intra_create_variable_infos (void)
5577 tree t;
5579 /* For each incoming pointer argument arg, create the constraint ARG
5580 = NONLOCAL or a dummy variable if it is a restrict qualified
5581 passed-by-reference argument. */
5582 for (t = DECL_ARGUMENTS (current_function_decl); t; t = DECL_CHAIN (t))
5584 varinfo_t p;
5586 /* For restrict qualified pointers to objects passed by
5587 reference build a real representative for the pointed-to object. */
5588 if (DECL_BY_REFERENCE (t)
5589 && POINTER_TYPE_P (TREE_TYPE (t))
5590 && TYPE_RESTRICT (TREE_TYPE (t)))
5592 struct constraint_expr lhsc, rhsc;
5593 varinfo_t vi;
5594 tree heapvar = build_fake_var_decl (TREE_TYPE (TREE_TYPE (t)));
5595 DECL_EXTERNAL (heapvar) = 1;
5596 vi = create_variable_info_for_1 (heapvar, "PARM_NOALIAS");
5597 insert_vi_for_tree (heapvar, vi);
5598 lhsc.var = get_vi_for_tree (t)->id;
5599 lhsc.type = SCALAR;
5600 lhsc.offset = 0;
5601 rhsc.var = vi->id;
5602 rhsc.type = ADDRESSOF;
5603 rhsc.offset = 0;
5604 process_constraint (new_constraint (lhsc, rhsc));
5605 vi->is_restrict_var = 1;
5606 for (; vi; vi = vi->next)
5607 if (vi->may_have_pointers)
5609 if (vi->only_restrict_pointers)
5610 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
5611 make_copy_constraint (vi, nonlocal_id);
5613 continue;
5616 for (p = get_vi_for_tree (t); p; p = p->next)
5618 if (p->may_have_pointers)
5619 make_constraint_from (p, nonlocal_id);
5620 if (p->only_restrict_pointers)
5621 make_constraint_from_restrict (p, "PARM_RESTRICT");
5623 if (POINTER_TYPE_P (TREE_TYPE (t))
5624 && TYPE_RESTRICT (TREE_TYPE (t)))
5625 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
5628 /* Add a constraint for a result decl that is passed by reference. */
5629 if (DECL_RESULT (cfun->decl)
5630 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
5632 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
5634 for (p = result_vi; p; p = p->next)
5635 make_constraint_from (p, nonlocal_id);
5638 /* Add a constraint for the incoming static chain parameter. */
5639 if (cfun->static_chain_decl != NULL_TREE)
5641 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
5643 for (p = chain_vi; p; p = p->next)
5644 make_constraint_from (p, nonlocal_id);
5648 /* Structure used to put solution bitmaps in a hashtable so they can
5649 be shared among variables with the same points-to set. */
5651 typedef struct shared_bitmap_info
5653 bitmap pt_vars;
5654 hashval_t hashcode;
5655 } *shared_bitmap_info_t;
5656 typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
5658 static htab_t shared_bitmap_table;
5660 /* Hash function for a shared_bitmap_info_t */
5662 static hashval_t
5663 shared_bitmap_hash (const void *p)
5665 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
5666 return bi->hashcode;
5669 /* Equality function for two shared_bitmap_info_t's. */
5671 static int
5672 shared_bitmap_eq (const void *p1, const void *p2)
5674 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
5675 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
5676 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5679 /* Lookup a bitmap in the shared bitmap hashtable, and return an already
5680 existing instance if there is one, NULL otherwise. */
5682 static bitmap
5683 shared_bitmap_lookup (bitmap pt_vars)
5685 void **slot;
5686 struct shared_bitmap_info sbi;
5688 sbi.pt_vars = pt_vars;
5689 sbi.hashcode = bitmap_hash (pt_vars);
5691 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
5692 sbi.hashcode, NO_INSERT);
5693 if (!slot)
5694 return NULL;
5695 else
5696 return ((shared_bitmap_info_t) *slot)->pt_vars;
5700 /* Add a bitmap to the shared bitmap hashtable. */
5702 static void
5703 shared_bitmap_add (bitmap pt_vars)
5705 void **slot;
5706 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
5708 sbi->pt_vars = pt_vars;
5709 sbi->hashcode = bitmap_hash (pt_vars);
5711 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
5712 sbi->hashcode, INSERT);
5713 gcc_assert (!*slot);
5714 *slot = (void *) sbi;
5718 /* Set bits in INTO corresponding to the variable uids in solution set FROM. */
5720 static void
5721 set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
5723 unsigned int i;
5724 bitmap_iterator bi;
5726 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
5728 varinfo_t vi = get_varinfo (i);
5730 /* The only artificial variables that are allowed in a may-alias
5731 set are heap variables. */
5732 if (vi->is_artificial_var && !vi->is_heap_var)
5733 continue;
5735 if (TREE_CODE (vi->decl) == VAR_DECL
5736 || TREE_CODE (vi->decl) == PARM_DECL
5737 || TREE_CODE (vi->decl) == RESULT_DECL)
5739 /* If we are in IPA mode we will not recompute points-to
5740 sets after inlining so make sure they stay valid. */
5741 if (in_ipa_mode
5742 && !DECL_PT_UID_SET_P (vi->decl))
5743 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
5745 /* Add the decl to the points-to set. Note that the points-to
5746 set contains global variables. */
5747 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
5748 if (vi->is_global_var)
5749 pt->vars_contains_global = true;
5755 /* Compute the points-to solution *PT for the variable VI. */
5757 static void
5758 find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
5760 unsigned int i;
5761 bitmap_iterator bi;
5762 bitmap finished_solution;
5763 bitmap result;
5764 varinfo_t vi;
5766 memset (pt, 0, sizeof (struct pt_solution));
5768 /* This variable may have been collapsed, let's get the real
5769 variable. */
5770 vi = get_varinfo (find (orig_vi->id));
5772 /* Translate artificial variables into SSA_NAME_PTR_INFO
5773 attributes. */
5774 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5776 varinfo_t vi = get_varinfo (i);
5778 if (vi->is_artificial_var)
5780 if (vi->id == nothing_id)
5781 pt->null = 1;
5782 else if (vi->id == escaped_id)
5784 if (in_ipa_mode)
5785 pt->ipa_escaped = 1;
5786 else
5787 pt->escaped = 1;
5789 else if (vi->id == nonlocal_id)
5790 pt->nonlocal = 1;
5791 else if (vi->is_heap_var)
5792 /* We represent heapvars in the points-to set properly. */
5794 else if (vi->id == readonly_id)
5795 /* Nobody cares. */
5797 else if (vi->id == anything_id
5798 || vi->id == integer_id)
5799 pt->anything = 1;
5801 if (vi->is_restrict_var)
5802 pt->vars_contains_restrict = true;
5805 /* Instead of doing extra work, simply do not create
5806 elaborate points-to information for pt_anything pointers. */
5807 if (pt->anything
5808 && (orig_vi->is_artificial_var
5809 || !pt->vars_contains_restrict))
5810 return;
5812 /* Share the final set of variables when possible. */
5813 finished_solution = BITMAP_GGC_ALLOC ();
5814 stats.points_to_sets_created++;
5816 set_uids_in_ptset (finished_solution, vi->solution, pt);
5817 result = shared_bitmap_lookup (finished_solution);
5818 if (!result)
5820 shared_bitmap_add (finished_solution);
5821 pt->vars = finished_solution;
5823 else
5825 pt->vars = result;
5826 bitmap_clear (finished_solution);
5830 /* Given a pointer variable P, fill in its points-to set. */
5832 static void
5833 find_what_p_points_to (tree p)
5835 struct ptr_info_def *pi;
5836 tree lookup_p = p;
5837 varinfo_t vi;
5839 /* For parameters, get at the points-to set for the actual parm
5840 decl. */
5841 if (TREE_CODE (p) == SSA_NAME
5842 && (TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
5843 || TREE_CODE (SSA_NAME_VAR (p)) == RESULT_DECL)
5844 && SSA_NAME_IS_DEFAULT_DEF (p))
5845 lookup_p = SSA_NAME_VAR (p);
5847 vi = lookup_vi_for_tree (lookup_p);
5848 if (!vi)
5849 return;
5851 pi = get_ptr_info (p);
5852 find_what_var_points_to (vi, &pi->pt);
5856 /* Query statistics for points-to solutions. */
5858 static struct {
5859 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
5860 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
5861 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
5862 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
5863 } pta_stats;
5865 void
5866 dump_pta_stats (FILE *s)
5868 fprintf (s, "\nPTA query stats:\n");
5869 fprintf (s, " pt_solution_includes: "
5870 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5871 HOST_WIDE_INT_PRINT_DEC" queries\n",
5872 pta_stats.pt_solution_includes_no_alias,
5873 pta_stats.pt_solution_includes_no_alias
5874 + pta_stats.pt_solution_includes_may_alias);
5875 fprintf (s, " pt_solutions_intersect: "
5876 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5877 HOST_WIDE_INT_PRINT_DEC" queries\n",
5878 pta_stats.pt_solutions_intersect_no_alias,
5879 pta_stats.pt_solutions_intersect_no_alias
5880 + pta_stats.pt_solutions_intersect_may_alias);
5884 /* Reset the points-to solution *PT to a conservative default
5885 (point to anything). */
5887 void
5888 pt_solution_reset (struct pt_solution *pt)
5890 memset (pt, 0, sizeof (struct pt_solution));
5891 pt->anything = true;
5894 /* Set the points-to solution *PT to point only to the variables
5895 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
5896 global variables and VARS_CONTAINS_RESTRICT specifies whether
5897 it contains restrict tag variables. */
5899 void
5900 pt_solution_set (struct pt_solution *pt, bitmap vars,
5901 bool vars_contains_global, bool vars_contains_restrict)
5903 memset (pt, 0, sizeof (struct pt_solution));
5904 pt->vars = vars;
5905 pt->vars_contains_global = vars_contains_global;
5906 pt->vars_contains_restrict = vars_contains_restrict;
5909 /* Set the points-to solution *PT to point only to the variable VAR. */
5911 void
5912 pt_solution_set_var (struct pt_solution *pt, tree var)
5914 memset (pt, 0, sizeof (struct pt_solution));
5915 pt->vars = BITMAP_GGC_ALLOC ();
5916 bitmap_set_bit (pt->vars, DECL_PT_UID (var));
5917 pt->vars_contains_global = is_global_var (var);
5920 /* Computes the union of the points-to solutions *DEST and *SRC and
5921 stores the result in *DEST. This changes the points-to bitmap
5922 of *DEST and thus may not be used if that might be shared.
5923 The points-to bitmap of *SRC and *DEST will not be shared after
5924 this function if they were not before. */
5926 static void
5927 pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
5929 dest->anything |= src->anything;
5930 if (dest->anything)
5932 pt_solution_reset (dest);
5933 return;
5936 dest->nonlocal |= src->nonlocal;
5937 dest->escaped |= src->escaped;
5938 dest->ipa_escaped |= src->ipa_escaped;
5939 dest->null |= src->null;
5940 dest->vars_contains_global |= src->vars_contains_global;
5941 dest->vars_contains_restrict |= src->vars_contains_restrict;
5942 if (!src->vars)
5943 return;
5945 if (!dest->vars)
5946 dest->vars = BITMAP_GGC_ALLOC ();
5947 bitmap_ior_into (dest->vars, src->vars);
5950 /* Return true if the points-to solution *PT is empty. */
5952 bool
5953 pt_solution_empty_p (struct pt_solution *pt)
5955 if (pt->anything
5956 || pt->nonlocal)
5957 return false;
5959 if (pt->vars
5960 && !bitmap_empty_p (pt->vars))
5961 return false;
5963 /* If the solution includes ESCAPED, check if that is empty. */
5964 if (pt->escaped
5965 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5966 return false;
5968 /* If the solution includes ESCAPED, check if that is empty. */
5969 if (pt->ipa_escaped
5970 && !pt_solution_empty_p (&ipa_escaped_pt))
5971 return false;
5973 return true;
5976 /* Return true if the points-to solution *PT includes global memory. */
5978 bool
5979 pt_solution_includes_global (struct pt_solution *pt)
5981 if (pt->anything
5982 || pt->nonlocal
5983 || pt->vars_contains_global)
5984 return true;
5986 if (pt->escaped)
5987 return pt_solution_includes_global (&cfun->gimple_df->escaped);
5989 if (pt->ipa_escaped)
5990 return pt_solution_includes_global (&ipa_escaped_pt);
5992 /* ??? This predicate is not correct for the IPA-PTA solution
5993 as we do not properly distinguish between unit escape points
5994 and global variables. */
5995 if (cfun->gimple_df->ipa_pta)
5996 return true;
5998 return false;
6001 /* Return true if the points-to solution *PT includes the variable
6002 declaration DECL. */
6004 static bool
6005 pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
6007 if (pt->anything)
6008 return true;
6010 if (pt->nonlocal
6011 && is_global_var (decl))
6012 return true;
6014 if (pt->vars
6015 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
6016 return true;
6018 /* If the solution includes ESCAPED, check it. */
6019 if (pt->escaped
6020 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
6021 return true;
6023 /* If the solution includes ESCAPED, check it. */
6024 if (pt->ipa_escaped
6025 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
6026 return true;
6028 return false;
6031 bool
6032 pt_solution_includes (struct pt_solution *pt, const_tree decl)
6034 bool res = pt_solution_includes_1 (pt, decl);
6035 if (res)
6036 ++pta_stats.pt_solution_includes_may_alias;
6037 else
6038 ++pta_stats.pt_solution_includes_no_alias;
6039 return res;
6042 /* Return true if both points-to solutions PT1 and PT2 have a non-empty
6043 intersection. */
6045 static bool
6046 pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
6048 if (pt1->anything || pt2->anything)
6049 return true;
6051 /* If either points to unknown global memory and the other points to
6052 any global memory they alias. */
6053 if ((pt1->nonlocal
6054 && (pt2->nonlocal
6055 || pt2->vars_contains_global))
6056 || (pt2->nonlocal
6057 && pt1->vars_contains_global))
6058 return true;
6060 /* Check the escaped solution if required. */
6061 if ((pt1->escaped || pt2->escaped)
6062 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
6064 /* If both point to escaped memory and that solution
6065 is not empty they alias. */
6066 if (pt1->escaped && pt2->escaped)
6067 return true;
6069 /* If either points to escaped memory see if the escaped solution
6070 intersects with the other. */
6071 if ((pt1->escaped
6072 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
6073 || (pt2->escaped
6074 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
6075 return true;
6078 /* Check the escaped solution if required.
6079 ??? Do we need to check the local against the IPA escaped sets? */
6080 if ((pt1->ipa_escaped || pt2->ipa_escaped)
6081 && !pt_solution_empty_p (&ipa_escaped_pt))
6083 /* If both point to escaped memory and that solution
6084 is not empty they alias. */
6085 if (pt1->ipa_escaped && pt2->ipa_escaped)
6086 return true;
6088 /* If either points to escaped memory see if the escaped solution
6089 intersects with the other. */
6090 if ((pt1->ipa_escaped
6091 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
6092 || (pt2->ipa_escaped
6093 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
6094 return true;
6097 /* Now both pointers alias if their points-to solution intersects. */
6098 return (pt1->vars
6099 && pt2->vars
6100 && bitmap_intersect_p (pt1->vars, pt2->vars));
6103 bool
6104 pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
6106 bool res = pt_solutions_intersect_1 (pt1, pt2);
6107 if (res)
6108 ++pta_stats.pt_solutions_intersect_may_alias;
6109 else
6110 ++pta_stats.pt_solutions_intersect_no_alias;
6111 return res;
6114 /* Return true if both points-to solutions PT1 and PT2 for two restrict
6115 qualified pointers are possibly based on the same pointer. */
6117 bool
6118 pt_solutions_same_restrict_base (struct pt_solution *pt1,
6119 struct pt_solution *pt2)
6121 /* If we deal with points-to solutions of two restrict qualified
6122 pointers solely rely on the pointed-to variable bitmap intersection.
6123 For two pointers that are based on each other the bitmaps will
6124 intersect. */
6125 if (pt1->vars_contains_restrict
6126 && pt2->vars_contains_restrict)
6128 gcc_assert (pt1->vars && pt2->vars);
6129 return bitmap_intersect_p (pt1->vars, pt2->vars);
6132 return true;
6136 /* Dump points-to information to OUTFILE. */
6138 static void
6139 dump_sa_points_to_info (FILE *outfile)
6141 unsigned int i;
6143 fprintf (outfile, "\nPoints-to sets\n\n");
6145 if (dump_flags & TDF_STATS)
6147 fprintf (outfile, "Stats:\n");
6148 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
6149 fprintf (outfile, "Non-pointer vars: %d\n",
6150 stats.nonpointer_vars);
6151 fprintf (outfile, "Statically unified vars: %d\n",
6152 stats.unified_vars_static);
6153 fprintf (outfile, "Dynamically unified vars: %d\n",
6154 stats.unified_vars_dynamic);
6155 fprintf (outfile, "Iterations: %d\n", stats.iterations);
6156 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
6157 fprintf (outfile, "Number of implicit edges: %d\n",
6158 stats.num_implicit_edges);
6161 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
6163 varinfo_t vi = get_varinfo (i);
6164 if (!vi->may_have_pointers)
6165 continue;
6166 dump_solution_for_var (outfile, i);
6171 /* Debug points-to information to stderr. */
6173 DEBUG_FUNCTION void
6174 debug_sa_points_to_info (void)
6176 dump_sa_points_to_info (stderr);
6180 /* Initialize the always-existing constraint variables for NULL
6181 ANYTHING, READONLY, and INTEGER */
6183 static void
6184 init_base_vars (void)
6186 struct constraint_expr lhs, rhs;
6187 varinfo_t var_anything;
6188 varinfo_t var_nothing;
6189 varinfo_t var_readonly;
6190 varinfo_t var_escaped;
6191 varinfo_t var_nonlocal;
6192 varinfo_t var_storedanything;
6193 varinfo_t var_integer;
6195 /* Create the NULL variable, used to represent that a variable points
6196 to NULL. */
6197 var_nothing = new_var_info (NULL_TREE, "NULL");
6198 gcc_assert (var_nothing->id == nothing_id);
6199 var_nothing->is_artificial_var = 1;
6200 var_nothing->offset = 0;
6201 var_nothing->size = ~0;
6202 var_nothing->fullsize = ~0;
6203 var_nothing->is_special_var = 1;
6204 var_nothing->may_have_pointers = 0;
6205 var_nothing->is_global_var = 0;
6207 /* Create the ANYTHING variable, used to represent that a variable
6208 points to some unknown piece of memory. */
6209 var_anything = new_var_info (NULL_TREE, "ANYTHING");
6210 gcc_assert (var_anything->id == anything_id);
6211 var_anything->is_artificial_var = 1;
6212 var_anything->size = ~0;
6213 var_anything->offset = 0;
6214 var_anything->next = NULL;
6215 var_anything->fullsize = ~0;
6216 var_anything->is_special_var = 1;
6218 /* Anything points to anything. This makes deref constraints just
6219 work in the presence of linked list and other p = *p type loops,
6220 by saying that *ANYTHING = ANYTHING. */
6221 lhs.type = SCALAR;
6222 lhs.var = anything_id;
6223 lhs.offset = 0;
6224 rhs.type = ADDRESSOF;
6225 rhs.var = anything_id;
6226 rhs.offset = 0;
6228 /* This specifically does not use process_constraint because
6229 process_constraint ignores all anything = anything constraints, since all
6230 but this one are redundant. */
6231 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
6233 /* Create the READONLY variable, used to represent that a variable
6234 points to readonly memory. */
6235 var_readonly = new_var_info (NULL_TREE, "READONLY");
6236 gcc_assert (var_readonly->id == readonly_id);
6237 var_readonly->is_artificial_var = 1;
6238 var_readonly->offset = 0;
6239 var_readonly->size = ~0;
6240 var_readonly->fullsize = ~0;
6241 var_readonly->next = NULL;
6242 var_readonly->is_special_var = 1;
6244 /* readonly memory points to anything, in order to make deref
6245 easier. In reality, it points to anything the particular
6246 readonly variable can point to, but we don't track this
6247 separately. */
6248 lhs.type = SCALAR;
6249 lhs.var = readonly_id;
6250 lhs.offset = 0;
6251 rhs.type = ADDRESSOF;
6252 rhs.var = readonly_id; /* FIXME */
6253 rhs.offset = 0;
6254 process_constraint (new_constraint (lhs, rhs));
6256 /* Create the ESCAPED variable, used to represent the set of escaped
6257 memory. */
6258 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6259 gcc_assert (var_escaped->id == escaped_id);
6260 var_escaped->is_artificial_var = 1;
6261 var_escaped->offset = 0;
6262 var_escaped->size = ~0;
6263 var_escaped->fullsize = ~0;
6264 var_escaped->is_special_var = 0;
6266 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6267 memory. */
6268 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6269 gcc_assert (var_nonlocal->id == nonlocal_id);
6270 var_nonlocal->is_artificial_var = 1;
6271 var_nonlocal->offset = 0;
6272 var_nonlocal->size = ~0;
6273 var_nonlocal->fullsize = ~0;
6274 var_nonlocal->is_special_var = 1;
6276 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6277 lhs.type = SCALAR;
6278 lhs.var = escaped_id;
6279 lhs.offset = 0;
6280 rhs.type = DEREF;
6281 rhs.var = escaped_id;
6282 rhs.offset = 0;
6283 process_constraint (new_constraint (lhs, rhs));
6285 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6286 whole variable escapes. */
6287 lhs.type = SCALAR;
6288 lhs.var = escaped_id;
6289 lhs.offset = 0;
6290 rhs.type = SCALAR;
6291 rhs.var = escaped_id;
6292 rhs.offset = UNKNOWN_OFFSET;
6293 process_constraint (new_constraint (lhs, rhs));
6295 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6296 everything pointed to by escaped points to what global memory can
6297 point to. */
6298 lhs.type = DEREF;
6299 lhs.var = escaped_id;
6300 lhs.offset = 0;
6301 rhs.type = SCALAR;
6302 rhs.var = nonlocal_id;
6303 rhs.offset = 0;
6304 process_constraint (new_constraint (lhs, rhs));
6306 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6307 global memory may point to global memory and escaped memory. */
6308 lhs.type = SCALAR;
6309 lhs.var = nonlocal_id;
6310 lhs.offset = 0;
6311 rhs.type = ADDRESSOF;
6312 rhs.var = nonlocal_id;
6313 rhs.offset = 0;
6314 process_constraint (new_constraint (lhs, rhs));
6315 rhs.type = ADDRESSOF;
6316 rhs.var = escaped_id;
6317 rhs.offset = 0;
6318 process_constraint (new_constraint (lhs, rhs));
6320 /* Create the STOREDANYTHING variable, used to represent the set of
6321 variables stored to *ANYTHING. */
6322 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6323 gcc_assert (var_storedanything->id == storedanything_id);
6324 var_storedanything->is_artificial_var = 1;
6325 var_storedanything->offset = 0;
6326 var_storedanything->size = ~0;
6327 var_storedanything->fullsize = ~0;
6328 var_storedanything->is_special_var = 0;
6330 /* Create the INTEGER variable, used to represent that a variable points
6331 to what an INTEGER "points to". */
6332 var_integer = new_var_info (NULL_TREE, "INTEGER");
6333 gcc_assert (var_integer->id == integer_id);
6334 var_integer->is_artificial_var = 1;
6335 var_integer->size = ~0;
6336 var_integer->fullsize = ~0;
6337 var_integer->offset = 0;
6338 var_integer->next = NULL;
6339 var_integer->is_special_var = 1;
6341 /* INTEGER = ANYTHING, because we don't know where a dereference of
6342 a random integer will point to. */
6343 lhs.type = SCALAR;
6344 lhs.var = integer_id;
6345 lhs.offset = 0;
6346 rhs.type = ADDRESSOF;
6347 rhs.var = anything_id;
6348 rhs.offset = 0;
6349 process_constraint (new_constraint (lhs, rhs));
6352 /* Initialize things necessary to perform PTA */
6354 static void
6355 init_alias_vars (void)
6357 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6359 bitmap_obstack_initialize (&pta_obstack);
6360 bitmap_obstack_initialize (&oldpta_obstack);
6361 bitmap_obstack_initialize (&predbitmap_obstack);
6363 constraint_pool = create_alloc_pool ("Constraint pool",
6364 sizeof (struct constraint), 30);
6365 variable_info_pool = create_alloc_pool ("Variable info pool",
6366 sizeof (struct variable_info), 30);
6367 constraints = VEC_alloc (constraint_t, heap, 8);
6368 varmap = VEC_alloc (varinfo_t, heap, 8);
6369 vi_for_tree = pointer_map_create ();
6370 call_stmt_vars = pointer_map_create ();
6372 memset (&stats, 0, sizeof (stats));
6373 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
6374 shared_bitmap_eq, free);
6375 init_base_vars ();
6377 gcc_obstack_init (&fake_var_decl_obstack);
6380 /* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6381 predecessor edges. */
6383 static void
6384 remove_preds_and_fake_succs (constraint_graph_t graph)
6386 unsigned int i;
6388 /* Clear the implicit ref and address nodes from the successor
6389 lists. */
6390 for (i = 0; i < FIRST_REF_NODE; i++)
6392 if (graph->succs[i])
6393 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6394 FIRST_REF_NODE * 2);
6397 /* Free the successor list for the non-ref nodes. */
6398 for (i = FIRST_REF_NODE; i < graph->size; i++)
6400 if (graph->succs[i])
6401 BITMAP_FREE (graph->succs[i]);
6404 /* Now reallocate the size of the successor list as, and blow away
6405 the predecessor bitmaps. */
6406 graph->size = VEC_length (varinfo_t, varmap);
6407 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
6409 free (graph->implicit_preds);
6410 graph->implicit_preds = NULL;
6411 free (graph->preds);
6412 graph->preds = NULL;
6413 bitmap_obstack_release (&predbitmap_obstack);
6416 /* Solve the constraint set. */
6418 static void
6419 solve_constraints (void)
6421 struct scc_info *si;
6423 if (dump_file)
6424 fprintf (dump_file,
6425 "\nCollapsing static cycles and doing variable "
6426 "substitution\n");
6428 init_graph (VEC_length (varinfo_t, varmap) * 2);
6430 if (dump_file)
6431 fprintf (dump_file, "Building predecessor graph\n");
6432 build_pred_graph ();
6434 if (dump_file)
6435 fprintf (dump_file, "Detecting pointer and location "
6436 "equivalences\n");
6437 si = perform_var_substitution (graph);
6439 if (dump_file)
6440 fprintf (dump_file, "Rewriting constraints and unifying "
6441 "variables\n");
6442 rewrite_constraints (graph, si);
6444 build_succ_graph ();
6446 free_var_substitution_info (si);
6448 /* Attach complex constraints to graph nodes. */
6449 move_complex_constraints (graph);
6451 if (dump_file)
6452 fprintf (dump_file, "Uniting pointer but not location equivalent "
6453 "variables\n");
6454 unite_pointer_equivalences (graph);
6456 if (dump_file)
6457 fprintf (dump_file, "Finding indirect cycles\n");
6458 find_indirect_cycles (graph);
6460 /* Implicit nodes and predecessors are no longer necessary at this
6461 point. */
6462 remove_preds_and_fake_succs (graph);
6464 if (dump_file && (dump_flags & TDF_GRAPH))
6466 fprintf (dump_file, "\n\n// The constraint graph before solve-graph "
6467 "in dot format:\n");
6468 dump_constraint_graph (dump_file);
6469 fprintf (dump_file, "\n\n");
6472 if (dump_file)
6473 fprintf (dump_file, "Solving graph\n");
6475 solve_graph (graph);
6477 if (dump_file && (dump_flags & TDF_GRAPH))
6479 fprintf (dump_file, "\n\n// The constraint graph after solve-graph "
6480 "in dot format:\n");
6481 dump_constraint_graph (dump_file);
6482 fprintf (dump_file, "\n\n");
6485 if (dump_file)
6486 dump_sa_points_to_info (dump_file);
6489 /* Create points-to sets for the current function. See the comments
6490 at the start of the file for an algorithmic overview. */
6492 static void
6493 compute_points_to_sets (void)
6495 basic_block bb;
6496 unsigned i;
6497 varinfo_t vi;
6499 timevar_push (TV_TREE_PTA);
6501 init_alias_vars ();
6503 intra_create_variable_infos ();
6505 /* Now walk all statements and build the constraint set. */
6506 FOR_EACH_BB (bb)
6508 gimple_stmt_iterator gsi;
6510 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6512 gimple phi = gsi_stmt (gsi);
6514 if (is_gimple_reg (gimple_phi_result (phi)))
6515 find_func_aliases (phi);
6518 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6520 gimple stmt = gsi_stmt (gsi);
6522 find_func_aliases (stmt);
6526 if (dump_file)
6528 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6529 dump_constraints (dump_file, 0);
6532 /* From the constraints compute the points-to sets. */
6533 solve_constraints ();
6535 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
6536 find_what_var_points_to (get_varinfo (escaped_id),
6537 &cfun->gimple_df->escaped);
6539 /* Make sure the ESCAPED solution (which is used as placeholder in
6540 other solutions) does not reference itself. This simplifies
6541 points-to solution queries. */
6542 cfun->gimple_df->escaped.escaped = 0;
6544 /* Mark escaped HEAP variables as global. */
6545 FOR_EACH_VEC_ELT (varinfo_t, varmap, i, vi)
6546 if (vi->is_heap_var
6547 && !vi->is_restrict_var
6548 && !vi->is_global_var)
6549 DECL_EXTERNAL (vi->decl) = vi->is_global_var
6550 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
6552 /* Compute the points-to sets for pointer SSA_NAMEs. */
6553 for (i = 0; i < num_ssa_names; ++i)
6555 tree ptr = ssa_name (i);
6556 if (ptr
6557 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6558 find_what_p_points_to (ptr);
6561 /* Compute the call-used/clobbered sets. */
6562 FOR_EACH_BB (bb)
6564 gimple_stmt_iterator gsi;
6566 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6568 gimple stmt = gsi_stmt (gsi);
6569 struct pt_solution *pt;
6570 if (!is_gimple_call (stmt))
6571 continue;
6573 pt = gimple_call_use_set (stmt);
6574 if (gimple_call_flags (stmt) & ECF_CONST)
6575 memset (pt, 0, sizeof (struct pt_solution));
6576 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6578 find_what_var_points_to (vi, pt);
6579 /* Escaped (and thus nonlocal) variables are always
6580 implicitly used by calls. */
6581 /* ??? ESCAPED can be empty even though NONLOCAL
6582 always escaped. */
6583 pt->nonlocal = 1;
6584 pt->escaped = 1;
6586 else
6588 /* If there is nothing special about this call then
6589 we have made everything that is used also escape. */
6590 *pt = cfun->gimple_df->escaped;
6591 pt->nonlocal = 1;
6594 pt = gimple_call_clobber_set (stmt);
6595 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6596 memset (pt, 0, sizeof (struct pt_solution));
6597 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6599 find_what_var_points_to (vi, pt);
6600 /* Escaped (and thus nonlocal) variables are always
6601 implicitly clobbered by calls. */
6602 /* ??? ESCAPED can be empty even though NONLOCAL
6603 always escaped. */
6604 pt->nonlocal = 1;
6605 pt->escaped = 1;
6607 else
6609 /* If there is nothing special about this call then
6610 we have made everything that is used also escape. */
6611 *pt = cfun->gimple_df->escaped;
6612 pt->nonlocal = 1;
6617 timevar_pop (TV_TREE_PTA);
6621 /* Delete created points-to sets. */
6623 static void
6624 delete_points_to_sets (void)
6626 unsigned int i;
6628 htab_delete (shared_bitmap_table);
6629 if (dump_file && (dump_flags & TDF_STATS))
6630 fprintf (dump_file, "Points to sets created:%d\n",
6631 stats.points_to_sets_created);
6633 pointer_map_destroy (vi_for_tree);
6634 pointer_map_destroy (call_stmt_vars);
6635 bitmap_obstack_release (&pta_obstack);
6636 VEC_free (constraint_t, heap, constraints);
6638 for (i = 0; i < graph->size; i++)
6639 VEC_free (constraint_t, heap, graph->complex[i]);
6640 free (graph->complex);
6642 free (graph->rep);
6643 free (graph->succs);
6644 free (graph->pe);
6645 free (graph->pe_rep);
6646 free (graph->indirect_cycles);
6647 free (graph);
6649 VEC_free (varinfo_t, heap, varmap);
6650 free_alloc_pool (variable_info_pool);
6651 free_alloc_pool (constraint_pool);
6653 obstack_free (&fake_var_decl_obstack, NULL);
6657 /* Compute points-to information for every SSA_NAME pointer in the
6658 current function and compute the transitive closure of escaped
6659 variables to re-initialize the call-clobber states of local variables. */
6661 unsigned int
6662 compute_may_aliases (void)
6664 if (cfun->gimple_df->ipa_pta)
6666 if (dump_file)
6668 fprintf (dump_file, "\nNot re-computing points-to information "
6669 "because IPA points-to information is available.\n\n");
6671 /* But still dump what we have remaining it. */
6672 dump_alias_info (dump_file);
6674 if (dump_flags & TDF_DETAILS)
6675 dump_referenced_vars (dump_file);
6678 return 0;
6681 /* For each pointer P_i, determine the sets of variables that P_i may
6682 point-to. Compute the reachability set of escaped and call-used
6683 variables. */
6684 compute_points_to_sets ();
6686 /* Debugging dumps. */
6687 if (dump_file)
6689 dump_alias_info (dump_file);
6691 if (dump_flags & TDF_DETAILS)
6692 dump_referenced_vars (dump_file);
6695 /* Deallocate memory used by aliasing data structures and the internal
6696 points-to solution. */
6697 delete_points_to_sets ();
6699 gcc_assert (!need_ssa_update_p (cfun));
6701 return 0;
6704 static bool
6705 gate_tree_pta (void)
6707 return flag_tree_pta;
6710 /* A dummy pass to cause points-to information to be computed via
6711 TODO_rebuild_alias. */
6713 struct gimple_opt_pass pass_build_alias =
6716 GIMPLE_PASS,
6717 "alias", /* name */
6718 gate_tree_pta, /* gate */
6719 NULL, /* execute */
6720 NULL, /* sub */
6721 NULL, /* next */
6722 0, /* static_pass_number */
6723 TV_NONE, /* tv_id */
6724 PROP_cfg | PROP_ssa, /* properties_required */
6725 0, /* properties_provided */
6726 0, /* properties_destroyed */
6727 0, /* todo_flags_start */
6728 TODO_rebuild_alias /* todo_flags_finish */
6732 /* A dummy pass to cause points-to information to be computed via
6733 TODO_rebuild_alias. */
6735 struct gimple_opt_pass pass_build_ealias =
6738 GIMPLE_PASS,
6739 "ealias", /* name */
6740 gate_tree_pta, /* gate */
6741 NULL, /* execute */
6742 NULL, /* sub */
6743 NULL, /* next */
6744 0, /* static_pass_number */
6745 TV_NONE, /* tv_id */
6746 PROP_cfg | PROP_ssa, /* properties_required */
6747 0, /* properties_provided */
6748 0, /* properties_destroyed */
6749 0, /* todo_flags_start */
6750 TODO_rebuild_alias /* todo_flags_finish */
6755 /* Return true if we should execute IPA PTA. */
6756 static bool
6757 gate_ipa_pta (void)
6759 return (optimize
6760 && flag_ipa_pta
6761 /* Don't bother doing anything if the program has errors. */
6762 && !seen_error ());
6765 /* IPA PTA solutions for ESCAPED. */
6766 struct pt_solution ipa_escaped_pt
6767 = { true, false, false, false, false, false, false, NULL };
6769 /* Associate node with varinfo DATA. Worker for
6770 cgraph_for_node_and_aliases. */
6771 static bool
6772 associate_varinfo_to_alias (struct cgraph_node *node, void *data)
6774 if (node->alias || node->thunk.thunk_p)
6775 insert_vi_for_tree (node->decl, (varinfo_t)data);
6776 return false;
6779 /* Execute the driver for IPA PTA. */
6780 static unsigned int
6781 ipa_pta_execute (void)
6783 struct cgraph_node *node;
6784 struct varpool_node *var;
6785 int from;
6787 in_ipa_mode = 1;
6789 init_alias_vars ();
6791 if (dump_file && (dump_flags & TDF_DETAILS))
6793 dump_cgraph (dump_file);
6794 fprintf (dump_file, "\n");
6797 /* Build the constraints. */
6798 for (node = cgraph_nodes; node; node = node->next)
6800 varinfo_t vi;
6801 /* Nodes without a body are not interesting. Especially do not
6802 visit clones at this point for now - we get duplicate decls
6803 there for inline clones at least. */
6804 if (!cgraph_function_with_gimple_body_p (node))
6805 continue;
6807 gcc_assert (!node->clone_of);
6809 vi = create_function_info_for (node->decl,
6810 alias_get_name (node->decl));
6811 cgraph_for_node_and_aliases (node, associate_varinfo_to_alias, vi, true);
6814 /* Create constraints for global variables and their initializers. */
6815 for (var = varpool_nodes; var; var = var->next)
6817 if (var->alias)
6818 continue;
6820 get_vi_for_tree (var->decl);
6823 if (dump_file)
6825 fprintf (dump_file,
6826 "Generating constraints for global initializers\n\n");
6827 dump_constraints (dump_file, 0);
6828 fprintf (dump_file, "\n");
6830 from = VEC_length (constraint_t, constraints);
6832 for (node = cgraph_nodes; node; node = node->next)
6834 struct function *func;
6835 basic_block bb;
6836 tree old_func_decl;
6838 /* Nodes without a body are not interesting. */
6839 if (!cgraph_function_with_gimple_body_p (node))
6840 continue;
6842 if (dump_file)
6844 fprintf (dump_file,
6845 "Generating constraints for %s", cgraph_node_name (node));
6846 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
6847 fprintf (dump_file, " (%s)",
6848 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
6849 fprintf (dump_file, "\n");
6852 func = DECL_STRUCT_FUNCTION (node->decl);
6853 old_func_decl = current_function_decl;
6854 push_cfun (func);
6855 current_function_decl = node->decl;
6857 /* For externally visible or attribute used annotated functions use
6858 local constraints for their arguments.
6859 For local functions we see all callers and thus do not need initial
6860 constraints for parameters. */
6861 if (node->reachable_from_other_partition
6862 || node->local.externally_visible
6863 || node->needed)
6865 intra_create_variable_infos ();
6867 /* We also need to make function return values escape. Nothing
6868 escapes by returning from main though. */
6869 if (!MAIN_NAME_P (DECL_NAME (node->decl)))
6871 varinfo_t fi, rvi;
6872 fi = lookup_vi_for_tree (node->decl);
6873 rvi = first_vi_for_offset (fi, fi_result);
6874 if (rvi && rvi->offset == fi_result)
6876 struct constraint_expr includes;
6877 struct constraint_expr var;
6878 includes.var = escaped_id;
6879 includes.offset = 0;
6880 includes.type = SCALAR;
6881 var.var = rvi->id;
6882 var.offset = 0;
6883 var.type = SCALAR;
6884 process_constraint (new_constraint (includes, var));
6889 /* Build constriants for the function body. */
6890 FOR_EACH_BB_FN (bb, func)
6892 gimple_stmt_iterator gsi;
6894 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6895 gsi_next (&gsi))
6897 gimple phi = gsi_stmt (gsi);
6899 if (is_gimple_reg (gimple_phi_result (phi)))
6900 find_func_aliases (phi);
6903 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6905 gimple stmt = gsi_stmt (gsi);
6907 find_func_aliases (stmt);
6908 find_func_clobbers (stmt);
6912 current_function_decl = old_func_decl;
6913 pop_cfun ();
6915 if (dump_file)
6917 fprintf (dump_file, "\n");
6918 dump_constraints (dump_file, from);
6919 fprintf (dump_file, "\n");
6921 from = VEC_length (constraint_t, constraints);
6924 /* From the constraints compute the points-to sets. */
6925 solve_constraints ();
6927 /* Compute the global points-to sets for ESCAPED.
6928 ??? Note that the computed escape set is not correct
6929 for the whole unit as we fail to consider graph edges to
6930 externally visible functions. */
6931 find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
6933 /* Make sure the ESCAPED solution (which is used as placeholder in
6934 other solutions) does not reference itself. This simplifies
6935 points-to solution queries. */
6936 ipa_escaped_pt.ipa_escaped = 0;
6938 /* Assign the points-to sets to the SSA names in the unit. */
6939 for (node = cgraph_nodes; node; node = node->next)
6941 tree ptr;
6942 struct function *fn;
6943 unsigned i;
6944 varinfo_t fi;
6945 basic_block bb;
6946 struct pt_solution uses, clobbers;
6947 struct cgraph_edge *e;
6949 /* Nodes without a body are not interesting. */
6950 if (!cgraph_function_with_gimple_body_p (node))
6951 continue;
6953 fn = DECL_STRUCT_FUNCTION (node->decl);
6955 /* Compute the points-to sets for pointer SSA_NAMEs. */
6956 FOR_EACH_VEC_ELT (tree, fn->gimple_df->ssa_names, i, ptr)
6958 if (ptr
6959 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6960 find_what_p_points_to (ptr);
6963 /* Compute the call-use and call-clobber sets for all direct calls. */
6964 fi = lookup_vi_for_tree (node->decl);
6965 gcc_assert (fi->is_fn_info);
6966 find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
6967 &clobbers);
6968 find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
6969 for (e = node->callers; e; e = e->next_caller)
6971 if (!e->call_stmt)
6972 continue;
6974 *gimple_call_clobber_set (e->call_stmt) = clobbers;
6975 *gimple_call_use_set (e->call_stmt) = uses;
6978 /* Compute the call-use and call-clobber sets for indirect calls
6979 and calls to external functions. */
6980 FOR_EACH_BB_FN (bb, fn)
6982 gimple_stmt_iterator gsi;
6984 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6986 gimple stmt = gsi_stmt (gsi);
6987 struct pt_solution *pt;
6988 varinfo_t vi;
6989 tree decl;
6991 if (!is_gimple_call (stmt))
6992 continue;
6994 /* Handle direct calls to external functions. */
6995 decl = gimple_call_fndecl (stmt);
6996 if (decl
6997 && (!(fi = lookup_vi_for_tree (decl))
6998 || !fi->is_fn_info))
7000 pt = gimple_call_use_set (stmt);
7001 if (gimple_call_flags (stmt) & ECF_CONST)
7002 memset (pt, 0, sizeof (struct pt_solution));
7003 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
7005 find_what_var_points_to (vi, pt);
7006 /* Escaped (and thus nonlocal) variables are always
7007 implicitly used by calls. */
7008 /* ??? ESCAPED can be empty even though NONLOCAL
7009 always escaped. */
7010 pt->nonlocal = 1;
7011 pt->ipa_escaped = 1;
7013 else
7015 /* If there is nothing special about this call then
7016 we have made everything that is used also escape. */
7017 *pt = ipa_escaped_pt;
7018 pt->nonlocal = 1;
7021 pt = gimple_call_clobber_set (stmt);
7022 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
7023 memset (pt, 0, sizeof (struct pt_solution));
7024 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
7026 find_what_var_points_to (vi, pt);
7027 /* Escaped (and thus nonlocal) variables are always
7028 implicitly clobbered by calls. */
7029 /* ??? ESCAPED can be empty even though NONLOCAL
7030 always escaped. */
7031 pt->nonlocal = 1;
7032 pt->ipa_escaped = 1;
7034 else
7036 /* If there is nothing special about this call then
7037 we have made everything that is used also escape. */
7038 *pt = ipa_escaped_pt;
7039 pt->nonlocal = 1;
7043 /* Handle indirect calls. */
7044 if (!decl
7045 && (fi = get_fi_for_callee (stmt)))
7047 /* We need to accumulate all clobbers/uses of all possible
7048 callees. */
7049 fi = get_varinfo (find (fi->id));
7050 /* If we cannot constrain the set of functions we'll end up
7051 calling we end up using/clobbering everything. */
7052 if (bitmap_bit_p (fi->solution, anything_id)
7053 || bitmap_bit_p (fi->solution, nonlocal_id)
7054 || bitmap_bit_p (fi->solution, escaped_id))
7056 pt_solution_reset (gimple_call_clobber_set (stmt));
7057 pt_solution_reset (gimple_call_use_set (stmt));
7059 else
7061 bitmap_iterator bi;
7062 unsigned i;
7063 struct pt_solution *uses, *clobbers;
7065 uses = gimple_call_use_set (stmt);
7066 clobbers = gimple_call_clobber_set (stmt);
7067 memset (uses, 0, sizeof (struct pt_solution));
7068 memset (clobbers, 0, sizeof (struct pt_solution));
7069 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
7071 struct pt_solution sol;
7073 vi = get_varinfo (i);
7074 if (!vi->is_fn_info)
7076 /* ??? We could be more precise here? */
7077 uses->nonlocal = 1;
7078 uses->ipa_escaped = 1;
7079 clobbers->nonlocal = 1;
7080 clobbers->ipa_escaped = 1;
7081 continue;
7084 if (!uses->anything)
7086 find_what_var_points_to
7087 (first_vi_for_offset (vi, fi_uses), &sol);
7088 pt_solution_ior_into (uses, &sol);
7090 if (!clobbers->anything)
7092 find_what_var_points_to
7093 (first_vi_for_offset (vi, fi_clobbers), &sol);
7094 pt_solution_ior_into (clobbers, &sol);
7102 fn->gimple_df->ipa_pta = true;
7105 delete_points_to_sets ();
7107 in_ipa_mode = 0;
7109 return 0;
7112 struct simple_ipa_opt_pass pass_ipa_pta =
7115 SIMPLE_IPA_PASS,
7116 "pta", /* name */
7117 gate_ipa_pta, /* gate */
7118 ipa_pta_execute, /* execute */
7119 NULL, /* sub */
7120 NULL, /* next */
7121 0, /* static_pass_number */
7122 TV_IPA_PTA, /* tv_id */
7123 0, /* properties_required */
7124 0, /* properties_provided */
7125 0, /* properties_destroyed */
7126 0, /* todo_flags_start */
7127 TODO_update_ssa /* todo_flags_finish */