2011-08-19 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / tree-chrec.c
blobfbd61c08ea610943daf85d77999064821145b96c
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tree-pretty-print.h"
31 #include "cfgloop.h"
32 #include "tree-flow.h"
33 #include "tree-chrec.h"
34 #include "tree-pass.h"
35 #include "params.h"
36 #include "tree-scalar-evolution.h"
38 /* Extended folder for chrecs. */
40 /* Determines whether CST is not a constant evolution. */
42 static inline bool
43 is_not_constant_evolution (const_tree cst)
45 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
48 /* Fold CODE for a polynomial function and a constant. */
50 static inline tree
51 chrec_fold_poly_cst (enum tree_code code,
52 tree type,
53 tree poly,
54 tree cst)
56 gcc_assert (poly);
57 gcc_assert (cst);
58 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
59 gcc_assert (!is_not_constant_evolution (cst));
60 gcc_assert (type == chrec_type (poly));
62 switch (code)
64 case PLUS_EXPR:
65 return build_polynomial_chrec
66 (CHREC_VARIABLE (poly),
67 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
68 CHREC_RIGHT (poly));
70 case MINUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
76 case MULT_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
80 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
82 default:
83 return chrec_dont_know;
87 /* Fold the addition of two polynomial functions. */
89 static inline tree
90 chrec_fold_plus_poly_poly (enum tree_code code,
91 tree type,
92 tree poly0,
93 tree poly1)
95 tree left, right;
96 struct loop *loop0 = get_chrec_loop (poly0);
97 struct loop *loop1 = get_chrec_loop (poly1);
98 tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type;
100 gcc_assert (poly0);
101 gcc_assert (poly1);
102 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
103 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
104 if (POINTER_TYPE_P (chrec_type (poly0)))
105 gcc_assert (ptrofftype_p (chrec_type (poly1)));
106 else
107 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
108 gcc_assert (type == chrec_type (poly0));
111 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
112 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
113 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
114 if (flow_loop_nested_p (loop0, loop1))
116 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
117 return build_polynomial_chrec
118 (CHREC_VARIABLE (poly1),
119 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
120 CHREC_RIGHT (poly1));
121 else
122 return build_polynomial_chrec
123 (CHREC_VARIABLE (poly1),
124 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
125 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
126 SCALAR_FLOAT_TYPE_P (type)
127 ? build_real (type, dconstm1)
128 : build_int_cst_type (type, -1)));
131 if (flow_loop_nested_p (loop1, loop0))
133 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
134 return build_polynomial_chrec
135 (CHREC_VARIABLE (poly0),
136 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
137 CHREC_RIGHT (poly0));
138 else
139 return build_polynomial_chrec
140 (CHREC_VARIABLE (poly0),
141 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
142 CHREC_RIGHT (poly0));
145 /* This function should never be called for chrecs of loops that
146 do not belong to the same loop nest. */
147 gcc_assert (loop0 == loop1);
149 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
151 left = chrec_fold_plus
152 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
153 right = chrec_fold_plus
154 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
156 else
158 left = chrec_fold_minus
159 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
160 right = chrec_fold_minus
161 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
164 if (chrec_zerop (right))
165 return left;
166 else
167 return build_polynomial_chrec
168 (CHREC_VARIABLE (poly0), left, right);
173 /* Fold the multiplication of two polynomial functions. */
175 static inline tree
176 chrec_fold_multiply_poly_poly (tree type,
177 tree poly0,
178 tree poly1)
180 tree t0, t1, t2;
181 int var;
182 struct loop *loop0 = get_chrec_loop (poly0);
183 struct loop *loop1 = get_chrec_loop (poly1);
185 gcc_assert (poly0);
186 gcc_assert (poly1);
187 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
188 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
189 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
190 gcc_assert (type == chrec_type (poly0));
192 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
193 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
194 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
195 if (flow_loop_nested_p (loop0, loop1))
196 /* poly0 is a constant wrt. poly1. */
197 return build_polynomial_chrec
198 (CHREC_VARIABLE (poly1),
199 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
200 CHREC_RIGHT (poly1));
202 if (flow_loop_nested_p (loop1, loop0))
203 /* poly1 is a constant wrt. poly0. */
204 return build_polynomial_chrec
205 (CHREC_VARIABLE (poly0),
206 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
207 CHREC_RIGHT (poly0));
209 gcc_assert (loop0 == loop1);
211 /* poly0 and poly1 are two polynomials in the same variable,
212 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
214 /* "a*c". */
215 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
217 /* "a*d + b*c". */
218 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
219 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
220 CHREC_RIGHT (poly0),
221 CHREC_LEFT (poly1)));
222 /* "b*d". */
223 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
224 /* "a*d + b*c + b*d". */
225 t1 = chrec_fold_plus (type, t1, t2);
226 /* "2*b*d". */
227 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
228 ? build_real (type, dconst2)
229 : build_int_cst (type, 2), t2);
231 var = CHREC_VARIABLE (poly0);
232 return build_polynomial_chrec (var, t0,
233 build_polynomial_chrec (var, t1, t2));
236 /* When the operands are automatically_generated_chrec_p, the fold has
237 to respect the semantics of the operands. */
239 static inline tree
240 chrec_fold_automatically_generated_operands (tree op0,
241 tree op1)
243 if (op0 == chrec_dont_know
244 || op1 == chrec_dont_know)
245 return chrec_dont_know;
247 if (op0 == chrec_known
248 || op1 == chrec_known)
249 return chrec_known;
251 if (op0 == chrec_not_analyzed_yet
252 || op1 == chrec_not_analyzed_yet)
253 return chrec_not_analyzed_yet;
255 /* The default case produces a safe result. */
256 return chrec_dont_know;
259 /* Fold the addition of two chrecs. */
261 static tree
262 chrec_fold_plus_1 (enum tree_code code, tree type,
263 tree op0, tree op1)
265 if (automatically_generated_chrec_p (op0)
266 || automatically_generated_chrec_p (op1))
267 return chrec_fold_automatically_generated_operands (op0, op1);
269 switch (TREE_CODE (op0))
271 case POLYNOMIAL_CHREC:
272 switch (TREE_CODE (op1))
274 case POLYNOMIAL_CHREC:
275 return chrec_fold_plus_poly_poly (code, type, op0, op1);
277 CASE_CONVERT:
278 if (tree_contains_chrecs (op1, NULL))
279 return chrec_dont_know;
281 default:
282 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
283 return build_polynomial_chrec
284 (CHREC_VARIABLE (op0),
285 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
286 CHREC_RIGHT (op0));
287 else
288 return build_polynomial_chrec
289 (CHREC_VARIABLE (op0),
290 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
291 CHREC_RIGHT (op0));
294 CASE_CONVERT:
295 if (tree_contains_chrecs (op0, NULL))
296 return chrec_dont_know;
298 default:
299 switch (TREE_CODE (op1))
301 case POLYNOMIAL_CHREC:
302 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
303 return build_polynomial_chrec
304 (CHREC_VARIABLE (op1),
305 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
306 CHREC_RIGHT (op1));
307 else
308 return build_polynomial_chrec
309 (CHREC_VARIABLE (op1),
310 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
311 chrec_fold_multiply (type, CHREC_RIGHT (op1),
312 SCALAR_FLOAT_TYPE_P (type)
313 ? build_real (type, dconstm1)
314 : build_int_cst_type (type, -1)));
316 CASE_CONVERT:
317 if (tree_contains_chrecs (op1, NULL))
318 return chrec_dont_know;
320 default:
322 int size = 0;
323 if ((tree_contains_chrecs (op0, &size)
324 || tree_contains_chrecs (op1, &size))
325 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
326 return build2 (code, type, op0, op1);
327 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
329 if (code == POINTER_PLUS_EXPR)
330 return fold_build_pointer_plus (fold_convert (type, op0),
331 op1);
332 else
333 return fold_build2 (code, type,
334 fold_convert (type, op0),
335 fold_convert (type, op1));
337 else
338 return chrec_dont_know;
344 /* Fold the addition of two chrecs. */
346 tree
347 chrec_fold_plus (tree type,
348 tree op0,
349 tree op1)
351 enum tree_code code;
352 if (automatically_generated_chrec_p (op0)
353 || automatically_generated_chrec_p (op1))
354 return chrec_fold_automatically_generated_operands (op0, op1);
356 if (integer_zerop (op0))
357 return chrec_convert (type, op1, NULL);
358 if (integer_zerop (op1))
359 return chrec_convert (type, op0, NULL);
361 if (POINTER_TYPE_P (type))
362 code = POINTER_PLUS_EXPR;
363 else
364 code = PLUS_EXPR;
366 return chrec_fold_plus_1 (code, type, op0, op1);
369 /* Fold the subtraction of two chrecs. */
371 tree
372 chrec_fold_minus (tree type,
373 tree op0,
374 tree op1)
376 if (automatically_generated_chrec_p (op0)
377 || automatically_generated_chrec_p (op1))
378 return chrec_fold_automatically_generated_operands (op0, op1);
380 if (integer_zerop (op1))
381 return op0;
383 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
386 /* Fold the multiplication of two chrecs. */
388 tree
389 chrec_fold_multiply (tree type,
390 tree op0,
391 tree op1)
393 if (automatically_generated_chrec_p (op0)
394 || automatically_generated_chrec_p (op1))
395 return chrec_fold_automatically_generated_operands (op0, op1);
397 switch (TREE_CODE (op0))
399 case POLYNOMIAL_CHREC:
400 switch (TREE_CODE (op1))
402 case POLYNOMIAL_CHREC:
403 return chrec_fold_multiply_poly_poly (type, op0, op1);
405 CASE_CONVERT:
406 if (tree_contains_chrecs (op1, NULL))
407 return chrec_dont_know;
409 default:
410 if (integer_onep (op1))
411 return op0;
412 if (integer_zerop (op1))
413 return build_int_cst (type, 0);
415 return build_polynomial_chrec
416 (CHREC_VARIABLE (op0),
417 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
418 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
421 CASE_CONVERT:
422 if (tree_contains_chrecs (op0, NULL))
423 return chrec_dont_know;
425 default:
426 if (integer_onep (op0))
427 return op1;
429 if (integer_zerop (op0))
430 return build_int_cst (type, 0);
432 switch (TREE_CODE (op1))
434 case POLYNOMIAL_CHREC:
435 return build_polynomial_chrec
436 (CHREC_VARIABLE (op1),
437 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
438 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
440 CASE_CONVERT:
441 if (tree_contains_chrecs (op1, NULL))
442 return chrec_dont_know;
444 default:
445 if (integer_onep (op1))
446 return op0;
447 if (integer_zerop (op1))
448 return build_int_cst (type, 0);
449 return fold_build2 (MULT_EXPR, type, op0, op1);
456 /* Operations. */
458 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
459 calculation overflows, otherwise return C(n,k) with type TYPE. */
461 static tree
462 tree_fold_binomial (tree type, tree n, unsigned int k)
464 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
465 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
466 unsigned int i;
467 tree res;
469 /* Handle the most frequent cases. */
470 if (k == 0)
471 return build_int_cst (type, 1);
472 if (k == 1)
473 return fold_convert (type, n);
475 /* Check that k <= n. */
476 if (TREE_INT_CST_HIGH (n) == 0
477 && TREE_INT_CST_LOW (n) < k)
478 return NULL_TREE;
480 /* Numerator = n. */
481 lnum = TREE_INT_CST_LOW (n);
482 hnum = TREE_INT_CST_HIGH (n);
484 /* Denominator = 2. */
485 ldenom = 2;
486 hdenom = 0;
488 /* Index = Numerator-1. */
489 if (lnum == 0)
491 hidx = hnum - 1;
492 lidx = ~ (unsigned HOST_WIDE_INT) 0;
494 else
496 hidx = hnum;
497 lidx = lnum - 1;
500 /* Numerator = Numerator*Index = n*(n-1). */
501 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
502 return NULL_TREE;
504 for (i = 3; i <= k; i++)
506 /* Index--. */
507 if (lidx == 0)
509 hidx--;
510 lidx = ~ (unsigned HOST_WIDE_INT) 0;
512 else
513 lidx--;
515 /* Numerator *= Index. */
516 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
517 return NULL_TREE;
519 /* Denominator *= i. */
520 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
523 /* Result = Numerator / Denominator. */
524 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
525 &lres, &hres, &ldum, &hdum);
527 res = build_int_cst_wide (type, lres, hres);
528 return int_fits_type_p (res, type) ? res : NULL_TREE;
531 /* Helper function. Use the Newton's interpolating formula for
532 evaluating the value of the evolution function. */
534 static tree
535 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
537 tree arg0, arg1, binomial_n_k;
538 tree type = TREE_TYPE (chrec);
539 struct loop *var_loop = get_loop (var);
541 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
542 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
543 chrec = CHREC_LEFT (chrec);
545 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
546 && CHREC_VARIABLE (chrec) == var)
548 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
549 if (arg1 == chrec_dont_know)
550 return chrec_dont_know;
551 binomial_n_k = tree_fold_binomial (type, n, k);
552 if (!binomial_n_k)
553 return chrec_dont_know;
554 arg0 = fold_build2 (MULT_EXPR, type,
555 CHREC_LEFT (chrec), binomial_n_k);
556 return chrec_fold_plus (type, arg0, arg1);
559 binomial_n_k = tree_fold_binomial (type, n, k);
560 if (!binomial_n_k)
561 return chrec_dont_know;
563 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
566 /* Evaluates "CHREC (X)" when the varying variable is VAR.
567 Example: Given the following parameters,
569 var = 1
570 chrec = {3, +, 4}_1
571 x = 10
573 The result is given by the Newton's interpolating formula:
574 3 * \binom{10}{0} + 4 * \binom{10}{1}.
577 tree
578 chrec_apply (unsigned var,
579 tree chrec,
580 tree x)
582 tree type = chrec_type (chrec);
583 tree res = chrec_dont_know;
585 if (automatically_generated_chrec_p (chrec)
586 || automatically_generated_chrec_p (x)
588 /* When the symbols are defined in an outer loop, it is possible
589 to symbolically compute the apply, since the symbols are
590 constants with respect to the varying loop. */
591 || chrec_contains_symbols_defined_in_loop (chrec, var))
592 return chrec_dont_know;
594 if (dump_file && (dump_flags & TDF_SCEV))
595 fprintf (dump_file, "(chrec_apply \n");
597 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
598 x = build_real_from_int_cst (type, x);
600 switch (TREE_CODE (chrec))
602 case POLYNOMIAL_CHREC:
603 if (evolution_function_is_affine_p (chrec))
605 if (CHREC_VARIABLE (chrec) != var)
606 return build_polynomial_chrec
607 (CHREC_VARIABLE (chrec),
608 chrec_apply (var, CHREC_LEFT (chrec), x),
609 chrec_apply (var, CHREC_RIGHT (chrec), x));
611 /* "{a, +, b} (x)" -> "a + b*x". */
612 x = chrec_convert_rhs (type, x, NULL);
613 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
614 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
616 else if (TREE_CODE (x) == INTEGER_CST
617 && tree_int_cst_sgn (x) == 1)
618 /* testsuite/.../ssa-chrec-38.c. */
619 res = chrec_evaluate (var, chrec, x, 0);
620 else
621 res = chrec_dont_know;
622 break;
624 CASE_CONVERT:
625 res = chrec_convert (TREE_TYPE (chrec),
626 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
627 NULL);
628 break;
630 default:
631 res = chrec;
632 break;
635 if (dump_file && (dump_flags & TDF_SCEV))
637 fprintf (dump_file, " (varying_loop = %d\n", var);
638 fprintf (dump_file, ")\n (chrec = ");
639 print_generic_expr (dump_file, chrec, 0);
640 fprintf (dump_file, ")\n (x = ");
641 print_generic_expr (dump_file, x, 0);
642 fprintf (dump_file, ")\n (res = ");
643 print_generic_expr (dump_file, res, 0);
644 fprintf (dump_file, "))\n");
647 return res;
650 /* For a given CHREC and an induction variable map IV_MAP that maps
651 (loop->num, expr) for every loop number of the current_loops an
652 expression, calls chrec_apply when the expression is not NULL. */
654 tree
655 chrec_apply_map (tree chrec, VEC (tree, heap) *iv_map)
657 int i;
658 tree expr;
660 FOR_EACH_VEC_ELT (tree, iv_map, i, expr)
661 if (expr)
662 chrec = chrec_apply (i, chrec, expr);
664 return chrec;
667 /* Replaces the initial condition in CHREC with INIT_COND. */
669 tree
670 chrec_replace_initial_condition (tree chrec,
671 tree init_cond)
673 if (automatically_generated_chrec_p (chrec))
674 return chrec;
676 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
678 switch (TREE_CODE (chrec))
680 case POLYNOMIAL_CHREC:
681 return build_polynomial_chrec
682 (CHREC_VARIABLE (chrec),
683 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
684 CHREC_RIGHT (chrec));
686 default:
687 return init_cond;
691 /* Returns the initial condition of a given CHREC. */
693 tree
694 initial_condition (tree chrec)
696 if (automatically_generated_chrec_p (chrec))
697 return chrec;
699 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
700 return initial_condition (CHREC_LEFT (chrec));
701 else
702 return chrec;
705 /* Returns a univariate function that represents the evolution in
706 LOOP_NUM. Mask the evolution of any other loop. */
708 tree
709 hide_evolution_in_other_loops_than_loop (tree chrec,
710 unsigned loop_num)
712 struct loop *loop = get_loop (loop_num), *chloop;
713 if (automatically_generated_chrec_p (chrec))
714 return chrec;
716 switch (TREE_CODE (chrec))
718 case POLYNOMIAL_CHREC:
719 chloop = get_chrec_loop (chrec);
721 if (chloop == loop)
722 return build_polynomial_chrec
723 (loop_num,
724 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
725 loop_num),
726 CHREC_RIGHT (chrec));
728 else if (flow_loop_nested_p (chloop, loop))
729 /* There is no evolution in this loop. */
730 return initial_condition (chrec);
732 else
734 gcc_assert (flow_loop_nested_p (loop, chloop));
735 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
736 loop_num);
739 default:
740 return chrec;
744 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
745 true, otherwise returns the initial condition in LOOP_NUM. */
747 static tree
748 chrec_component_in_loop_num (tree chrec,
749 unsigned loop_num,
750 bool right)
752 tree component;
753 struct loop *loop = get_loop (loop_num), *chloop;
755 if (automatically_generated_chrec_p (chrec))
756 return chrec;
758 switch (TREE_CODE (chrec))
760 case POLYNOMIAL_CHREC:
761 chloop = get_chrec_loop (chrec);
763 if (chloop == loop)
765 if (right)
766 component = CHREC_RIGHT (chrec);
767 else
768 component = CHREC_LEFT (chrec);
770 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
771 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
772 return component;
774 else
775 return build_polynomial_chrec
776 (loop_num,
777 chrec_component_in_loop_num (CHREC_LEFT (chrec),
778 loop_num,
779 right),
780 component);
783 else if (flow_loop_nested_p (chloop, loop))
784 /* There is no evolution part in this loop. */
785 return NULL_TREE;
787 else
789 gcc_assert (flow_loop_nested_p (loop, chloop));
790 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
791 loop_num,
792 right);
795 default:
796 if (right)
797 return NULL_TREE;
798 else
799 return chrec;
803 /* Returns the evolution part in LOOP_NUM. Example: the call
804 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
805 {1, +, 2}_1 */
807 tree
808 evolution_part_in_loop_num (tree chrec,
809 unsigned loop_num)
811 return chrec_component_in_loop_num (chrec, loop_num, true);
814 /* Returns the initial condition in LOOP_NUM. Example: the call
815 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
816 {0, +, 1}_1 */
818 tree
819 initial_condition_in_loop_num (tree chrec,
820 unsigned loop_num)
822 return chrec_component_in_loop_num (chrec, loop_num, false);
825 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
826 This function is essentially used for setting the evolution to
827 chrec_dont_know, for example after having determined that it is
828 impossible to say how many times a loop will execute. */
830 tree
831 reset_evolution_in_loop (unsigned loop_num,
832 tree chrec,
833 tree new_evol)
835 struct loop *loop = get_loop (loop_num);
837 if (POINTER_TYPE_P (chrec_type (chrec)))
838 gcc_assert (ptrofftype_p (chrec_type (new_evol)));
839 else
840 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
842 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
843 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
845 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
846 new_evol);
847 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
848 new_evol);
849 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
850 CHREC_VAR (chrec), left, right);
853 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
854 && CHREC_VARIABLE (chrec) == loop_num)
855 chrec = CHREC_LEFT (chrec);
857 return build_polynomial_chrec (loop_num, chrec, new_evol);
860 /* Merges two evolution functions that were found by following two
861 alternate paths of a conditional expression. */
863 tree
864 chrec_merge (tree chrec1,
865 tree chrec2)
867 if (chrec1 == chrec_dont_know
868 || chrec2 == chrec_dont_know)
869 return chrec_dont_know;
871 if (chrec1 == chrec_known
872 || chrec2 == chrec_known)
873 return chrec_known;
875 if (chrec1 == chrec_not_analyzed_yet)
876 return chrec2;
877 if (chrec2 == chrec_not_analyzed_yet)
878 return chrec1;
880 if (eq_evolutions_p (chrec1, chrec2))
881 return chrec1;
883 return chrec_dont_know;
888 /* Observers. */
890 /* Helper function for is_multivariate_chrec. */
892 static bool
893 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
895 if (chrec == NULL_TREE)
896 return false;
898 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
900 if (CHREC_VARIABLE (chrec) != rec_var)
901 return true;
902 else
903 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
904 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
906 else
907 return false;
910 /* Determine whether the given chrec is multivariate or not. */
912 bool
913 is_multivariate_chrec (const_tree chrec)
915 if (chrec == NULL_TREE)
916 return false;
918 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
919 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
920 CHREC_VARIABLE (chrec))
921 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
922 CHREC_VARIABLE (chrec)));
923 else
924 return false;
927 /* Determines whether the chrec contains symbolic names or not. */
929 bool
930 chrec_contains_symbols (const_tree chrec)
932 int i, n;
934 if (chrec == NULL_TREE)
935 return false;
937 if (TREE_CODE (chrec) == SSA_NAME
938 || TREE_CODE (chrec) == VAR_DECL
939 || TREE_CODE (chrec) == PARM_DECL
940 || TREE_CODE (chrec) == FUNCTION_DECL
941 || TREE_CODE (chrec) == LABEL_DECL
942 || TREE_CODE (chrec) == RESULT_DECL
943 || TREE_CODE (chrec) == FIELD_DECL)
944 return true;
946 n = TREE_OPERAND_LENGTH (chrec);
947 for (i = 0; i < n; i++)
948 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
949 return true;
950 return false;
953 /* Determines whether the chrec contains undetermined coefficients. */
955 bool
956 chrec_contains_undetermined (const_tree chrec)
958 int i, n;
960 if (chrec == chrec_dont_know)
961 return true;
963 if (chrec == NULL_TREE)
964 return false;
966 n = TREE_OPERAND_LENGTH (chrec);
967 for (i = 0; i < n; i++)
968 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
969 return true;
970 return false;
973 /* Determines whether the tree EXPR contains chrecs, and increment
974 SIZE if it is not a NULL pointer by an estimation of the depth of
975 the tree. */
977 bool
978 tree_contains_chrecs (const_tree expr, int *size)
980 int i, n;
982 if (expr == NULL_TREE)
983 return false;
985 if (size)
986 (*size)++;
988 if (tree_is_chrec (expr))
989 return true;
991 n = TREE_OPERAND_LENGTH (expr);
992 for (i = 0; i < n; i++)
993 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
994 return true;
995 return false;
998 /* Recursive helper function. */
1000 static bool
1001 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
1003 if (evolution_function_is_constant_p (chrec))
1004 return true;
1006 if (TREE_CODE (chrec) == SSA_NAME
1007 && (loopnum == 0
1008 || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
1009 return true;
1011 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1013 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
1014 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
1015 loopnum)
1016 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1017 loopnum))
1018 return false;
1019 return true;
1022 switch (TREE_OPERAND_LENGTH (chrec))
1024 case 2:
1025 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1026 loopnum))
1027 return false;
1029 case 1:
1030 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1031 loopnum))
1032 return false;
1033 return true;
1035 default:
1036 return false;
1039 return false;
1042 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1044 bool
1045 evolution_function_is_invariant_p (tree chrec, int loopnum)
1047 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1050 /* Determine whether the given tree is an affine multivariate
1051 evolution. */
1053 bool
1054 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1056 if (chrec == NULL_TREE)
1057 return false;
1059 switch (TREE_CODE (chrec))
1061 case POLYNOMIAL_CHREC:
1062 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1064 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1065 return true;
1066 else
1068 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1069 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1070 != CHREC_VARIABLE (chrec)
1071 && evolution_function_is_affine_multivariate_p
1072 (CHREC_RIGHT (chrec), loopnum))
1073 return true;
1074 else
1075 return false;
1078 else
1080 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1081 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1082 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1083 && evolution_function_is_affine_multivariate_p
1084 (CHREC_LEFT (chrec), loopnum))
1085 return true;
1086 else
1087 return false;
1090 default:
1091 return false;
1095 /* Determine whether the given tree is a function in zero or one
1096 variables. */
1098 bool
1099 evolution_function_is_univariate_p (const_tree chrec)
1101 if (chrec == NULL_TREE)
1102 return true;
1104 switch (TREE_CODE (chrec))
1106 case POLYNOMIAL_CHREC:
1107 switch (TREE_CODE (CHREC_LEFT (chrec)))
1109 case POLYNOMIAL_CHREC:
1110 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1111 return false;
1112 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1113 return false;
1114 break;
1116 default:
1117 break;
1120 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1122 case POLYNOMIAL_CHREC:
1123 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1124 return false;
1125 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1126 return false;
1127 break;
1129 default:
1130 break;
1133 default:
1134 return true;
1138 /* Returns the number of variables of CHREC. Example: the call
1139 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1141 unsigned
1142 nb_vars_in_chrec (tree chrec)
1144 if (chrec == NULL_TREE)
1145 return 0;
1147 switch (TREE_CODE (chrec))
1149 case POLYNOMIAL_CHREC:
1150 return 1 + nb_vars_in_chrec
1151 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1153 default:
1154 return 0;
1158 static tree chrec_convert_1 (tree, tree, gimple, bool);
1160 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1161 the scev corresponds to. AT_STMT is the statement at that the scev is
1162 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1163 the rules for overflow of the given language apply (e.g., that signed
1164 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1165 tests, but also to enforce that the result follows them. Returns true if the
1166 conversion succeeded, false otherwise. */
1168 bool
1169 convert_affine_scev (struct loop *loop, tree type,
1170 tree *base, tree *step, gimple at_stmt,
1171 bool use_overflow_semantics)
1173 tree ct = TREE_TYPE (*step);
1174 bool enforce_overflow_semantics;
1175 bool must_check_src_overflow, must_check_rslt_overflow;
1176 tree new_base, new_step;
1177 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1179 /* In general,
1180 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1181 but we must check some assumptions.
1183 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1184 of CT is smaller than the precision of TYPE. For example, when we
1185 cast unsigned char [254, +, 1] to unsigned, the values on left side
1186 are 254, 255, 0, 1, ..., but those on the right side are
1187 254, 255, 256, 257, ...
1188 2) In case that we must also preserve the fact that signed ivs do not
1189 overflow, we must additionally check that the new iv does not wrap.
1190 For example, unsigned char [125, +, 1] casted to signed char could
1191 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1192 which would confuse optimizers that assume that this does not
1193 happen. */
1194 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1196 enforce_overflow_semantics = (use_overflow_semantics
1197 && nowrap_type_p (type));
1198 if (enforce_overflow_semantics)
1200 /* We can avoid checking whether the result overflows in the following
1201 cases:
1203 -- must_check_src_overflow is true, and the range of TYPE is superset
1204 of the range of CT -- i.e., in all cases except if CT signed and
1205 TYPE unsigned.
1206 -- both CT and TYPE have the same precision and signedness, and we
1207 verify instead that the source does not overflow (this may be
1208 easier than verifying it for the result, as we may use the
1209 information about the semantics of overflow in CT). */
1210 if (must_check_src_overflow)
1212 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1213 must_check_rslt_overflow = true;
1214 else
1215 must_check_rslt_overflow = false;
1217 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1218 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1220 must_check_rslt_overflow = false;
1221 must_check_src_overflow = true;
1223 else
1224 must_check_rslt_overflow = true;
1226 else
1227 must_check_rslt_overflow = false;
1229 if (must_check_src_overflow
1230 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1231 use_overflow_semantics))
1232 return false;
1234 new_base = chrec_convert_1 (type, *base, at_stmt,
1235 use_overflow_semantics);
1236 /* The step must be sign extended, regardless of the signedness
1237 of CT and TYPE. This only needs to be handled specially when
1238 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1239 (with values 100, 99, 98, ...) from becoming signed or unsigned
1240 [100, +, 255] with values 100, 355, ...; the sign-extension is
1241 performed by default when CT is signed. */
1242 new_step = *step;
1243 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1245 tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
1246 new_step = chrec_convert_1 (signed_ct, new_step, at_stmt,
1247 use_overflow_semantics);
1249 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1251 if (automatically_generated_chrec_p (new_base)
1252 || automatically_generated_chrec_p (new_step))
1253 return false;
1255 if (must_check_rslt_overflow
1256 /* Note that in this case we cannot use the fact that signed variables
1257 do not overflow, as this is what we are verifying for the new iv. */
1258 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1259 return false;
1261 *base = new_base;
1262 *step = new_step;
1263 return true;
1267 /* Convert CHREC for the right hand side of a CHREC.
1268 The increment for a pointer type is always sizetype. */
1270 tree
1271 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1273 if (POINTER_TYPE_P (type))
1274 type = sizetype;
1276 return chrec_convert (type, chrec, at_stmt);
1279 /* Convert CHREC to TYPE. When the analyzer knows the context in
1280 which the CHREC is built, it sets AT_STMT to the statement that
1281 contains the definition of the analyzed variable, otherwise the
1282 conversion is less accurate: the information is used for
1283 determining a more accurate estimation of the number of iterations.
1284 By default AT_STMT could be safely set to NULL_TREE.
1286 The following rule is always true: TREE_TYPE (chrec) ==
1287 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1288 An example of what could happen when adding two chrecs and the type
1289 of the CHREC_RIGHT is different than CHREC_LEFT is:
1291 {(uint) 0, +, (uchar) 10} +
1292 {(uint) 0, +, (uchar) 250}
1294 that would produce a wrong result if CHREC_RIGHT is not (uint):
1296 {(uint) 0, +, (uchar) 4}
1298 instead of
1300 {(uint) 0, +, (uint) 260}
1303 tree
1304 chrec_convert (tree type, tree chrec, gimple at_stmt)
1306 return chrec_convert_1 (type, chrec, at_stmt, true);
1309 /* Convert CHREC to TYPE. When the analyzer knows the context in
1310 which the CHREC is built, it sets AT_STMT to the statement that
1311 contains the definition of the analyzed variable, otherwise the
1312 conversion is less accurate: the information is used for
1313 determining a more accurate estimation of the number of iterations.
1314 By default AT_STMT could be safely set to NULL_TREE.
1316 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1317 the rules for overflow of the given language apply (e.g., that signed
1318 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1319 tests, but also to enforce that the result follows them. */
1321 static tree
1322 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1323 bool use_overflow_semantics)
1325 tree ct, res;
1326 tree base, step;
1327 struct loop *loop;
1329 if (automatically_generated_chrec_p (chrec))
1330 return chrec;
1332 ct = chrec_type (chrec);
1333 if (ct == type)
1334 return chrec;
1336 if (!evolution_function_is_affine_p (chrec))
1337 goto keep_cast;
1339 loop = get_chrec_loop (chrec);
1340 base = CHREC_LEFT (chrec);
1341 step = CHREC_RIGHT (chrec);
1343 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1344 use_overflow_semantics))
1345 return build_polynomial_chrec (loop->num, base, step);
1347 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1348 keep_cast:
1349 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1350 may be more expensive. We do want to perform this optimization here
1351 though for canonicalization reasons. */
1352 if (use_overflow_semantics
1353 && (TREE_CODE (chrec) == PLUS_EXPR
1354 || TREE_CODE (chrec) == MINUS_EXPR)
1355 && TREE_CODE (type) == INTEGER_TYPE
1356 && TREE_CODE (ct) == INTEGER_TYPE
1357 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1358 && TYPE_OVERFLOW_UNDEFINED (ct))
1359 res = fold_build2 (TREE_CODE (chrec), type,
1360 fold_convert (type, TREE_OPERAND (chrec, 0)),
1361 fold_convert (type, TREE_OPERAND (chrec, 1)));
1362 else
1363 res = fold_convert (type, chrec);
1365 /* Don't propagate overflows. */
1366 if (CONSTANT_CLASS_P (res))
1367 TREE_OVERFLOW (res) = 0;
1369 /* But reject constants that don't fit in their type after conversion.
1370 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1371 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1372 and can cause problems later when computing niters of loops. Note
1373 that we don't do the check before converting because we don't want
1374 to reject conversions of negative chrecs to unsigned types. */
1375 if (TREE_CODE (res) == INTEGER_CST
1376 && TREE_CODE (type) == INTEGER_TYPE
1377 && !int_fits_type_p (res, type))
1378 res = chrec_dont_know;
1380 return res;
1383 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1384 chrec if something else than what chrec_convert would do happens, NULL_TREE
1385 otherwise. */
1387 tree
1388 chrec_convert_aggressive (tree type, tree chrec)
1390 tree inner_type, left, right, lc, rc, rtype;
1392 if (automatically_generated_chrec_p (chrec)
1393 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1394 return NULL_TREE;
1396 inner_type = TREE_TYPE (chrec);
1397 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1398 return NULL_TREE;
1400 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1402 left = CHREC_LEFT (chrec);
1403 right = CHREC_RIGHT (chrec);
1404 lc = chrec_convert_aggressive (type, left);
1405 if (!lc)
1406 lc = chrec_convert (type, left, NULL);
1407 rc = chrec_convert_aggressive (rtype, right);
1408 if (!rc)
1409 rc = chrec_convert (rtype, right, NULL);
1411 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1414 /* Returns true when CHREC0 == CHREC1. */
1416 bool
1417 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1419 if (chrec0 == NULL_TREE
1420 || chrec1 == NULL_TREE
1421 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1422 return false;
1424 if (chrec0 == chrec1)
1425 return true;
1427 switch (TREE_CODE (chrec0))
1429 case INTEGER_CST:
1430 return operand_equal_p (chrec0, chrec1, 0);
1432 case POLYNOMIAL_CHREC:
1433 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1434 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1435 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1437 case PLUS_EXPR:
1438 case MULT_EXPR:
1439 case MINUS_EXPR:
1440 case POINTER_PLUS_EXPR:
1441 return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1442 TREE_OPERAND (chrec1, 0))
1443 && eq_evolutions_p (TREE_OPERAND (chrec0, 1),
1444 TREE_OPERAND (chrec1, 1));
1446 default:
1447 return false;
1451 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1452 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1453 which of these cases happens. */
1455 enum ev_direction
1456 scev_direction (const_tree chrec)
1458 const_tree step;
1460 if (!evolution_function_is_affine_p (chrec))
1461 return EV_DIR_UNKNOWN;
1463 step = CHREC_RIGHT (chrec);
1464 if (TREE_CODE (step) != INTEGER_CST)
1465 return EV_DIR_UNKNOWN;
1467 if (tree_int_cst_sign_bit (step))
1468 return EV_DIR_DECREASES;
1469 else
1470 return EV_DIR_GROWS;
1473 /* Iterates over all the components of SCEV, and calls CBCK. */
1475 void
1476 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1478 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1480 case 3:
1481 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1483 case 2:
1484 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1486 case 1:
1487 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1489 default:
1490 cbck (scev, data);
1491 break;
1495 /* Returns true when the operation can be part of a linear
1496 expression. */
1498 static inline bool
1499 operator_is_linear (tree scev)
1501 switch (TREE_CODE (scev))
1503 case INTEGER_CST:
1504 case POLYNOMIAL_CHREC:
1505 case PLUS_EXPR:
1506 case POINTER_PLUS_EXPR:
1507 case MULT_EXPR:
1508 case MINUS_EXPR:
1509 case NEGATE_EXPR:
1510 case SSA_NAME:
1511 case NON_LVALUE_EXPR:
1512 case BIT_NOT_EXPR:
1513 CASE_CONVERT:
1514 return true;
1516 default:
1517 return false;
1521 /* Return true when SCEV is a linear expression. Linear expressions
1522 can contain additions, substractions and multiplications.
1523 Multiplications are restricted to constant scaling: "cst * x". */
1525 bool
1526 scev_is_linear_expression (tree scev)
1528 if (scev == NULL
1529 || !operator_is_linear (scev))
1530 return false;
1532 if (TREE_CODE (scev) == MULT_EXPR)
1533 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1534 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1536 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1537 && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1538 return false;
1540 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1542 case 3:
1543 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1544 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1545 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1547 case 2:
1548 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1549 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1551 case 1:
1552 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1554 case 0:
1555 return true;
1557 default:
1558 return false;
1562 /* Determines whether the expression CHREC contains only interger consts
1563 in the right parts. */
1565 bool
1566 evolution_function_right_is_integer_cst (const_tree chrec)
1568 if (chrec == NULL_TREE)
1569 return false;
1571 switch (TREE_CODE (chrec))
1573 case INTEGER_CST:
1574 return true;
1576 case POLYNOMIAL_CHREC:
1577 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1578 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1579 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1581 CASE_CONVERT:
1582 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1584 default:
1585 return false;