1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Currently, the only mini-pass in this file tries to CSE reciprocal
22 operations. These are common in sequences such as this one:
24 modulus = sqrt(x*x + y*y + z*z);
29 that can be optimized to
31 modulus = sqrt(x*x + y*y + z*z);
32 rmodulus = 1.0 / modulus;
37 We do this for loop invariant divisors, and with this pass whenever
38 we notice that a division has the same divisor multiple times.
40 Of course, like in PRE, we don't insert a division if a dominator
41 already has one. However, this cannot be done as an extension of
42 PRE for several reasons.
44 First of all, with some experiments it was found out that the
45 transformation is not always useful if there are only two divisions
46 hy the same divisor. This is probably because modern processors
47 can pipeline the divisions; on older, in-order processors it should
48 still be effective to optimize two divisions by the same number.
49 We make this a param, and it shall be called N in the remainder of
52 Second, if trapping math is active, we have less freedom on where
53 to insert divisions: we can only do so in basic blocks that already
54 contain one. (If divisions don't trap, instead, we can insert
55 divisions elsewhere, which will be in blocks that are common dominators
56 of those that have the division).
58 We really don't want to compute the reciprocal unless a division will
59 be found. To do this, we won't insert the division in a basic block
60 that has less than N divisions *post-dominating* it.
62 The algorithm constructs a subset of the dominator tree, holding the
63 blocks containing the divisions and the common dominators to them,
64 and walk it twice. The first walk is in post-order, and it annotates
65 each block with the number of divisions that post-dominate it: this
66 gives information on where divisions can be inserted profitably.
67 The second walk is in pre-order, and it inserts divisions as explained
68 above, and replaces divisions by multiplications.
70 In the best case, the cost of the pass is O(n_statements). In the
71 worst-case, the cost is due to creating the dominator tree subset,
72 with a cost of O(n_basic_blocks ^ 2); however this can only happen
73 for n_statements / n_basic_blocks statements. So, the amortized cost
74 of creating the dominator tree subset is O(n_basic_blocks) and the
75 worst-case cost of the pass is O(n_statements * n_basic_blocks).
77 More practically, the cost will be small because there are few
78 divisions, and they tend to be in the same basic block, so insert_bb
79 is called very few times.
81 If we did this using domwalk.c, an efficient implementation would have
82 to work on all the variables in a single pass, because we could not
83 work on just a subset of the dominator tree, as we do now, and the
84 cost would also be something like O(n_statements * n_basic_blocks).
85 The data structures would be more complex in order to work on all the
86 variables in a single pass. */
90 #include "coretypes.h"
94 #include "tree-flow.h"
96 #include "tree-pass.h"
97 #include "alloc-pool.h"
98 #include "basic-block.h"
100 #include "gimple-pretty-print.h"
102 /* FIXME: RTL headers have to be included here for optabs. */
103 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
104 #include "expr.h" /* Because optabs.h wants sepops. */
107 /* This structure represents one basic block that either computes a
108 division, or is a common dominator for basic block that compute a
111 /* The basic block represented by this structure. */
114 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
118 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
119 was inserted in BB. */
120 gimple recip_def_stmt
;
122 /* Pointer to a list of "struct occurrence"s for blocks dominated
124 struct occurrence
*children
;
126 /* Pointer to the next "struct occurrence"s in the list of blocks
127 sharing a common dominator. */
128 struct occurrence
*next
;
130 /* The number of divisions that are in BB before compute_merit. The
131 number of divisions that are in BB or post-dominate it after
135 /* True if the basic block has a division, false if it is a common
136 dominator for basic blocks that do. If it is false and trapping
137 math is active, BB is not a candidate for inserting a reciprocal. */
138 bool bb_has_division
;
142 /* The instance of "struct occurrence" representing the highest
143 interesting block in the dominator tree. */
144 static struct occurrence
*occ_head
;
146 /* Allocation pool for getting instances of "struct occurrence". */
147 static alloc_pool occ_pool
;
151 /* Allocate and return a new struct occurrence for basic block BB, and
152 whose children list is headed by CHILDREN. */
153 static struct occurrence
*
154 occ_new (basic_block bb
, struct occurrence
*children
)
156 struct occurrence
*occ
;
158 bb
->aux
= occ
= (struct occurrence
*) pool_alloc (occ_pool
);
159 memset (occ
, 0, sizeof (struct occurrence
));
162 occ
->children
= children
;
167 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
168 list of "struct occurrence"s, one per basic block, having IDOM as
169 their common dominator.
171 We try to insert NEW_OCC as deep as possible in the tree, and we also
172 insert any other block that is a common dominator for BB and one
173 block already in the tree. */
176 insert_bb (struct occurrence
*new_occ
, basic_block idom
,
177 struct occurrence
**p_head
)
179 struct occurrence
*occ
, **p_occ
;
181 for (p_occ
= p_head
; (occ
= *p_occ
) != NULL
; )
183 basic_block bb
= new_occ
->bb
, occ_bb
= occ
->bb
;
184 basic_block dom
= nearest_common_dominator (CDI_DOMINATORS
, occ_bb
, bb
);
187 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
190 occ
->next
= new_occ
->children
;
191 new_occ
->children
= occ
;
193 /* Try the next block (it may as well be dominated by BB). */
196 else if (dom
== occ_bb
)
198 /* OCC_BB dominates BB. Tail recurse to look deeper. */
199 insert_bb (new_occ
, dom
, &occ
->children
);
203 else if (dom
!= idom
)
205 gcc_assert (!dom
->aux
);
207 /* There is a dominator between IDOM and BB, add it and make
208 two children out of NEW_OCC and OCC. First, remove OCC from
214 /* None of the previous blocks has DOM as a dominator: if we tail
215 recursed, we would reexamine them uselessly. Just switch BB with
216 DOM, and go on looking for blocks dominated by DOM. */
217 new_occ
= occ_new (dom
, new_occ
);
222 /* Nothing special, go on with the next element. */
227 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
228 new_occ
->next
= *p_head
;
232 /* Register that we found a division in BB. */
235 register_division_in (basic_block bb
)
237 struct occurrence
*occ
;
239 occ
= (struct occurrence
*) bb
->aux
;
242 occ
= occ_new (bb
, NULL
);
243 insert_bb (occ
, ENTRY_BLOCK_PTR
, &occ_head
);
246 occ
->bb_has_division
= true;
247 occ
->num_divisions
++;
251 /* Compute the number of divisions that postdominate each block in OCC and
255 compute_merit (struct occurrence
*occ
)
257 struct occurrence
*occ_child
;
258 basic_block dom
= occ
->bb
;
260 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
263 if (occ_child
->children
)
264 compute_merit (occ_child
);
267 bb
= single_noncomplex_succ (dom
);
271 if (dominated_by_p (CDI_POST_DOMINATORS
, bb
, occ_child
->bb
))
272 occ
->num_divisions
+= occ_child
->num_divisions
;
277 /* Return whether USE_STMT is a floating-point division by DEF. */
279 is_division_by (gimple use_stmt
, tree def
)
281 return is_gimple_assign (use_stmt
)
282 && gimple_assign_rhs_code (use_stmt
) == RDIV_EXPR
283 && gimple_assign_rhs2 (use_stmt
) == def
284 /* Do not recognize x / x as valid division, as we are getting
285 confused later by replacing all immediate uses x in such
287 && gimple_assign_rhs1 (use_stmt
) != def
;
290 /* Walk the subset of the dominator tree rooted at OCC, setting the
291 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
292 the given basic block. The field may be left NULL, of course,
293 if it is not possible or profitable to do the optimization.
295 DEF_BSI is an iterator pointing at the statement defining DEF.
296 If RECIP_DEF is set, a dominator already has a computation that can
300 insert_reciprocals (gimple_stmt_iterator
*def_gsi
, struct occurrence
*occ
,
301 tree def
, tree recip_def
, int threshold
)
305 gimple_stmt_iterator gsi
;
306 struct occurrence
*occ_child
;
309 && (occ
->bb_has_division
|| !flag_trapping_math
)
310 && occ
->num_divisions
>= threshold
)
312 /* Make a variable with the replacement and substitute it. */
313 type
= TREE_TYPE (def
);
314 recip_def
= make_rename_temp (type
, "reciptmp");
315 new_stmt
= gimple_build_assign_with_ops (RDIV_EXPR
, recip_def
,
316 build_one_cst (type
), def
);
318 if (occ
->bb_has_division
)
320 /* Case 1: insert before an existing division. */
321 gsi
= gsi_after_labels (occ
->bb
);
322 while (!gsi_end_p (gsi
) && !is_division_by (gsi_stmt (gsi
), def
))
325 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
327 else if (def_gsi
&& occ
->bb
== def_gsi
->bb
)
329 /* Case 2: insert right after the definition. Note that this will
330 never happen if the definition statement can throw, because in
331 that case the sole successor of the statement's basic block will
332 dominate all the uses as well. */
333 gsi_insert_after (def_gsi
, new_stmt
, GSI_NEW_STMT
);
337 /* Case 3: insert in a basic block not containing defs/uses. */
338 gsi
= gsi_after_labels (occ
->bb
);
339 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
342 occ
->recip_def_stmt
= new_stmt
;
345 occ
->recip_def
= recip_def
;
346 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
347 insert_reciprocals (def_gsi
, occ_child
, def
, recip_def
, threshold
);
351 /* Replace the division at USE_P with a multiplication by the reciprocal, if
355 replace_reciprocal (use_operand_p use_p
)
357 gimple use_stmt
= USE_STMT (use_p
);
358 basic_block bb
= gimple_bb (use_stmt
);
359 struct occurrence
*occ
= (struct occurrence
*) bb
->aux
;
361 if (optimize_bb_for_speed_p (bb
)
362 && occ
->recip_def
&& use_stmt
!= occ
->recip_def_stmt
)
364 gimple_assign_set_rhs_code (use_stmt
, MULT_EXPR
);
365 SET_USE (use_p
, occ
->recip_def
);
366 fold_stmt_inplace (use_stmt
);
367 update_stmt (use_stmt
);
372 /* Free OCC and return one more "struct occurrence" to be freed. */
374 static struct occurrence
*
375 free_bb (struct occurrence
*occ
)
377 struct occurrence
*child
, *next
;
379 /* First get the two pointers hanging off OCC. */
381 child
= occ
->children
;
383 pool_free (occ_pool
, occ
);
385 /* Now ensure that we don't recurse unless it is necessary. */
391 next
= free_bb (next
);
398 /* Look for floating-point divisions among DEF's uses, and try to
399 replace them by multiplications with the reciprocal. Add
400 as many statements computing the reciprocal as needed.
402 DEF must be a GIMPLE register of a floating-point type. */
405 execute_cse_reciprocals_1 (gimple_stmt_iterator
*def_gsi
, tree def
)
408 imm_use_iterator use_iter
;
409 struct occurrence
*occ
;
410 int count
= 0, threshold
;
412 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def
)) && is_gimple_reg (def
));
414 FOR_EACH_IMM_USE_FAST (use_p
, use_iter
, def
)
416 gimple use_stmt
= USE_STMT (use_p
);
417 if (is_division_by (use_stmt
, def
))
419 register_division_in (gimple_bb (use_stmt
));
424 /* Do the expensive part only if we can hope to optimize something. */
425 threshold
= targetm
.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def
)));
426 if (count
>= threshold
)
429 for (occ
= occ_head
; occ
; occ
= occ
->next
)
432 insert_reciprocals (def_gsi
, occ
, def
, NULL
, threshold
);
435 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, def
)
437 if (is_division_by (use_stmt
, def
))
439 FOR_EACH_IMM_USE_ON_STMT (use_p
, use_iter
)
440 replace_reciprocal (use_p
);
445 for (occ
= occ_head
; occ
; )
452 gate_cse_reciprocals (void)
454 return optimize
&& flag_reciprocal_math
;
457 /* Go through all the floating-point SSA_NAMEs, and call
458 execute_cse_reciprocals_1 on each of them. */
460 execute_cse_reciprocals (void)
465 occ_pool
= create_alloc_pool ("dominators for recip",
466 sizeof (struct occurrence
),
467 n_basic_blocks
/ 3 + 1);
469 calculate_dominance_info (CDI_DOMINATORS
);
470 calculate_dominance_info (CDI_POST_DOMINATORS
);
472 #ifdef ENABLE_CHECKING
474 gcc_assert (!bb
->aux
);
477 for (arg
= DECL_ARGUMENTS (cfun
->decl
); arg
; arg
= TREE_CHAIN (arg
))
478 if (gimple_default_def (cfun
, arg
)
479 && FLOAT_TYPE_P (TREE_TYPE (arg
))
480 && is_gimple_reg (arg
))
481 execute_cse_reciprocals_1 (NULL
, gimple_default_def (cfun
, arg
));
485 gimple_stmt_iterator gsi
;
489 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
491 phi
= gsi_stmt (gsi
);
492 def
= PHI_RESULT (phi
);
493 if (FLOAT_TYPE_P (TREE_TYPE (def
))
494 && is_gimple_reg (def
))
495 execute_cse_reciprocals_1 (NULL
, def
);
498 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
500 gimple stmt
= gsi_stmt (gsi
);
502 if (gimple_has_lhs (stmt
)
503 && (def
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_DEF
)) != NULL
504 && FLOAT_TYPE_P (TREE_TYPE (def
))
505 && TREE_CODE (def
) == SSA_NAME
)
506 execute_cse_reciprocals_1 (&gsi
, def
);
509 if (optimize_bb_for_size_p (bb
))
512 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
513 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
515 gimple stmt
= gsi_stmt (gsi
);
518 if (is_gimple_assign (stmt
)
519 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
)
521 tree arg1
= gimple_assign_rhs2 (stmt
);
524 if (TREE_CODE (arg1
) != SSA_NAME
)
527 stmt1
= SSA_NAME_DEF_STMT (arg1
);
529 if (is_gimple_call (stmt1
)
530 && gimple_call_lhs (stmt1
)
531 && (fndecl
= gimple_call_fndecl (stmt1
))
532 && (DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
533 || DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
))
535 enum built_in_function code
;
540 code
= DECL_FUNCTION_CODE (fndecl
);
541 md_code
= DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
;
543 fndecl
= targetm
.builtin_reciprocal (code
, md_code
, false);
547 /* Check that all uses of the SSA name are divisions,
548 otherwise replacing the defining statement will do
551 FOR_EACH_IMM_USE_FAST (use_p
, ui
, arg1
)
553 gimple stmt2
= USE_STMT (use_p
);
554 if (is_gimple_debug (stmt2
))
556 if (!is_gimple_assign (stmt2
)
557 || gimple_assign_rhs_code (stmt2
) != RDIV_EXPR
558 || gimple_assign_rhs1 (stmt2
) == arg1
559 || gimple_assign_rhs2 (stmt2
) != arg1
)
568 gimple_replace_lhs (stmt1
, arg1
);
569 gimple_call_set_fndecl (stmt1
, fndecl
);
572 FOR_EACH_IMM_USE_STMT (stmt
, ui
, arg1
)
574 gimple_assign_set_rhs_code (stmt
, MULT_EXPR
);
575 fold_stmt_inplace (stmt
);
583 free_dominance_info (CDI_DOMINATORS
);
584 free_dominance_info (CDI_POST_DOMINATORS
);
585 free_alloc_pool (occ_pool
);
589 struct gimple_opt_pass pass_cse_reciprocals
=
594 gate_cse_reciprocals
, /* gate */
595 execute_cse_reciprocals
, /* execute */
598 0, /* static_pass_number */
600 PROP_ssa
, /* properties_required */
601 0, /* properties_provided */
602 0, /* properties_destroyed */
603 0, /* todo_flags_start */
604 TODO_dump_func
| TODO_update_ssa
| TODO_verify_ssa
605 | TODO_verify_stmts
/* todo_flags_finish */
609 /* Records an occurrence at statement USE_STMT in the vector of trees
610 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
611 is not yet initialized. Returns true if the occurrence was pushed on
612 the vector. Adjusts *TOP_BB to be the basic block dominating all
613 statements in the vector. */
616 maybe_record_sincos (VEC(gimple
, heap
) **stmts
,
617 basic_block
*top_bb
, gimple use_stmt
)
619 basic_block use_bb
= gimple_bb (use_stmt
);
621 && (*top_bb
== use_bb
622 || dominated_by_p (CDI_DOMINATORS
, use_bb
, *top_bb
)))
623 VEC_safe_push (gimple
, heap
, *stmts
, use_stmt
);
625 || dominated_by_p (CDI_DOMINATORS
, *top_bb
, use_bb
))
627 VEC_safe_push (gimple
, heap
, *stmts
, use_stmt
);
636 /* Look for sin, cos and cexpi calls with the same argument NAME and
637 create a single call to cexpi CSEing the result in this case.
638 We first walk over all immediate uses of the argument collecting
639 statements that we can CSE in a vector and in a second pass replace
640 the statement rhs with a REALPART or IMAGPART expression on the
641 result of the cexpi call we insert before the use statement that
642 dominates all other candidates. */
645 execute_cse_sincos_1 (tree name
)
647 gimple_stmt_iterator gsi
;
648 imm_use_iterator use_iter
;
649 tree fndecl
, res
, type
;
650 gimple def_stmt
, use_stmt
, stmt
;
651 int seen_cos
= 0, seen_sin
= 0, seen_cexpi
= 0;
652 VEC(gimple
, heap
) *stmts
= NULL
;
653 basic_block top_bb
= NULL
;
656 type
= TREE_TYPE (name
);
657 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, name
)
659 if (gimple_code (use_stmt
) != GIMPLE_CALL
660 || !gimple_call_lhs (use_stmt
)
661 || !(fndecl
= gimple_call_fndecl (use_stmt
))
662 || DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_NORMAL
)
665 switch (DECL_FUNCTION_CODE (fndecl
))
667 CASE_FLT_FN (BUILT_IN_COS
):
668 seen_cos
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
671 CASE_FLT_FN (BUILT_IN_SIN
):
672 seen_sin
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
675 CASE_FLT_FN (BUILT_IN_CEXPI
):
676 seen_cexpi
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
683 if (seen_cos
+ seen_sin
+ seen_cexpi
<= 1)
685 VEC_free(gimple
, heap
, stmts
);
689 /* Simply insert cexpi at the beginning of top_bb but not earlier than
690 the name def statement. */
691 fndecl
= mathfn_built_in (type
, BUILT_IN_CEXPI
);
694 res
= make_rename_temp (TREE_TYPE (TREE_TYPE (fndecl
)), "sincostmp");
695 stmt
= gimple_build_call (fndecl
, 1, name
);
696 gimple_call_set_lhs (stmt
, res
);
698 def_stmt
= SSA_NAME_DEF_STMT (name
);
699 if (!SSA_NAME_IS_DEFAULT_DEF (name
)
700 && gimple_code (def_stmt
) != GIMPLE_PHI
701 && gimple_bb (def_stmt
) == top_bb
)
703 gsi
= gsi_for_stmt (def_stmt
);
704 gsi_insert_after (&gsi
, stmt
, GSI_SAME_STMT
);
708 gsi
= gsi_after_labels (top_bb
);
709 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
713 /* And adjust the recorded old call sites. */
714 for (i
= 0; VEC_iterate(gimple
, stmts
, i
, use_stmt
); ++i
)
717 fndecl
= gimple_call_fndecl (use_stmt
);
719 switch (DECL_FUNCTION_CODE (fndecl
))
721 CASE_FLT_FN (BUILT_IN_COS
):
722 rhs
= fold_build1 (REALPART_EXPR
, type
, res
);
725 CASE_FLT_FN (BUILT_IN_SIN
):
726 rhs
= fold_build1 (IMAGPART_EXPR
, type
, res
);
729 CASE_FLT_FN (BUILT_IN_CEXPI
):
737 /* Replace call with a copy. */
738 stmt
= gimple_build_assign (gimple_call_lhs (use_stmt
), rhs
);
740 gsi
= gsi_for_stmt (use_stmt
);
741 gsi_insert_after (&gsi
, stmt
, GSI_SAME_STMT
);
742 gsi_remove (&gsi
, true);
745 VEC_free(gimple
, heap
, stmts
);
748 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
749 on the SSA_NAME argument of each of them. */
752 execute_cse_sincos (void)
756 calculate_dominance_info (CDI_DOMINATORS
);
760 gimple_stmt_iterator gsi
;
762 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
764 gimple stmt
= gsi_stmt (gsi
);
767 if (is_gimple_call (stmt
)
768 && gimple_call_lhs (stmt
)
769 && (fndecl
= gimple_call_fndecl (stmt
))
770 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
774 switch (DECL_FUNCTION_CODE (fndecl
))
776 CASE_FLT_FN (BUILT_IN_COS
):
777 CASE_FLT_FN (BUILT_IN_SIN
):
778 CASE_FLT_FN (BUILT_IN_CEXPI
):
779 arg
= gimple_call_arg (stmt
, 0);
780 if (TREE_CODE (arg
) == SSA_NAME
)
781 execute_cse_sincos_1 (arg
);
790 free_dominance_info (CDI_DOMINATORS
);
795 gate_cse_sincos (void)
797 /* Make sure we have either sincos or cexp. */
798 return (TARGET_HAS_SINCOS
799 || TARGET_C99_FUNCTIONS
)
803 struct gimple_opt_pass pass_cse_sincos
=
808 gate_cse_sincos
, /* gate */
809 execute_cse_sincos
, /* execute */
812 0, /* static_pass_number */
814 PROP_ssa
, /* properties_required */
815 0, /* properties_provided */
816 0, /* properties_destroyed */
817 0, /* todo_flags_start */
818 TODO_dump_func
| TODO_update_ssa
| TODO_verify_ssa
819 | TODO_verify_stmts
/* todo_flags_finish */
823 /* A symbolic number is used to detect byte permutation and selection
824 patterns. Therefore the field N contains an artificial number
825 consisting of byte size markers:
827 0 - byte has the value 0
828 1..size - byte contains the content of the byte
829 number indexed with that value minus one */
831 struct symbolic_number
{
832 unsigned HOST_WIDEST_INT n
;
836 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
837 number N. Return false if the requested operation is not permitted
838 on a symbolic number. */
841 do_shift_rotate (enum tree_code code
,
842 struct symbolic_number
*n
,
848 /* Zero out the extra bits of N in order to avoid them being shifted
849 into the significant bits. */
850 if (n
->size
< (int)sizeof (HOST_WIDEST_INT
))
851 n
->n
&= ((unsigned HOST_WIDEST_INT
)1 << (n
->size
* BITS_PER_UNIT
)) - 1;
862 n
->n
= (n
->n
<< count
) | (n
->n
>> ((n
->size
* BITS_PER_UNIT
) - count
));
865 n
->n
= (n
->n
>> count
) | (n
->n
<< ((n
->size
* BITS_PER_UNIT
) - count
));
873 /* Perform sanity checking for the symbolic number N and the gimple
877 verify_symbolic_number_p (struct symbolic_number
*n
, gimple stmt
)
881 lhs_type
= gimple_expr_type (stmt
);
883 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
886 if (TYPE_PRECISION (lhs_type
) != n
->size
* BITS_PER_UNIT
)
892 /* find_bswap_1 invokes itself recursively with N and tries to perform
893 the operation given by the rhs of STMT on the result. If the
894 operation could successfully be executed the function returns the
895 tree expression of the source operand and NULL otherwise. */
898 find_bswap_1 (gimple stmt
, struct symbolic_number
*n
, int limit
)
901 tree rhs1
, rhs2
= NULL
;
902 gimple rhs1_stmt
, rhs2_stmt
;
904 enum gimple_rhs_class rhs_class
;
906 if (!limit
|| !is_gimple_assign (stmt
))
909 rhs1
= gimple_assign_rhs1 (stmt
);
911 if (TREE_CODE (rhs1
) != SSA_NAME
)
914 code
= gimple_assign_rhs_code (stmt
);
915 rhs_class
= gimple_assign_rhs_class (stmt
);
916 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
918 if (rhs_class
== GIMPLE_BINARY_RHS
)
919 rhs2
= gimple_assign_rhs2 (stmt
);
921 /* Handle unary rhs and binary rhs with integer constants as second
924 if (rhs_class
== GIMPLE_UNARY_RHS
925 || (rhs_class
== GIMPLE_BINARY_RHS
926 && TREE_CODE (rhs2
) == INTEGER_CST
))
928 if (code
!= BIT_AND_EXPR
929 && code
!= LSHIFT_EXPR
930 && code
!= RSHIFT_EXPR
931 && code
!= LROTATE_EXPR
932 && code
!= RROTATE_EXPR
934 && code
!= CONVERT_EXPR
)
937 source_expr1
= find_bswap_1 (rhs1_stmt
, n
, limit
- 1);
939 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
940 to initialize the symbolic number. */
943 /* Set up the symbolic number N by setting each byte to a
944 value between 1 and the byte size of rhs1. The highest
945 order byte is set to n->size and the lowest order
947 n
->size
= TYPE_PRECISION (TREE_TYPE (rhs1
));
948 if (n
->size
% BITS_PER_UNIT
!= 0)
950 n
->size
/= BITS_PER_UNIT
;
951 n
->n
= (sizeof (HOST_WIDEST_INT
) < 8 ? 0 :
952 (unsigned HOST_WIDEST_INT
)0x08070605 << 32 | 0x04030201);
954 if (n
->size
< (int)sizeof (HOST_WIDEST_INT
))
955 n
->n
&= ((unsigned HOST_WIDEST_INT
)1 <<
956 (n
->size
* BITS_PER_UNIT
)) - 1;
966 unsigned HOST_WIDEST_INT val
= widest_int_cst_value (rhs2
);
967 unsigned HOST_WIDEST_INT tmp
= val
;
969 /* Only constants masking full bytes are allowed. */
970 for (i
= 0; i
< n
->size
; i
++, tmp
>>= BITS_PER_UNIT
)
971 if ((tmp
& 0xff) != 0 && (tmp
& 0xff) != 0xff)
981 if (!do_shift_rotate (code
, n
, (int)TREE_INT_CST_LOW (rhs2
)))
988 type_size
= TYPE_PRECISION (gimple_expr_type (stmt
));
989 if (type_size
% BITS_PER_UNIT
!= 0)
992 if (type_size
/ BITS_PER_UNIT
< (int)(sizeof (HOST_WIDEST_INT
)))
994 /* If STMT casts to a smaller type mask out the bits not
995 belonging to the target type. */
996 n
->n
&= ((unsigned HOST_WIDEST_INT
)1 << type_size
) - 1;
998 n
->size
= type_size
/ BITS_PER_UNIT
;
1004 return verify_symbolic_number_p (n
, stmt
) ? source_expr1
: NULL
;
1007 /* Handle binary rhs. */
1009 if (rhs_class
== GIMPLE_BINARY_RHS
)
1011 struct symbolic_number n1
, n2
;
1014 if (code
!= BIT_IOR_EXPR
)
1017 if (TREE_CODE (rhs2
) != SSA_NAME
)
1020 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
1025 source_expr1
= find_bswap_1 (rhs1_stmt
, &n1
, limit
- 1);
1030 source_expr2
= find_bswap_1 (rhs2_stmt
, &n2
, limit
- 1);
1032 if (source_expr1
!= source_expr2
1033 || n1
.size
!= n2
.size
)
1039 if (!verify_symbolic_number_p (n
, stmt
))
1046 return source_expr1
;
1051 /* Check if STMT completes a bswap implementation consisting of ORs,
1052 SHIFTs and ANDs. Return the source tree expression on which the
1053 byte swap is performed and NULL if no bswap was found. */
1056 find_bswap (gimple stmt
)
1058 /* The number which the find_bswap result should match in order to
1059 have a full byte swap. The number is shifted to the left according
1060 to the size of the symbolic number before using it. */
1061 unsigned HOST_WIDEST_INT cmp
=
1062 sizeof (HOST_WIDEST_INT
) < 8 ? 0 :
1063 (unsigned HOST_WIDEST_INT
)0x01020304 << 32 | 0x05060708;
1065 struct symbolic_number n
;
1068 /* The last parameter determines the depth search limit. It usually
1069 correlates directly to the number of bytes to be touched. We
1070 increase that number by one here in order to also cover signed ->
1071 unsigned conversions of the src operand as can be seen in
1073 source_expr
= find_bswap_1 (stmt
, &n
,
1075 TYPE_SIZE_UNIT (gimple_expr_type (stmt
))) + 1);
1080 /* Zero out the extra bits of N and CMP. */
1081 if (n
.size
< (int)sizeof (HOST_WIDEST_INT
))
1083 unsigned HOST_WIDEST_INT mask
=
1084 ((unsigned HOST_WIDEST_INT
)1 << (n
.size
* BITS_PER_UNIT
)) - 1;
1087 cmp
>>= (sizeof (HOST_WIDEST_INT
) - n
.size
) * BITS_PER_UNIT
;
1090 /* A complete byte swap should make the symbolic number to start
1091 with the largest digit in the highest order byte. */
1098 /* Find manual byte swap implementations and turn them into a bswap
1099 builtin invokation. */
1102 execute_optimize_bswap (void)
1105 bool bswap32_p
, bswap64_p
;
1106 bool changed
= false;
1107 tree bswap32_type
= NULL_TREE
, bswap64_type
= NULL_TREE
;
1109 if (BITS_PER_UNIT
!= 8)
1112 if (sizeof (HOST_WIDEST_INT
) < 8)
1115 bswap32_p
= (built_in_decls
[BUILT_IN_BSWAP32
]
1116 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
);
1117 bswap64_p
= (built_in_decls
[BUILT_IN_BSWAP64
]
1118 && (optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
1119 || (bswap32_p
&& word_mode
== SImode
)));
1121 if (!bswap32_p
&& !bswap64_p
)
1124 /* Determine the argument type of the builtins. The code later on
1125 assumes that the return and argument type are the same. */
1128 tree fndecl
= built_in_decls
[BUILT_IN_BSWAP32
];
1129 bswap32_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1134 tree fndecl
= built_in_decls
[BUILT_IN_BSWAP64
];
1135 bswap64_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
1140 gimple_stmt_iterator gsi
;
1142 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1144 gimple stmt
= gsi_stmt (gsi
);
1145 tree bswap_src
, bswap_type
;
1147 tree fndecl
= NULL_TREE
;
1151 if (!is_gimple_assign (stmt
)
1152 || gimple_assign_rhs_code (stmt
) != BIT_IOR_EXPR
)
1155 type_size
= TYPE_PRECISION (gimple_expr_type (stmt
));
1162 fndecl
= built_in_decls
[BUILT_IN_BSWAP32
];
1163 bswap_type
= bswap32_type
;
1169 fndecl
= built_in_decls
[BUILT_IN_BSWAP64
];
1170 bswap_type
= bswap64_type
;
1180 bswap_src
= find_bswap (stmt
);
1187 bswap_tmp
= bswap_src
;
1189 /* Convert the src expression if necessary. */
1190 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp
), bswap_type
))
1192 gimple convert_stmt
;
1194 bswap_tmp
= create_tmp_var (bswap_type
, "bswapsrc");
1195 add_referenced_var (bswap_tmp
);
1196 bswap_tmp
= make_ssa_name (bswap_tmp
, NULL
);
1198 convert_stmt
= gimple_build_assign_with_ops (
1199 CONVERT_EXPR
, bswap_tmp
, bswap_src
, NULL
);
1200 gsi_insert_before (&gsi
, convert_stmt
, GSI_SAME_STMT
);
1203 call
= gimple_build_call (fndecl
, 1, bswap_tmp
);
1205 bswap_tmp
= gimple_assign_lhs (stmt
);
1207 /* Convert the result if necessary. */
1208 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp
), bswap_type
))
1210 gimple convert_stmt
;
1212 bswap_tmp
= create_tmp_var (bswap_type
, "bswapdst");
1213 add_referenced_var (bswap_tmp
);
1214 bswap_tmp
= make_ssa_name (bswap_tmp
, NULL
);
1215 convert_stmt
= gimple_build_assign_with_ops (
1216 CONVERT_EXPR
, gimple_assign_lhs (stmt
), bswap_tmp
, NULL
);
1217 gsi_insert_after (&gsi
, convert_stmt
, GSI_SAME_STMT
);
1220 gimple_call_set_lhs (call
, bswap_tmp
);
1224 fprintf (dump_file
, "%d bit bswap implementation found at: ",
1226 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1229 gsi_insert_after (&gsi
, call
, GSI_SAME_STMT
);
1230 gsi_remove (&gsi
, true);
1234 return (changed
? TODO_dump_func
| TODO_update_ssa
| TODO_verify_ssa
1235 | TODO_verify_stmts
: 0);
1239 gate_optimize_bswap (void)
1241 return flag_expensive_optimizations
&& optimize
;
1244 struct gimple_opt_pass pass_optimize_bswap
=
1249 gate_optimize_bswap
, /* gate */
1250 execute_optimize_bswap
, /* execute */
1253 0, /* static_pass_number */
1254 TV_NONE
, /* tv_id */
1255 PROP_ssa
, /* properties_required */
1256 0, /* properties_provided */
1257 0, /* properties_destroyed */
1258 0, /* todo_flags_start */
1259 0 /* todo_flags_finish */
1263 /* Process a single gimple statement STMT, which has a MULT_EXPR as
1264 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
1265 value is true iff we converted the statement. */
1268 convert_mult_to_widen (gimple stmt
)
1270 gimple rhs1_stmt
= NULL
, rhs2_stmt
= NULL
;
1271 tree type1
= NULL
, type2
= NULL
;
1272 tree rhs1
, rhs2
, rhs1_convop
= NULL
, rhs2_convop
= NULL
;
1273 enum tree_code rhs1_code
, rhs2_code
;
1276 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1278 if (TREE_CODE (type
) != INTEGER_TYPE
)
1281 rhs1
= gimple_assign_rhs1 (stmt
);
1282 rhs2
= gimple_assign_rhs2 (stmt
);
1284 if (TREE_CODE (rhs1
) == SSA_NAME
)
1286 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
1287 if (!is_gimple_assign (rhs1_stmt
))
1289 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
1290 if (!CONVERT_EXPR_CODE_P (rhs1_code
))
1292 rhs1_convop
= gimple_assign_rhs1 (rhs1_stmt
);
1293 type1
= TREE_TYPE (rhs1_convop
);
1294 if (TYPE_PRECISION (type1
) * 2 != TYPE_PRECISION (type
))
1297 else if (TREE_CODE (rhs1
) != INTEGER_CST
)
1300 if (TREE_CODE (rhs2
) == SSA_NAME
)
1302 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
1303 if (!is_gimple_assign (rhs2_stmt
))
1305 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
1306 if (!CONVERT_EXPR_CODE_P (rhs2_code
))
1308 rhs2_convop
= gimple_assign_rhs1 (rhs2_stmt
);
1309 type2
= TREE_TYPE (rhs2_convop
);
1310 if (TYPE_PRECISION (type2
) * 2 != TYPE_PRECISION (type
))
1313 else if (TREE_CODE (rhs2
) != INTEGER_CST
)
1316 if (rhs1_stmt
== NULL
&& rhs2_stmt
== NULL
)
1319 /* Verify that the machine can perform a widening multiply in this
1320 mode/signedness combination, otherwise this transformation is
1321 likely to pessimize code. */
1322 if ((rhs1_stmt
== NULL
|| TYPE_UNSIGNED (type1
))
1323 && (rhs2_stmt
== NULL
|| TYPE_UNSIGNED (type2
))
1324 && (optab_handler (umul_widen_optab
, TYPE_MODE (type
))
1325 == CODE_FOR_nothing
))
1327 else if ((rhs1_stmt
== NULL
|| !TYPE_UNSIGNED (type1
))
1328 && (rhs2_stmt
== NULL
|| !TYPE_UNSIGNED (type2
))
1329 && (optab_handler (smul_widen_optab
, TYPE_MODE (type
))
1330 == CODE_FOR_nothing
))
1332 else if (rhs1_stmt
!= NULL
&& rhs2_stmt
!= NULL
1333 && (TYPE_UNSIGNED (type1
) != TYPE_UNSIGNED (type2
))
1334 && (optab_handler (usmul_widen_optab
, TYPE_MODE (type
))
1335 == CODE_FOR_nothing
))
1338 if ((rhs1_stmt
== NULL
&& !int_fits_type_p (rhs1
, type2
))
1339 || (rhs2_stmt
== NULL
&& !int_fits_type_p (rhs2
, type1
)))
1342 if (rhs1_stmt
== NULL
)
1343 gimple_assign_set_rhs1 (stmt
, fold_convert (type2
, rhs1
));
1345 gimple_assign_set_rhs1 (stmt
, rhs1_convop
);
1346 if (rhs2_stmt
== NULL
)
1347 gimple_assign_set_rhs2 (stmt
, fold_convert (type1
, rhs2
));
1349 gimple_assign_set_rhs2 (stmt
, rhs2_convop
);
1350 gimple_assign_set_rhs_code (stmt
, WIDEN_MULT_EXPR
);
1355 /* Process a single gimple statement STMT, which is found at the
1356 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
1357 rhs (given by CODE), and try to convert it into a
1358 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
1359 is true iff we converted the statement. */
1362 convert_plusminus_to_widen (gimple_stmt_iterator
*gsi
, gimple stmt
,
1363 enum tree_code code
)
1365 gimple rhs1_stmt
= NULL
, rhs2_stmt
= NULL
;
1367 tree lhs
, rhs1
, rhs2
, mult_rhs1
, mult_rhs2
, add_rhs
;
1368 enum tree_code rhs1_code
= ERROR_MARK
, rhs2_code
= ERROR_MARK
;
1370 enum tree_code wmult_code
;
1372 lhs
= gimple_assign_lhs (stmt
);
1373 type
= TREE_TYPE (lhs
);
1374 if (TREE_CODE (type
) != INTEGER_TYPE
)
1377 if (code
== MINUS_EXPR
)
1378 wmult_code
= WIDEN_MULT_MINUS_EXPR
;
1380 wmult_code
= WIDEN_MULT_PLUS_EXPR
;
1382 /* Verify that the machine can perform a widening multiply
1383 accumulate in this mode/signedness combination, otherwise
1384 this transformation is likely to pessimize code. */
1385 this_optab
= optab_for_tree_code (wmult_code
, type
, optab_default
);
1386 if (optab_handler (this_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
)
1389 rhs1
= gimple_assign_rhs1 (stmt
);
1390 rhs2
= gimple_assign_rhs2 (stmt
);
1392 if (TREE_CODE (rhs1
) == SSA_NAME
)
1394 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
1395 if (is_gimple_assign (rhs1_stmt
))
1396 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
1401 if (TREE_CODE (rhs2
) == SSA_NAME
)
1403 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
1404 if (is_gimple_assign (rhs2_stmt
))
1405 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
1410 if (rhs1_code
== MULT_EXPR
)
1412 if (!convert_mult_to_widen (rhs1_stmt
))
1414 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
1416 if (rhs2_code
== MULT_EXPR
)
1418 if (!convert_mult_to_widen (rhs2_stmt
))
1420 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
1423 if (code
== PLUS_EXPR
&& rhs1_code
== WIDEN_MULT_EXPR
)
1425 mult_rhs1
= gimple_assign_rhs1 (rhs1_stmt
);
1426 mult_rhs2
= gimple_assign_rhs2 (rhs1_stmt
);
1429 else if (rhs2_code
== WIDEN_MULT_EXPR
)
1431 mult_rhs1
= gimple_assign_rhs1 (rhs2_stmt
);
1432 mult_rhs2
= gimple_assign_rhs2 (rhs2_stmt
);
1438 /* ??? May need some type verification here? */
1440 gimple_assign_set_rhs_with_ops_1 (gsi
, wmult_code
, mult_rhs1
, mult_rhs2
,
1442 update_stmt (gsi_stmt (*gsi
));
1446 /* Find integer multiplications where the operands are extended from
1447 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
1448 where appropriate. */
1451 execute_optimize_widening_mul (void)
1453 bool changed
= false;
1458 gimple_stmt_iterator gsi
;
1460 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1462 gimple stmt
= gsi_stmt (gsi
);
1463 enum tree_code code
;
1465 if (!is_gimple_assign (stmt
))
1468 code
= gimple_assign_rhs_code (stmt
);
1469 if (code
== MULT_EXPR
)
1470 changed
|= convert_mult_to_widen (stmt
);
1471 else if (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
1472 changed
|= convert_plusminus_to_widen (&gsi
, stmt
, code
);
1476 return (changed
? TODO_dump_func
| TODO_update_ssa
| TODO_verify_ssa
1477 | TODO_verify_stmts
: 0);
1481 gate_optimize_widening_mul (void)
1483 return flag_expensive_optimizations
&& optimize
;
1486 struct gimple_opt_pass pass_optimize_widening_mul
=
1490 "widening_mul", /* name */
1491 gate_optimize_widening_mul
, /* gate */
1492 execute_optimize_widening_mul
, /* execute */
1495 0, /* static_pass_number */
1496 TV_NONE
, /* tv_id */
1497 PROP_ssa
, /* properties_required */
1498 0, /* properties_provided */
1499 0, /* properties_destroyed */
1500 0, /* todo_flags_start */
1501 0 /* todo_flags_finish */