Handle TARGET_CPU_iwmmxt.
[official-gcc.git] / gcc / function.c
blob6decfdf232ddb6e9545623ed64b9ec6262e39a38
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "coretypes.h"
44 #include "tm.h"
45 #include "rtl.h"
46 #include "tree.h"
47 #include "flags.h"
48 #include "except.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "libfuncs.h"
53 #include "regs.h"
54 #include "hard-reg-set.h"
55 #include "insn-config.h"
56 #include "recog.h"
57 #include "output.h"
58 #include "basic-block.h"
59 #include "toplev.h"
60 #include "hashtab.h"
61 #include "ggc.h"
62 #include "tm_p.h"
63 #include "integrate.h"
64 #include "langhooks.h"
66 #ifndef TRAMPOLINE_ALIGNMENT
67 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
68 #endif
70 #ifndef LOCAL_ALIGNMENT
71 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
72 #endif
74 #ifndef STACK_ALIGNMENT_NEEDED
75 #define STACK_ALIGNMENT_NEEDED 1
76 #endif
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80 give the same symbol without quotes for an alternative entry point. You
81 must define both, or neither. */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
86 /* Round a value to the lowest integer less than it that is a multiple of
87 the required alignment. Avoid using division in case the value is
88 negative. Assume the alignment is a power of two. */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
91 /* Similar, but round to the next highest integer that meets the
92 alignment. */
93 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
95 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
96 during rtl generation. If they are different register numbers, this is
97 always true. It may also be true if
98 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
99 generation. See fix_lexical_addr for details. */
101 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
102 #define NEED_SEPARATE_AP
103 #endif
105 /* Nonzero if function being compiled doesn't contain any calls
106 (ignoring the prologue and epilogue). This is set prior to
107 local register allocation and is valid for the remaining
108 compiler passes. */
109 int current_function_is_leaf;
111 /* Nonzero if function being compiled doesn't contain any instructions
112 that can throw an exception. This is set prior to final. */
114 int current_function_nothrow;
116 /* Nonzero if function being compiled doesn't modify the stack pointer
117 (ignoring the prologue and epilogue). This is only valid after
118 life_analysis has run. */
119 int current_function_sp_is_unchanging;
121 /* Nonzero if the function being compiled is a leaf function which only
122 uses leaf registers. This is valid after reload (specifically after
123 sched2) and is useful only if the port defines LEAF_REGISTERS. */
124 int current_function_uses_only_leaf_regs;
126 /* Nonzero once virtual register instantiation has been done.
127 assign_stack_local uses frame_pointer_rtx when this is nonzero.
128 calls.c:emit_library_call_value_1 uses it to set up
129 post-instantiation libcalls. */
130 int virtuals_instantiated;
132 /* Nonzero if at least one trampoline has been created. */
133 int trampolines_created;
135 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
136 static GTY(()) int funcdef_no;
138 /* These variables hold pointers to functions to create and destroy
139 target specific, per-function data structures. */
140 struct machine_function * (*init_machine_status) (void);
142 /* The FUNCTION_DECL for an inline function currently being expanded. */
143 tree inline_function_decl;
145 /* The currently compiled function. */
146 struct function *cfun = 0;
148 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
149 static GTY(()) varray_type prologue;
150 static GTY(()) varray_type epilogue;
152 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
153 in this function. */
154 static GTY(()) varray_type sibcall_epilogue;
156 /* In order to evaluate some expressions, such as function calls returning
157 structures in memory, we need to temporarily allocate stack locations.
158 We record each allocated temporary in the following structure.
160 Associated with each temporary slot is a nesting level. When we pop up
161 one level, all temporaries associated with the previous level are freed.
162 Normally, all temporaries are freed after the execution of the statement
163 in which they were created. However, if we are inside a ({...}) grouping,
164 the result may be in a temporary and hence must be preserved. If the
165 result could be in a temporary, we preserve it if we can determine which
166 one it is in. If we cannot determine which temporary may contain the
167 result, all temporaries are preserved. A temporary is preserved by
168 pretending it was allocated at the previous nesting level.
170 Automatic variables are also assigned temporary slots, at the nesting
171 level where they are defined. They are marked a "kept" so that
172 free_temp_slots will not free them. */
174 struct temp_slot GTY(())
176 /* Points to next temporary slot. */
177 struct temp_slot *next;
178 /* The rtx to used to reference the slot. */
179 rtx slot;
180 /* The rtx used to represent the address if not the address of the
181 slot above. May be an EXPR_LIST if multiple addresses exist. */
182 rtx address;
183 /* The alignment (in bits) of the slot. */
184 unsigned int align;
185 /* The size, in units, of the slot. */
186 HOST_WIDE_INT size;
187 /* The type of the object in the slot, or zero if it doesn't correspond
188 to a type. We use this to determine whether a slot can be reused.
189 It can be reused if objects of the type of the new slot will always
190 conflict with objects of the type of the old slot. */
191 tree type;
192 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
193 tree rtl_expr;
194 /* Nonzero if this temporary is currently in use. */
195 char in_use;
196 /* Nonzero if this temporary has its address taken. */
197 char addr_taken;
198 /* Nesting level at which this slot is being used. */
199 int level;
200 /* Nonzero if this should survive a call to free_temp_slots. */
201 int keep;
202 /* The offset of the slot from the frame_pointer, including extra space
203 for alignment. This info is for combine_temp_slots. */
204 HOST_WIDE_INT base_offset;
205 /* The size of the slot, including extra space for alignment. This
206 info is for combine_temp_slots. */
207 HOST_WIDE_INT full_size;
210 /* This structure is used to record MEMs or pseudos used to replace VAR, any
211 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
212 maintain this list in case two operands of an insn were required to match;
213 in that case we must ensure we use the same replacement. */
215 struct fixup_replacement GTY(())
217 rtx old;
218 rtx new;
219 struct fixup_replacement *next;
222 struct insns_for_mem_entry
224 /* A MEM. */
225 rtx key;
226 /* These are the INSNs which reference the MEM. */
227 rtx insns;
230 /* Forward declarations. */
232 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
233 struct function *);
234 static struct temp_slot *find_temp_slot_from_address (rtx);
235 static void put_reg_into_stack (struct function *, rtx, tree, enum machine_mode,
236 enum machine_mode, int, unsigned int, int, htab_t);
237 static void schedule_fixup_var_refs (struct function *, rtx, tree, enum machine_mode,
238 htab_t);
239 static void fixup_var_refs (rtx, enum machine_mode, int, rtx, htab_t);
240 static struct fixup_replacement
241 *find_fixup_replacement (struct fixup_replacement **, rtx);
242 static void fixup_var_refs_insns (rtx, rtx, enum machine_mode, int, int, rtx);
243 static void fixup_var_refs_insns_with_hash (htab_t, rtx, enum machine_mode, int, rtx);
244 static void fixup_var_refs_insn (rtx, rtx, enum machine_mode, int, int, rtx);
245 static void fixup_var_refs_1 (rtx, enum machine_mode, rtx *, rtx,
246 struct fixup_replacement **, rtx);
247 static rtx fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
248 static rtx walk_fixup_memory_subreg (rtx, rtx, enum machine_mode, int);
249 static rtx fixup_stack_1 (rtx, rtx);
250 static void optimize_bit_field (rtx, rtx, rtx *);
251 static void instantiate_decls (tree, int);
252 static void instantiate_decls_1 (tree, int);
253 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
254 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
255 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
256 static void delete_handlers (void);
257 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
258 static void pad_below (struct args_size *, enum machine_mode, tree);
259 static rtx round_trampoline_addr (rtx);
260 static rtx adjust_trampoline_addr (rtx);
261 static tree *identify_blocks_1 (rtx, tree *, tree *, tree *);
262 static void reorder_blocks_0 (tree);
263 static void reorder_blocks_1 (rtx, tree, varray_type *);
264 static void reorder_fix_fragments (tree);
265 static tree blocks_nreverse (tree);
266 static int all_blocks (tree, tree *);
267 static tree *get_block_vector (tree, int *);
268 extern tree debug_find_var_in_block_tree (tree, tree);
269 /* We always define `record_insns' even if its not used so that we
270 can always export `prologue_epilogue_contains'. */
271 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
272 static int contains (rtx, varray_type);
273 #ifdef HAVE_return
274 static void emit_return_into_block (basic_block, rtx);
275 #endif
276 static void put_addressof_into_stack (rtx, htab_t);
277 static bool purge_addressof_1 (rtx *, rtx, int, int, int, htab_t);
278 static void purge_single_hard_subreg_set (rtx);
279 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
280 static rtx keep_stack_depressed (rtx);
281 #endif
282 static int is_addressof (rtx *, void *);
283 static hashval_t insns_for_mem_hash (const void *);
284 static int insns_for_mem_comp (const void *, const void *);
285 static int insns_for_mem_walk (rtx *, void *);
286 static void compute_insns_for_mem (rtx, rtx, htab_t);
287 static void prepare_function_start (tree);
288 static void do_clobber_return_reg (rtx, void *);
289 static void do_use_return_reg (rtx, void *);
290 static void instantiate_virtual_regs_lossage (rtx);
291 static tree split_complex_args (tree);
292 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
294 /* Pointer to chain of `struct function' for containing functions. */
295 static GTY(()) struct function *outer_function_chain;
297 /* List of insns that were postponed by purge_addressof_1. */
298 static rtx postponed_insns;
300 /* Given a function decl for a containing function,
301 return the `struct function' for it. */
303 struct function *
304 find_function_data (tree decl)
306 struct function *p;
308 for (p = outer_function_chain; p; p = p->outer)
309 if (p->decl == decl)
310 return p;
312 abort ();
315 /* Save the current context for compilation of a nested function.
316 This is called from language-specific code. The caller should use
317 the enter_nested langhook to save any language-specific state,
318 since this function knows only about language-independent
319 variables. */
321 void
322 push_function_context_to (tree context)
324 struct function *p;
326 if (context)
328 if (context == current_function_decl)
329 cfun->contains_functions = 1;
330 else
332 struct function *containing = find_function_data (context);
333 containing->contains_functions = 1;
337 if (cfun == 0)
338 init_dummy_function_start ();
339 p = cfun;
341 p->outer = outer_function_chain;
342 outer_function_chain = p;
343 p->fixup_var_refs_queue = 0;
345 (*lang_hooks.function.enter_nested) (p);
347 cfun = 0;
350 void
351 push_function_context (void)
353 push_function_context_to (current_function_decl);
356 /* Restore the last saved context, at the end of a nested function.
357 This function is called from language-specific code. */
359 void
360 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
362 struct function *p = outer_function_chain;
363 struct var_refs_queue *queue;
365 cfun = p;
366 outer_function_chain = p->outer;
368 current_function_decl = p->decl;
369 reg_renumber = 0;
371 restore_emit_status (p);
373 (*lang_hooks.function.leave_nested) (p);
375 /* Finish doing put_var_into_stack for any of our variables which became
376 addressable during the nested function. If only one entry has to be
377 fixed up, just do that one. Otherwise, first make a list of MEMs that
378 are not to be unshared. */
379 if (p->fixup_var_refs_queue == 0)
381 else if (p->fixup_var_refs_queue->next == 0)
382 fixup_var_refs (p->fixup_var_refs_queue->modified,
383 p->fixup_var_refs_queue->promoted_mode,
384 p->fixup_var_refs_queue->unsignedp,
385 p->fixup_var_refs_queue->modified, 0);
386 else
388 rtx list = 0;
390 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
391 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
393 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
394 fixup_var_refs (queue->modified, queue->promoted_mode,
395 queue->unsignedp, list, 0);
399 p->fixup_var_refs_queue = 0;
401 /* Reset variables that have known state during rtx generation. */
402 rtx_equal_function_value_matters = 1;
403 virtuals_instantiated = 0;
404 generating_concat_p = 1;
407 void
408 pop_function_context (void)
410 pop_function_context_from (current_function_decl);
413 /* Clear out all parts of the state in F that can safely be discarded
414 after the function has been parsed, but not compiled, to let
415 garbage collection reclaim the memory. */
417 void
418 free_after_parsing (struct function *f)
420 /* f->expr->forced_labels is used by code generation. */
421 /* f->emit->regno_reg_rtx is used by code generation. */
422 /* f->varasm is used by code generation. */
423 /* f->eh->eh_return_stub_label is used by code generation. */
425 (*lang_hooks.function.final) (f);
426 f->stmt = NULL;
429 /* Clear out all parts of the state in F that can safely be discarded
430 after the function has been compiled, to let garbage collection
431 reclaim the memory. */
433 void
434 free_after_compilation (struct function *f)
436 f->eh = NULL;
437 f->expr = NULL;
438 f->emit = NULL;
439 f->varasm = NULL;
440 f->machine = NULL;
442 f->x_temp_slots = NULL;
443 f->arg_offset_rtx = NULL;
444 f->return_rtx = NULL;
445 f->internal_arg_pointer = NULL;
446 f->x_nonlocal_labels = NULL;
447 f->x_nonlocal_goto_handler_slots = NULL;
448 f->x_nonlocal_goto_handler_labels = NULL;
449 f->x_nonlocal_goto_stack_level = NULL;
450 f->x_cleanup_label = NULL;
451 f->x_return_label = NULL;
452 f->computed_goto_common_label = NULL;
453 f->computed_goto_common_reg = NULL;
454 f->x_save_expr_regs = NULL;
455 f->x_stack_slot_list = NULL;
456 f->x_rtl_expr_chain = NULL;
457 f->x_tail_recursion_label = NULL;
458 f->x_tail_recursion_reentry = NULL;
459 f->x_arg_pointer_save_area = NULL;
460 f->x_clobber_return_insn = NULL;
461 f->x_context_display = NULL;
462 f->x_trampoline_list = NULL;
463 f->x_parm_birth_insn = NULL;
464 f->x_last_parm_insn = NULL;
465 f->x_parm_reg_stack_loc = NULL;
466 f->fixup_var_refs_queue = NULL;
467 f->original_arg_vector = NULL;
468 f->original_decl_initial = NULL;
469 f->inl_last_parm_insn = NULL;
470 f->epilogue_delay_list = NULL;
473 /* Allocate fixed slots in the stack frame of the current function. */
475 /* Return size needed for stack frame based on slots so far allocated in
476 function F.
477 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
478 the caller may have to do that. */
480 HOST_WIDE_INT
481 get_func_frame_size (struct function *f)
483 #ifdef FRAME_GROWS_DOWNWARD
484 return -f->x_frame_offset;
485 #else
486 return f->x_frame_offset;
487 #endif
490 /* Return size needed for stack frame based on slots so far allocated.
491 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
492 the caller may have to do that. */
493 HOST_WIDE_INT
494 get_frame_size (void)
496 return get_func_frame_size (cfun);
499 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
500 with machine mode MODE.
502 ALIGN controls the amount of alignment for the address of the slot:
503 0 means according to MODE,
504 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
505 positive specifies alignment boundary in bits.
507 We do not round to stack_boundary here.
509 FUNCTION specifies the function to allocate in. */
511 static rtx
512 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
513 struct function *function)
515 rtx x, addr;
516 int bigend_correction = 0;
517 int alignment;
518 int frame_off, frame_alignment, frame_phase;
520 if (align == 0)
522 tree type;
524 if (mode == BLKmode)
525 alignment = BIGGEST_ALIGNMENT;
526 else
527 alignment = GET_MODE_ALIGNMENT (mode);
529 /* Allow the target to (possibly) increase the alignment of this
530 stack slot. */
531 type = (*lang_hooks.types.type_for_mode) (mode, 0);
532 if (type)
533 alignment = LOCAL_ALIGNMENT (type, alignment);
535 alignment /= BITS_PER_UNIT;
537 else if (align == -1)
539 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
540 size = CEIL_ROUND (size, alignment);
542 else
543 alignment = align / BITS_PER_UNIT;
545 #ifdef FRAME_GROWS_DOWNWARD
546 function->x_frame_offset -= size;
547 #endif
549 /* Ignore alignment we can't do with expected alignment of the boundary. */
550 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
551 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
553 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
554 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
556 /* Calculate how many bytes the start of local variables is off from
557 stack alignment. */
558 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
559 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
560 frame_phase = frame_off ? frame_alignment - frame_off : 0;
562 /* Round the frame offset to the specified alignment. The default is
563 to always honor requests to align the stack but a port may choose to
564 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
565 if (STACK_ALIGNMENT_NEEDED
566 || mode != BLKmode
567 || size != 0)
569 /* We must be careful here, since FRAME_OFFSET might be negative and
570 division with a negative dividend isn't as well defined as we might
571 like. So we instead assume that ALIGNMENT is a power of two and
572 use logical operations which are unambiguous. */
573 #ifdef FRAME_GROWS_DOWNWARD
574 function->x_frame_offset
575 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
576 + frame_phase);
577 #else
578 function->x_frame_offset
579 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
580 + frame_phase);
581 #endif
584 /* On a big-endian machine, if we are allocating more space than we will use,
585 use the least significant bytes of those that are allocated. */
586 if (BYTES_BIG_ENDIAN && mode != BLKmode)
587 bigend_correction = size - GET_MODE_SIZE (mode);
589 /* If we have already instantiated virtual registers, return the actual
590 address relative to the frame pointer. */
591 if (function == cfun && virtuals_instantiated)
592 addr = plus_constant (frame_pointer_rtx,
593 trunc_int_for_mode
594 (frame_offset + bigend_correction
595 + STARTING_FRAME_OFFSET, Pmode));
596 else
597 addr = plus_constant (virtual_stack_vars_rtx,
598 trunc_int_for_mode
599 (function->x_frame_offset + bigend_correction,
600 Pmode));
602 #ifndef FRAME_GROWS_DOWNWARD
603 function->x_frame_offset += size;
604 #endif
606 x = gen_rtx_MEM (mode, addr);
608 function->x_stack_slot_list
609 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
611 return x;
614 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
615 current function. */
618 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
620 return assign_stack_local_1 (mode, size, align, cfun);
623 /* Allocate a temporary stack slot and record it for possible later
624 reuse.
626 MODE is the machine mode to be given to the returned rtx.
628 SIZE is the size in units of the space required. We do no rounding here
629 since assign_stack_local will do any required rounding.
631 KEEP is 1 if this slot is to be retained after a call to
632 free_temp_slots. Automatic variables for a block are allocated
633 with this flag. KEEP is 2 if we allocate a longer term temporary,
634 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
635 if we are to allocate something at an inner level to be treated as
636 a variable in the block (e.g., a SAVE_EXPR).
638 TYPE is the type that will be used for the stack slot. */
641 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
642 tree type)
644 unsigned int align;
645 struct temp_slot *p, *best_p = 0;
646 rtx slot;
648 /* If SIZE is -1 it means that somebody tried to allocate a temporary
649 of a variable size. */
650 if (size == -1)
651 abort ();
653 if (mode == BLKmode)
654 align = BIGGEST_ALIGNMENT;
655 else
656 align = GET_MODE_ALIGNMENT (mode);
658 if (! type)
659 type = (*lang_hooks.types.type_for_mode) (mode, 0);
661 if (type)
662 align = LOCAL_ALIGNMENT (type, align);
664 /* Try to find an available, already-allocated temporary of the proper
665 mode which meets the size and alignment requirements. Choose the
666 smallest one with the closest alignment. */
667 for (p = temp_slots; p; p = p->next)
668 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
669 && ! p->in_use
670 && objects_must_conflict_p (p->type, type)
671 && (best_p == 0 || best_p->size > p->size
672 || (best_p->size == p->size && best_p->align > p->align)))
674 if (p->align == align && p->size == size)
676 best_p = 0;
677 break;
679 best_p = p;
682 /* Make our best, if any, the one to use. */
683 if (best_p)
685 /* If there are enough aligned bytes left over, make them into a new
686 temp_slot so that the extra bytes don't get wasted. Do this only
687 for BLKmode slots, so that we can be sure of the alignment. */
688 if (GET_MODE (best_p->slot) == BLKmode)
690 int alignment = best_p->align / BITS_PER_UNIT;
691 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
693 if (best_p->size - rounded_size >= alignment)
695 p = ggc_alloc (sizeof (struct temp_slot));
696 p->in_use = p->addr_taken = 0;
697 p->size = best_p->size - rounded_size;
698 p->base_offset = best_p->base_offset + rounded_size;
699 p->full_size = best_p->full_size - rounded_size;
700 p->slot = gen_rtx_MEM (BLKmode,
701 plus_constant (XEXP (best_p->slot, 0),
702 rounded_size));
703 p->align = best_p->align;
704 p->address = 0;
705 p->rtl_expr = 0;
706 p->type = best_p->type;
707 p->next = temp_slots;
708 temp_slots = p;
710 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
711 stack_slot_list);
713 best_p->size = rounded_size;
714 best_p->full_size = rounded_size;
718 p = best_p;
721 /* If we still didn't find one, make a new temporary. */
722 if (p == 0)
724 HOST_WIDE_INT frame_offset_old = frame_offset;
726 p = ggc_alloc (sizeof (struct temp_slot));
728 /* We are passing an explicit alignment request to assign_stack_local.
729 One side effect of that is assign_stack_local will not round SIZE
730 to ensure the frame offset remains suitably aligned.
732 So for requests which depended on the rounding of SIZE, we go ahead
733 and round it now. We also make sure ALIGNMENT is at least
734 BIGGEST_ALIGNMENT. */
735 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
736 abort ();
737 p->slot = assign_stack_local (mode,
738 (mode == BLKmode
739 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
740 : size),
741 align);
743 p->align = align;
745 /* The following slot size computation is necessary because we don't
746 know the actual size of the temporary slot until assign_stack_local
747 has performed all the frame alignment and size rounding for the
748 requested temporary. Note that extra space added for alignment
749 can be either above or below this stack slot depending on which
750 way the frame grows. We include the extra space if and only if it
751 is above this slot. */
752 #ifdef FRAME_GROWS_DOWNWARD
753 p->size = frame_offset_old - frame_offset;
754 #else
755 p->size = size;
756 #endif
758 /* Now define the fields used by combine_temp_slots. */
759 #ifdef FRAME_GROWS_DOWNWARD
760 p->base_offset = frame_offset;
761 p->full_size = frame_offset_old - frame_offset;
762 #else
763 p->base_offset = frame_offset_old;
764 p->full_size = frame_offset - frame_offset_old;
765 #endif
766 p->address = 0;
767 p->next = temp_slots;
768 temp_slots = p;
771 p->in_use = 1;
772 p->addr_taken = 0;
773 p->rtl_expr = seq_rtl_expr;
774 p->type = type;
776 if (keep == 2)
778 p->level = target_temp_slot_level;
779 p->keep = 0;
781 else if (keep == 3)
783 p->level = var_temp_slot_level;
784 p->keep = 0;
786 else
788 p->level = temp_slot_level;
789 p->keep = keep;
793 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
794 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
795 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
797 /* If we know the alias set for the memory that will be used, use
798 it. If there's no TYPE, then we don't know anything about the
799 alias set for the memory. */
800 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
801 set_mem_align (slot, align);
803 /* If a type is specified, set the relevant flags. */
804 if (type != 0)
806 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
807 && TYPE_READONLY (type));
808 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
809 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
812 return slot;
815 /* Allocate a temporary stack slot and record it for possible later
816 reuse. First three arguments are same as in preceding function. */
819 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
821 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
824 /* Assign a temporary.
825 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
826 and so that should be used in error messages. In either case, we
827 allocate of the given type.
828 KEEP is as for assign_stack_temp.
829 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
830 it is 0 if a register is OK.
831 DONT_PROMOTE is 1 if we should not promote values in register
832 to wider modes. */
835 assign_temp (tree type_or_decl, int keep, int memory_required,
836 int dont_promote ATTRIBUTE_UNUSED)
838 tree type, decl;
839 enum machine_mode mode;
840 #ifndef PROMOTE_FOR_CALL_ONLY
841 int unsignedp;
842 #endif
844 if (DECL_P (type_or_decl))
845 decl = type_or_decl, type = TREE_TYPE (decl);
846 else
847 decl = NULL, type = type_or_decl;
849 mode = TYPE_MODE (type);
850 #ifndef PROMOTE_FOR_CALL_ONLY
851 unsignedp = TREE_UNSIGNED (type);
852 #endif
854 if (mode == BLKmode || memory_required)
856 HOST_WIDE_INT size = int_size_in_bytes (type);
857 rtx tmp;
859 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
860 problems with allocating the stack space. */
861 if (size == 0)
862 size = 1;
864 /* Unfortunately, we don't yet know how to allocate variable-sized
865 temporaries. However, sometimes we have a fixed upper limit on
866 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
867 instead. This is the case for Chill variable-sized strings. */
868 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
869 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
870 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
871 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
873 /* The size of the temporary may be too large to fit into an integer. */
874 /* ??? Not sure this should happen except for user silliness, so limit
875 this to things that aren't compiler-generated temporaries. The
876 rest of the time we'll abort in assign_stack_temp_for_type. */
877 if (decl && size == -1
878 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
880 error ("%Hsize of variable '%D' is too large",
881 &DECL_SOURCE_LOCATION (decl), decl);
882 size = 1;
885 tmp = assign_stack_temp_for_type (mode, size, keep, type);
886 return tmp;
889 #ifndef PROMOTE_FOR_CALL_ONLY
890 if (! dont_promote)
891 mode = promote_mode (type, mode, &unsignedp, 0);
892 #endif
894 return gen_reg_rtx (mode);
897 /* Combine temporary stack slots which are adjacent on the stack.
899 This allows for better use of already allocated stack space. This is only
900 done for BLKmode slots because we can be sure that we won't have alignment
901 problems in this case. */
903 void
904 combine_temp_slots (void)
906 struct temp_slot *p, *q;
907 struct temp_slot *prev_p, *prev_q;
908 int num_slots;
910 /* We can't combine slots, because the information about which slot
911 is in which alias set will be lost. */
912 if (flag_strict_aliasing)
913 return;
915 /* If there are a lot of temp slots, don't do anything unless
916 high levels of optimization. */
917 if (! flag_expensive_optimizations)
918 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
919 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
920 return;
922 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
924 int delete_p = 0;
926 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
927 for (q = p->next, prev_q = p; q; q = prev_q->next)
929 int delete_q = 0;
930 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
932 if (p->base_offset + p->full_size == q->base_offset)
934 /* Q comes after P; combine Q into P. */
935 p->size += q->size;
936 p->full_size += q->full_size;
937 delete_q = 1;
939 else if (q->base_offset + q->full_size == p->base_offset)
941 /* P comes after Q; combine P into Q. */
942 q->size += p->size;
943 q->full_size += p->full_size;
944 delete_p = 1;
945 break;
948 /* Either delete Q or advance past it. */
949 if (delete_q)
950 prev_q->next = q->next;
951 else
952 prev_q = q;
954 /* Either delete P or advance past it. */
955 if (delete_p)
957 if (prev_p)
958 prev_p->next = p->next;
959 else
960 temp_slots = p->next;
962 else
963 prev_p = p;
967 /* Find the temp slot corresponding to the object at address X. */
969 static struct temp_slot *
970 find_temp_slot_from_address (rtx x)
972 struct temp_slot *p;
973 rtx next;
975 for (p = temp_slots; p; p = p->next)
977 if (! p->in_use)
978 continue;
980 else if (XEXP (p->slot, 0) == x
981 || p->address == x
982 || (GET_CODE (x) == PLUS
983 && XEXP (x, 0) == virtual_stack_vars_rtx
984 && GET_CODE (XEXP (x, 1)) == CONST_INT
985 && INTVAL (XEXP (x, 1)) >= p->base_offset
986 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
987 return p;
989 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
990 for (next = p->address; next; next = XEXP (next, 1))
991 if (XEXP (next, 0) == x)
992 return p;
995 /* If we have a sum involving a register, see if it points to a temp
996 slot. */
997 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
998 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
999 return p;
1000 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1001 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1002 return p;
1004 return 0;
1007 /* Indicate that NEW is an alternate way of referring to the temp slot
1008 that previously was known by OLD. */
1010 void
1011 update_temp_slot_address (rtx old, rtx new)
1013 struct temp_slot *p;
1015 if (rtx_equal_p (old, new))
1016 return;
1018 p = find_temp_slot_from_address (old);
1020 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1021 is a register, see if one operand of the PLUS is a temporary
1022 location. If so, NEW points into it. Otherwise, if both OLD and
1023 NEW are a PLUS and if there is a register in common between them.
1024 If so, try a recursive call on those values. */
1025 if (p == 0)
1027 if (GET_CODE (old) != PLUS)
1028 return;
1030 if (GET_CODE (new) == REG)
1032 update_temp_slot_address (XEXP (old, 0), new);
1033 update_temp_slot_address (XEXP (old, 1), new);
1034 return;
1036 else if (GET_CODE (new) != PLUS)
1037 return;
1039 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1040 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1041 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1042 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1043 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1044 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1045 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1046 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1048 return;
1051 /* Otherwise add an alias for the temp's address. */
1052 else if (p->address == 0)
1053 p->address = new;
1054 else
1056 if (GET_CODE (p->address) != EXPR_LIST)
1057 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1059 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1063 /* If X could be a reference to a temporary slot, mark the fact that its
1064 address was taken. */
1066 void
1067 mark_temp_addr_taken (rtx x)
1069 struct temp_slot *p;
1071 if (x == 0)
1072 return;
1074 /* If X is not in memory or is at a constant address, it cannot be in
1075 a temporary slot. */
1076 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1077 return;
1079 p = find_temp_slot_from_address (XEXP (x, 0));
1080 if (p != 0)
1081 p->addr_taken = 1;
1084 /* If X could be a reference to a temporary slot, mark that slot as
1085 belonging to the to one level higher than the current level. If X
1086 matched one of our slots, just mark that one. Otherwise, we can't
1087 easily predict which it is, so upgrade all of them. Kept slots
1088 need not be touched.
1090 This is called when an ({...}) construct occurs and a statement
1091 returns a value in memory. */
1093 void
1094 preserve_temp_slots (rtx x)
1096 struct temp_slot *p = 0;
1098 /* If there is no result, we still might have some objects whose address
1099 were taken, so we need to make sure they stay around. */
1100 if (x == 0)
1102 for (p = temp_slots; p; p = p->next)
1103 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1104 p->level--;
1106 return;
1109 /* If X is a register that is being used as a pointer, see if we have
1110 a temporary slot we know it points to. To be consistent with
1111 the code below, we really should preserve all non-kept slots
1112 if we can't find a match, but that seems to be much too costly. */
1113 if (GET_CODE (x) == REG && REG_POINTER (x))
1114 p = find_temp_slot_from_address (x);
1116 /* If X is not in memory or is at a constant address, it cannot be in
1117 a temporary slot, but it can contain something whose address was
1118 taken. */
1119 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1121 for (p = temp_slots; p; p = p->next)
1122 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1123 p->level--;
1125 return;
1128 /* First see if we can find a match. */
1129 if (p == 0)
1130 p = find_temp_slot_from_address (XEXP (x, 0));
1132 if (p != 0)
1134 /* Move everything at our level whose address was taken to our new
1135 level in case we used its address. */
1136 struct temp_slot *q;
1138 if (p->level == temp_slot_level)
1140 for (q = temp_slots; q; q = q->next)
1141 if (q != p && q->addr_taken && q->level == p->level)
1142 q->level--;
1144 p->level--;
1145 p->addr_taken = 0;
1147 return;
1150 /* Otherwise, preserve all non-kept slots at this level. */
1151 for (p = temp_slots; p; p = p->next)
1152 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1153 p->level--;
1156 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1157 with that RTL_EXPR, promote it into a temporary slot at the present
1158 level so it will not be freed when we free slots made in the
1159 RTL_EXPR. */
1161 void
1162 preserve_rtl_expr_result (rtx x)
1164 struct temp_slot *p;
1166 /* If X is not in memory or is at a constant address, it cannot be in
1167 a temporary slot. */
1168 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1169 return;
1171 /* If we can find a match, move it to our level unless it is already at
1172 an upper level. */
1173 p = find_temp_slot_from_address (XEXP (x, 0));
1174 if (p != 0)
1176 p->level = MIN (p->level, temp_slot_level);
1177 p->rtl_expr = 0;
1180 return;
1183 /* Free all temporaries used so far. This is normally called at the end
1184 of generating code for a statement. Don't free any temporaries
1185 currently in use for an RTL_EXPR that hasn't yet been emitted.
1186 We could eventually do better than this since it can be reused while
1187 generating the same RTL_EXPR, but this is complex and probably not
1188 worthwhile. */
1190 void
1191 free_temp_slots (void)
1193 struct temp_slot *p;
1195 for (p = temp_slots; p; p = p->next)
1196 if (p->in_use && p->level == temp_slot_level && ! p->keep
1197 && p->rtl_expr == 0)
1198 p->in_use = 0;
1200 combine_temp_slots ();
1203 /* Free all temporary slots used in T, an RTL_EXPR node. */
1205 void
1206 free_temps_for_rtl_expr (tree t)
1208 struct temp_slot *p;
1210 for (p = temp_slots; p; p = p->next)
1211 if (p->rtl_expr == t)
1213 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1214 needs to be preserved. This can happen if a temporary in
1215 the RTL_EXPR was addressed; preserve_temp_slots will move
1216 the temporary into a higher level. */
1217 if (temp_slot_level <= p->level)
1218 p->in_use = 0;
1219 else
1220 p->rtl_expr = NULL_TREE;
1223 combine_temp_slots ();
1226 /* Mark all temporaries ever allocated in this function as not suitable
1227 for reuse until the current level is exited. */
1229 void
1230 mark_all_temps_used (void)
1232 struct temp_slot *p;
1234 for (p = temp_slots; p; p = p->next)
1236 p->in_use = p->keep = 1;
1237 p->level = MIN (p->level, temp_slot_level);
1241 /* Push deeper into the nesting level for stack temporaries. */
1243 void
1244 push_temp_slots (void)
1246 temp_slot_level++;
1249 /* Pop a temporary nesting level. All slots in use in the current level
1250 are freed. */
1252 void
1253 pop_temp_slots (void)
1255 struct temp_slot *p;
1257 for (p = temp_slots; p; p = p->next)
1258 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1259 p->in_use = 0;
1261 combine_temp_slots ();
1263 temp_slot_level--;
1266 /* Initialize temporary slots. */
1268 void
1269 init_temp_slots (void)
1271 /* We have not allocated any temporaries yet. */
1272 temp_slots = 0;
1273 temp_slot_level = 0;
1274 var_temp_slot_level = 0;
1275 target_temp_slot_level = 0;
1278 /* Retroactively move an auto variable from a register to a stack
1279 slot. This is done when an address-reference to the variable is
1280 seen. If RESCAN is true, all previously emitted instructions are
1281 examined and modified to handle the fact that DECL is now
1282 addressable. */
1284 void
1285 put_var_into_stack (tree decl, int rescan)
1287 rtx reg;
1288 enum machine_mode promoted_mode, decl_mode;
1289 struct function *function = 0;
1290 tree context;
1291 int can_use_addressof;
1292 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1293 int usedp = (TREE_USED (decl)
1294 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1296 context = decl_function_context (decl);
1298 /* Get the current rtl used for this object and its original mode. */
1299 reg = (TREE_CODE (decl) == SAVE_EXPR
1300 ? SAVE_EXPR_RTL (decl)
1301 : DECL_RTL_IF_SET (decl));
1303 /* No need to do anything if decl has no rtx yet
1304 since in that case caller is setting TREE_ADDRESSABLE
1305 and a stack slot will be assigned when the rtl is made. */
1306 if (reg == 0)
1307 return;
1309 /* Get the declared mode for this object. */
1310 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1311 : DECL_MODE (decl));
1312 /* Get the mode it's actually stored in. */
1313 promoted_mode = GET_MODE (reg);
1315 /* If this variable comes from an outer function, find that
1316 function's saved context. Don't use find_function_data here,
1317 because it might not be in any active function.
1318 FIXME: Is that really supposed to happen?
1319 It does in ObjC at least. */
1320 if (context != current_function_decl && context != inline_function_decl)
1321 for (function = outer_function_chain; function; function = function->outer)
1322 if (function->decl == context)
1323 break;
1325 /* If this is a variable-size object with a pseudo to address it,
1326 put that pseudo into the stack, if the var is nonlocal. */
1327 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1328 && GET_CODE (reg) == MEM
1329 && GET_CODE (XEXP (reg, 0)) == REG
1330 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1332 reg = XEXP (reg, 0);
1333 decl_mode = promoted_mode = GET_MODE (reg);
1336 can_use_addressof
1337 = (function == 0
1338 && optimize > 0
1339 /* FIXME make it work for promoted modes too */
1340 && decl_mode == promoted_mode
1341 #ifdef NON_SAVING_SETJMP
1342 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1343 #endif
1346 /* If we can't use ADDRESSOF, make sure we see through one we already
1347 generated. */
1348 if (! can_use_addressof && GET_CODE (reg) == MEM
1349 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1350 reg = XEXP (XEXP (reg, 0), 0);
1352 /* Now we should have a value that resides in one or more pseudo regs. */
1354 if (GET_CODE (reg) == REG)
1356 /* If this variable lives in the current function and we don't need
1357 to put things in the stack for the sake of setjmp, try to keep it
1358 in a register until we know we actually need the address. */
1359 if (can_use_addressof)
1360 gen_mem_addressof (reg, decl, rescan);
1361 else
1362 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1363 decl_mode, volatilep, 0, usedp, 0);
1365 else if (GET_CODE (reg) == CONCAT)
1367 /* A CONCAT contains two pseudos; put them both in the stack.
1368 We do it so they end up consecutive.
1369 We fixup references to the parts only after we fixup references
1370 to the whole CONCAT, lest we do double fixups for the latter
1371 references. */
1372 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1373 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1374 rtx lopart = XEXP (reg, 0);
1375 rtx hipart = XEXP (reg, 1);
1376 #ifdef FRAME_GROWS_DOWNWARD
1377 /* Since part 0 should have a lower address, do it second. */
1378 put_reg_into_stack (function, hipart, part_type, part_mode,
1379 part_mode, volatilep, 0, 0, 0);
1380 put_reg_into_stack (function, lopart, part_type, part_mode,
1381 part_mode, volatilep, 0, 0, 0);
1382 #else
1383 put_reg_into_stack (function, lopart, part_type, part_mode,
1384 part_mode, volatilep, 0, 0, 0);
1385 put_reg_into_stack (function, hipart, part_type, part_mode,
1386 part_mode, volatilep, 0, 0, 0);
1387 #endif
1389 /* Change the CONCAT into a combined MEM for both parts. */
1390 PUT_CODE (reg, MEM);
1391 MEM_ATTRS (reg) = 0;
1393 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1394 already computed alias sets. Here we want to re-generate. */
1395 if (DECL_P (decl))
1396 SET_DECL_RTL (decl, NULL);
1397 set_mem_attributes (reg, decl, 1);
1398 if (DECL_P (decl))
1399 SET_DECL_RTL (decl, reg);
1401 /* The two parts are in memory order already.
1402 Use the lower parts address as ours. */
1403 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1404 /* Prevent sharing of rtl that might lose. */
1405 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1406 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1407 if (usedp && rescan)
1409 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1410 promoted_mode, 0);
1411 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1412 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1415 else
1416 return;
1419 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1420 into the stack frame of FUNCTION (0 means the current function).
1421 DECL_MODE is the machine mode of the user-level data type.
1422 PROMOTED_MODE is the machine mode of the register.
1423 VOLATILE_P is nonzero if this is for a "volatile" decl.
1424 USED_P is nonzero if this reg might have already been used in an insn. */
1426 static void
1427 put_reg_into_stack (struct function *function, rtx reg, tree type,
1428 enum machine_mode promoted_mode, enum machine_mode decl_mode,
1429 int volatile_p, unsigned int original_regno, int used_p, htab_t ht)
1431 struct function *func = function ? function : cfun;
1432 rtx new = 0;
1433 unsigned int regno = original_regno;
1435 if (regno == 0)
1436 regno = REGNO (reg);
1438 if (regno < func->x_max_parm_reg)
1439 new = func->x_parm_reg_stack_loc[regno];
1441 if (new == 0)
1442 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1444 PUT_CODE (reg, MEM);
1445 PUT_MODE (reg, decl_mode);
1446 XEXP (reg, 0) = XEXP (new, 0);
1447 MEM_ATTRS (reg) = 0;
1448 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1449 MEM_VOLATILE_P (reg) = volatile_p;
1451 /* If this is a memory ref that contains aggregate components,
1452 mark it as such for cse and loop optimize. If we are reusing a
1453 previously generated stack slot, then we need to copy the bit in
1454 case it was set for other reasons. For instance, it is set for
1455 __builtin_va_alist. */
1456 if (type)
1458 MEM_SET_IN_STRUCT_P (reg,
1459 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1460 set_mem_alias_set (reg, get_alias_set (type));
1463 if (used_p)
1464 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1467 /* Make sure that all refs to the variable, previously made
1468 when it was a register, are fixed up to be valid again.
1469 See function above for meaning of arguments. */
1471 static void
1472 schedule_fixup_var_refs (struct function *function, rtx reg, tree type,
1473 enum machine_mode promoted_mode, htab_t ht)
1475 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1477 if (function != 0)
1479 struct var_refs_queue *temp;
1481 temp = ggc_alloc (sizeof (struct var_refs_queue));
1482 temp->modified = reg;
1483 temp->promoted_mode = promoted_mode;
1484 temp->unsignedp = unsigned_p;
1485 temp->next = function->fixup_var_refs_queue;
1486 function->fixup_var_refs_queue = temp;
1488 else
1489 /* Variable is local; fix it up now. */
1490 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1493 static void
1494 fixup_var_refs (rtx var, enum machine_mode promoted_mode, int unsignedp,
1495 rtx may_share, htab_t ht)
1497 tree pending;
1498 rtx first_insn = get_insns ();
1499 struct sequence_stack *stack = seq_stack;
1500 tree rtl_exps = rtl_expr_chain;
1502 /* If there's a hash table, it must record all uses of VAR. */
1503 if (ht)
1505 if (stack != 0)
1506 abort ();
1507 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1508 may_share);
1509 return;
1512 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1513 stack == 0, may_share);
1515 /* Scan all pending sequences too. */
1516 for (; stack; stack = stack->next)
1518 push_to_full_sequence (stack->first, stack->last);
1519 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1520 stack->next != 0, may_share);
1521 /* Update remembered end of sequence
1522 in case we added an insn at the end. */
1523 stack->last = get_last_insn ();
1524 end_sequence ();
1527 /* Scan all waiting RTL_EXPRs too. */
1528 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1530 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1531 if (seq != const0_rtx && seq != 0)
1533 push_to_sequence (seq);
1534 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1535 may_share);
1536 end_sequence ();
1541 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1542 some part of an insn. Return a struct fixup_replacement whose OLD
1543 value is equal to X. Allocate a new structure if no such entry exists. */
1545 static struct fixup_replacement *
1546 find_fixup_replacement (struct fixup_replacement **replacements, rtx x)
1548 struct fixup_replacement *p;
1550 /* See if we have already replaced this. */
1551 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1554 if (p == 0)
1556 p = xmalloc (sizeof (struct fixup_replacement));
1557 p->old = x;
1558 p->new = 0;
1559 p->next = *replacements;
1560 *replacements = p;
1563 return p;
1566 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1567 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1568 for the current function. MAY_SHARE is either a MEM that is not
1569 to be unshared or a list of them. */
1571 static void
1572 fixup_var_refs_insns (rtx insn, rtx var, enum machine_mode promoted_mode,
1573 int unsignedp, int toplevel, rtx may_share)
1575 while (insn)
1577 /* fixup_var_refs_insn might modify insn, so save its next
1578 pointer now. */
1579 rtx next = NEXT_INSN (insn);
1581 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1582 the three sequences they (potentially) contain, and process
1583 them recursively. The CALL_INSN itself is not interesting. */
1585 if (GET_CODE (insn) == CALL_INSN
1586 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1588 int i;
1590 /* Look at the Normal call, sibling call and tail recursion
1591 sequences attached to the CALL_PLACEHOLDER. */
1592 for (i = 0; i < 3; i++)
1594 rtx seq = XEXP (PATTERN (insn), i);
1595 if (seq)
1597 push_to_sequence (seq);
1598 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1599 may_share);
1600 XEXP (PATTERN (insn), i) = get_insns ();
1601 end_sequence ();
1606 else if (INSN_P (insn))
1607 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1608 may_share);
1610 insn = next;
1614 /* Look up the insns which reference VAR in HT and fix them up. Other
1615 arguments are the same as fixup_var_refs_insns.
1617 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1618 because the hash table will point straight to the interesting insn
1619 (inside the CALL_PLACEHOLDER). */
1621 static void
1622 fixup_var_refs_insns_with_hash (htab_t ht, rtx var, enum machine_mode promoted_mode,
1623 int unsignedp, rtx may_share)
1625 struct insns_for_mem_entry tmp;
1626 struct insns_for_mem_entry *ime;
1627 rtx insn_list;
1629 tmp.key = var;
1630 ime = htab_find (ht, &tmp);
1631 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1632 if (INSN_P (XEXP (insn_list, 0)))
1633 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1634 unsignedp, 1, may_share);
1638 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1639 the insn under examination, VAR is the variable to fix up
1640 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1641 TOPLEVEL is nonzero if this is the main insn chain for this
1642 function. */
1644 static void
1645 fixup_var_refs_insn (rtx insn, rtx var, enum machine_mode promoted_mode,
1646 int unsignedp, int toplevel, rtx no_share)
1648 rtx call_dest = 0;
1649 rtx set, prev, prev_set;
1650 rtx note;
1652 /* Remember the notes in case we delete the insn. */
1653 note = REG_NOTES (insn);
1655 /* If this is a CLOBBER of VAR, delete it.
1657 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1658 and REG_RETVAL notes too. */
1659 if (GET_CODE (PATTERN (insn)) == CLOBBER
1660 && (XEXP (PATTERN (insn), 0) == var
1661 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1662 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1663 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1665 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1666 /* The REG_LIBCALL note will go away since we are going to
1667 turn INSN into a NOTE, so just delete the
1668 corresponding REG_RETVAL note. */
1669 remove_note (XEXP (note, 0),
1670 find_reg_note (XEXP (note, 0), REG_RETVAL,
1671 NULL_RTX));
1673 delete_insn (insn);
1676 /* The insn to load VAR from a home in the arglist
1677 is now a no-op. When we see it, just delete it.
1678 Similarly if this is storing VAR from a register from which
1679 it was loaded in the previous insn. This will occur
1680 when an ADDRESSOF was made for an arglist slot. */
1681 else if (toplevel
1682 && (set = single_set (insn)) != 0
1683 && SET_DEST (set) == var
1684 /* If this represents the result of an insn group,
1685 don't delete the insn. */
1686 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1687 && (rtx_equal_p (SET_SRC (set), var)
1688 || (GET_CODE (SET_SRC (set)) == REG
1689 && (prev = prev_nonnote_insn (insn)) != 0
1690 && (prev_set = single_set (prev)) != 0
1691 && SET_DEST (prev_set) == SET_SRC (set)
1692 && rtx_equal_p (SET_SRC (prev_set), var))))
1694 delete_insn (insn);
1696 else
1698 struct fixup_replacement *replacements = 0;
1699 rtx next_insn = NEXT_INSN (insn);
1701 if (SMALL_REGISTER_CLASSES)
1703 /* If the insn that copies the results of a CALL_INSN
1704 into a pseudo now references VAR, we have to use an
1705 intermediate pseudo since we want the life of the
1706 return value register to be only a single insn.
1708 If we don't use an intermediate pseudo, such things as
1709 address computations to make the address of VAR valid
1710 if it is not can be placed between the CALL_INSN and INSN.
1712 To make sure this doesn't happen, we record the destination
1713 of the CALL_INSN and see if the next insn uses both that
1714 and VAR. */
1716 if (call_dest != 0 && GET_CODE (insn) == INSN
1717 && reg_mentioned_p (var, PATTERN (insn))
1718 && reg_mentioned_p (call_dest, PATTERN (insn)))
1720 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1722 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1724 PATTERN (insn) = replace_rtx (PATTERN (insn),
1725 call_dest, temp);
1728 if (GET_CODE (insn) == CALL_INSN
1729 && GET_CODE (PATTERN (insn)) == SET)
1730 call_dest = SET_DEST (PATTERN (insn));
1731 else if (GET_CODE (insn) == CALL_INSN
1732 && GET_CODE (PATTERN (insn)) == PARALLEL
1733 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1734 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1735 else
1736 call_dest = 0;
1739 /* See if we have to do anything to INSN now that VAR is in
1740 memory. If it needs to be loaded into a pseudo, use a single
1741 pseudo for the entire insn in case there is a MATCH_DUP
1742 between two operands. We pass a pointer to the head of
1743 a list of struct fixup_replacements. If fixup_var_refs_1
1744 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1745 it will record them in this list.
1747 If it allocated a pseudo for any replacement, we copy into
1748 it here. */
1750 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1751 &replacements, no_share);
1753 /* If this is last_parm_insn, and any instructions were output
1754 after it to fix it up, then we must set last_parm_insn to
1755 the last such instruction emitted. */
1756 if (insn == last_parm_insn)
1757 last_parm_insn = PREV_INSN (next_insn);
1759 while (replacements)
1761 struct fixup_replacement *next;
1763 if (GET_CODE (replacements->new) == REG)
1765 rtx insert_before;
1766 rtx seq;
1768 /* OLD might be a (subreg (mem)). */
1769 if (GET_CODE (replacements->old) == SUBREG)
1770 replacements->old
1771 = fixup_memory_subreg (replacements->old, insn,
1772 promoted_mode, 0);
1773 else
1774 replacements->old
1775 = fixup_stack_1 (replacements->old, insn);
1777 insert_before = insn;
1779 /* If we are changing the mode, do a conversion.
1780 This might be wasteful, but combine.c will
1781 eliminate much of the waste. */
1783 if (GET_MODE (replacements->new)
1784 != GET_MODE (replacements->old))
1786 start_sequence ();
1787 convert_move (replacements->new,
1788 replacements->old, unsignedp);
1789 seq = get_insns ();
1790 end_sequence ();
1792 else
1793 seq = gen_move_insn (replacements->new,
1794 replacements->old);
1796 emit_insn_before (seq, insert_before);
1799 next = replacements->next;
1800 free (replacements);
1801 replacements = next;
1805 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1806 But don't touch other insns referred to by reg-notes;
1807 we will get them elsewhere. */
1808 while (note)
1810 if (GET_CODE (note) != INSN_LIST)
1811 XEXP (note, 0)
1812 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1813 promoted_mode, 1);
1814 note = XEXP (note, 1);
1818 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1819 See if the rtx expression at *LOC in INSN needs to be changed.
1821 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1822 contain a list of original rtx's and replacements. If we find that we need
1823 to modify this insn by replacing a memory reference with a pseudo or by
1824 making a new MEM to implement a SUBREG, we consult that list to see if
1825 we have already chosen a replacement. If none has already been allocated,
1826 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1827 or the SUBREG, as appropriate, to the pseudo. */
1829 static void
1830 fixup_var_refs_1 (rtx var, enum machine_mode promoted_mode, rtx *loc, rtx insn,
1831 struct fixup_replacement **replacements, rtx no_share)
1833 int i;
1834 rtx x = *loc;
1835 RTX_CODE code = GET_CODE (x);
1836 const char *fmt;
1837 rtx tem, tem1;
1838 struct fixup_replacement *replacement;
1840 switch (code)
1842 case ADDRESSOF:
1843 if (XEXP (x, 0) == var)
1845 /* Prevent sharing of rtl that might lose. */
1846 rtx sub = copy_rtx (XEXP (var, 0));
1848 if (! validate_change (insn, loc, sub, 0))
1850 rtx y = gen_reg_rtx (GET_MODE (sub));
1851 rtx seq, new_insn;
1853 /* We should be able to replace with a register or all is lost.
1854 Note that we can't use validate_change to verify this, since
1855 we're not caring for replacing all dups simultaneously. */
1856 if (! validate_replace_rtx (*loc, y, insn))
1857 abort ();
1859 /* Careful! First try to recognize a direct move of the
1860 value, mimicking how things are done in gen_reload wrt
1861 PLUS. Consider what happens when insn is a conditional
1862 move instruction and addsi3 clobbers flags. */
1864 start_sequence ();
1865 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1866 seq = get_insns ();
1867 end_sequence ();
1869 if (recog_memoized (new_insn) < 0)
1871 /* That failed. Fall back on force_operand and hope. */
1873 start_sequence ();
1874 sub = force_operand (sub, y);
1875 if (sub != y)
1876 emit_insn (gen_move_insn (y, sub));
1877 seq = get_insns ();
1878 end_sequence ();
1881 #ifdef HAVE_cc0
1882 /* Don't separate setter from user. */
1883 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1884 insn = PREV_INSN (insn);
1885 #endif
1887 emit_insn_before (seq, insn);
1890 return;
1892 case MEM:
1893 if (var == x)
1895 /* If we already have a replacement, use it. Otherwise,
1896 try to fix up this address in case it is invalid. */
1898 replacement = find_fixup_replacement (replacements, var);
1899 if (replacement->new)
1901 *loc = replacement->new;
1902 return;
1905 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1907 /* Unless we are forcing memory to register or we changed the mode,
1908 we can leave things the way they are if the insn is valid. */
1910 INSN_CODE (insn) = -1;
1911 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1912 && recog_memoized (insn) >= 0)
1913 return;
1915 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1916 return;
1919 /* If X contains VAR, we need to unshare it here so that we update
1920 each occurrence separately. But all identical MEMs in one insn
1921 must be replaced with the same rtx because of the possibility of
1922 MATCH_DUPs. */
1924 if (reg_mentioned_p (var, x))
1926 replacement = find_fixup_replacement (replacements, x);
1927 if (replacement->new == 0)
1928 replacement->new = copy_most_rtx (x, no_share);
1930 *loc = x = replacement->new;
1931 code = GET_CODE (x);
1933 break;
1935 case REG:
1936 case CC0:
1937 case PC:
1938 case CONST_INT:
1939 case CONST:
1940 case SYMBOL_REF:
1941 case LABEL_REF:
1942 case CONST_DOUBLE:
1943 case CONST_VECTOR:
1944 return;
1946 case SIGN_EXTRACT:
1947 case ZERO_EXTRACT:
1948 /* Note that in some cases those types of expressions are altered
1949 by optimize_bit_field, and do not survive to get here. */
1950 if (XEXP (x, 0) == var
1951 || (GET_CODE (XEXP (x, 0)) == SUBREG
1952 && SUBREG_REG (XEXP (x, 0)) == var))
1954 /* Get TEM as a valid MEM in the mode presently in the insn.
1956 We don't worry about the possibility of MATCH_DUP here; it
1957 is highly unlikely and would be tricky to handle. */
1959 tem = XEXP (x, 0);
1960 if (GET_CODE (tem) == SUBREG)
1962 if (GET_MODE_BITSIZE (GET_MODE (tem))
1963 > GET_MODE_BITSIZE (GET_MODE (var)))
1965 replacement = find_fixup_replacement (replacements, var);
1966 if (replacement->new == 0)
1967 replacement->new = gen_reg_rtx (GET_MODE (var));
1968 SUBREG_REG (tem) = replacement->new;
1970 /* The following code works only if we have a MEM, so we
1971 need to handle the subreg here. We directly substitute
1972 it assuming that a subreg must be OK here. We already
1973 scheduled a replacement to copy the mem into the
1974 subreg. */
1975 XEXP (x, 0) = tem;
1976 return;
1978 else
1979 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
1981 else
1982 tem = fixup_stack_1 (tem, insn);
1984 /* Unless we want to load from memory, get TEM into the proper mode
1985 for an extract from memory. This can only be done if the
1986 extract is at a constant position and length. */
1988 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
1989 && GET_CODE (XEXP (x, 2)) == CONST_INT
1990 && ! mode_dependent_address_p (XEXP (tem, 0))
1991 && ! MEM_VOLATILE_P (tem))
1993 enum machine_mode wanted_mode = VOIDmode;
1994 enum machine_mode is_mode = GET_MODE (tem);
1995 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
1997 if (GET_CODE (x) == ZERO_EXTRACT)
1999 enum machine_mode new_mode
2000 = mode_for_extraction (EP_extzv, 1);
2001 if (new_mode != MAX_MACHINE_MODE)
2002 wanted_mode = new_mode;
2004 else if (GET_CODE (x) == SIGN_EXTRACT)
2006 enum machine_mode new_mode
2007 = mode_for_extraction (EP_extv, 1);
2008 if (new_mode != MAX_MACHINE_MODE)
2009 wanted_mode = new_mode;
2012 /* If we have a narrower mode, we can do something. */
2013 if (wanted_mode != VOIDmode
2014 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2016 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2017 rtx old_pos = XEXP (x, 2);
2018 rtx newmem;
2020 /* If the bytes and bits are counted differently, we
2021 must adjust the offset. */
2022 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2023 offset = (GET_MODE_SIZE (is_mode)
2024 - GET_MODE_SIZE (wanted_mode) - offset);
2026 pos %= GET_MODE_BITSIZE (wanted_mode);
2028 newmem = adjust_address_nv (tem, wanted_mode, offset);
2030 /* Make the change and see if the insn remains valid. */
2031 INSN_CODE (insn) = -1;
2032 XEXP (x, 0) = newmem;
2033 XEXP (x, 2) = GEN_INT (pos);
2035 if (recog_memoized (insn) >= 0)
2036 return;
2038 /* Otherwise, restore old position. XEXP (x, 0) will be
2039 restored later. */
2040 XEXP (x, 2) = old_pos;
2044 /* If we get here, the bitfield extract insn can't accept a memory
2045 reference. Copy the input into a register. */
2047 tem1 = gen_reg_rtx (GET_MODE (tem));
2048 emit_insn_before (gen_move_insn (tem1, tem), insn);
2049 XEXP (x, 0) = tem1;
2050 return;
2052 break;
2054 case SUBREG:
2055 if (SUBREG_REG (x) == var)
2057 /* If this is a special SUBREG made because VAR was promoted
2058 from a wider mode, replace it with VAR and call ourself
2059 recursively, this time saying that the object previously
2060 had its current mode (by virtue of the SUBREG). */
2062 if (SUBREG_PROMOTED_VAR_P (x))
2064 *loc = var;
2065 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2066 no_share);
2067 return;
2070 /* If this SUBREG makes VAR wider, it has become a paradoxical
2071 SUBREG with VAR in memory, but these aren't allowed at this
2072 stage of the compilation. So load VAR into a pseudo and take
2073 a SUBREG of that pseudo. */
2074 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2076 replacement = find_fixup_replacement (replacements, var);
2077 if (replacement->new == 0)
2078 replacement->new = gen_reg_rtx (promoted_mode);
2079 SUBREG_REG (x) = replacement->new;
2080 return;
2083 /* See if we have already found a replacement for this SUBREG.
2084 If so, use it. Otherwise, make a MEM and see if the insn
2085 is recognized. If not, or if we should force MEM into a register,
2086 make a pseudo for this SUBREG. */
2087 replacement = find_fixup_replacement (replacements, x);
2088 if (replacement->new)
2090 *loc = replacement->new;
2091 return;
2094 replacement->new = *loc = fixup_memory_subreg (x, insn,
2095 promoted_mode, 0);
2097 INSN_CODE (insn) = -1;
2098 if (! flag_force_mem && recog_memoized (insn) >= 0)
2099 return;
2101 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2102 return;
2104 break;
2106 case SET:
2107 /* First do special simplification of bit-field references. */
2108 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2109 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2110 optimize_bit_field (x, insn, 0);
2111 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2112 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2113 optimize_bit_field (x, insn, 0);
2115 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2116 into a register and then store it back out. */
2117 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2118 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2119 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2120 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2121 > GET_MODE_SIZE (GET_MODE (var))))
2123 replacement = find_fixup_replacement (replacements, var);
2124 if (replacement->new == 0)
2125 replacement->new = gen_reg_rtx (GET_MODE (var));
2127 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2128 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2131 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2132 insn into a pseudo and store the low part of the pseudo into VAR. */
2133 if (GET_CODE (SET_DEST (x)) == SUBREG
2134 && SUBREG_REG (SET_DEST (x)) == var
2135 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2136 > GET_MODE_SIZE (GET_MODE (var))))
2138 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2139 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2140 tem)),
2141 insn);
2142 break;
2146 rtx dest = SET_DEST (x);
2147 rtx src = SET_SRC (x);
2148 rtx outerdest = dest;
2150 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2151 || GET_CODE (dest) == SIGN_EXTRACT
2152 || GET_CODE (dest) == ZERO_EXTRACT)
2153 dest = XEXP (dest, 0);
2155 if (GET_CODE (src) == SUBREG)
2156 src = SUBREG_REG (src);
2158 /* If VAR does not appear at the top level of the SET
2159 just scan the lower levels of the tree. */
2161 if (src != var && dest != var)
2162 break;
2164 /* We will need to rerecognize this insn. */
2165 INSN_CODE (insn) = -1;
2167 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2168 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2170 /* Since this case will return, ensure we fixup all the
2171 operands here. */
2172 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2173 insn, replacements, no_share);
2174 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2175 insn, replacements, no_share);
2176 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2177 insn, replacements, no_share);
2179 tem = XEXP (outerdest, 0);
2181 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2182 that may appear inside a ZERO_EXTRACT.
2183 This was legitimate when the MEM was a REG. */
2184 if (GET_CODE (tem) == SUBREG
2185 && SUBREG_REG (tem) == var)
2186 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2187 else
2188 tem = fixup_stack_1 (tem, insn);
2190 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2191 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2192 && ! mode_dependent_address_p (XEXP (tem, 0))
2193 && ! MEM_VOLATILE_P (tem))
2195 enum machine_mode wanted_mode;
2196 enum machine_mode is_mode = GET_MODE (tem);
2197 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2199 wanted_mode = mode_for_extraction (EP_insv, 0);
2201 /* If we have a narrower mode, we can do something. */
2202 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2204 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2205 rtx old_pos = XEXP (outerdest, 2);
2206 rtx newmem;
2208 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2209 offset = (GET_MODE_SIZE (is_mode)
2210 - GET_MODE_SIZE (wanted_mode) - offset);
2212 pos %= GET_MODE_BITSIZE (wanted_mode);
2214 newmem = adjust_address_nv (tem, wanted_mode, offset);
2216 /* Make the change and see if the insn remains valid. */
2217 INSN_CODE (insn) = -1;
2218 XEXP (outerdest, 0) = newmem;
2219 XEXP (outerdest, 2) = GEN_INT (pos);
2221 if (recog_memoized (insn) >= 0)
2222 return;
2224 /* Otherwise, restore old position. XEXP (x, 0) will be
2225 restored later. */
2226 XEXP (outerdest, 2) = old_pos;
2230 /* If we get here, the bit-field store doesn't allow memory
2231 or isn't located at a constant position. Load the value into
2232 a register, do the store, and put it back into memory. */
2234 tem1 = gen_reg_rtx (GET_MODE (tem));
2235 emit_insn_before (gen_move_insn (tem1, tem), insn);
2236 emit_insn_after (gen_move_insn (tem, tem1), insn);
2237 XEXP (outerdest, 0) = tem1;
2238 return;
2241 /* STRICT_LOW_PART is a no-op on memory references
2242 and it can cause combinations to be unrecognizable,
2243 so eliminate it. */
2245 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2246 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2248 /* A valid insn to copy VAR into or out of a register
2249 must be left alone, to avoid an infinite loop here.
2250 If the reference to VAR is by a subreg, fix that up,
2251 since SUBREG is not valid for a memref.
2252 Also fix up the address of the stack slot.
2254 Note that we must not try to recognize the insn until
2255 after we know that we have valid addresses and no
2256 (subreg (mem ...) ...) constructs, since these interfere
2257 with determining the validity of the insn. */
2259 if ((SET_SRC (x) == var
2260 || (GET_CODE (SET_SRC (x)) == SUBREG
2261 && SUBREG_REG (SET_SRC (x)) == var))
2262 && (GET_CODE (SET_DEST (x)) == REG
2263 || (GET_CODE (SET_DEST (x)) == SUBREG
2264 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2265 && GET_MODE (var) == promoted_mode
2266 && x == single_set (insn))
2268 rtx pat, last;
2270 if (GET_CODE (SET_SRC (x)) == SUBREG
2271 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2272 > GET_MODE_SIZE (GET_MODE (var))))
2274 /* This (subreg VAR) is now a paradoxical subreg. We need
2275 to replace VAR instead of the subreg. */
2276 replacement = find_fixup_replacement (replacements, var);
2277 if (replacement->new == NULL_RTX)
2278 replacement->new = gen_reg_rtx (GET_MODE (var));
2279 SUBREG_REG (SET_SRC (x)) = replacement->new;
2281 else
2283 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2284 if (replacement->new)
2285 SET_SRC (x) = replacement->new;
2286 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2287 SET_SRC (x) = replacement->new
2288 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2290 else
2291 SET_SRC (x) = replacement->new
2292 = fixup_stack_1 (SET_SRC (x), insn);
2295 if (recog_memoized (insn) >= 0)
2296 return;
2298 /* INSN is not valid, but we know that we want to
2299 copy SET_SRC (x) to SET_DEST (x) in some way. So
2300 we generate the move and see whether it requires more
2301 than one insn. If it does, we emit those insns and
2302 delete INSN. Otherwise, we can just replace the pattern
2303 of INSN; we have already verified above that INSN has
2304 no other function that to do X. */
2306 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2307 if (NEXT_INSN (pat) != NULL_RTX)
2309 last = emit_insn_before (pat, insn);
2311 /* INSN might have REG_RETVAL or other important notes, so
2312 we need to store the pattern of the last insn in the
2313 sequence into INSN similarly to the normal case. LAST
2314 should not have REG_NOTES, but we allow them if INSN has
2315 no REG_NOTES. */
2316 if (REG_NOTES (last) && REG_NOTES (insn))
2317 abort ();
2318 if (REG_NOTES (last))
2319 REG_NOTES (insn) = REG_NOTES (last);
2320 PATTERN (insn) = PATTERN (last);
2322 delete_insn (last);
2324 else
2325 PATTERN (insn) = PATTERN (pat);
2327 return;
2330 if ((SET_DEST (x) == var
2331 || (GET_CODE (SET_DEST (x)) == SUBREG
2332 && SUBREG_REG (SET_DEST (x)) == var))
2333 && (GET_CODE (SET_SRC (x)) == REG
2334 || (GET_CODE (SET_SRC (x)) == SUBREG
2335 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2336 && GET_MODE (var) == promoted_mode
2337 && x == single_set (insn))
2339 rtx pat, last;
2341 if (GET_CODE (SET_DEST (x)) == SUBREG)
2342 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2343 promoted_mode, 0);
2344 else
2345 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2347 if (recog_memoized (insn) >= 0)
2348 return;
2350 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2351 if (NEXT_INSN (pat) != NULL_RTX)
2353 last = emit_insn_before (pat, insn);
2355 /* INSN might have REG_RETVAL or other important notes, so
2356 we need to store the pattern of the last insn in the
2357 sequence into INSN similarly to the normal case. LAST
2358 should not have REG_NOTES, but we allow them if INSN has
2359 no REG_NOTES. */
2360 if (REG_NOTES (last) && REG_NOTES (insn))
2361 abort ();
2362 if (REG_NOTES (last))
2363 REG_NOTES (insn) = REG_NOTES (last);
2364 PATTERN (insn) = PATTERN (last);
2366 delete_insn (last);
2368 else
2369 PATTERN (insn) = PATTERN (pat);
2371 return;
2374 /* Otherwise, storing into VAR must be handled specially
2375 by storing into a temporary and copying that into VAR
2376 with a new insn after this one. Note that this case
2377 will be used when storing into a promoted scalar since
2378 the insn will now have different modes on the input
2379 and output and hence will be invalid (except for the case
2380 of setting it to a constant, which does not need any
2381 change if it is valid). We generate extra code in that case,
2382 but combine.c will eliminate it. */
2384 if (dest == var)
2386 rtx temp;
2387 rtx fixeddest = SET_DEST (x);
2388 enum machine_mode temp_mode;
2390 /* STRICT_LOW_PART can be discarded, around a MEM. */
2391 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2392 fixeddest = XEXP (fixeddest, 0);
2393 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2394 if (GET_CODE (fixeddest) == SUBREG)
2396 fixeddest = fixup_memory_subreg (fixeddest, insn,
2397 promoted_mode, 0);
2398 temp_mode = GET_MODE (fixeddest);
2400 else
2402 fixeddest = fixup_stack_1 (fixeddest, insn);
2403 temp_mode = promoted_mode;
2406 temp = gen_reg_rtx (temp_mode);
2408 emit_insn_after (gen_move_insn (fixeddest,
2409 gen_lowpart (GET_MODE (fixeddest),
2410 temp)),
2411 insn);
2413 SET_DEST (x) = temp;
2417 default:
2418 break;
2421 /* Nothing special about this RTX; fix its operands. */
2423 fmt = GET_RTX_FORMAT (code);
2424 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2426 if (fmt[i] == 'e')
2427 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2428 no_share);
2429 else if (fmt[i] == 'E')
2431 int j;
2432 for (j = 0; j < XVECLEN (x, i); j++)
2433 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2434 insn, replacements, no_share);
2439 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2440 The REG was placed on the stack, so X now has the form (SUBREG:m1
2441 (MEM:m2 ...)).
2443 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2444 must be emitted to compute NEWADDR, put them before INSN.
2446 UNCRITICAL nonzero means accept paradoxical subregs.
2447 This is used for subregs found inside REG_NOTES. */
2449 static rtx
2450 fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode, int uncritical)
2452 int offset;
2453 rtx mem = SUBREG_REG (x);
2454 rtx addr = XEXP (mem, 0);
2455 enum machine_mode mode = GET_MODE (x);
2456 rtx result, seq;
2458 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2459 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2460 abort ();
2462 offset = SUBREG_BYTE (x);
2463 if (BYTES_BIG_ENDIAN)
2464 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2465 the offset so that it points to the right location within the
2466 MEM. */
2467 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2469 if (!flag_force_addr
2470 && memory_address_p (mode, plus_constant (addr, offset)))
2471 /* Shortcut if no insns need be emitted. */
2472 return adjust_address (mem, mode, offset);
2474 start_sequence ();
2475 result = adjust_address (mem, mode, offset);
2476 seq = get_insns ();
2477 end_sequence ();
2479 emit_insn_before (seq, insn);
2480 return result;
2483 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2484 Replace subexpressions of X in place.
2485 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2486 Otherwise return X, with its contents possibly altered.
2488 INSN, PROMOTED_MODE and UNCRITICAL are as for
2489 fixup_memory_subreg. */
2491 static rtx
2492 walk_fixup_memory_subreg (rtx x, rtx insn, enum machine_mode promoted_mode,
2493 int uncritical)
2495 enum rtx_code code;
2496 const char *fmt;
2497 int i;
2499 if (x == 0)
2500 return 0;
2502 code = GET_CODE (x);
2504 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2505 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2507 /* Nothing special about this RTX; fix its operands. */
2509 fmt = GET_RTX_FORMAT (code);
2510 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2512 if (fmt[i] == 'e')
2513 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2514 promoted_mode, uncritical);
2515 else if (fmt[i] == 'E')
2517 int j;
2518 for (j = 0; j < XVECLEN (x, i); j++)
2519 XVECEXP (x, i, j)
2520 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2521 promoted_mode, uncritical);
2524 return x;
2527 /* For each memory ref within X, if it refers to a stack slot
2528 with an out of range displacement, put the address in a temp register
2529 (emitting new insns before INSN to load these registers)
2530 and alter the memory ref to use that register.
2531 Replace each such MEM rtx with a copy, to avoid clobberage. */
2533 static rtx
2534 fixup_stack_1 (rtx x, rtx insn)
2536 int i;
2537 RTX_CODE code = GET_CODE (x);
2538 const char *fmt;
2540 if (code == MEM)
2542 rtx ad = XEXP (x, 0);
2543 /* If we have address of a stack slot but it's not valid
2544 (displacement is too large), compute the sum in a register. */
2545 if (GET_CODE (ad) == PLUS
2546 && GET_CODE (XEXP (ad, 0)) == REG
2547 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2548 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2549 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2550 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2551 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2552 #endif
2553 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2554 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2555 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2556 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2558 rtx temp, seq;
2559 if (memory_address_p (GET_MODE (x), ad))
2560 return x;
2562 start_sequence ();
2563 temp = copy_to_reg (ad);
2564 seq = get_insns ();
2565 end_sequence ();
2566 emit_insn_before (seq, insn);
2567 return replace_equiv_address (x, temp);
2569 return x;
2572 fmt = GET_RTX_FORMAT (code);
2573 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2575 if (fmt[i] == 'e')
2576 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2577 else if (fmt[i] == 'E')
2579 int j;
2580 for (j = 0; j < XVECLEN (x, i); j++)
2581 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2584 return x;
2587 /* Optimization: a bit-field instruction whose field
2588 happens to be a byte or halfword in memory
2589 can be changed to a move instruction.
2591 We call here when INSN is an insn to examine or store into a bit-field.
2592 BODY is the SET-rtx to be altered.
2594 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2595 (Currently this is called only from function.c, and EQUIV_MEM
2596 is always 0.) */
2598 static void
2599 optimize_bit_field (rtx body, rtx insn, rtx *equiv_mem)
2601 rtx bitfield;
2602 int destflag;
2603 rtx seq = 0;
2604 enum machine_mode mode;
2606 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2607 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2608 bitfield = SET_DEST (body), destflag = 1;
2609 else
2610 bitfield = SET_SRC (body), destflag = 0;
2612 /* First check that the field being stored has constant size and position
2613 and is in fact a byte or halfword suitably aligned. */
2615 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2616 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2617 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2618 != BLKmode)
2619 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2621 rtx memref = 0;
2623 /* Now check that the containing word is memory, not a register,
2624 and that it is safe to change the machine mode. */
2626 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2627 memref = XEXP (bitfield, 0);
2628 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2629 && equiv_mem != 0)
2630 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2631 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2632 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2633 memref = SUBREG_REG (XEXP (bitfield, 0));
2634 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2635 && equiv_mem != 0
2636 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2637 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2639 if (memref
2640 && ! mode_dependent_address_p (XEXP (memref, 0))
2641 && ! MEM_VOLATILE_P (memref))
2643 /* Now adjust the address, first for any subreg'ing
2644 that we are now getting rid of,
2645 and then for which byte of the word is wanted. */
2647 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2648 rtx insns;
2650 /* Adjust OFFSET to count bits from low-address byte. */
2651 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2652 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2653 - offset - INTVAL (XEXP (bitfield, 1)));
2655 /* Adjust OFFSET to count bytes from low-address byte. */
2656 offset /= BITS_PER_UNIT;
2657 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2659 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2660 / UNITS_PER_WORD) * UNITS_PER_WORD;
2661 if (BYTES_BIG_ENDIAN)
2662 offset -= (MIN (UNITS_PER_WORD,
2663 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2664 - MIN (UNITS_PER_WORD,
2665 GET_MODE_SIZE (GET_MODE (memref))));
2668 start_sequence ();
2669 memref = adjust_address (memref, mode, offset);
2670 insns = get_insns ();
2671 end_sequence ();
2672 emit_insn_before (insns, insn);
2674 /* Store this memory reference where
2675 we found the bit field reference. */
2677 if (destflag)
2679 validate_change (insn, &SET_DEST (body), memref, 1);
2680 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2682 rtx src = SET_SRC (body);
2683 while (GET_CODE (src) == SUBREG
2684 && SUBREG_BYTE (src) == 0)
2685 src = SUBREG_REG (src);
2686 if (GET_MODE (src) != GET_MODE (memref))
2687 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2688 validate_change (insn, &SET_SRC (body), src, 1);
2690 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2691 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2692 /* This shouldn't happen because anything that didn't have
2693 one of these modes should have got converted explicitly
2694 and then referenced through a subreg.
2695 This is so because the original bit-field was
2696 handled by agg_mode and so its tree structure had
2697 the same mode that memref now has. */
2698 abort ();
2700 else
2702 rtx dest = SET_DEST (body);
2704 while (GET_CODE (dest) == SUBREG
2705 && SUBREG_BYTE (dest) == 0
2706 && (GET_MODE_CLASS (GET_MODE (dest))
2707 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2708 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2709 <= UNITS_PER_WORD))
2710 dest = SUBREG_REG (dest);
2712 validate_change (insn, &SET_DEST (body), dest, 1);
2714 if (GET_MODE (dest) == GET_MODE (memref))
2715 validate_change (insn, &SET_SRC (body), memref, 1);
2716 else
2718 /* Convert the mem ref to the destination mode. */
2719 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2721 start_sequence ();
2722 convert_move (newreg, memref,
2723 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2724 seq = get_insns ();
2725 end_sequence ();
2727 validate_change (insn, &SET_SRC (body), newreg, 1);
2731 /* See if we can convert this extraction or insertion into
2732 a simple move insn. We might not be able to do so if this
2733 was, for example, part of a PARALLEL.
2735 If we succeed, write out any needed conversions. If we fail,
2736 it is hard to guess why we failed, so don't do anything
2737 special; just let the optimization be suppressed. */
2739 if (apply_change_group () && seq)
2740 emit_insn_before (seq, insn);
2745 /* These routines are responsible for converting virtual register references
2746 to the actual hard register references once RTL generation is complete.
2748 The following four variables are used for communication between the
2749 routines. They contain the offsets of the virtual registers from their
2750 respective hard registers. */
2752 static int in_arg_offset;
2753 static int var_offset;
2754 static int dynamic_offset;
2755 static int out_arg_offset;
2756 static int cfa_offset;
2758 /* In most machines, the stack pointer register is equivalent to the bottom
2759 of the stack. */
2761 #ifndef STACK_POINTER_OFFSET
2762 #define STACK_POINTER_OFFSET 0
2763 #endif
2765 /* If not defined, pick an appropriate default for the offset of dynamically
2766 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2767 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2769 #ifndef STACK_DYNAMIC_OFFSET
2771 /* The bottom of the stack points to the actual arguments. If
2772 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2773 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2774 stack space for register parameters is not pushed by the caller, but
2775 rather part of the fixed stack areas and hence not included in
2776 `current_function_outgoing_args_size'. Nevertheless, we must allow
2777 for it when allocating stack dynamic objects. */
2779 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2780 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2781 ((ACCUMULATE_OUTGOING_ARGS \
2782 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2783 + (STACK_POINTER_OFFSET)) \
2785 #else
2786 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2787 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2788 + (STACK_POINTER_OFFSET))
2789 #endif
2790 #endif
2792 /* On most machines, the CFA coincides with the first incoming parm. */
2794 #ifndef ARG_POINTER_CFA_OFFSET
2795 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2796 #endif
2798 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just
2799 had its address taken. DECL is the decl or SAVE_EXPR for the
2800 object stored in the register, for later use if we do need to force
2801 REG into the stack. REG is overwritten by the MEM like in
2802 put_reg_into_stack. RESCAN is true if previously emitted
2803 instructions must be rescanned and modified now that the REG has
2804 been transformed. */
2807 gen_mem_addressof (rtx reg, tree decl, int rescan)
2809 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2810 REGNO (reg), decl);
2812 /* Calculate this before we start messing with decl's RTL. */
2813 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2815 /* If the original REG was a user-variable, then so is the REG whose
2816 address is being taken. Likewise for unchanging. */
2817 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2818 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2820 PUT_CODE (reg, MEM);
2821 MEM_ATTRS (reg) = 0;
2822 XEXP (reg, 0) = r;
2824 if (decl)
2826 tree type = TREE_TYPE (decl);
2827 enum machine_mode decl_mode
2828 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2829 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2830 : DECL_RTL_IF_SET (decl));
2832 PUT_MODE (reg, decl_mode);
2834 /* Clear DECL_RTL momentarily so functions below will work
2835 properly, then set it again. */
2836 if (DECL_P (decl) && decl_rtl == reg)
2837 SET_DECL_RTL (decl, 0);
2839 set_mem_attributes (reg, decl, 1);
2840 set_mem_alias_set (reg, set);
2842 if (DECL_P (decl) && decl_rtl == reg)
2843 SET_DECL_RTL (decl, reg);
2845 if (rescan
2846 && (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0)))
2847 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2849 else if (rescan)
2850 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2852 return reg;
2855 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2857 void
2858 flush_addressof (tree decl)
2860 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2861 && DECL_RTL (decl) != 0
2862 && GET_CODE (DECL_RTL (decl)) == MEM
2863 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2864 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2865 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2868 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2870 static void
2871 put_addressof_into_stack (rtx r, htab_t ht)
2873 tree decl, type;
2874 int volatile_p, used_p;
2876 rtx reg = XEXP (r, 0);
2878 if (GET_CODE (reg) != REG)
2879 abort ();
2881 decl = ADDRESSOF_DECL (r);
2882 if (decl)
2884 type = TREE_TYPE (decl);
2885 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2886 && TREE_THIS_VOLATILE (decl));
2887 used_p = (TREE_USED (decl)
2888 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2890 else
2892 type = NULL_TREE;
2893 volatile_p = 0;
2894 used_p = 1;
2897 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2898 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2901 /* List of replacements made below in purge_addressof_1 when creating
2902 bitfield insertions. */
2903 static rtx purge_bitfield_addressof_replacements;
2905 /* List of replacements made below in purge_addressof_1 for patterns
2906 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2907 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2908 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2909 enough in complex cases, e.g. when some field values can be
2910 extracted by usage MEM with narrower mode. */
2911 static rtx purge_addressof_replacements;
2913 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2914 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2915 the stack. If the function returns FALSE then the replacement could not
2916 be made. If MAY_POSTPONE is true and we would not put the addressof
2917 to stack, postpone processing of the insn. */
2919 static bool
2920 purge_addressof_1 (rtx *loc, rtx insn, int force, int store, int may_postpone,
2921 htab_t ht)
2923 rtx x;
2924 RTX_CODE code;
2925 int i, j;
2926 const char *fmt;
2927 bool result = true;
2929 /* Re-start here to avoid recursion in common cases. */
2930 restart:
2932 x = *loc;
2933 if (x == 0)
2934 return true;
2936 code = GET_CODE (x);
2938 /* If we don't return in any of the cases below, we will recurse inside
2939 the RTX, which will normally result in any ADDRESSOF being forced into
2940 memory. */
2941 if (code == SET)
2943 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1,
2944 may_postpone, ht);
2945 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0,
2946 may_postpone, ht);
2947 return result;
2949 else if (code == ADDRESSOF)
2951 rtx sub, insns;
2953 if (GET_CODE (XEXP (x, 0)) != MEM)
2954 put_addressof_into_stack (x, ht);
2956 /* We must create a copy of the rtx because it was created by
2957 overwriting a REG rtx which is always shared. */
2958 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
2959 if (validate_change (insn, loc, sub, 0)
2960 || validate_replace_rtx (x, sub, insn))
2961 return true;
2963 start_sequence ();
2965 /* If SUB is a hard or virtual register, try it as a pseudo-register.
2966 Otherwise, perhaps SUB is an expression, so generate code to compute
2967 it. */
2968 if (GET_CODE (sub) == REG && REGNO (sub) <= LAST_VIRTUAL_REGISTER)
2969 sub = copy_to_reg (sub);
2970 else
2971 sub = force_operand (sub, NULL_RTX);
2973 if (! validate_change (insn, loc, sub, 0)
2974 && ! validate_replace_rtx (x, sub, insn))
2975 abort ();
2977 insns = get_insns ();
2978 end_sequence ();
2979 emit_insn_before (insns, insn);
2980 return true;
2983 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
2985 rtx sub = XEXP (XEXP (x, 0), 0);
2987 if (GET_CODE (sub) == MEM)
2988 sub = adjust_address_nv (sub, GET_MODE (x), 0);
2989 else if (GET_CODE (sub) == REG
2990 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2992 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
2994 int size_x, size_sub;
2996 if (may_postpone)
2998 /* Postpone for now, so that we do not emit bitfield arithmetics
2999 unless there is some benefit from it. */
3000 if (!postponed_insns || XEXP (postponed_insns, 0) != insn)
3001 postponed_insns = alloc_INSN_LIST (insn, postponed_insns);
3002 return true;
3005 if (!insn)
3007 /* When processing REG_NOTES look at the list of
3008 replacements done on the insn to find the register that X
3009 was replaced by. */
3010 rtx tem;
3012 for (tem = purge_bitfield_addressof_replacements;
3013 tem != NULL_RTX;
3014 tem = XEXP (XEXP (tem, 1), 1))
3015 if (rtx_equal_p (x, XEXP (tem, 0)))
3017 *loc = XEXP (XEXP (tem, 1), 0);
3018 return true;
3021 /* See comment for purge_addressof_replacements. */
3022 for (tem = purge_addressof_replacements;
3023 tem != NULL_RTX;
3024 tem = XEXP (XEXP (tem, 1), 1))
3025 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3027 rtx z = XEXP (XEXP (tem, 1), 0);
3029 if (GET_MODE (x) == GET_MODE (z)
3030 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3031 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3032 abort ();
3034 /* It can happen that the note may speak of things
3035 in a wider (or just different) mode than the
3036 code did. This is especially true of
3037 REG_RETVAL. */
3039 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3040 z = SUBREG_REG (z);
3042 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3043 && (GET_MODE_SIZE (GET_MODE (x))
3044 > GET_MODE_SIZE (GET_MODE (z))))
3046 /* This can occur as a result in invalid
3047 pointer casts, e.g. float f; ...
3048 *(long long int *)&f.
3049 ??? We could emit a warning here, but
3050 without a line number that wouldn't be
3051 very helpful. */
3052 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3054 else
3055 z = gen_lowpart (GET_MODE (x), z);
3057 *loc = z;
3058 return true;
3061 /* When we are processing the REG_NOTES of the last instruction
3062 of a libcall, there will be typically no replacements
3063 for that insn; the replacements happened before, piecemeal
3064 fashion. OTOH we are not interested in the details of
3065 this for the REG_EQUAL note, we want to know the big picture,
3066 which can be succinctly described with a simple SUBREG.
3067 Note that removing the REG_EQUAL note is not an option
3068 on the last insn of a libcall, so we must do a replacement. */
3069 if (! purge_addressof_replacements
3070 && ! purge_bitfield_addressof_replacements)
3072 /* In compile/990107-1.c:7 compiled at -O1 -m1 for sh-elf,
3073 we got
3074 (mem:DI (addressof:SI (reg/v:DF 160) 159 0x401c8510)
3075 [0 S8 A32]), which can be expressed with a simple
3076 same-size subreg */
3077 if ((GET_MODE_SIZE (GET_MODE (x))
3078 == GET_MODE_SIZE (GET_MODE (sub)))
3079 /* Again, invalid pointer casts (as in
3080 compile/990203-1.c) can require paradoxical
3081 subregs. */
3082 || (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3083 && (GET_MODE_SIZE (GET_MODE (x))
3084 > GET_MODE_SIZE (GET_MODE (sub)))))
3086 *loc = gen_rtx_SUBREG (GET_MODE (x), sub, 0);
3087 return true;
3089 /* ??? Are there other cases we should handle? */
3091 /* Sometimes we may not be able to find the replacement. For
3092 example when the original insn was a MEM in a wider mode,
3093 and the note is part of a sign extension of a narrowed
3094 version of that MEM. Gcc testcase compile/990829-1.c can
3095 generate an example of this situation. Rather than complain
3096 we return false, which will prompt our caller to remove the
3097 offending note. */
3098 return false;
3101 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3102 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3104 /* Do not frob unchanging MEMs. If a later reference forces the
3105 pseudo to the stack, we can wind up with multiple writes to
3106 an unchanging memory, which is invalid. */
3107 if (RTX_UNCHANGING_P (x) && size_x != size_sub)
3110 /* Don't even consider working with paradoxical subregs,
3111 or the moral equivalent seen here. */
3112 else if (size_x <= size_sub
3113 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3115 /* Do a bitfield insertion to mirror what would happen
3116 in memory. */
3118 rtx val, seq;
3120 if (store)
3122 rtx p = PREV_INSN (insn);
3124 start_sequence ();
3125 val = gen_reg_rtx (GET_MODE (x));
3126 if (! validate_change (insn, loc, val, 0))
3128 /* Discard the current sequence and put the
3129 ADDRESSOF on stack. */
3130 end_sequence ();
3131 goto give_up;
3133 seq = get_insns ();
3134 end_sequence ();
3135 emit_insn_before (seq, insn);
3136 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3137 insn, ht);
3139 start_sequence ();
3140 store_bit_field (sub, size_x, 0, GET_MODE (x),
3141 val, GET_MODE_SIZE (GET_MODE (sub)));
3143 /* Make sure to unshare any shared rtl that store_bit_field
3144 might have created. */
3145 unshare_all_rtl_again (get_insns ());
3147 seq = get_insns ();
3148 end_sequence ();
3149 p = emit_insn_after (seq, insn);
3150 if (NEXT_INSN (insn))
3151 compute_insns_for_mem (NEXT_INSN (insn),
3152 p ? NEXT_INSN (p) : NULL_RTX,
3153 ht);
3155 else
3157 rtx p = PREV_INSN (insn);
3159 start_sequence ();
3160 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3161 GET_MODE (x), GET_MODE (x),
3162 GET_MODE_SIZE (GET_MODE (sub)));
3164 if (! validate_change (insn, loc, val, 0))
3166 /* Discard the current sequence and put the
3167 ADDRESSOF on stack. */
3168 end_sequence ();
3169 goto give_up;
3172 seq = get_insns ();
3173 end_sequence ();
3174 emit_insn_before (seq, insn);
3175 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3176 insn, ht);
3179 /* Remember the replacement so that the same one can be done
3180 on the REG_NOTES. */
3181 purge_bitfield_addressof_replacements
3182 = gen_rtx_EXPR_LIST (VOIDmode, x,
3183 gen_rtx_EXPR_LIST
3184 (VOIDmode, val,
3185 purge_bitfield_addressof_replacements));
3187 /* We replaced with a reg -- all done. */
3188 return true;
3192 else if (validate_change (insn, loc, sub, 0))
3194 /* Remember the replacement so that the same one can be done
3195 on the REG_NOTES. */
3196 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3198 rtx tem;
3200 for (tem = purge_addressof_replacements;
3201 tem != NULL_RTX;
3202 tem = XEXP (XEXP (tem, 1), 1))
3203 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3205 XEXP (XEXP (tem, 1), 0) = sub;
3206 return true;
3208 purge_addressof_replacements
3209 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3210 gen_rtx_EXPR_LIST (VOIDmode, sub,
3211 purge_addressof_replacements));
3212 return true;
3214 goto restart;
3218 give_up:
3219 /* Scan all subexpressions. */
3220 fmt = GET_RTX_FORMAT (code);
3221 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3223 if (*fmt == 'e')
3224 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0,
3225 may_postpone, ht);
3226 else if (*fmt == 'E')
3227 for (j = 0; j < XVECLEN (x, i); j++)
3228 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0,
3229 may_postpone, ht);
3232 return result;
3235 /* Return a hash value for K, a REG. */
3237 static hashval_t
3238 insns_for_mem_hash (const void *k)
3240 /* Use the address of the key for the hash value. */
3241 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3242 return htab_hash_pointer (m->key);
3245 /* Return nonzero if K1 and K2 (two REGs) are the same. */
3247 static int
3248 insns_for_mem_comp (const void *k1, const void *k2)
3250 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3251 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3252 return m1->key == m2->key;
3255 struct insns_for_mem_walk_info
3257 /* The hash table that we are using to record which INSNs use which
3258 MEMs. */
3259 htab_t ht;
3261 /* The INSN we are currently processing. */
3262 rtx insn;
3264 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3265 to find the insns that use the REGs in the ADDRESSOFs. */
3266 int pass;
3269 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3270 that might be used in an ADDRESSOF expression, record this INSN in
3271 the hash table given by DATA (which is really a pointer to an
3272 insns_for_mem_walk_info structure). */
3274 static int
3275 insns_for_mem_walk (rtx *r, void *data)
3277 struct insns_for_mem_walk_info *ifmwi
3278 = (struct insns_for_mem_walk_info *) data;
3279 struct insns_for_mem_entry tmp;
3280 tmp.insns = NULL_RTX;
3282 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3283 && GET_CODE (XEXP (*r, 0)) == REG)
3285 void **e;
3286 tmp.key = XEXP (*r, 0);
3287 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3288 if (*e == NULL)
3290 *e = ggc_alloc (sizeof (tmp));
3291 memcpy (*e, &tmp, sizeof (tmp));
3294 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3296 struct insns_for_mem_entry *ifme;
3297 tmp.key = *r;
3298 ifme = htab_find (ifmwi->ht, &tmp);
3300 /* If we have not already recorded this INSN, do so now. Since
3301 we process the INSNs in order, we know that if we have
3302 recorded it it must be at the front of the list. */
3303 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3304 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3305 ifme->insns);
3308 return 0;
3311 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3312 which REGs in HT. */
3314 static void
3315 compute_insns_for_mem (rtx insns, rtx last_insn, htab_t ht)
3317 rtx insn;
3318 struct insns_for_mem_walk_info ifmwi;
3319 ifmwi.ht = ht;
3321 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3322 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3323 if (INSN_P (insn))
3325 ifmwi.insn = insn;
3326 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3330 /* Helper function for purge_addressof called through for_each_rtx.
3331 Returns true iff the rtl is an ADDRESSOF. */
3333 static int
3334 is_addressof (rtx *rtl, void *data ATTRIBUTE_UNUSED)
3336 return GET_CODE (*rtl) == ADDRESSOF;
3339 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3340 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3341 stack. */
3343 void
3344 purge_addressof (rtx insns)
3346 rtx insn, tmp;
3347 htab_t ht;
3349 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3350 requires a fixup pass over the instruction stream to correct
3351 INSNs that depended on the REG being a REG, and not a MEM. But,
3352 these fixup passes are slow. Furthermore, most MEMs are not
3353 mentioned in very many instructions. So, we speed up the process
3354 by pre-calculating which REGs occur in which INSNs; that allows
3355 us to perform the fixup passes much more quickly. */
3356 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3357 compute_insns_for_mem (insns, NULL_RTX, ht);
3359 postponed_insns = NULL;
3361 for (insn = insns; insn; insn = NEXT_INSN (insn))
3362 if (INSN_P (insn))
3364 if (! purge_addressof_1 (&PATTERN (insn), insn,
3365 asm_noperands (PATTERN (insn)) > 0, 0, 1, ht))
3366 /* If we could not replace the ADDRESSOFs in the insn,
3367 something is wrong. */
3368 abort ();
3370 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, 0, ht))
3372 /* If we could not replace the ADDRESSOFs in the insn's notes,
3373 we can just remove the offending notes instead. */
3374 rtx note;
3376 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3378 /* If we find a REG_RETVAL note then the insn is a libcall.
3379 Such insns must have REG_EQUAL notes as well, in order
3380 for later passes of the compiler to work. So it is not
3381 safe to delete the notes here, and instead we abort. */
3382 if (REG_NOTE_KIND (note) == REG_RETVAL)
3383 abort ();
3384 if (for_each_rtx (&note, is_addressof, NULL))
3385 remove_note (insn, note);
3390 /* Process the postponed insns. */
3391 while (postponed_insns)
3393 insn = XEXP (postponed_insns, 0);
3394 tmp = postponed_insns;
3395 postponed_insns = XEXP (postponed_insns, 1);
3396 free_INSN_LIST_node (tmp);
3398 if (! purge_addressof_1 (&PATTERN (insn), insn,
3399 asm_noperands (PATTERN (insn)) > 0, 0, 0, ht))
3400 abort ();
3403 /* Clean up. */
3404 purge_bitfield_addressof_replacements = 0;
3405 purge_addressof_replacements = 0;
3407 /* REGs are shared. purge_addressof will destructively replace a REG
3408 with a MEM, which creates shared MEMs.
3410 Unfortunately, the children of put_reg_into_stack assume that MEMs
3411 referring to the same stack slot are shared (fixup_var_refs and
3412 the associated hash table code).
3414 So, we have to do another unsharing pass after we have flushed any
3415 REGs that had their address taken into the stack.
3417 It may be worth tracking whether or not we converted any REGs into
3418 MEMs to avoid this overhead when it is not needed. */
3419 unshare_all_rtl_again (get_insns ());
3422 /* Convert a SET of a hard subreg to a set of the appropriate hard
3423 register. A subroutine of purge_hard_subreg_sets. */
3425 static void
3426 purge_single_hard_subreg_set (rtx pattern)
3428 rtx reg = SET_DEST (pattern);
3429 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3430 int offset = 0;
3432 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3433 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3435 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3436 GET_MODE (SUBREG_REG (reg)),
3437 SUBREG_BYTE (reg),
3438 GET_MODE (reg));
3439 reg = SUBREG_REG (reg);
3443 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3445 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3446 SET_DEST (pattern) = reg;
3450 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3451 only such SETs that we expect to see are those left in because
3452 integrate can't handle sets of parts of a return value register.
3454 We don't use alter_subreg because we only want to eliminate subregs
3455 of hard registers. */
3457 void
3458 purge_hard_subreg_sets (rtx insn)
3460 for (; insn; insn = NEXT_INSN (insn))
3462 if (INSN_P (insn))
3464 rtx pattern = PATTERN (insn);
3465 switch (GET_CODE (pattern))
3467 case SET:
3468 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3469 purge_single_hard_subreg_set (pattern);
3470 break;
3471 case PARALLEL:
3473 int j;
3474 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3476 rtx inner_pattern = XVECEXP (pattern, 0, j);
3477 if (GET_CODE (inner_pattern) == SET
3478 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3479 purge_single_hard_subreg_set (inner_pattern);
3482 break;
3483 default:
3484 break;
3490 /* Pass through the INSNS of function FNDECL and convert virtual register
3491 references to hard register references. */
3493 void
3494 instantiate_virtual_regs (tree fndecl, rtx insns)
3496 rtx insn;
3497 unsigned int i;
3499 /* Compute the offsets to use for this function. */
3500 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3501 var_offset = STARTING_FRAME_OFFSET;
3502 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3503 out_arg_offset = STACK_POINTER_OFFSET;
3504 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3506 /* Scan all variables and parameters of this function. For each that is
3507 in memory, instantiate all virtual registers if the result is a valid
3508 address. If not, we do it later. That will handle most uses of virtual
3509 regs on many machines. */
3510 instantiate_decls (fndecl, 1);
3512 /* Initialize recognition, indicating that volatile is OK. */
3513 init_recog ();
3515 /* Scan through all the insns, instantiating every virtual register still
3516 present. */
3517 for (insn = insns; insn; insn = NEXT_INSN (insn))
3518 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3519 || GET_CODE (insn) == CALL_INSN)
3521 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3522 if (INSN_DELETED_P (insn))
3523 continue;
3524 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3525 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3526 if (GET_CODE (insn) == CALL_INSN)
3527 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3528 NULL_RTX, 0);
3530 /* Past this point all ASM statements should match. Verify that
3531 to avoid failures later in the compilation process. */
3532 if (asm_noperands (PATTERN (insn)) >= 0
3533 && ! check_asm_operands (PATTERN (insn)))
3534 instantiate_virtual_regs_lossage (insn);
3537 /* Instantiate the stack slots for the parm registers, for later use in
3538 addressof elimination. */
3539 for (i = 0; i < max_parm_reg; ++i)
3540 if (parm_reg_stack_loc[i])
3541 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3543 /* Now instantiate the remaining register equivalences for debugging info.
3544 These will not be valid addresses. */
3545 instantiate_decls (fndecl, 0);
3547 /* Indicate that, from now on, assign_stack_local should use
3548 frame_pointer_rtx. */
3549 virtuals_instantiated = 1;
3552 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3553 all virtual registers in their DECL_RTL's.
3555 If VALID_ONLY, do this only if the resulting address is still valid.
3556 Otherwise, always do it. */
3558 static void
3559 instantiate_decls (tree fndecl, int valid_only)
3561 tree decl;
3563 /* Process all parameters of the function. */
3564 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3566 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3567 HOST_WIDE_INT size_rtl;
3569 instantiate_decl (DECL_RTL (decl), size, valid_only);
3571 /* If the parameter was promoted, then the incoming RTL mode may be
3572 larger than the declared type size. We must use the larger of
3573 the two sizes. */
3574 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3575 size = MAX (size_rtl, size);
3576 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3579 /* Now process all variables defined in the function or its subblocks. */
3580 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3583 /* Subroutine of instantiate_decls: Process all decls in the given
3584 BLOCK node and all its subblocks. */
3586 static void
3587 instantiate_decls_1 (tree let, int valid_only)
3589 tree t;
3591 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3592 if (DECL_RTL_SET_P (t))
3593 instantiate_decl (DECL_RTL (t),
3594 int_size_in_bytes (TREE_TYPE (t)),
3595 valid_only);
3597 /* Process all subblocks. */
3598 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3599 instantiate_decls_1 (t, valid_only);
3602 /* Subroutine of the preceding procedures: Given RTL representing a
3603 decl and the size of the object, do any instantiation required.
3605 If VALID_ONLY is nonzero, it means that the RTL should only be
3606 changed if the new address is valid. */
3608 static void
3609 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
3611 enum machine_mode mode;
3612 rtx addr;
3614 /* If this is not a MEM, no need to do anything. Similarly if the
3615 address is a constant or a register that is not a virtual register. */
3617 if (x == 0 || GET_CODE (x) != MEM)
3618 return;
3620 addr = XEXP (x, 0);
3621 if (CONSTANT_P (addr)
3622 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3623 || (GET_CODE (addr) == REG
3624 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3625 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3626 return;
3628 /* If we should only do this if the address is valid, copy the address.
3629 We need to do this so we can undo any changes that might make the
3630 address invalid. This copy is unfortunate, but probably can't be
3631 avoided. */
3633 if (valid_only)
3634 addr = copy_rtx (addr);
3636 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3638 if (valid_only && size >= 0)
3640 unsigned HOST_WIDE_INT decl_size = size;
3642 /* Now verify that the resulting address is valid for every integer or
3643 floating-point mode up to and including SIZE bytes long. We do this
3644 since the object might be accessed in any mode and frame addresses
3645 are shared. */
3647 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3648 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3649 mode = GET_MODE_WIDER_MODE (mode))
3650 if (! memory_address_p (mode, addr))
3651 return;
3653 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3654 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3655 mode = GET_MODE_WIDER_MODE (mode))
3656 if (! memory_address_p (mode, addr))
3657 return;
3660 /* Put back the address now that we have updated it and we either know
3661 it is valid or we don't care whether it is valid. */
3663 XEXP (x, 0) = addr;
3666 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3667 is a virtual register, return the equivalent hard register and set the
3668 offset indirectly through the pointer. Otherwise, return 0. */
3670 static rtx
3671 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
3673 rtx new;
3674 HOST_WIDE_INT offset;
3676 if (x == virtual_incoming_args_rtx)
3677 new = arg_pointer_rtx, offset = in_arg_offset;
3678 else if (x == virtual_stack_vars_rtx)
3679 new = frame_pointer_rtx, offset = var_offset;
3680 else if (x == virtual_stack_dynamic_rtx)
3681 new = stack_pointer_rtx, offset = dynamic_offset;
3682 else if (x == virtual_outgoing_args_rtx)
3683 new = stack_pointer_rtx, offset = out_arg_offset;
3684 else if (x == virtual_cfa_rtx)
3685 new = arg_pointer_rtx, offset = cfa_offset;
3686 else
3687 return 0;
3689 *poffset = offset;
3690 return new;
3694 /* Called when instantiate_virtual_regs has failed to update the instruction.
3695 Usually this means that non-matching instruction has been emit, however for
3696 asm statements it may be the problem in the constraints. */
3697 static void
3698 instantiate_virtual_regs_lossage (rtx insn)
3700 if (asm_noperands (PATTERN (insn)) >= 0)
3702 error_for_asm (insn, "impossible constraint in `asm'");
3703 delete_insn (insn);
3705 else
3706 abort ();
3708 /* Given a pointer to a piece of rtx and an optional pointer to the
3709 containing object, instantiate any virtual registers present in it.
3711 If EXTRA_INSNS, we always do the replacement and generate
3712 any extra insns before OBJECT. If it zero, we do nothing if replacement
3713 is not valid.
3715 Return 1 if we either had nothing to do or if we were able to do the
3716 needed replacement. Return 0 otherwise; we only return zero if
3717 EXTRA_INSNS is zero.
3719 We first try some simple transformations to avoid the creation of extra
3720 pseudos. */
3722 static int
3723 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
3725 rtx x;
3726 RTX_CODE code;
3727 rtx new = 0;
3728 HOST_WIDE_INT offset = 0;
3729 rtx temp;
3730 rtx seq;
3731 int i, j;
3732 const char *fmt;
3734 /* Re-start here to avoid recursion in common cases. */
3735 restart:
3737 x = *loc;
3738 if (x == 0)
3739 return 1;
3741 /* We may have detected and deleted invalid asm statements. */
3742 if (object && INSN_P (object) && INSN_DELETED_P (object))
3743 return 1;
3745 code = GET_CODE (x);
3747 /* Check for some special cases. */
3748 switch (code)
3750 case CONST_INT:
3751 case CONST_DOUBLE:
3752 case CONST_VECTOR:
3753 case CONST:
3754 case SYMBOL_REF:
3755 case CODE_LABEL:
3756 case PC:
3757 case CC0:
3758 case ASM_INPUT:
3759 case ADDR_VEC:
3760 case ADDR_DIFF_VEC:
3761 case RETURN:
3762 return 1;
3764 case SET:
3765 /* We are allowed to set the virtual registers. This means that
3766 the actual register should receive the source minus the
3767 appropriate offset. This is used, for example, in the handling
3768 of non-local gotos. */
3769 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3771 rtx src = SET_SRC (x);
3773 /* We are setting the register, not using it, so the relevant
3774 offset is the negative of the offset to use were we using
3775 the register. */
3776 offset = - offset;
3777 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3779 /* The only valid sources here are PLUS or REG. Just do
3780 the simplest possible thing to handle them. */
3781 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3783 instantiate_virtual_regs_lossage (object);
3784 return 1;
3787 start_sequence ();
3788 if (GET_CODE (src) != REG)
3789 temp = force_operand (src, NULL_RTX);
3790 else
3791 temp = src;
3792 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3793 seq = get_insns ();
3794 end_sequence ();
3796 emit_insn_before (seq, object);
3797 SET_DEST (x) = new;
3799 if (! validate_change (object, &SET_SRC (x), temp, 0)
3800 || ! extra_insns)
3801 instantiate_virtual_regs_lossage (object);
3803 return 1;
3806 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3807 loc = &SET_SRC (x);
3808 goto restart;
3810 case PLUS:
3811 /* Handle special case of virtual register plus constant. */
3812 if (CONSTANT_P (XEXP (x, 1)))
3814 rtx old, new_offset;
3816 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3817 if (GET_CODE (XEXP (x, 0)) == PLUS)
3819 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3821 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3822 extra_insns);
3823 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3825 else
3827 loc = &XEXP (x, 0);
3828 goto restart;
3832 #ifdef POINTERS_EXTEND_UNSIGNED
3833 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3834 we can commute the PLUS and SUBREG because pointers into the
3835 frame are well-behaved. */
3836 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3837 && GET_CODE (XEXP (x, 1)) == CONST_INT
3838 && 0 != (new
3839 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3840 &offset))
3841 && validate_change (object, loc,
3842 plus_constant (gen_lowpart (ptr_mode,
3843 new),
3844 offset
3845 + INTVAL (XEXP (x, 1))),
3847 return 1;
3848 #endif
3849 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3851 /* We know the second operand is a constant. Unless the
3852 first operand is a REG (which has been already checked),
3853 it needs to be checked. */
3854 if (GET_CODE (XEXP (x, 0)) != REG)
3856 loc = &XEXP (x, 0);
3857 goto restart;
3859 return 1;
3862 new_offset = plus_constant (XEXP (x, 1), offset);
3864 /* If the new constant is zero, try to replace the sum with just
3865 the register. */
3866 if (new_offset == const0_rtx
3867 && validate_change (object, loc, new, 0))
3868 return 1;
3870 /* Next try to replace the register and new offset.
3871 There are two changes to validate here and we can't assume that
3872 in the case of old offset equals new just changing the register
3873 will yield a valid insn. In the interests of a little efficiency,
3874 however, we only call validate change once (we don't queue up the
3875 changes and then call apply_change_group). */
3877 old = XEXP (x, 0);
3878 if (offset == 0
3879 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3880 : (XEXP (x, 0) = new,
3881 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3883 if (! extra_insns)
3885 XEXP (x, 0) = old;
3886 return 0;
3889 /* Otherwise copy the new constant into a register and replace
3890 constant with that register. */
3891 temp = gen_reg_rtx (Pmode);
3892 XEXP (x, 0) = new;
3893 if (validate_change (object, &XEXP (x, 1), temp, 0))
3894 emit_insn_before (gen_move_insn (temp, new_offset), object);
3895 else
3897 /* If that didn't work, replace this expression with a
3898 register containing the sum. */
3900 XEXP (x, 0) = old;
3901 new = gen_rtx_PLUS (Pmode, new, new_offset);
3903 start_sequence ();
3904 temp = force_operand (new, NULL_RTX);
3905 seq = get_insns ();
3906 end_sequence ();
3908 emit_insn_before (seq, object);
3909 if (! validate_change (object, loc, temp, 0)
3910 && ! validate_replace_rtx (x, temp, object))
3912 instantiate_virtual_regs_lossage (object);
3913 return 1;
3918 return 1;
3921 /* Fall through to generic two-operand expression case. */
3922 case EXPR_LIST:
3923 case CALL:
3924 case COMPARE:
3925 case MINUS:
3926 case MULT:
3927 case DIV: case UDIV:
3928 case MOD: case UMOD:
3929 case AND: case IOR: case XOR:
3930 case ROTATERT: case ROTATE:
3931 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3932 case NE: case EQ:
3933 case GE: case GT: case GEU: case GTU:
3934 case LE: case LT: case LEU: case LTU:
3935 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3936 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3937 loc = &XEXP (x, 0);
3938 goto restart;
3940 case MEM:
3941 /* Most cases of MEM that convert to valid addresses have already been
3942 handled by our scan of decls. The only special handling we
3943 need here is to make a copy of the rtx to ensure it isn't being
3944 shared if we have to change it to a pseudo.
3946 If the rtx is a simple reference to an address via a virtual register,
3947 it can potentially be shared. In such cases, first try to make it
3948 a valid address, which can also be shared. Otherwise, copy it and
3949 proceed normally.
3951 First check for common cases that need no processing. These are
3952 usually due to instantiation already being done on a previous instance
3953 of a shared rtx. */
3955 temp = XEXP (x, 0);
3956 if (CONSTANT_ADDRESS_P (temp)
3957 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3958 || temp == arg_pointer_rtx
3959 #endif
3960 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3961 || temp == hard_frame_pointer_rtx
3962 #endif
3963 || temp == frame_pointer_rtx)
3964 return 1;
3966 if (GET_CODE (temp) == PLUS
3967 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3968 && (XEXP (temp, 0) == frame_pointer_rtx
3969 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3970 || XEXP (temp, 0) == hard_frame_pointer_rtx
3971 #endif
3972 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3973 || XEXP (temp, 0) == arg_pointer_rtx
3974 #endif
3976 return 1;
3978 if (temp == virtual_stack_vars_rtx
3979 || temp == virtual_incoming_args_rtx
3980 || (GET_CODE (temp) == PLUS
3981 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3982 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3983 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3985 /* This MEM may be shared. If the substitution can be done without
3986 the need to generate new pseudos, we want to do it in place
3987 so all copies of the shared rtx benefit. The call below will
3988 only make substitutions if the resulting address is still
3989 valid.
3991 Note that we cannot pass X as the object in the recursive call
3992 since the insn being processed may not allow all valid
3993 addresses. However, if we were not passed on object, we can
3994 only modify X without copying it if X will have a valid
3995 address.
3997 ??? Also note that this can still lose if OBJECT is an insn that
3998 has less restrictions on an address that some other insn.
3999 In that case, we will modify the shared address. This case
4000 doesn't seem very likely, though. One case where this could
4001 happen is in the case of a USE or CLOBBER reference, but we
4002 take care of that below. */
4004 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4005 object ? object : x, 0))
4006 return 1;
4008 /* Otherwise make a copy and process that copy. We copy the entire
4009 RTL expression since it might be a PLUS which could also be
4010 shared. */
4011 *loc = x = copy_rtx (x);
4014 /* Fall through to generic unary operation case. */
4015 case PREFETCH:
4016 case SUBREG:
4017 case STRICT_LOW_PART:
4018 case NEG: case NOT:
4019 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4020 case SIGN_EXTEND: case ZERO_EXTEND:
4021 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4022 case FLOAT: case FIX:
4023 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4024 case ABS:
4025 case SQRT:
4026 case FFS:
4027 case CLZ: case CTZ:
4028 case POPCOUNT: case PARITY:
4029 /* These case either have just one operand or we know that we need not
4030 check the rest of the operands. */
4031 loc = &XEXP (x, 0);
4032 goto restart;
4034 case USE:
4035 case CLOBBER:
4036 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4037 go ahead and make the invalid one, but do it to a copy. For a REG,
4038 just make the recursive call, since there's no chance of a problem. */
4040 if ((GET_CODE (XEXP (x, 0)) == MEM
4041 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4043 || (GET_CODE (XEXP (x, 0)) == REG
4044 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4045 return 1;
4047 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4048 loc = &XEXP (x, 0);
4049 goto restart;
4051 case REG:
4052 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4053 in front of this insn and substitute the temporary. */
4054 if ((new = instantiate_new_reg (x, &offset)) != 0)
4056 temp = plus_constant (new, offset);
4057 if (!validate_change (object, loc, temp, 0))
4059 if (! extra_insns)
4060 return 0;
4062 start_sequence ();
4063 temp = force_operand (temp, NULL_RTX);
4064 seq = get_insns ();
4065 end_sequence ();
4067 emit_insn_before (seq, object);
4068 if (! validate_change (object, loc, temp, 0)
4069 && ! validate_replace_rtx (x, temp, object))
4070 instantiate_virtual_regs_lossage (object);
4074 return 1;
4076 case ADDRESSOF:
4077 if (GET_CODE (XEXP (x, 0)) == REG)
4078 return 1;
4080 else if (GET_CODE (XEXP (x, 0)) == MEM)
4082 /* If we have a (addressof (mem ..)), do any instantiation inside
4083 since we know we'll be making the inside valid when we finally
4084 remove the ADDRESSOF. */
4085 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4086 return 1;
4088 break;
4090 default:
4091 break;
4094 /* Scan all subexpressions. */
4095 fmt = GET_RTX_FORMAT (code);
4096 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4097 if (*fmt == 'e')
4099 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4100 return 0;
4102 else if (*fmt == 'E')
4103 for (j = 0; j < XVECLEN (x, i); j++)
4104 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4105 extra_insns))
4106 return 0;
4108 return 1;
4111 /* Optimization: assuming this function does not receive nonlocal gotos,
4112 delete the handlers for such, as well as the insns to establish
4113 and disestablish them. */
4115 static void
4116 delete_handlers (void)
4118 rtx insn;
4119 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4121 /* Delete the handler by turning off the flag that would
4122 prevent jump_optimize from deleting it.
4123 Also permit deletion of the nonlocal labels themselves
4124 if nothing local refers to them. */
4125 if (GET_CODE (insn) == CODE_LABEL)
4127 tree t, last_t;
4129 LABEL_PRESERVE_P (insn) = 0;
4131 /* Remove it from the nonlocal_label list, to avoid confusing
4132 flow. */
4133 for (t = nonlocal_labels, last_t = 0; t;
4134 last_t = t, t = TREE_CHAIN (t))
4135 if (DECL_RTL (TREE_VALUE (t)) == insn)
4136 break;
4137 if (t)
4139 if (! last_t)
4140 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4141 else
4142 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4145 if (GET_CODE (insn) == INSN)
4147 int can_delete = 0;
4148 rtx t;
4149 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4150 if (reg_mentioned_p (t, PATTERN (insn)))
4152 can_delete = 1;
4153 break;
4155 if (can_delete
4156 || (nonlocal_goto_stack_level != 0
4157 && reg_mentioned_p (nonlocal_goto_stack_level,
4158 PATTERN (insn))))
4159 delete_related_insns (insn);
4164 /* Return the first insn following those generated by `assign_parms'. */
4167 get_first_nonparm_insn (void)
4169 if (last_parm_insn)
4170 return NEXT_INSN (last_parm_insn);
4171 return get_insns ();
4174 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4175 This means a type for which function calls must pass an address to the
4176 function or get an address back from the function.
4177 EXP may be a type node or an expression (whose type is tested). */
4180 aggregate_value_p (tree exp)
4182 int i, regno, nregs;
4183 rtx reg;
4185 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4187 if (TREE_CODE (type) == VOID_TYPE)
4188 return 0;
4189 if (RETURN_IN_MEMORY (type))
4190 return 1;
4191 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4192 and thus can't be returned in registers. */
4193 if (TREE_ADDRESSABLE (type))
4194 return 1;
4195 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4196 return 1;
4197 /* Make sure we have suitable call-clobbered regs to return
4198 the value in; if not, we must return it in memory. */
4199 reg = hard_function_value (type, 0, 0);
4201 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4202 it is OK. */
4203 if (GET_CODE (reg) != REG)
4204 return 0;
4206 regno = REGNO (reg);
4207 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4208 for (i = 0; i < nregs; i++)
4209 if (! call_used_regs[regno + i])
4210 return 1;
4211 return 0;
4214 /* Assign RTL expressions to the function's parameters.
4215 This may involve copying them into registers and using
4216 those registers as the RTL for them. */
4218 void
4219 assign_parms (tree fndecl)
4221 tree parm;
4222 CUMULATIVE_ARGS args_so_far;
4223 /* Total space needed so far for args on the stack,
4224 given as a constant and a tree-expression. */
4225 struct args_size stack_args_size;
4226 tree fntype = TREE_TYPE (fndecl);
4227 tree fnargs = DECL_ARGUMENTS (fndecl), orig_fnargs;
4228 /* This is used for the arg pointer when referring to stack args. */
4229 rtx internal_arg_pointer;
4230 /* This is a dummy PARM_DECL that we used for the function result if
4231 the function returns a structure. */
4232 tree function_result_decl = 0;
4233 #ifdef SETUP_INCOMING_VARARGS
4234 int varargs_setup = 0;
4235 #endif
4236 int reg_parm_stack_space = 0;
4237 rtx conversion_insns = 0;
4239 /* Nonzero if function takes extra anonymous args.
4240 This means the last named arg must be on the stack
4241 right before the anonymous ones. */
4242 int stdarg
4243 = (TYPE_ARG_TYPES (fntype) != 0
4244 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4245 != void_type_node));
4247 current_function_stdarg = stdarg;
4249 /* If the reg that the virtual arg pointer will be translated into is
4250 not a fixed reg or is the stack pointer, make a copy of the virtual
4251 arg pointer, and address parms via the copy. The frame pointer is
4252 considered fixed even though it is not marked as such.
4254 The second time through, simply use ap to avoid generating rtx. */
4256 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4257 || ! (fixed_regs[ARG_POINTER_REGNUM]
4258 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4259 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4260 else
4261 internal_arg_pointer = virtual_incoming_args_rtx;
4262 current_function_internal_arg_pointer = internal_arg_pointer;
4264 stack_args_size.constant = 0;
4265 stack_args_size.var = 0;
4267 /* If struct value address is treated as the first argument, make it so. */
4268 if (aggregate_value_p (DECL_RESULT (fndecl))
4269 && ! current_function_returns_pcc_struct
4270 && struct_value_incoming_rtx == 0)
4272 tree type = build_pointer_type (TREE_TYPE (fntype));
4274 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4276 DECL_ARG_TYPE (function_result_decl) = type;
4277 TREE_CHAIN (function_result_decl) = fnargs;
4278 fnargs = function_result_decl;
4281 orig_fnargs = fnargs;
4283 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4284 parm_reg_stack_loc = ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4286 if (SPLIT_COMPLEX_ARGS)
4287 fnargs = split_complex_args (fnargs);
4289 #ifdef REG_PARM_STACK_SPACE
4290 #ifdef MAYBE_REG_PARM_STACK_SPACE
4291 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
4292 #else
4293 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
4294 #endif
4295 #endif
4297 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4298 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4299 #else
4300 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, fndecl);
4301 #endif
4303 /* We haven't yet found an argument that we must push and pretend the
4304 caller did. */
4305 current_function_pretend_args_size = 0;
4307 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4309 rtx entry_parm;
4310 rtx stack_parm;
4311 enum machine_mode promoted_mode, passed_mode;
4312 enum machine_mode nominal_mode, promoted_nominal_mode;
4313 int unsignedp;
4314 struct locate_and_pad_arg_data locate;
4315 int passed_pointer = 0;
4316 int did_conversion = 0;
4317 tree passed_type = DECL_ARG_TYPE (parm);
4318 tree nominal_type = TREE_TYPE (parm);
4319 int last_named = 0, named_arg;
4320 int in_regs;
4321 int partial = 0;
4323 /* Set LAST_NAMED if this is last named arg before last
4324 anonymous args. */
4325 if (stdarg)
4327 tree tem;
4329 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4330 if (DECL_NAME (tem))
4331 break;
4333 if (tem == 0)
4334 last_named = 1;
4336 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4337 most machines, if this is a varargs/stdarg function, then we treat
4338 the last named arg as if it were anonymous too. */
4339 named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4341 if (TREE_TYPE (parm) == error_mark_node
4342 /* This can happen after weird syntax errors
4343 or if an enum type is defined among the parms. */
4344 || TREE_CODE (parm) != PARM_DECL
4345 || passed_type == NULL)
4347 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4348 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4349 TREE_USED (parm) = 1;
4350 continue;
4353 /* Find mode of arg as it is passed, and mode of arg
4354 as it should be during execution of this function. */
4355 passed_mode = TYPE_MODE (passed_type);
4356 nominal_mode = TYPE_MODE (nominal_type);
4358 /* If the parm's mode is VOID, its value doesn't matter,
4359 and avoid the usual things like emit_move_insn that could crash. */
4360 if (nominal_mode == VOIDmode)
4362 SET_DECL_RTL (parm, const0_rtx);
4363 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4364 continue;
4367 /* If the parm is to be passed as a transparent union, use the
4368 type of the first field for the tests below. We have already
4369 verified that the modes are the same. */
4370 if (DECL_TRANSPARENT_UNION (parm)
4371 || (TREE_CODE (passed_type) == UNION_TYPE
4372 && TYPE_TRANSPARENT_UNION (passed_type)))
4373 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4375 /* See if this arg was passed by invisible reference. It is if
4376 it is an object whose size depends on the contents of the
4377 object itself or if the machine requires these objects be passed
4378 that way. */
4380 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (passed_type))
4381 || TREE_ADDRESSABLE (passed_type)
4382 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4383 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4384 passed_type, named_arg)
4385 #endif
4388 passed_type = nominal_type = build_pointer_type (passed_type);
4389 passed_pointer = 1;
4390 passed_mode = nominal_mode = Pmode;
4392 /* See if the frontend wants to pass this by invisible reference. */
4393 else if (passed_type != nominal_type
4394 && POINTER_TYPE_P (passed_type)
4395 && TREE_TYPE (passed_type) == nominal_type)
4397 nominal_type = passed_type;
4398 passed_pointer = 1;
4399 passed_mode = nominal_mode = Pmode;
4402 promoted_mode = passed_mode;
4404 #ifdef PROMOTE_FUNCTION_ARGS
4405 /* Compute the mode in which the arg is actually extended to. */
4406 unsignedp = TREE_UNSIGNED (passed_type);
4407 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4408 #endif
4410 /* Let machine desc say which reg (if any) the parm arrives in.
4411 0 means it arrives on the stack. */
4412 #ifdef FUNCTION_INCOMING_ARG
4413 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4414 passed_type, named_arg);
4415 #else
4416 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4417 passed_type, named_arg);
4418 #endif
4420 if (entry_parm == 0)
4421 promoted_mode = passed_mode;
4423 #ifdef SETUP_INCOMING_VARARGS
4424 /* If this is the last named parameter, do any required setup for
4425 varargs or stdargs. We need to know about the case of this being an
4426 addressable type, in which case we skip the registers it
4427 would have arrived in.
4429 For stdargs, LAST_NAMED will be set for two parameters, the one that
4430 is actually the last named, and the dummy parameter. We only
4431 want to do this action once.
4433 Also, indicate when RTL generation is to be suppressed. */
4434 if (last_named && !varargs_setup)
4436 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4437 current_function_pretend_args_size, 0);
4438 varargs_setup = 1;
4440 #endif
4442 /* Determine parm's home in the stack,
4443 in case it arrives in the stack or we should pretend it did.
4445 Compute the stack position and rtx where the argument arrives
4446 and its size.
4448 There is one complexity here: If this was a parameter that would
4449 have been passed in registers, but wasn't only because it is
4450 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4451 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4452 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4453 0 as it was the previous time. */
4454 in_regs = entry_parm != 0;
4455 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4456 in_regs = 1;
4457 #endif
4458 if (!in_regs && !named_arg)
4460 int pretend_named = PRETEND_OUTGOING_VARARGS_NAMED;
4461 if (pretend_named)
4463 #ifdef FUNCTION_INCOMING_ARG
4464 in_regs = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4465 passed_type,
4466 pretend_named) != 0;
4467 #else
4468 in_regs = FUNCTION_ARG (args_so_far, promoted_mode,
4469 passed_type,
4470 pretend_named) != 0;
4471 #endif
4475 /* If this parameter was passed both in registers and in the stack,
4476 use the copy on the stack. */
4477 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4478 entry_parm = 0;
4480 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4481 if (entry_parm)
4482 partial = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4483 passed_type, named_arg);
4484 #endif
4486 memset (&locate, 0, sizeof (locate));
4487 locate_and_pad_parm (promoted_mode, passed_type, in_regs,
4488 entry_parm ? partial : 0, fndecl,
4489 &stack_args_size, &locate);
4492 rtx offset_rtx;
4494 /* If we're passing this arg using a reg, make its stack home
4495 the aligned stack slot. */
4496 if (entry_parm)
4497 offset_rtx = ARGS_SIZE_RTX (locate.slot_offset);
4498 else
4499 offset_rtx = ARGS_SIZE_RTX (locate.offset);
4501 if (offset_rtx == const0_rtx)
4502 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4503 else
4504 stack_parm = gen_rtx_MEM (promoted_mode,
4505 gen_rtx_PLUS (Pmode,
4506 internal_arg_pointer,
4507 offset_rtx));
4509 set_mem_attributes (stack_parm, parm, 1);
4510 if (entry_parm && MEM_ATTRS (stack_parm)->align < PARM_BOUNDARY)
4511 set_mem_align (stack_parm, PARM_BOUNDARY);
4513 /* Set also REG_ATTRS if parameter was passed in a register. */
4514 if (entry_parm)
4515 set_reg_attrs_for_parm (entry_parm, stack_parm);
4518 /* If this parm was passed part in regs and part in memory,
4519 pretend it arrived entirely in memory
4520 by pushing the register-part onto the stack.
4522 In the special case of a DImode or DFmode that is split,
4523 we could put it together in a pseudoreg directly,
4524 but for now that's not worth bothering with. */
4526 if (partial)
4528 #ifndef MAYBE_REG_PARM_STACK_SPACE
4529 /* When REG_PARM_STACK_SPACE is nonzero, stack space for
4530 split parameters was allocated by our caller, so we
4531 won't be pushing it in the prolog. */
4532 if (reg_parm_stack_space == 0)
4533 #endif
4534 current_function_pretend_args_size
4535 = (((partial * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4536 / (PARM_BOUNDARY / BITS_PER_UNIT)
4537 * (PARM_BOUNDARY / BITS_PER_UNIT));
4539 /* Handle calls that pass values in multiple non-contiguous
4540 locations. The Irix 6 ABI has examples of this. */
4541 if (GET_CODE (entry_parm) == PARALLEL)
4542 emit_group_store (validize_mem (stack_parm), entry_parm,
4543 TREE_TYPE (parm),
4544 int_size_in_bytes (TREE_TYPE (parm)));
4546 else
4547 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
4548 partial);
4550 entry_parm = stack_parm;
4553 /* If we didn't decide this parm came in a register,
4554 by default it came on the stack. */
4555 if (entry_parm == 0)
4556 entry_parm = stack_parm;
4558 /* Record permanently how this parm was passed. */
4559 DECL_INCOMING_RTL (parm) = entry_parm;
4561 /* If there is actually space on the stack for this parm,
4562 count it in stack_args_size; otherwise set stack_parm to 0
4563 to indicate there is no preallocated stack slot for the parm. */
4565 if (entry_parm == stack_parm
4566 || (GET_CODE (entry_parm) == PARALLEL
4567 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4568 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4569 /* On some machines, even if a parm value arrives in a register
4570 there is still an (uninitialized) stack slot allocated for it.
4572 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4573 whether this parameter already has a stack slot allocated,
4574 because an arg block exists only if current_function_args_size
4575 is larger than some threshold, and we haven't calculated that
4576 yet. So, for now, we just assume that stack slots never exist
4577 in this case. */
4578 || REG_PARM_STACK_SPACE (fndecl) > 0
4579 #endif
4582 stack_args_size.constant += locate.size.constant;
4583 /* locate.size doesn't include the part in regs. */
4584 if (partial)
4585 stack_args_size.constant += current_function_pretend_args_size;
4586 if (locate.size.var)
4587 ADD_PARM_SIZE (stack_args_size, locate.size.var);
4589 else
4590 /* No stack slot was pushed for this parm. */
4591 stack_parm = 0;
4593 /* Update info on where next arg arrives in registers. */
4595 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4596 passed_type, named_arg);
4598 /* If we can't trust the parm stack slot to be aligned enough
4599 for its ultimate type, don't use that slot after entry.
4600 We'll make another stack slot, if we need one. */
4602 unsigned int thisparm_boundary
4603 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4605 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4606 stack_parm = 0;
4609 /* If parm was passed in memory, and we need to convert it on entry,
4610 don't store it back in that same slot. */
4611 if (entry_parm == stack_parm
4612 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4613 stack_parm = 0;
4615 /* When an argument is passed in multiple locations, we can't
4616 make use of this information, but we can save some copying if
4617 the whole argument is passed in a single register. */
4618 if (GET_CODE (entry_parm) == PARALLEL
4619 && nominal_mode != BLKmode && passed_mode != BLKmode)
4621 int i, len = XVECLEN (entry_parm, 0);
4623 for (i = 0; i < len; i++)
4624 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4625 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4626 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4627 == passed_mode)
4628 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4630 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4631 DECL_INCOMING_RTL (parm) = entry_parm;
4632 break;
4636 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4637 in the mode in which it arrives.
4638 STACK_PARM is an RTX for a stack slot where the parameter can live
4639 during the function (in case we want to put it there).
4640 STACK_PARM is 0 if no stack slot was pushed for it.
4642 Now output code if necessary to convert ENTRY_PARM to
4643 the type in which this function declares it,
4644 and store that result in an appropriate place,
4645 which may be a pseudo reg, may be STACK_PARM,
4646 or may be a local stack slot if STACK_PARM is 0.
4648 Set DECL_RTL to that place. */
4650 if (nominal_mode == BLKmode
4651 #ifdef BLOCK_REG_PADDING
4652 || (locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
4653 && GET_MODE_SIZE (promoted_mode) < UNITS_PER_WORD)
4654 #endif
4655 || GET_CODE (entry_parm) == PARALLEL)
4657 /* If a BLKmode arrives in registers, copy it to a stack slot.
4658 Handle calls that pass values in multiple non-contiguous
4659 locations. The Irix 6 ABI has examples of this. */
4660 if (GET_CODE (entry_parm) == REG
4661 || GET_CODE (entry_parm) == PARALLEL)
4663 int size = int_size_in_bytes (TREE_TYPE (parm));
4664 int size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
4665 rtx mem;
4667 /* Note that we will be storing an integral number of words.
4668 So we have to be careful to ensure that we allocate an
4669 integral number of words. We do this below in the
4670 assign_stack_local if space was not allocated in the argument
4671 list. If it was, this will not work if PARM_BOUNDARY is not
4672 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4673 if it becomes a problem. */
4675 if (stack_parm == 0)
4677 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
4678 PUT_MODE (stack_parm, GET_MODE (entry_parm));
4679 set_mem_attributes (stack_parm, parm, 1);
4682 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4683 abort ();
4685 mem = validize_mem (stack_parm);
4687 /* Handle calls that pass values in multiple non-contiguous
4688 locations. The Irix 6 ABI has examples of this. */
4689 if (GET_CODE (entry_parm) == PARALLEL)
4690 emit_group_store (mem, entry_parm, TREE_TYPE (parm), size);
4692 else if (size == 0)
4695 /* If SIZE is that of a mode no bigger than a word, just use
4696 that mode's store operation. */
4697 else if (size <= UNITS_PER_WORD)
4699 enum machine_mode mode
4700 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
4702 if (mode != BLKmode
4703 #ifdef BLOCK_REG_PADDING
4704 && (size == UNITS_PER_WORD
4705 || (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4706 != (BYTES_BIG_ENDIAN ? upward : downward)))
4707 #endif
4710 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
4711 emit_move_insn (change_address (mem, mode, 0), reg);
4714 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
4715 machine must be aligned to the left before storing
4716 to memory. Note that the previous test doesn't
4717 handle all cases (e.g. SIZE == 3). */
4718 else if (size != UNITS_PER_WORD
4719 #ifdef BLOCK_REG_PADDING
4720 && (BLOCK_REG_PADDING (mode, TREE_TYPE (parm), 1)
4721 == downward)
4722 #else
4723 && BYTES_BIG_ENDIAN
4724 #endif
4727 rtx tem, x;
4728 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
4729 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
4731 x = expand_binop (word_mode, ashl_optab, reg,
4732 GEN_INT (by), 0, 1, OPTAB_WIDEN);
4733 tem = change_address (mem, word_mode, 0);
4734 emit_move_insn (tem, x);
4736 else
4737 move_block_from_reg (REGNO (entry_parm), mem,
4738 size_stored / UNITS_PER_WORD);
4740 else
4741 move_block_from_reg (REGNO (entry_parm), mem,
4742 size_stored / UNITS_PER_WORD);
4744 SET_DECL_RTL (parm, stack_parm);
4746 else if (! ((! optimize
4747 && ! DECL_REGISTER (parm))
4748 || TREE_SIDE_EFFECTS (parm)
4749 /* If -ffloat-store specified, don't put explicit
4750 float variables into registers. */
4751 || (flag_float_store
4752 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4753 /* Always assign pseudo to structure return or item passed
4754 by invisible reference. */
4755 || passed_pointer || parm == function_result_decl)
4757 /* Store the parm in a pseudoregister during the function, but we
4758 may need to do it in a wider mode. */
4760 rtx parmreg;
4761 unsigned int regno, regnoi = 0, regnor = 0;
4763 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4765 promoted_nominal_mode
4766 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4768 parmreg = gen_reg_rtx (promoted_nominal_mode);
4769 mark_user_reg (parmreg);
4771 /* If this was an item that we received a pointer to, set DECL_RTL
4772 appropriately. */
4773 if (passed_pointer)
4775 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4776 parmreg);
4777 set_mem_attributes (x, parm, 1);
4778 SET_DECL_RTL (parm, x);
4780 else
4782 SET_DECL_RTL (parm, parmreg);
4783 maybe_set_unchanging (DECL_RTL (parm), parm);
4786 /* Copy the value into the register. */
4787 if (nominal_mode != passed_mode
4788 || promoted_nominal_mode != promoted_mode)
4790 int save_tree_used;
4791 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4792 mode, by the caller. We now have to convert it to
4793 NOMINAL_MODE, if different. However, PARMREG may be in
4794 a different mode than NOMINAL_MODE if it is being stored
4795 promoted.
4797 If ENTRY_PARM is a hard register, it might be in a register
4798 not valid for operating in its mode (e.g., an odd-numbered
4799 register for a DFmode). In that case, moves are the only
4800 thing valid, so we can't do a convert from there. This
4801 occurs when the calling sequence allow such misaligned
4802 usages.
4804 In addition, the conversion may involve a call, which could
4805 clobber parameters which haven't been copied to pseudo
4806 registers yet. Therefore, we must first copy the parm to
4807 a pseudo reg here, and save the conversion until after all
4808 parameters have been moved. */
4810 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4812 emit_move_insn (tempreg, validize_mem (entry_parm));
4814 push_to_sequence (conversion_insns);
4815 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4817 if (GET_CODE (tempreg) == SUBREG
4818 && GET_MODE (tempreg) == nominal_mode
4819 && GET_CODE (SUBREG_REG (tempreg)) == REG
4820 && nominal_mode == passed_mode
4821 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4822 && GET_MODE_SIZE (GET_MODE (tempreg))
4823 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4825 /* The argument is already sign/zero extended, so note it
4826 into the subreg. */
4827 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4828 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4831 /* TREE_USED gets set erroneously during expand_assignment. */
4832 save_tree_used = TREE_USED (parm);
4833 expand_assignment (parm,
4834 make_tree (nominal_type, tempreg), 0);
4835 TREE_USED (parm) = save_tree_used;
4836 conversion_insns = get_insns ();
4837 did_conversion = 1;
4838 end_sequence ();
4840 else
4841 emit_move_insn (parmreg, validize_mem (entry_parm));
4843 /* If we were passed a pointer but the actual value
4844 can safely live in a register, put it in one. */
4845 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4846 /* If by-reference argument was promoted, demote it. */
4847 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4848 || ! ((! optimize
4849 && ! DECL_REGISTER (parm))
4850 || TREE_SIDE_EFFECTS (parm)
4851 /* If -ffloat-store specified, don't put explicit
4852 float variables into registers. */
4853 || (flag_float_store
4854 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4856 /* We can't use nominal_mode, because it will have been set to
4857 Pmode above. We must use the actual mode of the parm. */
4858 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4859 mark_user_reg (parmreg);
4860 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4862 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4863 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4864 push_to_sequence (conversion_insns);
4865 emit_move_insn (tempreg, DECL_RTL (parm));
4866 SET_DECL_RTL (parm,
4867 convert_to_mode (GET_MODE (parmreg),
4868 tempreg,
4869 unsigned_p));
4870 emit_move_insn (parmreg, DECL_RTL (parm));
4871 conversion_insns = get_insns();
4872 did_conversion = 1;
4873 end_sequence ();
4875 else
4876 emit_move_insn (parmreg, DECL_RTL (parm));
4877 SET_DECL_RTL (parm, parmreg);
4878 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4879 now the parm. */
4880 stack_parm = 0;
4882 #ifdef FUNCTION_ARG_CALLEE_COPIES
4883 /* If we are passed an arg by reference and it is our responsibility
4884 to make a copy, do it now.
4885 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4886 original argument, so we must recreate them in the call to
4887 FUNCTION_ARG_CALLEE_COPIES. */
4888 /* ??? Later add code to handle the case that if the argument isn't
4889 modified, don't do the copy. */
4891 else if (passed_pointer
4892 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4893 TYPE_MODE (DECL_ARG_TYPE (parm)),
4894 DECL_ARG_TYPE (parm),
4895 named_arg)
4896 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4898 rtx copy;
4899 tree type = DECL_ARG_TYPE (parm);
4901 /* This sequence may involve a library call perhaps clobbering
4902 registers that haven't been copied to pseudos yet. */
4904 push_to_sequence (conversion_insns);
4906 if (!COMPLETE_TYPE_P (type)
4907 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4908 /* This is a variable sized object. */
4909 copy = gen_rtx_MEM (BLKmode,
4910 allocate_dynamic_stack_space
4911 (expr_size (parm), NULL_RTX,
4912 TYPE_ALIGN (type)));
4913 else
4914 copy = assign_stack_temp (TYPE_MODE (type),
4915 int_size_in_bytes (type), 1);
4916 set_mem_attributes (copy, parm, 1);
4918 store_expr (parm, copy, 0);
4919 emit_move_insn (parmreg, XEXP (copy, 0));
4920 conversion_insns = get_insns ();
4921 did_conversion = 1;
4922 end_sequence ();
4924 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4926 /* In any case, record the parm's desired stack location
4927 in case we later discover it must live in the stack.
4929 If it is a COMPLEX value, store the stack location for both
4930 halves. */
4932 if (GET_CODE (parmreg) == CONCAT)
4933 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4934 else
4935 regno = REGNO (parmreg);
4937 if (regno >= max_parm_reg)
4939 rtx *new;
4940 int old_max_parm_reg = max_parm_reg;
4942 /* It's slow to expand this one register at a time,
4943 but it's also rare and we need max_parm_reg to be
4944 precisely correct. */
4945 max_parm_reg = regno + 1;
4946 new = ggc_realloc (parm_reg_stack_loc,
4947 max_parm_reg * sizeof (rtx));
4948 memset (new + old_max_parm_reg, 0,
4949 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4950 parm_reg_stack_loc = new;
4953 if (GET_CODE (parmreg) == CONCAT)
4955 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4957 regnor = REGNO (gen_realpart (submode, parmreg));
4958 regnoi = REGNO (gen_imagpart (submode, parmreg));
4960 if (stack_parm != 0)
4962 parm_reg_stack_loc[regnor]
4963 = gen_realpart (submode, stack_parm);
4964 parm_reg_stack_loc[regnoi]
4965 = gen_imagpart (submode, stack_parm);
4967 else
4969 parm_reg_stack_loc[regnor] = 0;
4970 parm_reg_stack_loc[regnoi] = 0;
4973 else
4974 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4976 /* Mark the register as eliminable if we did no conversion
4977 and it was copied from memory at a fixed offset,
4978 and the arg pointer was not copied to a pseudo-reg.
4979 If the arg pointer is a pseudo reg or the offset formed
4980 an invalid address, such memory-equivalences
4981 as we make here would screw up life analysis for it. */
4982 if (nominal_mode == passed_mode
4983 && ! did_conversion
4984 && stack_parm != 0
4985 && GET_CODE (stack_parm) == MEM
4986 && locate.offset.var == 0
4987 && reg_mentioned_p (virtual_incoming_args_rtx,
4988 XEXP (stack_parm, 0)))
4990 rtx linsn = get_last_insn ();
4991 rtx sinsn, set;
4993 /* Mark complex types separately. */
4994 if (GET_CODE (parmreg) == CONCAT)
4995 /* Scan backwards for the set of the real and
4996 imaginary parts. */
4997 for (sinsn = linsn; sinsn != 0;
4998 sinsn = prev_nonnote_insn (sinsn))
5000 set = single_set (sinsn);
5001 if (set != 0
5002 && SET_DEST (set) == regno_reg_rtx [regnoi])
5003 REG_NOTES (sinsn)
5004 = gen_rtx_EXPR_LIST (REG_EQUIV,
5005 parm_reg_stack_loc[regnoi],
5006 REG_NOTES (sinsn));
5007 else if (set != 0
5008 && SET_DEST (set) == regno_reg_rtx [regnor])
5009 REG_NOTES (sinsn)
5010 = gen_rtx_EXPR_LIST (REG_EQUIV,
5011 parm_reg_stack_loc[regnor],
5012 REG_NOTES (sinsn));
5014 else if ((set = single_set (linsn)) != 0
5015 && SET_DEST (set) == parmreg)
5016 REG_NOTES (linsn)
5017 = gen_rtx_EXPR_LIST (REG_EQUIV,
5018 stack_parm, REG_NOTES (linsn));
5021 /* For pointer data type, suggest pointer register. */
5022 if (POINTER_TYPE_P (TREE_TYPE (parm)))
5023 mark_reg_pointer (parmreg,
5024 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5026 /* If something wants our address, try to use ADDRESSOF. */
5027 if (TREE_ADDRESSABLE (parm))
5029 /* If we end up putting something into the stack,
5030 fixup_var_refs_insns will need to make a pass over
5031 all the instructions. It looks through the pending
5032 sequences -- but it can't see the ones in the
5033 CONVERSION_INSNS, if they're not on the sequence
5034 stack. So, we go back to that sequence, just so that
5035 the fixups will happen. */
5036 push_to_sequence (conversion_insns);
5037 put_var_into_stack (parm, /*rescan=*/true);
5038 conversion_insns = get_insns ();
5039 end_sequence ();
5042 else
5044 /* Value must be stored in the stack slot STACK_PARM
5045 during function execution. */
5047 if (promoted_mode != nominal_mode)
5049 /* Conversion is required. */
5050 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5052 emit_move_insn (tempreg, validize_mem (entry_parm));
5054 push_to_sequence (conversion_insns);
5055 entry_parm = convert_to_mode (nominal_mode, tempreg,
5056 TREE_UNSIGNED (TREE_TYPE (parm)));
5057 if (stack_parm)
5058 /* ??? This may need a big-endian conversion on sparc64. */
5059 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5061 conversion_insns = get_insns ();
5062 did_conversion = 1;
5063 end_sequence ();
5066 if (entry_parm != stack_parm)
5068 if (stack_parm == 0)
5070 stack_parm
5071 = assign_stack_local (GET_MODE (entry_parm),
5072 GET_MODE_SIZE (GET_MODE (entry_parm)),
5074 set_mem_attributes (stack_parm, parm, 1);
5077 if (promoted_mode != nominal_mode)
5079 push_to_sequence (conversion_insns);
5080 emit_move_insn (validize_mem (stack_parm),
5081 validize_mem (entry_parm));
5082 conversion_insns = get_insns ();
5083 end_sequence ();
5085 else
5086 emit_move_insn (validize_mem (stack_parm),
5087 validize_mem (entry_parm));
5090 SET_DECL_RTL (parm, stack_parm);
5094 if (SPLIT_COMPLEX_ARGS && fnargs != orig_fnargs)
5096 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
5098 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE)
5100 SET_DECL_RTL (parm,
5101 gen_rtx_CONCAT (DECL_MODE (parm),
5102 DECL_RTL (fnargs),
5103 DECL_RTL (TREE_CHAIN (fnargs))));
5104 DECL_INCOMING_RTL (parm)
5105 = gen_rtx_CONCAT (DECL_MODE (parm),
5106 DECL_INCOMING_RTL (fnargs),
5107 DECL_INCOMING_RTL (TREE_CHAIN (fnargs)));
5108 fnargs = TREE_CHAIN (fnargs);
5110 else
5112 SET_DECL_RTL (parm, DECL_RTL (fnargs));
5113 DECL_INCOMING_RTL (parm) = DECL_INCOMING_RTL (fnargs);
5115 fnargs = TREE_CHAIN (fnargs);
5119 /* Output all parameter conversion instructions (possibly including calls)
5120 now that all parameters have been copied out of hard registers. */
5121 emit_insn (conversion_insns);
5123 /* If we are receiving a struct value address as the first argument, set up
5124 the RTL for the function result. As this might require code to convert
5125 the transmitted address to Pmode, we do this here to ensure that possible
5126 preliminary conversions of the address have been emitted already. */
5127 if (function_result_decl)
5129 tree result = DECL_RESULT (fndecl);
5130 rtx addr = DECL_RTL (function_result_decl);
5131 rtx x;
5133 #ifdef POINTERS_EXTEND_UNSIGNED
5134 if (GET_MODE (addr) != Pmode)
5135 addr = convert_memory_address (Pmode, addr);
5136 #endif
5138 x = gen_rtx_MEM (DECL_MODE (result), addr);
5139 set_mem_attributes (x, result, 1);
5140 SET_DECL_RTL (result, x);
5143 last_parm_insn = get_last_insn ();
5145 current_function_args_size = stack_args_size.constant;
5147 /* Adjust function incoming argument size for alignment and
5148 minimum length. */
5150 #ifdef REG_PARM_STACK_SPACE
5151 #ifndef MAYBE_REG_PARM_STACK_SPACE
5152 current_function_args_size = MAX (current_function_args_size,
5153 REG_PARM_STACK_SPACE (fndecl));
5154 #endif
5155 #endif
5157 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5159 current_function_args_size
5160 = ((current_function_args_size + STACK_BYTES - 1)
5161 / STACK_BYTES) * STACK_BYTES;
5163 #ifdef ARGS_GROW_DOWNWARD
5164 current_function_arg_offset_rtx
5165 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5166 : expand_expr (size_diffop (stack_args_size.var,
5167 size_int (-stack_args_size.constant)),
5168 NULL_RTX, VOIDmode, 0));
5169 #else
5170 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5171 #endif
5173 /* See how many bytes, if any, of its args a function should try to pop
5174 on return. */
5176 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5177 current_function_args_size);
5179 /* For stdarg.h function, save info about
5180 regs and stack space used by the named args. */
5182 current_function_args_info = args_so_far;
5184 /* Set the rtx used for the function return value. Put this in its
5185 own variable so any optimizers that need this information don't have
5186 to include tree.h. Do this here so it gets done when an inlined
5187 function gets output. */
5189 current_function_return_rtx
5190 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5191 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5193 /* If scalar return value was computed in a pseudo-reg, or was a named
5194 return value that got dumped to the stack, copy that to the hard
5195 return register. */
5196 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5198 tree decl_result = DECL_RESULT (fndecl);
5199 rtx decl_rtl = DECL_RTL (decl_result);
5201 if (REG_P (decl_rtl)
5202 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5203 : DECL_REGISTER (decl_result))
5205 rtx real_decl_rtl;
5207 #ifdef FUNCTION_OUTGOING_VALUE
5208 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5209 fndecl);
5210 #else
5211 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5212 fndecl);
5213 #endif
5214 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5215 /* The delay slot scheduler assumes that current_function_return_rtx
5216 holds the hard register containing the return value, not a
5217 temporary pseudo. */
5218 current_function_return_rtx = real_decl_rtl;
5223 /* If ARGS contains entries with complex types, split the entry into two
5224 entries of the component type. Return a new list of substitutions are
5225 needed, else the old list. */
5227 static tree
5228 split_complex_args (tree args)
5230 tree p;
5232 /* Before allocating memory, check for the common case of no complex. */
5233 for (p = args; p; p = TREE_CHAIN (p))
5234 if (TREE_CODE (TREE_TYPE (p)) == COMPLEX_TYPE)
5235 goto found;
5236 return args;
5238 found:
5239 args = copy_list (args);
5241 for (p = args; p; p = TREE_CHAIN (p))
5243 tree type = TREE_TYPE (p);
5244 if (TREE_CODE (type) == COMPLEX_TYPE)
5246 tree decl;
5247 tree subtype = TREE_TYPE (type);
5249 /* Rewrite the PARM_DECL's type with its component. */
5250 TREE_TYPE (p) = subtype;
5251 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
5252 DECL_MODE (p) = VOIDmode;
5253 DECL_SIZE (p) = NULL;
5254 DECL_SIZE_UNIT (p) = NULL;
5255 layout_decl (p, 0);
5257 /* Build a second synthetic decl. */
5258 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
5259 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
5260 layout_decl (decl, 0);
5262 /* Splice it in; skip the new decl. */
5263 TREE_CHAIN (decl) = TREE_CHAIN (p);
5264 TREE_CHAIN (p) = decl;
5265 p = decl;
5269 return args;
5272 /* Indicate whether REGNO is an incoming argument to the current function
5273 that was promoted to a wider mode. If so, return the RTX for the
5274 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5275 that REGNO is promoted from and whether the promotion was signed or
5276 unsigned. */
5278 #ifdef PROMOTE_FUNCTION_ARGS
5281 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
5283 tree arg;
5285 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5286 arg = TREE_CHAIN (arg))
5287 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5288 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5289 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5291 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5292 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5294 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5295 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5296 && mode != DECL_MODE (arg))
5298 *pmode = DECL_MODE (arg);
5299 *punsignedp = unsignedp;
5300 return DECL_INCOMING_RTL (arg);
5304 return 0;
5307 #endif
5309 /* Compute the size and offset from the start of the stacked arguments for a
5310 parm passed in mode PASSED_MODE and with type TYPE.
5312 INITIAL_OFFSET_PTR points to the current offset into the stacked
5313 arguments.
5315 The starting offset and size for this parm are returned in
5316 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
5317 nonzero, the offset is that of stack slot, which is returned in
5318 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
5319 padding required from the initial offset ptr to the stack slot.
5321 IN_REGS is nonzero if the argument will be passed in registers. It will
5322 never be set if REG_PARM_STACK_SPACE is not defined.
5324 FNDECL is the function in which the argument was defined.
5326 There are two types of rounding that are done. The first, controlled by
5327 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5328 list to be aligned to the specific boundary (in bits). This rounding
5329 affects the initial and starting offsets, but not the argument size.
5331 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5332 optionally rounds the size of the parm to PARM_BOUNDARY. The
5333 initial offset is not affected by this rounding, while the size always
5334 is and the starting offset may be. */
5336 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
5337 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
5338 callers pass in the total size of args so far as
5339 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
5341 void
5342 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
5343 int partial, tree fndecl ATTRIBUTE_UNUSED,
5344 struct args_size *initial_offset_ptr,
5345 struct locate_and_pad_arg_data *locate)
5347 tree sizetree;
5348 enum direction where_pad;
5349 int boundary;
5350 int reg_parm_stack_space = 0;
5351 int part_size_in_regs;
5353 #ifdef REG_PARM_STACK_SPACE
5354 #ifdef MAYBE_REG_PARM_STACK_SPACE
5355 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5356 #else
5357 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5358 #endif
5360 /* If we have found a stack parm before we reach the end of the
5361 area reserved for registers, skip that area. */
5362 if (! in_regs)
5364 if (reg_parm_stack_space > 0)
5366 if (initial_offset_ptr->var)
5368 initial_offset_ptr->var
5369 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5370 ssize_int (reg_parm_stack_space));
5371 initial_offset_ptr->constant = 0;
5373 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5374 initial_offset_ptr->constant = reg_parm_stack_space;
5377 #endif /* REG_PARM_STACK_SPACE */
5379 part_size_in_regs = 0;
5380 if (reg_parm_stack_space == 0)
5381 part_size_in_regs = ((partial * UNITS_PER_WORD)
5382 / (PARM_BOUNDARY / BITS_PER_UNIT)
5383 * (PARM_BOUNDARY / BITS_PER_UNIT));
5385 sizetree
5386 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5387 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5388 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5389 locate->where_pad = where_pad;
5391 #ifdef ARGS_GROW_DOWNWARD
5392 locate->slot_offset.constant = -initial_offset_ptr->constant;
5393 if (initial_offset_ptr->var)
5394 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
5395 initial_offset_ptr->var);
5398 tree s2 = sizetree;
5399 if (where_pad != none
5400 && (!host_integerp (sizetree, 1)
5401 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5402 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
5403 SUB_PARM_SIZE (locate->slot_offset, s2);
5406 locate->slot_offset.constant += part_size_in_regs;
5408 if (!in_regs
5409 #ifdef REG_PARM_STACK_SPACE
5410 || REG_PARM_STACK_SPACE (fndecl) > 0
5411 #endif
5413 pad_to_arg_alignment (&locate->slot_offset, boundary,
5414 &locate->alignment_pad);
5416 locate->size.constant = (-initial_offset_ptr->constant
5417 - locate->slot_offset.constant);
5418 if (initial_offset_ptr->var)
5419 locate->size.var = size_binop (MINUS_EXPR,
5420 size_binop (MINUS_EXPR,
5421 ssize_int (0),
5422 initial_offset_ptr->var),
5423 locate->slot_offset.var);
5425 /* Pad_below needs the pre-rounded size to know how much to pad
5426 below. */
5427 locate->offset = locate->slot_offset;
5428 if (where_pad == downward)
5429 pad_below (&locate->offset, passed_mode, sizetree);
5431 #else /* !ARGS_GROW_DOWNWARD */
5432 if (!in_regs
5433 #ifdef REG_PARM_STACK_SPACE
5434 || REG_PARM_STACK_SPACE (fndecl) > 0
5435 #endif
5437 pad_to_arg_alignment (initial_offset_ptr, boundary,
5438 &locate->alignment_pad);
5439 locate->slot_offset = *initial_offset_ptr;
5441 #ifdef PUSH_ROUNDING
5442 if (passed_mode != BLKmode)
5443 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5444 #endif
5446 /* Pad_below needs the pre-rounded size to know how much to pad below
5447 so this must be done before rounding up. */
5448 locate->offset = locate->slot_offset;
5449 if (where_pad == downward)
5450 pad_below (&locate->offset, passed_mode, sizetree);
5452 if (where_pad != none
5453 && (!host_integerp (sizetree, 1)
5454 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5455 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5457 ADD_PARM_SIZE (locate->size, sizetree);
5459 locate->size.constant -= part_size_in_regs;
5460 #endif /* ARGS_GROW_DOWNWARD */
5463 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5464 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5466 static void
5467 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
5468 struct args_size *alignment_pad)
5470 tree save_var = NULL_TREE;
5471 HOST_WIDE_INT save_constant = 0;
5473 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5475 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5477 save_var = offset_ptr->var;
5478 save_constant = offset_ptr->constant;
5481 alignment_pad->var = NULL_TREE;
5482 alignment_pad->constant = 0;
5484 if (boundary > BITS_PER_UNIT)
5486 if (offset_ptr->var)
5488 offset_ptr->var =
5489 #ifdef ARGS_GROW_DOWNWARD
5490 round_down
5491 #else
5492 round_up
5493 #endif
5494 (ARGS_SIZE_TREE (*offset_ptr),
5495 boundary / BITS_PER_UNIT);
5496 /* ARGS_SIZE_TREE includes constant term. */
5497 offset_ptr->constant = 0;
5498 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5499 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5500 save_var);
5502 else
5504 offset_ptr->constant =
5505 #ifdef ARGS_GROW_DOWNWARD
5506 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5507 #else
5508 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5509 #endif
5510 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5511 alignment_pad->constant = offset_ptr->constant - save_constant;
5516 static void
5517 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
5519 if (passed_mode != BLKmode)
5521 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5522 offset_ptr->constant
5523 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5524 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5525 - GET_MODE_SIZE (passed_mode));
5527 else
5529 if (TREE_CODE (sizetree) != INTEGER_CST
5530 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5532 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5533 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5534 /* Add it in. */
5535 ADD_PARM_SIZE (*offset_ptr, s2);
5536 SUB_PARM_SIZE (*offset_ptr, sizetree);
5541 /* Walk the tree of blocks describing the binding levels within a function
5542 and warn about uninitialized variables.
5543 This is done after calling flow_analysis and before global_alloc
5544 clobbers the pseudo-regs to hard regs. */
5546 void
5547 uninitialized_vars_warning (tree block)
5549 tree decl, sub;
5550 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5552 if (warn_uninitialized
5553 && TREE_CODE (decl) == VAR_DECL
5554 /* These warnings are unreliable for and aggregates
5555 because assigning the fields one by one can fail to convince
5556 flow.c that the entire aggregate was initialized.
5557 Unions are troublesome because members may be shorter. */
5558 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5559 && DECL_RTL (decl) != 0
5560 && GET_CODE (DECL_RTL (decl)) == REG
5561 /* Global optimizations can make it difficult to determine if a
5562 particular variable has been initialized. However, a VAR_DECL
5563 with a nonzero DECL_INITIAL had an initializer, so do not
5564 claim it is potentially uninitialized.
5566 When the DECL_INITIAL is NULL call the language hook to tell us
5567 if we want to warn. */
5568 && (DECL_INITIAL (decl) == NULL_TREE || lang_hooks.decl_uninit (decl))
5569 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5570 warning ("%H'%D' might be used uninitialized in this function",
5571 &DECL_SOURCE_LOCATION (decl), decl);
5572 if (extra_warnings
5573 && TREE_CODE (decl) == VAR_DECL
5574 && DECL_RTL (decl) != 0
5575 && GET_CODE (DECL_RTL (decl)) == REG
5576 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5577 warning ("%Hvariable '%D' might be clobbered by `longjmp' or `vfork'",
5578 &DECL_SOURCE_LOCATION (decl), decl);
5580 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5581 uninitialized_vars_warning (sub);
5584 /* Do the appropriate part of uninitialized_vars_warning
5585 but for arguments instead of local variables. */
5587 void
5588 setjmp_args_warning (void)
5590 tree decl;
5591 for (decl = DECL_ARGUMENTS (current_function_decl);
5592 decl; decl = TREE_CHAIN (decl))
5593 if (DECL_RTL (decl) != 0
5594 && GET_CODE (DECL_RTL (decl)) == REG
5595 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5596 warning ("%Hargument '%D' might be clobbered by `longjmp' or `vfork'",
5597 &DECL_SOURCE_LOCATION (decl), decl);
5600 /* If this function call setjmp, put all vars into the stack
5601 unless they were declared `register'. */
5603 void
5604 setjmp_protect (tree block)
5606 tree decl, sub;
5607 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5608 if ((TREE_CODE (decl) == VAR_DECL
5609 || TREE_CODE (decl) == PARM_DECL)
5610 && DECL_RTL (decl) != 0
5611 && (GET_CODE (DECL_RTL (decl)) == REG
5612 || (GET_CODE (DECL_RTL (decl)) == MEM
5613 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5614 /* If this variable came from an inline function, it must be
5615 that its life doesn't overlap the setjmp. If there was a
5616 setjmp in the function, it would already be in memory. We
5617 must exclude such variable because their DECL_RTL might be
5618 set to strange things such as virtual_stack_vars_rtx. */
5619 && ! DECL_FROM_INLINE (decl)
5620 && (
5621 #ifdef NON_SAVING_SETJMP
5622 /* If longjmp doesn't restore the registers,
5623 don't put anything in them. */
5624 NON_SAVING_SETJMP
5626 #endif
5627 ! DECL_REGISTER (decl)))
5628 put_var_into_stack (decl, /*rescan=*/true);
5629 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5630 setjmp_protect (sub);
5633 /* Like the previous function, but for args instead of local variables. */
5635 void
5636 setjmp_protect_args (void)
5638 tree decl;
5639 for (decl = DECL_ARGUMENTS (current_function_decl);
5640 decl; decl = TREE_CHAIN (decl))
5641 if ((TREE_CODE (decl) == VAR_DECL
5642 || TREE_CODE (decl) == PARM_DECL)
5643 && DECL_RTL (decl) != 0
5644 && (GET_CODE (DECL_RTL (decl)) == REG
5645 || (GET_CODE (DECL_RTL (decl)) == MEM
5646 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5647 && (
5648 /* If longjmp doesn't restore the registers,
5649 don't put anything in them. */
5650 #ifdef NON_SAVING_SETJMP
5651 NON_SAVING_SETJMP
5653 #endif
5654 ! DECL_REGISTER (decl)))
5655 put_var_into_stack (decl, /*rescan=*/true);
5658 /* Return the context-pointer register corresponding to DECL,
5659 or 0 if it does not need one. */
5662 lookup_static_chain (tree decl)
5664 tree context = decl_function_context (decl);
5665 tree link;
5667 if (context == 0
5668 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5669 return 0;
5671 /* We treat inline_function_decl as an alias for the current function
5672 because that is the inline function whose vars, types, etc.
5673 are being merged into the current function.
5674 See expand_inline_function. */
5675 if (context == current_function_decl || context == inline_function_decl)
5676 return virtual_stack_vars_rtx;
5678 for (link = context_display; link; link = TREE_CHAIN (link))
5679 if (TREE_PURPOSE (link) == context)
5680 return RTL_EXPR_RTL (TREE_VALUE (link));
5682 abort ();
5685 /* Convert a stack slot address ADDR for variable VAR
5686 (from a containing function)
5687 into an address valid in this function (using a static chain). */
5690 fix_lexical_addr (rtx addr, tree var)
5692 rtx basereg;
5693 HOST_WIDE_INT displacement;
5694 tree context = decl_function_context (var);
5695 struct function *fp;
5696 rtx base = 0;
5698 /* If this is the present function, we need not do anything. */
5699 if (context == current_function_decl || context == inline_function_decl)
5700 return addr;
5702 fp = find_function_data (context);
5704 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5705 addr = XEXP (XEXP (addr, 0), 0);
5707 /* Decode given address as base reg plus displacement. */
5708 if (GET_CODE (addr) == REG)
5709 basereg = addr, displacement = 0;
5710 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5711 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5712 else
5713 abort ();
5715 /* We accept vars reached via the containing function's
5716 incoming arg pointer and via its stack variables pointer. */
5717 if (basereg == fp->internal_arg_pointer)
5719 /* If reached via arg pointer, get the arg pointer value
5720 out of that function's stack frame.
5722 There are two cases: If a separate ap is needed, allocate a
5723 slot in the outer function for it and dereference it that way.
5724 This is correct even if the real ap is actually a pseudo.
5725 Otherwise, just adjust the offset from the frame pointer to
5726 compensate. */
5728 #ifdef NEED_SEPARATE_AP
5729 rtx addr;
5731 addr = get_arg_pointer_save_area (fp);
5732 addr = fix_lexical_addr (XEXP (addr, 0), var);
5733 addr = memory_address (Pmode, addr);
5735 base = gen_rtx_MEM (Pmode, addr);
5736 set_mem_alias_set (base, get_frame_alias_set ());
5737 base = copy_to_reg (base);
5738 #else
5739 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5740 base = lookup_static_chain (var);
5741 #endif
5744 else if (basereg == virtual_stack_vars_rtx)
5746 /* This is the same code as lookup_static_chain, duplicated here to
5747 avoid an extra call to decl_function_context. */
5748 tree link;
5750 for (link = context_display; link; link = TREE_CHAIN (link))
5751 if (TREE_PURPOSE (link) == context)
5753 base = RTL_EXPR_RTL (TREE_VALUE (link));
5754 break;
5758 if (base == 0)
5759 abort ();
5761 /* Use same offset, relative to appropriate static chain or argument
5762 pointer. */
5763 return plus_constant (base, displacement);
5766 /* Return the address of the trampoline for entering nested fn FUNCTION.
5767 If necessary, allocate a trampoline (in the stack frame)
5768 and emit rtl to initialize its contents (at entry to this function). */
5771 trampoline_address (tree function)
5773 tree link;
5774 tree rtlexp;
5775 rtx tramp;
5776 struct function *fp;
5777 tree fn_context;
5779 /* Find an existing trampoline and return it. */
5780 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5781 if (TREE_PURPOSE (link) == function)
5782 return
5783 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5785 for (fp = outer_function_chain; fp; fp = fp->outer)
5786 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5787 if (TREE_PURPOSE (link) == function)
5789 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5790 function);
5791 return adjust_trampoline_addr (tramp);
5794 /* None exists; we must make one. */
5796 /* Find the `struct function' for the function containing FUNCTION. */
5797 fp = 0;
5798 fn_context = decl_function_context (function);
5799 if (fn_context != current_function_decl
5800 && fn_context != inline_function_decl)
5801 fp = find_function_data (fn_context);
5803 /* Allocate run-time space for this trampoline. */
5804 /* If rounding needed, allocate extra space
5805 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5806 #define TRAMPOLINE_REAL_SIZE \
5807 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5808 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5809 fp ? fp : cfun);
5810 /* Record the trampoline for reuse and note it for later initialization
5811 by expand_function_end. */
5812 if (fp != 0)
5814 rtlexp = make_node (RTL_EXPR);
5815 RTL_EXPR_RTL (rtlexp) = tramp;
5816 fp->x_trampoline_list = tree_cons (function, rtlexp,
5817 fp->x_trampoline_list);
5819 else
5821 /* Make the RTL_EXPR node temporary, not momentary, so that the
5822 trampoline_list doesn't become garbage. */
5823 rtlexp = make_node (RTL_EXPR);
5825 RTL_EXPR_RTL (rtlexp) = tramp;
5826 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5829 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5830 return adjust_trampoline_addr (tramp);
5833 /* Given a trampoline address,
5834 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5836 static rtx
5837 round_trampoline_addr (rtx tramp)
5839 /* Round address up to desired boundary. */
5840 rtx temp = gen_reg_rtx (Pmode);
5841 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5842 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5844 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5845 temp, 0, OPTAB_LIB_WIDEN);
5846 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5847 temp, 0, OPTAB_LIB_WIDEN);
5849 return tramp;
5852 /* Given a trampoline address, round it then apply any
5853 platform-specific adjustments so that the result can be used for a
5854 function call . */
5856 static rtx
5857 adjust_trampoline_addr (rtx tramp)
5859 tramp = round_trampoline_addr (tramp);
5860 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5861 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5862 #endif
5863 return tramp;
5866 /* Put all this function's BLOCK nodes including those that are chained
5867 onto the first block into a vector, and return it.
5868 Also store in each NOTE for the beginning or end of a block
5869 the index of that block in the vector.
5870 The arguments are BLOCK, the chain of top-level blocks of the function,
5871 and INSNS, the insn chain of the function. */
5873 void
5874 identify_blocks (void)
5876 int n_blocks;
5877 tree *block_vector, *last_block_vector;
5878 tree *block_stack;
5879 tree block = DECL_INITIAL (current_function_decl);
5881 if (block == 0)
5882 return;
5884 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5885 depth-first order. */
5886 block_vector = get_block_vector (block, &n_blocks);
5887 block_stack = xmalloc (n_blocks * sizeof (tree));
5889 last_block_vector = identify_blocks_1 (get_insns (),
5890 block_vector + 1,
5891 block_vector + n_blocks,
5892 block_stack);
5894 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5895 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5896 if (0 && last_block_vector != block_vector + n_blocks)
5897 abort ();
5899 free (block_vector);
5900 free (block_stack);
5903 /* Subroutine of identify_blocks. Do the block substitution on the
5904 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5906 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5907 BLOCK_VECTOR is incremented for each block seen. */
5909 static tree *
5910 identify_blocks_1 (rtx insns, tree *block_vector, tree *end_block_vector,
5911 tree *orig_block_stack)
5913 rtx insn;
5914 tree *block_stack = orig_block_stack;
5916 for (insn = insns; insn; insn = NEXT_INSN (insn))
5918 if (GET_CODE (insn) == NOTE)
5920 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5922 tree b;
5924 /* If there are more block notes than BLOCKs, something
5925 is badly wrong. */
5926 if (block_vector == end_block_vector)
5927 abort ();
5929 b = *block_vector++;
5930 NOTE_BLOCK (insn) = b;
5931 *block_stack++ = b;
5933 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5935 /* If there are more NOTE_INSN_BLOCK_ENDs than
5936 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5937 if (block_stack == orig_block_stack)
5938 abort ();
5940 NOTE_BLOCK (insn) = *--block_stack;
5943 else if (GET_CODE (insn) == CALL_INSN
5944 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5946 rtx cp = PATTERN (insn);
5948 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5949 end_block_vector, block_stack);
5950 if (XEXP (cp, 1))
5951 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5952 end_block_vector, block_stack);
5953 if (XEXP (cp, 2))
5954 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5955 end_block_vector, block_stack);
5959 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5960 something is badly wrong. */
5961 if (block_stack != orig_block_stack)
5962 abort ();
5964 return block_vector;
5967 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5968 and create duplicate blocks. */
5969 /* ??? Need an option to either create block fragments or to create
5970 abstract origin duplicates of a source block. It really depends
5971 on what optimization has been performed. */
5973 void
5974 reorder_blocks (void)
5976 tree block = DECL_INITIAL (current_function_decl);
5977 varray_type block_stack;
5979 if (block == NULL_TREE)
5980 return;
5982 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5984 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5985 reorder_blocks_0 (block);
5987 /* Prune the old trees away, so that they don't get in the way. */
5988 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5989 BLOCK_CHAIN (block) = NULL_TREE;
5991 /* Recreate the block tree from the note nesting. */
5992 reorder_blocks_1 (get_insns (), block, &block_stack);
5993 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5995 /* Remove deleted blocks from the block fragment chains. */
5996 reorder_fix_fragments (block);
5999 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
6001 static void
6002 reorder_blocks_0 (tree block)
6004 while (block)
6006 TREE_ASM_WRITTEN (block) = 0;
6007 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
6008 block = BLOCK_CHAIN (block);
6012 static void
6013 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
6015 rtx insn;
6017 for (insn = insns; insn; insn = NEXT_INSN (insn))
6019 if (GET_CODE (insn) == NOTE)
6021 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
6023 tree block = NOTE_BLOCK (insn);
6025 /* If we have seen this block before, that means it now
6026 spans multiple address regions. Create a new fragment. */
6027 if (TREE_ASM_WRITTEN (block))
6029 tree new_block = copy_node (block);
6030 tree origin;
6032 origin = (BLOCK_FRAGMENT_ORIGIN (block)
6033 ? BLOCK_FRAGMENT_ORIGIN (block)
6034 : block);
6035 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
6036 BLOCK_FRAGMENT_CHAIN (new_block)
6037 = BLOCK_FRAGMENT_CHAIN (origin);
6038 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
6040 NOTE_BLOCK (insn) = new_block;
6041 block = new_block;
6044 BLOCK_SUBBLOCKS (block) = 0;
6045 TREE_ASM_WRITTEN (block) = 1;
6046 /* When there's only one block for the entire function,
6047 current_block == block and we mustn't do this, it
6048 will cause infinite recursion. */
6049 if (block != current_block)
6051 BLOCK_SUPERCONTEXT (block) = current_block;
6052 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
6053 BLOCK_SUBBLOCKS (current_block) = block;
6054 current_block = block;
6056 VARRAY_PUSH_TREE (*p_block_stack, block);
6058 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
6060 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
6061 VARRAY_POP (*p_block_stack);
6062 BLOCK_SUBBLOCKS (current_block)
6063 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
6064 current_block = BLOCK_SUPERCONTEXT (current_block);
6067 else if (GET_CODE (insn) == CALL_INSN
6068 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
6070 rtx cp = PATTERN (insn);
6071 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
6072 if (XEXP (cp, 1))
6073 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
6074 if (XEXP (cp, 2))
6075 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
6080 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
6081 appears in the block tree, select one of the fragments to become
6082 the new origin block. */
6084 static void
6085 reorder_fix_fragments (tree block)
6087 while (block)
6089 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6090 tree new_origin = NULL_TREE;
6092 if (dup_origin)
6094 if (! TREE_ASM_WRITTEN (dup_origin))
6096 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6098 /* Find the first of the remaining fragments. There must
6099 be at least one -- the current block. */
6100 while (! TREE_ASM_WRITTEN (new_origin))
6101 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6102 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6105 else if (! dup_origin)
6106 new_origin = block;
6108 /* Re-root the rest of the fragments to the new origin. In the
6109 case that DUP_ORIGIN was null, that means BLOCK was the origin
6110 of a chain of fragments and we want to remove those fragments
6111 that didn't make it to the output. */
6112 if (new_origin)
6114 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6115 tree chain = *pp;
6117 while (chain)
6119 if (TREE_ASM_WRITTEN (chain))
6121 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6122 *pp = chain;
6123 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6125 chain = BLOCK_FRAGMENT_CHAIN (chain);
6127 *pp = NULL_TREE;
6130 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6131 block = BLOCK_CHAIN (block);
6135 /* Reverse the order of elements in the chain T of blocks,
6136 and return the new head of the chain (old last element). */
6138 static tree
6139 blocks_nreverse (tree t)
6141 tree prev = 0, decl, next;
6142 for (decl = t; decl; decl = next)
6144 next = BLOCK_CHAIN (decl);
6145 BLOCK_CHAIN (decl) = prev;
6146 prev = decl;
6148 return prev;
6151 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6152 non-NULL, list them all into VECTOR, in a depth-first preorder
6153 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6154 blocks. */
6156 static int
6157 all_blocks (tree block, tree *vector)
6159 int n_blocks = 0;
6161 while (block)
6163 TREE_ASM_WRITTEN (block) = 0;
6165 /* Record this block. */
6166 if (vector)
6167 vector[n_blocks] = block;
6169 ++n_blocks;
6171 /* Record the subblocks, and their subblocks... */
6172 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6173 vector ? vector + n_blocks : 0);
6174 block = BLOCK_CHAIN (block);
6177 return n_blocks;
6180 /* Return a vector containing all the blocks rooted at BLOCK. The
6181 number of elements in the vector is stored in N_BLOCKS_P. The
6182 vector is dynamically allocated; it is the caller's responsibility
6183 to call `free' on the pointer returned. */
6185 static tree *
6186 get_block_vector (tree block, int *n_blocks_p)
6188 tree *block_vector;
6190 *n_blocks_p = all_blocks (block, NULL);
6191 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
6192 all_blocks (block, block_vector);
6194 return block_vector;
6197 static GTY(()) int next_block_index = 2;
6199 /* Set BLOCK_NUMBER for all the blocks in FN. */
6201 void
6202 number_blocks (tree fn)
6204 int i;
6205 int n_blocks;
6206 tree *block_vector;
6208 /* For SDB and XCOFF debugging output, we start numbering the blocks
6209 from 1 within each function, rather than keeping a running
6210 count. */
6211 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6212 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6213 next_block_index = 1;
6214 #endif
6216 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6218 /* The top-level BLOCK isn't numbered at all. */
6219 for (i = 1; i < n_blocks; ++i)
6220 /* We number the blocks from two. */
6221 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6223 free (block_vector);
6225 return;
6228 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6230 tree
6231 debug_find_var_in_block_tree (tree var, tree block)
6233 tree t;
6235 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6236 if (t == var)
6237 return block;
6239 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6241 tree ret = debug_find_var_in_block_tree (var, t);
6242 if (ret)
6243 return ret;
6246 return NULL_TREE;
6249 /* Allocate a function structure for FNDECL and set its contents
6250 to the defaults. */
6252 void
6253 allocate_struct_function (tree fndecl)
6255 tree result;
6257 cfun = ggc_alloc_cleared (sizeof (struct function));
6259 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6261 cfun->stack_alignment_needed = STACK_BOUNDARY;
6262 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6264 current_function_funcdef_no = funcdef_no++;
6266 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6268 init_stmt_for_function ();
6269 init_eh_for_function ();
6270 init_emit ();
6271 init_expr ();
6272 init_varasm_status (cfun);
6274 (*lang_hooks.function.init) (cfun);
6275 if (init_machine_status)
6276 cfun->machine = (*init_machine_status) ();
6278 if (fndecl == NULL)
6279 return;
6281 DECL_SAVED_INSNS (fndecl) = cfun;
6282 cfun->decl = fndecl;
6284 current_function_name = (*lang_hooks.decl_printable_name) (fndecl, 2);
6286 result = DECL_RESULT (fndecl);
6287 if (aggregate_value_p (result))
6289 #ifdef PCC_STATIC_STRUCT_RETURN
6290 current_function_returns_pcc_struct = 1;
6291 #endif
6292 current_function_returns_struct = 1;
6295 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
6297 current_function_needs_context
6298 = (decl_function_context (current_function_decl) != 0
6299 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6302 /* Reset cfun, and other non-struct-function variables to defaults as
6303 appropriate for emiiting rtl at the start of a function. */
6305 static void
6306 prepare_function_start (tree fndecl)
6308 if (fndecl && DECL_SAVED_INSNS (fndecl))
6309 cfun = DECL_SAVED_INSNS (fndecl);
6310 else
6311 allocate_struct_function (fndecl);
6313 cse_not_expected = ! optimize;
6315 /* Caller save not needed yet. */
6316 caller_save_needed = 0;
6318 /* We haven't done register allocation yet. */
6319 reg_renumber = 0;
6321 /* Indicate that we need to distinguish between the return value of the
6322 present function and the return value of a function being called. */
6323 rtx_equal_function_value_matters = 1;
6325 /* Indicate that we have not instantiated virtual registers yet. */
6326 virtuals_instantiated = 0;
6328 /* Indicate that we want CONCATs now. */
6329 generating_concat_p = 1;
6331 /* Indicate we have no need of a frame pointer yet. */
6332 frame_pointer_needed = 0;
6335 /* Initialize the rtl expansion mechanism so that we can do simple things
6336 like generate sequences. This is used to provide a context during global
6337 initialization of some passes. */
6338 void
6339 init_dummy_function_start (void)
6341 prepare_function_start (NULL);
6344 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6345 and initialize static variables for generating RTL for the statements
6346 of the function. */
6348 void
6349 init_function_start (tree subr)
6351 prepare_function_start (subr);
6353 /* Within function body, compute a type's size as soon it is laid out. */
6354 immediate_size_expand++;
6356 /* Prevent ever trying to delete the first instruction of a
6357 function. Also tell final how to output a linenum before the
6358 function prologue. Note linenums could be missing, e.g. when
6359 compiling a Java .class file. */
6360 if (DECL_SOURCE_LINE (subr))
6361 emit_line_note (DECL_SOURCE_LOCATION (subr));
6363 /* Make sure first insn is a note even if we don't want linenums.
6364 This makes sure the first insn will never be deleted.
6365 Also, final expects a note to appear there. */
6366 emit_note (NOTE_INSN_DELETED);
6368 /* Warn if this value is an aggregate type,
6369 regardless of which calling convention we are using for it. */
6370 if (warn_aggregate_return
6371 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6372 warning ("function returns an aggregate");
6375 /* Make sure all values used by the optimization passes have sane
6376 defaults. */
6377 void
6378 init_function_for_compilation (void)
6380 reg_renumber = 0;
6382 /* No prologue/epilogue insns yet. */
6383 VARRAY_GROW (prologue, 0);
6384 VARRAY_GROW (epilogue, 0);
6385 VARRAY_GROW (sibcall_epilogue, 0);
6388 /* Expand a call to __main at the beginning of a possible main function. */
6390 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6391 #undef HAS_INIT_SECTION
6392 #define HAS_INIT_SECTION
6393 #endif
6395 void
6396 expand_main_function (void)
6398 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6399 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6401 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6402 rtx tmp, seq;
6404 start_sequence ();
6405 /* Forcibly align the stack. */
6406 #ifdef STACK_GROWS_DOWNWARD
6407 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6408 stack_pointer_rtx, 1, OPTAB_WIDEN);
6409 #else
6410 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6411 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6412 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6413 stack_pointer_rtx, 1, OPTAB_WIDEN);
6414 #endif
6415 if (tmp != stack_pointer_rtx)
6416 emit_move_insn (stack_pointer_rtx, tmp);
6418 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6419 tmp = force_reg (Pmode, const0_rtx);
6420 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6421 seq = get_insns ();
6422 end_sequence ();
6424 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6425 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6426 break;
6427 if (tmp)
6428 emit_insn_before (seq, tmp);
6429 else
6430 emit_insn (seq);
6432 #endif
6434 #ifndef HAS_INIT_SECTION
6435 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
6436 #endif
6439 /* The PENDING_SIZES represent the sizes of variable-sized types.
6440 Create RTL for the various sizes now (using temporary variables),
6441 so that we can refer to the sizes from the RTL we are generating
6442 for the current function. The PENDING_SIZES are a TREE_LIST. The
6443 TREE_VALUE of each node is a SAVE_EXPR. */
6445 void
6446 expand_pending_sizes (tree pending_sizes)
6448 tree tem;
6450 /* Evaluate now the sizes of any types declared among the arguments. */
6451 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6453 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6454 /* Flush the queue in case this parameter declaration has
6455 side-effects. */
6456 emit_queue ();
6460 /* Start the RTL for a new function, and set variables used for
6461 emitting RTL.
6462 SUBR is the FUNCTION_DECL node.
6463 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6464 the function's parameters, which must be run at any return statement. */
6466 void
6467 expand_function_start (tree subr, int parms_have_cleanups)
6469 tree tem;
6470 rtx last_ptr = NULL_RTX;
6472 /* Make sure volatile mem refs aren't considered
6473 valid operands of arithmetic insns. */
6474 init_recog_no_volatile ();
6476 current_function_instrument_entry_exit
6477 = (flag_instrument_function_entry_exit
6478 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6480 current_function_profile
6481 = (profile_flag
6482 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6484 current_function_limit_stack
6485 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6487 /* If function gets a static chain arg, store it in the stack frame.
6488 Do this first, so it gets the first stack slot offset. */
6489 if (current_function_needs_context)
6491 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6493 /* Delay copying static chain if it is not a register to avoid
6494 conflicts with regs used for parameters. */
6495 if (! SMALL_REGISTER_CLASSES
6496 || GET_CODE (static_chain_incoming_rtx) == REG)
6497 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6500 /* If the parameters of this function need cleaning up, get a label
6501 for the beginning of the code which executes those cleanups. This must
6502 be done before doing anything with return_label. */
6503 if (parms_have_cleanups)
6504 cleanup_label = gen_label_rtx ();
6505 else
6506 cleanup_label = 0;
6508 /* Make the label for return statements to jump to. Do not special
6509 case machines with special return instructions -- they will be
6510 handled later during jump, ifcvt, or epilogue creation. */
6511 return_label = gen_label_rtx ();
6513 /* Initialize rtx used to return the value. */
6514 /* Do this before assign_parms so that we copy the struct value address
6515 before any library calls that assign parms might generate. */
6517 /* Decide whether to return the value in memory or in a register. */
6518 if (aggregate_value_p (DECL_RESULT (subr)))
6520 /* Returning something that won't go in a register. */
6521 rtx value_address = 0;
6523 #ifdef PCC_STATIC_STRUCT_RETURN
6524 if (current_function_returns_pcc_struct)
6526 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6527 value_address = assemble_static_space (size);
6529 else
6530 #endif
6532 /* Expect to be passed the address of a place to store the value.
6533 If it is passed as an argument, assign_parms will take care of
6534 it. */
6535 if (struct_value_incoming_rtx)
6537 value_address = gen_reg_rtx (Pmode);
6538 emit_move_insn (value_address, struct_value_incoming_rtx);
6541 if (value_address)
6543 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6544 set_mem_attributes (x, DECL_RESULT (subr), 1);
6545 SET_DECL_RTL (DECL_RESULT (subr), x);
6548 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6549 /* If return mode is void, this decl rtl should not be used. */
6550 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6551 else
6553 /* Compute the return values into a pseudo reg, which we will copy
6554 into the true return register after the cleanups are done. */
6556 /* In order to figure out what mode to use for the pseudo, we
6557 figure out what the mode of the eventual return register will
6558 actually be, and use that. */
6559 rtx hard_reg
6560 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6561 subr, 1);
6563 /* Structures that are returned in registers are not aggregate_value_p,
6564 so we may see a PARALLEL or a REG. */
6565 if (REG_P (hard_reg))
6566 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6567 else if (GET_CODE (hard_reg) == PARALLEL)
6568 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
6569 else
6570 abort ();
6572 /* Set DECL_REGISTER flag so that expand_function_end will copy the
6573 result to the real return register(s). */
6574 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6577 /* Initialize rtx for parameters and local variables.
6578 In some cases this requires emitting insns. */
6580 assign_parms (subr);
6582 /* Copy the static chain now if it wasn't a register. The delay is to
6583 avoid conflicts with the parameter passing registers. */
6585 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6586 if (GET_CODE (static_chain_incoming_rtx) != REG)
6587 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6589 /* The following was moved from init_function_start.
6590 The move is supposed to make sdb output more accurate. */
6591 /* Indicate the beginning of the function body,
6592 as opposed to parm setup. */
6593 emit_note (NOTE_INSN_FUNCTION_BEG);
6595 if (GET_CODE (get_last_insn ()) != NOTE)
6596 emit_note (NOTE_INSN_DELETED);
6597 parm_birth_insn = get_last_insn ();
6599 context_display = 0;
6600 if (current_function_needs_context)
6602 /* Fetch static chain values for containing functions. */
6603 tem = decl_function_context (current_function_decl);
6604 /* Copy the static chain pointer into a pseudo. If we have
6605 small register classes, copy the value from memory if
6606 static_chain_incoming_rtx is a REG. */
6607 if (tem)
6609 /* If the static chain originally came in a register, put it back
6610 there, then move it out in the next insn. The reason for
6611 this peculiar code is to satisfy function integration. */
6612 if (SMALL_REGISTER_CLASSES
6613 && GET_CODE (static_chain_incoming_rtx) == REG)
6614 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6615 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6618 while (tem)
6620 tree rtlexp = make_node (RTL_EXPR);
6622 RTL_EXPR_RTL (rtlexp) = last_ptr;
6623 context_display = tree_cons (tem, rtlexp, context_display);
6624 tem = decl_function_context (tem);
6625 if (tem == 0)
6626 break;
6627 /* Chain thru stack frames, assuming pointer to next lexical frame
6628 is found at the place we always store it. */
6629 #ifdef FRAME_GROWS_DOWNWARD
6630 last_ptr = plus_constant (last_ptr,
6631 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6632 #endif
6633 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6634 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6635 last_ptr = copy_to_reg (last_ptr);
6637 /* If we are not optimizing, ensure that we know that this
6638 piece of context is live over the entire function. */
6639 if (! optimize)
6640 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6641 save_expr_regs);
6645 if (current_function_instrument_entry_exit)
6647 rtx fun = DECL_RTL (current_function_decl);
6648 if (GET_CODE (fun) == MEM)
6649 fun = XEXP (fun, 0);
6650 else
6651 abort ();
6652 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6653 2, fun, Pmode,
6654 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6656 hard_frame_pointer_rtx),
6657 Pmode);
6660 if (current_function_profile)
6662 #ifdef PROFILE_HOOK
6663 PROFILE_HOOK (current_function_funcdef_no);
6664 #endif
6667 /* After the display initializations is where the tail-recursion label
6668 should go, if we end up needing one. Ensure we have a NOTE here
6669 since some things (like trampolines) get placed before this. */
6670 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6672 /* Evaluate now the sizes of any types declared among the arguments. */
6673 expand_pending_sizes (nreverse (get_pending_sizes ()));
6675 /* Make sure there is a line number after the function entry setup code. */
6676 force_next_line_note ();
6679 /* Undo the effects of init_dummy_function_start. */
6680 void
6681 expand_dummy_function_end (void)
6683 /* End any sequences that failed to be closed due to syntax errors. */
6684 while (in_sequence_p ())
6685 end_sequence ();
6687 /* Outside function body, can't compute type's actual size
6688 until next function's body starts. */
6690 free_after_parsing (cfun);
6691 free_after_compilation (cfun);
6692 cfun = 0;
6695 /* Call DOIT for each hard register used as a return value from
6696 the current function. */
6698 void
6699 diddle_return_value (void (*doit) (rtx, void *), void *arg)
6701 rtx outgoing = current_function_return_rtx;
6703 if (! outgoing)
6704 return;
6706 if (GET_CODE (outgoing) == REG)
6707 (*doit) (outgoing, arg);
6708 else if (GET_CODE (outgoing) == PARALLEL)
6710 int i;
6712 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6714 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6716 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6717 (*doit) (x, arg);
6722 static void
6723 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6725 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6728 void
6729 clobber_return_register (void)
6731 diddle_return_value (do_clobber_return_reg, NULL);
6733 /* In case we do use pseudo to return value, clobber it too. */
6734 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6736 tree decl_result = DECL_RESULT (current_function_decl);
6737 rtx decl_rtl = DECL_RTL (decl_result);
6738 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6740 do_clobber_return_reg (decl_rtl, NULL);
6745 static void
6746 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
6748 emit_insn (gen_rtx_USE (VOIDmode, reg));
6751 void
6752 use_return_register (void)
6754 diddle_return_value (do_use_return_reg, NULL);
6757 static GTY(()) rtx initial_trampoline;
6759 /* Generate RTL for the end of the current function. */
6761 void
6762 expand_function_end (void)
6764 tree link;
6765 rtx clobber_after;
6767 finish_expr_for_function ();
6769 /* If arg_pointer_save_area was referenced only from a nested
6770 function, we will not have initialized it yet. Do that now. */
6771 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6772 get_arg_pointer_save_area (cfun);
6774 #ifdef NON_SAVING_SETJMP
6775 /* Don't put any variables in registers if we call setjmp
6776 on a machine that fails to restore the registers. */
6777 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6779 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6780 setjmp_protect (DECL_INITIAL (current_function_decl));
6782 setjmp_protect_args ();
6784 #endif
6786 /* Initialize any trampolines required by this function. */
6787 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6789 tree function = TREE_PURPOSE (link);
6790 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6791 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6792 #ifdef TRAMPOLINE_TEMPLATE
6793 rtx blktramp;
6794 #endif
6795 rtx seq;
6797 #ifdef TRAMPOLINE_TEMPLATE
6798 /* First make sure this compilation has a template for
6799 initializing trampolines. */
6800 if (initial_trampoline == 0)
6802 initial_trampoline
6803 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6804 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6806 #endif
6808 /* Generate insns to initialize the trampoline. */
6809 start_sequence ();
6810 tramp = round_trampoline_addr (XEXP (tramp, 0));
6811 #ifdef TRAMPOLINE_TEMPLATE
6812 blktramp = replace_equiv_address (initial_trampoline, tramp);
6813 emit_block_move (blktramp, initial_trampoline,
6814 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
6815 #endif
6816 trampolines_created = 1;
6817 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6818 seq = get_insns ();
6819 end_sequence ();
6821 /* Put those insns at entry to the containing function (this one). */
6822 emit_insn_before (seq, tail_recursion_reentry);
6825 /* If we are doing stack checking and this function makes calls,
6826 do a stack probe at the start of the function to ensure we have enough
6827 space for another stack frame. */
6828 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6830 rtx insn, seq;
6832 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6833 if (GET_CODE (insn) == CALL_INSN)
6835 start_sequence ();
6836 probe_stack_range (STACK_CHECK_PROTECT,
6837 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6838 seq = get_insns ();
6839 end_sequence ();
6840 emit_insn_before (seq, tail_recursion_reentry);
6841 break;
6845 /* Possibly warn about unused parameters. */
6846 if (warn_unused_parameter)
6848 tree decl;
6850 for (decl = DECL_ARGUMENTS (current_function_decl);
6851 decl; decl = TREE_CHAIN (decl))
6852 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6853 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6854 warning ("%Hunused parameter '%D'",
6855 &DECL_SOURCE_LOCATION (decl), decl);
6858 /* Delete handlers for nonlocal gotos if nothing uses them. */
6859 if (nonlocal_goto_handler_slots != 0
6860 && ! current_function_has_nonlocal_label)
6861 delete_handlers ();
6863 /* End any sequences that failed to be closed due to syntax errors. */
6864 while (in_sequence_p ())
6865 end_sequence ();
6867 /* Outside function body, can't compute type's actual size
6868 until next function's body starts. */
6869 immediate_size_expand--;
6871 clear_pending_stack_adjust ();
6872 do_pending_stack_adjust ();
6874 /* Mark the end of the function body.
6875 If control reaches this insn, the function can drop through
6876 without returning a value. */
6877 emit_note (NOTE_INSN_FUNCTION_END);
6879 /* Must mark the last line number note in the function, so that the test
6880 coverage code can avoid counting the last line twice. This just tells
6881 the code to ignore the immediately following line note, since there
6882 already exists a copy of this note somewhere above. This line number
6883 note is still needed for debugging though, so we can't delete it. */
6884 if (flag_test_coverage)
6885 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
6887 /* Output a linenumber for the end of the function.
6888 SDB depends on this. */
6889 force_next_line_note ();
6890 emit_line_note (input_location);
6892 /* Before the return label (if any), clobber the return
6893 registers so that they are not propagated live to the rest of
6894 the function. This can only happen with functions that drop
6895 through; if there had been a return statement, there would
6896 have either been a return rtx, or a jump to the return label.
6898 We delay actual code generation after the current_function_value_rtx
6899 is computed. */
6900 clobber_after = get_last_insn ();
6902 /* Output the label for the actual return from the function,
6903 if one is expected. This happens either because a function epilogue
6904 is used instead of a return instruction, or because a return was done
6905 with a goto in order to run local cleanups, or because of pcc-style
6906 structure returning. */
6907 if (return_label)
6908 emit_label (return_label);
6910 if (current_function_instrument_entry_exit)
6912 rtx fun = DECL_RTL (current_function_decl);
6913 if (GET_CODE (fun) == MEM)
6914 fun = XEXP (fun, 0);
6915 else
6916 abort ();
6917 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
6918 2, fun, Pmode,
6919 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6921 hard_frame_pointer_rtx),
6922 Pmode);
6925 /* Let except.c know where it should emit the call to unregister
6926 the function context for sjlj exceptions. */
6927 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6928 sjlj_emit_function_exit_after (get_last_insn ());
6930 /* If we had calls to alloca, and this machine needs
6931 an accurate stack pointer to exit the function,
6932 insert some code to save and restore the stack pointer. */
6933 #ifdef EXIT_IGNORE_STACK
6934 if (! EXIT_IGNORE_STACK)
6935 #endif
6936 if (current_function_calls_alloca)
6938 rtx tem = 0;
6940 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6941 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6944 /* If scalar return value was computed in a pseudo-reg, or was a named
6945 return value that got dumped to the stack, copy that to the hard
6946 return register. */
6947 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6949 tree decl_result = DECL_RESULT (current_function_decl);
6950 rtx decl_rtl = DECL_RTL (decl_result);
6952 if (REG_P (decl_rtl)
6953 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6954 : DECL_REGISTER (decl_result))
6956 rtx real_decl_rtl = current_function_return_rtx;
6958 /* This should be set in assign_parms. */
6959 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
6960 abort ();
6962 /* If this is a BLKmode structure being returned in registers,
6963 then use the mode computed in expand_return. Note that if
6964 decl_rtl is memory, then its mode may have been changed,
6965 but that current_function_return_rtx has not. */
6966 if (GET_MODE (real_decl_rtl) == BLKmode)
6967 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
6969 /* If a named return value dumped decl_return to memory, then
6970 we may need to re-do the PROMOTE_MODE signed/unsigned
6971 extension. */
6972 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6974 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6976 #ifdef PROMOTE_FUNCTION_RETURN
6977 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6978 &unsignedp, 1);
6979 #endif
6981 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6983 else if (GET_CODE (real_decl_rtl) == PARALLEL)
6985 /* If expand_function_start has created a PARALLEL for decl_rtl,
6986 move the result to the real return registers. Otherwise, do
6987 a group load from decl_rtl for a named return. */
6988 if (GET_CODE (decl_rtl) == PARALLEL)
6989 emit_group_move (real_decl_rtl, decl_rtl);
6990 else
6991 emit_group_load (real_decl_rtl, decl_rtl,
6992 TREE_TYPE (decl_result),
6993 int_size_in_bytes (TREE_TYPE (decl_result)));
6995 else
6996 emit_move_insn (real_decl_rtl, decl_rtl);
7000 /* If returning a structure, arrange to return the address of the value
7001 in a place where debuggers expect to find it.
7003 If returning a structure PCC style,
7004 the caller also depends on this value.
7005 And current_function_returns_pcc_struct is not necessarily set. */
7006 if (current_function_returns_struct
7007 || current_function_returns_pcc_struct)
7009 rtx value_address
7010 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7011 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7012 #ifdef FUNCTION_OUTGOING_VALUE
7013 rtx outgoing
7014 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7015 current_function_decl);
7016 #else
7017 rtx outgoing
7018 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7019 #endif
7021 /* Mark this as a function return value so integrate will delete the
7022 assignment and USE below when inlining this function. */
7023 REG_FUNCTION_VALUE_P (outgoing) = 1;
7025 #ifdef POINTERS_EXTEND_UNSIGNED
7026 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7027 if (GET_MODE (outgoing) != GET_MODE (value_address))
7028 value_address = convert_memory_address (GET_MODE (outgoing),
7029 value_address);
7030 #endif
7032 emit_move_insn (outgoing, value_address);
7034 /* Show return register used to hold result (in this case the address
7035 of the result. */
7036 current_function_return_rtx = outgoing;
7039 /* If this is an implementation of throw, do what's necessary to
7040 communicate between __builtin_eh_return and the epilogue. */
7041 expand_eh_return ();
7043 /* Emit the actual code to clobber return register. */
7045 rtx seq, after;
7047 start_sequence ();
7048 clobber_return_register ();
7049 seq = get_insns ();
7050 end_sequence ();
7052 after = emit_insn_after (seq, clobber_after);
7054 if (clobber_after != after)
7055 cfun->x_clobber_return_insn = after;
7058 /* ??? This should no longer be necessary since stupid is no longer with
7059 us, but there are some parts of the compiler (eg reload_combine, and
7060 sh mach_dep_reorg) that still try and compute their own lifetime info
7061 instead of using the general framework. */
7062 use_return_register ();
7064 /* Fix up any gotos that jumped out to the outermost
7065 binding level of the function.
7066 Must follow emitting RETURN_LABEL. */
7068 /* If you have any cleanups to do at this point,
7069 and they need to create temporary variables,
7070 then you will lose. */
7071 expand_fixups (get_insns ());
7075 get_arg_pointer_save_area (struct function *f)
7077 rtx ret = f->x_arg_pointer_save_area;
7079 if (! ret)
7081 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7082 f->x_arg_pointer_save_area = ret;
7085 if (f == cfun && ! f->arg_pointer_save_area_init)
7087 rtx seq;
7089 /* Save the arg pointer at the beginning of the function. The
7090 generated stack slot may not be a valid memory address, so we
7091 have to check it and fix it if necessary. */
7092 start_sequence ();
7093 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7094 seq = get_insns ();
7095 end_sequence ();
7097 push_topmost_sequence ();
7098 emit_insn_after (seq, get_insns ());
7099 pop_topmost_sequence ();
7102 return ret;
7105 /* Extend a vector that records the INSN_UIDs of INSNS
7106 (a list of one or more insns). */
7108 static void
7109 record_insns (rtx insns, varray_type *vecp)
7111 int i, len;
7112 rtx tmp;
7114 tmp = insns;
7115 len = 0;
7116 while (tmp != NULL_RTX)
7118 len++;
7119 tmp = NEXT_INSN (tmp);
7122 i = VARRAY_SIZE (*vecp);
7123 VARRAY_GROW (*vecp, i + len);
7124 tmp = insns;
7125 while (tmp != NULL_RTX)
7127 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7128 i++;
7129 tmp = NEXT_INSN (tmp);
7133 /* Set the specified locator to the insn chain. */
7134 static void
7135 set_insn_locators (rtx insn, int loc)
7137 while (insn != NULL_RTX)
7139 if (INSN_P (insn))
7140 INSN_LOCATOR (insn) = loc;
7141 insn = NEXT_INSN (insn);
7145 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7146 be running after reorg, SEQUENCE rtl is possible. */
7148 static int
7149 contains (rtx insn, varray_type vec)
7151 int i, j;
7153 if (GET_CODE (insn) == INSN
7154 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7156 int count = 0;
7157 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7158 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7159 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7160 count++;
7161 return count;
7163 else
7165 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7166 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7167 return 1;
7169 return 0;
7173 prologue_epilogue_contains (rtx insn)
7175 if (contains (insn, prologue))
7176 return 1;
7177 if (contains (insn, epilogue))
7178 return 1;
7179 return 0;
7183 sibcall_epilogue_contains (rtx insn)
7185 if (sibcall_epilogue)
7186 return contains (insn, sibcall_epilogue);
7187 return 0;
7190 #ifdef HAVE_return
7191 /* Insert gen_return at the end of block BB. This also means updating
7192 block_for_insn appropriately. */
7194 static void
7195 emit_return_into_block (basic_block bb, rtx line_note)
7197 emit_jump_insn_after (gen_return (), bb->end);
7198 if (line_note)
7199 emit_note_copy_after (line_note, PREV_INSN (bb->end));
7201 #endif /* HAVE_return */
7203 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7205 /* These functions convert the epilogue into a variant that does not modify the
7206 stack pointer. This is used in cases where a function returns an object
7207 whose size is not known until it is computed. The called function leaves the
7208 object on the stack, leaves the stack depressed, and returns a pointer to
7209 the object.
7211 What we need to do is track all modifications and references to the stack
7212 pointer, deleting the modifications and changing the references to point to
7213 the location the stack pointer would have pointed to had the modifications
7214 taken place.
7216 These functions need to be portable so we need to make as few assumptions
7217 about the epilogue as we can. However, the epilogue basically contains
7218 three things: instructions to reset the stack pointer, instructions to
7219 reload registers, possibly including the frame pointer, and an
7220 instruction to return to the caller.
7222 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7223 We also make no attempt to validate the insns we make since if they are
7224 invalid, we probably can't do anything valid. The intent is that these
7225 routines get "smarter" as more and more machines start to use them and
7226 they try operating on different epilogues.
7228 We use the following structure to track what the part of the epilogue that
7229 we've already processed has done. We keep two copies of the SP equivalence,
7230 one for use during the insn we are processing and one for use in the next
7231 insn. The difference is because one part of a PARALLEL may adjust SP
7232 and the other may use it. */
7234 struct epi_info
7236 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7237 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7238 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7239 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7240 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7241 should be set to once we no longer need
7242 its value. */
7245 static void handle_epilogue_set (rtx, struct epi_info *);
7246 static void emit_equiv_load (struct epi_info *);
7248 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7249 no modifications to the stack pointer. Return the new list of insns. */
7251 static rtx
7252 keep_stack_depressed (rtx insns)
7254 int j;
7255 struct epi_info info;
7256 rtx insn, next;
7258 /* If the epilogue is just a single instruction, it ust be OK as is. */
7260 if (NEXT_INSN (insns) == NULL_RTX)
7261 return insns;
7263 /* Otherwise, start a sequence, initialize the information we have, and
7264 process all the insns we were given. */
7265 start_sequence ();
7267 info.sp_equiv_reg = stack_pointer_rtx;
7268 info.sp_offset = 0;
7269 info.equiv_reg_src = 0;
7271 insn = insns;
7272 next = NULL_RTX;
7273 while (insn != NULL_RTX)
7275 next = NEXT_INSN (insn);
7277 if (!INSN_P (insn))
7279 add_insn (insn);
7280 insn = next;
7281 continue;
7284 /* If this insn references the register that SP is equivalent to and
7285 we have a pending load to that register, we must force out the load
7286 first and then indicate we no longer know what SP's equivalent is. */
7287 if (info.equiv_reg_src != 0
7288 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7290 emit_equiv_load (&info);
7291 info.sp_equiv_reg = 0;
7294 info.new_sp_equiv_reg = info.sp_equiv_reg;
7295 info.new_sp_offset = info.sp_offset;
7297 /* If this is a (RETURN) and the return address is on the stack,
7298 update the address and change to an indirect jump. */
7299 if (GET_CODE (PATTERN (insn)) == RETURN
7300 || (GET_CODE (PATTERN (insn)) == PARALLEL
7301 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7303 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7304 rtx base = 0;
7305 HOST_WIDE_INT offset = 0;
7306 rtx jump_insn, jump_set;
7308 /* If the return address is in a register, we can emit the insn
7309 unchanged. Otherwise, it must be a MEM and we see what the
7310 base register and offset are. In any case, we have to emit any
7311 pending load to the equivalent reg of SP, if any. */
7312 if (GET_CODE (retaddr) == REG)
7314 emit_equiv_load (&info);
7315 add_insn (insn);
7316 insn = next;
7317 continue;
7319 else if (GET_CODE (retaddr) == MEM
7320 && GET_CODE (XEXP (retaddr, 0)) == REG)
7321 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7322 else if (GET_CODE (retaddr) == MEM
7323 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7324 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7325 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7327 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7328 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7330 else
7331 abort ();
7333 /* If the base of the location containing the return pointer
7334 is SP, we must update it with the replacement address. Otherwise,
7335 just build the necessary MEM. */
7336 retaddr = plus_constant (base, offset);
7337 if (base == stack_pointer_rtx)
7338 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7339 plus_constant (info.sp_equiv_reg,
7340 info.sp_offset));
7342 retaddr = gen_rtx_MEM (Pmode, retaddr);
7344 /* If there is a pending load to the equivalent register for SP
7345 and we reference that register, we must load our address into
7346 a scratch register and then do that load. */
7347 if (info.equiv_reg_src
7348 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7350 unsigned int regno;
7351 rtx reg;
7353 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7354 if (HARD_REGNO_MODE_OK (regno, Pmode)
7355 && !fixed_regs[regno]
7356 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7357 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7358 regno)
7359 && !refers_to_regno_p (regno,
7360 regno + HARD_REGNO_NREGS (regno,
7361 Pmode),
7362 info.equiv_reg_src, NULL))
7363 break;
7365 if (regno == FIRST_PSEUDO_REGISTER)
7366 abort ();
7368 reg = gen_rtx_REG (Pmode, regno);
7369 emit_move_insn (reg, retaddr);
7370 retaddr = reg;
7373 emit_equiv_load (&info);
7374 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7376 /* Show the SET in the above insn is a RETURN. */
7377 jump_set = single_set (jump_insn);
7378 if (jump_set == 0)
7379 abort ();
7380 else
7381 SET_IS_RETURN_P (jump_set) = 1;
7384 /* If SP is not mentioned in the pattern and its equivalent register, if
7385 any, is not modified, just emit it. Otherwise, if neither is set,
7386 replace the reference to SP and emit the insn. If none of those are
7387 true, handle each SET individually. */
7388 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7389 && (info.sp_equiv_reg == stack_pointer_rtx
7390 || !reg_set_p (info.sp_equiv_reg, insn)))
7391 add_insn (insn);
7392 else if (! reg_set_p (stack_pointer_rtx, insn)
7393 && (info.sp_equiv_reg == stack_pointer_rtx
7394 || !reg_set_p (info.sp_equiv_reg, insn)))
7396 if (! validate_replace_rtx (stack_pointer_rtx,
7397 plus_constant (info.sp_equiv_reg,
7398 info.sp_offset),
7399 insn))
7400 abort ();
7402 add_insn (insn);
7404 else if (GET_CODE (PATTERN (insn)) == SET)
7405 handle_epilogue_set (PATTERN (insn), &info);
7406 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7408 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7409 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7410 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7412 else
7413 add_insn (insn);
7415 info.sp_equiv_reg = info.new_sp_equiv_reg;
7416 info.sp_offset = info.new_sp_offset;
7418 insn = next;
7421 insns = get_insns ();
7422 end_sequence ();
7423 return insns;
7426 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7427 structure that contains information about what we've seen so far. We
7428 process this SET by either updating that data or by emitting one or
7429 more insns. */
7431 static void
7432 handle_epilogue_set (rtx set, struct epi_info *p)
7434 /* First handle the case where we are setting SP. Record what it is being
7435 set from. If unknown, abort. */
7436 if (reg_set_p (stack_pointer_rtx, set))
7438 if (SET_DEST (set) != stack_pointer_rtx)
7439 abort ();
7441 if (GET_CODE (SET_SRC (set)) == PLUS
7442 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7444 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7445 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7447 else
7448 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7450 /* If we are adjusting SP, we adjust from the old data. */
7451 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7453 p->new_sp_equiv_reg = p->sp_equiv_reg;
7454 p->new_sp_offset += p->sp_offset;
7457 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7458 abort ();
7460 return;
7463 /* Next handle the case where we are setting SP's equivalent register.
7464 If we already have a value to set it to, abort. We could update, but
7465 there seems little point in handling that case. Note that we have
7466 to allow for the case where we are setting the register set in
7467 the previous part of a PARALLEL inside a single insn. But use the
7468 old offset for any updates within this insn. */
7469 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7471 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7472 || p->equiv_reg_src != 0)
7473 abort ();
7474 else
7475 p->equiv_reg_src
7476 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7477 plus_constant (p->sp_equiv_reg,
7478 p->sp_offset));
7481 /* Otherwise, replace any references to SP in the insn to its new value
7482 and emit the insn. */
7483 else
7485 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7486 plus_constant (p->sp_equiv_reg,
7487 p->sp_offset));
7488 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7489 plus_constant (p->sp_equiv_reg,
7490 p->sp_offset));
7491 emit_insn (set);
7495 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7497 static void
7498 emit_equiv_load (struct epi_info *p)
7500 if (p->equiv_reg_src != 0)
7501 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7503 p->equiv_reg_src = 0;
7505 #endif
7507 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7508 this into place with notes indicating where the prologue ends and where
7509 the epilogue begins. Update the basic block information when possible. */
7511 void
7512 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
7514 int inserted = 0;
7515 edge e;
7516 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7517 rtx seq;
7518 #endif
7519 #ifdef HAVE_prologue
7520 rtx prologue_end = NULL_RTX;
7521 #endif
7522 #if defined (HAVE_epilogue) || defined(HAVE_return)
7523 rtx epilogue_end = NULL_RTX;
7524 #endif
7526 #ifdef HAVE_prologue
7527 if (HAVE_prologue)
7529 start_sequence ();
7530 seq = gen_prologue ();
7531 emit_insn (seq);
7533 /* Retain a map of the prologue insns. */
7534 record_insns (seq, &prologue);
7535 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
7537 seq = get_insns ();
7538 end_sequence ();
7539 set_insn_locators (seq, prologue_locator);
7541 /* Can't deal with multiple successors of the entry block
7542 at the moment. Function should always have at least one
7543 entry point. */
7544 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7545 abort ();
7547 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7548 inserted = 1;
7550 #endif
7552 /* If the exit block has no non-fake predecessors, we don't need
7553 an epilogue. */
7554 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7555 if ((e->flags & EDGE_FAKE) == 0)
7556 break;
7557 if (e == NULL)
7558 goto epilogue_done;
7560 #ifdef HAVE_return
7561 if (optimize && HAVE_return)
7563 /* If we're allowed to generate a simple return instruction,
7564 then by definition we don't need a full epilogue. Examine
7565 the block that falls through to EXIT. If it does not
7566 contain any code, examine its predecessors and try to
7567 emit (conditional) return instructions. */
7569 basic_block last;
7570 edge e_next;
7571 rtx label;
7573 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7574 if (e->flags & EDGE_FALLTHRU)
7575 break;
7576 if (e == NULL)
7577 goto epilogue_done;
7578 last = e->src;
7580 /* Verify that there are no active instructions in the last block. */
7581 label = last->end;
7582 while (label && GET_CODE (label) != CODE_LABEL)
7584 if (active_insn_p (label))
7585 break;
7586 label = PREV_INSN (label);
7589 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7591 rtx epilogue_line_note = NULL_RTX;
7593 /* Locate the line number associated with the closing brace,
7594 if we can find one. */
7595 for (seq = get_last_insn ();
7596 seq && ! active_insn_p (seq);
7597 seq = PREV_INSN (seq))
7598 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7600 epilogue_line_note = seq;
7601 break;
7604 for (e = last->pred; e; e = e_next)
7606 basic_block bb = e->src;
7607 rtx jump;
7609 e_next = e->pred_next;
7610 if (bb == ENTRY_BLOCK_PTR)
7611 continue;
7613 jump = bb->end;
7614 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7615 continue;
7617 /* If we have an unconditional jump, we can replace that
7618 with a simple return instruction. */
7619 if (simplejump_p (jump))
7621 emit_return_into_block (bb, epilogue_line_note);
7622 delete_insn (jump);
7625 /* If we have a conditional jump, we can try to replace
7626 that with a conditional return instruction. */
7627 else if (condjump_p (jump))
7629 if (! redirect_jump (jump, 0, 0))
7630 continue;
7632 /* If this block has only one successor, it both jumps
7633 and falls through to the fallthru block, so we can't
7634 delete the edge. */
7635 if (bb->succ->succ_next == NULL)
7636 continue;
7638 else
7639 continue;
7641 /* Fix up the CFG for the successful change we just made. */
7642 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7645 /* Emit a return insn for the exit fallthru block. Whether
7646 this is still reachable will be determined later. */
7648 emit_barrier_after (last->end);
7649 emit_return_into_block (last, epilogue_line_note);
7650 epilogue_end = last->end;
7651 last->succ->flags &= ~EDGE_FALLTHRU;
7652 goto epilogue_done;
7655 #endif
7656 #ifdef HAVE_epilogue
7657 if (HAVE_epilogue)
7659 /* Find the edge that falls through to EXIT. Other edges may exist
7660 due to RETURN instructions, but those don't need epilogues.
7661 There really shouldn't be a mixture -- either all should have
7662 been converted or none, however... */
7664 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7665 if (e->flags & EDGE_FALLTHRU)
7666 break;
7667 if (e == NULL)
7668 goto epilogue_done;
7670 start_sequence ();
7671 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
7673 seq = gen_epilogue ();
7675 #ifdef INCOMING_RETURN_ADDR_RTX
7676 /* If this function returns with the stack depressed and we can support
7677 it, massage the epilogue to actually do that. */
7678 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7679 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7680 seq = keep_stack_depressed (seq);
7681 #endif
7683 emit_jump_insn (seq);
7685 /* Retain a map of the epilogue insns. */
7686 record_insns (seq, &epilogue);
7687 set_insn_locators (seq, epilogue_locator);
7689 seq = get_insns ();
7690 end_sequence ();
7692 insert_insn_on_edge (seq, e);
7693 inserted = 1;
7695 #endif
7696 epilogue_done:
7698 if (inserted)
7699 commit_edge_insertions ();
7701 #ifdef HAVE_sibcall_epilogue
7702 /* Emit sibling epilogues before any sibling call sites. */
7703 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7705 basic_block bb = e->src;
7706 rtx insn = bb->end;
7707 rtx i;
7708 rtx newinsn;
7710 if (GET_CODE (insn) != CALL_INSN
7711 || ! SIBLING_CALL_P (insn))
7712 continue;
7714 start_sequence ();
7715 emit_insn (gen_sibcall_epilogue ());
7716 seq = get_insns ();
7717 end_sequence ();
7719 /* Retain a map of the epilogue insns. Used in life analysis to
7720 avoid getting rid of sibcall epilogue insns. Do this before we
7721 actually emit the sequence. */
7722 record_insns (seq, &sibcall_epilogue);
7723 set_insn_locators (seq, epilogue_locator);
7725 i = PREV_INSN (insn);
7726 newinsn = emit_insn_before (seq, insn);
7728 #endif
7730 #ifdef HAVE_prologue
7731 if (prologue_end)
7733 rtx insn, prev;
7735 /* GDB handles `break f' by setting a breakpoint on the first
7736 line note after the prologue. Which means (1) that if
7737 there are line number notes before where we inserted the
7738 prologue we should move them, and (2) we should generate a
7739 note before the end of the first basic block, if there isn't
7740 one already there.
7742 ??? This behavior is completely broken when dealing with
7743 multiple entry functions. We simply place the note always
7744 into first basic block and let alternate entry points
7745 to be missed.
7748 for (insn = prologue_end; insn; insn = prev)
7750 prev = PREV_INSN (insn);
7751 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7753 /* Note that we cannot reorder the first insn in the
7754 chain, since rest_of_compilation relies on that
7755 remaining constant. */
7756 if (prev == NULL)
7757 break;
7758 reorder_insns (insn, insn, prologue_end);
7762 /* Find the last line number note in the first block. */
7763 for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7764 insn != prologue_end && insn;
7765 insn = PREV_INSN (insn))
7766 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7767 break;
7769 /* If we didn't find one, make a copy of the first line number
7770 we run across. */
7771 if (! insn)
7773 for (insn = next_active_insn (prologue_end);
7774 insn;
7775 insn = PREV_INSN (insn))
7776 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7778 emit_note_copy_after (insn, prologue_end);
7779 break;
7783 #endif
7784 #ifdef HAVE_epilogue
7785 if (epilogue_end)
7787 rtx insn, next;
7789 /* Similarly, move any line notes that appear after the epilogue.
7790 There is no need, however, to be quite so anal about the existence
7791 of such a note. */
7792 for (insn = epilogue_end; insn; insn = next)
7794 next = NEXT_INSN (insn);
7795 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7796 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7799 #endif
7802 /* Reposition the prologue-end and epilogue-begin notes after instruction
7803 scheduling and delayed branch scheduling. */
7805 void
7806 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
7808 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7809 rtx insn, last, note;
7810 int len;
7812 if ((len = VARRAY_SIZE (prologue)) > 0)
7814 last = 0, note = 0;
7816 /* Scan from the beginning until we reach the last prologue insn.
7817 We apparently can't depend on basic_block_{head,end} after
7818 reorg has run. */
7819 for (insn = f; insn; insn = NEXT_INSN (insn))
7821 if (GET_CODE (insn) == NOTE)
7823 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7824 note = insn;
7826 else if (contains (insn, prologue))
7828 last = insn;
7829 if (--len == 0)
7830 break;
7834 if (last)
7836 /* Find the prologue-end note if we haven't already, and
7837 move it to just after the last prologue insn. */
7838 if (note == 0)
7840 for (note = last; (note = NEXT_INSN (note));)
7841 if (GET_CODE (note) == NOTE
7842 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7843 break;
7846 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7847 if (GET_CODE (last) == CODE_LABEL)
7848 last = NEXT_INSN (last);
7849 reorder_insns (note, note, last);
7853 if ((len = VARRAY_SIZE (epilogue)) > 0)
7855 last = 0, note = 0;
7857 /* Scan from the end until we reach the first epilogue insn.
7858 We apparently can't depend on basic_block_{head,end} after
7859 reorg has run. */
7860 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7862 if (GET_CODE (insn) == NOTE)
7864 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7865 note = insn;
7867 else if (contains (insn, epilogue))
7869 last = insn;
7870 if (--len == 0)
7871 break;
7875 if (last)
7877 /* Find the epilogue-begin note if we haven't already, and
7878 move it to just before the first epilogue insn. */
7879 if (note == 0)
7881 for (note = insn; (note = PREV_INSN (note));)
7882 if (GET_CODE (note) == NOTE
7883 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7884 break;
7887 if (PREV_INSN (last) != note)
7888 reorder_insns (note, note, PREV_INSN (last));
7891 #endif /* HAVE_prologue or HAVE_epilogue */
7894 /* Called once, at initialization, to initialize function.c. */
7896 void
7897 init_function_once (void)
7899 VARRAY_INT_INIT (prologue, 0, "prologue");
7900 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7901 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7904 #include "gt-function.h"