Daily bump.
[official-gcc.git] / gcc / function.c
blob4e2da8902140936956783e86f8ad78d8523b93fe
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
69 /* So we can assign to cfun in this file. */
70 #undef cfun
72 #ifndef LOCAL_ALIGNMENT
73 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
74 #endif
76 #ifndef STACK_ALIGNMENT_NEEDED
77 #define STACK_ALIGNMENT_NEEDED 1
78 #endif
80 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
82 /* Some systems use __main in a way incompatible with its use in gcc, in these
83 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
84 give the same symbol without quotes for an alternative entry point. You
85 must define both, or neither. */
86 #ifndef NAME__MAIN
87 #define NAME__MAIN "__main"
88 #endif
90 /* Round a value to the lowest integer less than it that is a multiple of
91 the required alignment. Avoid using division in case the value is
92 negative. Assume the alignment is a power of two. */
93 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
95 /* Similar, but round to the next highest integer that meets the
96 alignment. */
97 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
99 /* Nonzero if function being compiled doesn't contain any calls
100 (ignoring the prologue and epilogue). This is set prior to
101 local register allocation and is valid for the remaining
102 compiler passes. */
103 int current_function_is_leaf;
105 /* Nonzero if function being compiled doesn't modify the stack pointer
106 (ignoring the prologue and epilogue). This is only valid after
107 pass_stack_ptr_mod has run. */
108 int current_function_sp_is_unchanging;
110 /* Nonzero if the function being compiled is a leaf function which only
111 uses leaf registers. This is valid after reload (specifically after
112 sched2) and is useful only if the port defines LEAF_REGISTERS. */
113 int current_function_uses_only_leaf_regs;
115 /* Nonzero once virtual register instantiation has been done.
116 assign_stack_local uses frame_pointer_rtx when this is nonzero.
117 calls.c:emit_library_call_value_1 uses it to set up
118 post-instantiation libcalls. */
119 int virtuals_instantiated;
121 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
122 static GTY(()) int funcdef_no;
124 /* These variables hold pointers to functions to create and destroy
125 target specific, per-function data structures. */
126 struct machine_function * (*init_machine_status) (void);
128 /* The currently compiled function. */
129 struct function *cfun = 0;
131 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
132 static VEC(int,heap) *prologue;
133 static VEC(int,heap) *epilogue;
135 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
136 in this function. */
137 static VEC(int,heap) *sibcall_epilogue;
139 /* In order to evaluate some expressions, such as function calls returning
140 structures in memory, we need to temporarily allocate stack locations.
141 We record each allocated temporary in the following structure.
143 Associated with each temporary slot is a nesting level. When we pop up
144 one level, all temporaries associated with the previous level are freed.
145 Normally, all temporaries are freed after the execution of the statement
146 in which they were created. However, if we are inside a ({...}) grouping,
147 the result may be in a temporary and hence must be preserved. If the
148 result could be in a temporary, we preserve it if we can determine which
149 one it is in. If we cannot determine which temporary may contain the
150 result, all temporaries are preserved. A temporary is preserved by
151 pretending it was allocated at the previous nesting level.
153 Automatic variables are also assigned temporary slots, at the nesting
154 level where they are defined. They are marked a "kept" so that
155 free_temp_slots will not free them. */
157 struct temp_slot GTY(())
159 /* Points to next temporary slot. */
160 struct temp_slot *next;
161 /* Points to previous temporary slot. */
162 struct temp_slot *prev;
164 /* The rtx to used to reference the slot. */
165 rtx slot;
166 /* The rtx used to represent the address if not the address of the
167 slot above. May be an EXPR_LIST if multiple addresses exist. */
168 rtx address;
169 /* The alignment (in bits) of the slot. */
170 unsigned int align;
171 /* The size, in units, of the slot. */
172 HOST_WIDE_INT size;
173 /* The type of the object in the slot, or zero if it doesn't correspond
174 to a type. We use this to determine whether a slot can be reused.
175 It can be reused if objects of the type of the new slot will always
176 conflict with objects of the type of the old slot. */
177 tree type;
178 /* Nonzero if this temporary is currently in use. */
179 char in_use;
180 /* Nonzero if this temporary has its address taken. */
181 char addr_taken;
182 /* Nesting level at which this slot is being used. */
183 int level;
184 /* Nonzero if this should survive a call to free_temp_slots. */
185 int keep;
186 /* The offset of the slot from the frame_pointer, including extra space
187 for alignment. This info is for combine_temp_slots. */
188 HOST_WIDE_INT base_offset;
189 /* The size of the slot, including extra space for alignment. This
190 info is for combine_temp_slots. */
191 HOST_WIDE_INT full_size;
194 /* Forward declarations. */
196 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
197 struct function *);
198 static struct temp_slot *find_temp_slot_from_address (rtx);
199 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
200 static void pad_below (struct args_size *, enum machine_mode, tree);
201 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
202 static int all_blocks (tree, tree *);
203 static tree *get_block_vector (tree, int *);
204 extern tree debug_find_var_in_block_tree (tree, tree);
205 /* We always define `record_insns' even if it's not used so that we
206 can always export `prologue_epilogue_contains'. */
207 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
208 static int contains (const_rtx, VEC(int,heap) **);
209 #ifdef HAVE_return
210 static void emit_return_into_block (basic_block);
211 #endif
212 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
213 static rtx keep_stack_depressed (rtx);
214 #endif
215 static void prepare_function_start (void);
216 static void do_clobber_return_reg (rtx, void *);
217 static void do_use_return_reg (rtx, void *);
218 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
220 /* Pointer to chain of `struct function' for containing functions. */
221 struct function *outer_function_chain;
223 /* Given a function decl for a containing function,
224 return the `struct function' for it. */
226 struct function *
227 find_function_data (tree decl)
229 struct function *p;
231 for (p = outer_function_chain; p; p = p->outer)
232 if (p->decl == decl)
233 return p;
235 gcc_unreachable ();
238 /* Save the current context for compilation of a nested function.
239 This is called from language-specific code. The caller should use
240 the enter_nested langhook to save any language-specific state,
241 since this function knows only about language-independent
242 variables. */
244 void
245 push_function_context_to (tree context ATTRIBUTE_UNUSED)
247 struct function *p;
249 if (cfun == 0)
250 allocate_struct_function (NULL, false);
251 p = cfun;
253 p->outer = outer_function_chain;
254 outer_function_chain = p;
256 lang_hooks.function.enter_nested (p);
258 set_cfun (NULL);
261 void
262 push_function_context (void)
264 push_function_context_to (current_function_decl);
267 /* Restore the last saved context, at the end of a nested function.
268 This function is called from language-specific code. */
270 void
271 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
273 struct function *p = outer_function_chain;
275 set_cfun (p);
276 outer_function_chain = p->outer;
278 current_function_decl = p->decl;
280 lang_hooks.function.leave_nested (p);
282 /* Reset variables that have known state during rtx generation. */
283 virtuals_instantiated = 0;
284 generating_concat_p = 1;
287 void
288 pop_function_context (void)
290 pop_function_context_from (current_function_decl);
293 /* Clear out all parts of the state in F that can safely be discarded
294 after the function has been parsed, but not compiled, to let
295 garbage collection reclaim the memory. */
297 void
298 free_after_parsing (struct function *f)
300 /* f->expr->forced_labels is used by code generation. */
301 /* f->emit->regno_reg_rtx is used by code generation. */
302 /* f->varasm is used by code generation. */
303 /* f->eh->eh_return_stub_label is used by code generation. */
305 lang_hooks.function.final (f);
308 /* Clear out all parts of the state in F that can safely be discarded
309 after the function has been compiled, to let garbage collection
310 reclaim the memory. */
312 void
313 free_after_compilation (struct function *f)
315 VEC_free (int, heap, prologue);
316 VEC_free (int, heap, epilogue);
317 VEC_free (int, heap, sibcall_epilogue);
319 f->eh = NULL;
320 f->expr = NULL;
321 f->emit = NULL;
322 f->varasm = NULL;
323 f->machine = NULL;
324 f->cfg = NULL;
326 f->x_avail_temp_slots = NULL;
327 f->x_used_temp_slots = NULL;
328 f->arg_offset_rtx = NULL;
329 f->return_rtx = NULL;
330 f->internal_arg_pointer = NULL;
331 f->x_nonlocal_goto_handler_labels = NULL;
332 f->x_return_label = NULL;
333 f->x_naked_return_label = NULL;
334 f->x_stack_slot_list = NULL;
335 f->x_stack_check_probe_note = NULL;
336 f->x_arg_pointer_save_area = NULL;
337 f->x_parm_birth_insn = NULL;
338 f->epilogue_delay_list = NULL;
341 /* Allocate fixed slots in the stack frame of the current function. */
343 /* Return size needed for stack frame based on slots so far allocated in
344 function F.
345 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
346 the caller may have to do that. */
348 static HOST_WIDE_INT
349 get_func_frame_size (struct function *f)
351 if (FRAME_GROWS_DOWNWARD)
352 return -f->x_frame_offset;
353 else
354 return f->x_frame_offset;
357 /* Return size needed for stack frame based on slots so far allocated.
358 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
359 the caller may have to do that. */
361 HOST_WIDE_INT
362 get_frame_size (void)
364 return get_func_frame_size (cfun);
367 /* Issue an error message and return TRUE if frame OFFSET overflows in
368 the signed target pointer arithmetics for function FUNC. Otherwise
369 return FALSE. */
371 bool
372 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
374 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
376 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
377 /* Leave room for the fixed part of the frame. */
378 - 64 * UNITS_PER_WORD)
380 error ("%Jtotal size of local objects too large", func);
381 return TRUE;
384 return FALSE;
387 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
388 with machine mode MODE.
390 ALIGN controls the amount of alignment for the address of the slot:
391 0 means according to MODE,
392 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
393 -2 means use BITS_PER_UNIT,
394 positive specifies alignment boundary in bits.
396 We do not round to stack_boundary here.
398 FUNCTION specifies the function to allocate in. */
400 static rtx
401 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
402 struct function *function)
404 rtx x, addr;
405 int bigend_correction = 0;
406 unsigned int alignment;
407 int frame_off, frame_alignment, frame_phase;
409 if (align == 0)
411 tree type;
413 if (mode == BLKmode)
414 alignment = BIGGEST_ALIGNMENT;
415 else
416 alignment = GET_MODE_ALIGNMENT (mode);
418 /* Allow the target to (possibly) increase the alignment of this
419 stack slot. */
420 type = lang_hooks.types.type_for_mode (mode, 0);
421 if (type)
422 alignment = LOCAL_ALIGNMENT (type, alignment);
424 alignment /= BITS_PER_UNIT;
426 else if (align == -1)
428 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
429 size = CEIL_ROUND (size, alignment);
431 else if (align == -2)
432 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
433 else
434 alignment = align / BITS_PER_UNIT;
436 if (FRAME_GROWS_DOWNWARD)
437 function->x_frame_offset -= size;
439 /* Ignore alignment we can't do with expected alignment of the boundary. */
440 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
441 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
443 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
444 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
446 /* Calculate how many bytes the start of local variables is off from
447 stack alignment. */
448 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
449 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
450 frame_phase = frame_off ? frame_alignment - frame_off : 0;
452 /* Round the frame offset to the specified alignment. The default is
453 to always honor requests to align the stack but a port may choose to
454 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
455 if (STACK_ALIGNMENT_NEEDED
456 || mode != BLKmode
457 || size != 0)
459 /* We must be careful here, since FRAME_OFFSET might be negative and
460 division with a negative dividend isn't as well defined as we might
461 like. So we instead assume that ALIGNMENT is a power of two and
462 use logical operations which are unambiguous. */
463 if (FRAME_GROWS_DOWNWARD)
464 function->x_frame_offset
465 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
466 (unsigned HOST_WIDE_INT) alignment)
467 + frame_phase);
468 else
469 function->x_frame_offset
470 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
471 (unsigned HOST_WIDE_INT) alignment)
472 + frame_phase);
475 /* On a big-endian machine, if we are allocating more space than we will use,
476 use the least significant bytes of those that are allocated. */
477 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
478 bigend_correction = size - GET_MODE_SIZE (mode);
480 /* If we have already instantiated virtual registers, return the actual
481 address relative to the frame pointer. */
482 if (function == cfun && virtuals_instantiated)
483 addr = plus_constant (frame_pointer_rtx,
484 trunc_int_for_mode
485 (frame_offset + bigend_correction
486 + STARTING_FRAME_OFFSET, Pmode));
487 else
488 addr = plus_constant (virtual_stack_vars_rtx,
489 trunc_int_for_mode
490 (function->x_frame_offset + bigend_correction,
491 Pmode));
493 if (!FRAME_GROWS_DOWNWARD)
494 function->x_frame_offset += size;
496 x = gen_rtx_MEM (mode, addr);
497 MEM_NOTRAP_P (x) = 1;
499 function->x_stack_slot_list
500 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
502 if (frame_offset_overflow (function->x_frame_offset, function->decl))
503 function->x_frame_offset = 0;
505 return x;
508 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
509 current function. */
512 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
514 return assign_stack_local_1 (mode, size, align, cfun);
518 /* Removes temporary slot TEMP from LIST. */
520 static void
521 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
523 if (temp->next)
524 temp->next->prev = temp->prev;
525 if (temp->prev)
526 temp->prev->next = temp->next;
527 else
528 *list = temp->next;
530 temp->prev = temp->next = NULL;
533 /* Inserts temporary slot TEMP to LIST. */
535 static void
536 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
538 temp->next = *list;
539 if (*list)
540 (*list)->prev = temp;
541 temp->prev = NULL;
542 *list = temp;
545 /* Returns the list of used temp slots at LEVEL. */
547 static struct temp_slot **
548 temp_slots_at_level (int level)
550 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
551 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
553 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
556 /* Returns the maximal temporary slot level. */
558 static int
559 max_slot_level (void)
561 if (!used_temp_slots)
562 return -1;
564 return VEC_length (temp_slot_p, used_temp_slots) - 1;
567 /* Moves temporary slot TEMP to LEVEL. */
569 static void
570 move_slot_to_level (struct temp_slot *temp, int level)
572 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
573 insert_slot_to_list (temp, temp_slots_at_level (level));
574 temp->level = level;
577 /* Make temporary slot TEMP available. */
579 static void
580 make_slot_available (struct temp_slot *temp)
582 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
583 insert_slot_to_list (temp, &avail_temp_slots);
584 temp->in_use = 0;
585 temp->level = -1;
588 /* Allocate a temporary stack slot and record it for possible later
589 reuse.
591 MODE is the machine mode to be given to the returned rtx.
593 SIZE is the size in units of the space required. We do no rounding here
594 since assign_stack_local will do any required rounding.
596 KEEP is 1 if this slot is to be retained after a call to
597 free_temp_slots. Automatic variables for a block are allocated
598 with this flag. KEEP values of 2 or 3 were needed respectively
599 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
600 or for SAVE_EXPRs, but they are now unused.
602 TYPE is the type that will be used for the stack slot. */
605 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
606 int keep, tree type)
608 unsigned int align;
609 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
610 rtx slot;
612 /* If SIZE is -1 it means that somebody tried to allocate a temporary
613 of a variable size. */
614 gcc_assert (size != -1);
616 /* These are now unused. */
617 gcc_assert (keep <= 1);
619 if (mode == BLKmode)
620 align = BIGGEST_ALIGNMENT;
621 else
622 align = GET_MODE_ALIGNMENT (mode);
624 if (! type)
625 type = lang_hooks.types.type_for_mode (mode, 0);
627 if (type)
628 align = LOCAL_ALIGNMENT (type, align);
630 /* Try to find an available, already-allocated temporary of the proper
631 mode which meets the size and alignment requirements. Choose the
632 smallest one with the closest alignment.
634 If assign_stack_temp is called outside of the tree->rtl expansion,
635 we cannot reuse the stack slots (that may still refer to
636 VIRTUAL_STACK_VARS_REGNUM). */
637 if (!virtuals_instantiated)
639 for (p = avail_temp_slots; p; p = p->next)
641 if (p->align >= align && p->size >= size
642 && GET_MODE (p->slot) == mode
643 && objects_must_conflict_p (p->type, type)
644 && (best_p == 0 || best_p->size > p->size
645 || (best_p->size == p->size && best_p->align > p->align)))
647 if (p->align == align && p->size == size)
649 selected = p;
650 cut_slot_from_list (selected, &avail_temp_slots);
651 best_p = 0;
652 break;
654 best_p = p;
659 /* Make our best, if any, the one to use. */
660 if (best_p)
662 selected = best_p;
663 cut_slot_from_list (selected, &avail_temp_slots);
665 /* If there are enough aligned bytes left over, make them into a new
666 temp_slot so that the extra bytes don't get wasted. Do this only
667 for BLKmode slots, so that we can be sure of the alignment. */
668 if (GET_MODE (best_p->slot) == BLKmode)
670 int alignment = best_p->align / BITS_PER_UNIT;
671 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
673 if (best_p->size - rounded_size >= alignment)
675 p = ggc_alloc (sizeof (struct temp_slot));
676 p->in_use = p->addr_taken = 0;
677 p->size = best_p->size - rounded_size;
678 p->base_offset = best_p->base_offset + rounded_size;
679 p->full_size = best_p->full_size - rounded_size;
680 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
681 p->align = best_p->align;
682 p->address = 0;
683 p->type = best_p->type;
684 insert_slot_to_list (p, &avail_temp_slots);
686 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
687 stack_slot_list);
689 best_p->size = rounded_size;
690 best_p->full_size = rounded_size;
695 /* If we still didn't find one, make a new temporary. */
696 if (selected == 0)
698 HOST_WIDE_INT frame_offset_old = frame_offset;
700 p = ggc_alloc (sizeof (struct temp_slot));
702 /* We are passing an explicit alignment request to assign_stack_local.
703 One side effect of that is assign_stack_local will not round SIZE
704 to ensure the frame offset remains suitably aligned.
706 So for requests which depended on the rounding of SIZE, we go ahead
707 and round it now. We also make sure ALIGNMENT is at least
708 BIGGEST_ALIGNMENT. */
709 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
710 p->slot = assign_stack_local (mode,
711 (mode == BLKmode
712 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
713 : size),
714 align);
716 p->align = align;
718 /* The following slot size computation is necessary because we don't
719 know the actual size of the temporary slot until assign_stack_local
720 has performed all the frame alignment and size rounding for the
721 requested temporary. Note that extra space added for alignment
722 can be either above or below this stack slot depending on which
723 way the frame grows. We include the extra space if and only if it
724 is above this slot. */
725 if (FRAME_GROWS_DOWNWARD)
726 p->size = frame_offset_old - frame_offset;
727 else
728 p->size = size;
730 /* Now define the fields used by combine_temp_slots. */
731 if (FRAME_GROWS_DOWNWARD)
733 p->base_offset = frame_offset;
734 p->full_size = frame_offset_old - frame_offset;
736 else
738 p->base_offset = frame_offset_old;
739 p->full_size = frame_offset - frame_offset_old;
741 p->address = 0;
743 selected = p;
746 p = selected;
747 p->in_use = 1;
748 p->addr_taken = 0;
749 p->type = type;
750 p->level = temp_slot_level;
751 p->keep = keep;
753 pp = temp_slots_at_level (p->level);
754 insert_slot_to_list (p, pp);
756 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
757 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
758 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
760 /* If we know the alias set for the memory that will be used, use
761 it. If there's no TYPE, then we don't know anything about the
762 alias set for the memory. */
763 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
764 set_mem_align (slot, align);
766 /* If a type is specified, set the relevant flags. */
767 if (type != 0)
769 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
770 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
771 || TREE_CODE (type) == COMPLEX_TYPE));
773 MEM_NOTRAP_P (slot) = 1;
775 return slot;
778 /* Allocate a temporary stack slot and record it for possible later
779 reuse. First three arguments are same as in preceding function. */
782 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
784 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
787 /* Assign a temporary.
788 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
789 and so that should be used in error messages. In either case, we
790 allocate of the given type.
791 KEEP is as for assign_stack_temp.
792 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
793 it is 0 if a register is OK.
794 DONT_PROMOTE is 1 if we should not promote values in register
795 to wider modes. */
798 assign_temp (tree type_or_decl, int keep, int memory_required,
799 int dont_promote ATTRIBUTE_UNUSED)
801 tree type, decl;
802 enum machine_mode mode;
803 #ifdef PROMOTE_MODE
804 int unsignedp;
805 #endif
807 if (DECL_P (type_or_decl))
808 decl = type_or_decl, type = TREE_TYPE (decl);
809 else
810 decl = NULL, type = type_or_decl;
812 mode = TYPE_MODE (type);
813 #ifdef PROMOTE_MODE
814 unsignedp = TYPE_UNSIGNED (type);
815 #endif
817 if (mode == BLKmode || memory_required)
819 HOST_WIDE_INT size = int_size_in_bytes (type);
820 rtx tmp;
822 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
823 problems with allocating the stack space. */
824 if (size == 0)
825 size = 1;
827 /* Unfortunately, we don't yet know how to allocate variable-sized
828 temporaries. However, sometimes we can find a fixed upper limit on
829 the size, so try that instead. */
830 else if (size == -1)
831 size = max_int_size_in_bytes (type);
833 /* The size of the temporary may be too large to fit into an integer. */
834 /* ??? Not sure this should happen except for user silliness, so limit
835 this to things that aren't compiler-generated temporaries. The
836 rest of the time we'll die in assign_stack_temp_for_type. */
837 if (decl && size == -1
838 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
840 error ("size of variable %q+D is too large", decl);
841 size = 1;
844 tmp = assign_stack_temp_for_type (mode, size, keep, type);
845 return tmp;
848 #ifdef PROMOTE_MODE
849 if (! dont_promote)
850 mode = promote_mode (type, mode, &unsignedp, 0);
851 #endif
853 return gen_reg_rtx (mode);
856 /* Combine temporary stack slots which are adjacent on the stack.
858 This allows for better use of already allocated stack space. This is only
859 done for BLKmode slots because we can be sure that we won't have alignment
860 problems in this case. */
862 static void
863 combine_temp_slots (void)
865 struct temp_slot *p, *q, *next, *next_q;
866 int num_slots;
868 /* We can't combine slots, because the information about which slot
869 is in which alias set will be lost. */
870 if (flag_strict_aliasing)
871 return;
873 /* If there are a lot of temp slots, don't do anything unless
874 high levels of optimization. */
875 if (! flag_expensive_optimizations)
876 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
877 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
878 return;
880 for (p = avail_temp_slots; p; p = next)
882 int delete_p = 0;
884 next = p->next;
886 if (GET_MODE (p->slot) != BLKmode)
887 continue;
889 for (q = p->next; q; q = next_q)
891 int delete_q = 0;
893 next_q = q->next;
895 if (GET_MODE (q->slot) != BLKmode)
896 continue;
898 if (p->base_offset + p->full_size == q->base_offset)
900 /* Q comes after P; combine Q into P. */
901 p->size += q->size;
902 p->full_size += q->full_size;
903 delete_q = 1;
905 else if (q->base_offset + q->full_size == p->base_offset)
907 /* P comes after Q; combine P into Q. */
908 q->size += p->size;
909 q->full_size += p->full_size;
910 delete_p = 1;
911 break;
913 if (delete_q)
914 cut_slot_from_list (q, &avail_temp_slots);
917 /* Either delete P or advance past it. */
918 if (delete_p)
919 cut_slot_from_list (p, &avail_temp_slots);
923 /* Find the temp slot corresponding to the object at address X. */
925 static struct temp_slot *
926 find_temp_slot_from_address (rtx x)
928 struct temp_slot *p;
929 rtx next;
930 int i;
932 for (i = max_slot_level (); i >= 0; i--)
933 for (p = *temp_slots_at_level (i); p; p = p->next)
935 if (XEXP (p->slot, 0) == x
936 || p->address == x
937 || (GET_CODE (x) == PLUS
938 && XEXP (x, 0) == virtual_stack_vars_rtx
939 && GET_CODE (XEXP (x, 1)) == CONST_INT
940 && INTVAL (XEXP (x, 1)) >= p->base_offset
941 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
942 return p;
944 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
945 for (next = p->address; next; next = XEXP (next, 1))
946 if (XEXP (next, 0) == x)
947 return p;
950 /* If we have a sum involving a register, see if it points to a temp
951 slot. */
952 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
953 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
954 return p;
955 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
956 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
957 return p;
959 return 0;
962 /* Indicate that NEW is an alternate way of referring to the temp slot
963 that previously was known by OLD. */
965 void
966 update_temp_slot_address (rtx old, rtx new)
968 struct temp_slot *p;
970 if (rtx_equal_p (old, new))
971 return;
973 p = find_temp_slot_from_address (old);
975 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
976 is a register, see if one operand of the PLUS is a temporary
977 location. If so, NEW points into it. Otherwise, if both OLD and
978 NEW are a PLUS and if there is a register in common between them.
979 If so, try a recursive call on those values. */
980 if (p == 0)
982 if (GET_CODE (old) != PLUS)
983 return;
985 if (REG_P (new))
987 update_temp_slot_address (XEXP (old, 0), new);
988 update_temp_slot_address (XEXP (old, 1), new);
989 return;
991 else if (GET_CODE (new) != PLUS)
992 return;
994 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
995 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
996 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
997 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
998 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
999 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1000 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1001 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1003 return;
1006 /* Otherwise add an alias for the temp's address. */
1007 else if (p->address == 0)
1008 p->address = new;
1009 else
1011 if (GET_CODE (p->address) != EXPR_LIST)
1012 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1014 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1018 /* If X could be a reference to a temporary slot, mark the fact that its
1019 address was taken. */
1021 void
1022 mark_temp_addr_taken (rtx x)
1024 struct temp_slot *p;
1026 if (x == 0)
1027 return;
1029 /* If X is not in memory or is at a constant address, it cannot be in
1030 a temporary slot. */
1031 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1032 return;
1034 p = find_temp_slot_from_address (XEXP (x, 0));
1035 if (p != 0)
1036 p->addr_taken = 1;
1039 /* If X could be a reference to a temporary slot, mark that slot as
1040 belonging to the to one level higher than the current level. If X
1041 matched one of our slots, just mark that one. Otherwise, we can't
1042 easily predict which it is, so upgrade all of them. Kept slots
1043 need not be touched.
1045 This is called when an ({...}) construct occurs and a statement
1046 returns a value in memory. */
1048 void
1049 preserve_temp_slots (rtx x)
1051 struct temp_slot *p = 0, *next;
1053 /* If there is no result, we still might have some objects whose address
1054 were taken, so we need to make sure they stay around. */
1055 if (x == 0)
1057 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1059 next = p->next;
1061 if (p->addr_taken)
1062 move_slot_to_level (p, temp_slot_level - 1);
1065 return;
1068 /* If X is a register that is being used as a pointer, see if we have
1069 a temporary slot we know it points to. To be consistent with
1070 the code below, we really should preserve all non-kept slots
1071 if we can't find a match, but that seems to be much too costly. */
1072 if (REG_P (x) && REG_POINTER (x))
1073 p = find_temp_slot_from_address (x);
1075 /* If X is not in memory or is at a constant address, it cannot be in
1076 a temporary slot, but it can contain something whose address was
1077 taken. */
1078 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1080 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1082 next = p->next;
1084 if (p->addr_taken)
1085 move_slot_to_level (p, temp_slot_level - 1);
1088 return;
1091 /* First see if we can find a match. */
1092 if (p == 0)
1093 p = find_temp_slot_from_address (XEXP (x, 0));
1095 if (p != 0)
1097 /* Move everything at our level whose address was taken to our new
1098 level in case we used its address. */
1099 struct temp_slot *q;
1101 if (p->level == temp_slot_level)
1103 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1105 next = q->next;
1107 if (p != q && q->addr_taken)
1108 move_slot_to_level (q, temp_slot_level - 1);
1111 move_slot_to_level (p, temp_slot_level - 1);
1112 p->addr_taken = 0;
1114 return;
1117 /* Otherwise, preserve all non-kept slots at this level. */
1118 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1120 next = p->next;
1122 if (!p->keep)
1123 move_slot_to_level (p, temp_slot_level - 1);
1127 /* Free all temporaries used so far. This is normally called at the
1128 end of generating code for a statement. */
1130 void
1131 free_temp_slots (void)
1133 struct temp_slot *p, *next;
1135 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1137 next = p->next;
1139 if (!p->keep)
1140 make_slot_available (p);
1143 combine_temp_slots ();
1146 /* Push deeper into the nesting level for stack temporaries. */
1148 void
1149 push_temp_slots (void)
1151 temp_slot_level++;
1154 /* Pop a temporary nesting level. All slots in use in the current level
1155 are freed. */
1157 void
1158 pop_temp_slots (void)
1160 struct temp_slot *p, *next;
1162 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1164 next = p->next;
1165 make_slot_available (p);
1168 combine_temp_slots ();
1170 temp_slot_level--;
1173 /* Initialize temporary slots. */
1175 void
1176 init_temp_slots (void)
1178 /* We have not allocated any temporaries yet. */
1179 avail_temp_slots = 0;
1180 used_temp_slots = 0;
1181 temp_slot_level = 0;
1184 /* These routines are responsible for converting virtual register references
1185 to the actual hard register references once RTL generation is complete.
1187 The following four variables are used for communication between the
1188 routines. They contain the offsets of the virtual registers from their
1189 respective hard registers. */
1191 static int in_arg_offset;
1192 static int var_offset;
1193 static int dynamic_offset;
1194 static int out_arg_offset;
1195 static int cfa_offset;
1197 /* In most machines, the stack pointer register is equivalent to the bottom
1198 of the stack. */
1200 #ifndef STACK_POINTER_OFFSET
1201 #define STACK_POINTER_OFFSET 0
1202 #endif
1204 /* If not defined, pick an appropriate default for the offset of dynamically
1205 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1206 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1208 #ifndef STACK_DYNAMIC_OFFSET
1210 /* The bottom of the stack points to the actual arguments. If
1211 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1212 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1213 stack space for register parameters is not pushed by the caller, but
1214 rather part of the fixed stack areas and hence not included in
1215 `current_function_outgoing_args_size'. Nevertheless, we must allow
1216 for it when allocating stack dynamic objects. */
1218 #if defined(REG_PARM_STACK_SPACE)
1219 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1220 ((ACCUMULATE_OUTGOING_ARGS \
1221 ? (current_function_outgoing_args_size \
1222 + (OUTGOING_REG_PARM_STACK_SPACE ? 0 : REG_PARM_STACK_SPACE (FNDECL))) \
1223 : 0) + (STACK_POINTER_OFFSET))
1224 #else
1225 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1226 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1227 + (STACK_POINTER_OFFSET))
1228 #endif
1229 #endif
1232 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1233 is a virtual register, return the equivalent hard register and set the
1234 offset indirectly through the pointer. Otherwise, return 0. */
1236 static rtx
1237 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1239 rtx new;
1240 HOST_WIDE_INT offset;
1242 if (x == virtual_incoming_args_rtx)
1243 new = arg_pointer_rtx, offset = in_arg_offset;
1244 else if (x == virtual_stack_vars_rtx)
1245 new = frame_pointer_rtx, offset = var_offset;
1246 else if (x == virtual_stack_dynamic_rtx)
1247 new = stack_pointer_rtx, offset = dynamic_offset;
1248 else if (x == virtual_outgoing_args_rtx)
1249 new = stack_pointer_rtx, offset = out_arg_offset;
1250 else if (x == virtual_cfa_rtx)
1252 #ifdef FRAME_POINTER_CFA_OFFSET
1253 new = frame_pointer_rtx;
1254 #else
1255 new = arg_pointer_rtx;
1256 #endif
1257 offset = cfa_offset;
1259 else
1260 return NULL_RTX;
1262 *poffset = offset;
1263 return new;
1266 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1267 Instantiate any virtual registers present inside of *LOC. The expression
1268 is simplified, as much as possible, but is not to be considered "valid"
1269 in any sense implied by the target. If any change is made, set CHANGED
1270 to true. */
1272 static int
1273 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1275 HOST_WIDE_INT offset;
1276 bool *changed = (bool *) data;
1277 rtx x, new;
1279 x = *loc;
1280 if (x == 0)
1281 return 0;
1283 switch (GET_CODE (x))
1285 case REG:
1286 new = instantiate_new_reg (x, &offset);
1287 if (new)
1289 *loc = plus_constant (new, offset);
1290 if (changed)
1291 *changed = true;
1293 return -1;
1295 case PLUS:
1296 new = instantiate_new_reg (XEXP (x, 0), &offset);
1297 if (new)
1299 new = plus_constant (new, offset);
1300 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1301 if (changed)
1302 *changed = true;
1303 return -1;
1306 /* FIXME -- from old code */
1307 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1308 we can commute the PLUS and SUBREG because pointers into the
1309 frame are well-behaved. */
1310 break;
1312 default:
1313 break;
1316 return 0;
1319 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1320 matches the predicate for insn CODE operand OPERAND. */
1322 static int
1323 safe_insn_predicate (int code, int operand, rtx x)
1325 const struct insn_operand_data *op_data;
1327 if (code < 0)
1328 return true;
1330 op_data = &insn_data[code].operand[operand];
1331 if (op_data->predicate == NULL)
1332 return true;
1334 return op_data->predicate (x, op_data->mode);
1337 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1338 registers present inside of insn. The result will be a valid insn. */
1340 static void
1341 instantiate_virtual_regs_in_insn (rtx insn)
1343 HOST_WIDE_INT offset;
1344 int insn_code, i;
1345 bool any_change = false;
1346 rtx set, new, x, seq;
1348 /* There are some special cases to be handled first. */
1349 set = single_set (insn);
1350 if (set)
1352 /* We're allowed to assign to a virtual register. This is interpreted
1353 to mean that the underlying register gets assigned the inverse
1354 transformation. This is used, for example, in the handling of
1355 non-local gotos. */
1356 new = instantiate_new_reg (SET_DEST (set), &offset);
1357 if (new)
1359 start_sequence ();
1361 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1362 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1363 GEN_INT (-offset));
1364 x = force_operand (x, new);
1365 if (x != new)
1366 emit_move_insn (new, x);
1368 seq = get_insns ();
1369 end_sequence ();
1371 emit_insn_before (seq, insn);
1372 delete_insn (insn);
1373 return;
1376 /* Handle a straight copy from a virtual register by generating a
1377 new add insn. The difference between this and falling through
1378 to the generic case is avoiding a new pseudo and eliminating a
1379 move insn in the initial rtl stream. */
1380 new = instantiate_new_reg (SET_SRC (set), &offset);
1381 if (new && offset != 0
1382 && REG_P (SET_DEST (set))
1383 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1385 start_sequence ();
1387 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1388 new, GEN_INT (offset), SET_DEST (set),
1389 1, OPTAB_LIB_WIDEN);
1390 if (x != SET_DEST (set))
1391 emit_move_insn (SET_DEST (set), x);
1393 seq = get_insns ();
1394 end_sequence ();
1396 emit_insn_before (seq, insn);
1397 delete_insn (insn);
1398 return;
1401 extract_insn (insn);
1402 insn_code = INSN_CODE (insn);
1404 /* Handle a plus involving a virtual register by determining if the
1405 operands remain valid if they're modified in place. */
1406 if (GET_CODE (SET_SRC (set)) == PLUS
1407 && recog_data.n_operands >= 3
1408 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1409 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1410 && GET_CODE (recog_data.operand[2]) == CONST_INT
1411 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1413 offset += INTVAL (recog_data.operand[2]);
1415 /* If the sum is zero, then replace with a plain move. */
1416 if (offset == 0
1417 && REG_P (SET_DEST (set))
1418 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1420 start_sequence ();
1421 emit_move_insn (SET_DEST (set), new);
1422 seq = get_insns ();
1423 end_sequence ();
1425 emit_insn_before (seq, insn);
1426 delete_insn (insn);
1427 return;
1430 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1432 /* Using validate_change and apply_change_group here leaves
1433 recog_data in an invalid state. Since we know exactly what
1434 we want to check, do those two by hand. */
1435 if (safe_insn_predicate (insn_code, 1, new)
1436 && safe_insn_predicate (insn_code, 2, x))
1438 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1439 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1440 any_change = true;
1442 /* Fall through into the regular operand fixup loop in
1443 order to take care of operands other than 1 and 2. */
1447 else
1449 extract_insn (insn);
1450 insn_code = INSN_CODE (insn);
1453 /* In the general case, we expect virtual registers to appear only in
1454 operands, and then only as either bare registers or inside memories. */
1455 for (i = 0; i < recog_data.n_operands; ++i)
1457 x = recog_data.operand[i];
1458 switch (GET_CODE (x))
1460 case MEM:
1462 rtx addr = XEXP (x, 0);
1463 bool changed = false;
1465 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1466 if (!changed)
1467 continue;
1469 start_sequence ();
1470 x = replace_equiv_address (x, addr);
1471 /* It may happen that the address with the virtual reg
1472 was valid (e.g. based on the virtual stack reg, which might
1473 be acceptable to the predicates with all offsets), whereas
1474 the address now isn't anymore, for instance when the address
1475 is still offsetted, but the base reg isn't virtual-stack-reg
1476 anymore. Below we would do a force_reg on the whole operand,
1477 but this insn might actually only accept memory. Hence,
1478 before doing that last resort, try to reload the address into
1479 a register, so this operand stays a MEM. */
1480 if (!safe_insn_predicate (insn_code, i, x))
1482 addr = force_reg (GET_MODE (addr), addr);
1483 x = replace_equiv_address (x, addr);
1485 seq = get_insns ();
1486 end_sequence ();
1487 if (seq)
1488 emit_insn_before (seq, insn);
1490 break;
1492 case REG:
1493 new = instantiate_new_reg (x, &offset);
1494 if (new == NULL)
1495 continue;
1496 if (offset == 0)
1497 x = new;
1498 else
1500 start_sequence ();
1502 /* Careful, special mode predicates may have stuff in
1503 insn_data[insn_code].operand[i].mode that isn't useful
1504 to us for computing a new value. */
1505 /* ??? Recognize address_operand and/or "p" constraints
1506 to see if (plus new offset) is a valid before we put
1507 this through expand_simple_binop. */
1508 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1509 GEN_INT (offset), NULL_RTX,
1510 1, OPTAB_LIB_WIDEN);
1511 seq = get_insns ();
1512 end_sequence ();
1513 emit_insn_before (seq, insn);
1515 break;
1517 case SUBREG:
1518 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1519 if (new == NULL)
1520 continue;
1521 if (offset != 0)
1523 start_sequence ();
1524 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1525 GEN_INT (offset), NULL_RTX,
1526 1, OPTAB_LIB_WIDEN);
1527 seq = get_insns ();
1528 end_sequence ();
1529 emit_insn_before (seq, insn);
1531 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1532 GET_MODE (new), SUBREG_BYTE (x));
1533 break;
1535 default:
1536 continue;
1539 /* At this point, X contains the new value for the operand.
1540 Validate the new value vs the insn predicate. Note that
1541 asm insns will have insn_code -1 here. */
1542 if (!safe_insn_predicate (insn_code, i, x))
1544 start_sequence ();
1545 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1546 seq = get_insns ();
1547 end_sequence ();
1548 if (seq)
1549 emit_insn_before (seq, insn);
1552 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1553 any_change = true;
1556 if (any_change)
1558 /* Propagate operand changes into the duplicates. */
1559 for (i = 0; i < recog_data.n_dups; ++i)
1560 *recog_data.dup_loc[i]
1561 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1563 /* Force re-recognition of the instruction for validation. */
1564 INSN_CODE (insn) = -1;
1567 if (asm_noperands (PATTERN (insn)) >= 0)
1569 if (!check_asm_operands (PATTERN (insn)))
1571 error_for_asm (insn, "impossible constraint in %<asm%>");
1572 delete_insn (insn);
1575 else
1577 if (recog_memoized (insn) < 0)
1578 fatal_insn_not_found (insn);
1582 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1583 do any instantiation required. */
1585 void
1586 instantiate_decl_rtl (rtx x)
1588 rtx addr;
1590 if (x == 0)
1591 return;
1593 /* If this is a CONCAT, recurse for the pieces. */
1594 if (GET_CODE (x) == CONCAT)
1596 instantiate_decl_rtl (XEXP (x, 0));
1597 instantiate_decl_rtl (XEXP (x, 1));
1598 return;
1601 /* If this is not a MEM, no need to do anything. Similarly if the
1602 address is a constant or a register that is not a virtual register. */
1603 if (!MEM_P (x))
1604 return;
1606 addr = XEXP (x, 0);
1607 if (CONSTANT_P (addr)
1608 || (REG_P (addr)
1609 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1610 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1611 return;
1613 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1616 /* Helper for instantiate_decls called via walk_tree: Process all decls
1617 in the given DECL_VALUE_EXPR. */
1619 static tree
1620 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1622 tree t = *tp;
1623 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1625 *walk_subtrees = 0;
1626 if (DECL_P (t) && DECL_RTL_SET_P (t))
1627 instantiate_decl_rtl (DECL_RTL (t));
1629 return NULL;
1632 /* Subroutine of instantiate_decls: Process all decls in the given
1633 BLOCK node and all its subblocks. */
1635 static void
1636 instantiate_decls_1 (tree let)
1638 tree t;
1640 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1642 if (DECL_RTL_SET_P (t))
1643 instantiate_decl_rtl (DECL_RTL (t));
1644 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1646 tree v = DECL_VALUE_EXPR (t);
1647 walk_tree (&v, instantiate_expr, NULL, NULL);
1651 /* Process all subblocks. */
1652 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1653 instantiate_decls_1 (t);
1656 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1657 all virtual registers in their DECL_RTL's. */
1659 static void
1660 instantiate_decls (tree fndecl)
1662 tree decl;
1664 /* Process all parameters of the function. */
1665 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1667 instantiate_decl_rtl (DECL_RTL (decl));
1668 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1669 if (DECL_HAS_VALUE_EXPR_P (decl))
1671 tree v = DECL_VALUE_EXPR (decl);
1672 walk_tree (&v, instantiate_expr, NULL, NULL);
1676 /* Now process all variables defined in the function or its subblocks. */
1677 instantiate_decls_1 (DECL_INITIAL (fndecl));
1680 /* Pass through the INSNS of function FNDECL and convert virtual register
1681 references to hard register references. */
1683 static unsigned int
1684 instantiate_virtual_regs (void)
1686 rtx insn;
1688 /* Compute the offsets to use for this function. */
1689 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1690 var_offset = STARTING_FRAME_OFFSET;
1691 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1692 out_arg_offset = STACK_POINTER_OFFSET;
1693 #ifdef FRAME_POINTER_CFA_OFFSET
1694 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1695 #else
1696 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1697 #endif
1699 /* Initialize recognition, indicating that volatile is OK. */
1700 init_recog ();
1702 /* Scan through all the insns, instantiating every virtual register still
1703 present. */
1704 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1705 if (INSN_P (insn))
1707 /* These patterns in the instruction stream can never be recognized.
1708 Fortunately, they shouldn't contain virtual registers either. */
1709 if (GET_CODE (PATTERN (insn)) == USE
1710 || GET_CODE (PATTERN (insn)) == CLOBBER
1711 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1712 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1713 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1714 continue;
1716 instantiate_virtual_regs_in_insn (insn);
1718 if (INSN_DELETED_P (insn))
1719 continue;
1721 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1723 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1724 if (GET_CODE (insn) == CALL_INSN)
1725 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1726 instantiate_virtual_regs_in_rtx, NULL);
1729 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1730 instantiate_decls (current_function_decl);
1732 targetm.instantiate_decls ();
1734 /* Indicate that, from now on, assign_stack_local should use
1735 frame_pointer_rtx. */
1736 virtuals_instantiated = 1;
1737 return 0;
1740 struct rtl_opt_pass pass_instantiate_virtual_regs =
1743 RTL_PASS,
1744 "vregs", /* name */
1745 NULL, /* gate */
1746 instantiate_virtual_regs, /* execute */
1747 NULL, /* sub */
1748 NULL, /* next */
1749 0, /* static_pass_number */
1750 0, /* tv_id */
1751 0, /* properties_required */
1752 0, /* properties_provided */
1753 0, /* properties_destroyed */
1754 0, /* todo_flags_start */
1755 TODO_dump_func /* todo_flags_finish */
1760 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1761 This means a type for which function calls must pass an address to the
1762 function or get an address back from the function.
1763 EXP may be a type node or an expression (whose type is tested). */
1766 aggregate_value_p (const_tree exp, const_tree fntype)
1768 int i, regno, nregs;
1769 rtx reg;
1771 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1773 /* DECL node associated with FNTYPE when relevant, which we might need to
1774 check for by-invisible-reference returns, typically for CALL_EXPR input
1775 EXPressions. */
1776 const_tree fndecl = NULL_TREE;
1778 if (fntype)
1779 switch (TREE_CODE (fntype))
1781 case CALL_EXPR:
1782 fndecl = get_callee_fndecl (fntype);
1783 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1784 break;
1785 case FUNCTION_DECL:
1786 fndecl = fntype;
1787 fntype = TREE_TYPE (fndecl);
1788 break;
1789 case FUNCTION_TYPE:
1790 case METHOD_TYPE:
1791 break;
1792 case IDENTIFIER_NODE:
1793 fntype = 0;
1794 break;
1795 default:
1796 /* We don't expect other rtl types here. */
1797 gcc_unreachable ();
1800 if (TREE_CODE (type) == VOID_TYPE)
1801 return 0;
1803 /* If the front end has decided that this needs to be passed by
1804 reference, do so. */
1805 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1806 && DECL_BY_REFERENCE (exp))
1807 return 1;
1809 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1810 called function RESULT_DECL, meaning the function returns in memory by
1811 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1812 on the function type, which used to be the way to request such a return
1813 mechanism but might now be causing troubles at gimplification time if
1814 temporaries with the function type need to be created. */
1815 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1816 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1817 return 1;
1819 if (targetm.calls.return_in_memory (type, fntype))
1820 return 1;
1821 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1822 and thus can't be returned in registers. */
1823 if (TREE_ADDRESSABLE (type))
1824 return 1;
1825 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1826 return 1;
1827 /* Make sure we have suitable call-clobbered regs to return
1828 the value in; if not, we must return it in memory. */
1829 reg = hard_function_value (type, 0, fntype, 0);
1831 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1832 it is OK. */
1833 if (!REG_P (reg))
1834 return 0;
1836 regno = REGNO (reg);
1837 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1838 for (i = 0; i < nregs; i++)
1839 if (! call_used_regs[regno + i])
1840 return 1;
1841 return 0;
1844 /* Return true if we should assign DECL a pseudo register; false if it
1845 should live on the local stack. */
1847 bool
1848 use_register_for_decl (const_tree decl)
1850 /* Honor volatile. */
1851 if (TREE_SIDE_EFFECTS (decl))
1852 return false;
1854 /* Honor addressability. */
1855 if (TREE_ADDRESSABLE (decl))
1856 return false;
1858 /* Only register-like things go in registers. */
1859 if (DECL_MODE (decl) == BLKmode)
1860 return false;
1862 /* If -ffloat-store specified, don't put explicit float variables
1863 into registers. */
1864 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1865 propagates values across these stores, and it probably shouldn't. */
1866 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1867 return false;
1869 /* If we're not interested in tracking debugging information for
1870 this decl, then we can certainly put it in a register. */
1871 if (DECL_IGNORED_P (decl))
1872 return true;
1874 return (optimize || DECL_REGISTER (decl));
1877 /* Return true if TYPE should be passed by invisible reference. */
1879 bool
1880 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1881 tree type, bool named_arg)
1883 if (type)
1885 /* If this type contains non-trivial constructors, then it is
1886 forbidden for the middle-end to create any new copies. */
1887 if (TREE_ADDRESSABLE (type))
1888 return true;
1890 /* GCC post 3.4 passes *all* variable sized types by reference. */
1891 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1892 return true;
1895 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1898 /* Return true if TYPE, which is passed by reference, should be callee
1899 copied instead of caller copied. */
1901 bool
1902 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1903 tree type, bool named_arg)
1905 if (type && TREE_ADDRESSABLE (type))
1906 return false;
1907 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1910 /* Structures to communicate between the subroutines of assign_parms.
1911 The first holds data persistent across all parameters, the second
1912 is cleared out for each parameter. */
1914 struct assign_parm_data_all
1916 CUMULATIVE_ARGS args_so_far;
1917 struct args_size stack_args_size;
1918 tree function_result_decl;
1919 tree orig_fnargs;
1920 rtx first_conversion_insn;
1921 rtx last_conversion_insn;
1922 HOST_WIDE_INT pretend_args_size;
1923 HOST_WIDE_INT extra_pretend_bytes;
1924 int reg_parm_stack_space;
1927 struct assign_parm_data_one
1929 tree nominal_type;
1930 tree passed_type;
1931 rtx entry_parm;
1932 rtx stack_parm;
1933 enum machine_mode nominal_mode;
1934 enum machine_mode passed_mode;
1935 enum machine_mode promoted_mode;
1936 struct locate_and_pad_arg_data locate;
1937 int partial;
1938 BOOL_BITFIELD named_arg : 1;
1939 BOOL_BITFIELD passed_pointer : 1;
1940 BOOL_BITFIELD on_stack : 1;
1941 BOOL_BITFIELD loaded_in_reg : 1;
1944 /* A subroutine of assign_parms. Initialize ALL. */
1946 static void
1947 assign_parms_initialize_all (struct assign_parm_data_all *all)
1949 tree fntype;
1951 memset (all, 0, sizeof (*all));
1953 fntype = TREE_TYPE (current_function_decl);
1955 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1956 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1957 #else
1958 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1959 current_function_decl, -1);
1960 #endif
1962 #ifdef REG_PARM_STACK_SPACE
1963 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1964 #endif
1967 /* If ARGS contains entries with complex types, split the entry into two
1968 entries of the component type. Return a new list of substitutions are
1969 needed, else the old list. */
1971 static tree
1972 split_complex_args (tree args)
1974 tree p;
1976 /* Before allocating memory, check for the common case of no complex. */
1977 for (p = args; p; p = TREE_CHAIN (p))
1979 tree type = TREE_TYPE (p);
1980 if (TREE_CODE (type) == COMPLEX_TYPE
1981 && targetm.calls.split_complex_arg (type))
1982 goto found;
1984 return args;
1986 found:
1987 args = copy_list (args);
1989 for (p = args; p; p = TREE_CHAIN (p))
1991 tree type = TREE_TYPE (p);
1992 if (TREE_CODE (type) == COMPLEX_TYPE
1993 && targetm.calls.split_complex_arg (type))
1995 tree decl;
1996 tree subtype = TREE_TYPE (type);
1997 bool addressable = TREE_ADDRESSABLE (p);
1999 /* Rewrite the PARM_DECL's type with its component. */
2000 TREE_TYPE (p) = subtype;
2001 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2002 DECL_MODE (p) = VOIDmode;
2003 DECL_SIZE (p) = NULL;
2004 DECL_SIZE_UNIT (p) = NULL;
2005 /* If this arg must go in memory, put it in a pseudo here.
2006 We can't allow it to go in memory as per normal parms,
2007 because the usual place might not have the imag part
2008 adjacent to the real part. */
2009 DECL_ARTIFICIAL (p) = addressable;
2010 DECL_IGNORED_P (p) = addressable;
2011 TREE_ADDRESSABLE (p) = 0;
2012 layout_decl (p, 0);
2014 /* Build a second synthetic decl. */
2015 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2016 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2017 DECL_ARTIFICIAL (decl) = addressable;
2018 DECL_IGNORED_P (decl) = addressable;
2019 layout_decl (decl, 0);
2021 /* Splice it in; skip the new decl. */
2022 TREE_CHAIN (decl) = TREE_CHAIN (p);
2023 TREE_CHAIN (p) = decl;
2024 p = decl;
2028 return args;
2031 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2032 the hidden struct return argument, and (abi willing) complex args.
2033 Return the new parameter list. */
2035 static tree
2036 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2038 tree fndecl = current_function_decl;
2039 tree fntype = TREE_TYPE (fndecl);
2040 tree fnargs = DECL_ARGUMENTS (fndecl);
2042 /* If struct value address is treated as the first argument, make it so. */
2043 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2044 && ! current_function_returns_pcc_struct
2045 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2047 tree type = build_pointer_type (TREE_TYPE (fntype));
2048 tree decl;
2050 decl = build_decl (PARM_DECL, NULL_TREE, type);
2051 DECL_ARG_TYPE (decl) = type;
2052 DECL_ARTIFICIAL (decl) = 1;
2053 DECL_IGNORED_P (decl) = 1;
2055 TREE_CHAIN (decl) = fnargs;
2056 fnargs = decl;
2057 all->function_result_decl = decl;
2060 all->orig_fnargs = fnargs;
2062 /* If the target wants to split complex arguments into scalars, do so. */
2063 if (targetm.calls.split_complex_arg)
2064 fnargs = split_complex_args (fnargs);
2066 return fnargs;
2069 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2070 data for the parameter. Incorporate ABI specifics such as pass-by-
2071 reference and type promotion. */
2073 static void
2074 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2075 struct assign_parm_data_one *data)
2077 tree nominal_type, passed_type;
2078 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2080 memset (data, 0, sizeof (*data));
2082 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2083 if (!current_function_stdarg)
2084 data->named_arg = 1; /* No varadic parms. */
2085 else if (TREE_CHAIN (parm))
2086 data->named_arg = 1; /* Not the last non-varadic parm. */
2087 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2088 data->named_arg = 1; /* Only varadic ones are unnamed. */
2089 else
2090 data->named_arg = 0; /* Treat as varadic. */
2092 nominal_type = TREE_TYPE (parm);
2093 passed_type = DECL_ARG_TYPE (parm);
2095 /* Look out for errors propagating this far. Also, if the parameter's
2096 type is void then its value doesn't matter. */
2097 if (TREE_TYPE (parm) == error_mark_node
2098 /* This can happen after weird syntax errors
2099 or if an enum type is defined among the parms. */
2100 || TREE_CODE (parm) != PARM_DECL
2101 || passed_type == NULL
2102 || VOID_TYPE_P (nominal_type))
2104 nominal_type = passed_type = void_type_node;
2105 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2106 goto egress;
2109 /* Find mode of arg as it is passed, and mode of arg as it should be
2110 during execution of this function. */
2111 passed_mode = TYPE_MODE (passed_type);
2112 nominal_mode = TYPE_MODE (nominal_type);
2114 /* If the parm is to be passed as a transparent union, use the type of
2115 the first field for the tests below. We have already verified that
2116 the modes are the same. */
2117 if (TREE_CODE (passed_type) == UNION_TYPE
2118 && TYPE_TRANSPARENT_UNION (passed_type))
2119 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2121 /* See if this arg was passed by invisible reference. */
2122 if (pass_by_reference (&all->args_so_far, passed_mode,
2123 passed_type, data->named_arg))
2125 passed_type = nominal_type = build_pointer_type (passed_type);
2126 data->passed_pointer = true;
2127 passed_mode = nominal_mode = Pmode;
2130 /* Find mode as it is passed by the ABI. */
2131 promoted_mode = passed_mode;
2132 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2134 int unsignedp = TYPE_UNSIGNED (passed_type);
2135 promoted_mode = promote_mode (passed_type, promoted_mode,
2136 &unsignedp, 1);
2139 egress:
2140 data->nominal_type = nominal_type;
2141 data->passed_type = passed_type;
2142 data->nominal_mode = nominal_mode;
2143 data->passed_mode = passed_mode;
2144 data->promoted_mode = promoted_mode;
2147 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2149 static void
2150 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2151 struct assign_parm_data_one *data, bool no_rtl)
2153 int varargs_pretend_bytes = 0;
2155 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2156 data->promoted_mode,
2157 data->passed_type,
2158 &varargs_pretend_bytes, no_rtl);
2160 /* If the back-end has requested extra stack space, record how much is
2161 needed. Do not change pretend_args_size otherwise since it may be
2162 nonzero from an earlier partial argument. */
2163 if (varargs_pretend_bytes > 0)
2164 all->pretend_args_size = varargs_pretend_bytes;
2167 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2168 the incoming location of the current parameter. */
2170 static void
2171 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2172 struct assign_parm_data_one *data)
2174 HOST_WIDE_INT pretend_bytes = 0;
2175 rtx entry_parm;
2176 bool in_regs;
2178 if (data->promoted_mode == VOIDmode)
2180 data->entry_parm = data->stack_parm = const0_rtx;
2181 return;
2184 #ifdef FUNCTION_INCOMING_ARG
2185 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2186 data->passed_type, data->named_arg);
2187 #else
2188 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2189 data->passed_type, data->named_arg);
2190 #endif
2192 if (entry_parm == 0)
2193 data->promoted_mode = data->passed_mode;
2195 /* Determine parm's home in the stack, in case it arrives in the stack
2196 or we should pretend it did. Compute the stack position and rtx where
2197 the argument arrives and its size.
2199 There is one complexity here: If this was a parameter that would
2200 have been passed in registers, but wasn't only because it is
2201 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2202 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2203 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2204 as it was the previous time. */
2205 in_regs = entry_parm != 0;
2206 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2207 in_regs = true;
2208 #endif
2209 if (!in_regs && !data->named_arg)
2211 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2213 rtx tem;
2214 #ifdef FUNCTION_INCOMING_ARG
2215 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2216 data->passed_type, true);
2217 #else
2218 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2219 data->passed_type, true);
2220 #endif
2221 in_regs = tem != NULL;
2225 /* If this parameter was passed both in registers and in the stack, use
2226 the copy on the stack. */
2227 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2228 data->passed_type))
2229 entry_parm = 0;
2231 if (entry_parm)
2233 int partial;
2235 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2236 data->promoted_mode,
2237 data->passed_type,
2238 data->named_arg);
2239 data->partial = partial;
2241 /* The caller might already have allocated stack space for the
2242 register parameters. */
2243 if (partial != 0 && all->reg_parm_stack_space == 0)
2245 /* Part of this argument is passed in registers and part
2246 is passed on the stack. Ask the prologue code to extend
2247 the stack part so that we can recreate the full value.
2249 PRETEND_BYTES is the size of the registers we need to store.
2250 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2251 stack space that the prologue should allocate.
2253 Internally, gcc assumes that the argument pointer is aligned
2254 to STACK_BOUNDARY bits. This is used both for alignment
2255 optimizations (see init_emit) and to locate arguments that are
2256 aligned to more than PARM_BOUNDARY bits. We must preserve this
2257 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2258 a stack boundary. */
2260 /* We assume at most one partial arg, and it must be the first
2261 argument on the stack. */
2262 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2264 pretend_bytes = partial;
2265 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2267 /* We want to align relative to the actual stack pointer, so
2268 don't include this in the stack size until later. */
2269 all->extra_pretend_bytes = all->pretend_args_size;
2273 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2274 entry_parm ? data->partial : 0, current_function_decl,
2275 &all->stack_args_size, &data->locate);
2277 /* Adjust offsets to include the pretend args. */
2278 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2279 data->locate.slot_offset.constant += pretend_bytes;
2280 data->locate.offset.constant += pretend_bytes;
2282 data->entry_parm = entry_parm;
2285 /* A subroutine of assign_parms. If there is actually space on the stack
2286 for this parm, count it in stack_args_size and return true. */
2288 static bool
2289 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2290 struct assign_parm_data_one *data)
2292 /* Trivially true if we've no incoming register. */
2293 if (data->entry_parm == NULL)
2295 /* Also true if we're partially in registers and partially not,
2296 since we've arranged to drop the entire argument on the stack. */
2297 else if (data->partial != 0)
2299 /* Also true if the target says that it's passed in both registers
2300 and on the stack. */
2301 else if (GET_CODE (data->entry_parm) == PARALLEL
2302 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2304 /* Also true if the target says that there's stack allocated for
2305 all register parameters. */
2306 else if (all->reg_parm_stack_space > 0)
2308 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2309 else
2310 return false;
2312 all->stack_args_size.constant += data->locate.size.constant;
2313 if (data->locate.size.var)
2314 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2316 return true;
2319 /* A subroutine of assign_parms. Given that this parameter is allocated
2320 stack space by the ABI, find it. */
2322 static void
2323 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2325 rtx offset_rtx, stack_parm;
2326 unsigned int align, boundary;
2328 /* If we're passing this arg using a reg, make its stack home the
2329 aligned stack slot. */
2330 if (data->entry_parm)
2331 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2332 else
2333 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2335 stack_parm = current_function_internal_arg_pointer;
2336 if (offset_rtx != const0_rtx)
2337 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2338 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2340 set_mem_attributes (stack_parm, parm, 1);
2342 boundary = data->locate.boundary;
2343 align = BITS_PER_UNIT;
2345 /* If we're padding upward, we know that the alignment of the slot
2346 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2347 intentionally forcing upward padding. Otherwise we have to come
2348 up with a guess at the alignment based on OFFSET_RTX. */
2349 if (data->locate.where_pad != downward || data->entry_parm)
2350 align = boundary;
2351 else if (GET_CODE (offset_rtx) == CONST_INT)
2353 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2354 align = align & -align;
2356 set_mem_align (stack_parm, align);
2358 if (data->entry_parm)
2359 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2361 data->stack_parm = stack_parm;
2364 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2365 always valid and contiguous. */
2367 static void
2368 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2370 rtx entry_parm = data->entry_parm;
2371 rtx stack_parm = data->stack_parm;
2373 /* If this parm was passed part in regs and part in memory, pretend it
2374 arrived entirely in memory by pushing the register-part onto the stack.
2375 In the special case of a DImode or DFmode that is split, we could put
2376 it together in a pseudoreg directly, but for now that's not worth
2377 bothering with. */
2378 if (data->partial != 0)
2380 /* Handle calls that pass values in multiple non-contiguous
2381 locations. The Irix 6 ABI has examples of this. */
2382 if (GET_CODE (entry_parm) == PARALLEL)
2383 emit_group_store (validize_mem (stack_parm), entry_parm,
2384 data->passed_type,
2385 int_size_in_bytes (data->passed_type));
2386 else
2388 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2389 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2390 data->partial / UNITS_PER_WORD);
2393 entry_parm = stack_parm;
2396 /* If we didn't decide this parm came in a register, by default it came
2397 on the stack. */
2398 else if (entry_parm == NULL)
2399 entry_parm = stack_parm;
2401 /* When an argument is passed in multiple locations, we can't make use
2402 of this information, but we can save some copying if the whole argument
2403 is passed in a single register. */
2404 else if (GET_CODE (entry_parm) == PARALLEL
2405 && data->nominal_mode != BLKmode
2406 && data->passed_mode != BLKmode)
2408 size_t i, len = XVECLEN (entry_parm, 0);
2410 for (i = 0; i < len; i++)
2411 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2412 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2413 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2414 == data->passed_mode)
2415 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2417 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2418 break;
2422 data->entry_parm = entry_parm;
2425 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2426 always valid and properly aligned. */
2428 static void
2429 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2431 rtx stack_parm = data->stack_parm;
2433 /* If we can't trust the parm stack slot to be aligned enough for its
2434 ultimate type, don't use that slot after entry. We'll make another
2435 stack slot, if we need one. */
2436 if (stack_parm
2437 && ((STRICT_ALIGNMENT
2438 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2439 || (data->nominal_type
2440 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2441 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2442 stack_parm = NULL;
2444 /* If parm was passed in memory, and we need to convert it on entry,
2445 don't store it back in that same slot. */
2446 else if (data->entry_parm == stack_parm
2447 && data->nominal_mode != BLKmode
2448 && data->nominal_mode != data->passed_mode)
2449 stack_parm = NULL;
2451 /* If stack protection is in effect for this function, don't leave any
2452 pointers in their passed stack slots. */
2453 else if (cfun->stack_protect_guard
2454 && (flag_stack_protect == 2
2455 || data->passed_pointer
2456 || POINTER_TYPE_P (data->nominal_type)))
2457 stack_parm = NULL;
2459 data->stack_parm = stack_parm;
2462 /* A subroutine of assign_parms. Return true if the current parameter
2463 should be stored as a BLKmode in the current frame. */
2465 static bool
2466 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2468 if (data->nominal_mode == BLKmode)
2469 return true;
2470 if (GET_CODE (data->entry_parm) == PARALLEL)
2471 return true;
2473 #ifdef BLOCK_REG_PADDING
2474 /* Only assign_parm_setup_block knows how to deal with register arguments
2475 that are padded at the least significant end. */
2476 if (REG_P (data->entry_parm)
2477 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2478 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2479 == (BYTES_BIG_ENDIAN ? upward : downward)))
2480 return true;
2481 #endif
2483 return false;
2486 /* A subroutine of assign_parms. Arrange for the parameter to be
2487 present and valid in DATA->STACK_RTL. */
2489 static void
2490 assign_parm_setup_block (struct assign_parm_data_all *all,
2491 tree parm, struct assign_parm_data_one *data)
2493 rtx entry_parm = data->entry_parm;
2494 rtx stack_parm = data->stack_parm;
2495 HOST_WIDE_INT size;
2496 HOST_WIDE_INT size_stored;
2497 rtx orig_entry_parm = entry_parm;
2499 if (GET_CODE (entry_parm) == PARALLEL)
2500 entry_parm = emit_group_move_into_temps (entry_parm);
2502 /* If we've a non-block object that's nevertheless passed in parts,
2503 reconstitute it in register operations rather than on the stack. */
2504 if (GET_CODE (entry_parm) == PARALLEL
2505 && data->nominal_mode != BLKmode)
2507 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2509 if ((XVECLEN (entry_parm, 0) > 1
2510 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2511 && use_register_for_decl (parm))
2513 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2515 push_to_sequence2 (all->first_conversion_insn,
2516 all->last_conversion_insn);
2518 /* For values returned in multiple registers, handle possible
2519 incompatible calls to emit_group_store.
2521 For example, the following would be invalid, and would have to
2522 be fixed by the conditional below:
2524 emit_group_store ((reg:SF), (parallel:DF))
2525 emit_group_store ((reg:SI), (parallel:DI))
2527 An example of this are doubles in e500 v2:
2528 (parallel:DF (expr_list (reg:SI) (const_int 0))
2529 (expr_list (reg:SI) (const_int 4))). */
2530 if (data->nominal_mode != data->passed_mode)
2532 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2533 emit_group_store (t, entry_parm, NULL_TREE,
2534 GET_MODE_SIZE (GET_MODE (entry_parm)));
2535 convert_move (parmreg, t, 0);
2537 else
2538 emit_group_store (parmreg, entry_parm, data->nominal_type,
2539 int_size_in_bytes (data->nominal_type));
2541 all->first_conversion_insn = get_insns ();
2542 all->last_conversion_insn = get_last_insn ();
2543 end_sequence ();
2545 SET_DECL_RTL (parm, parmreg);
2546 return;
2550 size = int_size_in_bytes (data->passed_type);
2551 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2552 if (stack_parm == 0)
2554 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2555 stack_parm = assign_stack_local (BLKmode, size_stored,
2556 DECL_ALIGN (parm));
2557 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2558 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2559 set_mem_attributes (stack_parm, parm, 1);
2562 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2563 calls that pass values in multiple non-contiguous locations. */
2564 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2566 rtx mem;
2568 /* Note that we will be storing an integral number of words.
2569 So we have to be careful to ensure that we allocate an
2570 integral number of words. We do this above when we call
2571 assign_stack_local if space was not allocated in the argument
2572 list. If it was, this will not work if PARM_BOUNDARY is not
2573 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2574 if it becomes a problem. Exception is when BLKmode arrives
2575 with arguments not conforming to word_mode. */
2577 if (data->stack_parm == 0)
2579 else if (GET_CODE (entry_parm) == PARALLEL)
2581 else
2582 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2584 mem = validize_mem (stack_parm);
2586 /* Handle values in multiple non-contiguous locations. */
2587 if (GET_CODE (entry_parm) == PARALLEL)
2589 push_to_sequence2 (all->first_conversion_insn,
2590 all->last_conversion_insn);
2591 emit_group_store (mem, entry_parm, data->passed_type, size);
2592 all->first_conversion_insn = get_insns ();
2593 all->last_conversion_insn = get_last_insn ();
2594 end_sequence ();
2597 else if (size == 0)
2600 /* If SIZE is that of a mode no bigger than a word, just use
2601 that mode's store operation. */
2602 else if (size <= UNITS_PER_WORD)
2604 enum machine_mode mode
2605 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2607 if (mode != BLKmode
2608 #ifdef BLOCK_REG_PADDING
2609 && (size == UNITS_PER_WORD
2610 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2611 != (BYTES_BIG_ENDIAN ? upward : downward)))
2612 #endif
2615 rtx reg;
2617 /* We are really truncating a word_mode value containing
2618 SIZE bytes into a value of mode MODE. If such an
2619 operation requires no actual instructions, we can refer
2620 to the value directly in mode MODE, otherwise we must
2621 start with the register in word_mode and explicitly
2622 convert it. */
2623 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2624 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2625 else
2627 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2628 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2630 emit_move_insn (change_address (mem, mode, 0), reg);
2633 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2634 machine must be aligned to the left before storing
2635 to memory. Note that the previous test doesn't
2636 handle all cases (e.g. SIZE == 3). */
2637 else if (size != UNITS_PER_WORD
2638 #ifdef BLOCK_REG_PADDING
2639 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2640 == downward)
2641 #else
2642 && BYTES_BIG_ENDIAN
2643 #endif
2646 rtx tem, x;
2647 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2648 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2650 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2651 build_int_cst (NULL_TREE, by),
2652 NULL_RTX, 1);
2653 tem = change_address (mem, word_mode, 0);
2654 emit_move_insn (tem, x);
2656 else
2657 move_block_from_reg (REGNO (entry_parm), mem,
2658 size_stored / UNITS_PER_WORD);
2660 else
2661 move_block_from_reg (REGNO (entry_parm), mem,
2662 size_stored / UNITS_PER_WORD);
2664 else if (data->stack_parm == 0)
2666 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2667 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2668 BLOCK_OP_NORMAL);
2669 all->first_conversion_insn = get_insns ();
2670 all->last_conversion_insn = get_last_insn ();
2671 end_sequence ();
2674 data->stack_parm = stack_parm;
2675 SET_DECL_RTL (parm, stack_parm);
2678 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2679 parameter. Get it there. Perform all ABI specified conversions. */
2681 static void
2682 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2683 struct assign_parm_data_one *data)
2685 rtx parmreg;
2686 enum machine_mode promoted_nominal_mode;
2687 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2688 bool did_conversion = false;
2690 /* Store the parm in a pseudoregister during the function, but we may
2691 need to do it in a wider mode. */
2693 /* This is not really promoting for a call. However we need to be
2694 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2695 promoted_nominal_mode
2696 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2698 parmreg = gen_reg_rtx (promoted_nominal_mode);
2700 if (!DECL_ARTIFICIAL (parm))
2701 mark_user_reg (parmreg);
2703 /* If this was an item that we received a pointer to,
2704 set DECL_RTL appropriately. */
2705 if (data->passed_pointer)
2707 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2708 set_mem_attributes (x, parm, 1);
2709 SET_DECL_RTL (parm, x);
2711 else
2712 SET_DECL_RTL (parm, parmreg);
2714 /* Copy the value into the register. */
2715 if (data->nominal_mode != data->passed_mode
2716 || promoted_nominal_mode != data->promoted_mode)
2718 int save_tree_used;
2720 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2721 mode, by the caller. We now have to convert it to
2722 NOMINAL_MODE, if different. However, PARMREG may be in
2723 a different mode than NOMINAL_MODE if it is being stored
2724 promoted.
2726 If ENTRY_PARM is a hard register, it might be in a register
2727 not valid for operating in its mode (e.g., an odd-numbered
2728 register for a DFmode). In that case, moves are the only
2729 thing valid, so we can't do a convert from there. This
2730 occurs when the calling sequence allow such misaligned
2731 usages.
2733 In addition, the conversion may involve a call, which could
2734 clobber parameters which haven't been copied to pseudo
2735 registers yet. Therefore, we must first copy the parm to
2736 a pseudo reg here, and save the conversion until after all
2737 parameters have been moved. */
2739 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2741 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2743 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2744 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2746 if (GET_CODE (tempreg) == SUBREG
2747 && GET_MODE (tempreg) == data->nominal_mode
2748 && REG_P (SUBREG_REG (tempreg))
2749 && data->nominal_mode == data->passed_mode
2750 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2751 && GET_MODE_SIZE (GET_MODE (tempreg))
2752 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2754 /* The argument is already sign/zero extended, so note it
2755 into the subreg. */
2756 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2757 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2760 /* TREE_USED gets set erroneously during expand_assignment. */
2761 save_tree_used = TREE_USED (parm);
2762 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2763 TREE_USED (parm) = save_tree_used;
2764 all->first_conversion_insn = get_insns ();
2765 all->last_conversion_insn = get_last_insn ();
2766 end_sequence ();
2768 did_conversion = true;
2770 else
2771 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2773 /* If we were passed a pointer but the actual value can safely live
2774 in a register, put it in one. */
2775 if (data->passed_pointer
2776 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2777 /* If by-reference argument was promoted, demote it. */
2778 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2779 || use_register_for_decl (parm)))
2781 /* We can't use nominal_mode, because it will have been set to
2782 Pmode above. We must use the actual mode of the parm. */
2783 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2784 mark_user_reg (parmreg);
2786 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2788 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2789 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2791 push_to_sequence2 (all->first_conversion_insn,
2792 all->last_conversion_insn);
2793 emit_move_insn (tempreg, DECL_RTL (parm));
2794 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2795 emit_move_insn (parmreg, tempreg);
2796 all->first_conversion_insn = get_insns ();
2797 all->last_conversion_insn = get_last_insn ();
2798 end_sequence ();
2800 did_conversion = true;
2802 else
2803 emit_move_insn (parmreg, DECL_RTL (parm));
2805 SET_DECL_RTL (parm, parmreg);
2807 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2808 now the parm. */
2809 data->stack_parm = NULL;
2812 /* Mark the register as eliminable if we did no conversion and it was
2813 copied from memory at a fixed offset, and the arg pointer was not
2814 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2815 offset formed an invalid address, such memory-equivalences as we
2816 make here would screw up life analysis for it. */
2817 if (data->nominal_mode == data->passed_mode
2818 && !did_conversion
2819 && data->stack_parm != 0
2820 && MEM_P (data->stack_parm)
2821 && data->locate.offset.var == 0
2822 && reg_mentioned_p (virtual_incoming_args_rtx,
2823 XEXP (data->stack_parm, 0)))
2825 rtx linsn = get_last_insn ();
2826 rtx sinsn, set;
2828 /* Mark complex types separately. */
2829 if (GET_CODE (parmreg) == CONCAT)
2831 enum machine_mode submode
2832 = GET_MODE_INNER (GET_MODE (parmreg));
2833 int regnor = REGNO (XEXP (parmreg, 0));
2834 int regnoi = REGNO (XEXP (parmreg, 1));
2835 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2836 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2837 GET_MODE_SIZE (submode));
2839 /* Scan backwards for the set of the real and
2840 imaginary parts. */
2841 for (sinsn = linsn; sinsn != 0;
2842 sinsn = prev_nonnote_insn (sinsn))
2844 set = single_set (sinsn);
2845 if (set == 0)
2846 continue;
2848 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2849 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2850 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2851 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2854 else if ((set = single_set (linsn)) != 0
2855 && SET_DEST (set) == parmreg)
2856 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2859 /* For pointer data type, suggest pointer register. */
2860 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2861 mark_reg_pointer (parmreg,
2862 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2865 /* A subroutine of assign_parms. Allocate stack space to hold the current
2866 parameter. Get it there. Perform all ABI specified conversions. */
2868 static void
2869 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2870 struct assign_parm_data_one *data)
2872 /* Value must be stored in the stack slot STACK_PARM during function
2873 execution. */
2874 bool to_conversion = false;
2876 if (data->promoted_mode != data->nominal_mode)
2878 /* Conversion is required. */
2879 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2881 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2883 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2884 to_conversion = true;
2886 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2887 TYPE_UNSIGNED (TREE_TYPE (parm)));
2889 if (data->stack_parm)
2890 /* ??? This may need a big-endian conversion on sparc64. */
2891 data->stack_parm
2892 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2895 if (data->entry_parm != data->stack_parm)
2897 rtx src, dest;
2899 if (data->stack_parm == 0)
2901 data->stack_parm
2902 = assign_stack_local (GET_MODE (data->entry_parm),
2903 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2904 TYPE_ALIGN (data->passed_type));
2905 set_mem_attributes (data->stack_parm, parm, 1);
2908 dest = validize_mem (data->stack_parm);
2909 src = validize_mem (data->entry_parm);
2911 if (MEM_P (src))
2913 /* Use a block move to handle potentially misaligned entry_parm. */
2914 if (!to_conversion)
2915 push_to_sequence2 (all->first_conversion_insn,
2916 all->last_conversion_insn);
2917 to_conversion = true;
2919 emit_block_move (dest, src,
2920 GEN_INT (int_size_in_bytes (data->passed_type)),
2921 BLOCK_OP_NORMAL);
2923 else
2924 emit_move_insn (dest, src);
2927 if (to_conversion)
2929 all->first_conversion_insn = get_insns ();
2930 all->last_conversion_insn = get_last_insn ();
2931 end_sequence ();
2934 SET_DECL_RTL (parm, data->stack_parm);
2937 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2938 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2940 static void
2941 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2943 tree parm;
2944 tree orig_fnargs = all->orig_fnargs;
2946 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2948 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2949 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2951 rtx tmp, real, imag;
2952 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2954 real = DECL_RTL (fnargs);
2955 imag = DECL_RTL (TREE_CHAIN (fnargs));
2956 if (inner != GET_MODE (real))
2958 real = gen_lowpart_SUBREG (inner, real);
2959 imag = gen_lowpart_SUBREG (inner, imag);
2962 if (TREE_ADDRESSABLE (parm))
2964 rtx rmem, imem;
2965 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2967 /* split_complex_arg put the real and imag parts in
2968 pseudos. Move them to memory. */
2969 tmp = assign_stack_local (DECL_MODE (parm), size,
2970 TYPE_ALIGN (TREE_TYPE (parm)));
2971 set_mem_attributes (tmp, parm, 1);
2972 rmem = adjust_address_nv (tmp, inner, 0);
2973 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2974 push_to_sequence2 (all->first_conversion_insn,
2975 all->last_conversion_insn);
2976 emit_move_insn (rmem, real);
2977 emit_move_insn (imem, imag);
2978 all->first_conversion_insn = get_insns ();
2979 all->last_conversion_insn = get_last_insn ();
2980 end_sequence ();
2982 else
2983 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2984 SET_DECL_RTL (parm, tmp);
2986 real = DECL_INCOMING_RTL (fnargs);
2987 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2988 if (inner != GET_MODE (real))
2990 real = gen_lowpart_SUBREG (inner, real);
2991 imag = gen_lowpart_SUBREG (inner, imag);
2993 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2994 set_decl_incoming_rtl (parm, tmp, false);
2995 fnargs = TREE_CHAIN (fnargs);
2997 else
2999 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3000 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
3002 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3003 instead of the copy of decl, i.e. FNARGS. */
3004 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3005 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3008 fnargs = TREE_CHAIN (fnargs);
3012 /* Assign RTL expressions to the function's parameters. This may involve
3013 copying them into registers and using those registers as the DECL_RTL. */
3015 static void
3016 assign_parms (tree fndecl)
3018 struct assign_parm_data_all all;
3019 tree fnargs, parm;
3021 current_function_internal_arg_pointer
3022 = targetm.calls.internal_arg_pointer ();
3024 assign_parms_initialize_all (&all);
3025 fnargs = assign_parms_augmented_arg_list (&all);
3027 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3029 struct assign_parm_data_one data;
3031 /* Extract the type of PARM; adjust it according to ABI. */
3032 assign_parm_find_data_types (&all, parm, &data);
3034 /* Early out for errors and void parameters. */
3035 if (data.passed_mode == VOIDmode)
3037 SET_DECL_RTL (parm, const0_rtx);
3038 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3039 continue;
3042 if (current_function_stdarg && !TREE_CHAIN (parm))
3043 assign_parms_setup_varargs (&all, &data, false);
3045 /* Find out where the parameter arrives in this function. */
3046 assign_parm_find_entry_rtl (&all, &data);
3048 /* Find out where stack space for this parameter might be. */
3049 if (assign_parm_is_stack_parm (&all, &data))
3051 assign_parm_find_stack_rtl (parm, &data);
3052 assign_parm_adjust_entry_rtl (&data);
3055 /* Record permanently how this parm was passed. */
3056 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3058 /* Update info on where next arg arrives in registers. */
3059 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3060 data.passed_type, data.named_arg);
3062 assign_parm_adjust_stack_rtl (&data);
3064 if (assign_parm_setup_block_p (&data))
3065 assign_parm_setup_block (&all, parm, &data);
3066 else if (data.passed_pointer || use_register_for_decl (parm))
3067 assign_parm_setup_reg (&all, parm, &data);
3068 else
3069 assign_parm_setup_stack (&all, parm, &data);
3072 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3073 assign_parms_unsplit_complex (&all, fnargs);
3075 /* Output all parameter conversion instructions (possibly including calls)
3076 now that all parameters have been copied out of hard registers. */
3077 emit_insn (all.first_conversion_insn);
3079 /* If we are receiving a struct value address as the first argument, set up
3080 the RTL for the function result. As this might require code to convert
3081 the transmitted address to Pmode, we do this here to ensure that possible
3082 preliminary conversions of the address have been emitted already. */
3083 if (all.function_result_decl)
3085 tree result = DECL_RESULT (current_function_decl);
3086 rtx addr = DECL_RTL (all.function_result_decl);
3087 rtx x;
3089 if (DECL_BY_REFERENCE (result))
3090 x = addr;
3091 else
3093 addr = convert_memory_address (Pmode, addr);
3094 x = gen_rtx_MEM (DECL_MODE (result), addr);
3095 set_mem_attributes (x, result, 1);
3097 SET_DECL_RTL (result, x);
3100 /* We have aligned all the args, so add space for the pretend args. */
3101 current_function_pretend_args_size = all.pretend_args_size;
3102 all.stack_args_size.constant += all.extra_pretend_bytes;
3103 current_function_args_size = all.stack_args_size.constant;
3105 /* Adjust function incoming argument size for alignment and
3106 minimum length. */
3108 #ifdef REG_PARM_STACK_SPACE
3109 current_function_args_size = MAX (current_function_args_size,
3110 REG_PARM_STACK_SPACE (fndecl));
3111 #endif
3113 current_function_args_size = CEIL_ROUND (current_function_args_size,
3114 PARM_BOUNDARY / BITS_PER_UNIT);
3116 #ifdef ARGS_GROW_DOWNWARD
3117 current_function_arg_offset_rtx
3118 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3119 : expand_expr (size_diffop (all.stack_args_size.var,
3120 size_int (-all.stack_args_size.constant)),
3121 NULL_RTX, VOIDmode, 0));
3122 #else
3123 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3124 #endif
3126 /* See how many bytes, if any, of its args a function should try to pop
3127 on return. */
3129 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3130 current_function_args_size);
3132 /* For stdarg.h function, save info about
3133 regs and stack space used by the named args. */
3135 current_function_args_info = all.args_so_far;
3137 /* Set the rtx used for the function return value. Put this in its
3138 own variable so any optimizers that need this information don't have
3139 to include tree.h. Do this here so it gets done when an inlined
3140 function gets output. */
3142 current_function_return_rtx
3143 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3144 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3146 /* If scalar return value was computed in a pseudo-reg, or was a named
3147 return value that got dumped to the stack, copy that to the hard
3148 return register. */
3149 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3151 tree decl_result = DECL_RESULT (fndecl);
3152 rtx decl_rtl = DECL_RTL (decl_result);
3154 if (REG_P (decl_rtl)
3155 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3156 : DECL_REGISTER (decl_result))
3158 rtx real_decl_rtl;
3160 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3161 fndecl, true);
3162 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3163 /* The delay slot scheduler assumes that current_function_return_rtx
3164 holds the hard register containing the return value, not a
3165 temporary pseudo. */
3166 current_function_return_rtx = real_decl_rtl;
3171 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3172 For all seen types, gimplify their sizes. */
3174 static tree
3175 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3177 tree t = *tp;
3179 *walk_subtrees = 0;
3180 if (TYPE_P (t))
3182 if (POINTER_TYPE_P (t))
3183 *walk_subtrees = 1;
3184 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3185 && !TYPE_SIZES_GIMPLIFIED (t))
3187 gimplify_type_sizes (t, (tree *) data);
3188 *walk_subtrees = 1;
3192 return NULL;
3195 /* Gimplify the parameter list for current_function_decl. This involves
3196 evaluating SAVE_EXPRs of variable sized parameters and generating code
3197 to implement callee-copies reference parameters. Returns a list of
3198 statements to add to the beginning of the function, or NULL if nothing
3199 to do. */
3201 tree
3202 gimplify_parameters (void)
3204 struct assign_parm_data_all all;
3205 tree fnargs, parm, stmts = NULL;
3207 assign_parms_initialize_all (&all);
3208 fnargs = assign_parms_augmented_arg_list (&all);
3210 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3212 struct assign_parm_data_one data;
3214 /* Extract the type of PARM; adjust it according to ABI. */
3215 assign_parm_find_data_types (&all, parm, &data);
3217 /* Early out for errors and void parameters. */
3218 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3219 continue;
3221 /* Update info on where next arg arrives in registers. */
3222 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3223 data.passed_type, data.named_arg);
3225 /* ??? Once upon a time variable_size stuffed parameter list
3226 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3227 turned out to be less than manageable in the gimple world.
3228 Now we have to hunt them down ourselves. */
3229 walk_tree_without_duplicates (&data.passed_type,
3230 gimplify_parm_type, &stmts);
3232 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3234 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3235 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3238 if (data.passed_pointer)
3240 tree type = TREE_TYPE (data.passed_type);
3241 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3242 type, data.named_arg))
3244 tree local, t;
3246 /* For constant sized objects, this is trivial; for
3247 variable-sized objects, we have to play games. */
3248 if (TREE_CONSTANT (DECL_SIZE (parm)))
3250 local = create_tmp_var (type, get_name (parm));
3251 DECL_IGNORED_P (local) = 0;
3253 else
3255 tree ptr_type, addr;
3257 ptr_type = build_pointer_type (type);
3258 addr = create_tmp_var (ptr_type, get_name (parm));
3259 DECL_IGNORED_P (addr) = 0;
3260 local = build_fold_indirect_ref (addr);
3262 t = built_in_decls[BUILT_IN_ALLOCA];
3263 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3264 t = fold_convert (ptr_type, t);
3265 t = build_gimple_modify_stmt (addr, t);
3266 gimplify_and_add (t, &stmts);
3269 t = build_gimple_modify_stmt (local, parm);
3270 gimplify_and_add (t, &stmts);
3272 SET_DECL_VALUE_EXPR (parm, local);
3273 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3278 return stmts;
3281 /* Compute the size and offset from the start of the stacked arguments for a
3282 parm passed in mode PASSED_MODE and with type TYPE.
3284 INITIAL_OFFSET_PTR points to the current offset into the stacked
3285 arguments.
3287 The starting offset and size for this parm are returned in
3288 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3289 nonzero, the offset is that of stack slot, which is returned in
3290 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3291 padding required from the initial offset ptr to the stack slot.
3293 IN_REGS is nonzero if the argument will be passed in registers. It will
3294 never be set if REG_PARM_STACK_SPACE is not defined.
3296 FNDECL is the function in which the argument was defined.
3298 There are two types of rounding that are done. The first, controlled by
3299 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3300 list to be aligned to the specific boundary (in bits). This rounding
3301 affects the initial and starting offsets, but not the argument size.
3303 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3304 optionally rounds the size of the parm to PARM_BOUNDARY. The
3305 initial offset is not affected by this rounding, while the size always
3306 is and the starting offset may be. */
3308 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3309 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3310 callers pass in the total size of args so far as
3311 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3313 void
3314 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3315 int partial, tree fndecl ATTRIBUTE_UNUSED,
3316 struct args_size *initial_offset_ptr,
3317 struct locate_and_pad_arg_data *locate)
3319 tree sizetree;
3320 enum direction where_pad;
3321 unsigned int boundary;
3322 int reg_parm_stack_space = 0;
3323 int part_size_in_regs;
3325 #ifdef REG_PARM_STACK_SPACE
3326 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3328 /* If we have found a stack parm before we reach the end of the
3329 area reserved for registers, skip that area. */
3330 if (! in_regs)
3332 if (reg_parm_stack_space > 0)
3334 if (initial_offset_ptr->var)
3336 initial_offset_ptr->var
3337 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3338 ssize_int (reg_parm_stack_space));
3339 initial_offset_ptr->constant = 0;
3341 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3342 initial_offset_ptr->constant = reg_parm_stack_space;
3345 #endif /* REG_PARM_STACK_SPACE */
3347 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3349 sizetree
3350 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3351 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3352 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3353 locate->where_pad = where_pad;
3354 locate->boundary = boundary;
3356 /* Remember if the outgoing parameter requires extra alignment on the
3357 calling function side. */
3358 if (boundary > PREFERRED_STACK_BOUNDARY)
3359 boundary = PREFERRED_STACK_BOUNDARY;
3360 if (cfun->stack_alignment_needed < boundary)
3361 cfun->stack_alignment_needed = boundary;
3363 #ifdef ARGS_GROW_DOWNWARD
3364 locate->slot_offset.constant = -initial_offset_ptr->constant;
3365 if (initial_offset_ptr->var)
3366 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3367 initial_offset_ptr->var);
3370 tree s2 = sizetree;
3371 if (where_pad != none
3372 && (!host_integerp (sizetree, 1)
3373 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3374 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3375 SUB_PARM_SIZE (locate->slot_offset, s2);
3378 locate->slot_offset.constant += part_size_in_regs;
3380 if (!in_regs
3381 #ifdef REG_PARM_STACK_SPACE
3382 || REG_PARM_STACK_SPACE (fndecl) > 0
3383 #endif
3385 pad_to_arg_alignment (&locate->slot_offset, boundary,
3386 &locate->alignment_pad);
3388 locate->size.constant = (-initial_offset_ptr->constant
3389 - locate->slot_offset.constant);
3390 if (initial_offset_ptr->var)
3391 locate->size.var = size_binop (MINUS_EXPR,
3392 size_binop (MINUS_EXPR,
3393 ssize_int (0),
3394 initial_offset_ptr->var),
3395 locate->slot_offset.var);
3397 /* Pad_below needs the pre-rounded size to know how much to pad
3398 below. */
3399 locate->offset = locate->slot_offset;
3400 if (where_pad == downward)
3401 pad_below (&locate->offset, passed_mode, sizetree);
3403 #else /* !ARGS_GROW_DOWNWARD */
3404 if (!in_regs
3405 #ifdef REG_PARM_STACK_SPACE
3406 || REG_PARM_STACK_SPACE (fndecl) > 0
3407 #endif
3409 pad_to_arg_alignment (initial_offset_ptr, boundary,
3410 &locate->alignment_pad);
3411 locate->slot_offset = *initial_offset_ptr;
3413 #ifdef PUSH_ROUNDING
3414 if (passed_mode != BLKmode)
3415 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3416 #endif
3418 /* Pad_below needs the pre-rounded size to know how much to pad below
3419 so this must be done before rounding up. */
3420 locate->offset = locate->slot_offset;
3421 if (where_pad == downward)
3422 pad_below (&locate->offset, passed_mode, sizetree);
3424 if (where_pad != none
3425 && (!host_integerp (sizetree, 1)
3426 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3427 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3429 ADD_PARM_SIZE (locate->size, sizetree);
3431 locate->size.constant -= part_size_in_regs;
3432 #endif /* ARGS_GROW_DOWNWARD */
3435 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3436 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3438 static void
3439 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3440 struct args_size *alignment_pad)
3442 tree save_var = NULL_TREE;
3443 HOST_WIDE_INT save_constant = 0;
3444 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3445 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3447 #ifdef SPARC_STACK_BOUNDARY_HACK
3448 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3449 the real alignment of %sp. However, when it does this, the
3450 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3451 if (SPARC_STACK_BOUNDARY_HACK)
3452 sp_offset = 0;
3453 #endif
3455 if (boundary > PARM_BOUNDARY)
3457 save_var = offset_ptr->var;
3458 save_constant = offset_ptr->constant;
3461 alignment_pad->var = NULL_TREE;
3462 alignment_pad->constant = 0;
3464 if (boundary > BITS_PER_UNIT)
3466 if (offset_ptr->var)
3468 tree sp_offset_tree = ssize_int (sp_offset);
3469 tree offset = size_binop (PLUS_EXPR,
3470 ARGS_SIZE_TREE (*offset_ptr),
3471 sp_offset_tree);
3472 #ifdef ARGS_GROW_DOWNWARD
3473 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3474 #else
3475 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3476 #endif
3478 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3479 /* ARGS_SIZE_TREE includes constant term. */
3480 offset_ptr->constant = 0;
3481 if (boundary > PARM_BOUNDARY)
3482 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3483 save_var);
3485 else
3487 offset_ptr->constant = -sp_offset +
3488 #ifdef ARGS_GROW_DOWNWARD
3489 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3490 #else
3491 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3492 #endif
3493 if (boundary > PARM_BOUNDARY)
3494 alignment_pad->constant = offset_ptr->constant - save_constant;
3499 static void
3500 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3502 if (passed_mode != BLKmode)
3504 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3505 offset_ptr->constant
3506 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3507 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3508 - GET_MODE_SIZE (passed_mode));
3510 else
3512 if (TREE_CODE (sizetree) != INTEGER_CST
3513 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3515 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3516 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3517 /* Add it in. */
3518 ADD_PARM_SIZE (*offset_ptr, s2);
3519 SUB_PARM_SIZE (*offset_ptr, sizetree);
3525 /* True if register REGNO was alive at a place where `setjmp' was
3526 called and was set more than once or is an argument. Such regs may
3527 be clobbered by `longjmp'. */
3529 static bool
3530 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3532 /* There appear to be cases where some local vars never reach the
3533 backend but have bogus regnos. */
3534 if (regno >= max_reg_num ())
3535 return false;
3537 return ((REG_N_SETS (regno) > 1
3538 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3539 && REGNO_REG_SET_P (setjmp_crosses, regno));
3542 /* Walk the tree of blocks describing the binding levels within a
3543 function and warn about variables the might be killed by setjmp or
3544 vfork. This is done after calling flow_analysis before register
3545 allocation since that will clobber the pseudo-regs to hard
3546 regs. */
3548 static void
3549 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3551 tree decl, sub;
3553 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3555 if (TREE_CODE (decl) == VAR_DECL
3556 && DECL_RTL_SET_P (decl)
3557 && REG_P (DECL_RTL (decl))
3558 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3559 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3560 " %<longjmp%> or %<vfork%>", decl);
3563 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3564 setjmp_vars_warning (setjmp_crosses, sub);
3567 /* Do the appropriate part of setjmp_vars_warning
3568 but for arguments instead of local variables. */
3570 static void
3571 setjmp_args_warning (bitmap setjmp_crosses)
3573 tree decl;
3574 for (decl = DECL_ARGUMENTS (current_function_decl);
3575 decl; decl = TREE_CHAIN (decl))
3576 if (DECL_RTL (decl) != 0
3577 && REG_P (DECL_RTL (decl))
3578 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3579 warning (OPT_Wclobbered,
3580 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3581 decl);
3584 /* Generate warning messages for variables live across setjmp. */
3586 void
3587 generate_setjmp_warnings (void)
3589 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3591 if (n_basic_blocks == NUM_FIXED_BLOCKS
3592 || bitmap_empty_p (setjmp_crosses))
3593 return;
3595 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3596 setjmp_args_warning (setjmp_crosses);
3600 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3601 and create duplicate blocks. */
3602 /* ??? Need an option to either create block fragments or to create
3603 abstract origin duplicates of a source block. It really depends
3604 on what optimization has been performed. */
3606 void
3607 reorder_blocks (void)
3609 tree block = DECL_INITIAL (current_function_decl);
3610 VEC(tree,heap) *block_stack;
3612 if (block == NULL_TREE)
3613 return;
3615 block_stack = VEC_alloc (tree, heap, 10);
3617 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3618 clear_block_marks (block);
3620 /* Prune the old trees away, so that they don't get in the way. */
3621 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3622 BLOCK_CHAIN (block) = NULL_TREE;
3624 /* Recreate the block tree from the note nesting. */
3625 reorder_blocks_1 (get_insns (), block, &block_stack);
3626 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3628 VEC_free (tree, heap, block_stack);
3631 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3633 void
3634 clear_block_marks (tree block)
3636 while (block)
3638 TREE_ASM_WRITTEN (block) = 0;
3639 clear_block_marks (BLOCK_SUBBLOCKS (block));
3640 block = BLOCK_CHAIN (block);
3644 static void
3645 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3647 rtx insn;
3649 for (insn = insns; insn; insn = NEXT_INSN (insn))
3651 if (NOTE_P (insn))
3653 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3655 tree block = NOTE_BLOCK (insn);
3656 tree origin;
3658 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3659 ? BLOCK_FRAGMENT_ORIGIN (block)
3660 : block);
3662 /* If we have seen this block before, that means it now
3663 spans multiple address regions. Create a new fragment. */
3664 if (TREE_ASM_WRITTEN (block))
3666 tree new_block = copy_node (block);
3668 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3669 BLOCK_FRAGMENT_CHAIN (new_block)
3670 = BLOCK_FRAGMENT_CHAIN (origin);
3671 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3673 NOTE_BLOCK (insn) = new_block;
3674 block = new_block;
3677 BLOCK_SUBBLOCKS (block) = 0;
3678 TREE_ASM_WRITTEN (block) = 1;
3679 /* When there's only one block for the entire function,
3680 current_block == block and we mustn't do this, it
3681 will cause infinite recursion. */
3682 if (block != current_block)
3684 if (block != origin)
3685 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3687 BLOCK_SUPERCONTEXT (block) = current_block;
3688 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3689 BLOCK_SUBBLOCKS (current_block) = block;
3690 current_block = origin;
3692 VEC_safe_push (tree, heap, *p_block_stack, block);
3694 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3696 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3697 BLOCK_SUBBLOCKS (current_block)
3698 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3699 current_block = BLOCK_SUPERCONTEXT (current_block);
3705 /* Reverse the order of elements in the chain T of blocks,
3706 and return the new head of the chain (old last element). */
3708 tree
3709 blocks_nreverse (tree t)
3711 tree prev = 0, decl, next;
3712 for (decl = t; decl; decl = next)
3714 next = BLOCK_CHAIN (decl);
3715 BLOCK_CHAIN (decl) = prev;
3716 prev = decl;
3718 return prev;
3721 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3722 non-NULL, list them all into VECTOR, in a depth-first preorder
3723 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3724 blocks. */
3726 static int
3727 all_blocks (tree block, tree *vector)
3729 int n_blocks = 0;
3731 while (block)
3733 TREE_ASM_WRITTEN (block) = 0;
3735 /* Record this block. */
3736 if (vector)
3737 vector[n_blocks] = block;
3739 ++n_blocks;
3741 /* Record the subblocks, and their subblocks... */
3742 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3743 vector ? vector + n_blocks : 0);
3744 block = BLOCK_CHAIN (block);
3747 return n_blocks;
3750 /* Return a vector containing all the blocks rooted at BLOCK. The
3751 number of elements in the vector is stored in N_BLOCKS_P. The
3752 vector is dynamically allocated; it is the caller's responsibility
3753 to call `free' on the pointer returned. */
3755 static tree *
3756 get_block_vector (tree block, int *n_blocks_p)
3758 tree *block_vector;
3760 *n_blocks_p = all_blocks (block, NULL);
3761 block_vector = XNEWVEC (tree, *n_blocks_p);
3762 all_blocks (block, block_vector);
3764 return block_vector;
3767 static GTY(()) int next_block_index = 2;
3769 /* Set BLOCK_NUMBER for all the blocks in FN. */
3771 void
3772 number_blocks (tree fn)
3774 int i;
3775 int n_blocks;
3776 tree *block_vector;
3778 /* For SDB and XCOFF debugging output, we start numbering the blocks
3779 from 1 within each function, rather than keeping a running
3780 count. */
3781 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3782 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3783 next_block_index = 1;
3784 #endif
3786 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3788 /* The top-level BLOCK isn't numbered at all. */
3789 for (i = 1; i < n_blocks; ++i)
3790 /* We number the blocks from two. */
3791 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3793 free (block_vector);
3795 return;
3798 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3800 tree
3801 debug_find_var_in_block_tree (tree var, tree block)
3803 tree t;
3805 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3806 if (t == var)
3807 return block;
3809 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3811 tree ret = debug_find_var_in_block_tree (var, t);
3812 if (ret)
3813 return ret;
3816 return NULL_TREE;
3819 /* Keep track of whether we're in a dummy function context. If we are,
3820 we don't want to invoke the set_current_function hook, because we'll
3821 get into trouble if the hook calls target_reinit () recursively or
3822 when the initial initialization is not yet complete. */
3824 static bool in_dummy_function;
3826 /* Invoke the target hook when setting cfun. */
3828 static void
3829 invoke_set_current_function_hook (tree fndecl)
3831 if (!in_dummy_function)
3832 targetm.set_current_function (fndecl);
3835 /* cfun should never be set directly; use this function. */
3837 void
3838 set_cfun (struct function *new_cfun)
3840 if (cfun != new_cfun)
3842 cfun = new_cfun;
3843 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3847 /* Keep track of the cfun stack. */
3849 typedef struct function *function_p;
3851 DEF_VEC_P(function_p);
3852 DEF_VEC_ALLOC_P(function_p,heap);
3854 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3856 static VEC(function_p,heap) *cfun_stack;
3858 /* We save the value of in_system_header here when pushing the first
3859 function on the cfun stack, and we restore it from here when
3860 popping the last function. */
3862 static bool saved_in_system_header;
3864 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3866 void
3867 push_cfun (struct function *new_cfun)
3869 if (cfun == NULL)
3870 saved_in_system_header = in_system_header;
3871 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3872 if (new_cfun)
3873 in_system_header = DECL_IN_SYSTEM_HEADER (new_cfun->decl);
3874 set_cfun (new_cfun);
3877 /* Pop cfun from the stack. */
3879 void
3880 pop_cfun (void)
3882 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
3883 in_system_header = ((new_cfun == NULL) ? saved_in_system_header
3884 : DECL_IN_SYSTEM_HEADER (new_cfun->decl));
3885 set_cfun (new_cfun);
3888 /* Return value of funcdef and increase it. */
3890 get_next_funcdef_no (void)
3892 return funcdef_no++;
3895 /* Allocate a function structure for FNDECL and set its contents
3896 to the defaults. Set cfun to the newly-allocated object.
3897 Some of the helper functions invoked during initialization assume
3898 that cfun has already been set. Therefore, assign the new object
3899 directly into cfun and invoke the back end hook explicitly at the
3900 very end, rather than initializing a temporary and calling set_cfun
3901 on it.
3903 ABSTRACT_P is true if this is a function that will never be seen by
3904 the middle-end. Such functions are front-end concepts (like C++
3905 function templates) that do not correspond directly to functions
3906 placed in object files. */
3908 void
3909 allocate_struct_function (tree fndecl, bool abstract_p)
3911 tree result;
3912 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3914 cfun = ggc_alloc_cleared (sizeof (struct function));
3916 cfun->stack_alignment_needed = STACK_BOUNDARY;
3917 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3919 current_function_funcdef_no = get_next_funcdef_no ();
3921 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3923 init_eh_for_function ();
3925 lang_hooks.function.init (cfun);
3926 if (init_machine_status)
3927 cfun->machine = (*init_machine_status) ();
3929 if (fndecl != NULL)
3931 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3932 cfun->decl = fndecl;
3934 result = DECL_RESULT (fndecl);
3935 if (!abstract_p && aggregate_value_p (result, fndecl))
3937 #ifdef PCC_STATIC_STRUCT_RETURN
3938 current_function_returns_pcc_struct = 1;
3939 #endif
3940 current_function_returns_struct = 1;
3943 current_function_stdarg
3944 = (fntype
3945 && TYPE_ARG_TYPES (fntype) != 0
3946 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3947 != void_type_node));
3949 /* Assume all registers in stdarg functions need to be saved. */
3950 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3951 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3954 invoke_set_current_function_hook (fndecl);
3957 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
3958 instead of just setting it. */
3960 void
3961 push_struct_function (tree fndecl)
3963 if (cfun == NULL)
3964 saved_in_system_header = in_system_header;
3965 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3966 if (fndecl)
3967 in_system_header = DECL_IN_SYSTEM_HEADER (fndecl);
3968 allocate_struct_function (fndecl, false);
3971 /* Reset cfun, and other non-struct-function variables to defaults as
3972 appropriate for emitting rtl at the start of a function. */
3974 static void
3975 prepare_function_start (void)
3977 init_emit ();
3978 init_varasm_status (cfun);
3979 init_expr ();
3981 cse_not_expected = ! optimize;
3983 /* Caller save not needed yet. */
3984 caller_save_needed = 0;
3986 /* We haven't done register allocation yet. */
3987 reg_renumber = 0;
3989 /* Indicate that we have not instantiated virtual registers yet. */
3990 virtuals_instantiated = 0;
3992 /* Indicate that we want CONCATs now. */
3993 generating_concat_p = 1;
3995 /* Indicate we have no need of a frame pointer yet. */
3996 frame_pointer_needed = 0;
3999 /* Initialize the rtl expansion mechanism so that we can do simple things
4000 like generate sequences. This is used to provide a context during global
4001 initialization of some passes. You must call expand_dummy_function_end
4002 to exit this context. */
4004 void
4005 init_dummy_function_start (void)
4007 gcc_assert (!in_dummy_function);
4008 in_dummy_function = true;
4009 push_struct_function (NULL_TREE);
4010 prepare_function_start ();
4013 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4014 and initialize static variables for generating RTL for the statements
4015 of the function. */
4017 void
4018 init_function_start (tree subr)
4020 if (subr && DECL_STRUCT_FUNCTION (subr))
4021 set_cfun (DECL_STRUCT_FUNCTION (subr));
4022 else
4023 allocate_struct_function (subr, false);
4024 prepare_function_start ();
4026 /* Warn if this value is an aggregate type,
4027 regardless of which calling convention we are using for it. */
4028 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4029 warning (OPT_Waggregate_return, "function returns an aggregate");
4032 /* Make sure all values used by the optimization passes have sane
4033 defaults. */
4034 unsigned int
4035 init_function_for_compilation (void)
4037 reg_renumber = 0;
4039 /* No prologue/epilogue insns yet. Make sure that these vectors are
4040 empty. */
4041 gcc_assert (VEC_length (int, prologue) == 0);
4042 gcc_assert (VEC_length (int, epilogue) == 0);
4043 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
4044 return 0;
4047 struct rtl_opt_pass pass_init_function =
4050 RTL_PASS,
4051 NULL, /* name */
4052 NULL, /* gate */
4053 init_function_for_compilation, /* execute */
4054 NULL, /* sub */
4055 NULL, /* next */
4056 0, /* static_pass_number */
4057 0, /* tv_id */
4058 0, /* properties_required */
4059 0, /* properties_provided */
4060 0, /* properties_destroyed */
4061 0, /* todo_flags_start */
4062 0 /* todo_flags_finish */
4067 void
4068 expand_main_function (void)
4070 #if (defined(INVOKE__main) \
4071 || (!defined(HAS_INIT_SECTION) \
4072 && !defined(INIT_SECTION_ASM_OP) \
4073 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4074 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4075 #endif
4078 /* Expand code to initialize the stack_protect_guard. This is invoked at
4079 the beginning of a function to be protected. */
4081 #ifndef HAVE_stack_protect_set
4082 # define HAVE_stack_protect_set 0
4083 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4084 #endif
4086 void
4087 stack_protect_prologue (void)
4089 tree guard_decl = targetm.stack_protect_guard ();
4090 rtx x, y;
4092 /* Avoid expand_expr here, because we don't want guard_decl pulled
4093 into registers unless absolutely necessary. And we know that
4094 cfun->stack_protect_guard is a local stack slot, so this skips
4095 all the fluff. */
4096 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4097 y = validize_mem (DECL_RTL (guard_decl));
4099 /* Allow the target to copy from Y to X without leaking Y into a
4100 register. */
4101 if (HAVE_stack_protect_set)
4103 rtx insn = gen_stack_protect_set (x, y);
4104 if (insn)
4106 emit_insn (insn);
4107 return;
4111 /* Otherwise do a straight move. */
4112 emit_move_insn (x, y);
4115 /* Expand code to verify the stack_protect_guard. This is invoked at
4116 the end of a function to be protected. */
4118 #ifndef HAVE_stack_protect_test
4119 # define HAVE_stack_protect_test 0
4120 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4121 #endif
4123 void
4124 stack_protect_epilogue (void)
4126 tree guard_decl = targetm.stack_protect_guard ();
4127 rtx label = gen_label_rtx ();
4128 rtx x, y, tmp;
4130 /* Avoid expand_expr here, because we don't want guard_decl pulled
4131 into registers unless absolutely necessary. And we know that
4132 cfun->stack_protect_guard is a local stack slot, so this skips
4133 all the fluff. */
4134 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4135 y = validize_mem (DECL_RTL (guard_decl));
4137 /* Allow the target to compare Y with X without leaking either into
4138 a register. */
4139 switch (HAVE_stack_protect_test != 0)
4141 case 1:
4142 tmp = gen_stack_protect_test (x, y, label);
4143 if (tmp)
4145 emit_insn (tmp);
4146 break;
4148 /* FALLTHRU */
4150 default:
4151 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4152 break;
4155 /* The noreturn predictor has been moved to the tree level. The rtl-level
4156 predictors estimate this branch about 20%, which isn't enough to get
4157 things moved out of line. Since this is the only extant case of adding
4158 a noreturn function at the rtl level, it doesn't seem worth doing ought
4159 except adding the prediction by hand. */
4160 tmp = get_last_insn ();
4161 if (JUMP_P (tmp))
4162 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4164 expand_expr_stmt (targetm.stack_protect_fail ());
4165 emit_label (label);
4168 /* Start the RTL for a new function, and set variables used for
4169 emitting RTL.
4170 SUBR is the FUNCTION_DECL node.
4171 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4172 the function's parameters, which must be run at any return statement. */
4174 void
4175 expand_function_start (tree subr)
4177 /* Make sure volatile mem refs aren't considered
4178 valid operands of arithmetic insns. */
4179 init_recog_no_volatile ();
4181 current_function_profile
4182 = (profile_flag
4183 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4185 current_function_limit_stack
4186 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4188 /* Make the label for return statements to jump to. Do not special
4189 case machines with special return instructions -- they will be
4190 handled later during jump, ifcvt, or epilogue creation. */
4191 return_label = gen_label_rtx ();
4193 /* Initialize rtx used to return the value. */
4194 /* Do this before assign_parms so that we copy the struct value address
4195 before any library calls that assign parms might generate. */
4197 /* Decide whether to return the value in memory or in a register. */
4198 if (aggregate_value_p (DECL_RESULT (subr), subr))
4200 /* Returning something that won't go in a register. */
4201 rtx value_address = 0;
4203 #ifdef PCC_STATIC_STRUCT_RETURN
4204 if (current_function_returns_pcc_struct)
4206 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4207 value_address = assemble_static_space (size);
4209 else
4210 #endif
4212 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4213 /* Expect to be passed the address of a place to store the value.
4214 If it is passed as an argument, assign_parms will take care of
4215 it. */
4216 if (sv)
4218 value_address = gen_reg_rtx (Pmode);
4219 emit_move_insn (value_address, sv);
4222 if (value_address)
4224 rtx x = value_address;
4225 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4227 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4228 set_mem_attributes (x, DECL_RESULT (subr), 1);
4230 SET_DECL_RTL (DECL_RESULT (subr), x);
4233 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4234 /* If return mode is void, this decl rtl should not be used. */
4235 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4236 else
4238 /* Compute the return values into a pseudo reg, which we will copy
4239 into the true return register after the cleanups are done. */
4240 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4241 if (TYPE_MODE (return_type) != BLKmode
4242 && targetm.calls.return_in_msb (return_type))
4243 /* expand_function_end will insert the appropriate padding in
4244 this case. Use the return value's natural (unpadded) mode
4245 within the function proper. */
4246 SET_DECL_RTL (DECL_RESULT (subr),
4247 gen_reg_rtx (TYPE_MODE (return_type)));
4248 else
4250 /* In order to figure out what mode to use for the pseudo, we
4251 figure out what the mode of the eventual return register will
4252 actually be, and use that. */
4253 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4255 /* Structures that are returned in registers are not
4256 aggregate_value_p, so we may see a PARALLEL or a REG. */
4257 if (REG_P (hard_reg))
4258 SET_DECL_RTL (DECL_RESULT (subr),
4259 gen_reg_rtx (GET_MODE (hard_reg)));
4260 else
4262 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4263 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4267 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4268 result to the real return register(s). */
4269 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4272 /* Initialize rtx for parameters and local variables.
4273 In some cases this requires emitting insns. */
4274 assign_parms (subr);
4276 /* If function gets a static chain arg, store it. */
4277 if (cfun->static_chain_decl)
4279 tree parm = cfun->static_chain_decl;
4280 rtx local = gen_reg_rtx (Pmode);
4282 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4283 SET_DECL_RTL (parm, local);
4284 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4286 emit_move_insn (local, static_chain_incoming_rtx);
4289 /* If the function receives a non-local goto, then store the
4290 bits we need to restore the frame pointer. */
4291 if (cfun->nonlocal_goto_save_area)
4293 tree t_save;
4294 rtx r_save;
4296 /* ??? We need to do this save early. Unfortunately here is
4297 before the frame variable gets declared. Help out... */
4298 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4300 t_save = build4 (ARRAY_REF, ptr_type_node,
4301 cfun->nonlocal_goto_save_area,
4302 integer_zero_node, NULL_TREE, NULL_TREE);
4303 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4304 r_save = convert_memory_address (Pmode, r_save);
4306 emit_move_insn (r_save, virtual_stack_vars_rtx);
4307 update_nonlocal_goto_save_area ();
4310 /* The following was moved from init_function_start.
4311 The move is supposed to make sdb output more accurate. */
4312 /* Indicate the beginning of the function body,
4313 as opposed to parm setup. */
4314 emit_note (NOTE_INSN_FUNCTION_BEG);
4316 gcc_assert (NOTE_P (get_last_insn ()));
4318 parm_birth_insn = get_last_insn ();
4320 if (current_function_profile)
4322 #ifdef PROFILE_HOOK
4323 PROFILE_HOOK (current_function_funcdef_no);
4324 #endif
4327 /* After the display initializations is where the stack checking
4328 probe should go. */
4329 if(flag_stack_check)
4330 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4332 /* Make sure there is a line number after the function entry setup code. */
4333 force_next_line_note ();
4336 /* Undo the effects of init_dummy_function_start. */
4337 void
4338 expand_dummy_function_end (void)
4340 gcc_assert (in_dummy_function);
4342 /* End any sequences that failed to be closed due to syntax errors. */
4343 while (in_sequence_p ())
4344 end_sequence ();
4346 /* Outside function body, can't compute type's actual size
4347 until next function's body starts. */
4349 free_after_parsing (cfun);
4350 free_after_compilation (cfun);
4351 pop_cfun ();
4352 in_dummy_function = false;
4355 /* Call DOIT for each hard register used as a return value from
4356 the current function. */
4358 void
4359 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4361 rtx outgoing = current_function_return_rtx;
4363 if (! outgoing)
4364 return;
4366 if (REG_P (outgoing))
4367 (*doit) (outgoing, arg);
4368 else if (GET_CODE (outgoing) == PARALLEL)
4370 int i;
4372 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4374 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4376 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4377 (*doit) (x, arg);
4382 static void
4383 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4385 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4388 void
4389 clobber_return_register (void)
4391 diddle_return_value (do_clobber_return_reg, NULL);
4393 /* In case we do use pseudo to return value, clobber it too. */
4394 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4396 tree decl_result = DECL_RESULT (current_function_decl);
4397 rtx decl_rtl = DECL_RTL (decl_result);
4398 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4400 do_clobber_return_reg (decl_rtl, NULL);
4405 static void
4406 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4408 emit_insn (gen_rtx_USE (VOIDmode, reg));
4411 static void
4412 use_return_register (void)
4414 diddle_return_value (do_use_return_reg, NULL);
4417 /* Possibly warn about unused parameters. */
4418 void
4419 do_warn_unused_parameter (tree fn)
4421 tree decl;
4423 for (decl = DECL_ARGUMENTS (fn);
4424 decl; decl = TREE_CHAIN (decl))
4425 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4426 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4427 && !TREE_NO_WARNING (decl))
4428 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4431 static GTY(()) rtx initial_trampoline;
4433 /* Generate RTL for the end of the current function. */
4435 void
4436 expand_function_end (void)
4438 rtx clobber_after;
4440 /* If arg_pointer_save_area was referenced only from a nested
4441 function, we will not have initialized it yet. Do that now. */
4442 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4443 get_arg_pointer_save_area (cfun);
4445 /* If we are doing stack checking and this function makes calls,
4446 do a stack probe at the start of the function to ensure we have enough
4447 space for another stack frame. */
4448 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4450 rtx insn, seq;
4452 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4453 if (CALL_P (insn))
4455 start_sequence ();
4456 probe_stack_range (STACK_CHECK_PROTECT,
4457 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4458 seq = get_insns ();
4459 end_sequence ();
4460 emit_insn_before (seq, stack_check_probe_note);
4461 break;
4465 /* End any sequences that failed to be closed due to syntax errors. */
4466 while (in_sequence_p ())
4467 end_sequence ();
4469 clear_pending_stack_adjust ();
4470 do_pending_stack_adjust ();
4472 /* Output a linenumber for the end of the function.
4473 SDB depends on this. */
4474 force_next_line_note ();
4475 set_curr_insn_source_location (input_location);
4477 /* Before the return label (if any), clobber the return
4478 registers so that they are not propagated live to the rest of
4479 the function. This can only happen with functions that drop
4480 through; if there had been a return statement, there would
4481 have either been a return rtx, or a jump to the return label.
4483 We delay actual code generation after the current_function_value_rtx
4484 is computed. */
4485 clobber_after = get_last_insn ();
4487 /* Output the label for the actual return from the function. */
4488 emit_label (return_label);
4490 if (USING_SJLJ_EXCEPTIONS)
4492 /* Let except.c know where it should emit the call to unregister
4493 the function context for sjlj exceptions. */
4494 if (flag_exceptions)
4495 sjlj_emit_function_exit_after (get_last_insn ());
4497 else
4499 /* We want to ensure that instructions that may trap are not
4500 moved into the epilogue by scheduling, because we don't
4501 always emit unwind information for the epilogue. */
4502 if (flag_non_call_exceptions)
4503 emit_insn (gen_blockage ());
4506 /* If this is an implementation of throw, do what's necessary to
4507 communicate between __builtin_eh_return and the epilogue. */
4508 expand_eh_return ();
4510 /* If scalar return value was computed in a pseudo-reg, or was a named
4511 return value that got dumped to the stack, copy that to the hard
4512 return register. */
4513 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4515 tree decl_result = DECL_RESULT (current_function_decl);
4516 rtx decl_rtl = DECL_RTL (decl_result);
4518 if (REG_P (decl_rtl)
4519 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4520 : DECL_REGISTER (decl_result))
4522 rtx real_decl_rtl = current_function_return_rtx;
4524 /* This should be set in assign_parms. */
4525 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4527 /* If this is a BLKmode structure being returned in registers,
4528 then use the mode computed in expand_return. Note that if
4529 decl_rtl is memory, then its mode may have been changed,
4530 but that current_function_return_rtx has not. */
4531 if (GET_MODE (real_decl_rtl) == BLKmode)
4532 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4534 /* If a non-BLKmode return value should be padded at the least
4535 significant end of the register, shift it left by the appropriate
4536 amount. BLKmode results are handled using the group load/store
4537 machinery. */
4538 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4539 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4541 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4542 REGNO (real_decl_rtl)),
4543 decl_rtl);
4544 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4546 /* If a named return value dumped decl_return to memory, then
4547 we may need to re-do the PROMOTE_MODE signed/unsigned
4548 extension. */
4549 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4551 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4553 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4554 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4555 &unsignedp, 1);
4557 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4559 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4561 /* If expand_function_start has created a PARALLEL for decl_rtl,
4562 move the result to the real return registers. Otherwise, do
4563 a group load from decl_rtl for a named return. */
4564 if (GET_CODE (decl_rtl) == PARALLEL)
4565 emit_group_move (real_decl_rtl, decl_rtl);
4566 else
4567 emit_group_load (real_decl_rtl, decl_rtl,
4568 TREE_TYPE (decl_result),
4569 int_size_in_bytes (TREE_TYPE (decl_result)));
4571 /* In the case of complex integer modes smaller than a word, we'll
4572 need to generate some non-trivial bitfield insertions. Do that
4573 on a pseudo and not the hard register. */
4574 else if (GET_CODE (decl_rtl) == CONCAT
4575 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4576 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4578 int old_generating_concat_p;
4579 rtx tmp;
4581 old_generating_concat_p = generating_concat_p;
4582 generating_concat_p = 0;
4583 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4584 generating_concat_p = old_generating_concat_p;
4586 emit_move_insn (tmp, decl_rtl);
4587 emit_move_insn (real_decl_rtl, tmp);
4589 else
4590 emit_move_insn (real_decl_rtl, decl_rtl);
4594 /* If returning a structure, arrange to return the address of the value
4595 in a place where debuggers expect to find it.
4597 If returning a structure PCC style,
4598 the caller also depends on this value.
4599 And current_function_returns_pcc_struct is not necessarily set. */
4600 if (current_function_returns_struct
4601 || current_function_returns_pcc_struct)
4603 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4604 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4605 rtx outgoing;
4607 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4608 type = TREE_TYPE (type);
4609 else
4610 value_address = XEXP (value_address, 0);
4612 outgoing = targetm.calls.function_value (build_pointer_type (type),
4613 current_function_decl, true);
4615 /* Mark this as a function return value so integrate will delete the
4616 assignment and USE below when inlining this function. */
4617 REG_FUNCTION_VALUE_P (outgoing) = 1;
4619 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4620 value_address = convert_memory_address (GET_MODE (outgoing),
4621 value_address);
4623 emit_move_insn (outgoing, value_address);
4625 /* Show return register used to hold result (in this case the address
4626 of the result. */
4627 current_function_return_rtx = outgoing;
4630 /* Emit the actual code to clobber return register. */
4632 rtx seq;
4634 start_sequence ();
4635 clobber_return_register ();
4636 expand_naked_return ();
4637 seq = get_insns ();
4638 end_sequence ();
4640 emit_insn_after (seq, clobber_after);
4643 /* Output the label for the naked return from the function. */
4644 emit_label (naked_return_label);
4646 /* @@@ This is a kludge. We want to ensure that instructions that
4647 may trap are not moved into the epilogue by scheduling, because
4648 we don't always emit unwind information for the epilogue. */
4649 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4650 emit_insn (gen_blockage ());
4652 /* If stack protection is enabled for this function, check the guard. */
4653 if (cfun->stack_protect_guard)
4654 stack_protect_epilogue ();
4656 /* If we had calls to alloca, and this machine needs
4657 an accurate stack pointer to exit the function,
4658 insert some code to save and restore the stack pointer. */
4659 if (! EXIT_IGNORE_STACK
4660 && current_function_calls_alloca)
4662 rtx tem = 0;
4664 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4665 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4668 /* ??? This should no longer be necessary since stupid is no longer with
4669 us, but there are some parts of the compiler (eg reload_combine, and
4670 sh mach_dep_reorg) that still try and compute their own lifetime info
4671 instead of using the general framework. */
4672 use_return_register ();
4676 get_arg_pointer_save_area (struct function *f)
4678 rtx ret = f->x_arg_pointer_save_area;
4680 if (! ret)
4682 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4683 f->x_arg_pointer_save_area = ret;
4686 if (f == cfun && ! f->arg_pointer_save_area_init)
4688 rtx seq;
4690 /* Save the arg pointer at the beginning of the function. The
4691 generated stack slot may not be a valid memory address, so we
4692 have to check it and fix it if necessary. */
4693 start_sequence ();
4694 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4695 seq = get_insns ();
4696 end_sequence ();
4698 push_topmost_sequence ();
4699 emit_insn_after (seq, entry_of_function ());
4700 pop_topmost_sequence ();
4703 return ret;
4706 /* Extend a vector that records the INSN_UIDs of INSNS
4707 (a list of one or more insns). */
4709 static void
4710 record_insns (rtx insns, VEC(int,heap) **vecp)
4712 rtx tmp;
4714 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4715 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4718 /* Set the locator of the insn chain starting at INSN to LOC. */
4719 static void
4720 set_insn_locators (rtx insn, int loc)
4722 while (insn != NULL_RTX)
4724 if (INSN_P (insn))
4725 INSN_LOCATOR (insn) = loc;
4726 insn = NEXT_INSN (insn);
4730 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4731 be running after reorg, SEQUENCE rtl is possible. */
4733 static int
4734 contains (const_rtx insn, VEC(int,heap) **vec)
4736 int i, j;
4738 if (NONJUMP_INSN_P (insn)
4739 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4741 int count = 0;
4742 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4743 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4744 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4745 == VEC_index (int, *vec, j))
4746 count++;
4747 return count;
4749 else
4751 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4752 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4753 return 1;
4755 return 0;
4759 prologue_epilogue_contains (const_rtx insn)
4761 if (contains (insn, &prologue))
4762 return 1;
4763 if (contains (insn, &epilogue))
4764 return 1;
4765 return 0;
4769 sibcall_epilogue_contains (const_rtx insn)
4771 if (sibcall_epilogue)
4772 return contains (insn, &sibcall_epilogue);
4773 return 0;
4776 #ifdef HAVE_return
4777 /* Insert gen_return at the end of block BB. This also means updating
4778 block_for_insn appropriately. */
4780 static void
4781 emit_return_into_block (basic_block bb)
4783 emit_jump_insn_after (gen_return (), BB_END (bb));
4785 #endif /* HAVE_return */
4787 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4789 /* These functions convert the epilogue into a variant that does not
4790 modify the stack pointer. This is used in cases where a function
4791 returns an object whose size is not known until it is computed.
4792 The called function leaves the object on the stack, leaves the
4793 stack depressed, and returns a pointer to the object.
4795 What we need to do is track all modifications and references to the
4796 stack pointer, deleting the modifications and changing the
4797 references to point to the location the stack pointer would have
4798 pointed to had the modifications taken place.
4800 These functions need to be portable so we need to make as few
4801 assumptions about the epilogue as we can. However, the epilogue
4802 basically contains three things: instructions to reset the stack
4803 pointer, instructions to reload registers, possibly including the
4804 frame pointer, and an instruction to return to the caller.
4806 We must be sure of what a relevant epilogue insn is doing. We also
4807 make no attempt to validate the insns we make since if they are
4808 invalid, we probably can't do anything valid. The intent is that
4809 these routines get "smarter" as more and more machines start to use
4810 them and they try operating on different epilogues.
4812 We use the following structure to track what the part of the
4813 epilogue that we've already processed has done. We keep two copies
4814 of the SP equivalence, one for use during the insn we are
4815 processing and one for use in the next insn. The difference is
4816 because one part of a PARALLEL may adjust SP and the other may use
4817 it. */
4819 struct epi_info
4821 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4822 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4823 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4824 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4825 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4826 should be set to once we no longer need
4827 its value. */
4828 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4829 for registers. */
4832 static void handle_epilogue_set (rtx, struct epi_info *);
4833 static void update_epilogue_consts (rtx, const_rtx, void *);
4834 static void emit_equiv_load (struct epi_info *);
4836 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4837 no modifications to the stack pointer. Return the new list of insns. */
4839 static rtx
4840 keep_stack_depressed (rtx insns)
4842 int j;
4843 struct epi_info info;
4844 rtx insn, next;
4846 /* If the epilogue is just a single instruction, it must be OK as is. */
4847 if (NEXT_INSN (insns) == NULL_RTX)
4848 return insns;
4850 /* Otherwise, start a sequence, initialize the information we have, and
4851 process all the insns we were given. */
4852 start_sequence ();
4854 info.sp_equiv_reg = stack_pointer_rtx;
4855 info.sp_offset = 0;
4856 info.equiv_reg_src = 0;
4858 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4859 info.const_equiv[j] = 0;
4861 insn = insns;
4862 next = NULL_RTX;
4863 while (insn != NULL_RTX)
4865 next = NEXT_INSN (insn);
4867 if (!INSN_P (insn))
4869 add_insn (insn);
4870 insn = next;
4871 continue;
4874 /* If this insn references the register that SP is equivalent to and
4875 we have a pending load to that register, we must force out the load
4876 first and then indicate we no longer know what SP's equivalent is. */
4877 if (info.equiv_reg_src != 0
4878 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4880 emit_equiv_load (&info);
4881 info.sp_equiv_reg = 0;
4884 info.new_sp_equiv_reg = info.sp_equiv_reg;
4885 info.new_sp_offset = info.sp_offset;
4887 /* If this is a (RETURN) and the return address is on the stack,
4888 update the address and change to an indirect jump. */
4889 if (GET_CODE (PATTERN (insn)) == RETURN
4890 || (GET_CODE (PATTERN (insn)) == PARALLEL
4891 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4893 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4894 rtx base = 0;
4895 HOST_WIDE_INT offset = 0;
4896 rtx jump_insn, jump_set;
4898 /* If the return address is in a register, we can emit the insn
4899 unchanged. Otherwise, it must be a MEM and we see what the
4900 base register and offset are. In any case, we have to emit any
4901 pending load to the equivalent reg of SP, if any. */
4902 if (REG_P (retaddr))
4904 emit_equiv_load (&info);
4905 add_insn (insn);
4906 insn = next;
4907 continue;
4909 else
4911 rtx ret_ptr;
4912 gcc_assert (MEM_P (retaddr));
4914 ret_ptr = XEXP (retaddr, 0);
4916 if (REG_P (ret_ptr))
4918 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4919 offset = 0;
4921 else
4923 gcc_assert (GET_CODE (ret_ptr) == PLUS
4924 && REG_P (XEXP (ret_ptr, 0))
4925 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4926 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4927 offset = INTVAL (XEXP (ret_ptr, 1));
4931 /* If the base of the location containing the return pointer
4932 is SP, we must update it with the replacement address. Otherwise,
4933 just build the necessary MEM. */
4934 retaddr = plus_constant (base, offset);
4935 if (base == stack_pointer_rtx)
4936 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4937 plus_constant (info.sp_equiv_reg,
4938 info.sp_offset));
4940 retaddr = gen_rtx_MEM (Pmode, retaddr);
4941 MEM_NOTRAP_P (retaddr) = 1;
4943 /* If there is a pending load to the equivalent register for SP
4944 and we reference that register, we must load our address into
4945 a scratch register and then do that load. */
4946 if (info.equiv_reg_src
4947 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4949 unsigned int regno;
4950 rtx reg;
4952 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4953 if (HARD_REGNO_MODE_OK (regno, Pmode)
4954 && !fixed_regs[regno]
4955 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4956 && !REGNO_REG_SET_P
4957 (DF_LR_IN (EXIT_BLOCK_PTR), regno)
4958 && !refers_to_regno_p (regno,
4959 end_hard_regno (Pmode, regno),
4960 info.equiv_reg_src, NULL)
4961 && info.const_equiv[regno] == 0)
4962 break;
4964 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4966 reg = gen_rtx_REG (Pmode, regno);
4967 emit_move_insn (reg, retaddr);
4968 retaddr = reg;
4971 emit_equiv_load (&info);
4972 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4974 /* Show the SET in the above insn is a RETURN. */
4975 jump_set = single_set (jump_insn);
4976 gcc_assert (jump_set);
4977 SET_IS_RETURN_P (jump_set) = 1;
4980 /* If SP is not mentioned in the pattern and its equivalent register, if
4981 any, is not modified, just emit it. Otherwise, if neither is set,
4982 replace the reference to SP and emit the insn. If none of those are
4983 true, handle each SET individually. */
4984 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4985 && (info.sp_equiv_reg == stack_pointer_rtx
4986 || !reg_set_p (info.sp_equiv_reg, insn)))
4987 add_insn (insn);
4988 else if (! reg_set_p (stack_pointer_rtx, insn)
4989 && (info.sp_equiv_reg == stack_pointer_rtx
4990 || !reg_set_p (info.sp_equiv_reg, insn)))
4992 int changed;
4994 changed = validate_replace_rtx (stack_pointer_rtx,
4995 plus_constant (info.sp_equiv_reg,
4996 info.sp_offset),
4997 insn);
4998 gcc_assert (changed);
5000 add_insn (insn);
5002 else if (GET_CODE (PATTERN (insn)) == SET)
5003 handle_epilogue_set (PATTERN (insn), &info);
5004 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
5006 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
5007 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
5008 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
5010 else
5011 add_insn (insn);
5013 info.sp_equiv_reg = info.new_sp_equiv_reg;
5014 info.sp_offset = info.new_sp_offset;
5016 /* Now update any constants this insn sets. */
5017 note_stores (PATTERN (insn), update_epilogue_consts, &info);
5018 insn = next;
5021 insns = get_insns ();
5022 end_sequence ();
5023 return insns;
5026 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
5027 structure that contains information about what we've seen so far. We
5028 process this SET by either updating that data or by emitting one or
5029 more insns. */
5031 static void
5032 handle_epilogue_set (rtx set, struct epi_info *p)
5034 /* First handle the case where we are setting SP. Record what it is being
5035 set from, which we must be able to determine */
5036 if (reg_set_p (stack_pointer_rtx, set))
5038 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
5040 if (GET_CODE (SET_SRC (set)) == PLUS)
5042 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
5043 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
5044 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
5045 else
5047 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
5048 && (REGNO (XEXP (SET_SRC (set), 1))
5049 < FIRST_PSEUDO_REGISTER)
5050 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5051 p->new_sp_offset
5052 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5055 else
5056 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
5058 /* If we are adjusting SP, we adjust from the old data. */
5059 if (p->new_sp_equiv_reg == stack_pointer_rtx)
5061 p->new_sp_equiv_reg = p->sp_equiv_reg;
5062 p->new_sp_offset += p->sp_offset;
5065 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
5067 return;
5070 /* Next handle the case where we are setting SP's equivalent
5071 register. We must not already have a value to set it to. We
5072 could update, but there seems little point in handling that case.
5073 Note that we have to allow for the case where we are setting the
5074 register set in the previous part of a PARALLEL inside a single
5075 insn. But use the old offset for any updates within this insn.
5076 We must allow for the case where the register is being set in a
5077 different (usually wider) mode than Pmode). */
5078 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
5080 gcc_assert (!p->equiv_reg_src
5081 && REG_P (p->new_sp_equiv_reg)
5082 && REG_P (SET_DEST (set))
5083 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
5084 <= BITS_PER_WORD)
5085 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
5086 p->equiv_reg_src
5087 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5088 plus_constant (p->sp_equiv_reg,
5089 p->sp_offset));
5092 /* Otherwise, replace any references to SP in the insn to its new value
5093 and emit the insn. */
5094 else
5096 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5097 plus_constant (p->sp_equiv_reg,
5098 p->sp_offset));
5099 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5100 plus_constant (p->sp_equiv_reg,
5101 p->sp_offset));
5102 emit_insn (set);
5106 /* Update the tracking information for registers set to constants. */
5108 static void
5109 update_epilogue_consts (rtx dest, const_rtx x, void *data)
5111 struct epi_info *p = (struct epi_info *) data;
5112 rtx new;
5114 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5115 return;
5117 /* If we are either clobbering a register or doing a partial set,
5118 show we don't know the value. */
5119 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5120 p->const_equiv[REGNO (dest)] = 0;
5122 /* If we are setting it to a constant, record that constant. */
5123 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5124 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5126 /* If this is a binary operation between a register we have been tracking
5127 and a constant, see if we can compute a new constant value. */
5128 else if (ARITHMETIC_P (SET_SRC (x))
5129 && REG_P (XEXP (SET_SRC (x), 0))
5130 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5131 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5132 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5133 && 0 != (new = simplify_binary_operation
5134 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5135 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5136 XEXP (SET_SRC (x), 1)))
5137 && GET_CODE (new) == CONST_INT)
5138 p->const_equiv[REGNO (dest)] = new;
5140 /* Otherwise, we can't do anything with this value. */
5141 else
5142 p->const_equiv[REGNO (dest)] = 0;
5145 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5147 static void
5148 emit_equiv_load (struct epi_info *p)
5150 if (p->equiv_reg_src != 0)
5152 rtx dest = p->sp_equiv_reg;
5154 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5155 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5156 REGNO (p->sp_equiv_reg));
5158 emit_move_insn (dest, p->equiv_reg_src);
5159 p->equiv_reg_src = 0;
5162 #endif
5164 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5165 this into place with notes indicating where the prologue ends and where
5166 the epilogue begins. Update the basic block information when possible. */
5168 static void
5169 thread_prologue_and_epilogue_insns (void)
5171 int inserted = 0;
5172 edge e;
5173 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5174 rtx seq;
5175 #endif
5176 #if defined (HAVE_epilogue) || defined(HAVE_return)
5177 rtx epilogue_end = NULL_RTX;
5178 #endif
5179 edge_iterator ei;
5181 #ifdef HAVE_prologue
5182 if (HAVE_prologue)
5184 start_sequence ();
5185 seq = gen_prologue ();
5186 emit_insn (seq);
5188 /* Insert an explicit USE for the frame pointer
5189 if the profiling is on and the frame pointer is required. */
5190 if (current_function_profile && frame_pointer_needed)
5191 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
5193 /* Retain a map of the prologue insns. */
5194 record_insns (seq, &prologue);
5195 emit_note (NOTE_INSN_PROLOGUE_END);
5197 #ifndef PROFILE_BEFORE_PROLOGUE
5198 /* Ensure that instructions are not moved into the prologue when
5199 profiling is on. The call to the profiling routine can be
5200 emitted within the live range of a call-clobbered register. */
5201 if (current_function_profile)
5202 emit_insn (gen_blockage ());
5203 #endif
5205 seq = get_insns ();
5206 end_sequence ();
5207 set_insn_locators (seq, prologue_locator);
5209 /* Can't deal with multiple successors of the entry block
5210 at the moment. Function should always have at least one
5211 entry point. */
5212 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5214 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5215 inserted = 1;
5217 #endif
5219 /* If the exit block has no non-fake predecessors, we don't need
5220 an epilogue. */
5221 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5222 if ((e->flags & EDGE_FAKE) == 0)
5223 break;
5224 if (e == NULL)
5225 goto epilogue_done;
5227 #ifdef HAVE_return
5228 if (optimize && HAVE_return)
5230 /* If we're allowed to generate a simple return instruction,
5231 then by definition we don't need a full epilogue. Examine
5232 the block that falls through to EXIT. If it does not
5233 contain any code, examine its predecessors and try to
5234 emit (conditional) return instructions. */
5236 basic_block last;
5237 rtx label;
5239 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5240 if (e->flags & EDGE_FALLTHRU)
5241 break;
5242 if (e == NULL)
5243 goto epilogue_done;
5244 last = e->src;
5246 /* Verify that there are no active instructions in the last block. */
5247 label = BB_END (last);
5248 while (label && !LABEL_P (label))
5250 if (active_insn_p (label))
5251 break;
5252 label = PREV_INSN (label);
5255 if (BB_HEAD (last) == label && LABEL_P (label))
5257 edge_iterator ei2;
5259 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5261 basic_block bb = e->src;
5262 rtx jump;
5264 if (bb == ENTRY_BLOCK_PTR)
5266 ei_next (&ei2);
5267 continue;
5270 jump = BB_END (bb);
5271 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5273 ei_next (&ei2);
5274 continue;
5277 /* If we have an unconditional jump, we can replace that
5278 with a simple return instruction. */
5279 if (simplejump_p (jump))
5281 emit_return_into_block (bb);
5282 delete_insn (jump);
5285 /* If we have a conditional jump, we can try to replace
5286 that with a conditional return instruction. */
5287 else if (condjump_p (jump))
5289 if (! redirect_jump (jump, 0, 0))
5291 ei_next (&ei2);
5292 continue;
5295 /* If this block has only one successor, it both jumps
5296 and falls through to the fallthru block, so we can't
5297 delete the edge. */
5298 if (single_succ_p (bb))
5300 ei_next (&ei2);
5301 continue;
5304 else
5306 ei_next (&ei2);
5307 continue;
5310 /* Fix up the CFG for the successful change we just made. */
5311 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5314 /* Emit a return insn for the exit fallthru block. Whether
5315 this is still reachable will be determined later. */
5317 emit_barrier_after (BB_END (last));
5318 emit_return_into_block (last);
5319 epilogue_end = BB_END (last);
5320 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5321 goto epilogue_done;
5324 #endif
5325 /* Find the edge that falls through to EXIT. Other edges may exist
5326 due to RETURN instructions, but those don't need epilogues.
5327 There really shouldn't be a mixture -- either all should have
5328 been converted or none, however... */
5330 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5331 if (e->flags & EDGE_FALLTHRU)
5332 break;
5333 if (e == NULL)
5334 goto epilogue_done;
5336 #ifdef HAVE_epilogue
5337 if (HAVE_epilogue)
5339 start_sequence ();
5340 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5342 seq = gen_epilogue ();
5344 #ifdef INCOMING_RETURN_ADDR_RTX
5345 /* If this function returns with the stack depressed and we can support
5346 it, massage the epilogue to actually do that. */
5347 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5348 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5349 seq = keep_stack_depressed (seq);
5350 #endif
5352 emit_jump_insn (seq);
5354 /* Retain a map of the epilogue insns. */
5355 record_insns (seq, &epilogue);
5356 set_insn_locators (seq, epilogue_locator);
5358 seq = get_insns ();
5359 end_sequence ();
5361 insert_insn_on_edge (seq, e);
5362 inserted = 1;
5364 else
5365 #endif
5367 basic_block cur_bb;
5369 if (! next_active_insn (BB_END (e->src)))
5370 goto epilogue_done;
5371 /* We have a fall-through edge to the exit block, the source is not
5372 at the end of the function, and there will be an assembler epilogue
5373 at the end of the function.
5374 We can't use force_nonfallthru here, because that would try to
5375 use return. Inserting a jump 'by hand' is extremely messy, so
5376 we take advantage of cfg_layout_finalize using
5377 fixup_fallthru_exit_predecessor. */
5378 cfg_layout_initialize (0);
5379 FOR_EACH_BB (cur_bb)
5380 if (cur_bb->index >= NUM_FIXED_BLOCKS
5381 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5382 cur_bb->aux = cur_bb->next_bb;
5383 cfg_layout_finalize ();
5385 epilogue_done:
5387 if (inserted)
5389 commit_edge_insertions ();
5391 /* The epilogue insns we inserted may cause the exit edge to no longer
5392 be fallthru. */
5393 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5395 if (((e->flags & EDGE_FALLTHRU) != 0)
5396 && returnjump_p (BB_END (e->src)))
5397 e->flags &= ~EDGE_FALLTHRU;
5401 #ifdef HAVE_sibcall_epilogue
5402 /* Emit sibling epilogues before any sibling call sites. */
5403 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5405 basic_block bb = e->src;
5406 rtx insn = BB_END (bb);
5408 if (!CALL_P (insn)
5409 || ! SIBLING_CALL_P (insn))
5411 ei_next (&ei);
5412 continue;
5415 start_sequence ();
5416 emit_insn (gen_sibcall_epilogue ());
5417 seq = get_insns ();
5418 end_sequence ();
5420 /* Retain a map of the epilogue insns. Used in life analysis to
5421 avoid getting rid of sibcall epilogue insns. Do this before we
5422 actually emit the sequence. */
5423 record_insns (seq, &sibcall_epilogue);
5424 set_insn_locators (seq, epilogue_locator);
5426 emit_insn_before (seq, insn);
5427 ei_next (&ei);
5429 #endif
5431 #ifdef HAVE_epilogue
5432 if (epilogue_end)
5434 rtx insn, next;
5436 /* Similarly, move any line notes that appear after the epilogue.
5437 There is no need, however, to be quite so anal about the existence
5438 of such a note. Also possibly move
5439 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5440 info generation. */
5441 for (insn = epilogue_end; insn; insn = next)
5443 next = NEXT_INSN (insn);
5444 if (NOTE_P (insn)
5445 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5446 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5449 #endif
5451 /* Threading the prologue and epilogue changes the artificial refs
5452 in the entry and exit blocks. */
5453 epilogue_completed = 1;
5454 df_update_entry_exit_and_calls ();
5457 /* Reposition the prologue-end and epilogue-begin notes after instruction
5458 scheduling and delayed branch scheduling. */
5460 void
5461 reposition_prologue_and_epilogue_notes (void)
5463 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5464 rtx insn, last, note;
5465 int len;
5467 if ((len = VEC_length (int, prologue)) > 0)
5469 last = 0, note = 0;
5471 /* Scan from the beginning until we reach the last prologue insn.
5472 We apparently can't depend on basic_block_{head,end} after
5473 reorg has run. */
5474 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5476 if (NOTE_P (insn))
5478 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5479 note = insn;
5481 else if (contains (insn, &prologue))
5483 last = insn;
5484 if (--len == 0)
5485 break;
5489 if (last)
5491 /* Find the prologue-end note if we haven't already, and
5492 move it to just after the last prologue insn. */
5493 if (note == 0)
5495 for (note = last; (note = NEXT_INSN (note));)
5496 if (NOTE_P (note)
5497 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5498 break;
5501 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5502 if (LABEL_P (last))
5503 last = NEXT_INSN (last);
5504 reorder_insns (note, note, last);
5508 if ((len = VEC_length (int, epilogue)) > 0)
5510 last = 0, note = 0;
5512 /* Scan from the end until we reach the first epilogue insn.
5513 We apparently can't depend on basic_block_{head,end} after
5514 reorg has run. */
5515 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5517 if (NOTE_P (insn))
5519 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5520 note = insn;
5522 else if (contains (insn, &epilogue))
5524 last = insn;
5525 if (--len == 0)
5526 break;
5530 if (last)
5532 /* Find the epilogue-begin note if we haven't already, and
5533 move it to just before the first epilogue insn. */
5534 if (note == 0)
5536 for (note = insn; (note = PREV_INSN (note));)
5537 if (NOTE_P (note)
5538 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5539 break;
5542 if (PREV_INSN (last) != note)
5543 reorder_insns (note, note, PREV_INSN (last));
5546 #endif /* HAVE_prologue or HAVE_epilogue */
5549 /* Returns the name of the current function. */
5550 const char *
5551 current_function_name (void)
5553 return lang_hooks.decl_printable_name (cfun->decl, 2);
5556 /* Returns the raw (mangled) name of the current function. */
5557 const char *
5558 current_function_assembler_name (void)
5560 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5564 static unsigned int
5565 rest_of_handle_check_leaf_regs (void)
5567 #ifdef LEAF_REGISTERS
5568 current_function_uses_only_leaf_regs
5569 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5570 #endif
5571 return 0;
5574 /* Insert a TYPE into the used types hash table of CFUN. */
5575 static void
5576 used_types_insert_helper (tree type, struct function *func)
5578 if (type != NULL && func != NULL)
5580 void **slot;
5582 if (func->used_types_hash == NULL)
5583 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5584 htab_eq_pointer, NULL);
5585 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5586 if (*slot == NULL)
5587 *slot = type;
5591 /* Given a type, insert it into the used hash table in cfun. */
5592 void
5593 used_types_insert (tree t)
5595 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5596 t = TREE_TYPE (t);
5597 t = TYPE_MAIN_VARIANT (t);
5598 if (debug_info_level > DINFO_LEVEL_NONE)
5599 used_types_insert_helper (t, cfun);
5602 struct rtl_opt_pass pass_leaf_regs =
5605 RTL_PASS,
5606 NULL, /* name */
5607 NULL, /* gate */
5608 rest_of_handle_check_leaf_regs, /* execute */
5609 NULL, /* sub */
5610 NULL, /* next */
5611 0, /* static_pass_number */
5612 0, /* tv_id */
5613 0, /* properties_required */
5614 0, /* properties_provided */
5615 0, /* properties_destroyed */
5616 0, /* todo_flags_start */
5617 0 /* todo_flags_finish */
5621 static unsigned int
5622 rest_of_handle_thread_prologue_and_epilogue (void)
5624 if (optimize)
5625 cleanup_cfg (CLEANUP_EXPENSIVE);
5626 /* On some machines, the prologue and epilogue code, or parts thereof,
5627 can be represented as RTL. Doing so lets us schedule insns between
5628 it and the rest of the code and also allows delayed branch
5629 scheduling to operate in the epilogue. */
5631 thread_prologue_and_epilogue_insns ();
5632 return 0;
5635 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5638 RTL_PASS,
5639 "pro_and_epilogue", /* name */
5640 NULL, /* gate */
5641 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5642 NULL, /* sub */
5643 NULL, /* next */
5644 0, /* static_pass_number */
5645 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5646 0, /* properties_required */
5647 0, /* properties_provided */
5648 0, /* properties_destroyed */
5649 TODO_verify_flow, /* todo_flags_start */
5650 TODO_dump_func |
5651 TODO_df_verify |
5652 TODO_df_finish | TODO_verify_rtl_sharing |
5653 TODO_ggc_collect /* todo_flags_finish */
5658 /* This mini-pass fixes fall-out from SSA in asm statements that have
5659 in-out constraints. Say you start with
5661 orig = inout;
5662 asm ("": "+mr" (inout));
5663 use (orig);
5665 which is transformed very early to use explicit output and match operands:
5667 orig = inout;
5668 asm ("": "=mr" (inout) : "0" (inout));
5669 use (orig);
5671 Or, after SSA and copyprop,
5673 asm ("": "=mr" (inout_2) : "0" (inout_1));
5674 use (inout_1);
5676 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5677 they represent two separate values, so they will get different pseudo
5678 registers during expansion. Then, since the two operands need to match
5679 per the constraints, but use different pseudo registers, reload can
5680 only register a reload for these operands. But reloads can only be
5681 satisfied by hardregs, not by memory, so we need a register for this
5682 reload, just because we are presented with non-matching operands.
5683 So, even though we allow memory for this operand, no memory can be
5684 used for it, just because the two operands don't match. This can
5685 cause reload failures on register-starved targets.
5687 So it's a symptom of reload not being able to use memory for reloads
5688 or, alternatively it's also a symptom of both operands not coming into
5689 reload as matching (in which case the pseudo could go to memory just
5690 fine, as the alternative allows it, and no reload would be necessary).
5691 We fix the latter problem here, by transforming
5693 asm ("": "=mr" (inout_2) : "0" (inout_1));
5695 back to
5697 inout_2 = inout_1;
5698 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5700 static void
5701 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5703 int i;
5704 bool changed = false;
5705 rtx op = SET_SRC (p_sets[0]);
5706 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5707 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5708 bool *output_matched = alloca (noutputs * sizeof (bool));
5710 memset (output_matched, 0, noutputs * sizeof (bool));
5711 for (i = 0; i < ninputs; i++)
5713 rtx input, output, insns;
5714 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5715 char *end;
5716 int match, j;
5718 match = strtoul (constraint, &end, 10);
5719 if (end == constraint)
5720 continue;
5722 gcc_assert (match < noutputs);
5723 output = SET_DEST (p_sets[match]);
5724 input = RTVEC_ELT (inputs, i);
5725 /* Only do the transformation for pseudos. */
5726 if (! REG_P (output)
5727 || rtx_equal_p (output, input)
5728 || (GET_MODE (input) != VOIDmode
5729 && GET_MODE (input) != GET_MODE (output)))
5730 continue;
5732 /* We can't do anything if the output is also used as input,
5733 as we're going to overwrite it. */
5734 for (j = 0; j < ninputs; j++)
5735 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5736 break;
5737 if (j != ninputs)
5738 continue;
5740 /* Avoid changing the same input several times. For
5741 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5742 only change in once (to out1), rather than changing it
5743 first to out1 and afterwards to out2. */
5744 if (i > 0)
5746 for (j = 0; j < noutputs; j++)
5747 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5748 break;
5749 if (j != noutputs)
5750 continue;
5752 output_matched[match] = true;
5754 start_sequence ();
5755 emit_move_insn (output, input);
5756 insns = get_insns ();
5757 end_sequence ();
5758 emit_insn_before (insns, insn);
5760 /* Now replace all mentions of the input with output. We can't
5761 just replace the occurence in inputs[i], as the register might
5762 also be used in some other input (or even in an address of an
5763 output), which would mean possibly increasing the number of
5764 inputs by one (namely 'output' in addition), which might pose
5765 a too complicated problem for reload to solve. E.g. this situation:
5767 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5769 Here 'input' is used in two occurrences as input (once for the
5770 input operand, once for the address in the second output operand).
5771 If we would replace only the occurence of the input operand (to
5772 make the matching) we would be left with this:
5774 output = input
5775 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5777 Now we suddenly have two different input values (containing the same
5778 value, but different pseudos) where we formerly had only one.
5779 With more complicated asms this might lead to reload failures
5780 which wouldn't have happen without this pass. So, iterate over
5781 all operands and replace all occurrences of the register used. */
5782 for (j = 0; j < noutputs; j++)
5783 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5784 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5785 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5786 input, output);
5787 for (j = 0; j < ninputs; j++)
5788 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5789 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5790 input, output);
5792 changed = true;
5795 if (changed)
5796 df_insn_rescan (insn);
5799 static unsigned
5800 rest_of_match_asm_constraints (void)
5802 basic_block bb;
5803 rtx insn, pat, *p_sets;
5804 int noutputs;
5806 if (!cfun->has_asm_statement)
5807 return 0;
5809 df_set_flags (DF_DEFER_INSN_RESCAN);
5810 FOR_EACH_BB (bb)
5812 FOR_BB_INSNS (bb, insn)
5814 if (!INSN_P (insn))
5815 continue;
5817 pat = PATTERN (insn);
5818 if (GET_CODE (pat) == PARALLEL)
5819 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5820 else if (GET_CODE (pat) == SET)
5821 p_sets = &PATTERN (insn), noutputs = 1;
5822 else
5823 continue;
5825 if (GET_CODE (*p_sets) == SET
5826 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5827 match_asm_constraints_1 (insn, p_sets, noutputs);
5831 return TODO_df_finish;
5834 struct rtl_opt_pass pass_match_asm_constraints =
5837 RTL_PASS,
5838 "asmcons", /* name */
5839 NULL, /* gate */
5840 rest_of_match_asm_constraints, /* execute */
5841 NULL, /* sub */
5842 NULL, /* next */
5843 0, /* static_pass_number */
5844 0, /* tv_id */
5845 0, /* properties_required */
5846 0, /* properties_provided */
5847 0, /* properties_destroyed */
5848 0, /* todo_flags_start */
5849 TODO_dump_func /* todo_flags_finish */
5854 #include "gt-function.h"