1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains low level functions to manipulate the CFG and
23 analyze it. All other modules should not transform the data structure
24 directly and use abstraction instead. The file is supposed to be
25 ordered bottom-up and should not contain any code dependent on a
26 particular intermediate language (RTL or trees).
28 Available functionality:
29 - Initialization/deallocation
30 init_flow, clear_edges
31 - Low level basic block manipulation
32 alloc_block, expunge_block
34 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
35 - Low level edge redirection (without updating instruction chain)
36 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
37 - Dumping and debugging
38 dump_flow_info, debug_flow_info, dump_edge_info
39 - Allocation of AUX fields for basic blocks
40 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - Consistency checking
44 - Dumping and debugging
45 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
50 #include "coretypes.h"
54 #include "hard-reg-set.h"
64 #include "tree-pass.h"
67 #include "alloc-pool.h"
70 #include "tree-flow.h"
72 /* The obstack on which the flow graph components are allocated. */
74 struct bitmap_obstack reg_obstack
;
76 void debug_flow_info (void);
77 static void free_edge (edge
);
79 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
81 /* Called once at initialization time. */
87 cfun
->cfg
= GGC_CNEW (struct control_flow_graph
);
89 ENTRY_BLOCK_PTR
= GGC_CNEW (struct basic_block_def
);
90 ENTRY_BLOCK_PTR
->index
= ENTRY_BLOCK
;
91 EXIT_BLOCK_PTR
= GGC_CNEW (struct basic_block_def
);
92 EXIT_BLOCK_PTR
->index
= EXIT_BLOCK
;
93 ENTRY_BLOCK_PTR
->next_bb
= EXIT_BLOCK_PTR
;
94 EXIT_BLOCK_PTR
->prev_bb
= ENTRY_BLOCK_PTR
;
97 /* Helper function for remove_edge and clear_edges. Frees edge structure
98 without actually unlinking it from the pred/succ lists. */
101 free_edge (edge e ATTRIBUTE_UNUSED
)
107 /* Free the memory associated with the edge structures. */
118 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
120 VEC_truncate (edge
, bb
->succs
, 0);
121 VEC_truncate (edge
, bb
->preds
, 0);
124 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
126 VEC_truncate (edge
, EXIT_BLOCK_PTR
->preds
, 0);
127 VEC_truncate (edge
, ENTRY_BLOCK_PTR
->succs
, 0);
129 gcc_assert (!n_edges
);
132 /* Allocate memory for basic_block. */
138 bb
= GGC_CNEW (struct basic_block_def
);
142 /* Link block B to chain after AFTER. */
144 link_block (basic_block b
, basic_block after
)
146 b
->next_bb
= after
->next_bb
;
149 b
->next_bb
->prev_bb
= b
;
152 /* Unlink block B from chain. */
154 unlink_block (basic_block b
)
156 b
->next_bb
->prev_bb
= b
->prev_bb
;
157 b
->prev_bb
->next_bb
= b
->next_bb
;
162 /* Sequentially order blocks and compact the arrays. */
164 compact_blocks (void)
168 SET_BASIC_BLOCK (ENTRY_BLOCK
, ENTRY_BLOCK_PTR
);
169 SET_BASIC_BLOCK (EXIT_BLOCK
, EXIT_BLOCK_PTR
);
172 df_compact_blocks ();
177 i
= NUM_FIXED_BLOCKS
;
180 SET_BASIC_BLOCK (i
, bb
);
184 gcc_assert (i
== n_basic_blocks
);
186 for (; i
< last_basic_block
; i
++)
187 SET_BASIC_BLOCK (i
, NULL
);
189 last_basic_block
= n_basic_blocks
;
192 /* Remove block B from the basic block array. */
195 expunge_block (basic_block b
)
198 SET_BASIC_BLOCK (b
->index
, NULL
);
200 /* We should be able to ggc_free here, but we are not.
201 The dead SSA_NAMES are left pointing to dead statements that are pointing
202 to dead basic blocks making garbage collector to die.
203 We should be able to release all dead SSA_NAMES and at the same time we should
204 clear out BB pointer of dead statements consistently. */
207 /* Connect E to E->src. */
212 VEC_safe_push (edge
, gc
, e
->src
->succs
, e
);
213 df_mark_solutions_dirty ();
216 /* Connect E to E->dest. */
219 connect_dest (edge e
)
221 basic_block dest
= e
->dest
;
222 VEC_safe_push (edge
, gc
, dest
->preds
, e
);
223 e
->dest_idx
= EDGE_COUNT (dest
->preds
) - 1;
224 df_mark_solutions_dirty ();
227 /* Disconnect edge E from E->src. */
230 disconnect_src (edge e
)
232 basic_block src
= e
->src
;
236 for (ei
= ei_start (src
->succs
); (tmp
= ei_safe_edge (ei
)); )
240 VEC_unordered_remove (edge
, src
->succs
, ei
.index
);
247 df_mark_solutions_dirty ();
251 /* Disconnect edge E from E->dest. */
254 disconnect_dest (edge e
)
256 basic_block dest
= e
->dest
;
257 unsigned int dest_idx
= e
->dest_idx
;
259 VEC_unordered_remove (edge
, dest
->preds
, dest_idx
);
261 /* If we removed an edge in the middle of the edge vector, we need
262 to update dest_idx of the edge that moved into the "hole". */
263 if (dest_idx
< EDGE_COUNT (dest
->preds
))
264 EDGE_PRED (dest
, dest_idx
)->dest_idx
= dest_idx
;
265 df_mark_solutions_dirty ();
268 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
269 created edge. Use this only if you are sure that this edge can't
270 possibly already exist. */
273 unchecked_make_edge (basic_block src
, basic_block dst
, int flags
)
276 e
= GGC_CNEW (struct edge_def
);
286 execute_on_growing_pred (e
);
290 /* Create an edge connecting SRC and DST with FLAGS optionally using
291 edge cache CACHE. Return the new edge, NULL if already exist. */
294 cached_make_edge (sbitmap edge_cache
, basic_block src
, basic_block dst
, int flags
)
296 if (edge_cache
== NULL
297 || src
== ENTRY_BLOCK_PTR
298 || dst
== EXIT_BLOCK_PTR
)
299 return make_edge (src
, dst
, flags
);
301 /* Does the requested edge already exist? */
302 if (! TEST_BIT (edge_cache
, dst
->index
))
304 /* The edge does not exist. Create one and update the
306 SET_BIT (edge_cache
, dst
->index
);
307 return unchecked_make_edge (src
, dst
, flags
);
310 /* At this point, we know that the requested edge exists. Adjust
311 flags if necessary. */
314 edge e
= find_edge (src
, dst
);
321 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
322 created edge or NULL if already exist. */
325 make_edge (basic_block src
, basic_block dest
, int flags
)
327 edge e
= find_edge (src
, dest
);
329 /* Make sure we don't add duplicate edges. */
336 return unchecked_make_edge (src
, dest
, flags
);
339 /* Create an edge connecting SRC to DEST and set probability by knowing
340 that it is the single edge leaving SRC. */
343 make_single_succ_edge (basic_block src
, basic_block dest
, int flags
)
345 edge e
= make_edge (src
, dest
, flags
);
347 e
->probability
= REG_BR_PROB_BASE
;
348 e
->count
= src
->count
;
352 /* This function will remove an edge from the flow graph. */
355 remove_edge_raw (edge e
)
357 remove_predictions_associated_with_edge (e
);
358 execute_on_shrinking_pred (e
);
363 /* This is probably not needed, but it doesn't hurt. */
364 redirect_edge_var_map_clear (e
);
369 /* Redirect an edge's successor from one block to another. */
372 redirect_edge_succ (edge e
, basic_block new_succ
)
374 execute_on_shrinking_pred (e
);
380 /* Reconnect the edge to the new successor block. */
383 execute_on_growing_pred (e
);
386 /* Like previous but avoid possible duplicate edge. */
389 redirect_edge_succ_nodup (edge e
, basic_block new_succ
)
393 s
= find_edge (e
->src
, new_succ
);
396 s
->flags
|= e
->flags
;
397 s
->probability
+= e
->probability
;
398 if (s
->probability
> REG_BR_PROB_BASE
)
399 s
->probability
= REG_BR_PROB_BASE
;
400 s
->count
+= e
->count
;
402 redirect_edge_var_map_dup (s
, e
);
406 redirect_edge_succ (e
, new_succ
);
411 /* Redirect an edge's predecessor from one block to another. */
414 redirect_edge_pred (edge e
, basic_block new_pred
)
420 /* Reconnect the edge to the new predecessor block. */
424 /* Clear all basic block flags, with the exception of partitioning and
427 clear_bb_flags (void)
431 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
432 bb
->flags
= (BB_PARTITION (bb
)
433 | (bb
->flags
& (BB_DISABLE_SCHEDULE
+ BB_RTL
+ BB_NON_LOCAL_GOTO_TARGET
)));
436 /* Check the consistency of profile information. We can't do that
437 in verify_flow_info, as the counts may get invalid for incompletely
438 solved graphs, later eliminating of conditionals or roundoff errors.
439 It is still practical to have them reported for debugging of simple
442 check_bb_profile (basic_block bb
, FILE * file
)
449 if (profile_status
== PROFILE_ABSENT
)
452 if (bb
!= EXIT_BLOCK_PTR
)
454 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
455 sum
+= e
->probability
;
456 if (EDGE_COUNT (bb
->succs
) && abs (sum
- REG_BR_PROB_BASE
) > 100)
457 fprintf (file
, "Invalid sum of outgoing probabilities %.1f%%\n",
458 sum
* 100.0 / REG_BR_PROB_BASE
);
460 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
462 if (EDGE_COUNT (bb
->succs
)
463 && (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100))
464 fprintf (file
, "Invalid sum of outgoing counts %i, should be %i\n",
465 (int) lsum
, (int) bb
->count
);
467 if (bb
!= ENTRY_BLOCK_PTR
)
470 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
471 sum
+= EDGE_FREQUENCY (e
);
472 if (abs (sum
- bb
->frequency
) > 100)
474 "Invalid sum of incoming frequencies %i, should be %i\n",
477 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
479 if (lsum
- bb
->count
> 100 || lsum
- bb
->count
< -100)
480 fprintf (file
, "Invalid sum of incoming counts %i, should be %i\n",
481 (int) lsum
, (int) bb
->count
);
485 /* Write information about registers and basic blocks into FILE.
486 This is part of making a debugging dump. */
489 dump_regset (regset r
, FILE *outf
)
492 reg_set_iterator rsi
;
496 fputs (" (nil)", outf
);
500 EXECUTE_IF_SET_IN_REG_SET (r
, 0, i
, rsi
)
502 fprintf (outf
, " %d", i
);
503 if (i
< FIRST_PSEUDO_REGISTER
)
504 fprintf (outf
, " [%s]",
509 /* Print a human-readable representation of R on the standard error
510 stream. This function is designed to be used from within the
514 debug_regset (regset r
)
516 dump_regset (r
, stderr
);
520 /* Emit basic block information for BB. HEADER is true if the user wants
521 the generic information and the predecessors, FOOTER is true if they want
522 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
523 global register liveness information. PREFIX is put in front of every
524 line. The output is emitted to FILE. */
526 dump_bb_info (basic_block bb
, bool header
, bool footer
, int flags
,
527 const char *prefix
, FILE *file
)
534 fprintf (file
, "\n%sBasic block %d ", prefix
, bb
->index
);
536 fprintf (file
, ", prev %d", bb
->prev_bb
->index
);
538 fprintf (file
, ", next %d", bb
->next_bb
->index
);
539 fprintf (file
, ", loop_depth %d, count ", bb
->loop_depth
);
540 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, bb
->count
);
541 fprintf (file
, ", freq %i", bb
->frequency
);
542 /* Both maybe_hot_bb_p & probably_never_executed_bb_p functions
543 crash without cfun. */
544 if (cfun
&& maybe_hot_bb_p (bb
))
545 fprintf (file
, ", maybe hot");
546 if (cfun
&& probably_never_executed_bb_p (bb
))
547 fprintf (file
, ", probably never executed");
548 fprintf (file
, ".\n");
550 fprintf (file
, "%sPredecessors: ", prefix
);
551 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
552 dump_edge_info (file
, e
, 0);
554 if ((flags
& TDF_DETAILS
)
555 && (bb
->flags
& BB_RTL
)
558 fprintf (file
, "\n");
559 df_dump_top (bb
, file
);
565 fprintf (file
, "\n%sSuccessors: ", prefix
);
566 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
567 dump_edge_info (file
, e
, 1);
569 if ((flags
& TDF_DETAILS
)
570 && (bb
->flags
& BB_RTL
)
573 fprintf (file
, "\n");
574 df_dump_bottom (bb
, file
);
581 /* Dump the register info to FILE. */
584 dump_reg_info (FILE *file
)
586 unsigned int i
, max
= max_reg_num ();
587 if (reload_completed
)
590 if (reg_info_p_size
< max
)
591 max
= reg_info_p_size
;
593 fprintf (file
, "%d registers.\n", max
);
594 for (i
= FIRST_PSEUDO_REGISTER
; i
< max
; i
++)
596 enum reg_class
class, altclass
;
598 if (regstat_n_sets_and_refs
)
599 fprintf (file
, "\nRegister %d used %d times across %d insns",
600 i
, REG_N_REFS (i
), REG_LIVE_LENGTH (i
));
602 fprintf (file
, "\nRegister %d used %d times across %d insns",
603 i
, DF_REG_USE_COUNT (i
) + DF_REG_DEF_COUNT (i
), REG_LIVE_LENGTH (i
));
605 if (REG_BASIC_BLOCK (i
) >= NUM_FIXED_BLOCKS
)
606 fprintf (file
, " in block %d", REG_BASIC_BLOCK (i
));
607 if (regstat_n_sets_and_refs
)
608 fprintf (file
, "; set %d time%s", REG_N_SETS (i
),
609 (REG_N_SETS (i
) == 1) ? "" : "s");
611 fprintf (file
, "; set %d time%s", DF_REG_DEF_COUNT (i
),
612 (DF_REG_DEF_COUNT (i
) == 1) ? "" : "s");
613 if (regno_reg_rtx
[i
] != NULL
&& REG_USERVAR_P (regno_reg_rtx
[i
]))
614 fprintf (file
, "; user var");
615 if (REG_N_DEATHS (i
) != 1)
616 fprintf (file
, "; dies in %d places", REG_N_DEATHS (i
));
617 if (REG_N_CALLS_CROSSED (i
) == 1)
618 fprintf (file
, "; crosses 1 call");
619 else if (REG_N_CALLS_CROSSED (i
))
620 fprintf (file
, "; crosses %d calls", REG_N_CALLS_CROSSED (i
));
621 if (REG_FREQ_CALLS_CROSSED (i
))
622 fprintf (file
, "; crosses call with %d frequency", REG_FREQ_CALLS_CROSSED (i
));
623 if (regno_reg_rtx
[i
] != NULL
624 && PSEUDO_REGNO_BYTES (i
) != UNITS_PER_WORD
)
625 fprintf (file
, "; %d bytes", PSEUDO_REGNO_BYTES (i
));
627 class = reg_preferred_class (i
);
628 altclass
= reg_alternate_class (i
);
629 if (class != GENERAL_REGS
|| altclass
!= ALL_REGS
)
631 if (altclass
== ALL_REGS
|| class == ALL_REGS
)
632 fprintf (file
, "; pref %s", reg_class_names
[(int) class]);
633 else if (altclass
== NO_REGS
)
634 fprintf (file
, "; %s or none", reg_class_names
[(int) class]);
636 fprintf (file
, "; pref %s, else %s",
637 reg_class_names
[(int) class],
638 reg_class_names
[(int) altclass
]);
641 if (regno_reg_rtx
[i
] != NULL
&& REG_POINTER (regno_reg_rtx
[i
]))
642 fprintf (file
, "; pointer");
643 fprintf (file
, ".\n");
649 dump_flow_info (FILE *file
, int flags
)
653 /* There are no pseudo registers after reload. Don't dump them. */
654 if (reg_info_p_size
&& (flags
& TDF_DETAILS
) != 0)
655 dump_reg_info (file
);
657 fprintf (file
, "\n%d basic blocks, %d edges.\n", n_basic_blocks
, n_edges
);
660 dump_bb_info (bb
, true, true, flags
, "", file
);
661 check_bb_profile (bb
, file
);
668 debug_flow_info (void)
670 dump_flow_info (stderr
, TDF_DETAILS
);
674 dump_edge_info (FILE *file
, edge e
, int do_succ
)
676 basic_block side
= (do_succ
? e
->dest
: e
->src
);
677 /* both ENTRY_BLOCK_PTR & EXIT_BLOCK_PTR depend upon cfun. */
678 if (cfun
&& side
== ENTRY_BLOCK_PTR
)
679 fputs (" ENTRY", file
);
680 else if (cfun
&& side
== EXIT_BLOCK_PTR
)
681 fputs (" EXIT", file
);
683 fprintf (file
, " %d", side
->index
);
686 fprintf (file
, " [%.1f%%] ", e
->probability
* 100.0 / REG_BR_PROB_BASE
);
690 fprintf (file
, " count:");
691 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, e
->count
);
696 static const char * const bitnames
[] = {
697 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
698 "can_fallthru", "irreducible", "sibcall", "loop_exit",
699 "true", "false", "exec"
702 int i
, flags
= e
->flags
;
705 for (i
= 0; flags
; i
++)
706 if (flags
& (1 << i
))
712 if (i
< (int) ARRAY_SIZE (bitnames
))
713 fputs (bitnames
[i
], file
);
715 fprintf (file
, "%d", i
);
723 /* Simple routines to easily allocate AUX fields of basic blocks. */
725 static struct obstack block_aux_obstack
;
726 static void *first_block_aux_obj
= 0;
727 static struct obstack edge_aux_obstack
;
728 static void *first_edge_aux_obj
= 0;
730 /* Allocate a memory block of SIZE as BB->aux. The obstack must
731 be first initialized by alloc_aux_for_blocks. */
734 alloc_aux_for_block (basic_block bb
, int size
)
736 /* Verify that aux field is clear. */
737 gcc_assert (!bb
->aux
&& first_block_aux_obj
);
738 bb
->aux
= obstack_alloc (&block_aux_obstack
, size
);
739 memset (bb
->aux
, 0, size
);
742 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
743 alloc_aux_for_block for each basic block. */
746 alloc_aux_for_blocks (int size
)
748 static int initialized
;
752 gcc_obstack_init (&block_aux_obstack
);
756 /* Check whether AUX data are still allocated. */
757 gcc_assert (!first_block_aux_obj
);
759 first_block_aux_obj
= obstack_alloc (&block_aux_obstack
, 0);
764 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
765 alloc_aux_for_block (bb
, size
);
769 /* Clear AUX pointers of all blocks. */
772 clear_aux_for_blocks (void)
776 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
780 /* Free data allocated in block_aux_obstack and clear AUX pointers
784 free_aux_for_blocks (void)
786 gcc_assert (first_block_aux_obj
);
787 obstack_free (&block_aux_obstack
, first_block_aux_obj
);
788 first_block_aux_obj
= NULL
;
790 clear_aux_for_blocks ();
793 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
794 be first initialized by alloc_aux_for_edges. */
797 alloc_aux_for_edge (edge e
, int size
)
799 /* Verify that aux field is clear. */
800 gcc_assert (!e
->aux
&& first_edge_aux_obj
);
801 e
->aux
= obstack_alloc (&edge_aux_obstack
, size
);
802 memset (e
->aux
, 0, size
);
805 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
806 alloc_aux_for_edge for each basic edge. */
809 alloc_aux_for_edges (int size
)
811 static int initialized
;
815 gcc_obstack_init (&edge_aux_obstack
);
819 /* Check whether AUX data are still allocated. */
820 gcc_assert (!first_edge_aux_obj
);
822 first_edge_aux_obj
= obstack_alloc (&edge_aux_obstack
, 0);
827 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
832 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
833 alloc_aux_for_edge (e
, size
);
838 /* Clear AUX pointers of all edges. */
841 clear_aux_for_edges (void)
846 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
849 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
854 /* Free data allocated in edge_aux_obstack and clear AUX pointers
858 free_aux_for_edges (void)
860 gcc_assert (first_edge_aux_obj
);
861 obstack_free (&edge_aux_obstack
, first_edge_aux_obj
);
862 first_edge_aux_obj
= NULL
;
864 clear_aux_for_edges ();
868 debug_bb (basic_block bb
)
870 dump_bb (bb
, stderr
, 0);
876 basic_block bb
= BASIC_BLOCK (n
);
877 dump_bb (bb
, stderr
, 0);
881 /* Dumps cfg related information about basic block BB to FILE. */
884 dump_cfg_bb_info (FILE *file
, basic_block bb
)
889 static const char * const bb_bitnames
[] =
891 "new", "reachable", "irreducible_loop", "superblock",
892 "nosched", "hot", "cold", "dup", "xlabel", "rtl",
895 const unsigned n_bitnames
= sizeof (bb_bitnames
) / sizeof (char *);
898 fprintf (file
, "Basic block %d", bb
->index
);
899 for (i
= 0; i
< n_bitnames
; i
++)
900 if (bb
->flags
& (1 << i
))
903 fprintf (file
, " (");
905 fprintf (file
, ", ");
907 fprintf (file
, bb_bitnames
[i
]);
911 fprintf (file
, "\n");
913 fprintf (file
, "Predecessors: ");
914 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
915 dump_edge_info (file
, e
, 0);
917 fprintf (file
, "\nSuccessors: ");
918 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
919 dump_edge_info (file
, e
, 1);
920 fprintf (file
, "\n\n");
923 /* Dumps a brief description of cfg to FILE. */
926 brief_dump_cfg (FILE *file
)
932 dump_cfg_bb_info (file
, bb
);
936 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
937 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
938 redirected to destination of TAKEN_EDGE.
940 This function may leave the profile inconsistent in the case TAKEN_EDGE
941 frequency or count is believed to be lower than FREQUENCY or COUNT
944 update_bb_profile_for_threading (basic_block bb
, int edge_frequency
,
945 gcov_type count
, edge taken_edge
)
955 fprintf (dump_file
, "bb %i count became negative after threading",
960 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
961 Watch for overflows. */
963 prob
= edge_frequency
* REG_BR_PROB_BASE
/ bb
->frequency
;
966 if (prob
> taken_edge
->probability
)
969 fprintf (dump_file
, "Jump threading proved probability of edge "
970 "%i->%i too small (it is %i, should be %i).\n",
971 taken_edge
->src
->index
, taken_edge
->dest
->index
,
972 taken_edge
->probability
, prob
);
973 prob
= taken_edge
->probability
;
976 /* Now rescale the probabilities. */
977 taken_edge
->probability
-= prob
;
978 prob
= REG_BR_PROB_BASE
- prob
;
979 bb
->frequency
-= edge_frequency
;
980 if (bb
->frequency
< 0)
985 fprintf (dump_file
, "Edge frequencies of bb %i has been reset, "
986 "frequency of block should end up being 0, it is %i\n",
987 bb
->index
, bb
->frequency
);
988 EDGE_SUCC (bb
, 0)->probability
= REG_BR_PROB_BASE
;
989 ei
= ei_start (bb
->succs
);
991 for (; (c
= ei_safe_edge (ei
)); ei_next (&ei
))
994 else if (prob
!= REG_BR_PROB_BASE
)
996 int scale
= RDIV (65536 * REG_BR_PROB_BASE
, prob
);
998 FOR_EACH_EDGE (c
, ei
, bb
->succs
)
1000 /* Protect from overflow due to additional scaling. */
1001 if (c
->probability
> prob
)
1002 c
->probability
= REG_BR_PROB_BASE
;
1005 c
->probability
= RDIV (c
->probability
* scale
, 65536);
1006 if (c
->probability
> REG_BR_PROB_BASE
)
1007 c
->probability
= REG_BR_PROB_BASE
;
1012 gcc_assert (bb
== taken_edge
->src
);
1013 taken_edge
->count
-= count
;
1014 if (taken_edge
->count
< 0)
1017 fprintf (dump_file
, "edge %i->%i count became negative after threading",
1018 taken_edge
->src
->index
, taken_edge
->dest
->index
);
1019 taken_edge
->count
= 0;
1023 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1024 by NUM/DEN, in int arithmetic. May lose some accuracy. */
1026 scale_bbs_frequencies_int (basic_block
*bbs
, int nbbs
, int num
, int den
)
1033 /* Scale NUM and DEN to avoid overflows. Frequencies are in order of
1034 10^4, if we make DEN <= 10^3, we can afford to upscale by 100
1035 and still safely fit in int during calculations. */
1041 num
= RDIV (1000 * num
, den
);
1044 if (num
> 100 * den
)
1047 for (i
= 0; i
< nbbs
; i
++)
1050 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
1051 /* Make sure the frequencies do not grow over BB_FREQ_MAX. */
1052 if (bbs
[i
]->frequency
> BB_FREQ_MAX
)
1053 bbs
[i
]->frequency
= BB_FREQ_MAX
;
1054 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* num
, den
);
1055 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
1056 e
->count
= RDIV (e
->count
* num
, den
);
1060 /* numbers smaller than this value are safe to multiply without getting
1062 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
1064 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
1065 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
1066 function but considerably slower. */
1068 scale_bbs_frequencies_gcov_type (basic_block
*bbs
, int nbbs
, gcov_type num
,
1073 gcov_type fraction
= RDIV (num
* 65536, den
);
1075 gcc_assert (fraction
>= 0);
1077 if (num
< MAX_SAFE_MULTIPLIER
)
1078 for (i
= 0; i
< nbbs
; i
++)
1081 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
1082 if (bbs
[i
]->count
<= MAX_SAFE_MULTIPLIER
)
1083 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* num
, den
);
1085 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* fraction
, 65536);
1086 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
1087 if (bbs
[i
]->count
<= MAX_SAFE_MULTIPLIER
)
1088 e
->count
= RDIV (e
->count
* num
, den
);
1090 e
->count
= RDIV (e
->count
* fraction
, 65536);
1093 for (i
= 0; i
< nbbs
; i
++)
1096 if (sizeof (gcov_type
) > sizeof (int))
1097 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* num
, den
);
1099 bbs
[i
]->frequency
= RDIV (bbs
[i
]->frequency
* fraction
, 65536);
1100 bbs
[i
]->count
= RDIV (bbs
[i
]->count
* fraction
, 65536);
1101 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
1102 e
->count
= RDIV (e
->count
* fraction
, 65536);
1106 /* Data structures used to maintain mapping between basic blocks and
1108 static htab_t bb_original
;
1109 static htab_t bb_copy
;
1111 /* And between loops and copies. */
1112 static htab_t loop_copy
;
1113 static alloc_pool original_copy_bb_pool
;
1115 struct htab_bb_copy_original_entry
1117 /* Block we are attaching info to. */
1119 /* Index of original or copy (depending on the hashtable) */
1124 bb_copy_original_hash (const void *p
)
1126 const struct htab_bb_copy_original_entry
*data
1127 = ((const struct htab_bb_copy_original_entry
*)p
);
1129 return data
->index1
;
1132 bb_copy_original_eq (const void *p
, const void *q
)
1134 const struct htab_bb_copy_original_entry
*data
1135 = ((const struct htab_bb_copy_original_entry
*)p
);
1136 const struct htab_bb_copy_original_entry
*data2
1137 = ((const struct htab_bb_copy_original_entry
*)q
);
1139 return data
->index1
== data2
->index1
;
1142 /* Initialize the data structures to maintain mapping between blocks
1145 initialize_original_copy_tables (void)
1147 gcc_assert (!original_copy_bb_pool
);
1148 original_copy_bb_pool
1149 = create_alloc_pool ("original_copy",
1150 sizeof (struct htab_bb_copy_original_entry
), 10);
1151 bb_original
= htab_create (10, bb_copy_original_hash
,
1152 bb_copy_original_eq
, NULL
);
1153 bb_copy
= htab_create (10, bb_copy_original_hash
, bb_copy_original_eq
, NULL
);
1154 loop_copy
= htab_create (10, bb_copy_original_hash
, bb_copy_original_eq
, NULL
);
1157 /* Free the data structures to maintain mapping between blocks and
1160 free_original_copy_tables (void)
1162 gcc_assert (original_copy_bb_pool
);
1163 htab_delete (bb_copy
);
1164 htab_delete (bb_original
);
1165 htab_delete (loop_copy
);
1166 free_alloc_pool (original_copy_bb_pool
);
1170 original_copy_bb_pool
= NULL
;
1173 /* Removes the value associated with OBJ from table TAB. */
1176 copy_original_table_clear (htab_t tab
, unsigned obj
)
1179 struct htab_bb_copy_original_entry key
, *elt
;
1181 if (!original_copy_bb_pool
)
1185 slot
= htab_find_slot (tab
, &key
, NO_INSERT
);
1189 elt
= (struct htab_bb_copy_original_entry
*) *slot
;
1190 htab_clear_slot (tab
, slot
);
1191 pool_free (original_copy_bb_pool
, elt
);
1194 /* Sets the value associated with OBJ in table TAB to VAL.
1195 Do nothing when data structures are not initialized. */
1198 copy_original_table_set (htab_t tab
, unsigned obj
, unsigned val
)
1200 struct htab_bb_copy_original_entry
**slot
;
1201 struct htab_bb_copy_original_entry key
;
1203 if (!original_copy_bb_pool
)
1207 slot
= (struct htab_bb_copy_original_entry
**)
1208 htab_find_slot (tab
, &key
, INSERT
);
1211 *slot
= (struct htab_bb_copy_original_entry
*)
1212 pool_alloc (original_copy_bb_pool
);
1213 (*slot
)->index1
= obj
;
1215 (*slot
)->index2
= val
;
1218 /* Set original for basic block. Do nothing when data structures are not
1219 initialized so passes not needing this don't need to care. */
1221 set_bb_original (basic_block bb
, basic_block original
)
1223 copy_original_table_set (bb_original
, bb
->index
, original
->index
);
1226 /* Get the original basic block. */
1228 get_bb_original (basic_block bb
)
1230 struct htab_bb_copy_original_entry
*entry
;
1231 struct htab_bb_copy_original_entry key
;
1233 gcc_assert (original_copy_bb_pool
);
1235 key
.index1
= bb
->index
;
1236 entry
= (struct htab_bb_copy_original_entry
*) htab_find (bb_original
, &key
);
1238 return BASIC_BLOCK (entry
->index2
);
1243 /* Set copy for basic block. Do nothing when data structures are not
1244 initialized so passes not needing this don't need to care. */
1246 set_bb_copy (basic_block bb
, basic_block copy
)
1248 copy_original_table_set (bb_copy
, bb
->index
, copy
->index
);
1251 /* Get the copy of basic block. */
1253 get_bb_copy (basic_block bb
)
1255 struct htab_bb_copy_original_entry
*entry
;
1256 struct htab_bb_copy_original_entry key
;
1258 gcc_assert (original_copy_bb_pool
);
1260 key
.index1
= bb
->index
;
1261 entry
= (struct htab_bb_copy_original_entry
*) htab_find (bb_copy
, &key
);
1263 return BASIC_BLOCK (entry
->index2
);
1268 /* Set copy for LOOP to COPY. Do nothing when data structures are not
1269 initialized so passes not needing this don't need to care. */
1272 set_loop_copy (struct loop
*loop
, struct loop
*copy
)
1275 copy_original_table_clear (loop_copy
, loop
->num
);
1277 copy_original_table_set (loop_copy
, loop
->num
, copy
->num
);
1280 /* Get the copy of LOOP. */
1283 get_loop_copy (struct loop
*loop
)
1285 struct htab_bb_copy_original_entry
*entry
;
1286 struct htab_bb_copy_original_entry key
;
1288 gcc_assert (original_copy_bb_pool
);
1290 key
.index1
= loop
->num
;
1291 entry
= (struct htab_bb_copy_original_entry
*) htab_find (loop_copy
, &key
);
1293 return get_loop (entry
->index2
);