1 /* Timing variables for measuring compiler performance.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
3 Contributed by Alex Samuel <samuel@codesourcery.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
29 #ifndef HAVE_STRUCT_TMS
40 # define RUSAGE_SELF 0
43 /* Calculation of scale factor to convert ticks to microseconds.
44 We mustn't use CLOCKS_PER_SEC except with clock(). */
45 #if HAVE_SYSCONF && defined _SC_CLK_TCK
46 # define TICKS_PER_SECOND sysconf (_SC_CLK_TCK) /* POSIX 1003.1-1996 */
49 # define TICKS_PER_SECOND CLK_TCK /* POSIX 1003.1-1988; obsolescent */
52 # define TICKS_PER_SECOND HZ /* traditional UNIX */
54 # define TICKS_PER_SECOND 100 /* often the correct value */
59 /* Prefer times to getrusage to clock (each gives successively less
62 # if defined HAVE_DECL_TIMES && !HAVE_DECL_TIMES
63 extern clock_t times (struct tms
*);
66 # define HAVE_USER_TIME
67 # define HAVE_SYS_TIME
68 # define HAVE_WALL_TIME
71 # if defined HAVE_DECL_GETRUSAGE && !HAVE_DECL_GETRUSAGE
72 extern int getrusage (int, struct rusage
*);
74 # define USE_GETRUSAGE
75 # define HAVE_USER_TIME
76 # define HAVE_SYS_TIME
79 # if defined HAVE_DECL_CLOCK && !HAVE_DECL_CLOCK
80 extern clock_t clock (void);
83 # define HAVE_USER_TIME
88 /* libc is very likely to have snuck a call to sysconf() into one of
89 the underlying constants, and that can be very slow, so we have to
90 precompute them. Whose wonderful idea was it to make all those
91 _constants_ variable at run time, anyway? */
93 static double ticks_to_msec
;
94 #define TICKS_TO_MSEC (1 / (double)TICKS_PER_SECOND)
98 static double clocks_to_msec
;
99 #define CLOCKS_TO_MSEC (1 / (double)CLOCKS_PER_SEC)
102 /* True if timevars should be used. In GCC, this happens with
103 the -ftime-report flag. */
107 /* Total amount of memory allocated by garbage collector. */
109 size_t timevar_ggc_mem_total
;
111 /* The amount of memory that will cause us to report the timevar even
112 if the time spent is not significant. */
114 #define GGC_MEM_BOUND (1 << 20)
116 /* See timevar.h for an explanation of timing variables. */
118 /* A timing variable. */
122 /* Elapsed time for this variable. */
123 struct timevar_time_def elapsed
;
125 /* If this variable is timed independently of the timing stack,
126 using timevar_start, this contains the start time. */
127 struct timevar_time_def start_time
;
129 /* The name of this timing variable. */
132 /* Nonzero if this timing variable is running as a standalone
134 unsigned standalone
: 1;
136 /* Nonzero if this timing variable was ever started or pushed onto
141 /* An element on the timing stack. Elapsed time is attributed to the
142 topmost timing variable on the stack. */
144 struct timevar_stack_def
146 /* The timing variable at this stack level. */
147 struct timevar_def
*timevar
;
149 /* The next lower timing variable context in the stack. */
150 struct timevar_stack_def
*next
;
153 /* Declared timing variables. Constructed from the contents of
155 static struct timevar_def timevars
[TIMEVAR_LAST
];
157 /* The top of the timing stack. */
158 static struct timevar_stack_def
*stack
;
160 /* A list of unused (i.e. allocated and subsequently popped)
161 timevar_stack_def instances. */
162 static struct timevar_stack_def
*unused_stack_instances
;
164 /* The time at which the topmost element on the timing stack was
165 pushed. Time elapsed since then is attributed to the topmost
167 static struct timevar_time_def start_time
;
169 static void get_time (struct timevar_time_def
*);
170 static void timevar_accumulate (struct timevar_time_def
*,
171 struct timevar_time_def
*,
172 struct timevar_time_def
*);
174 /* Fill the current times into TIME. The definition of this function
175 also defines any or all of the HAVE_USER_TIME, HAVE_SYS_TIME, and
176 HAVE_WALL_TIME macros. */
179 get_time (struct timevar_time_def
*now
)
184 now
->ggc_mem
= timevar_ggc_mem_total
;
192 now
->wall
= times (&tms
) * ticks_to_msec
;
193 now
->user
= tms
.tms_utime
* ticks_to_msec
;
194 now
->sys
= tms
.tms_stime
* ticks_to_msec
;
197 struct rusage rusage
;
198 getrusage (RUSAGE_SELF
, &rusage
);
199 now
->user
= rusage
.ru_utime
.tv_sec
+ rusage
.ru_utime
.tv_usec
* 1e-6;
200 now
->sys
= rusage
.ru_stime
.tv_sec
+ rusage
.ru_stime
.tv_usec
* 1e-6;
203 now
->user
= clock () * clocks_to_msec
;
208 /* Add the difference between STOP_TIME and START_TIME to TIMER. */
211 timevar_accumulate (struct timevar_time_def
*timer
,
212 struct timevar_time_def
*start_time
,
213 struct timevar_time_def
*stop_time
)
215 timer
->user
+= stop_time
->user
- start_time
->user
;
216 timer
->sys
+= stop_time
->sys
- start_time
->sys
;
217 timer
->wall
+= stop_time
->wall
- start_time
->wall
;
218 timer
->ggc_mem
+= stop_time
->ggc_mem
- start_time
->ggc_mem
;
221 /* Initialize timing variables. */
229 timevar_enable
= true;
231 /* Zero all elapsed times. */
232 memset (timevars
, 0, sizeof (timevars
));
234 /* Initialize the names of timing variables. */
235 #define DEFTIMEVAR(identifier__, name__) \
236 timevars[identifier__].name = name__;
237 #include "timevar.def"
241 ticks_to_msec
= TICKS_TO_MSEC
;
244 clocks_to_msec
= CLOCKS_TO_MSEC
;
248 /* Push TIMEVAR onto the timing stack. No further elapsed time is
249 attributed to the previous topmost timing variable on the stack;
250 subsequent elapsed time is attributed to TIMEVAR, until it is
251 popped or another element is pushed on top.
253 TIMEVAR cannot be running as a standalone timer. */
256 timevar_push_1 (timevar_id_t timevar
)
258 struct timevar_def
*tv
= &timevars
[timevar
];
259 struct timevar_stack_def
*context
;
260 struct timevar_time_def now
;
262 /* Mark this timing variable as used. */
265 /* Can't push a standalone timer. */
266 gcc_assert (!tv
->standalone
);
268 /* What time is it? */
271 /* If the stack isn't empty, attribute the current elapsed time to
272 the old topmost element. */
274 timevar_accumulate (&stack
->timevar
->elapsed
, &start_time
, &now
);
276 /* Reset the start time; from now on, time is attributed to
280 /* See if we have a previously-allocated stack instance. If so,
281 take it off the list. If not, malloc a new one. */
282 if (unused_stack_instances
!= NULL
)
284 context
= unused_stack_instances
;
285 unused_stack_instances
= unused_stack_instances
->next
;
288 context
= XNEW (struct timevar_stack_def
);
290 /* Fill it in and put it on the stack. */
291 context
->timevar
= tv
;
292 context
->next
= stack
;
296 /* Pop the topmost timing variable element off the timing stack. The
297 popped variable must be TIMEVAR. Elapsed time since the that
298 element was pushed on, or since it was last exposed on top of the
299 stack when the element above it was popped off, is credited to that
303 timevar_pop_1 (timevar_id_t timevar
)
305 struct timevar_time_def now
;
306 struct timevar_stack_def
*popped
= stack
;
308 gcc_assert (&timevars
[timevar
] == stack
->timevar
);
310 /* What time is it? */
313 /* Attribute the elapsed time to the element we're popping. */
314 timevar_accumulate (&popped
->timevar
->elapsed
, &start_time
, &now
);
316 /* Reset the start time; from now on, time is attributed to the
317 element just exposed on the stack. */
320 /* Take the item off the stack. */
323 /* Don't delete the stack element; instead, add it to the list of
324 unused elements for later use. */
325 popped
->next
= unused_stack_instances
;
326 unused_stack_instances
= popped
;
329 /* Start timing TIMEVAR independently of the timing stack. Elapsed
330 time until timevar_stop is called for the same timing variable is
331 attributed to TIMEVAR. */
334 timevar_start (timevar_id_t timevar
)
336 struct timevar_def
*tv
= &timevars
[timevar
];
341 /* Mark this timing variable as used. */
344 /* Don't allow the same timing variable to be started more than
346 gcc_assert (!tv
->standalone
);
349 get_time (&tv
->start_time
);
352 /* Stop timing TIMEVAR. Time elapsed since timevar_start was called
353 is attributed to it. */
356 timevar_stop (timevar_id_t timevar
)
358 struct timevar_def
*tv
= &timevars
[timevar
];
359 struct timevar_time_def now
;
364 /* TIMEVAR must have been started via timevar_start. */
365 gcc_assert (tv
->standalone
);
366 tv
->standalone
= 0; /* Enable a restart. */
369 timevar_accumulate (&tv
->elapsed
, &tv
->start_time
, &now
);
373 /* Conditionally start timing TIMEVAR independently of the timing stack.
374 If the timer is already running, leave it running and return true.
375 Otherwise, start the timer and return false.
376 Elapsed time until the corresponding timevar_cond_stop
377 is called for the same timing variable is attributed to TIMEVAR. */
380 timevar_cond_start (timevar_id_t timevar
)
382 struct timevar_def
*tv
= &timevars
[timevar
];
387 /* Mark this timing variable as used. */
391 return true; /* The timevar is already running. */
393 /* Don't allow the same timing variable
394 to be unconditionally started more than once. */
397 get_time (&tv
->start_time
);
398 return false; /* The timevar was not already running. */
401 /* Conditionally stop timing TIMEVAR. The RUNNING parameter must come
402 from the return value of a dynamically matching timevar_cond_start.
403 If the timer had already been RUNNING, do nothing. Otherwise, time
404 elapsed since timevar_cond_start was called is attributed to it. */
407 timevar_cond_stop (timevar_id_t timevar
, bool running
)
409 struct timevar_def
*tv
;
410 struct timevar_time_def now
;
412 if (!timevar_enable
|| running
)
415 tv
= &timevars
[timevar
];
417 /* TIMEVAR must have been started via timevar_cond_start. */
418 gcc_assert (tv
->standalone
);
419 tv
->standalone
= 0; /* Enable a restart. */
422 timevar_accumulate (&tv
->elapsed
, &tv
->start_time
, &now
);
426 /* Validate that phase times are consistent. */
429 validate_phases (FILE *fp
)
431 unsigned int /* timevar_id_t */ id
;
432 struct timevar_time_def
*total
= &timevars
[TV_TOTAL
].elapsed
;
433 double phase_user
= 0.0;
434 double phase_sys
= 0.0;
435 double phase_wall
= 0.0;
436 size_t phase_ggc_mem
= 0;
437 static char phase_prefix
[] = "phase ";
438 const double tolerance
= 1.000001; /* One part in a million. */
440 for (id
= 0; id
< (unsigned int) TIMEVAR_LAST
; ++id
)
442 struct timevar_def
*tv
= &timevars
[(timevar_id_t
) id
];
444 /* Don't evaluate timing variables that were never used. */
448 if (strncmp (tv
->name
, phase_prefix
, sizeof phase_prefix
- 1) == 0)
450 phase_user
+= tv
->elapsed
.user
;
451 phase_sys
+= tv
->elapsed
.sys
;
452 phase_wall
+= tv
->elapsed
.wall
;
453 phase_ggc_mem
+= tv
->elapsed
.ggc_mem
;
457 if (phase_user
> total
->user
* tolerance
458 || phase_sys
> total
->sys
* tolerance
459 || phase_wall
> total
->wall
* tolerance
460 || phase_ggc_mem
> total
->ggc_mem
* tolerance
)
463 fprintf (fp
, "Timing error: total of phase timers exceeds total time.\n");
464 if (phase_user
> total
->user
)
465 fprintf (fp
, "user %24.18e > %24.18e\n", phase_user
, total
->user
);
466 if (phase_sys
> total
->sys
)
467 fprintf (fp
, "sys %24.18e > %24.18e\n", phase_sys
, total
->sys
);
468 if (phase_wall
> total
->wall
)
469 fprintf (fp
, "wall %24.18e > %24.18e\n", phase_wall
, total
->wall
);
470 if (phase_ggc_mem
> total
->ggc_mem
)
471 fprintf (fp
, "ggc_mem %24lu > %24lu\n", (unsigned long)phase_ggc_mem
,
472 (unsigned long)total
->ggc_mem
);
478 /* Summarize timing variables to FP. The timing variable TV_TOTAL has
479 a special meaning -- it's considered to be the total elapsed time,
480 for normalizing the others, and is displayed last. */
483 timevar_print (FILE *fp
)
485 /* Only print stuff if we have some sort of time information. */
486 #if defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME) || defined (HAVE_WALL_TIME)
487 unsigned int /* timevar_id_t */ id
;
488 struct timevar_time_def
*total
= &timevars
[TV_TOTAL
].elapsed
;
489 struct timevar_time_def now
;
494 /* Update timing information in case we're calling this from GDB. */
499 /* What time is it? */
502 /* If the stack isn't empty, attribute the current elapsed time to
503 the old topmost element. */
505 timevar_accumulate (&stack
->timevar
->elapsed
, &start_time
, &now
);
507 /* Reset the start time; from now on, time is attributed to
511 fputs ("\nExecution times (seconds)\n", fp
);
512 for (id
= 0; id
< (unsigned int) TIMEVAR_LAST
; ++id
)
514 struct timevar_def
*tv
= &timevars
[(timevar_id_t
) id
];
515 const double tiny
= 5e-3;
517 /* Don't print the total execution time here; that goes at the
519 if ((timevar_id_t
) id
== TV_TOTAL
)
522 /* Don't print timing variables that were never used. */
526 /* Don't print timing variables if we're going to get a row of
528 if (tv
->elapsed
.user
< tiny
529 && tv
->elapsed
.sys
< tiny
530 && tv
->elapsed
.wall
< tiny
531 && tv
->elapsed
.ggc_mem
< GGC_MEM_BOUND
)
534 /* The timing variable name. */
535 fprintf (fp
, " %-24s:", tv
->name
);
537 #ifdef HAVE_USER_TIME
538 /* Print user-mode time for this process. */
539 fprintf (fp
, "%7.2f (%2.0f%%) usr",
541 (total
->user
== 0 ? 0 : tv
->elapsed
.user
/ total
->user
) * 100);
542 #endif /* HAVE_USER_TIME */
545 /* Print system-mode time for this process. */
546 fprintf (fp
, "%7.2f (%2.0f%%) sys",
548 (total
->sys
== 0 ? 0 : tv
->elapsed
.sys
/ total
->sys
) * 100);
549 #endif /* HAVE_SYS_TIME */
551 #ifdef HAVE_WALL_TIME
552 /* Print wall clock time elapsed. */
553 fprintf (fp
, "%7.2f (%2.0f%%) wall",
555 (total
->wall
== 0 ? 0 : tv
->elapsed
.wall
/ total
->wall
) * 100);
556 #endif /* HAVE_WALL_TIME */
558 /* Print the amount of ggc memory allocated. */
559 fprintf (fp
, "%8u kB (%2.0f%%) ggc",
560 (unsigned) (tv
->elapsed
.ggc_mem
>> 10),
563 : (float) tv
->elapsed
.ggc_mem
/ total
->ggc_mem
) * 100);
568 /* Print total time. */
569 fputs (" TOTAL :", fp
);
570 #ifdef HAVE_USER_TIME
571 fprintf (fp
, "%7.2f ", total
->user
);
574 fprintf (fp
, "%7.2f ", total
->sys
);
576 #ifdef HAVE_WALL_TIME
577 fprintf (fp
, "%7.2f ", total
->wall
);
579 fprintf (fp
, "%8u kB\n", (unsigned) (total
->ggc_mem
>> 10));
581 #ifdef ENABLE_CHECKING
582 fprintf (fp
, "Extra diagnostic checks enabled; compiler may run slowly.\n");
583 fprintf (fp
, "Configure with --enable-checking=release to disable checks.\n");
585 #ifndef ENABLE_ASSERT_CHECKING
586 fprintf (fp
, "Internal checks disabled; compiler is not suited for release.\n");
587 fprintf (fp
, "Configure with --enable-checking=release to enable checks.\n");
590 #endif /* defined (HAVE_USER_TIME) || defined (HAVE_SYS_TIME)
591 || defined (HAVE_WALL_TIME) */
593 validate_phases (fp
);
596 /* Prints a message to stderr stating that time elapsed in STR is
597 TOTAL (given in microseconds). */
600 print_time (const char *str
, long total
)
602 long all_time
= get_run_time ();
604 "time in %s: %ld.%06ld (%ld%%)\n",
605 str
, total
/ 1000000, total
% 1000000,
607 : (long) (((100.0 * (double) total
) / (double) all_time
) + .5));