2010-08-22 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / tree-vect-loop.c
blob371d30d72d988772521136faf4727a2f11673c54
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
5 Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "expr.h"
37 #include "recog.h"
38 #include "optabs.h"
39 #include "params.h"
40 #include "diagnostic-core.h"
41 #include "toplev.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "tree-vectorizer.h"
45 #include "target.h"
47 /* Loop Vectorization Pass.
49 This pass tries to vectorize loops.
51 For example, the vectorizer transforms the following simple loop:
53 short a[N]; short b[N]; short c[N]; int i;
55 for (i=0; i<N; i++){
56 a[i] = b[i] + c[i];
59 as if it was manually vectorized by rewriting the source code into:
61 typedef int __attribute__((mode(V8HI))) v8hi;
62 short a[N]; short b[N]; short c[N]; int i;
63 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
64 v8hi va, vb, vc;
66 for (i=0; i<N/8; i++){
67 vb = pb[i];
68 vc = pc[i];
69 va = vb + vc;
70 pa[i] = va;
73 The main entry to this pass is vectorize_loops(), in which
74 the vectorizer applies a set of analyses on a given set of loops,
75 followed by the actual vectorization transformation for the loops that
76 had successfully passed the analysis phase.
77 Throughout this pass we make a distinction between two types of
78 data: scalars (which are represented by SSA_NAMES), and memory references
79 ("data-refs"). These two types of data require different handling both
80 during analysis and transformation. The types of data-refs that the
81 vectorizer currently supports are ARRAY_REFS which base is an array DECL
82 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
83 accesses are required to have a simple (consecutive) access pattern.
85 Analysis phase:
86 ===============
87 The driver for the analysis phase is vect_analyze_loop().
88 It applies a set of analyses, some of which rely on the scalar evolution
89 analyzer (scev) developed by Sebastian Pop.
91 During the analysis phase the vectorizer records some information
92 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
93 loop, as well as general information about the loop as a whole, which is
94 recorded in a "loop_vec_info" struct attached to each loop.
96 Transformation phase:
97 =====================
98 The loop transformation phase scans all the stmts in the loop, and
99 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
100 the loop that needs to be vectorized. It inserts the vector code sequence
101 just before the scalar stmt S, and records a pointer to the vector code
102 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
103 attached to S). This pointer will be used for the vectorization of following
104 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
105 otherwise, we rely on dead code elimination for removing it.
107 For example, say stmt S1 was vectorized into stmt VS1:
109 VS1: vb = px[i];
110 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
111 S2: a = b;
113 To vectorize stmt S2, the vectorizer first finds the stmt that defines
114 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
115 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
116 resulting sequence would be:
118 VS1: vb = px[i];
119 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
120 VS2: va = vb;
121 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
123 Operands that are not SSA_NAMEs, are data-refs that appear in
124 load/store operations (like 'x[i]' in S1), and are handled differently.
126 Target modeling:
127 =================
128 Currently the only target specific information that is used is the
129 size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
130 support different sizes of vectors, for now will need to specify one value
131 for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
133 Since we only vectorize operations which vector form can be
134 expressed using existing tree codes, to verify that an operation is
135 supported, the vectorizer checks the relevant optab at the relevant
136 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
137 the value found is CODE_FOR_nothing, then there's no target support, and
138 we can't vectorize the stmt.
140 For additional information on this project see:
141 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
144 /* Function vect_determine_vectorization_factor
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
185 if (vect_print_dump_info (REPORT_DETAILS))
186 fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
188 for (i = 0; i < nbbs; i++)
190 basic_block bb = bbs[i];
192 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
194 phi = gsi_stmt (si);
195 stmt_info = vinfo_for_stmt (phi);
196 if (vect_print_dump_info (REPORT_DETAILS))
198 fprintf (vect_dump, "==> examining phi: ");
199 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
202 gcc_assert (stmt_info);
204 if (STMT_VINFO_RELEVANT_P (stmt_info))
206 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
207 scalar_type = TREE_TYPE (PHI_RESULT (phi));
209 if (vect_print_dump_info (REPORT_DETAILS))
211 fprintf (vect_dump, "get vectype for scalar type: ");
212 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
215 vectype = get_vectype_for_scalar_type (scalar_type);
216 if (!vectype)
218 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
220 fprintf (vect_dump,
221 "not vectorized: unsupported data-type ");
222 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
224 return false;
226 STMT_VINFO_VECTYPE (stmt_info) = vectype;
228 if (vect_print_dump_info (REPORT_DETAILS))
230 fprintf (vect_dump, "vectype: ");
231 print_generic_expr (vect_dump, vectype, TDF_SLIM);
234 nunits = TYPE_VECTOR_SUBPARTS (vectype);
235 if (vect_print_dump_info (REPORT_DETAILS))
236 fprintf (vect_dump, "nunits = %d", nunits);
238 if (!vectorization_factor
239 || (nunits > vectorization_factor))
240 vectorization_factor = nunits;
244 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
246 tree vf_vectype;
247 gimple stmt = gsi_stmt (si);
248 stmt_info = vinfo_for_stmt (stmt);
250 if (vect_print_dump_info (REPORT_DETAILS))
252 fprintf (vect_dump, "==> examining statement: ");
253 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
256 gcc_assert (stmt_info);
258 /* skip stmts which do not need to be vectorized. */
259 if (!STMT_VINFO_RELEVANT_P (stmt_info)
260 && !STMT_VINFO_LIVE_P (stmt_info))
262 if (vect_print_dump_info (REPORT_DETAILS))
263 fprintf (vect_dump, "skip.");
264 continue;
267 if (gimple_get_lhs (stmt) == NULL_TREE)
269 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
271 fprintf (vect_dump, "not vectorized: irregular stmt.");
272 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
274 return false;
277 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
279 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
281 fprintf (vect_dump, "not vectorized: vector stmt in loop:");
282 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
284 return false;
287 if (STMT_VINFO_VECTYPE (stmt_info))
289 /* The only case when a vectype had been already set is for stmts
290 that contain a dataref, or for "pattern-stmts" (stmts generated
291 by the vectorizer to represent/replace a certain idiom). */
292 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
293 || is_pattern_stmt_p (stmt_info));
294 vectype = STMT_VINFO_VECTYPE (stmt_info);
296 else
298 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info)
299 && !is_pattern_stmt_p (stmt_info));
301 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
302 if (vect_print_dump_info (REPORT_DETAILS))
304 fprintf (vect_dump, "get vectype for scalar type: ");
305 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
307 vectype = get_vectype_for_scalar_type (scalar_type);
308 if (!vectype)
310 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
312 fprintf (vect_dump,
313 "not vectorized: unsupported data-type ");
314 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
316 return false;
319 STMT_VINFO_VECTYPE (stmt_info) = vectype;
322 /* The vectorization factor is according to the smallest
323 scalar type (or the largest vector size, but we only
324 support one vector size per loop). */
325 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
326 &dummy);
327 if (vect_print_dump_info (REPORT_DETAILS))
329 fprintf (vect_dump, "get vectype for scalar type: ");
330 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
332 vf_vectype = get_vectype_for_scalar_type (scalar_type);
333 if (!vf_vectype)
335 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
337 fprintf (vect_dump,
338 "not vectorized: unsupported data-type ");
339 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
341 return false;
344 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
345 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
347 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
349 fprintf (vect_dump,
350 "not vectorized: different sized vector "
351 "types in statement, ");
352 print_generic_expr (vect_dump, vectype, TDF_SLIM);
353 fprintf (vect_dump, " and ");
354 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
356 return false;
359 if (vect_print_dump_info (REPORT_DETAILS))
361 fprintf (vect_dump, "vectype: ");
362 print_generic_expr (vect_dump, vf_vectype, TDF_SLIM);
365 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
366 if (vect_print_dump_info (REPORT_DETAILS))
367 fprintf (vect_dump, "nunits = %d", nunits);
369 if (!vectorization_factor
370 || (nunits > vectorization_factor))
371 vectorization_factor = nunits;
375 /* TODO: Analyze cost. Decide if worth while to vectorize. */
376 if (vect_print_dump_info (REPORT_DETAILS))
377 fprintf (vect_dump, "vectorization factor = %d", vectorization_factor);
378 if (vectorization_factor <= 1)
380 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
381 fprintf (vect_dump, "not vectorized: unsupported data-type");
382 return false;
384 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
386 return true;
390 /* Function vect_is_simple_iv_evolution.
392 FORNOW: A simple evolution of an induction variables in the loop is
393 considered a polynomial evolution with constant step. */
395 static bool
396 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
397 tree * step)
399 tree init_expr;
400 tree step_expr;
401 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
403 /* When there is no evolution in this loop, the evolution function
404 is not "simple". */
405 if (evolution_part == NULL_TREE)
406 return false;
408 /* When the evolution is a polynomial of degree >= 2
409 the evolution function is not "simple". */
410 if (tree_is_chrec (evolution_part))
411 return false;
413 step_expr = evolution_part;
414 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
416 if (vect_print_dump_info (REPORT_DETAILS))
418 fprintf (vect_dump, "step: ");
419 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
420 fprintf (vect_dump, ", init: ");
421 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
424 *init = init_expr;
425 *step = step_expr;
427 if (TREE_CODE (step_expr) != INTEGER_CST)
429 if (vect_print_dump_info (REPORT_DETAILS))
430 fprintf (vect_dump, "step unknown.");
431 return false;
434 return true;
437 /* Function vect_analyze_scalar_cycles_1.
439 Examine the cross iteration def-use cycles of scalar variables
440 in LOOP. LOOP_VINFO represents the loop that is now being
441 considered for vectorization (can be LOOP, or an outer-loop
442 enclosing LOOP). */
444 static void
445 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
447 basic_block bb = loop->header;
448 tree dumy;
449 VEC(gimple,heap) *worklist = VEC_alloc (gimple, heap, 64);
450 gimple_stmt_iterator gsi;
451 bool double_reduc;
453 if (vect_print_dump_info (REPORT_DETAILS))
454 fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
456 /* First - identify all inductions. Reduction detection assumes that all the
457 inductions have been identified, therefore, this order must not be
458 changed. */
459 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
461 gimple phi = gsi_stmt (gsi);
462 tree access_fn = NULL;
463 tree def = PHI_RESULT (phi);
464 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
466 if (vect_print_dump_info (REPORT_DETAILS))
468 fprintf (vect_dump, "Analyze phi: ");
469 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
472 /* Skip virtual phi's. The data dependences that are associated with
473 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
474 if (!is_gimple_reg (SSA_NAME_VAR (def)))
475 continue;
477 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
479 /* Analyze the evolution function. */
480 access_fn = analyze_scalar_evolution (loop, def);
481 if (access_fn && vect_print_dump_info (REPORT_DETAILS))
483 fprintf (vect_dump, "Access function of PHI: ");
484 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
487 if (!access_fn
488 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
490 VEC_safe_push (gimple, heap, worklist, phi);
491 continue;
494 if (vect_print_dump_info (REPORT_DETAILS))
495 fprintf (vect_dump, "Detected induction.");
496 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
500 /* Second - identify all reductions and nested cycles. */
501 while (VEC_length (gimple, worklist) > 0)
503 gimple phi = VEC_pop (gimple, worklist);
504 tree def = PHI_RESULT (phi);
505 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
506 gimple reduc_stmt;
507 bool nested_cycle;
509 if (vect_print_dump_info (REPORT_DETAILS))
511 fprintf (vect_dump, "Analyze phi: ");
512 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
515 gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
516 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
518 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
519 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
520 &double_reduc);
521 if (reduc_stmt)
523 if (double_reduc)
525 if (vect_print_dump_info (REPORT_DETAILS))
526 fprintf (vect_dump, "Detected double reduction.");
528 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
529 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
530 vect_double_reduction_def;
532 else
534 if (nested_cycle)
536 if (vect_print_dump_info (REPORT_DETAILS))
537 fprintf (vect_dump, "Detected vectorizable nested cycle.");
539 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
540 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
541 vect_nested_cycle;
543 else
545 if (vect_print_dump_info (REPORT_DETAILS))
546 fprintf (vect_dump, "Detected reduction.");
548 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
549 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
550 vect_reduction_def;
551 /* Store the reduction cycles for possible vectorization in
552 loop-aware SLP. */
553 VEC_safe_push (gimple, heap,
554 LOOP_VINFO_REDUCTIONS (loop_vinfo),
555 reduc_stmt);
559 else
560 if (vect_print_dump_info (REPORT_DETAILS))
561 fprintf (vect_dump, "Unknown def-use cycle pattern.");
564 VEC_free (gimple, heap, worklist);
568 /* Function vect_analyze_scalar_cycles.
570 Examine the cross iteration def-use cycles of scalar variables, by
571 analyzing the loop-header PHIs of scalar variables; Classify each
572 cycle as one of the following: invariant, induction, reduction, unknown.
573 We do that for the loop represented by LOOP_VINFO, and also to its
574 inner-loop, if exists.
575 Examples for scalar cycles:
577 Example1: reduction:
579 loop1:
580 for (i=0; i<N; i++)
581 sum += a[i];
583 Example2: induction:
585 loop2:
586 for (i=0; i<N; i++)
587 a[i] = i; */
589 static void
590 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
592 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
594 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
596 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
597 Reductions in such inner-loop therefore have different properties than
598 the reductions in the nest that gets vectorized:
599 1. When vectorized, they are executed in the same order as in the original
600 scalar loop, so we can't change the order of computation when
601 vectorizing them.
602 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
603 current checks are too strict. */
605 if (loop->inner)
606 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
609 /* Function vect_get_loop_niters.
611 Determine how many iterations the loop is executed.
612 If an expression that represents the number of iterations
613 can be constructed, place it in NUMBER_OF_ITERATIONS.
614 Return the loop exit condition. */
616 static gimple
617 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
619 tree niters;
621 if (vect_print_dump_info (REPORT_DETAILS))
622 fprintf (vect_dump, "=== get_loop_niters ===");
624 niters = number_of_exit_cond_executions (loop);
626 if (niters != NULL_TREE
627 && niters != chrec_dont_know)
629 *number_of_iterations = niters;
631 if (vect_print_dump_info (REPORT_DETAILS))
633 fprintf (vect_dump, "==> get_loop_niters:" );
634 print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
638 return get_loop_exit_condition (loop);
642 /* Function bb_in_loop_p
644 Used as predicate for dfs order traversal of the loop bbs. */
646 static bool
647 bb_in_loop_p (const_basic_block bb, const void *data)
649 const struct loop *const loop = (const struct loop *)data;
650 if (flow_bb_inside_loop_p (loop, bb))
651 return true;
652 return false;
656 /* Function new_loop_vec_info.
658 Create and initialize a new loop_vec_info struct for LOOP, as well as
659 stmt_vec_info structs for all the stmts in LOOP. */
661 static loop_vec_info
662 new_loop_vec_info (struct loop *loop)
664 loop_vec_info res;
665 basic_block *bbs;
666 gimple_stmt_iterator si;
667 unsigned int i, nbbs;
669 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
670 LOOP_VINFO_LOOP (res) = loop;
672 bbs = get_loop_body (loop);
674 /* Create/Update stmt_info for all stmts in the loop. */
675 for (i = 0; i < loop->num_nodes; i++)
677 basic_block bb = bbs[i];
679 /* BBs in a nested inner-loop will have been already processed (because
680 we will have called vect_analyze_loop_form for any nested inner-loop).
681 Therefore, for stmts in an inner-loop we just want to update the
682 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
683 loop_info of the outer-loop we are currently considering to vectorize
684 (instead of the loop_info of the inner-loop).
685 For stmts in other BBs we need to create a stmt_info from scratch. */
686 if (bb->loop_father != loop)
688 /* Inner-loop bb. */
689 gcc_assert (loop->inner && bb->loop_father == loop->inner);
690 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
692 gimple phi = gsi_stmt (si);
693 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
694 loop_vec_info inner_loop_vinfo =
695 STMT_VINFO_LOOP_VINFO (stmt_info);
696 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
697 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
699 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
701 gimple stmt = gsi_stmt (si);
702 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
703 loop_vec_info inner_loop_vinfo =
704 STMT_VINFO_LOOP_VINFO (stmt_info);
705 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
706 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
709 else
711 /* bb in current nest. */
712 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
714 gimple phi = gsi_stmt (si);
715 gimple_set_uid (phi, 0);
716 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
719 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
721 gimple stmt = gsi_stmt (si);
722 gimple_set_uid (stmt, 0);
723 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
728 /* CHECKME: We want to visit all BBs before their successors (except for
729 latch blocks, for which this assertion wouldn't hold). In the simple
730 case of the loop forms we allow, a dfs order of the BBs would the same
731 as reversed postorder traversal, so we are safe. */
733 free (bbs);
734 bbs = XCNEWVEC (basic_block, loop->num_nodes);
735 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
736 bbs, loop->num_nodes, loop);
737 gcc_assert (nbbs == loop->num_nodes);
739 LOOP_VINFO_BBS (res) = bbs;
740 LOOP_VINFO_NITERS (res) = NULL;
741 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
742 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
743 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
744 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
745 LOOP_VINFO_VECT_FACTOR (res) = 0;
746 LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
747 LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
748 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
749 LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
750 VEC_alloc (gimple, heap,
751 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
752 LOOP_VINFO_MAY_ALIAS_DDRS (res) =
753 VEC_alloc (ddr_p, heap,
754 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
755 LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
756 LOOP_VINFO_REDUCTIONS (res) = VEC_alloc (gimple, heap, 10);
757 LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
758 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
759 LOOP_VINFO_PEELING_HTAB (res) = NULL;
761 return res;
765 /* Function destroy_loop_vec_info.
767 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
768 stmts in the loop. */
770 void
771 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
773 struct loop *loop;
774 basic_block *bbs;
775 int nbbs;
776 gimple_stmt_iterator si;
777 int j;
778 VEC (slp_instance, heap) *slp_instances;
779 slp_instance instance;
781 if (!loop_vinfo)
782 return;
784 loop = LOOP_VINFO_LOOP (loop_vinfo);
786 bbs = LOOP_VINFO_BBS (loop_vinfo);
787 nbbs = loop->num_nodes;
789 if (!clean_stmts)
791 free (LOOP_VINFO_BBS (loop_vinfo));
792 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
793 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
794 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
796 free (loop_vinfo);
797 loop->aux = NULL;
798 return;
801 for (j = 0; j < nbbs; j++)
803 basic_block bb = bbs[j];
804 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
805 free_stmt_vec_info (gsi_stmt (si));
807 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
809 gimple stmt = gsi_stmt (si);
810 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
812 if (stmt_info)
814 /* Check if this is a "pattern stmt" (introduced by the
815 vectorizer during the pattern recognition pass). */
816 bool remove_stmt_p = false;
817 gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
818 if (orig_stmt)
820 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
821 if (orig_stmt_info
822 && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
823 remove_stmt_p = true;
826 /* Free stmt_vec_info. */
827 free_stmt_vec_info (stmt);
829 /* Remove dead "pattern stmts". */
830 if (remove_stmt_p)
831 gsi_remove (&si, true);
833 gsi_next (&si);
837 free (LOOP_VINFO_BBS (loop_vinfo));
838 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
839 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
840 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
841 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
842 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
843 FOR_EACH_VEC_ELT (slp_instance, slp_instances, j, instance)
844 vect_free_slp_instance (instance);
846 VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
847 VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
848 VEC_free (gimple, heap, LOOP_VINFO_REDUCTIONS (loop_vinfo));
850 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
851 htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
853 free (loop_vinfo);
854 loop->aux = NULL;
858 /* Function vect_analyze_loop_1.
860 Apply a set of analyses on LOOP, and create a loop_vec_info struct
861 for it. The different analyses will record information in the
862 loop_vec_info struct. This is a subset of the analyses applied in
863 vect_analyze_loop, to be applied on an inner-loop nested in the loop
864 that is now considered for (outer-loop) vectorization. */
866 static loop_vec_info
867 vect_analyze_loop_1 (struct loop *loop)
869 loop_vec_info loop_vinfo;
871 if (vect_print_dump_info (REPORT_DETAILS))
872 fprintf (vect_dump, "===== analyze_loop_nest_1 =====");
874 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
876 loop_vinfo = vect_analyze_loop_form (loop);
877 if (!loop_vinfo)
879 if (vect_print_dump_info (REPORT_DETAILS))
880 fprintf (vect_dump, "bad inner-loop form.");
881 return NULL;
884 return loop_vinfo;
888 /* Function vect_analyze_loop_form.
890 Verify that certain CFG restrictions hold, including:
891 - the loop has a pre-header
892 - the loop has a single entry and exit
893 - the loop exit condition is simple enough, and the number of iterations
894 can be analyzed (a countable loop). */
896 loop_vec_info
897 vect_analyze_loop_form (struct loop *loop)
899 loop_vec_info loop_vinfo;
900 gimple loop_cond;
901 tree number_of_iterations = NULL;
902 loop_vec_info inner_loop_vinfo = NULL;
904 if (vect_print_dump_info (REPORT_DETAILS))
905 fprintf (vect_dump, "=== vect_analyze_loop_form ===");
907 /* Different restrictions apply when we are considering an inner-most loop,
908 vs. an outer (nested) loop.
909 (FORNOW. May want to relax some of these restrictions in the future). */
911 if (!loop->inner)
913 /* Inner-most loop. We currently require that the number of BBs is
914 exactly 2 (the header and latch). Vectorizable inner-most loops
915 look like this:
917 (pre-header)
919 header <--------+
920 | | |
921 | +--> latch --+
923 (exit-bb) */
925 if (loop->num_nodes != 2)
927 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
928 fprintf (vect_dump, "not vectorized: control flow in loop.");
929 return NULL;
932 if (empty_block_p (loop->header))
934 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
935 fprintf (vect_dump, "not vectorized: empty loop.");
936 return NULL;
939 else
941 struct loop *innerloop = loop->inner;
942 edge entryedge;
944 /* Nested loop. We currently require that the loop is doubly-nested,
945 contains a single inner loop, and the number of BBs is exactly 5.
946 Vectorizable outer-loops look like this:
948 (pre-header)
950 header <---+
952 inner-loop |
954 tail ------+
956 (exit-bb)
958 The inner-loop has the properties expected of inner-most loops
959 as described above. */
961 if ((loop->inner)->inner || (loop->inner)->next)
963 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
964 fprintf (vect_dump, "not vectorized: multiple nested loops.");
965 return NULL;
968 /* Analyze the inner-loop. */
969 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
970 if (!inner_loop_vinfo)
972 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
973 fprintf (vect_dump, "not vectorized: Bad inner loop.");
974 return NULL;
977 if (!expr_invariant_in_loop_p (loop,
978 LOOP_VINFO_NITERS (inner_loop_vinfo)))
980 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
981 fprintf (vect_dump,
982 "not vectorized: inner-loop count not invariant.");
983 destroy_loop_vec_info (inner_loop_vinfo, true);
984 return NULL;
987 if (loop->num_nodes != 5)
989 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
990 fprintf (vect_dump, "not vectorized: control flow in loop.");
991 destroy_loop_vec_info (inner_loop_vinfo, true);
992 return NULL;
995 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
996 entryedge = EDGE_PRED (innerloop->header, 0);
997 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
998 entryedge = EDGE_PRED (innerloop->header, 1);
1000 if (entryedge->src != loop->header
1001 || !single_exit (innerloop)
1002 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1004 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1005 fprintf (vect_dump, "not vectorized: unsupported outerloop form.");
1006 destroy_loop_vec_info (inner_loop_vinfo, true);
1007 return NULL;
1010 if (vect_print_dump_info (REPORT_DETAILS))
1011 fprintf (vect_dump, "Considering outer-loop vectorization.");
1014 if (!single_exit (loop)
1015 || EDGE_COUNT (loop->header->preds) != 2)
1017 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1019 if (!single_exit (loop))
1020 fprintf (vect_dump, "not vectorized: multiple exits.");
1021 else if (EDGE_COUNT (loop->header->preds) != 2)
1022 fprintf (vect_dump, "not vectorized: too many incoming edges.");
1024 if (inner_loop_vinfo)
1025 destroy_loop_vec_info (inner_loop_vinfo, true);
1026 return NULL;
1029 /* We assume that the loop exit condition is at the end of the loop. i.e,
1030 that the loop is represented as a do-while (with a proper if-guard
1031 before the loop if needed), where the loop header contains all the
1032 executable statements, and the latch is empty. */
1033 if (!empty_block_p (loop->latch)
1034 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1036 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1037 fprintf (vect_dump, "not vectorized: unexpected loop form.");
1038 if (inner_loop_vinfo)
1039 destroy_loop_vec_info (inner_loop_vinfo, true);
1040 return NULL;
1043 /* Make sure there exists a single-predecessor exit bb: */
1044 if (!single_pred_p (single_exit (loop)->dest))
1046 edge e = single_exit (loop);
1047 if (!(e->flags & EDGE_ABNORMAL))
1049 split_loop_exit_edge (e);
1050 if (vect_print_dump_info (REPORT_DETAILS))
1051 fprintf (vect_dump, "split exit edge.");
1053 else
1055 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1056 fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
1057 if (inner_loop_vinfo)
1058 destroy_loop_vec_info (inner_loop_vinfo, true);
1059 return NULL;
1063 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1064 if (!loop_cond)
1066 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1067 fprintf (vect_dump, "not vectorized: complicated exit condition.");
1068 if (inner_loop_vinfo)
1069 destroy_loop_vec_info (inner_loop_vinfo, true);
1070 return NULL;
1073 if (!number_of_iterations)
1075 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1076 fprintf (vect_dump,
1077 "not vectorized: number of iterations cannot be computed.");
1078 if (inner_loop_vinfo)
1079 destroy_loop_vec_info (inner_loop_vinfo, true);
1080 return NULL;
1083 if (chrec_contains_undetermined (number_of_iterations))
1085 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1086 fprintf (vect_dump, "Infinite number of iterations.");
1087 if (inner_loop_vinfo)
1088 destroy_loop_vec_info (inner_loop_vinfo, true);
1089 return NULL;
1092 if (!NITERS_KNOWN_P (number_of_iterations))
1094 if (vect_print_dump_info (REPORT_DETAILS))
1096 fprintf (vect_dump, "Symbolic number of iterations is ");
1097 print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
1100 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1102 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1103 fprintf (vect_dump, "not vectorized: number of iterations = 0.");
1104 if (inner_loop_vinfo)
1105 destroy_loop_vec_info (inner_loop_vinfo, false);
1106 return NULL;
1109 loop_vinfo = new_loop_vec_info (loop);
1110 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1111 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1113 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1115 /* CHECKME: May want to keep it around it in the future. */
1116 if (inner_loop_vinfo)
1117 destroy_loop_vec_info (inner_loop_vinfo, false);
1119 gcc_assert (!loop->aux);
1120 loop->aux = loop_vinfo;
1121 return loop_vinfo;
1125 /* Get cost by calling cost target builtin. */
1127 static inline
1128 int vect_get_cost (enum vect_cost_for_stmt type_of_cost)
1130 tree dummy_type = NULL;
1131 int dummy = 0;
1133 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1134 dummy_type, dummy);
1138 /* Function vect_analyze_loop_operations.
1140 Scan the loop stmts and make sure they are all vectorizable. */
1142 static bool
1143 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1145 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1146 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1147 int nbbs = loop->num_nodes;
1148 gimple_stmt_iterator si;
1149 unsigned int vectorization_factor = 0;
1150 int i;
1151 gimple phi;
1152 stmt_vec_info stmt_info;
1153 bool need_to_vectorize = false;
1154 int min_profitable_iters;
1155 int min_scalar_loop_bound;
1156 unsigned int th;
1157 bool only_slp_in_loop = true, ok;
1159 if (vect_print_dump_info (REPORT_DETAILS))
1160 fprintf (vect_dump, "=== vect_analyze_loop_operations ===");
1162 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1163 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1165 for (i = 0; i < nbbs; i++)
1167 basic_block bb = bbs[i];
1169 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1171 phi = gsi_stmt (si);
1172 ok = true;
1174 stmt_info = vinfo_for_stmt (phi);
1175 if (vect_print_dump_info (REPORT_DETAILS))
1177 fprintf (vect_dump, "examining phi: ");
1178 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1181 if (! is_loop_header_bb_p (bb))
1183 /* inner-loop loop-closed exit phi in outer-loop vectorization
1184 (i.e. a phi in the tail of the outer-loop).
1185 FORNOW: we currently don't support the case that these phis
1186 are not used in the outerloop (unless it is double reduction,
1187 i.e., this phi is vect_reduction_def), cause this case
1188 requires to actually do something here. */
1189 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1190 || STMT_VINFO_LIVE_P (stmt_info))
1191 && STMT_VINFO_DEF_TYPE (stmt_info)
1192 != vect_double_reduction_def)
1194 if (vect_print_dump_info (REPORT_DETAILS))
1195 fprintf (vect_dump,
1196 "Unsupported loop-closed phi in outer-loop.");
1197 return false;
1199 continue;
1202 gcc_assert (stmt_info);
1204 if (STMT_VINFO_LIVE_P (stmt_info))
1206 /* FORNOW: not yet supported. */
1207 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1208 fprintf (vect_dump, "not vectorized: value used after loop.");
1209 return false;
1212 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1213 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1215 /* A scalar-dependence cycle that we don't support. */
1216 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1217 fprintf (vect_dump, "not vectorized: scalar dependence cycle.");
1218 return false;
1221 if (STMT_VINFO_RELEVANT_P (stmt_info))
1223 need_to_vectorize = true;
1224 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1225 ok = vectorizable_induction (phi, NULL, NULL);
1228 if (!ok)
1230 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1232 fprintf (vect_dump,
1233 "not vectorized: relevant phi not supported: ");
1234 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1236 return false;
1240 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1242 gimple stmt = gsi_stmt (si);
1243 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1245 gcc_assert (stmt_info);
1247 if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1248 return false;
1250 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1251 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1252 && !PURE_SLP_STMT (stmt_info))
1253 /* STMT needs both SLP and loop-based vectorization. */
1254 only_slp_in_loop = false;
1256 } /* bbs */
1258 /* All operations in the loop are either irrelevant (deal with loop
1259 control, or dead), or only used outside the loop and can be moved
1260 out of the loop (e.g. invariants, inductions). The loop can be
1261 optimized away by scalar optimizations. We're better off not
1262 touching this loop. */
1263 if (!need_to_vectorize)
1265 if (vect_print_dump_info (REPORT_DETAILS))
1266 fprintf (vect_dump,
1267 "All the computation can be taken out of the loop.");
1268 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1269 fprintf (vect_dump,
1270 "not vectorized: redundant loop. no profit to vectorize.");
1271 return false;
1274 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1275 vectorization factor of the loop is the unrolling factor required by the
1276 SLP instances. If that unrolling factor is 1, we say, that we perform
1277 pure SLP on loop - cross iteration parallelism is not exploited. */
1278 if (only_slp_in_loop)
1279 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1280 else
1281 vectorization_factor = least_common_multiple (vectorization_factor,
1282 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1284 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1286 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1287 && vect_print_dump_info (REPORT_DETAILS))
1288 fprintf (vect_dump,
1289 "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
1290 vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
1292 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1293 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1295 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1296 fprintf (vect_dump, "not vectorized: iteration count too small.");
1297 if (vect_print_dump_info (REPORT_DETAILS))
1298 fprintf (vect_dump,"not vectorized: iteration count smaller than "
1299 "vectorization factor.");
1300 return false;
1303 /* Analyze cost. Decide if worth while to vectorize. */
1305 /* Once VF is set, SLP costs should be updated since the number of created
1306 vector stmts depends on VF. */
1307 vect_update_slp_costs_according_to_vf (loop_vinfo);
1309 min_profitable_iters = vect_estimate_min_profitable_iters (loop_vinfo);
1310 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1312 if (min_profitable_iters < 0)
1314 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1315 fprintf (vect_dump, "not vectorized: vectorization not profitable.");
1316 if (vect_print_dump_info (REPORT_DETAILS))
1317 fprintf (vect_dump, "not vectorized: vector version will never be "
1318 "profitable.");
1319 return false;
1322 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1323 * vectorization_factor) - 1);
1325 /* Use the cost model only if it is more conservative than user specified
1326 threshold. */
1328 th = (unsigned) min_scalar_loop_bound;
1329 if (min_profitable_iters
1330 && (!min_scalar_loop_bound
1331 || min_profitable_iters > min_scalar_loop_bound))
1332 th = (unsigned) min_profitable_iters;
1334 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1335 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1337 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1338 fprintf (vect_dump, "not vectorized: vectorization not "
1339 "profitable.");
1340 if (vect_print_dump_info (REPORT_DETAILS))
1341 fprintf (vect_dump, "not vectorized: iteration count smaller than "
1342 "user specified loop bound parameter or minimum "
1343 "profitable iterations (whichever is more conservative).");
1344 return false;
1347 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1348 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1349 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
1351 if (vect_print_dump_info (REPORT_DETAILS))
1352 fprintf (vect_dump, "epilog loop required.");
1353 if (!vect_can_advance_ivs_p (loop_vinfo))
1355 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1356 fprintf (vect_dump,
1357 "not vectorized: can't create epilog loop 1.");
1358 return false;
1360 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1362 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1363 fprintf (vect_dump,
1364 "not vectorized: can't create epilog loop 2.");
1365 return false;
1369 return true;
1373 /* Function vect_analyze_loop.
1375 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1376 for it. The different analyses will record information in the
1377 loop_vec_info struct. */
1378 loop_vec_info
1379 vect_analyze_loop (struct loop *loop)
1381 bool ok;
1382 loop_vec_info loop_vinfo;
1383 int max_vf = MAX_VECTORIZATION_FACTOR;
1384 int min_vf = 2;
1386 if (vect_print_dump_info (REPORT_DETAILS))
1387 fprintf (vect_dump, "===== analyze_loop_nest =====");
1389 if (loop_outer (loop)
1390 && loop_vec_info_for_loop (loop_outer (loop))
1391 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1393 if (vect_print_dump_info (REPORT_DETAILS))
1394 fprintf (vect_dump, "outer-loop already vectorized.");
1395 return NULL;
1398 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1400 loop_vinfo = vect_analyze_loop_form (loop);
1401 if (!loop_vinfo)
1403 if (vect_print_dump_info (REPORT_DETAILS))
1404 fprintf (vect_dump, "bad loop form.");
1405 return NULL;
1408 /* Find all data references in the loop (which correspond to vdefs/vuses)
1409 and analyze their evolution in the loop. Also adjust the minimal
1410 vectorization factor according to the loads and stores.
1412 FORNOW: Handle only simple, array references, which
1413 alignment can be forced, and aligned pointer-references. */
1415 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1416 if (!ok)
1418 if (vect_print_dump_info (REPORT_DETAILS))
1419 fprintf (vect_dump, "bad data references.");
1420 destroy_loop_vec_info (loop_vinfo, true);
1421 return NULL;
1424 /* Classify all cross-iteration scalar data-flow cycles.
1425 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1427 vect_analyze_scalar_cycles (loop_vinfo);
1429 vect_pattern_recog (loop_vinfo);
1431 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1433 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1434 if (!ok)
1436 if (vect_print_dump_info (REPORT_DETAILS))
1437 fprintf (vect_dump, "unexpected pattern.");
1438 destroy_loop_vec_info (loop_vinfo, true);
1439 return NULL;
1442 /* Analyze data dependences between the data-refs in the loop
1443 and adjust the maximum vectorization factor according to
1444 the dependences.
1445 FORNOW: fail at the first data dependence that we encounter. */
1447 ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL, &max_vf);
1448 if (!ok
1449 || max_vf < min_vf)
1451 if (vect_print_dump_info (REPORT_DETAILS))
1452 fprintf (vect_dump, "bad data dependence.");
1453 destroy_loop_vec_info (loop_vinfo, true);
1454 return NULL;
1457 ok = vect_determine_vectorization_factor (loop_vinfo);
1458 if (!ok)
1460 if (vect_print_dump_info (REPORT_DETAILS))
1461 fprintf (vect_dump, "can't determine vectorization factor.");
1462 destroy_loop_vec_info (loop_vinfo, true);
1463 return NULL;
1465 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1467 if (vect_print_dump_info (REPORT_DETAILS))
1468 fprintf (vect_dump, "bad data dependence.");
1469 destroy_loop_vec_info (loop_vinfo, true);
1470 return NULL;
1473 /* Analyze the alignment of the data-refs in the loop.
1474 Fail if a data reference is found that cannot be vectorized. */
1476 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1477 if (!ok)
1479 if (vect_print_dump_info (REPORT_DETAILS))
1480 fprintf (vect_dump, "bad data alignment.");
1481 destroy_loop_vec_info (loop_vinfo, true);
1482 return NULL;
1485 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1486 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1488 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1489 if (!ok)
1491 if (vect_print_dump_info (REPORT_DETAILS))
1492 fprintf (vect_dump, "bad data access.");
1493 destroy_loop_vec_info (loop_vinfo, true);
1494 return NULL;
1497 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1498 It is important to call pruning after vect_analyze_data_ref_accesses,
1499 since we use grouping information gathered by interleaving analysis. */
1500 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1501 if (!ok)
1503 if (vect_print_dump_info (REPORT_DETAILS))
1504 fprintf (vect_dump, "too long list of versioning for alias "
1505 "run-time tests.");
1506 destroy_loop_vec_info (loop_vinfo, true);
1507 return NULL;
1510 /* This pass will decide on using loop versioning and/or loop peeling in
1511 order to enhance the alignment of data references in the loop. */
1513 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1514 if (!ok)
1516 if (vect_print_dump_info (REPORT_DETAILS))
1517 fprintf (vect_dump, "bad data alignment.");
1518 destroy_loop_vec_info (loop_vinfo, true);
1519 return NULL;
1522 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1523 ok = vect_analyze_slp (loop_vinfo, NULL);
1524 if (ok)
1526 /* Decide which possible SLP instances to SLP. */
1527 vect_make_slp_decision (loop_vinfo);
1529 /* Find stmts that need to be both vectorized and SLPed. */
1530 vect_detect_hybrid_slp (loop_vinfo);
1533 /* Scan all the operations in the loop and make sure they are
1534 vectorizable. */
1536 ok = vect_analyze_loop_operations (loop_vinfo);
1537 if (!ok)
1539 if (vect_print_dump_info (REPORT_DETAILS))
1540 fprintf (vect_dump, "bad operation or unsupported loop bound.");
1541 destroy_loop_vec_info (loop_vinfo, true);
1542 return NULL;
1545 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1547 return loop_vinfo;
1551 /* Function reduction_code_for_scalar_code
1553 Input:
1554 CODE - tree_code of a reduction operations.
1556 Output:
1557 REDUC_CODE - the corresponding tree-code to be used to reduce the
1558 vector of partial results into a single scalar result (which
1559 will also reside in a vector) or ERROR_MARK if the operation is
1560 a supported reduction operation, but does not have such tree-code.
1562 Return FALSE if CODE currently cannot be vectorized as reduction. */
1564 static bool
1565 reduction_code_for_scalar_code (enum tree_code code,
1566 enum tree_code *reduc_code)
1568 switch (code)
1570 case MAX_EXPR:
1571 *reduc_code = REDUC_MAX_EXPR;
1572 return true;
1574 case MIN_EXPR:
1575 *reduc_code = REDUC_MIN_EXPR;
1576 return true;
1578 case PLUS_EXPR:
1579 *reduc_code = REDUC_PLUS_EXPR;
1580 return true;
1582 case MULT_EXPR:
1583 case MINUS_EXPR:
1584 case BIT_IOR_EXPR:
1585 case BIT_XOR_EXPR:
1586 case BIT_AND_EXPR:
1587 *reduc_code = ERROR_MARK;
1588 return true;
1590 default:
1591 return false;
1596 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1597 STMT is printed with a message MSG. */
1599 static void
1600 report_vect_op (gimple stmt, const char *msg)
1602 fprintf (vect_dump, "%s", msg);
1603 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
1607 /* Function vect_is_simple_reduction_1
1609 (1) Detect a cross-iteration def-use cycle that represents a simple
1610 reduction computation. We look for the following pattern:
1612 loop_header:
1613 a1 = phi < a0, a2 >
1614 a3 = ...
1615 a2 = operation (a3, a1)
1617 such that:
1618 1. operation is commutative and associative and it is safe to
1619 change the order of the computation (if CHECK_REDUCTION is true)
1620 2. no uses for a2 in the loop (a2 is used out of the loop)
1621 3. no uses of a1 in the loop besides the reduction operation.
1623 Condition 1 is tested here.
1624 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
1626 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
1627 nested cycles, if CHECK_REDUCTION is false.
1629 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
1630 reductions:
1632 a1 = phi < a0, a2 >
1633 inner loop (def of a3)
1634 a2 = phi < a3 >
1636 If MODIFY is true it tries also to rework the code in-place to enable
1637 detection of more reduction patterns. For the time being we rewrite
1638 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
1641 static gimple
1642 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
1643 bool check_reduction, bool *double_reduc,
1644 bool modify)
1646 struct loop *loop = (gimple_bb (phi))->loop_father;
1647 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1648 edge latch_e = loop_latch_edge (loop);
1649 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
1650 gimple def_stmt, def1 = NULL, def2 = NULL;
1651 enum tree_code orig_code, code;
1652 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
1653 tree type;
1654 int nloop_uses;
1655 tree name;
1656 imm_use_iterator imm_iter;
1657 use_operand_p use_p;
1658 bool phi_def;
1660 *double_reduc = false;
1662 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
1663 otherwise, we assume outer loop vectorization. */
1664 gcc_assert ((check_reduction && loop == vect_loop)
1665 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
1667 name = PHI_RESULT (phi);
1668 nloop_uses = 0;
1669 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1671 gimple use_stmt = USE_STMT (use_p);
1672 if (is_gimple_debug (use_stmt))
1673 continue;
1674 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
1675 && vinfo_for_stmt (use_stmt)
1676 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1677 nloop_uses++;
1678 if (nloop_uses > 1)
1680 if (vect_print_dump_info (REPORT_DETAILS))
1681 fprintf (vect_dump, "reduction used in loop.");
1682 return NULL;
1686 if (TREE_CODE (loop_arg) != SSA_NAME)
1688 if (vect_print_dump_info (REPORT_DETAILS))
1690 fprintf (vect_dump, "reduction: not ssa_name: ");
1691 print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
1693 return NULL;
1696 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
1697 if (!def_stmt)
1699 if (vect_print_dump_info (REPORT_DETAILS))
1700 fprintf (vect_dump, "reduction: no def_stmt.");
1701 return NULL;
1704 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
1706 if (vect_print_dump_info (REPORT_DETAILS))
1707 print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
1708 return NULL;
1711 if (is_gimple_assign (def_stmt))
1713 name = gimple_assign_lhs (def_stmt);
1714 phi_def = false;
1716 else
1718 name = PHI_RESULT (def_stmt);
1719 phi_def = true;
1722 nloop_uses = 0;
1723 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1725 gimple use_stmt = USE_STMT (use_p);
1726 if (is_gimple_debug (use_stmt))
1727 continue;
1728 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
1729 && vinfo_for_stmt (use_stmt)
1730 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1731 nloop_uses++;
1732 if (nloop_uses > 1)
1734 if (vect_print_dump_info (REPORT_DETAILS))
1735 fprintf (vect_dump, "reduction used in loop.");
1736 return NULL;
1740 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
1741 defined in the inner loop. */
1742 if (phi_def)
1744 op1 = PHI_ARG_DEF (def_stmt, 0);
1746 if (gimple_phi_num_args (def_stmt) != 1
1747 || TREE_CODE (op1) != SSA_NAME)
1749 if (vect_print_dump_info (REPORT_DETAILS))
1750 fprintf (vect_dump, "unsupported phi node definition.");
1752 return NULL;
1755 def1 = SSA_NAME_DEF_STMT (op1);
1756 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1757 && loop->inner
1758 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
1759 && is_gimple_assign (def1))
1761 if (vect_print_dump_info (REPORT_DETAILS))
1762 report_vect_op (def_stmt, "detected double reduction: ");
1764 *double_reduc = true;
1765 return def_stmt;
1768 return NULL;
1771 code = orig_code = gimple_assign_rhs_code (def_stmt);
1773 /* We can handle "res -= x[i]", which is non-associative by
1774 simply rewriting this into "res += -x[i]". Avoid changing
1775 gimple instruction for the first simple tests and only do this
1776 if we're allowed to change code at all. */
1777 if (code == MINUS_EXPR && modify)
1778 code = PLUS_EXPR;
1780 if (check_reduction
1781 && (!commutative_tree_code (code) || !associative_tree_code (code)))
1783 if (vect_print_dump_info (REPORT_DETAILS))
1784 report_vect_op (def_stmt, "reduction: not commutative/associative: ");
1785 return NULL;
1788 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
1790 if (code != COND_EXPR)
1792 if (vect_print_dump_info (REPORT_DETAILS))
1793 report_vect_op (def_stmt, "reduction: not binary operation: ");
1795 return NULL;
1798 op3 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
1799 if (COMPARISON_CLASS_P (op3))
1801 op4 = TREE_OPERAND (op3, 1);
1802 op3 = TREE_OPERAND (op3, 0);
1805 op1 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 1);
1806 op2 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 2);
1808 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
1810 if (vect_print_dump_info (REPORT_DETAILS))
1811 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
1813 return NULL;
1816 else
1818 op1 = gimple_assign_rhs1 (def_stmt);
1819 op2 = gimple_assign_rhs2 (def_stmt);
1821 if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
1823 if (vect_print_dump_info (REPORT_DETAILS))
1824 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
1826 return NULL;
1830 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
1831 if ((TREE_CODE (op1) == SSA_NAME
1832 && !types_compatible_p (type,TREE_TYPE (op1)))
1833 || (TREE_CODE (op2) == SSA_NAME
1834 && !types_compatible_p (type, TREE_TYPE (op2)))
1835 || (op3 && TREE_CODE (op3) == SSA_NAME
1836 && !types_compatible_p (type, TREE_TYPE (op3)))
1837 || (op4 && TREE_CODE (op4) == SSA_NAME
1838 && !types_compatible_p (type, TREE_TYPE (op4))))
1840 if (vect_print_dump_info (REPORT_DETAILS))
1842 fprintf (vect_dump, "reduction: multiple types: operation type: ");
1843 print_generic_expr (vect_dump, type, TDF_SLIM);
1844 fprintf (vect_dump, ", operands types: ");
1845 print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
1846 fprintf (vect_dump, ",");
1847 print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
1848 if (op3)
1850 fprintf (vect_dump, ",");
1851 print_generic_expr (vect_dump, TREE_TYPE (op3), TDF_SLIM);
1854 if (op4)
1856 fprintf (vect_dump, ",");
1857 print_generic_expr (vect_dump, TREE_TYPE (op4), TDF_SLIM);
1861 return NULL;
1864 /* Check that it's ok to change the order of the computation.
1865 Generally, when vectorizing a reduction we change the order of the
1866 computation. This may change the behavior of the program in some
1867 cases, so we need to check that this is ok. One exception is when
1868 vectorizing an outer-loop: the inner-loop is executed sequentially,
1869 and therefore vectorizing reductions in the inner-loop during
1870 outer-loop vectorization is safe. */
1872 /* CHECKME: check for !flag_finite_math_only too? */
1873 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
1874 && check_reduction)
1876 /* Changing the order of operations changes the semantics. */
1877 if (vect_print_dump_info (REPORT_DETAILS))
1878 report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
1879 return NULL;
1881 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
1882 && check_reduction)
1884 /* Changing the order of operations changes the semantics. */
1885 if (vect_print_dump_info (REPORT_DETAILS))
1886 report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
1887 return NULL;
1889 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
1891 /* Changing the order of operations changes the semantics. */
1892 if (vect_print_dump_info (REPORT_DETAILS))
1893 report_vect_op (def_stmt,
1894 "reduction: unsafe fixed-point math optimization: ");
1895 return NULL;
1898 /* If we detected "res -= x[i]" earlier, rewrite it into
1899 "res += -x[i]" now. If this turns out to be useless reassoc
1900 will clean it up again. */
1901 if (orig_code == MINUS_EXPR)
1903 tree rhs = gimple_assign_rhs2 (def_stmt);
1904 tree negrhs = make_ssa_name (SSA_NAME_VAR (rhs), NULL);
1905 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
1906 rhs, NULL);
1907 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
1908 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
1909 loop_info, NULL));
1910 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
1911 gimple_assign_set_rhs2 (def_stmt, negrhs);
1912 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
1913 update_stmt (def_stmt);
1916 /* Reduction is safe. We're dealing with one of the following:
1917 1) integer arithmetic and no trapv
1918 2) floating point arithmetic, and special flags permit this optimization
1919 3) nested cycle (i.e., outer loop vectorization). */
1920 if (TREE_CODE (op1) == SSA_NAME)
1921 def1 = SSA_NAME_DEF_STMT (op1);
1923 if (TREE_CODE (op2) == SSA_NAME)
1924 def2 = SSA_NAME_DEF_STMT (op2);
1926 if (code != COND_EXPR
1927 && (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2)))
1929 if (vect_print_dump_info (REPORT_DETAILS))
1930 report_vect_op (def_stmt, "reduction: no defs for operands: ");
1931 return NULL;
1934 /* Check that one def is the reduction def, defined by PHI,
1935 the other def is either defined in the loop ("vect_internal_def"),
1936 or it's an induction (defined by a loop-header phi-node). */
1938 if (def2 && def2 == phi
1939 && (code == COND_EXPR
1940 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
1941 && (is_gimple_assign (def1)
1942 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
1943 == vect_induction_def
1944 || (gimple_code (def1) == GIMPLE_PHI
1945 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
1946 == vect_internal_def
1947 && !is_loop_header_bb_p (gimple_bb (def1)))))))
1949 if (vect_print_dump_info (REPORT_DETAILS))
1950 report_vect_op (def_stmt, "detected reduction: ");
1951 return def_stmt;
1953 else if (def1 && def1 == phi
1954 && (code == COND_EXPR
1955 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
1956 && (is_gimple_assign (def2)
1957 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
1958 == vect_induction_def
1959 || (gimple_code (def2) == GIMPLE_PHI
1960 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
1961 == vect_internal_def
1962 && !is_loop_header_bb_p (gimple_bb (def2)))))))
1964 if (check_reduction)
1966 /* Swap operands (just for simplicity - so that the rest of the code
1967 can assume that the reduction variable is always the last (second)
1968 argument). */
1969 if (vect_print_dump_info (REPORT_DETAILS))
1970 report_vect_op (def_stmt,
1971 "detected reduction: need to swap operands: ");
1973 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
1974 gimple_assign_rhs2_ptr (def_stmt));
1976 else
1978 if (vect_print_dump_info (REPORT_DETAILS))
1979 report_vect_op (def_stmt, "detected reduction: ");
1982 return def_stmt;
1984 else
1986 if (vect_print_dump_info (REPORT_DETAILS))
1987 report_vect_op (def_stmt, "reduction: unknown pattern: ");
1989 return NULL;
1993 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
1994 in-place. Arguments as there. */
1996 static gimple
1997 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
1998 bool check_reduction, bool *double_reduc)
2000 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2001 double_reduc, false);
2004 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2005 in-place if it enables detection of more reductions. Arguments
2006 as there. */
2008 gimple
2009 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2010 bool check_reduction, bool *double_reduc)
2012 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2013 double_reduc, true);
2016 /* Calculate the cost of one scalar iteration of the loop. */
2018 vect_get_single_scalar_iteraion_cost (loop_vec_info loop_vinfo)
2020 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2021 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2022 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2023 int innerloop_iters, i, stmt_cost;
2025 /* Count statements in scalar loop. Using this as scalar cost for a single
2026 iteration for now.
2028 TODO: Add outer loop support.
2030 TODO: Consider assigning different costs to different scalar
2031 statements. */
2033 /* FORNOW. */
2034 if (loop->inner)
2035 innerloop_iters = 50; /* FIXME */
2037 for (i = 0; i < nbbs; i++)
2039 gimple_stmt_iterator si;
2040 basic_block bb = bbs[i];
2042 if (bb->loop_father == loop->inner)
2043 factor = innerloop_iters;
2044 else
2045 factor = 1;
2047 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2049 gimple stmt = gsi_stmt (si);
2050 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2052 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2053 continue;
2055 /* Skip stmts that are not vectorized inside the loop. */
2056 if (stmt_info
2057 && !STMT_VINFO_RELEVANT_P (stmt_info)
2058 && (!STMT_VINFO_LIVE_P (stmt_info)
2059 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2060 continue;
2062 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2064 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2065 stmt_cost = vect_get_cost (scalar_load);
2066 else
2067 stmt_cost = vect_get_cost (scalar_store);
2069 else
2070 stmt_cost = vect_get_cost (scalar_stmt);
2072 scalar_single_iter_cost += stmt_cost * factor;
2075 return scalar_single_iter_cost;
2078 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2080 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2081 int *peel_iters_epilogue,
2082 int scalar_single_iter_cost)
2084 int peel_guard_costs = 0;
2085 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2087 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2089 *peel_iters_epilogue = vf/2;
2090 if (vect_print_dump_info (REPORT_COST))
2091 fprintf (vect_dump, "cost model: "
2092 "epilogue peel iters set to vf/2 because "
2093 "loop iterations are unknown .");
2095 /* If peeled iterations are known but number of scalar loop
2096 iterations are unknown, count a taken branch per peeled loop. */
2097 peel_guard_costs = 2 * vect_get_cost (cond_branch_taken);
2099 else
2101 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2102 peel_iters_prologue = niters < peel_iters_prologue ?
2103 niters : peel_iters_prologue;
2104 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2107 return (peel_iters_prologue * scalar_single_iter_cost)
2108 + (*peel_iters_epilogue * scalar_single_iter_cost)
2109 + peel_guard_costs;
2112 /* Function vect_estimate_min_profitable_iters
2114 Return the number of iterations required for the vector version of the
2115 loop to be profitable relative to the cost of the scalar version of the
2116 loop.
2118 TODO: Take profile info into account before making vectorization
2119 decisions, if available. */
2122 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
2124 int i;
2125 int min_profitable_iters;
2126 int peel_iters_prologue;
2127 int peel_iters_epilogue;
2128 int vec_inside_cost = 0;
2129 int vec_outside_cost = 0;
2130 int scalar_single_iter_cost = 0;
2131 int scalar_outside_cost = 0;
2132 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2133 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2134 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2135 int nbbs = loop->num_nodes;
2136 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2137 int peel_guard_costs = 0;
2138 int innerloop_iters = 0, factor;
2139 VEC (slp_instance, heap) *slp_instances;
2140 slp_instance instance;
2142 /* Cost model disabled. */
2143 if (!flag_vect_cost_model)
2145 if (vect_print_dump_info (REPORT_COST))
2146 fprintf (vect_dump, "cost model disabled.");
2147 return 0;
2150 /* Requires loop versioning tests to handle misalignment. */
2151 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2153 /* FIXME: Make cost depend on complexity of individual check. */
2154 vec_outside_cost +=
2155 VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
2156 if (vect_print_dump_info (REPORT_COST))
2157 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2158 "versioning to treat misalignment.\n");
2161 /* Requires loop versioning with alias checks. */
2162 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2164 /* FIXME: Make cost depend on complexity of individual check. */
2165 vec_outside_cost +=
2166 VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
2167 if (vect_print_dump_info (REPORT_COST))
2168 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
2169 "versioning aliasing.\n");
2172 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2173 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2174 vec_outside_cost += vect_get_cost (cond_branch_taken);
2176 /* Count statements in scalar loop. Using this as scalar cost for a single
2177 iteration for now.
2179 TODO: Add outer loop support.
2181 TODO: Consider assigning different costs to different scalar
2182 statements. */
2184 /* FORNOW. */
2185 if (loop->inner)
2186 innerloop_iters = 50; /* FIXME */
2188 for (i = 0; i < nbbs; i++)
2190 gimple_stmt_iterator si;
2191 basic_block bb = bbs[i];
2193 if (bb->loop_father == loop->inner)
2194 factor = innerloop_iters;
2195 else
2196 factor = 1;
2198 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2200 gimple stmt = gsi_stmt (si);
2201 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2202 /* Skip stmts that are not vectorized inside the loop. */
2203 if (!STMT_VINFO_RELEVANT_P (stmt_info)
2204 && (!STMT_VINFO_LIVE_P (stmt_info)
2205 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
2206 continue;
2207 vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
2208 /* FIXME: for stmts in the inner-loop in outer-loop vectorization,
2209 some of the "outside" costs are generated inside the outer-loop. */
2210 vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
2214 scalar_single_iter_cost = vect_get_single_scalar_iteraion_cost (loop_vinfo);
2216 /* Add additional cost for the peeled instructions in prologue and epilogue
2217 loop.
2219 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2220 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2222 TODO: Build an expression that represents peel_iters for prologue and
2223 epilogue to be used in a run-time test. */
2225 if (npeel < 0)
2227 peel_iters_prologue = vf/2;
2228 if (vect_print_dump_info (REPORT_COST))
2229 fprintf (vect_dump, "cost model: "
2230 "prologue peel iters set to vf/2.");
2232 /* If peeling for alignment is unknown, loop bound of main loop becomes
2233 unknown. */
2234 peel_iters_epilogue = vf/2;
2235 if (vect_print_dump_info (REPORT_COST))
2236 fprintf (vect_dump, "cost model: "
2237 "epilogue peel iters set to vf/2 because "
2238 "peeling for alignment is unknown .");
2240 /* If peeled iterations are unknown, count a taken branch and a not taken
2241 branch per peeled loop. Even if scalar loop iterations are known,
2242 vector iterations are not known since peeled prologue iterations are
2243 not known. Hence guards remain the same. */
2244 peel_guard_costs += 2 * (vect_get_cost (cond_branch_taken)
2245 + vect_get_cost (cond_branch_not_taken));
2246 vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
2247 + (peel_iters_epilogue * scalar_single_iter_cost)
2248 + peel_guard_costs;
2250 else
2252 peel_iters_prologue = npeel;
2253 vec_outside_cost += vect_get_known_peeling_cost (loop_vinfo,
2254 peel_iters_prologue, &peel_iters_epilogue,
2255 scalar_single_iter_cost);
2258 /* FORNOW: The scalar outside cost is incremented in one of the
2259 following ways:
2261 1. The vectorizer checks for alignment and aliasing and generates
2262 a condition that allows dynamic vectorization. A cost model
2263 check is ANDED with the versioning condition. Hence scalar code
2264 path now has the added cost of the versioning check.
2266 if (cost > th & versioning_check)
2267 jmp to vector code
2269 Hence run-time scalar is incremented by not-taken branch cost.
2271 2. The vectorizer then checks if a prologue is required. If the
2272 cost model check was not done before during versioning, it has to
2273 be done before the prologue check.
2275 if (cost <= th)
2276 prologue = scalar_iters
2277 if (prologue == 0)
2278 jmp to vector code
2279 else
2280 execute prologue
2281 if (prologue == num_iters)
2282 go to exit
2284 Hence the run-time scalar cost is incremented by a taken branch,
2285 plus a not-taken branch, plus a taken branch cost.
2287 3. The vectorizer then checks if an epilogue is required. If the
2288 cost model check was not done before during prologue check, it
2289 has to be done with the epilogue check.
2291 if (prologue == 0)
2292 jmp to vector code
2293 else
2294 execute prologue
2295 if (prologue == num_iters)
2296 go to exit
2297 vector code:
2298 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2299 jmp to epilogue
2301 Hence the run-time scalar cost should be incremented by 2 taken
2302 branches.
2304 TODO: The back end may reorder the BBS's differently and reverse
2305 conditions/branch directions. Change the estimates below to
2306 something more reasonable. */
2308 /* If the number of iterations is known and we do not do versioning, we can
2309 decide whether to vectorize at compile time. Hence the scalar version
2310 do not carry cost model guard costs. */
2311 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2312 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2313 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2315 /* Cost model check occurs at versioning. */
2316 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2317 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2318 scalar_outside_cost += vect_get_cost (cond_branch_not_taken);
2319 else
2321 /* Cost model check occurs at prologue generation. */
2322 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2323 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken)
2324 + vect_get_cost (cond_branch_not_taken);
2325 /* Cost model check occurs at epilogue generation. */
2326 else
2327 scalar_outside_cost += 2 * vect_get_cost (cond_branch_taken);
2331 /* Add SLP costs. */
2332 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
2333 FOR_EACH_VEC_ELT (slp_instance, slp_instances, i, instance)
2335 vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
2336 vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
2339 /* Calculate number of iterations required to make the vector version
2340 profitable, relative to the loop bodies only. The following condition
2341 must hold true:
2342 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2343 where
2344 SIC = scalar iteration cost, VIC = vector iteration cost,
2345 VOC = vector outside cost, VF = vectorization factor,
2346 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2347 SOC = scalar outside cost for run time cost model check. */
2349 if ((scalar_single_iter_cost * vf) > vec_inside_cost)
2351 if (vec_outside_cost <= 0)
2352 min_profitable_iters = 1;
2353 else
2355 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2356 - vec_inside_cost * peel_iters_prologue
2357 - vec_inside_cost * peel_iters_epilogue)
2358 / ((scalar_single_iter_cost * vf)
2359 - vec_inside_cost);
2361 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2362 <= ((vec_inside_cost * min_profitable_iters)
2363 + ((vec_outside_cost - scalar_outside_cost) * vf)))
2364 min_profitable_iters++;
2367 /* vector version will never be profitable. */
2368 else
2370 if (vect_print_dump_info (REPORT_COST))
2371 fprintf (vect_dump, "cost model: the vector iteration cost = %d "
2372 "divided by the scalar iteration cost = %d "
2373 "is greater or equal to the vectorization factor = %d.",
2374 vec_inside_cost, scalar_single_iter_cost, vf);
2375 return -1;
2378 if (vect_print_dump_info (REPORT_COST))
2380 fprintf (vect_dump, "Cost model analysis: \n");
2381 fprintf (vect_dump, " Vector inside of loop cost: %d\n",
2382 vec_inside_cost);
2383 fprintf (vect_dump, " Vector outside of loop cost: %d\n",
2384 vec_outside_cost);
2385 fprintf (vect_dump, " Scalar iteration cost: %d\n",
2386 scalar_single_iter_cost);
2387 fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
2388 fprintf (vect_dump, " prologue iterations: %d\n",
2389 peel_iters_prologue);
2390 fprintf (vect_dump, " epilogue iterations: %d\n",
2391 peel_iters_epilogue);
2392 fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
2393 min_profitable_iters);
2396 min_profitable_iters =
2397 min_profitable_iters < vf ? vf : min_profitable_iters;
2399 /* Because the condition we create is:
2400 if (niters <= min_profitable_iters)
2401 then skip the vectorized loop. */
2402 min_profitable_iters--;
2404 if (vect_print_dump_info (REPORT_COST))
2405 fprintf (vect_dump, " Profitability threshold = %d\n",
2406 min_profitable_iters);
2408 return min_profitable_iters;
2412 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2413 functions. Design better to avoid maintenance issues. */
2415 /* Function vect_model_reduction_cost.
2417 Models cost for a reduction operation, including the vector ops
2418 generated within the strip-mine loop, the initial definition before
2419 the loop, and the epilogue code that must be generated. */
2421 static bool
2422 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2423 int ncopies)
2425 int outer_cost = 0;
2426 enum tree_code code;
2427 optab optab;
2428 tree vectype;
2429 gimple stmt, orig_stmt;
2430 tree reduction_op;
2431 enum machine_mode mode;
2432 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2433 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2436 /* Cost of reduction op inside loop. */
2437 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2438 += ncopies * vect_get_cost (vector_stmt);
2440 stmt = STMT_VINFO_STMT (stmt_info);
2442 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2444 case GIMPLE_SINGLE_RHS:
2445 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2446 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2447 break;
2448 case GIMPLE_UNARY_RHS:
2449 reduction_op = gimple_assign_rhs1 (stmt);
2450 break;
2451 case GIMPLE_BINARY_RHS:
2452 reduction_op = gimple_assign_rhs2 (stmt);
2453 break;
2454 default:
2455 gcc_unreachable ();
2458 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2459 if (!vectype)
2461 if (vect_print_dump_info (REPORT_COST))
2463 fprintf (vect_dump, "unsupported data-type ");
2464 print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
2466 return false;
2469 mode = TYPE_MODE (vectype);
2470 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2472 if (!orig_stmt)
2473 orig_stmt = STMT_VINFO_STMT (stmt_info);
2475 code = gimple_assign_rhs_code (orig_stmt);
2477 /* Add in cost for initial definition. */
2478 outer_cost += vect_get_cost (scalar_to_vec);
2480 /* Determine cost of epilogue code.
2482 We have a reduction operator that will reduce the vector in one statement.
2483 Also requires scalar extract. */
2485 if (!nested_in_vect_loop_p (loop, orig_stmt))
2487 if (reduc_code != ERROR_MARK)
2488 outer_cost += vect_get_cost (vector_stmt)
2489 + vect_get_cost (vec_to_scalar);
2490 else
2492 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
2493 tree bitsize =
2494 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
2495 int element_bitsize = tree_low_cst (bitsize, 1);
2496 int nelements = vec_size_in_bits / element_bitsize;
2498 optab = optab_for_tree_code (code, vectype, optab_default);
2500 /* We have a whole vector shift available. */
2501 if (VECTOR_MODE_P (mode)
2502 && optab_handler (optab, mode) != CODE_FOR_nothing
2503 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
2504 /* Final reduction via vector shifts and the reduction operator. Also
2505 requires scalar extract. */
2506 outer_cost += ((exact_log2(nelements) * 2)
2507 * vect_get_cost (vector_stmt)
2508 + vect_get_cost (vec_to_scalar));
2509 else
2510 /* Use extracts and reduction op for final reduction. For N elements,
2511 we have N extracts and N-1 reduction ops. */
2512 outer_cost += ((nelements + nelements - 1)
2513 * vect_get_cost (vector_stmt));
2517 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
2519 if (vect_print_dump_info (REPORT_COST))
2520 fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
2521 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2522 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2524 return true;
2528 /* Function vect_model_induction_cost.
2530 Models cost for induction operations. */
2532 static void
2533 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
2535 /* loop cost for vec_loop. */
2536 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info)
2537 = ncopies * vect_get_cost (vector_stmt);
2538 /* prologue cost for vec_init and vec_step. */
2539 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info)
2540 = 2 * vect_get_cost (scalar_to_vec);
2542 if (vect_print_dump_info (REPORT_COST))
2543 fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
2544 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2545 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2549 /* Function get_initial_def_for_induction
2551 Input:
2552 STMT - a stmt that performs an induction operation in the loop.
2553 IV_PHI - the initial value of the induction variable
2555 Output:
2556 Return a vector variable, initialized with the first VF values of
2557 the induction variable. E.g., for an iv with IV_PHI='X' and
2558 evolution S, for a vector of 4 units, we want to return:
2559 [X, X + S, X + 2*S, X + 3*S]. */
2561 static tree
2562 get_initial_def_for_induction (gimple iv_phi)
2564 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
2565 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2566 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2567 tree scalar_type = TREE_TYPE (gimple_phi_result (iv_phi));
2568 tree vectype;
2569 int nunits;
2570 edge pe = loop_preheader_edge (loop);
2571 struct loop *iv_loop;
2572 basic_block new_bb;
2573 tree vec, vec_init, vec_step, t;
2574 tree access_fn;
2575 tree new_var;
2576 tree new_name;
2577 gimple init_stmt, induction_phi, new_stmt;
2578 tree induc_def, vec_def, vec_dest;
2579 tree init_expr, step_expr;
2580 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2581 int i;
2582 bool ok;
2583 int ncopies;
2584 tree expr;
2585 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
2586 bool nested_in_vect_loop = false;
2587 gimple_seq stmts = NULL;
2588 imm_use_iterator imm_iter;
2589 use_operand_p use_p;
2590 gimple exit_phi;
2591 edge latch_e;
2592 tree loop_arg;
2593 gimple_stmt_iterator si;
2594 basic_block bb = gimple_bb (iv_phi);
2595 tree stepvectype;
2597 vectype = get_vectype_for_scalar_type (scalar_type);
2598 gcc_assert (vectype);
2599 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2600 ncopies = vf / nunits;
2602 gcc_assert (phi_info);
2603 gcc_assert (ncopies >= 1);
2605 /* Find the first insertion point in the BB. */
2606 si = gsi_after_labels (bb);
2608 if (INTEGRAL_TYPE_P (scalar_type))
2609 step_expr = build_int_cst (scalar_type, 0);
2610 else if (POINTER_TYPE_P (scalar_type))
2611 step_expr = size_zero_node;
2612 else
2613 step_expr = build_real (scalar_type, dconst0);
2615 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
2616 if (nested_in_vect_loop_p (loop, iv_phi))
2618 nested_in_vect_loop = true;
2619 iv_loop = loop->inner;
2621 else
2622 iv_loop = loop;
2623 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
2625 latch_e = loop_latch_edge (iv_loop);
2626 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
2628 access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
2629 gcc_assert (access_fn);
2630 ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
2631 &init_expr, &step_expr);
2632 gcc_assert (ok);
2633 pe = loop_preheader_edge (iv_loop);
2635 /* Create the vector that holds the initial_value of the induction. */
2636 if (nested_in_vect_loop)
2638 /* iv_loop is nested in the loop to be vectorized. init_expr had already
2639 been created during vectorization of previous stmts; We obtain it from
2640 the STMT_VINFO_VEC_STMT of the defining stmt. */
2641 tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
2642 loop_preheader_edge (iv_loop));
2643 vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
2645 else
2647 /* iv_loop is the loop to be vectorized. Create:
2648 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
2649 new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
2650 add_referenced_var (new_var);
2652 new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
2653 if (stmts)
2655 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2656 gcc_assert (!new_bb);
2659 t = NULL_TREE;
2660 t = tree_cons (NULL_TREE, init_expr, t);
2661 for (i = 1; i < nunits; i++)
2663 /* Create: new_name_i = new_name + step_expr */
2664 enum tree_code code = POINTER_TYPE_P (scalar_type)
2665 ? POINTER_PLUS_EXPR : PLUS_EXPR;
2666 init_stmt = gimple_build_assign_with_ops (code, new_var,
2667 new_name, step_expr);
2668 new_name = make_ssa_name (new_var, init_stmt);
2669 gimple_assign_set_lhs (init_stmt, new_name);
2671 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
2672 gcc_assert (!new_bb);
2674 if (vect_print_dump_info (REPORT_DETAILS))
2676 fprintf (vect_dump, "created new init_stmt: ");
2677 print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
2679 t = tree_cons (NULL_TREE, new_name, t);
2681 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
2682 vec = build_constructor_from_list (vectype, nreverse (t));
2683 vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
2687 /* Create the vector that holds the step of the induction. */
2688 if (nested_in_vect_loop)
2689 /* iv_loop is nested in the loop to be vectorized. Generate:
2690 vec_step = [S, S, S, S] */
2691 new_name = step_expr;
2692 else
2694 /* iv_loop is the loop to be vectorized. Generate:
2695 vec_step = [VF*S, VF*S, VF*S, VF*S] */
2696 expr = build_int_cst (TREE_TYPE (step_expr), vf);
2697 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2698 expr, step_expr);
2701 t = NULL_TREE;
2702 for (i = 0; i < nunits; i++)
2703 t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
2704 gcc_assert (CONSTANT_CLASS_P (new_name));
2705 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
2706 gcc_assert (stepvectype);
2707 vec = build_vector (stepvectype, t);
2708 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
2711 /* Create the following def-use cycle:
2712 loop prolog:
2713 vec_init = ...
2714 vec_step = ...
2715 loop:
2716 vec_iv = PHI <vec_init, vec_loop>
2718 STMT
2720 vec_loop = vec_iv + vec_step; */
2722 /* Create the induction-phi that defines the induction-operand. */
2723 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
2724 add_referenced_var (vec_dest);
2725 induction_phi = create_phi_node (vec_dest, iv_loop->header);
2726 set_vinfo_for_stmt (induction_phi,
2727 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
2728 induc_def = PHI_RESULT (induction_phi);
2730 /* Create the iv update inside the loop */
2731 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
2732 induc_def, vec_step);
2733 vec_def = make_ssa_name (vec_dest, new_stmt);
2734 gimple_assign_set_lhs (new_stmt, vec_def);
2735 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2736 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
2737 NULL));
2739 /* Set the arguments of the phi node: */
2740 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
2741 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
2742 UNKNOWN_LOCATION);
2745 /* In case that vectorization factor (VF) is bigger than the number
2746 of elements that we can fit in a vectype (nunits), we have to generate
2747 more than one vector stmt - i.e - we need to "unroll" the
2748 vector stmt by a factor VF/nunits. For more details see documentation
2749 in vectorizable_operation. */
2751 if (ncopies > 1)
2753 stmt_vec_info prev_stmt_vinfo;
2754 /* FORNOW. This restriction should be relaxed. */
2755 gcc_assert (!nested_in_vect_loop);
2757 /* Create the vector that holds the step of the induction. */
2758 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
2759 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2760 expr, step_expr);
2761 t = NULL_TREE;
2762 for (i = 0; i < nunits; i++)
2763 t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
2764 gcc_assert (CONSTANT_CLASS_P (new_name));
2765 vec = build_vector (stepvectype, t);
2766 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
2768 vec_def = induc_def;
2769 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
2770 for (i = 1; i < ncopies; i++)
2772 /* vec_i = vec_prev + vec_step */
2773 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
2774 vec_def, vec_step);
2775 vec_def = make_ssa_name (vec_dest, new_stmt);
2776 gimple_assign_set_lhs (new_stmt, vec_def);
2778 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2779 set_vinfo_for_stmt (new_stmt,
2780 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
2781 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
2782 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
2786 if (nested_in_vect_loop)
2788 /* Find the loop-closed exit-phi of the induction, and record
2789 the final vector of induction results: */
2790 exit_phi = NULL;
2791 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
2793 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
2795 exit_phi = USE_STMT (use_p);
2796 break;
2799 if (exit_phi)
2801 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
2802 /* FORNOW. Currently not supporting the case that an inner-loop induction
2803 is not used in the outer-loop (i.e. only outside the outer-loop). */
2804 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
2805 && !STMT_VINFO_LIVE_P (stmt_vinfo));
2807 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
2808 if (vect_print_dump_info (REPORT_DETAILS))
2810 fprintf (vect_dump, "vector of inductions after inner-loop:");
2811 print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
2817 if (vect_print_dump_info (REPORT_DETAILS))
2819 fprintf (vect_dump, "transform induction: created def-use cycle: ");
2820 print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
2821 fprintf (vect_dump, "\n");
2822 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
2825 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
2826 return induc_def;
2830 /* Function get_initial_def_for_reduction
2832 Input:
2833 STMT - a stmt that performs a reduction operation in the loop.
2834 INIT_VAL - the initial value of the reduction variable
2836 Output:
2837 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
2838 of the reduction (used for adjusting the epilog - see below).
2839 Return a vector variable, initialized according to the operation that STMT
2840 performs. This vector will be used as the initial value of the
2841 vector of partial results.
2843 Option1 (adjust in epilog): Initialize the vector as follows:
2844 add/bit or/xor: [0,0,...,0,0]
2845 mult/bit and: [1,1,...,1,1]
2846 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
2847 and when necessary (e.g. add/mult case) let the caller know
2848 that it needs to adjust the result by init_val.
2850 Option2: Initialize the vector as follows:
2851 add/bit or/xor: [init_val,0,0,...,0]
2852 mult/bit and: [init_val,1,1,...,1]
2853 min/max/cond_expr: [init_val,init_val,...,init_val]
2854 and no adjustments are needed.
2856 For example, for the following code:
2858 s = init_val;
2859 for (i=0;i<n;i++)
2860 s = s + a[i];
2862 STMT is 's = s + a[i]', and the reduction variable is 's'.
2863 For a vector of 4 units, we want to return either [0,0,0,init_val],
2864 or [0,0,0,0] and let the caller know that it needs to adjust
2865 the result at the end by 'init_val'.
2867 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
2868 initialization vector is simpler (same element in all entries), if
2869 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
2871 A cost model should help decide between these two schemes. */
2873 tree
2874 get_initial_def_for_reduction (gimple stmt, tree init_val,
2875 tree *adjustment_def)
2877 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
2878 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2879 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2880 tree scalar_type = TREE_TYPE (init_val);
2881 tree vectype = get_vectype_for_scalar_type (scalar_type);
2882 int nunits;
2883 enum tree_code code = gimple_assign_rhs_code (stmt);
2884 tree def_for_init;
2885 tree init_def;
2886 tree t = NULL_TREE;
2887 int i;
2888 bool nested_in_vect_loop = false;
2889 tree init_value;
2890 REAL_VALUE_TYPE real_init_val = dconst0;
2891 int int_init_val = 0;
2892 gimple def_stmt = NULL;
2894 gcc_assert (vectype);
2895 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2897 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
2898 || SCALAR_FLOAT_TYPE_P (scalar_type));
2900 if (nested_in_vect_loop_p (loop, stmt))
2901 nested_in_vect_loop = true;
2902 else
2903 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
2905 /* In case of double reduction we only create a vector variable to be put
2906 in the reduction phi node. The actual statement creation is done in
2907 vect_create_epilog_for_reduction. */
2908 if (adjustment_def && nested_in_vect_loop
2909 && TREE_CODE (init_val) == SSA_NAME
2910 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
2911 && gimple_code (def_stmt) == GIMPLE_PHI
2912 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2913 && vinfo_for_stmt (def_stmt)
2914 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2915 == vect_double_reduction_def)
2917 *adjustment_def = NULL;
2918 return vect_create_destination_var (init_val, vectype);
2921 if (TREE_CONSTANT (init_val))
2923 if (SCALAR_FLOAT_TYPE_P (scalar_type))
2924 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
2925 else
2926 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
2928 else
2929 init_value = init_val;
2931 switch (code)
2933 case WIDEN_SUM_EXPR:
2934 case DOT_PROD_EXPR:
2935 case PLUS_EXPR:
2936 case MINUS_EXPR:
2937 case BIT_IOR_EXPR:
2938 case BIT_XOR_EXPR:
2939 case MULT_EXPR:
2940 case BIT_AND_EXPR:
2941 /* ADJUSMENT_DEF is NULL when called from
2942 vect_create_epilog_for_reduction to vectorize double reduction. */
2943 if (adjustment_def)
2945 if (nested_in_vect_loop)
2946 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
2947 NULL);
2948 else
2949 *adjustment_def = init_val;
2952 if (code == MULT_EXPR)
2954 real_init_val = dconst1;
2955 int_init_val = 1;
2958 if (code == BIT_AND_EXPR)
2959 int_init_val = -1;
2961 if (SCALAR_FLOAT_TYPE_P (scalar_type))
2962 def_for_init = build_real (scalar_type, real_init_val);
2963 else
2964 def_for_init = build_int_cst (scalar_type, int_init_val);
2966 /* Create a vector of '0' or '1' except the first element. */
2967 for (i = nunits - 2; i >= 0; --i)
2968 t = tree_cons (NULL_TREE, def_for_init, t);
2970 /* Option1: the first element is '0' or '1' as well. */
2971 if (adjustment_def)
2973 t = tree_cons (NULL_TREE, def_for_init, t);
2974 init_def = build_vector (vectype, t);
2975 break;
2978 /* Option2: the first element is INIT_VAL. */
2979 t = tree_cons (NULL_TREE, init_value, t);
2980 if (TREE_CONSTANT (init_val))
2981 init_def = build_vector (vectype, t);
2982 else
2983 init_def = build_constructor_from_list (vectype, t);
2985 break;
2987 case MIN_EXPR:
2988 case MAX_EXPR:
2989 case COND_EXPR:
2990 if (adjustment_def)
2992 *adjustment_def = NULL_TREE;
2993 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
2994 break;
2997 for (i = nunits - 1; i >= 0; --i)
2998 t = tree_cons (NULL_TREE, init_value, t);
3000 if (TREE_CONSTANT (init_val))
3001 init_def = build_vector (vectype, t);
3002 else
3003 init_def = build_constructor_from_list (vectype, t);
3005 break;
3007 default:
3008 gcc_unreachable ();
3011 return init_def;
3015 /* Function vect_create_epilog_for_reduction
3017 Create code at the loop-epilog to finalize the result of a reduction
3018 computation.
3020 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3021 reduction statements.
3022 STMT is the scalar reduction stmt that is being vectorized.
3023 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3024 number of elements that we can fit in a vectype (nunits). In this case
3025 we have to generate more than one vector stmt - i.e - we need to "unroll"
3026 the vector stmt by a factor VF/nunits. For more details see documentation
3027 in vectorizable_operation.
3028 REDUC_CODE is the tree-code for the epilog reduction.
3029 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3030 computation.
3031 REDUC_INDEX is the index of the operand in the right hand side of the
3032 statement that is defined by REDUCTION_PHI.
3033 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3034 SLP_NODE is an SLP node containing a group of reduction statements. The
3035 first one in this group is STMT.
3037 This function:
3038 1. Creates the reduction def-use cycles: sets the arguments for
3039 REDUCTION_PHIS:
3040 The loop-entry argument is the vectorized initial-value of the reduction.
3041 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3042 sums.
3043 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3044 by applying the operation specified by REDUC_CODE if available, or by
3045 other means (whole-vector shifts or a scalar loop).
3046 The function also creates a new phi node at the loop exit to preserve
3047 loop-closed form, as illustrated below.
3049 The flow at the entry to this function:
3051 loop:
3052 vec_def = phi <null, null> # REDUCTION_PHI
3053 VECT_DEF = vector_stmt # vectorized form of STMT
3054 s_loop = scalar_stmt # (scalar) STMT
3055 loop_exit:
3056 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3057 use <s_out0>
3058 use <s_out0>
3060 The above is transformed by this function into:
3062 loop:
3063 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3064 VECT_DEF = vector_stmt # vectorized form of STMT
3065 s_loop = scalar_stmt # (scalar) STMT
3066 loop_exit:
3067 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3068 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3069 v_out2 = reduce <v_out1>
3070 s_out3 = extract_field <v_out2, 0>
3071 s_out4 = adjust_result <s_out3>
3072 use <s_out4>
3073 use <s_out4>
3076 static void
3077 vect_create_epilog_for_reduction (VEC (tree, heap) *vect_defs, gimple stmt,
3078 int ncopies, enum tree_code reduc_code,
3079 VEC (gimple, heap) *reduction_phis,
3080 int reduc_index, bool double_reduc,
3081 slp_tree slp_node)
3083 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3084 stmt_vec_info prev_phi_info;
3085 tree vectype;
3086 enum machine_mode mode;
3087 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3088 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3089 basic_block exit_bb;
3090 tree scalar_dest;
3091 tree scalar_type;
3092 gimple new_phi = NULL, phi;
3093 gimple_stmt_iterator exit_gsi;
3094 tree vec_dest;
3095 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3096 gimple epilog_stmt = NULL;
3097 enum tree_code code = gimple_assign_rhs_code (stmt);
3098 gimple exit_phi;
3099 tree bitsize, bitpos;
3100 tree adjustment_def = NULL;
3101 tree vec_initial_def = NULL;
3102 tree reduction_op, expr, def;
3103 tree orig_name, scalar_result;
3104 imm_use_iterator imm_iter, phi_imm_iter;
3105 use_operand_p use_p, phi_use_p;
3106 bool extract_scalar_result = false;
3107 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3108 bool nested_in_vect_loop = false;
3109 VEC (gimple, heap) *new_phis = NULL;
3110 enum vect_def_type dt = vect_unknown_def_type;
3111 int j, i;
3112 VEC (tree, heap) *scalar_results = NULL;
3113 unsigned int group_size = 1, k, ratio;
3114 VEC (tree, heap) *vec_initial_defs = NULL;
3115 VEC (gimple, heap) *phis;
3117 if (slp_node)
3118 group_size = VEC_length (gimple, SLP_TREE_SCALAR_STMTS (slp_node));
3120 if (nested_in_vect_loop_p (loop, stmt))
3122 outer_loop = loop;
3123 loop = loop->inner;
3124 nested_in_vect_loop = true;
3125 gcc_assert (!slp_node);
3128 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3130 case GIMPLE_SINGLE_RHS:
3131 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3132 == ternary_op);
3133 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3134 break;
3135 case GIMPLE_UNARY_RHS:
3136 reduction_op = gimple_assign_rhs1 (stmt);
3137 break;
3138 case GIMPLE_BINARY_RHS:
3139 reduction_op = reduc_index ?
3140 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3141 break;
3142 default:
3143 gcc_unreachable ();
3146 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3147 gcc_assert (vectype);
3148 mode = TYPE_MODE (vectype);
3150 /* 1. Create the reduction def-use cycle:
3151 Set the arguments of REDUCTION_PHIS, i.e., transform
3153 loop:
3154 vec_def = phi <null, null> # REDUCTION_PHI
3155 VECT_DEF = vector_stmt # vectorized form of STMT
3158 into:
3160 loop:
3161 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3162 VECT_DEF = vector_stmt # vectorized form of STMT
3165 (in case of SLP, do it for all the phis). */
3167 /* Get the loop-entry arguments. */
3168 if (slp_node)
3169 vect_get_slp_defs (slp_node, &vec_initial_defs, NULL, reduc_index);
3170 else
3172 vec_initial_defs = VEC_alloc (tree, heap, 1);
3173 /* For the case of reduction, vect_get_vec_def_for_operand returns
3174 the scalar def before the loop, that defines the initial value
3175 of the reduction variable. */
3176 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3177 &adjustment_def);
3178 VEC_quick_push (tree, vec_initial_defs, vec_initial_def);
3181 /* Set phi nodes arguments. */
3182 FOR_EACH_VEC_ELT (gimple, reduction_phis, i, phi)
3184 tree vec_init_def = VEC_index (tree, vec_initial_defs, i);
3185 tree def = VEC_index (tree, vect_defs, i);
3186 for (j = 0; j < ncopies; j++)
3188 /* Set the loop-entry arg of the reduction-phi. */
3189 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3190 UNKNOWN_LOCATION);
3192 /* Set the loop-latch arg for the reduction-phi. */
3193 if (j > 0)
3194 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3196 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3198 if (vect_print_dump_info (REPORT_DETAILS))
3200 fprintf (vect_dump, "transform reduction: created def-use"
3201 " cycle: ");
3202 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
3203 fprintf (vect_dump, "\n");
3204 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0,
3205 TDF_SLIM);
3208 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3212 VEC_free (tree, heap, vec_initial_defs);
3214 /* 2. Create epilog code.
3215 The reduction epilog code operates across the elements of the vector
3216 of partial results computed by the vectorized loop.
3217 The reduction epilog code consists of:
3219 step 1: compute the scalar result in a vector (v_out2)
3220 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3221 step 3: adjust the scalar result (s_out3) if needed.
3223 Step 1 can be accomplished using one the following three schemes:
3224 (scheme 1) using reduc_code, if available.
3225 (scheme 2) using whole-vector shifts, if available.
3226 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3227 combined.
3229 The overall epilog code looks like this:
3231 s_out0 = phi <s_loop> # original EXIT_PHI
3232 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3233 v_out2 = reduce <v_out1> # step 1
3234 s_out3 = extract_field <v_out2, 0> # step 2
3235 s_out4 = adjust_result <s_out3> # step 3
3237 (step 3 is optional, and steps 1 and 2 may be combined).
3238 Lastly, the uses of s_out0 are replaced by s_out4. */
3241 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3242 v_out1 = phi <VECT_DEF>
3243 Store them in NEW_PHIS. */
3245 exit_bb = single_exit (loop)->dest;
3246 prev_phi_info = NULL;
3247 new_phis = VEC_alloc (gimple, heap, VEC_length (tree, vect_defs));
3248 FOR_EACH_VEC_ELT (tree, vect_defs, i, def)
3250 for (j = 0; j < ncopies; j++)
3252 phi = create_phi_node (SSA_NAME_VAR (def), exit_bb);
3253 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3254 if (j == 0)
3255 VEC_quick_push (gimple, new_phis, phi);
3256 else
3258 def = vect_get_vec_def_for_stmt_copy (dt, def);
3259 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3262 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3263 prev_phi_info = vinfo_for_stmt (phi);
3267 /* The epilogue is created for the outer-loop, i.e., for the loop being
3268 vectorized. */
3269 if (double_reduc)
3271 loop = outer_loop;
3272 exit_bb = single_exit (loop)->dest;
3275 exit_gsi = gsi_after_labels (exit_bb);
3277 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3278 (i.e. when reduc_code is not available) and in the final adjustment
3279 code (if needed). Also get the original scalar reduction variable as
3280 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3281 represents a reduction pattern), the tree-code and scalar-def are
3282 taken from the original stmt that the pattern-stmt (STMT) replaces.
3283 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3284 are taken from STMT. */
3286 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3287 if (!orig_stmt)
3289 /* Regular reduction */
3290 orig_stmt = stmt;
3292 else
3294 /* Reduction pattern */
3295 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3296 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3297 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3300 code = gimple_assign_rhs_code (orig_stmt);
3301 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3302 partial results are added and not subtracted. */
3303 if (code == MINUS_EXPR)
3304 code = PLUS_EXPR;
3306 scalar_dest = gimple_assign_lhs (orig_stmt);
3307 scalar_type = TREE_TYPE (scalar_dest);
3308 scalar_results = VEC_alloc (tree, heap, group_size);
3309 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3310 bitsize = TYPE_SIZE (scalar_type);
3312 /* In case this is a reduction in an inner-loop while vectorizing an outer
3313 loop - we don't need to extract a single scalar result at the end of the
3314 inner-loop (unless it is double reduction, i.e., the use of reduction is
3315 outside the outer-loop). The final vector of partial results will be used
3316 in the vectorized outer-loop, or reduced to a scalar result at the end of
3317 the outer-loop. */
3318 if (nested_in_vect_loop && !double_reduc)
3319 goto vect_finalize_reduction;
3321 /* 2.3 Create the reduction code, using one of the three schemes described
3322 above. In SLP we simply need to extract all the elements from the
3323 vector (without reducing them), so we use scalar shifts. */
3324 if (reduc_code != ERROR_MARK && !slp_node)
3326 tree tmp;
3328 /*** Case 1: Create:
3329 v_out2 = reduc_expr <v_out1> */
3331 if (vect_print_dump_info (REPORT_DETAILS))
3332 fprintf (vect_dump, "Reduce using direct vector reduction.");
3334 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3335 new_phi = VEC_index (gimple, new_phis, 0);
3336 tmp = build1 (reduc_code, vectype, PHI_RESULT (new_phi));
3337 epilog_stmt = gimple_build_assign (vec_dest, tmp);
3338 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3339 gimple_assign_set_lhs (epilog_stmt, new_temp);
3340 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3342 extract_scalar_result = true;
3344 else
3346 enum tree_code shift_code = ERROR_MARK;
3347 bool have_whole_vector_shift = true;
3348 int bit_offset;
3349 int element_bitsize = tree_low_cst (bitsize, 1);
3350 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3351 tree vec_temp;
3353 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3354 shift_code = VEC_RSHIFT_EXPR;
3355 else
3356 have_whole_vector_shift = false;
3358 /* Regardless of whether we have a whole vector shift, if we're
3359 emulating the operation via tree-vect-generic, we don't want
3360 to use it. Only the first round of the reduction is likely
3361 to still be profitable via emulation. */
3362 /* ??? It might be better to emit a reduction tree code here, so that
3363 tree-vect-generic can expand the first round via bit tricks. */
3364 if (!VECTOR_MODE_P (mode))
3365 have_whole_vector_shift = false;
3366 else
3368 optab optab = optab_for_tree_code (code, vectype, optab_default);
3369 if (optab_handler (optab, mode) == CODE_FOR_nothing)
3370 have_whole_vector_shift = false;
3373 if (have_whole_vector_shift && !slp_node)
3375 /*** Case 2: Create:
3376 for (offset = VS/2; offset >= element_size; offset/=2)
3378 Create: va' = vec_shift <va, offset>
3379 Create: va = vop <va, va'>
3380 } */
3382 if (vect_print_dump_info (REPORT_DETAILS))
3383 fprintf (vect_dump, "Reduce using vector shifts");
3385 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3386 new_phi = VEC_index (gimple, new_phis, 0);
3387 new_temp = PHI_RESULT (new_phi);
3388 for (bit_offset = vec_size_in_bits/2;
3389 bit_offset >= element_bitsize;
3390 bit_offset /= 2)
3392 tree bitpos = size_int (bit_offset);
3394 epilog_stmt = gimple_build_assign_with_ops (shift_code,
3395 vec_dest, new_temp, bitpos);
3396 new_name = make_ssa_name (vec_dest, epilog_stmt);
3397 gimple_assign_set_lhs (epilog_stmt, new_name);
3398 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3400 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
3401 new_name, new_temp);
3402 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3403 gimple_assign_set_lhs (epilog_stmt, new_temp);
3404 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3407 extract_scalar_result = true;
3409 else
3411 tree rhs;
3413 /*** Case 3: Create:
3414 s = extract_field <v_out2, 0>
3415 for (offset = element_size;
3416 offset < vector_size;
3417 offset += element_size;)
3419 Create: s' = extract_field <v_out2, offset>
3420 Create: s = op <s, s'> // For non SLP cases
3421 } */
3423 if (vect_print_dump_info (REPORT_DETAILS))
3424 fprintf (vect_dump, "Reduce using scalar code. ");
3426 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3427 FOR_EACH_VEC_ELT (gimple, new_phis, i, new_phi)
3429 vec_temp = PHI_RESULT (new_phi);
3430 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
3431 bitsize_zero_node);
3432 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3433 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3434 gimple_assign_set_lhs (epilog_stmt, new_temp);
3435 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3437 /* In SLP we don't need to apply reduction operation, so we just
3438 collect s' values in SCALAR_RESULTS. */
3439 if (slp_node)
3440 VEC_safe_push (tree, heap, scalar_results, new_temp);
3442 for (bit_offset = element_bitsize;
3443 bit_offset < vec_size_in_bits;
3444 bit_offset += element_bitsize)
3446 tree bitpos = bitsize_int (bit_offset);
3447 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
3448 bitsize, bitpos);
3450 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3451 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
3452 gimple_assign_set_lhs (epilog_stmt, new_name);
3453 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3455 if (slp_node)
3457 /* In SLP we don't need to apply reduction operation, so
3458 we just collect s' values in SCALAR_RESULTS. */
3459 new_temp = new_name;
3460 VEC_safe_push (tree, heap, scalar_results, new_name);
3462 else
3464 epilog_stmt = gimple_build_assign_with_ops (code,
3465 new_scalar_dest, new_name, new_temp);
3466 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3467 gimple_assign_set_lhs (epilog_stmt, new_temp);
3468 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3473 /* The only case where we need to reduce scalar results in SLP, is
3474 unrolling. If the size of SCALAR_RESULTS is greater than
3475 GROUP_SIZE, we reduce them combining elements modulo
3476 GROUP_SIZE. */
3477 if (slp_node)
3479 tree res, first_res, new_res;
3480 gimple new_stmt;
3482 /* Reduce multiple scalar results in case of SLP unrolling. */
3483 for (j = group_size; VEC_iterate (tree, scalar_results, j, res);
3484 j++)
3486 first_res = VEC_index (tree, scalar_results, j % group_size);
3487 new_stmt = gimple_build_assign_with_ops (code,
3488 new_scalar_dest, first_res, res);
3489 new_res = make_ssa_name (new_scalar_dest, new_stmt);
3490 gimple_assign_set_lhs (new_stmt, new_res);
3491 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
3492 VEC_replace (tree, scalar_results, j % group_size, new_res);
3495 else
3496 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
3497 VEC_safe_push (tree, heap, scalar_results, new_temp);
3499 extract_scalar_result = false;
3503 /* 2.4 Extract the final scalar result. Create:
3504 s_out3 = extract_field <v_out2, bitpos> */
3506 if (extract_scalar_result)
3508 tree rhs;
3510 if (vect_print_dump_info (REPORT_DETAILS))
3511 fprintf (vect_dump, "extract scalar result");
3513 if (BYTES_BIG_ENDIAN)
3514 bitpos = size_binop (MULT_EXPR,
3515 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
3516 TYPE_SIZE (scalar_type));
3517 else
3518 bitpos = bitsize_zero_node;
3520 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
3521 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3522 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3523 gimple_assign_set_lhs (epilog_stmt, new_temp);
3524 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3525 VEC_safe_push (tree, heap, scalar_results, new_temp);
3528 vect_finalize_reduction:
3530 if (double_reduc)
3531 loop = loop->inner;
3533 /* 2.5 Adjust the final result by the initial value of the reduction
3534 variable. (When such adjustment is not needed, then
3535 'adjustment_def' is zero). For example, if code is PLUS we create:
3536 new_temp = loop_exit_def + adjustment_def */
3538 if (adjustment_def)
3540 gcc_assert (!slp_node);
3541 if (nested_in_vect_loop)
3543 new_phi = VEC_index (gimple, new_phis, 0);
3544 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
3545 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
3546 new_dest = vect_create_destination_var (scalar_dest, vectype);
3548 else
3550 new_temp = VEC_index (tree, scalar_results, 0);
3551 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
3552 expr = build2 (code, scalar_type, new_temp, adjustment_def);
3553 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
3556 epilog_stmt = gimple_build_assign (new_dest, expr);
3557 new_temp = make_ssa_name (new_dest, epilog_stmt);
3558 gimple_assign_set_lhs (epilog_stmt, new_temp);
3559 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
3560 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3561 if (nested_in_vect_loop)
3563 set_vinfo_for_stmt (epilog_stmt,
3564 new_stmt_vec_info (epilog_stmt, loop_vinfo,
3565 NULL));
3566 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
3567 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
3569 if (!double_reduc)
3570 VEC_quick_push (tree, scalar_results, new_temp);
3571 else
3572 VEC_replace (tree, scalar_results, 0, new_temp);
3574 else
3575 VEC_replace (tree, scalar_results, 0, new_temp);
3577 VEC_replace (gimple, new_phis, 0, epilog_stmt);
3580 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
3581 phis with new adjusted scalar results, i.e., replace use <s_out0>
3582 with use <s_out4>.
3584 Transform:
3585 loop_exit:
3586 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3587 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3588 v_out2 = reduce <v_out1>
3589 s_out3 = extract_field <v_out2, 0>
3590 s_out4 = adjust_result <s_out3>
3591 use <s_out0>
3592 use <s_out0>
3594 into:
3596 loop_exit:
3597 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3598 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3599 v_out2 = reduce <v_out1>
3600 s_out3 = extract_field <v_out2, 0>
3601 s_out4 = adjust_result <s_out3>
3602 use <s_out4>
3603 use <s_out4> */
3605 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
3606 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
3607 need to match SCALAR_RESULTS with corresponding statements. The first
3608 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
3609 the first vector stmt, etc.
3610 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
3611 if (group_size > VEC_length (gimple, new_phis))
3613 ratio = group_size / VEC_length (gimple, new_phis);
3614 gcc_assert (!(group_size % VEC_length (gimple, new_phis)));
3616 else
3617 ratio = 1;
3619 for (k = 0; k < group_size; k++)
3621 if (k % ratio == 0)
3623 epilog_stmt = VEC_index (gimple, new_phis, k / ratio);
3624 reduction_phi = VEC_index (gimple, reduction_phis, k / ratio);
3627 if (slp_node)
3629 gimple current_stmt = VEC_index (gimple,
3630 SLP_TREE_SCALAR_STMTS (slp_node), k);
3632 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
3633 /* SLP statements can't participate in patterns. */
3634 gcc_assert (!orig_stmt);
3635 scalar_dest = gimple_assign_lhs (current_stmt);
3638 phis = VEC_alloc (gimple, heap, 3);
3639 /* Find the loop-closed-use at the loop exit of the original scalar
3640 result. (The reduction result is expected to have two immediate uses -
3641 one at the latch block, and one at the loop exit). */
3642 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
3643 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
3644 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
3646 /* We expect to have found an exit_phi because of loop-closed-ssa
3647 form. */
3648 gcc_assert (!VEC_empty (gimple, phis));
3650 FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
3652 if (outer_loop)
3654 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
3655 gimple vect_phi;
3657 /* FORNOW. Currently not supporting the case that an inner-loop
3658 reduction is not used in the outer-loop (but only outside the
3659 outer-loop), unless it is double reduction. */
3660 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
3661 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
3662 || double_reduc);
3664 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
3665 if (!double_reduc
3666 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
3667 != vect_double_reduction_def)
3668 continue;
3670 /* Handle double reduction:
3672 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
3673 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
3674 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
3675 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
3677 At that point the regular reduction (stmt2 and stmt3) is
3678 already vectorized, as well as the exit phi node, stmt4.
3679 Here we vectorize the phi node of double reduction, stmt1, and
3680 update all relevant statements. */
3682 /* Go through all the uses of s2 to find double reduction phi
3683 node, i.e., stmt1 above. */
3684 orig_name = PHI_RESULT (exit_phi);
3685 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
3687 stmt_vec_info use_stmt_vinfo = vinfo_for_stmt (use_stmt);
3688 stmt_vec_info new_phi_vinfo;
3689 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
3690 basic_block bb = gimple_bb (use_stmt);
3691 gimple use;
3693 /* Check that USE_STMT is really double reduction phi
3694 node. */
3695 if (gimple_code (use_stmt) != GIMPLE_PHI
3696 || gimple_phi_num_args (use_stmt) != 2
3697 || !use_stmt_vinfo
3698 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
3699 != vect_double_reduction_def
3700 || bb->loop_father != outer_loop)
3701 continue;
3703 /* Create vector phi node for double reduction:
3704 vs1 = phi <vs0, vs2>
3705 vs1 was created previously in this function by a call to
3706 vect_get_vec_def_for_operand and is stored in
3707 vec_initial_def;
3708 vs2 is defined by EPILOG_STMT, the vectorized EXIT_PHI;
3709 vs0 is created here. */
3711 /* Create vector phi node. */
3712 vect_phi = create_phi_node (vec_initial_def, bb);
3713 new_phi_vinfo = new_stmt_vec_info (vect_phi,
3714 loop_vec_info_for_loop (outer_loop), NULL);
3715 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
3717 /* Create vs0 - initial def of the double reduction phi. */
3718 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
3719 loop_preheader_edge (outer_loop));
3720 init_def = get_initial_def_for_reduction (stmt,
3721 preheader_arg, NULL);
3722 vect_phi_init = vect_init_vector (use_stmt, init_def,
3723 vectype, NULL);
3725 /* Update phi node arguments with vs0 and vs2. */
3726 add_phi_arg (vect_phi, vect_phi_init,
3727 loop_preheader_edge (outer_loop),
3728 UNKNOWN_LOCATION);
3729 add_phi_arg (vect_phi, PHI_RESULT (epilog_stmt),
3730 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
3731 if (vect_print_dump_info (REPORT_DETAILS))
3733 fprintf (vect_dump, "created double reduction phi "
3734 "node: ");
3735 print_gimple_stmt (vect_dump, vect_phi, 0, TDF_SLIM);
3738 vect_phi_res = PHI_RESULT (vect_phi);
3740 /* Replace the use, i.e., set the correct vs1 in the regular
3741 reduction phi node. FORNOW, NCOPIES is always 1, so the
3742 loop is redundant. */
3743 use = reduction_phi;
3744 for (j = 0; j < ncopies; j++)
3746 edge pr_edge = loop_preheader_edge (loop);
3747 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
3748 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
3754 VEC_free (gimple, heap, phis);
3755 if (nested_in_vect_loop)
3757 if (double_reduc)
3758 loop = outer_loop;
3759 else
3760 continue;
3763 phis = VEC_alloc (gimple, heap, 3);
3764 /* Find the loop-closed-use at the loop exit of the original scalar
3765 result. (The reduction result is expected to have two immediate uses -
3766 one at the latch block, and one at the loop exit). For double
3767 reductions we are looking for exit phis of the outer loop. */
3768 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
3770 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
3771 VEC_safe_push (gimple, heap, phis, USE_STMT (use_p));
3772 else
3774 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
3776 tree phi_res = PHI_RESULT (USE_STMT (use_p));
3778 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
3780 if (!flow_bb_inside_loop_p (loop,
3781 gimple_bb (USE_STMT (phi_use_p))))
3782 VEC_safe_push (gimple, heap, phis,
3783 USE_STMT (phi_use_p));
3789 FOR_EACH_VEC_ELT (gimple, phis, i, exit_phi)
3791 /* Replace the uses: */
3792 orig_name = PHI_RESULT (exit_phi);
3793 scalar_result = VEC_index (tree, scalar_results, k);
3794 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
3795 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
3796 SET_USE (use_p, scalar_result);
3799 VEC_free (gimple, heap, phis);
3802 VEC_free (tree, heap, scalar_results);
3803 VEC_free (gimple, heap, new_phis);
3807 /* Function vectorizable_reduction.
3809 Check if STMT performs a reduction operation that can be vectorized.
3810 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3811 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
3812 Return FALSE if not a vectorizable STMT, TRUE otherwise.
3814 This function also handles reduction idioms (patterns) that have been
3815 recognized in advance during vect_pattern_recog. In this case, STMT may be
3816 of this form:
3817 X = pattern_expr (arg0, arg1, ..., X)
3818 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
3819 sequence that had been detected and replaced by the pattern-stmt (STMT).
3821 In some cases of reduction patterns, the type of the reduction variable X is
3822 different than the type of the other arguments of STMT.
3823 In such cases, the vectype that is used when transforming STMT into a vector
3824 stmt is different than the vectype that is used to determine the
3825 vectorization factor, because it consists of a different number of elements
3826 than the actual number of elements that are being operated upon in parallel.
3828 For example, consider an accumulation of shorts into an int accumulator.
3829 On some targets it's possible to vectorize this pattern operating on 8
3830 shorts at a time (hence, the vectype for purposes of determining the
3831 vectorization factor should be V8HI); on the other hand, the vectype that
3832 is used to create the vector form is actually V4SI (the type of the result).
3834 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
3835 indicates what is the actual level of parallelism (V8HI in the example), so
3836 that the right vectorization factor would be derived. This vectype
3837 corresponds to the type of arguments to the reduction stmt, and should *NOT*
3838 be used to create the vectorized stmt. The right vectype for the vectorized
3839 stmt is obtained from the type of the result X:
3840 get_vectype_for_scalar_type (TREE_TYPE (X))
3842 This means that, contrary to "regular" reductions (or "regular" stmts in
3843 general), the following equation:
3844 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
3845 does *NOT* necessarily hold for reduction patterns. */
3847 bool
3848 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
3849 gimple *vec_stmt, slp_tree slp_node)
3851 tree vec_dest;
3852 tree scalar_dest;
3853 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
3854 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3855 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
3856 tree vectype_in = NULL_TREE;
3857 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3858 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3859 enum tree_code code, orig_code, epilog_reduc_code;
3860 enum machine_mode vec_mode;
3861 int op_type;
3862 optab optab, reduc_optab;
3863 tree new_temp = NULL_TREE;
3864 tree def;
3865 gimple def_stmt;
3866 enum vect_def_type dt;
3867 gimple new_phi = NULL;
3868 tree scalar_type;
3869 bool is_simple_use;
3870 gimple orig_stmt;
3871 stmt_vec_info orig_stmt_info;
3872 tree expr = NULL_TREE;
3873 int i;
3874 int ncopies;
3875 int epilog_copies;
3876 stmt_vec_info prev_stmt_info, prev_phi_info;
3877 bool single_defuse_cycle = false;
3878 tree reduc_def = NULL_TREE;
3879 gimple new_stmt = NULL;
3880 int j;
3881 tree ops[3];
3882 bool nested_cycle = false, found_nested_cycle_def = false;
3883 gimple reduc_def_stmt = NULL;
3884 /* The default is that the reduction variable is the last in statement. */
3885 int reduc_index = 2;
3886 bool double_reduc = false, dummy;
3887 basic_block def_bb;
3888 struct loop * def_stmt_loop, *outer_loop = NULL;
3889 tree def_arg;
3890 gimple def_arg_stmt;
3891 VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL, *vect_defs = NULL;
3892 VEC (gimple, heap) *phis = NULL;
3893 int vec_num;
3894 tree def0, def1;
3896 if (nested_in_vect_loop_p (loop, stmt))
3898 outer_loop = loop;
3899 loop = loop->inner;
3900 nested_cycle = true;
3903 /* 1. Is vectorizable reduction? */
3904 /* Not supportable if the reduction variable is used in the loop. */
3905 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer)
3906 return false;
3908 /* Reductions that are not used even in an enclosing outer-loop,
3909 are expected to be "live" (used out of the loop). */
3910 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
3911 && !STMT_VINFO_LIVE_P (stmt_info))
3912 return false;
3914 /* Make sure it was already recognized as a reduction computation. */
3915 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
3916 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
3917 return false;
3919 /* 2. Has this been recognized as a reduction pattern?
3921 Check if STMT represents a pattern that has been recognized
3922 in earlier analysis stages. For stmts that represent a pattern,
3923 the STMT_VINFO_RELATED_STMT field records the last stmt in
3924 the original sequence that constitutes the pattern. */
3926 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3927 if (orig_stmt)
3929 orig_stmt_info = vinfo_for_stmt (orig_stmt);
3930 gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
3931 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
3932 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
3935 /* 3. Check the operands of the operation. The first operands are defined
3936 inside the loop body. The last operand is the reduction variable,
3937 which is defined by the loop-header-phi. */
3939 gcc_assert (is_gimple_assign (stmt));
3941 /* Flatten RHS */
3942 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3944 case GIMPLE_SINGLE_RHS:
3945 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
3946 if (op_type == ternary_op)
3948 tree rhs = gimple_assign_rhs1 (stmt);
3949 ops[0] = TREE_OPERAND (rhs, 0);
3950 ops[1] = TREE_OPERAND (rhs, 1);
3951 ops[2] = TREE_OPERAND (rhs, 2);
3952 code = TREE_CODE (rhs);
3954 else
3955 return false;
3956 break;
3958 case GIMPLE_BINARY_RHS:
3959 code = gimple_assign_rhs_code (stmt);
3960 op_type = TREE_CODE_LENGTH (code);
3961 gcc_assert (op_type == binary_op);
3962 ops[0] = gimple_assign_rhs1 (stmt);
3963 ops[1] = gimple_assign_rhs2 (stmt);
3964 break;
3966 case GIMPLE_UNARY_RHS:
3967 return false;
3969 default:
3970 gcc_unreachable ();
3973 scalar_dest = gimple_assign_lhs (stmt);
3974 scalar_type = TREE_TYPE (scalar_dest);
3975 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
3976 && !SCALAR_FLOAT_TYPE_P (scalar_type))
3977 return false;
3979 /* All uses but the last are expected to be defined in the loop.
3980 The last use is the reduction variable. In case of nested cycle this
3981 assumption is not true: we use reduc_index to record the index of the
3982 reduction variable. */
3983 for (i = 0; i < op_type-1; i++)
3985 tree tem;
3987 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
3988 if (i == 0 && code == COND_EXPR)
3989 continue;
3991 is_simple_use = vect_is_simple_use_1 (ops[i], loop_vinfo, NULL,
3992 &def_stmt, &def, &dt, &tem);
3993 if (!vectype_in)
3994 vectype_in = tem;
3995 gcc_assert (is_simple_use);
3996 if (dt != vect_internal_def
3997 && dt != vect_external_def
3998 && dt != vect_constant_def
3999 && dt != vect_induction_def
4000 && !(dt == vect_nested_cycle && nested_cycle))
4001 return false;
4003 if (dt == vect_nested_cycle)
4005 found_nested_cycle_def = true;
4006 reduc_def_stmt = def_stmt;
4007 reduc_index = i;
4011 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo, NULL, &def_stmt,
4012 &def, &dt);
4013 gcc_assert (is_simple_use);
4014 gcc_assert (dt == vect_reduction_def
4015 || dt == vect_nested_cycle
4016 || ((dt == vect_internal_def || dt == vect_external_def
4017 || dt == vect_constant_def || dt == vect_induction_def)
4018 && nested_cycle && found_nested_cycle_def));
4019 if (!found_nested_cycle_def)
4020 reduc_def_stmt = def_stmt;
4022 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4023 if (orig_stmt)
4024 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4025 reduc_def_stmt,
4026 !nested_cycle,
4027 &dummy));
4028 else
4029 gcc_assert (stmt == vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4030 !nested_cycle, &dummy));
4032 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4033 return false;
4035 if (slp_node)
4036 ncopies = 1;
4037 else
4038 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4039 / TYPE_VECTOR_SUBPARTS (vectype_in));
4041 gcc_assert (ncopies >= 1);
4043 vec_mode = TYPE_MODE (vectype_in);
4045 if (code == COND_EXPR)
4047 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0))
4049 if (vect_print_dump_info (REPORT_DETAILS))
4050 fprintf (vect_dump, "unsupported condition in reduction");
4052 return false;
4055 else
4057 /* 4. Supportable by target? */
4059 /* 4.1. check support for the operation in the loop */
4060 optab = optab_for_tree_code (code, vectype_in, optab_default);
4061 if (!optab)
4063 if (vect_print_dump_info (REPORT_DETAILS))
4064 fprintf (vect_dump, "no optab.");
4066 return false;
4069 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4071 if (vect_print_dump_info (REPORT_DETAILS))
4072 fprintf (vect_dump, "op not supported by target.");
4074 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4075 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4076 < vect_min_worthwhile_factor (code))
4077 return false;
4079 if (vect_print_dump_info (REPORT_DETAILS))
4080 fprintf (vect_dump, "proceeding using word mode.");
4083 /* Worthwhile without SIMD support? */
4084 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4085 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4086 < vect_min_worthwhile_factor (code))
4088 if (vect_print_dump_info (REPORT_DETAILS))
4089 fprintf (vect_dump, "not worthwhile without SIMD support.");
4091 return false;
4095 /* 4.2. Check support for the epilog operation.
4097 If STMT represents a reduction pattern, then the type of the
4098 reduction variable may be different than the type of the rest
4099 of the arguments. For example, consider the case of accumulation
4100 of shorts into an int accumulator; The original code:
4101 S1: int_a = (int) short_a;
4102 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4104 was replaced with:
4105 STMT: int_acc = widen_sum <short_a, int_acc>
4107 This means that:
4108 1. The tree-code that is used to create the vector operation in the
4109 epilog code (that reduces the partial results) is not the
4110 tree-code of STMT, but is rather the tree-code of the original
4111 stmt from the pattern that STMT is replacing. I.e, in the example
4112 above we want to use 'widen_sum' in the loop, but 'plus' in the
4113 epilog.
4114 2. The type (mode) we use to check available target support
4115 for the vector operation to be created in the *epilog*, is
4116 determined by the type of the reduction variable (in the example
4117 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4118 However the type (mode) we use to check available target support
4119 for the vector operation to be created *inside the loop*, is
4120 determined by the type of the other arguments to STMT (in the
4121 example we'd check this: optab_handler (widen_sum_optab,
4122 vect_short_mode)).
4124 This is contrary to "regular" reductions, in which the types of all
4125 the arguments are the same as the type of the reduction variable.
4126 For "regular" reductions we can therefore use the same vector type
4127 (and also the same tree-code) when generating the epilog code and
4128 when generating the code inside the loop. */
4130 if (orig_stmt)
4132 /* This is a reduction pattern: get the vectype from the type of the
4133 reduction variable, and get the tree-code from orig_stmt. */
4134 orig_code = gimple_assign_rhs_code (orig_stmt);
4135 gcc_assert (vectype_out);
4136 vec_mode = TYPE_MODE (vectype_out);
4138 else
4140 /* Regular reduction: use the same vectype and tree-code as used for
4141 the vector code inside the loop can be used for the epilog code. */
4142 orig_code = code;
4145 if (nested_cycle)
4147 def_bb = gimple_bb (reduc_def_stmt);
4148 def_stmt_loop = def_bb->loop_father;
4149 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4150 loop_preheader_edge (def_stmt_loop));
4151 if (TREE_CODE (def_arg) == SSA_NAME
4152 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4153 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4154 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4155 && vinfo_for_stmt (def_arg_stmt)
4156 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4157 == vect_double_reduction_def)
4158 double_reduc = true;
4161 epilog_reduc_code = ERROR_MARK;
4162 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4164 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4165 optab_default);
4166 if (!reduc_optab)
4168 if (vect_print_dump_info (REPORT_DETAILS))
4169 fprintf (vect_dump, "no optab for reduction.");
4171 epilog_reduc_code = ERROR_MARK;
4174 if (reduc_optab
4175 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
4177 if (vect_print_dump_info (REPORT_DETAILS))
4178 fprintf (vect_dump, "reduc op not supported by target.");
4180 epilog_reduc_code = ERROR_MARK;
4183 else
4185 if (!nested_cycle || double_reduc)
4187 if (vect_print_dump_info (REPORT_DETAILS))
4188 fprintf (vect_dump, "no reduc code for scalar code.");
4190 return false;
4194 if (double_reduc && ncopies > 1)
4196 if (vect_print_dump_info (REPORT_DETAILS))
4197 fprintf (vect_dump, "multiple types in double reduction");
4199 return false;
4202 if (!vec_stmt) /* transformation not required. */
4204 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
4205 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
4206 return false;
4207 return true;
4210 /** Transform. **/
4212 if (vect_print_dump_info (REPORT_DETAILS))
4213 fprintf (vect_dump, "transform reduction.");
4215 /* FORNOW: Multiple types are not supported for condition. */
4216 if (code == COND_EXPR)
4217 gcc_assert (ncopies == 1);
4219 /* Create the destination vector */
4220 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
4222 /* In case the vectorization factor (VF) is bigger than the number
4223 of elements that we can fit in a vectype (nunits), we have to generate
4224 more than one vector stmt - i.e - we need to "unroll" the
4225 vector stmt by a factor VF/nunits. For more details see documentation
4226 in vectorizable_operation. */
4228 /* If the reduction is used in an outer loop we need to generate
4229 VF intermediate results, like so (e.g. for ncopies=2):
4230 r0 = phi (init, r0)
4231 r1 = phi (init, r1)
4232 r0 = x0 + r0;
4233 r1 = x1 + r1;
4234 (i.e. we generate VF results in 2 registers).
4235 In this case we have a separate def-use cycle for each copy, and therefore
4236 for each copy we get the vector def for the reduction variable from the
4237 respective phi node created for this copy.
4239 Otherwise (the reduction is unused in the loop nest), we can combine
4240 together intermediate results, like so (e.g. for ncopies=2):
4241 r = phi (init, r)
4242 r = x0 + r;
4243 r = x1 + r;
4244 (i.e. we generate VF/2 results in a single register).
4245 In this case for each copy we get the vector def for the reduction variable
4246 from the vectorized reduction operation generated in the previous iteration.
4249 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
4251 single_defuse_cycle = true;
4252 epilog_copies = 1;
4254 else
4255 epilog_copies = ncopies;
4257 prev_stmt_info = NULL;
4258 prev_phi_info = NULL;
4259 if (slp_node)
4261 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4262 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
4263 == TYPE_VECTOR_SUBPARTS (vectype_in));
4265 else
4267 vec_num = 1;
4268 vec_oprnds0 = VEC_alloc (tree, heap, 1);
4269 if (op_type == ternary_op)
4270 vec_oprnds1 = VEC_alloc (tree, heap, 1);
4273 phis = VEC_alloc (gimple, heap, vec_num);
4274 vect_defs = VEC_alloc (tree, heap, vec_num);
4275 if (!slp_node)
4276 VEC_quick_push (tree, vect_defs, NULL_TREE);
4278 for (j = 0; j < ncopies; j++)
4280 if (j == 0 || !single_defuse_cycle)
4282 for (i = 0; i < vec_num; i++)
4284 /* Create the reduction-phi that defines the reduction
4285 operand. */
4286 new_phi = create_phi_node (vec_dest, loop->header);
4287 set_vinfo_for_stmt (new_phi,
4288 new_stmt_vec_info (new_phi, loop_vinfo,
4289 NULL));
4290 if (j == 0 || slp_node)
4291 VEC_quick_push (gimple, phis, new_phi);
4295 if (code == COND_EXPR)
4297 gcc_assert (!slp_node);
4298 vectorizable_condition (stmt, gsi, vec_stmt,
4299 PHI_RESULT (VEC_index (gimple, phis, 0)),
4300 reduc_index);
4301 /* Multiple types are not supported for condition. */
4302 break;
4305 /* Handle uses. */
4306 if (j == 0)
4308 if (slp_node)
4309 vect_get_slp_defs (slp_node, &vec_oprnds0, &vec_oprnds1, -1);
4310 else
4312 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
4313 stmt, NULL);
4314 VEC_quick_push (tree, vec_oprnds0, loop_vec_def0);
4315 if (op_type == ternary_op)
4317 if (reduc_index == 0)
4318 loop_vec_def1 = vect_get_vec_def_for_operand (ops[2], stmt,
4319 NULL);
4320 else
4321 loop_vec_def1 = vect_get_vec_def_for_operand (ops[1], stmt,
4322 NULL);
4324 VEC_quick_push (tree, vec_oprnds1, loop_vec_def1);
4328 else
4330 if (!slp_node)
4332 enum vect_def_type dt = vect_unknown_def_type; /* Dummy */
4333 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def0);
4334 VEC_replace (tree, vec_oprnds0, 0, loop_vec_def0);
4335 if (op_type == ternary_op)
4337 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
4338 loop_vec_def1);
4339 VEC_replace (tree, vec_oprnds1, 0, loop_vec_def1);
4343 if (single_defuse_cycle)
4344 reduc_def = gimple_assign_lhs (new_stmt);
4346 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
4349 FOR_EACH_VEC_ELT (tree, vec_oprnds0, i, def0)
4351 if (slp_node)
4352 reduc_def = PHI_RESULT (VEC_index (gimple, phis, i));
4353 else
4355 if (!single_defuse_cycle || j == 0)
4356 reduc_def = PHI_RESULT (new_phi);
4359 def1 = ((op_type == ternary_op)
4360 ? VEC_index (tree, vec_oprnds1, i) : NULL);
4361 if (op_type == binary_op)
4363 if (reduc_index == 0)
4364 expr = build2 (code, vectype_out, reduc_def, def0);
4365 else
4366 expr = build2 (code, vectype_out, def0, reduc_def);
4368 else
4370 if (reduc_index == 0)
4371 expr = build3 (code, vectype_out, reduc_def, def0, def1);
4372 else
4374 if (reduc_index == 1)
4375 expr = build3 (code, vectype_out, def0, reduc_def, def1);
4376 else
4377 expr = build3 (code, vectype_out, def0, def1, reduc_def);
4381 new_stmt = gimple_build_assign (vec_dest, expr);
4382 new_temp = make_ssa_name (vec_dest, new_stmt);
4383 gimple_assign_set_lhs (new_stmt, new_temp);
4384 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4385 if (slp_node)
4387 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
4388 VEC_quick_push (tree, vect_defs, new_temp);
4390 else
4391 VEC_replace (tree, vect_defs, 0, new_temp);
4394 if (slp_node)
4395 continue;
4397 if (j == 0)
4398 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4399 else
4400 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4402 prev_stmt_info = vinfo_for_stmt (new_stmt);
4403 prev_phi_info = vinfo_for_stmt (new_phi);
4406 /* Finalize the reduction-phi (set its arguments) and create the
4407 epilog reduction code. */
4408 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
4410 new_temp = gimple_assign_lhs (*vec_stmt);
4411 VEC_replace (tree, vect_defs, 0, new_temp);
4414 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
4415 epilog_reduc_code, phis, reduc_index,
4416 double_reduc, slp_node);
4418 VEC_free (gimple, heap, phis);
4419 VEC_free (tree, heap, vec_oprnds0);
4420 if (vec_oprnds1)
4421 VEC_free (tree, heap, vec_oprnds1);
4423 return true;
4426 /* Function vect_min_worthwhile_factor.
4428 For a loop where we could vectorize the operation indicated by CODE,
4429 return the minimum vectorization factor that makes it worthwhile
4430 to use generic vectors. */
4432 vect_min_worthwhile_factor (enum tree_code code)
4434 switch (code)
4436 case PLUS_EXPR:
4437 case MINUS_EXPR:
4438 case NEGATE_EXPR:
4439 return 4;
4441 case BIT_AND_EXPR:
4442 case BIT_IOR_EXPR:
4443 case BIT_XOR_EXPR:
4444 case BIT_NOT_EXPR:
4445 return 2;
4447 default:
4448 return INT_MAX;
4453 /* Function vectorizable_induction
4455 Check if PHI performs an induction computation that can be vectorized.
4456 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
4457 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
4458 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4460 bool
4461 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4462 gimple *vec_stmt)
4464 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
4465 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4466 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4467 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4468 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4469 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4470 tree vec_def;
4472 gcc_assert (ncopies >= 1);
4473 /* FORNOW. This restriction should be relaxed. */
4474 if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
4476 if (vect_print_dump_info (REPORT_DETAILS))
4477 fprintf (vect_dump, "multiple types in nested loop.");
4478 return false;
4481 if (!STMT_VINFO_RELEVANT_P (stmt_info))
4482 return false;
4484 /* FORNOW: SLP not supported. */
4485 if (STMT_SLP_TYPE (stmt_info))
4486 return false;
4488 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
4490 if (gimple_code (phi) != GIMPLE_PHI)
4491 return false;
4493 if (!vec_stmt) /* transformation not required. */
4495 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
4496 if (vect_print_dump_info (REPORT_DETAILS))
4497 fprintf (vect_dump, "=== vectorizable_induction ===");
4498 vect_model_induction_cost (stmt_info, ncopies);
4499 return true;
4502 /** Transform. **/
4504 if (vect_print_dump_info (REPORT_DETAILS))
4505 fprintf (vect_dump, "transform induction phi.");
4507 vec_def = get_initial_def_for_induction (phi);
4508 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
4509 return true;
4512 /* Function vectorizable_live_operation.
4514 STMT computes a value that is used outside the loop. Check if
4515 it can be supported. */
4517 bool
4518 vectorizable_live_operation (gimple stmt,
4519 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4520 gimple *vec_stmt ATTRIBUTE_UNUSED)
4522 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4523 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4524 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4525 int i;
4526 int op_type;
4527 tree op;
4528 tree def;
4529 gimple def_stmt;
4530 enum vect_def_type dt;
4531 enum tree_code code;
4532 enum gimple_rhs_class rhs_class;
4534 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
4536 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
4537 return false;
4539 if (!is_gimple_assign (stmt))
4540 return false;
4542 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4543 return false;
4545 /* FORNOW. CHECKME. */
4546 if (nested_in_vect_loop_p (loop, stmt))
4547 return false;
4549 code = gimple_assign_rhs_code (stmt);
4550 op_type = TREE_CODE_LENGTH (code);
4551 rhs_class = get_gimple_rhs_class (code);
4552 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
4553 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
4555 /* FORNOW: support only if all uses are invariant. This means
4556 that the scalar operations can remain in place, unvectorized.
4557 The original last scalar value that they compute will be used. */
4559 for (i = 0; i < op_type; i++)
4561 if (rhs_class == GIMPLE_SINGLE_RHS)
4562 op = TREE_OPERAND (gimple_op (stmt, 1), i);
4563 else
4564 op = gimple_op (stmt, i + 1);
4565 if (op
4566 && !vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, &dt))
4568 if (vect_print_dump_info (REPORT_DETAILS))
4569 fprintf (vect_dump, "use not simple.");
4570 return false;
4573 if (dt != vect_external_def && dt != vect_constant_def)
4574 return false;
4577 /* No transformation is required for the cases we currently support. */
4578 return true;
4581 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
4583 static void
4584 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
4586 ssa_op_iter op_iter;
4587 imm_use_iterator imm_iter;
4588 def_operand_p def_p;
4589 gimple ustmt;
4591 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
4593 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
4595 basic_block bb;
4597 if (!is_gimple_debug (ustmt))
4598 continue;
4600 bb = gimple_bb (ustmt);
4602 if (!flow_bb_inside_loop_p (loop, bb))
4604 if (gimple_debug_bind_p (ustmt))
4606 if (vect_print_dump_info (REPORT_DETAILS))
4607 fprintf (vect_dump, "killing debug use");
4609 gimple_debug_bind_reset_value (ustmt);
4610 update_stmt (ustmt);
4612 else
4613 gcc_unreachable ();
4619 /* Function vect_transform_loop.
4621 The analysis phase has determined that the loop is vectorizable.
4622 Vectorize the loop - created vectorized stmts to replace the scalar
4623 stmts in the loop, and update the loop exit condition. */
4625 void
4626 vect_transform_loop (loop_vec_info loop_vinfo)
4628 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4629 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
4630 int nbbs = loop->num_nodes;
4631 gimple_stmt_iterator si;
4632 int i;
4633 tree ratio = NULL;
4634 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4635 bool strided_store;
4636 bool slp_scheduled = false;
4637 unsigned int nunits;
4638 tree cond_expr = NULL_TREE;
4639 gimple_seq cond_expr_stmt_list = NULL;
4640 bool do_peeling_for_loop_bound;
4642 if (vect_print_dump_info (REPORT_DETAILS))
4643 fprintf (vect_dump, "=== vec_transform_loop ===");
4645 /* Peel the loop if there are data refs with unknown alignment.
4646 Only one data ref with unknown store is allowed. */
4648 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
4649 vect_do_peeling_for_alignment (loop_vinfo);
4651 do_peeling_for_loop_bound
4652 = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
4653 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
4654 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0));
4656 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
4657 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
4658 vect_loop_versioning (loop_vinfo,
4659 !do_peeling_for_loop_bound,
4660 &cond_expr, &cond_expr_stmt_list);
4662 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
4663 compile time constant), or it is a constant that doesn't divide by the
4664 vectorization factor, then an epilog loop needs to be created.
4665 We therefore duplicate the loop: the original loop will be vectorized,
4666 and will compute the first (n/VF) iterations. The second copy of the loop
4667 will remain scalar and will compute the remaining (n%VF) iterations.
4668 (VF is the vectorization factor). */
4670 if (do_peeling_for_loop_bound)
4671 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
4672 cond_expr, cond_expr_stmt_list);
4673 else
4674 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
4675 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
4677 /* 1) Make sure the loop header has exactly two entries
4678 2) Make sure we have a preheader basic block. */
4680 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
4682 split_edge (loop_preheader_edge (loop));
4684 /* FORNOW: the vectorizer supports only loops which body consist
4685 of one basic block (header + empty latch). When the vectorizer will
4686 support more involved loop forms, the order by which the BBs are
4687 traversed need to be reconsidered. */
4689 for (i = 0; i < nbbs; i++)
4691 basic_block bb = bbs[i];
4692 stmt_vec_info stmt_info;
4693 gimple phi;
4695 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4697 phi = gsi_stmt (si);
4698 if (vect_print_dump_info (REPORT_DETAILS))
4700 fprintf (vect_dump, "------>vectorizing phi: ");
4701 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
4703 stmt_info = vinfo_for_stmt (phi);
4704 if (!stmt_info)
4705 continue;
4707 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
4708 vect_loop_kill_debug_uses (loop, phi);
4710 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4711 && !STMT_VINFO_LIVE_P (stmt_info))
4712 continue;
4714 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
4715 != (unsigned HOST_WIDE_INT) vectorization_factor)
4716 && vect_print_dump_info (REPORT_DETAILS))
4717 fprintf (vect_dump, "multiple-types.");
4719 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
4721 if (vect_print_dump_info (REPORT_DETAILS))
4722 fprintf (vect_dump, "transform phi.");
4723 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
4727 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
4729 gimple stmt = gsi_stmt (si);
4730 bool is_store;
4732 if (vect_print_dump_info (REPORT_DETAILS))
4734 fprintf (vect_dump, "------>vectorizing statement: ");
4735 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
4738 stmt_info = vinfo_for_stmt (stmt);
4740 /* vector stmts created in the outer-loop during vectorization of
4741 stmts in an inner-loop may not have a stmt_info, and do not
4742 need to be vectorized. */
4743 if (!stmt_info)
4745 gsi_next (&si);
4746 continue;
4749 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
4750 vect_loop_kill_debug_uses (loop, stmt);
4752 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4753 && !STMT_VINFO_LIVE_P (stmt_info))
4755 gsi_next (&si);
4756 continue;
4759 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
4760 nunits =
4761 (unsigned int) TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
4762 if (!STMT_SLP_TYPE (stmt_info)
4763 && nunits != (unsigned int) vectorization_factor
4764 && vect_print_dump_info (REPORT_DETAILS))
4765 /* For SLP VF is set according to unrolling factor, and not to
4766 vector size, hence for SLP this print is not valid. */
4767 fprintf (vect_dump, "multiple-types.");
4769 /* SLP. Schedule all the SLP instances when the first SLP stmt is
4770 reached. */
4771 if (STMT_SLP_TYPE (stmt_info))
4773 if (!slp_scheduled)
4775 slp_scheduled = true;
4777 if (vect_print_dump_info (REPORT_DETAILS))
4778 fprintf (vect_dump, "=== scheduling SLP instances ===");
4780 vect_schedule_slp (loop_vinfo, NULL);
4783 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
4784 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
4786 gsi_next (&si);
4787 continue;
4791 /* -------- vectorize statement ------------ */
4792 if (vect_print_dump_info (REPORT_DETAILS))
4793 fprintf (vect_dump, "transform statement.");
4795 strided_store = false;
4796 is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
4797 if (is_store)
4799 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
4801 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
4802 interleaving chain was completed - free all the stores in
4803 the chain. */
4804 vect_remove_stores (DR_GROUP_FIRST_DR (stmt_info));
4805 gsi_remove (&si, true);
4806 continue;
4808 else
4810 /* Free the attached stmt_vec_info and remove the stmt. */
4811 free_stmt_vec_info (stmt);
4812 gsi_remove (&si, true);
4813 continue;
4816 gsi_next (&si);
4817 } /* stmts in BB */
4818 } /* BBs in loop */
4820 slpeel_make_loop_iterate_ntimes (loop, ratio);
4822 /* The memory tags and pointers in vectorized statements need to
4823 have their SSA forms updated. FIXME, why can't this be delayed
4824 until all the loops have been transformed? */
4825 update_ssa (TODO_update_ssa);
4827 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
4828 fprintf (vect_dump, "LOOP VECTORIZED.");
4829 if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
4830 fprintf (vect_dump, "OUTER LOOP VECTORIZED.");